WorldWideScience

Sample records for negative water balance

  1. Efficacy of an extravascular lung water-driven negative fluid balance protocol.

    Science.gov (United States)

    Díaz-Rubia, L; Ramos-Sáez, S; Vázquez-Guillamet, R; Guerrero-López, F; Pino-Sánchez, F; García-Delgado, M; Gómez-Jiménez, F J; Fernández-Mondéjar, E

    2015-01-01

    To analyze the efficacy of negative fluid balance in hypoxemic patients with an elevated extravascular lung water index (EVLWI). A retrospective observational study was made. Intensive Care Unit of Virgen de las Nieves Hospital (Spain). Forty-four patients participated in the study. We analyzed our database of hypoxemic patients covering a period of 11 consecutive months. We included all hemodynamically stable and hypoxemic patients with EVLWI>9ml/kg. The protocol dictates a negative fluid balance between 500 and 1500ml/day. We analyzed the impact of this negative fluid balance strategy upon pulmonary, hemodynamic, and renal function. Demographic data, severity scores, clinical, hemodynamic, pulmonary, metabolic and renal function data. Thirty-three patients achieved negative fluid balance (NFB group) and 11 had a positive fluid balance (PFB group). In the former group, PaO2/FiO2 improved from 145 (IQR 106, 200) to 210mmHg (IQR 164, 248) (pPFB group, EVLWI also decreased from 11 (10, 14) to 10ml/kg (8, 14) at the end of the protocol (p=0.004). For these patients there were no changes in oxygenation, with a PaO2/FiO2 of 216mmHg (IQR 137, 260) at the beginning versus 205mmHg (IQR 99,257) at the end of the study (p=0.08). Three out of four hypoxic patients with elevated EVLWI tolerated the NFB protocol. In these subjects, the improvement of various analyzed physiological parameters was greater and faster than in those unable to complete the protocol. Patients who did not tolerate the protocol were usually in more severe condition, though a larger sample would be needed to detect specific characteristics of this group. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  2. Negative leave balances

    CERN Multimedia

    Human Resources Department

    2005-01-01

    Members of the personnel entitled to annual leave and, where appropriate, saved leave and/or compensatory leave are requested to take note of the new arrangements described below, which were recommended by the Standing Concertation Committee (SCC) at its meeting on 1Â September 2005 and subsequently approved by the Director-General. The changes do not apply to members of the personnel participating in the Progressive Retirement Programme (PRP) or the Part-time Work as a pre-retirement measure, for whom the specific provisions communicated at the time of joining will continue to apply. Â Negative balances in annual leave, saved leave and/or compensatory leave accounts at the end of the leave year (30th September) and on the date on which bonuses are credited to the saved leave account (31st December): Where members of the personnel have a leave account with a negative balance on 30Â September and/or 31Â December, leave will automatically be transferred from one account to another on the relevant dates i...

  3. Negative leave balances

    CERN Multimedia

    Human Resources Department

    2005-01-01

    Members of the personnel entitled to annual leave and, where appropriate, saved leave and/or compensatory leave are requested to take note of the new arrangements described below, which were recommended by the Standing Concertation Committee (SCC) at its meeting on 1 September 2005 and subsequently approved by the Director-General. The changes do not apply to members of the personnel participating in the Progressive Retirement Programme (PRP) or the Part-time Work as a pre-retirement measure, for whom the specific provisions communicated at the time of joining will continue to apply.  Negative balances in annual leave, saved leave and/or compensatory leave accounts at the end of the leave year (30th September) and on the date on which bonuses are credited to the saved leave account (31st December): Where members of the personnel have a leave account with a negative balance on 30 September and/or 31 December, leave will automatically be transferred from one account to another on the relevant dates in or...

  4. Water, Ice, and Meteorological Measurements at South Cascade Glacier, Washington, Balance Years 2004 and 2005

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2007-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance years 2004 and 2005. The North Cascade Range in the vicinity of South Cascade Glacier accumulated smaller than normal winter snowpacks during water years 2004 and 2005. Correspondingly, the balance years 2004 and 2005 maximum winter snow balances of South Cascade Glacier, 2.08 and 1.97 meters water equivalent, respectively, were smaller than the average of such balances since 1959. The 2004 glacier summer balance (-3.73 meters water equivalent) was the eleventh most negative during 1959 to 2005 and the 2005 glacier summer balance (-4.42 meters water equivalent) was the third most negative. The relatively small winter snow balances and unusually negative summer balances of 2004 and 2005 led to an overall loss of glacier mass. The 2004 and 2005 glacier net balances, -1.65 and -2.45 meters water equivalent, respectively, were the seventh and second most negative during 1953 to 2005. For both balance years, the accumulation area ratio was less than 0.05 and the equilibrium line altitude was higher than the glacier. The unusually negative 2004 and 2005 glacier net balances, combined with a negative balance previously reported for 2003, resulted in a cumulative 3-year net balance of -6.20 meters water equivalent. No equal or greater 3-year mass loss has occurred previously during the more than 4 decades of U.S. Geological Survey mass-balance measurements at South Cascade Glacier. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 17 meters per year during balance year 2004 and 15 meters per year during balance year 2005. Glacier area near the end of balance years 2004 and 2005 was 1.82 and 1.75 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was

  5. Water, ice, and meteorological measurements at South Cascade glacier, Washington, balance year 2003

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2005-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance year 2003. The 2003 glacier-average maximum winter snow balance was 2.66 meters water equivalent, which was about equal to the average of such balances for the glacier since balance year 1959. The 2003 glacier summer balance (-4.76 meters water equivalent) was the most negative reported for the glacier, and the 2003 net balance (-2.10 meters water equivalent), was the second-most negative reported. The glacier 2003 annual (water year) balance was -1.89 meters water equivalent. The area of the glacier near the end of the balance year was 1.89 square kilometers, a decrease of 0.03 square kilometer from the previous year. The equilibrium-line altitude was higher than any part of the glacier; however, because snow remained along part of one side of the upper glacier, the accumulation-area ratio was 0.07. During September 13, 2002-September 13, 2003, the glacier terminus retreated at a rate of about 15 meters per year. Average speed of surface ice, computed using a series of vertical aerial photographs dating back to 2001, ranged from 2.2 to 21.8 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin was gaged during part of water year 2003. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed, and incoming solar radiation were measured at selected locations on and near the glacier. Summer 2003 at the glacier was among the warmest for which data are available.

  6. Water balance in the complex mountainous terrain of Bhutan and linkages to land use

    Directory of Open Access Journals (Sweden)

    Ugyen Dorji

    2016-09-01

    Study Focus: Located in the Himalayas with elevation ranging 100–7550 m and with an area equivalent to Switzerland, Bhutan has great biodiversity despite its small area. A monsoon-dominated climate causes generally wet summer and dry winter. Bhutan is highly dependent of climatic conditions for its developmental activities. Using multiple regression analysis we have established models to predict the evapotranspiration (ETo and water balance and test the linkage to vegetation and land cover using meteorological data from 70 weather stations across Bhutan. Temperature-based ETo equations were evaluated in reference to the Penman-Monteith (PM method and a calibrated Hargreaves (H equation was used for computing the ETo. New Hydrological Insights for the Region. The calibrated Hargreaves equation gave good estimates of average daily ETo comparable to the PM ETo. The spatial variation in PM ETo is linked to variation in sunshine hours in summer and temperature in other seasons. Seasonal and annual ETo was mainly affected by elevation and latitude, which is linked to temperature and sunshine duration. Precipitation and water balance correlated positively with the Southern Oscillation Index (SOI while ETo correlated negatively. Our models for predicting ETo and water balances performed clearly better than the global CRU gridded data for Bhutan. A positive water balance is found in broadleaf forest areas and small or negative water balance for coniferous forests.

  7. Water balance of goats in Jeneponto - South Sulawesi under sunlight exposure and water restriction

    Directory of Open Access Journals (Sweden)

    Djoni Prawira Rahardja

    2007-10-01

    Full Text Available Water balance of 5 does of Kacang goat of Jeneponto was studied under the condition of sunlight exposure and water restriction. The study was conducted in dry season with 4 consecutive treatments of 10 d with 4-5 d of adjustment period between two consecutive treatments: (1 indoor and unrestricted water; (2 indoor and restricted water; (3 10 h outdoor–and unrestricted water; (4 10 h outdoor – restricted water. The maximum air temperature of outdoor was 39.3OC, and it was 30OC in the indoor environment. In all treatments, the animals were placed in the individual crates. The plasma volume of the goats was higher under sunlight exposure, but it decreased by water restriction, while hematocrite value indicated a reverse responses. Sunlight exposure did not significantly decrease the intake and digestion of organic matter, but water restriction affected significantly and this effect was higher under sunlight exposre. The proportions of water loss through every avenue were maintained relatively constant either under water restriction or sunlight exposure in which the respration rate increased significantly. The findings suggest that sunlight exposure with unrestricted water resulted in a positive water balance without a significant change in organic matter intake and utilization. Water restriction resulted in a negative water balance, reducing organic matter intake and utilization. As the adaptive mechanisms, the goat appeared to be able to withstand in the harsh environment of Jeneponto by expanding plasma volume, increasing body temperature and respiration rate.

  8. Renal aquaporins and water balance disorders

    DEFF Research Database (Denmark)

    Kortenoeven, Marleen; Fenton, Robert A.

    2013-01-01

    BACKGROUND: Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, A......-solute diet and diuretics. GENERAL SIGNIFICANCE: In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies.......BACKGROUND: Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP......2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin. SCOPE OF REVIEW: This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies. MAJOR CONCLUSIONS: Dysfunctions of AQPs are involved in disorders...

  9. Water balance of Slovenia 1971 - 2000

    International Nuclear Information System (INIS)

    Frantar, P; Dolinar, M; Kurnik, B

    2008-01-01

    The water is becoming more and more valuable natural resource. The increasing water demand and climate changes are making water a precious and not always available valuable. The water balance is the most appropriate way to make a full overview of water cycle in Slovenia, to find general information about hydrological characteristics of drainage basins, precipitation, evaporation and runoff. The article presents the methodology and the results of the Water balance project of Slovenia. Slovenia has the geographical position at the juncture of 4 main European georegions: The Alps, the Panonian Basin, the Mediterranean and the Dinaric Mountains. This makes the territory very diverse also from a hydrological point of view. Our major watershed divides the precipitation runoff into two watershed areas - the Adriatic Sea and the Black Sea. Due to this watershed almost all the Slovenia's rivers have headwaters in our territory. Water balance is calculation of water inputs and outputs over the defined area. The basic elements of the water balance include all the inflows and outflows for a given basin and serve for the computation of the water regime of a catchment area. It is defined by the parameters precipitation (P), evaporation (E), discharge (Q) and the change of the water reserves (dS). Main results of the water balance elements for the 1971 - 2000 period for Slovenia are: Average annual precipitation in Slovenia is 1579 mm, average annual evapotranspiration is 717 mm and calculated runoff is 862 mm. Compared to water amounts in the World, where the average precipitation is 750 mm, evapotranspiration is 480 mm and runoff is 270 mm, Slovenia shows an abundance of water quantities. Also the runoff coefficient with 55 % is much higher as 36 % of the world. The major questions remain if we are capable to live with this water amounts within the limits of sustainable development and what will be the effects of climate change to water balance.

  10. Water and sodium balance in space

    DEFF Research Database (Denmark)

    Drummer, C; Norsk, P; Heer, M

    2001-01-01

    , cumulative water balance and total body water content are stable during flight if hydration, nutritional energy supply, and protection of muscle mass are at an acceptable level. Recent water balance data disclose that the phenomenon of an absolute water loss during space flight, which has often been reported...... and an exaggerated extravasation very early in-flight. The mechanisms for the increased vascular permeability are not known. Evaporation, oral hydration, and urinary fluid excretion, the major components of water balance, are generally diminished during space flight compared with conditions on Earth. Nevertheless...... in the past, is not a consequence of the variable microG. The handling of sodium, however, is considerably affected by microG. Sodium-retaining endocrine systems, such as renin-aldosterone and catecholamines, are much more activated during microG than on Earth. Despite a comparable oral sodium supply, urinary...

  11. The water balance questionnaire: design, reliability and validity of a questionnaire to evaluate water balance in the general population.

    Science.gov (United States)

    Malisova, Olga; Bountziouka, Vassiliki; Panagiotakos, Demosthenes B; Zampelas, Antonis; Kapsokefalou, Maria

    2012-03-01

    There is a need to develop a questionnaire as a research tool for the evaluation of water balance in the general population. The water balance questionnaire (WBQ) was designed to evaluate water intake from fluid and solid foods and drinking water, and water loss from urine, faeces and sweat at sedentary conditions and physical activity. For validation purposes, the WBQ was administrated in 40 apparently healthy participants aged 22-57 years (37.5% males). Hydration indices in urine (24 h volume, osmolality, specific gravity, pH, colour) were measured through established procedures. Furthermore, the questionnaire was administered twice to 175 subjects to evaluate its reliability. Kendall's τ-b and the Bland and Altman method were used to assess the questionnaire's validity and reliability. The proposed WBQ to assess water balance in healthy individuals was found to be valid and reliable, and it could thus be a useful tool in future projects that aim to evaluate water balance.

  12. Evaluation of seasonality on total water intake, water loss and water balance in the general population in Greece.

    Science.gov (United States)

    Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M

    2013-07-01

    Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  13. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  14. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  15. Constraints on evaporation and dilution of terminal, hypersaline lakes under negative water balance: The Dead Sea, Israel

    Science.gov (United States)

    Zilberman, Tami; Gavrieli, Ittai; Yechieli, Yoseph; Gertman, Isaac; Katz, Amitai

    2017-11-01

    The response of hypersaline terminal lakes to negative water balance was investigated by studying brines evaporating to extreme salinities in sinkholes along the western coast of the Dead Sea and during on-site evaporation experiments of the Dead Sea brine. Density and temperature were determined in the field and all samples were analyzed for their major and a few minor solutes. The activity of H2O (aH2O) in the brines was calculated, and the degree of evaporation (DE) was established using Sr2+as a conservative solute. The relations between density and water activity were obtained by polynomial regression, and the relation between the lake's volume and level was established using Hall's (1996) hypsographic model for the Dead Sea basin. Relating the results to the modern, long-term relative humidity (RH) over the basin shows that (a) The lowermost attainable level of a terminal lake undergoing evaporation with no inflow is dictated by the median RH; this level represents equilibrium between the brine's aH2O and RH; (b) Small, saline water bodies with high surface to volume ratios (A/V), such as the hypersaline brines in the sinkholes, are very sensitive to short term changes in RH; in these, the brines' aH2O closely follows the seasonal changes; (c) the level decline of the Dead Sea due to evaporation under present climatic conditions and assuming no inflow to the lake may continue down to 516-537 m below mean sea level (bmsl), corresponding to a water activity range of 0.46-0.39 in its brine, in equilibrium with the overlying relative air humidity; this suggests that the lake level cannot drop more than ∼100 m from its present level; and (d) The maximum RH values that existed over the precursor lake of the Dead Sea (Lake Lisan) during geologically reconstructed minima levels can be similarly calculated.

  16. Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance.

    Directory of Open Access Journals (Sweden)

    Pilou L H R Janssens

    Full Text Available BACKGROUND: Addition of capsaicin (CAPS to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. AIM: We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. METHODS: Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions '100%CAPS', '100%Control', '75%CAPS' and '75%Control'. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU with every meal. RESULTS: An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT and resting energy expenditure (REE at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively. Sleeping metabolic rate (SMR at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04. Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03, while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ was more decreased at 75%CAPS (p = 0.04 than at 75%Control (p = 0.05 when compared with 100%Control. Blood pressure did not differ between the four conditions. CONCLUSION: In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. TRIAL REGISTRATION

  17. A Stochastic Water Balance Framework for Lowland Watersheds

    Science.gov (United States)

    Thompson, Sally; MacVean, Lissa; Sivapalan, Murugesu

    2017-11-01

    The water balance dynamics in lowland watersheds are influenced not only by local hydroclimatic controls on energy and water availability, but also by imports of water from the upstream watershed. These imports result in a stochastic extent of inundation in lowland watersheds that is determined by the local flood regime, watershed topography, and the rate of loss processes such as drainage and evaporation. Thus, lowland watershed water balances depend on two stochastic processes—rainfall and local inundation dynamics. Lowlands are high productivity environments that are disproportionately associated with urbanization, high productivity agriculture, biodiversity, and flood risk. Consequently, they are being rapidly altered by human development—generally with clear economic and social motivation—but also with significant trade-offs in ecosystem services provision, directly related to changes in the components and variability of the lowland water balance. We present a stochastic framework to assess the lowland water balance and its sensitivity to two common human interventions—replacement of native vegetation with alternative land uses, and construction of local flood protection levees. By providing analytical solutions for the mean and PDF of the water balance components, the proposed framework provides a mechanism to connect human interventions to hydrologic outcomes, and, in conjunction with ecosystem service production estimates, to evaluate trade-offs associated with lowland watershed development.

  18. Modeled and measured glacier change and related glaciological, hydrological, and meteorological conditions at South Cascade Glacier, Washington, balance and water years 2006 and 2007

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2010-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The

  19. Balancing the Energy-Water Nexus

    Energy Technology Data Exchange (ETDEWEB)

    Dell, Jan

    2010-09-15

    Optimizing the complex tradeoffs in the Energy-Water Nexus requires quantification of energy use, carbon emitted and water consumed. Water is consumed in energy production and is often a constraint to operations. More global attention and investment has been made on reducing carbon emissions than on water management. Review of public reporting by the largest 107 global power producers and 50 companies in the oil/gas industry shows broad accounting on carbon emissions but only partial reporting on water consumption metrics. If the Energy-Water Nexus is to be balanced, then water must also be measured to be optimally managed with carbon emissions.

  20. R package CityWaterBalance | Science Inventory | US EPA

    Science.gov (United States)

    CityWaterBalance provides a reproducible workflow for studying an urban water system. The network of urban water flows and storages can be modeled and visualized. Any city may be modeled with preassembled data, but data for US cities can be gathered via web services using this package and dependencies, geoknife and dataRetrieval. Urban water flows are difficult to comprehensively quantify. Although many important data sources are openly available, they are published by a variety of agencies in different formats, units, spatial and temporal resolutions. Increasingly, open data are made available via web services, which allow for automated, current retrievals. Integrating data streams and estimating the values of unmeasured urban water flows, however, remains needlessly time-consuming. In order to streamline a reproducible analysis, we have developed the CityWaterBalance package for the open source R language. The CityWaterBalance package for R is based on a simple model of the network of urban water flows and storages. The model may be run with data that has been pre-assembled by the user, or data can be retrieved by functions in CityWaterBalance and dependencies. CityWaterBalance can be used to quickly assemble a quantitative portrait of any urban water system. The systemic effects of water management decisions can be readily explored. Much of the data acquisition process for US cities can already be automated, while the package serves as a place-hold

  1. Exercise, energy expenditure and energy balance, as measured with doubly labelled water.

    Science.gov (United States)

    Westerterp, Klaas R

    2018-02-01

    The doubly labelled water method for the measurement of total daily energy expenditure (TDEE) over 1-3 weeks under daily living conditions is the indicated method to study effects of exercise and extreme environments on energy balance. Subjects consume a measured amount of doubly labelled water (2H2 18O) to increase background enrichment of body water for 18O and 2H, and the subsequent difference in elimination rate between 18O and 2H, as measured in urine, saliva or blood samples, is a measure for carbon dioxide production and thus allows calculation of TDEE. The present review describes research showing that physical activity level (PAL), calculated as TDEE (assessed with doubly labelled water) divided by resting energy expenditure (REE, PAL = TDEE/REE), reaches a maximum value of 2·00-2·40 in subjects with a vigorously active lifestyle. Higher PAL values, while maintaining energy balance, are observed in professional athletes consuming additional energy dense foods to compete at top level. Exercise training can increase TDEE/REE in young adults to a value of 2·00-2·40, when energy intake is unrestricted. Furthermore, the review shows an exercise induced increase in activity energy expenditure can be compensated by a reduction in REE and by a reduction in non-exercise physical activity, especially at a negative energy balance. Additionally, in untrained subjects, an exercise-induced increase in activity energy expenditure is compensated by a training-induced increase in exercise efficiency.

  2. Management of the water balance and quality in mining areas

    Science.gov (United States)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to

  3. Par Pond water balance

    International Nuclear Information System (INIS)

    Hiergesell, R.A.; Dixon, K.L.

    1996-06-01

    A water budget for the Par Pond hydrologic system was established in order to estimate the rate of groundwater influx to Par Pond. This estimate will be used in modeling exercises to predict Par Pond reservoir elevation and spillway discharge in the scenario where Savannah River water is no longer pumped and discharged into Par Pond. The principal of conservation of mass was used to develop the water budget, where water inflow was set equal to water outflow. Components of the water budget were identified, and the flux associated with each was determined. The water budget was considered balanced when inflow and outflow summed to zero. The results of this study suggest that Par Pond gains water from the groundwater system in the upper reaches of the reservoir, but looses water to the groundwater system near the dam. The rate of flux of groundwater from the water table aquifer into Par Pond was determined to be 13 cfs. The rate of flux from Par Pond to the water table aquifer near the dam was determined to be 7 cfs

  4. Conclusions drawn of tritium balance in light water reactors

    International Nuclear Information System (INIS)

    Dolle, L.; Bazin, J.

    1978-01-01

    In the tritium balance of pressurized water reactors, using boric acid and lithium in the cooling water, contribution of the tritium produced by fission, diffusing through the zircalloy of the fuel cladding estimated to 0.1%, was not in agreement with quantities measured in reactors. It is still difficult to estimate what percentage is represented by the tritium formed by fission in the fuel, owing to diffusion through cladding. The tritium balance in different working nuclear power stations is consequently of interest. The tritium balance method in the water of the cooling circuit of PWR is fast and experimentally simple. It is less sensitive to errors originating from fission yields than balance of tritium produced by fission in the fuel. A tritium balance in the water of the cooling circuit of Biblis-A, with a specific burn-up of 18000 MWd/t gives a better precision. Diffusion rate of tritium produced by fission was less than 0.2%. So low a contribution is a justification to the use of lithium with an isotopic purity of 99.9% of lithium 7 to limit at a low value the residual lithium 6 [fr

  5. A Monthly Water-Balance Model Driven By a Graphical User Interface

    Science.gov (United States)

    McCabe, Gregory J.; Markstrom, Steven L.

    2007-01-01

    This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.

  6. Water balance at a low-level radioactive-waste disposal site

    Science.gov (United States)

    Healy, R.W.; Gray, J.R.; De Vries, G. M.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.

  7. Water balance at a low-level radioactive-waste disposal site

    International Nuclear Information System (INIS)

    Healy, R.W.; Gray, J.R.; de Vries, M.P.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site

  8. Water balance modelling of a uranium mill effluent management system

    Science.gov (United States)

    Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian

    2017-06-01

    A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.

  9. Water balance of a small catchment with permeable soils in Ile-Ife area, southwester Nigeria

    International Nuclear Information System (INIS)

    Ogunkoya, O. O.

    2000-01-01

    Three - year and annual catchment water balances were drawn for a small l catchment (44 ha.) in southwestern Nigeria. The equation: P - Q - E T - Δs = O was not resolved. Rather, the terms on the left did not sum to zero. The residual, which are between 4% and 5% of total rainfall, were consistently negative. A probable source of error is the use of Thornthwaite's potential evaporation in estimating catchment evapotranspiration. Potential evapotranspiration is higher than actual evapotranspiration in the study area due to the limited evaporation opportunity during the approximately five - mouth dry season. Given that the study catchment had runoff patterns that are simi liar to those of larger rivers in the region the computed catchment water balance indicated that 37% of annual rainfall may be taken as the runoff coefficient for the region. This suggests that the engineer's coefficient (0.35 - 0.45) used in assessment of surface water resources in southwestern Nigeria, is reasonable

  10. Temporal and spatial variability of global water balance

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2013-01-01

    An analysis of simulated global water-balance components (precipitation [P], actual evapotranspiration [AET], runoff [R], and potential evapotranspiration [PET]) for the past century indicates that P has been the primary driver of variability in R. Additionally, since about 2000, there have been increases in P, AET, R, and PET for most of the globe. The increases in R during 2000 through 2009 have occurred despite unprecedented increases in PET. The increases in R are the result of substantial increases in P during the cool Northern Hemisphere months (i.e. October through March) when PET increases were relatively small; the largest PET increases occurred during the warm Northern Hemisphere months (April through September). Additionally, for the 2000 through 2009 period, the latitudinal distribution of P departures appears to co-vary with the mean P departures from 16 climate model projections of the latitudinal response of P to warming, except in the high latitudes. Finally, changes in water-balance variables appear large from the perspective of departures from the long-term means. However, when put into the context of the magnitudes of the raw water balance variable values, there appears to have been little change in any of the water-balance variables over the past century on a global or hemispheric scale.

  11. Bathymetric survey and estimation of the water balance of Lake ...

    African Journals Online (AJOL)

    Quantification of the water balance components and bathymetric survey is very crucial for sustainable management of lake waters. This paper focuses on the bathymetry and the water balance of the crater Lake Ardibo, recently utilized for irrigation. The bathymetric map of the lake is established at a contour interval of 10 ...

  12. The climatic water balance in an ecological context

    Science.gov (United States)

    Stephenson, N. L.

    2011-12-01

    Because the climatic water balance describes the seasonal interactions of energy (heat and solar radiation) and water in biologically meaningful ways, it provides a powerful tool for understanding and predicting the effects of climatic changes on the terrestrial biosphere. I begin with a brief overview of the definitions and interpretations of the biologically most important water balance parameters -- actual evapotranspiration (AET) and climatic water deficit (Deficit) -- and how the particular approach used to calculate these parameters depends both on the goals of the study and on the available climatic data. Some authors have attempted to represent aspects of the climatic water balance with indices based on annual potential evapotranspiration (PET) and precipitation (P), such at P/PET or PET - P. However, these and related indices do not reflect soil water dynamics, snow dynamics, or the seasonal interactions of energy and water, and therefore have no biological interpretation. Consequently, such indices are more poorly correlated with ecological patterns and processes than AET and Deficit. Of critical importance, the effects of changing energy and water supplies on the climatic water balance are nearly orthogonal. For example, a plant community growing on shallow soils on a shaded slope and one growing on deep soils on a sunward slope often may have the same amount of measured soil moisture available to them. However, the dynamics of energy and water that resulted in the identical soil moistures were fundamentally different (decreased evaporative demand on the shaded slope versus increased water supply on the deep soils); the associated differences in AET and Deficit will therefore result in different plant communities occupying the sites, in spite of identical soil moistures. In the context of climatic change, the orthogonal effects of energy and water mean that increasing precipitation cannot be expected to counteract the effects of increasing temperature

  13. Field-scale water balance closure in seasonally frozen conditions

    Directory of Open Access Journals (Sweden)

    X. Pan

    2017-11-01

    Full Text Available Hydrological water balance closure is a simple concept, yet in practice it is uncommon to measure every significant term independently in the field. Here we demonstrate the degree to which the field-scale water balance can be closed using only routine field observations in a seasonally frozen prairie pasture field site in Saskatchewan, Canada. Arrays of snow and soil moisture measurements were combined with a precipitation gauge and flux tower evapotranspiration estimates. We consider three hydrologically distinct periods: the snow accumulation period over the winter, the snowmelt period in spring, and the summer growing season. In each period, we attempt to quantify the residual between net precipitation (precipitation minus evaporation and the change in field-scale storage (snow and soil moisture, while accounting for measurement uncertainties. When the residual is negligible, a simple 1-D water balance with no net drainage is adequate. When the residual is non-negligible, we must find additional processes to explain the result. We identify the hydrological fluxes which confound the 1-D water balance assumptions during different periods of the year, notably blowing snow and frozen soil moisture redistribution during the snow accumulation period, and snowmelt runoff and soil drainage during the melt period. Challenges associated with quantifying these processes, as well as uncertainties in the measurable quantities, caution against the common use of water balance residuals to estimate fluxes and constrain models in such a complex environment.

  14. Development of a simplified urban water balance model (WABILA).

    Science.gov (United States)

    Henrichs, M; Langner, J; Uhl, M

    2016-01-01

    During the last decade, water sensitive urban design (WSUD) has become more and more accepted. However, there is not any simple tool or option available to evaluate the influence of these measures on the local water balance. To counteract the impact of new settlements, planners focus on mitigating increases in runoff through installation of infiltration systems. This leads to an increasing non-natural groundwater recharge and decreased evapotranspiration. Simple software tools which evaluate or simulate the effect of WSUD on the local water balance are still needed. The authors developed a tool named WABILA (Wasserbilanz) that could support planners for optimal WSUD. WABILA is an easy-to-use planning tool that is based on simplified regression functions for established measures and land covers. Results show that WSUD has to be site-specific, based on climate conditions and the natural water balance.

  15. Calculating the water and heat balances of the Eastern Mediterranean Basin using ocean modelling and available meteorological, hydrological and ocean data

    Directory of Open Access Journals (Sweden)

    Anders Omstedt

    2012-04-01

    Full Text Available Eastern Mediterranean water and heat balances wereanalysed over 52 years. The modelling uses a process-orientedapproach resolving the one-dimensional equations of momentum,heat and salt conservation; turbulence is modelled using a two-equation model. The results indicate that calculated temperature and salinity follow the reanalysed data well. The water balance in the Eastern Mediterranean basin was controlled by the difference between inflows and outflows through the Sicily Channel and by net precipitation. The freshwater component displayed a negative trend over the study period, indicating increasing salinity in the basin.The heat balance was controlled by heat loss from the water surface, solar radiation into the sea and heat flow through the Sicily Channel. Both solar radiation and net heat loss displayed increasing trends, probably due to decreased total cloud cover. In addition, the heat balance indicated a net import of approximately 9 W m-2 of heat to the Eastern Mediterranean Basin from the Western Basin.

  16. Water balance dynamics in the Nile Basin

    Science.gov (United States)

    Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.

    2009-01-01

    Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.

  17. Myths and methodologies: Making sense of exercise mass and water balance.

    Science.gov (United States)

    Cheuvront, Samuel N; Montain, Scott J

    2017-09-01

    What is the topic of this review? There is a need to revisit the basic principles of exercise mass and water balance, the use of common equations and the practice of interpreting outcomes. What advances does it highlight? We propose use of the following equation as a way of simplifying exercise mass and water balance calculations in conditions where food is not consumed and waste is not excreted: ∆body mass - 0.20 g/kcal -1  = ∆body water. The relative efficacy of exercise drinking behaviours can be judged using the following equation: percentage dehydration = [(∆body mass - 0.20 g kcal -1 )/starting body mass] × 100. Changes in body mass occur because of flux in liquids, solids and gases. This knowledge is crucial for understanding metabolism, health and human water needs. In exercise science, corrections to observed changes in body mass to estimate water balance are inconsistently applied and often misinterpreted, particularly after prolonged exercise. Although acute body mass losses in response to exercise can represent a close surrogate for body water losses, the discordance between mass and water balance equivalence becomes increasingly inaccurate as more and more energy is expended. The purpose of this paper is briefly to clarify the roles that respiratory water loss, gas exchange and metabolic water production play in the correction of body mass changes for fluid balance determinations during prolonged exercise. Computations do not include waters of association with glycogen because any movement of water among body water compartments contributes nothing to water or mass flux from the body. Estimates of sweat loss from changes in body mass should adjust for non-sweat losses when possible. We propose use of the following equation as a way of simplifying the study of exercise mass and water balance: ∆body mass - 0.20 g kcal -1  = ∆body water. This equation directly controls for the influence of energy expenditure on body mass

  18. Arid site water balance: evapotranspiration modeling and measurements

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.

    1984-09-01

    In order to evaluate the magnitude of radionuclide transport at an aird site, a field and modeling study was conducted to measure and predict water movement under vegetated and bare soil conditions. Significant quantities of water were found to move below the roo of a shallow-rooted grass-covered area during wet years at the Hanford site. The unsaturated water flow model, UNSAT-1D, was resonably successful in simulating the transient behavior of the water balance at this site. The effects of layered soils on water balance were demonstrated using the model. Models used to evaluate water balance in arid regions should not rely on annual averages and assume that all precipitation is removed by evapotranspiration. The potential for drainage at arid sites exists under conditions where shallow rooted plants grow on coarse textured soils. This condition was observed at our study site at Hanford. Neutron probe data collected on a cheatgrass community at the Hanford site during a wet year indicated that over 5 cm of water drained below the 3.5-m depth. The unsaturated water flow model, UNSAT-1D, predicted water drainage of about 5 cm (single layer, 10 months) and 3.5 cm (two layers, 12 months) for the same time period. Additional field measurements of hydraulic conductivity will likely improve the drainage estimate made by UNSAT-1D. Additional information describing cheatgrass growth and water use at the grass site could improve model predictions of sink terms and subsequent calculations of water storage within the rooting zone. In arid areas where the major part of the annual precipitation occurs during months with low average potential evapotranspiration and where soils are vegetated but are coarse textured and well drained, significant drainage can occur. 31 references, 18 figures, 1 table

  19. Spacebased Observation of Water Balance Over Global Oceans

    Science.gov (United States)

    Liu, W.; Xie, X.

    2008-12-01

    We demonstrated that ocean surface fresh water flux less the water discharge into the ocean from river and ice melt balances the mass loss in the ocean both in magnitude and in the phase of annual variation. The surface water flux was computed from the divergence of the water transport integrated over the depth of the atmosphere. The atmospheric water transport is estimated from the precipitable water measured by Special Sensor Microwave Imager, the surface wind vector by QuikSCAT, and the NOAA cloud drift wind through a statistical model. The transport has been extensively validated using global radiosonde and data and operational numerical weather prediction results. Its divergence has been shown to agree with the difference between evaporation estimated from the Advanced Microwave Scanning Radiometer data and the precipitation measured by Tropical Rain Measuring Mission over the global tropical and subtropical oceans both in magnitude and geographical distribution for temporal scales ranging from intraseasonal to interannual. The water loss rate in the ocean is estimated by two methods, one is from Gravity Recovery and Climate Experiment and the other is by subtracting the climatological steric change from the sea level change measured by radar altimeter on Jason. Only climatological river discharge and ice melt from in situ measurements are available and the lack of temporal variation may contribute to discrepancies in the balance. We have successfully used the spacebased surface fluxes to estimate to climatological mean heat transport in the Atlantic ocean and is attempting to estimate the meridional fresh water (or salt) transport from the surface flux. The approximate closure of the water balance gives a powerful indirect validation of the spacebased products.

  20. Towards a Fully Conservative Water Balance

    Science.gov (United States)

    Rodriguez, L. B.; Vionnet, C. A.; Younger, P. L.; Parkin, G.

    2001-12-01

    Hydrological modeling is nowadays an essential tool in many aspects of water resources assessment and management. For practical purposes, hydrological models may be defined as mathematical procedures, which transform meteorological input data such as precipitation and evapotranspiration into hydrological output values such as riverflows. Conceptual water balance models are one kind of hydrological models still quite popular among engineers and scientists for three main reasons: firstly the "book-keeping" procedure they are based upon makes them computationally inexpensive, secondly, they require far less data than any physically based model, and thirdly, once calibrated and validated, they can yield the proper order of magnitude of the water cycle component on the basin under investigation. A common criticism of water balance models is their lack of sound theoretical basis. In this work a fully conservative water balance model for basin applications which takes into account physical processes is presented. The two-storage level model contains four calibration parameters: a, b, l and Umax. The saturated storage component resembles the abcd model by Thomas, corrected by the presence of the aquifer storativity coefficient s and the river-aquifer interface conductance l. The resulting model is capable of estimating monthly basin-average of actual evapotranspiration, soil moisture, effective groundwater recharge, groundwater level fluctuations, baseflows and direct runoff using an integral form of the mass conservation law in the saturated/unsaturated layers. The model was applied to a 600 Km2 catchment in the United Kingdom. An eight-year record was used for calibration, while a similar record was reserved for validation of model results. Total streamflows as well as baseflows calculated by the model were compared with observed and estimated data. A quite good agreement was obtained. Finally, simulated groundwater levels were compared with observation data collected at

  1. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia.

    Science.gov (United States)

    Fadlillah, Lintang N; Widyastuti, M

    2016-08-01

    Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake.

  2. Management of water balance in mining areas – WaterSmart: Final Report

    OpenAIRE

    Krogerus, Kirsti; Pasanen, Antti

    2016-01-01

    Although mining companies have long been conscious of water related risks, they still face environmental management challenges. Several recent environmental incidents in Finnish mines have raised questions regarding mine site environmental and water management practices. This has increased public awareness of mining threats to the environment and resulted in stricter permits and longer permitting procedures. Water balance modelling aids in predictive water management and reduces risks caused ...

  3. Water balance of the Republic of Croatia: achievements and necessities

    International Nuclear Information System (INIS)

    Bonaccil, Ognjen; Horvat, Bojana

    2004-01-01

    The paper presents recent results of water balance of the Republic of Croatia based on definition of average values for the thirty years period from 1961 to 1990. The long-term mean hydrological balance for the seventeen watersheds is presented as P·Q=ET, where P is average annual precipitation in a watershed, Q is average annual runoff from the watershed, and ET is average annual evapotranspiration (runoff deficit) from a watershed given in mm and m3/s. The simplified water balances according to given equation does not consider the distribution of hydrological variables into components as well as: variation of water storage within the catchment; water volumes infiltrating in or flowing out from the deep strata, etc. Most of the runoff data is based on the measured values, while the dispersed surface water and groundwater flows are estimated using regional analyses. The annual average precipitation is 1162 mm or 2083 m 3 /s. The annual average inner water runoff is 461 mm or 827m 3 /s, while transit water runoff is 2303 mm or 4130 m 3 /s. Croatia is the country rich in water with unevenly (in space and time) distributed water resources due to extremely variable geological setting (karst and flatland) and different climatic conditions (Mediterranean and continental climate).(Author)

  4. Semi-arid vegetation response to antecedent climate and water balance windows

    Science.gov (United States)

    Thoma, David P.; Munson, Seth M.; Irvine, Kathryn M.; Witwicki, Dana L.; Bunting, Erin

    2016-01-01

    Questions Can we improve understanding of vegetation response to water availability on monthly time scales in semi-arid environments using remote sensing methods? What climatic or water balance variables and antecedent windows of time associated with these variables best relate to the condition of vegetation? Can we develop credible near-term forecasts from climate data that can be used to prepare for future climate change effects on vegetation? Location Semi-arid grasslands in Capitol Reef National Park, Utah, USA. Methods We built vegetation response models by relating the normalized difference vegetation index (NDVI) from MODIS imagery in Mar–Nov 2000–2013 to antecedent climate and water balance variables preceding the monthly NDVI observations. We compared how climate and water balance variables explained vegetation greenness and then used a multi-model ensemble of climate and water balance models to forecast monthly NDVI for three holdout years. Results Water balance variables explained vegetation greenness to a greater degree than climate variables for most growing season months. Seasonally important variables included measures of antecedent water input and storage in spring, switching to indicators of drought, input or use in summer, followed by antecedent moisture availability in autumn. In spite of similar climates, there was evidence the grazed grassland showed a response to drying conditions 1 mo sooner than the ungrazed grassland. Lead times were generally short early in the growing season and antecedent window durations increased from 3 mo early in the growing season to 1 yr or more as the growing season progressed. Forecast accuracy for three holdout years using a multi-model ensemble of climate and water balance variables outperformed forecasts made with a naïve NDVI climatology. Conclusions We determined the influence of climate and water balance on vegetation at a fine temporal scale, which presents an opportunity to forecast vegetation

  5. Assessment of the terrestrial water balance using the global water availability and use model WaterGAP - status and challenges

    Science.gov (United States)

    Müller Schmied, Hannes; Döll, Petra

    2017-04-01

    The estimation of the World's water resources has a long tradition and numerous methods for quantification exists. The resulting numbers vary significantly, leaving room for improvement. Since some decades, global hydrological models (GHMs) are being used for large scale water budget assessments. GHMs are designed to represent the macro-scale hydrological processes and many of those models include human water management, e.g. irrigation or reservoir operation, making them currently the first choice for global scale assessments of the terrestrial water balance within the Anthropocene. The Water - Global Assessment and Prognosis (WaterGAP) is a model framework that comprises both the natural and human water dimension and is in development and application since the 1990s. In recent years, efforts were made to assess the sensitivity of water balance components to alternative climate forcing input data and, e.g., how this sensitivity is affected by WaterGAP's calibration scheme. This presentation shows the current best estimate of terrestrial water balance components as simulated with WaterGAP by 1) assessing global and continental water balance components for the climate period 1971-2000 and the IPCC reference period 1986-2005 for the most current WaterGAP version using a homogenized climate forcing data, 2) investigating variations of water balance components for a number of state-of-the-art climate forcing data and 3) discussing the benefit of the calibration approach for a better observation-data constrained global water budget. For the most current WaterGAP version 2.2b and a homogenized combination of the two WATCH Forcing Datasets, global scale (excluding Antarctica and Greenland) river discharge into oceans and inland sinks (Q) is assessed to be 40 000 km3 yr-1 for 1971-2000 and 39 200 km3 yr-1 for 1986-2005. Actual evapotranspiration (AET) is close to each other with around 70 600 (70 700) km3 yr-1 as well as water consumption with 1000 (1100) km3 yr-1. The

  6. Century-scale variability in global annual runoff examined using a water balance model

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2011-01-01

    A monthly water balance model (WB model) is used with CRUTS2.1 monthly temperature and precipitation data to generate time series of monthly runoff for all land areas of the globe for the period 1905 through 2002. Even though annual precipitation accounts for most of the temporal and spatial variability in annual runoff, increases in temperature have had an increasingly negative effect on annual runoff after 1980. Although the effects of increasing temperature on runoff became more apparent after 1980, the relative magnitude of these effects are small compared to the effects of precipitation on global runoff. ?? 2010 Royal Meteorological Society.

  7. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    Science.gov (United States)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  8. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  9. Utilization of balance equipment in windsurf beginners off water training.

    OpenAIRE

    Frič, Čestmír

    2013-01-01

    Work name: Utilization of balance equipment in windsurf beginners off water training. Aim of work: To determin and evaluate significance of balance equipment in off water training. Method: The method of comparative experiment have been used in this thesis. Than the obtained data were evaluated. It was nessesary to create and compare two groups of people, compound of young healthy individuals in the age 20 - 30 both male and female. The only condition for the research was their zero experience...

  10. WATER SUPPLY MEASUREMENTS IN MULTI-FAMILY BULDINGS AND DISCREPANCIES IN A WATER BALANCE

    Directory of Open Access Journals (Sweden)

    Tomasz Cichoń

    2016-06-01

    Full Text Available A large-scale implementation of individual water meters in water charging systems has created problems with a water shortage that have to be settled between real estate managers and water and sewage utilities. The article presents the observations and experiences from operation of a water metering system at the Krakow agglomeration. The studies have confirmed that many small leaks in installations, taps, faucets, flush toilets as well as system failures and the incidences of water stealing are still the factors responsible for significant differences in the water balance in the apartment buildings.

  11. The effects of salinity in the soil water balance: A Budyko's approach

    Science.gov (United States)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  12. Water and heat balances in Doñana wetlands

    Directory of Open Access Journals (Sweden)

    A. Ramos-Fuertes

    2016-10-01

    Full Text Available This paper presents the main results of the study of water balance and surface heat balance in the Doñana marshlands. The study was based on a broad base of hydrometeorological data taken at 10 minute intervals from 2006 to 2011 by a network of six measuring stations located in areas of vegetation-free marsh. This information is used to characterize, at different time scales, the thermal behavior of the marsh by analyzing its hydrometeorology centering on the surface heat fluxes. Thus, we have modeled and analyzed the heat flux between the water and flooded soil and the processes of heat transfer between the water surface and the atmosphere. Special attention has been paid to evaporation, on which the marsh draining process depends.

  13. Using Electrolyte Free Water Balance to Rationalize and Treat Dysnatremias.

    Science.gov (United States)

    Shah, Sanjeev R; Bhave, Gautam

    2018-01-01

    Dysnatremias or abnormalities in plasma [Na + ] are often termed disorders of water balance, an unclear physiologic concept often confused with changes in total fluid balance. However, most clinicians clearly recognize that hypertonic or hypotonic gains or losses alter plasma [Na + ], while isotonic changes do not modify plasma [Na + ]. This concept can be conceptualized as the electrolyte free water balance (EFWB), which defines the non-isotonic components of inputs and outputs to determine their effect on plasma [Na + ]. EFWB is mathematically proportional to the rate of change in plasma [Na + ] (dP Na /dt) and, therefore, is actively regulated to zero so that plasma [Na + ] remains stable at its homeostatic set point. Dysnatremias are, therefore, disorders of EFWB and the relationship between EFWB and dP Na /dt provides a rationale for therapeutic strategies incorporating mass and volume balance. Herein, we leverage dP Na /dt as a desired rate of correction of plasma [Na + ] to define a stepwise approach for the treatment of dysnatremias.

  14. Using Electrolyte Free Water Balance to Rationalize and Treat Dysnatremias

    Science.gov (United States)

    Shah, Sanjeev R.; Bhave, Gautam

    2018-01-01

    Dysnatremias or abnormalities in plasma [Na+] are often termed disorders of water balance, an unclear physiologic concept often confused with changes in total fluid balance. However, most clinicians clearly recognize that hypertonic or hypotonic gains or losses alter plasma [Na+], while isotonic changes do not modify plasma [Na+]. This concept can be conceptualized as the electrolyte free water balance (EFWB), which defines the non-isotonic components of inputs and outputs to determine their effect on plasma [Na+]. EFWB is mathematically proportional to the rate of change in plasma [Na+] (dPNa/dt) and, therefore, is actively regulated to zero so that plasma [Na+] remains stable at its homeostatic set point. Dysnatremias are, therefore, disorders of EFWB and the relationship between EFWB and dPNa/dt provides a rationale for therapeutic strategies incorporating mass and volume balance. Herein, we leverage dPNa/dt as a desired rate of correction of plasma [Na+] to define a stepwise approach for the treatment of dysnatremias. PMID:29740578

  15. Using Electrolyte Free Water Balance to Rationalize and Treat Dysnatremias

    Directory of Open Access Journals (Sweden)

    Sanjeev R. Shah

    2018-04-01

    Full Text Available Dysnatremias or abnormalities in plasma [Na+] are often termed disorders of water balance, an unclear physiologic concept often confused with changes in total fluid balance. However, most clinicians clearly recognize that hypertonic or hypotonic gains or losses alter plasma [Na+], while isotonic changes do not modify plasma [Na+]. This concept can be conceptualized as the electrolyte free water balance (EFWB, which defines the non-isotonic components of inputs and outputs to determine their effect on plasma [Na+]. EFWB is mathematically proportional to the rate of change in plasma [Na+] (dPNa/dt and, therefore, is actively regulated to zero so that plasma [Na+] remains stable at its homeostatic set point. Dysnatremias are, therefore, disorders of EFWB and the relationship between EFWB and dPNa/dt provides a rationale for therapeutic strategies incorporating mass and volume balance. Herein, we leverage dPNa/dt as a desired rate of correction of plasma [Na+] to define a stepwise approach for the treatment of dysnatremias.

  16. Water Balance and Forest Productivity in Mediterranean Mountain Environments

    Directory of Open Access Journals (Sweden)

    Giuseppe Scarascia-Mugnozza

    2010-06-01

    Full Text Available The availability of water resources is one of the major drivers affecting forest and agricultural productivity. The sensitivity of Mediterranean forest species to water shortage is becoming even more relevant in relation to climate changes, that for Southern Europe could lead to an increase in temperature of 2 to 3 °C, paralleled by a decrease of 5 to 15% of summer rainfall. It is then important to study the relationship between water balance and productivity of important forest tree species such as beech and mountain pines that represent the upper limit of forest vegetation in almost all the Apennines range. In the present paper, the measurements of water balance, evapotranspiration, carbon exchange and productivity in beech and pine forests of central-southern Italy (Abruzzo and Calabria regions are reported. The results are obtained in the course of several years of experimentation with innovative techniques and integrated at the canopy level.

  17. An Evaluation Tool for CONUS-Scale Estimates of Components of the Water Balance

    Science.gov (United States)

    Saxe, S.; Hay, L.; Farmer, W. H.; Markstrom, S. L.; Kiang, J. E.

    2016-12-01

    Numerous research groups are independently developing data products to represent various components of the water balance (e.g. runoff, evapotranspiration, recharge, snow water equivalent, soil moisture, and climate) at the scale of the conterminous United States. These data products are derived from a range of sources, including direct measurement, remotely-sensed measurement, and statistical and deterministic model simulations. An evaluation tool is needed to compare these data products and the components of the water balance they contain in order to identify the gaps in the understanding and representation of continental-scale hydrologic processes. An ideal tool will be an objective, universally agreed upon, framework to address questions related to closing the water balance. This type of generic, model agnostic evaluation tool would facilitate collaboration amongst different hydrologic research groups and improve modeling capabilities with respect to continental-scale water resources. By adopting a comprehensive framework to consider hydrologic modeling in the context of a complete water balance, it is possible to identify weaknesses in process modeling, data product representation and regional hydrologic variation. As part of its National Water Census initiative, the U.S. Geological survey is facilitating this dialogue to developing prototype evaluation tools.

  18. The phase diagram of water at negative pressures: virtual ices.

    Science.gov (United States)

    Conde, M M; Vega, C; Tribello, G A; Slater, B

    2009-07-21

    The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

  19. Modeling Regional Soil Water Balance in Farmland of the Middle Reaches of Heihe River Basin

    Directory of Open Access Journals (Sweden)

    Jiang Li

    2017-11-01

    Full Text Available Quantifying components of soil water balance in farmland of the middle reaches of Heihe River Basin is essential for efficiently scheduling and allocating limited water resources for irrigation in this arid region. A soil water balance model based on empirical assumptions in the vadose zone of farmland was developed and simulation results were compared/validated with results by the numerical model HYDRUS-1D. Results showed a good coherence between the simulated results of the water balance models and the HYDRUS-1D model in soil water storage, evapotranspiration, deep percolation and groundwater recharge, which indicated that the water balance model was suitable for simulating soil water movement in the study area. Considering the spatial distribution of cropping patterns, groundwater depth and agricultural management, ArcGIS was applied for the pre-/post-processing of the water balance model to quantify the spatial distribution of components of soil water balance in the major cropland in middle reaches of Heihe River Basin. Then, distributions of components of soil water balance in the major cropland under different water-saving irrigation practices during the growing season were predicted and discussed. Simulation results demonstrated that evapotranspiration of the main crops would be more prominently influenced by irrigation quota under deep groundwater depth than that under shallow groundwater depth. Groundwater recharge would increase with the increase of irrigation quota and decrease with the increase of groundwater depth. In general, when groundwater depth reached 3 m, groundwater recharge from root zone was negligible for spring wheat. While when it reached 6 m, groundwater recharge was negligible for maize. Water-saving irrigation practices would help to reduce groundwater recharge with a slight decrease of crop water consumption.

  20. Cumulative impacts of hydroelectric development on the fresh water balance in Hudson Bay

    International Nuclear Information System (INIS)

    Anctil, F.; Couture, R.

    1994-01-01

    A study is presented of the impacts of hydroelectric development on the surface water layer of Hudson Bay, including James Bay and the Foxe Basin. These impacts are directly related to the modifications in the fresh water balance of Hudson Bay and originate from the management of hydroelectric complexes. The fresh water balance is determined by identifying, at different scales, the modifications caused by each complex. The main inputs are the freezing and thawing of the ice cover, runoff water, and mass exchange at the air-water interface. Three spatial scales were used to obtain the resolution required to document the cumulative effects of fresh water balance modifications on the water surface layer, one each for Hudson Bay, Hudson Strait, and the Labrador Sea. Finally, the addition of the proposed Great Whale hydroelectric complex is examined from the available information and forecasts. 18 refs,. 6 figs., 1 tab

  1. Water and solute balances as a basis for sustainable irrigation agriculture

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  2. A regional water balance for the WIPP site and surrounding area

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1987-01-01

    A water balance or budget is developed as an accounting of the components of a closed hydrologic system. In the WIPP study area, water-budget techniques have previously been used to compute leakage from Lake Avalon and from potash refinery spoil ponds. A general expression for a closed hydrologic system is presented. In a developed area like the WIPP region, the water budget must include many usage factors, such as municipal or industrial pumpage. In the WIPP water-budget study area, inflows are precipitation, surface- and ground-water inflow, and the artificial addition of surface and ground water. Outflows are surface runoff, evaporation and transpiration, and ground-water outflow. Changes in storage in the WIPP region have also been documented. The WIPP water balance described here is based on a combination of long-term averages and figures for 1980. 12 refs., 5 figs., 1 tab

  3. Experimental Observation of Negative Effective Gravity in Water Waves

    Science.gov (United States)

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132

  4. Water balance versus land surface model in the simulation of Rhine river discharges

    NARCIS (Netherlands)

    Hurkmans, R.T.W.L.; Moel, de H.; Aerts, J.C.J.H.; Troch, P.A.

    2008-01-01

    Accurate streamflow simulations in large river basins are crucial to predict timing and magnitude of floods and droughts and to assess the hydrological impacts of climate change. Water balance models have been used frequently for these purposes. Compared to water balance models, however, land

  5. Salt balance, fresh water residence time and budget for non ...

    African Journals Online (AJOL)

    Water and salt budgets suggest that in order to balance the inflow and outflow of water at Makoba bay, there is net flux of water from the bay to the open ocean during wet season. Residual salt fluxes between the bay and the open ocean indicate advective salt export. Exchange of water between the bay with the open ocean ...

  6. Capillarity Induced Negative Pressure of Water Plugs in Nanochannels

    NARCIS (Netherlands)

    Tas, Niels Roelof; Mela, P.; Kramer, Tobias; Berenschot, Johan W.; van den Berg, Albert

    2003-01-01

    We have found evidence that water plugs in hydrophilic nanochannels can be at significant negative pressure due to tensile capillary forces. The negative pressure of water plugs in nanochannels induces bending of the thin channel capping layer, which results in a visible curvature of the liquid

  7. Gulkana Glacier, Alaska-Mass balance, meteorology, and water measurements, 1997-2001

    Science.gov (United States)

    March, Rod S.; O'Neel, Shad

    2011-01-01

    The measured winter snow, maximum winter snow, net, and annual balances for 1997-2001 in the Gulkana Glacier basin are determined at specific points and over the entire glacier area using the meteorological, hydrological, and glaciological data. We provide descriptions of glacier geometry to aid in estimation of conventional and reference surface mass balances and descriptions of ice motion to aid in the understanding of the glacier's response to its changing geometry. These data provide annual estimates for area altitude distribution, equilibrium line altitude, and accumulation area ratio during the study interval. New determinations of historical area altitude distributions are given for 1900 and annually from 1966 to 2001. As original weather instrumentation is nearing the end of its deployment lifespan, we provide new estimates of overlap comparisons and precipitation catch efficiency. During 1997-2001, Gulkana Glacier showed a continued and accelerated negative mass balance trend, especially below the equilibrium line altitude where thinning was pronounced. Ice motion also slowed, which combined with the negative mass balance, resulted in glacier retreat under a warming climate. Average annual runoff augmentation by glacier shrinkage for 1997-2001 was 25 percent compared to the previous average of 13 percent, in accordance with the measured glacier volume reductions.

  8. Meal consumption is ineffective at maintaining or correcting water balance in a desert lizard, Heloderma suspectum.

    Science.gov (United States)

    Wright, Christian D; Jackson, Marin L; DeNardo, Dale F

    2013-04-15

    Many xeric organisms maintain water balance by relying on dietary and metabolic water rather than free water, even when free water may be available. For such organisms, hydric state may influence foraging decisions, since meal consumption is meeting both energy and water demands. To understand foraging decisions it is vital to understand the role of dietary water in maintaining water balance. We investigated whether meal consumption was sufficient to maintain water balance in captive Gila monsters (Heloderma suspectum) at varying levels of dehydration. Gila monsters could not maintain water balance over long time scales through meal consumption alone. Animals fed a single meal took no longer to dehydrate than controls when both groups were deprived of free water. Additionally, meal consumption imparts an acute short-term hydric cost regardless of hydration state. Meal consumption typically resulted in a significant elevation in osmolality at 6 h post-feeding, and plasma osmolality never fell below pre-feeding levels despite high water content (~70%) of meals. These results failed to support our hypothesis that dietary water is valuable to Gila monsters during seasonal drought. When considered in conjunction with previous research, these results demonstrate that Gila monsters, unlike many xeric species, are heavily reliant on seasonal rainfall and the resulting free-standing water to maintain water balance.

  9. The groundwater balance in alluvial plain aquifer at Dehgolan, Kurdistan, Iran

    Science.gov (United States)

    Amini, Ata; Homayounfar, Vafa

    2017-10-01

    In this research, groundwater balance in Dehgolan plain, Kurdistan, Iran was carried out to assess changes in the level and volume of groundwater and water resources management. For this purpose, water resources supplies and consumption data, amount of charging and discharge and water level data recorded from wells and piezometers from 2010 to 2011 water year were gathered and analyzed. Rainfall and water losses of the study area were determined and required maps, including Iso-maps of the temperature, the evaporation, the groundwater level and the aquifer conductivity, were drawn by GIS software. Using the information and drawn maps and the equality of inputs and outputs data, the aquifer water balance was calculated. The results of balance equations showed that the balance is negative indicated a notably decline of groundwater equal to 15.029 million cubic meter (MCM). Such rate of decline is due to the large number of agricultural wells in the region, without considering the hydrological potential of the aquifer.

  10. Large Scale Evapotranspiration Estimates: An Important Component in Regional Water Balances to Assess Water Availability

    Science.gov (United States)

    Garatuza-Payan, J.; Yepez, E. A.; Watts, C.; Rodriguez, J. C.; Valdez-Torres, L. C.; Robles-Morua, A.

    2013-05-01

    Water security, can be defined as the reliable supply in quantity and quality of water to help sustain future populations and maintaining ecosystem health and productivity. Water security is rapidly declining in many parts of the world due to population growth, drought, climate change, salinity, pollution, land use change, over-allocation and over-utilization, among other issues. Governmental offices (such as the Comision Nacional del Agua in Mexico, CONAGUA) require and conduct studies to estimate reliable water balances at regional or continental scales in order to provide reasonable assessments of the amount of water that can be provided (from surface or ground water sources) to supply all the human needs while maintaining natural vegetation, on an operational basis and, more important, under disturbances, such as droughts. Large scale estimates of evapotranspiration (ET), a critical component of the water cycle, are needed for a better comprehension of the hydrological cycle at large scales, which, in most water balances is left as the residual. For operational purposes, such water balance estimates can not rely on ET measurements since they do not exist, should be simple and require the least ground information possible, information that is often scarce or does not exist at all. Given this limitation, the use of remotely sensed data to estimate ET could supplement the lack of ground information, particularly in remote regions In this study, a simple method, based on the Makkink equation is used to estimate ET for large areas at high spatial resolutions (1 km). The Makkink model used here is forced using three remotely sensed datasets. First, the model uses solar radiation estimates obtained from the Geostationary Operational Environmental Satellite (GOES); Second, the model uses an Enhanced Vegetation Index (EVI) obtained from the Moderate-resolution Imaging Spectroradiometer (MODIS) normalized to get an estimate for vegetation amount and land use which was

  11. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure.

    Science.gov (United States)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2 , thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange

  12. EQUILIBRIUM OF WATER BALANCE AS A BASIC PRECONDITION OF PROGRESSIVE DEVELOPMENT OF LAND AREA

    Directory of Open Access Journals (Sweden)

    K KUDRNA

    2005-04-01

    Full Text Available The proportion of water balance components – precipitation, transpiration, evaporation, underground waters and surface runoff – is a determining factor of stabile development of land area. But this proportion can be considerably disturbed and is permanently changing. Certain many-year averages are usually accepted as a stable state. That is why, in the presented work, we have tried to defi ne water balance on symmetry and invariance principles, to express it as a limit state, which would characterize it as a natural principle and enable comparison with the present balance.

  13. Effects of capsaicin, green tea and CH-19 sweet pepper on appetite and energy intake in humans in negative and positive energy balance

    DEFF Research Database (Denmark)

    Reinbach, Helene Christine; Smeets, A.; Martinussen, Torben

    2009-01-01

    Summary Background & aims Bioactive ingredients have been shown to reduce appetite and energy intake. The magnitude of these effects might depend on energy balance why it was investigated how capsaicin, green tea, CH-19 sweet pepper as well as green tea and capsaicin affect appetite and energy...... intake during respectively negative and positive energy balance. Methods 27 subjects were randomized to three weeks of negative and three weeks of positive energy balance during which capsaicin, green tea, CH-19 sweet pepper, capsaicin + green tea or placebo was ingested on ten separate test days while...... the effects on appetite, energy intake, body weight and heart rate were assessed. Results CH-19 sweet pepper and a combination of capsaicin and green tea reduced energy intake during positive energy balance. Capsaicin and green tea suppressed hunger and increased satiety more during negative than during...

  14. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    Science.gov (United States)

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  15. Water, ice, and meteorological measurements at South Cascade Glacier, Washington, balance year 2002

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2004-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance year 2002. The 2002 glacier-average maximum winter snow balance was 4.02 meters, the second largest since 1959. The 2002 glacier summer, net, and annual (water year) balances were -3.47, 0.55, and 0.54 meters, respectively. The area of the glacier near the end of the balance year was 1.92 square kilometers, and the equilibrium-line altitude and the accumulation area ratio were 1,820 meters and 0.84, respectively. During September 20, 2001 to September 13, 2002, the terminus retreated 4 meters, and computed average ice speeds in the ablation area ranged from 7.8 to 20.7 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin were measured during part of the 2002 water year. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed and incoming solar radiation were measured at selected locations near the glacier.

  16. Viability of human periodontal ligament fibroblasts in milk, Hank's balanced salt solution and coconut water as storage media.

    Science.gov (United States)

    Souza, B D M; Lückemeyer, D D; Reyes-Carmona, J F; Felippe, W T; Simões, C M O; Felippe, M C S

    2011-02-01

    To evaluate the effectiveness of various storage media at 5 °C for maintaining the viability of human periodontal ligament fibroblasts (PDLF). Plates with PDLF were soaked in recently prepared Hank's balanced salt solution (HBSS), skimmed milk, whole milk, Save-A-Tooth(®) system's HBSS (Save), natural coconut water, industrialized coconut water or tap water (negative control) at 5 °C for 3, 6, 24, 48, 72, 96 and 120 h. Minimum essential medium (MEM) at 37 °C served as the positive control. PDL cell viability was determined by MTT assay. Data were statistically analysed by Kruskal-Wallis test complemented by the Scheffé test (α=5%). The greatest number of viable cells was observed for MEM. Skimmed and whole milk, followed by natural coconut water and HBSS, were the most effective media in maintaining cell viability (Pmilk had the greatest capacity to maintain PDLF viability when compared with natural coconut water, HBSS, Save, industrialized coconut water and tap water. © 2010 International Endodontic Journal.

  17. Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK

    Science.gov (United States)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.

  18. Water balance of pine forests: Synthesis of new and published results

    Science.gov (United States)

    Pantana Tor-ngern; Ram Oren; Sari Palmroth; Kimberly Novick; Andrew Oishi; Sune Linder; Mikaell Ottosson-Lofvenius; Torgny Nasholm

    2018-01-01

    The forest hydrologic cycle is expected to have important feedback responses to climate change, impacting processes ranging from local water supply and primary productivity to global water and energy cycles. Here, we analyzed water budgets of pine forests worldwide. We first estimated local water balance of forests dominated by two wide-ranging species: Pinus...

  19. Water Balances in the Eastern Mediterranean | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    As a result, the importance of fresh water to economic development, quality of life, ... Case studies from Lebanon, Israel, Palestine, Jordan, Turkey, and North ... balances and propose methods for regional cooperation in the management of ... An IDRC delegation will join international delegates and city representatives at the ...

  20. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    Science.gov (United States)

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  1. The effects of water replacement by oral rehydration fluids with or without betaine supplementation on performance, acid-base balance, and water retention of heat-stressed broiler chickens.

    Science.gov (United States)

    Sayed, M A M; Downing, J

    2011-01-01

    Exposing broilers to a high temperature increases water and electrolyte K(+) and Na(+) excretion, which negatively affects the heat dissipation capacity and acid-base homeostasis, resulting in losses in growth performance. In this experiment, the efficacy of providing oral rehydration therapy and betaine on growth performance, acid-base balance, and water and electrolyte retention was evaluated. A total of 432 one-day-old broiler chicks (Cobb) were allocated to 72 metabolic cages and reared to 31 d of age under standard conditions. From 32 to 41 d of age, chicks were exposed to heat stress (ambient temperature, 32°C) and high RH (80 to 100% RH) for 9 h daily. The ameliorative effects of a 3 × 3 factorial array of treatments administered via drinking water were evaluated in 8 replicates of 6 chicks per cage for each treatment. Two oral rehydration therapy (ORT) fluids, based on either citrate or bicarbonate salts, were added to tap water. In addition, betaine was added to tap water at an inclusion rate of 0, 500, or 1,000 mg/L to complete the array of 9 liquid-based treatments. Growth performance was assessed at 32, 35, and 41 d of age. From 32 to 35 d of age, chicks receiving ORT fluids exhibited improved growth performance, water balance, and electrolyte (K(+), Na(+)) retention. In addition, the physiological response to stress was attenuated, as indicated by lower heterophil-to-lymphocyte ratios and blood glucose concentrations relative to the negative controls. The addition of betaine at an inclusion rate of 500 mg/L improved BW gain. From d 36 to 41, treatments did not significantly influence growth performance, which suggests that chicks receiving tap water were able to compensate and adapt to the heat-stress conditions. The results demonstrate that the beneficial effects of providing ORT fluids and 500 mg of betaine/L were observed only during the first 4 d of heat exposure. After this period, adaptation to the heat appears to occur, and none of the

  2. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    Science.gov (United States)

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  3. Evaluation of a mass-balance approach to determine consumptive water use in northeastern Illinois

    Science.gov (United States)

    Mills, Patrick C.; Duncker, James J.; Over, Thomas M.; Marian Domanski,; ,; Engel, Frank

    2014-01-01

    A principal component of evaluating and managing water use is consumptive use. This is the portion of water withdrawn for a particular use, such as residential, which is evaporated, transpired, incorporated into products or crops, consumed by humans or livestock, or otherwise removed from the immediate water environment. The amount of consumptive use may be estimated by a water (mass)-balance approach; however, because of the difficulty of obtaining necessary data, its application typically is restricted to the facility scale. The general governing mass-balance equation is: Consumptive use = Water supplied - Return flows.

  4. bathymetric survey and estimation of the water balance of lake

    African Journals Online (AJOL)

    Preferred Customer

    The average annual open water evaporation, estimated from Colorado Class-A Pan records and Penman modified method is 23.49 million cubic .... Therefore, the ∆S term in equation 2 can be replaced by the net unmeasured ground .... appears that the steady-state water balance is reasonable. Because, the residual value ...

  5. Evaluation of water balance in a population of older adults. A case control study.

    Science.gov (United States)

    Malisova, Olga; Poulia, Kalliopi-Anna; Kolyzoi, Kleoniki; Lysandropoulos, Athanasios; Sfendouraki, Kalliopi; Kapsokefalou, Maria

    2018-04-01

    Older adults are at risk for dehydration and its' potentially life-threatening consequences. Unrecognized dehydration can complicate chronic medical problems and increase morbidity. The objective of the study was to estimate water balance, intake and loss in elderly people living in Greece using the Water Balance Questionnaire (WBQ). WBQ was administered in winter to 108 independents (65-81yrs) (Group A), 94 independents (82-92yrs) (Group B) and 51 hospitalized (65-92yrs) (Group C). A database from previous study of 335 adults (18-65yrs) (Control Group) used for comparison. Mean estimates of water balance, intake and loss were, respectively, for Group A -749 ± 1386 mL/day, 2571 ± 739 mL/day and 3320 ± 1216 mL/day, for Group B -38 ± 933 mL/day, 2571 ± 739 mL/day and 3320 ± 1216 mL/day, for Group C 64 ± 1399 mL/day, 2586 ± 1071 mL/day and 2522 ± 1048 mL/day and for Control Group -253 ± 1495 mL/day, 2912 ± 1025 mL/day and 3492 ± 2099 mL/day. Significant differences were detected in water balance, intake and loss (p < 0.01). Water balance and water intake in Group A was the lowest. For Groups A, B, C and Control, contribution of solid foods to water intake was 36%, 29%, 32%, 25%, of drinking water was 32%, 48%, 45%, 47%, of beverages was 32%, 23%, 23% and 28% respectively. Significant differences observed in the contribution of drinking water and beverages (p < 0.01). Group A had lower water balance and water intake. Groups B and C had lower water intake from beverages. Copyright © 2018 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  6. Development and application of the Qausi Distributed Water Balance model (QDWB in the Neishaboor-Rokh watershed

    Directory of Open Access Journals (Sweden)

    sajjad razavi

    2017-03-01

    Full Text Available Limitation of water resources in Iran motivates sustaining and preserving of the resources in order to supply future water needs. Fulfilling these objectives will not be possible unless having accurate water balance of watersheds. The purpose of this study is to estimate the water balance parameters using a distributed method. The large number of distributed models and methods was studied and “Quasi Distributed Water Balance model” (QDWB was written in the MATLAB programming environment. To conduct this model, it is needed that each data layer (precipitation, potential evapotranspiration, land use, soil data,.. to be converted into grid format. In this research the 500m * 500m cell size was used and water balance parameters for each cell was estimated. Runoff and deep percolation obtained from surface balance equation and irrigation needs were estimated based on soil moisture deficit. The study area of 9157 square kilometers is Neyshabour- Rokh watershed. The results showed there is a good correlation between water balance parameters such as precipitation-runoff, precipitation-evapotranspiration, and precipitation- deep percoulation and demonstrate that QDWB model is consistent with the basin hydrological process.Change in soil moisture at basin wide is 1 MCM in 1388-89 and 40 MCM in 1380-81. The evapotranspiration results from a distributed model” SWAT” and QDWB model were in good agreement.

  7. The Elements of Water Balance in the Changing Climate in Poland

    Directory of Open Access Journals (Sweden)

    Małgorzata Szwed

    2015-01-01

    Full Text Available Strong global warming has been observed in the last three decades. Central Europe, including Poland, is not an exception. Moreover, climate projections for Poland foresee further warming as well as changes in the spatial and seasonal distribution and quantity of precipitation. However, climate models do not agree on the sign of change of precipitation. In Poland precipitation is projected to decrease in summer (this finding is not robust, being model-dependent and to increase in winter. Therefore, there is still considerable uncertainty regarding likely climate change impacts on water resources in Poland. However, there is no doubt that changes in the thermal characteristics as well as in precipitation will influence changes in the water balance of the country. In this study, the components of climatic water balance, that is, precipitation, evaporation, and runoff, are calculated for the average conditions in the control period of 1961–1990 and in the future (2071–2100 in Poland. The changes of the water balance components for the present and for the future are compared and analysed. Due to insufficient consistency between climate models a possible range of changes should be presented; hence the multimodel projections from ENSEMBLES Project of the European Union are used in this study.

  8. Modelling raster-based monthly water balance components for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ulmen, C.

    2000-11-01

    The terrestrial runoff component is a comparatively small but sensitive and thus significant quantity in the global energy and water cycle at the interface between landmass and atmosphere. As opposed to soil moisture and evapotranspiration which critically determine water vapour fluxes and thus water and energy transport, it can be measured as an integrated quantity over a large area, i.e. the river basin. This peculiarity makes terrestrial runoff ideally suited for the calibration, verification and validation of general circulation models (GCMs). Gauging stations are not homogeneously distributed in space. Moreover, time series are not necessarily continuously measured nor do they in general have overlapping time periods. To overcome this problems with regard to regular grid spacing used in GCMs, different methods can be applied to transform irregular data to regular so called gridded runoff fields. The present work aims to directly compute the gridded components of the monthly water balance (including gridded runoff fields) for Europe by application of the well-established raster-based macro-scale water balance model WABIMON used at the Federal Institute of Hydrology, Germany. Model calibration and validation is performed by separated examination of 29 representative European catchments. Results indicate a general applicability of the model delivering reliable overall patterns and integrated quantities on a monthly basis. For time steps less then too weeks further research and structural improvements of the model are suggested. (orig.)

  9. Evaluation of alternative model-data fusion approaches in water balance estimation across Australia

    Science.gov (United States)

    van Dijk, A. I. J. M.; Renzullo, L. J.

    2009-04-01

    Australia's national agencies are developing a continental modelling system to provide a range of water information services. It will include rolling water balance estimation to underpin national water accounts, water resources assessments that interpret current water resources availability and trends in a historical context, and water resources predictions coupled to climate and weather forecasting. The nation-wide coverage, currency, accuracy, and consistency required means that remote sensing will need to play an important role along with in-situ observations. Different approaches to blending models and observations can be considered. Integration of on-ground and remote sensing data into land surface models in atmospheric applications often involves state updating through model-data assimilation techniques. By comparison, retrospective water balance estimation and hydrological scenario modelling to date has mostly relied on static parameter fitting against observations and has made little use of earth observation. The model-data fusion approach most appropriate for a continental water balance estimation system will need to consider the trade-off between computational overhead and the accuracy gains achieved when using more sophisticated synthesis techniques and additional observations. This trade-off was investigated using a landscape hydrological model and satellite-based estimates of soil moisture and vegetation properties for aseveral gauged test catchments in southeast Australia.

  10. Data on the water balance in plants in the presence of fluor in the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Navara, J

    1969-01-01

    Experiments were performed to determine the water balance of Pisum sativm to fluorine compounds. The results indicate that fluorine compounds in the substrate caused a withering of the above soil portions of the plants due to a disruption in the water balance. Water intake was generally observed to be reduced along with an increase in F concentration.

  11. Increased fat catabolism sustains water balance during fasting in zebra finches.

    Science.gov (United States)

    Rutkowska, Joanna; Sadowska, Edyta T; Cichoń, Mariusz; Bauchinger, Ulf

    2016-09-01

    Patterns of physiological flexibility in response to fasting are well established, but much less is known about the contribution of water deprivation to the observed effects. We investigated body composition and energy and water budget in three groups of zebra finches: birds with access to food and water, food-deprived birds having access to drinking water and food-and-water-deprived birds. Animals were not stimulated by elevated energy expenditure and they were in thermoneutral conditions; thus, based on previous studies, water balance of fasting birds was expected to be maintained by increased catabolism of proteins. In contrast to this expectation, we found that access to water did not prevent reduction of proteinaceous tissue, but it saved fat reserves of the fasting birds. Thus, water balance of birds fasting without access to water seemed to be maintained by elevated fat catabolism, which generated 6 times more metabolic water compared with that in birds that had access to water. Therefore, we revise currently established views and propose fat to serve as the primary source for metabolic water production. Previously assumed increased protein breakdown for maintenance of water budget would occur if fat stores were depleted or if fat catabolism reached its upper limits due to high energy demands. © 2016. Published by The Company of Biologists Ltd.

  12. Using Water Isotope Tracers to Investigate Past and Present Water Balance Conditions in the Old Crow Flats, Yukon Territory

    Science.gov (United States)

    Turner, K.; Wolfe, B. B.; Edwards, T. W.

    2010-12-01

    The Old Crow Flats (OCF), Yukon Territory, is a wetland of international significance that comprises approximately 2700 shallow thermokarst lakes. Located near the northern limit of the boreal forest, the OCF provides vital habitat for abundant wildlife including waterfowl, moose, muskrat, and the Porcupine Caribou Herd, which support the traditional lifestyle of the Vuntut Gwitchin First Nation. Thermokarst lakes, which occupy vast northern regions, are greatly influenced by climate conditions. In the OCF and other regions there have been observations of decreasing water levels and an increase in frequency of lake drainage events over recent decades. Though there is widespread concern that thermokarst landscape changes are accelerating as a result of ongoing climate change, there are few studies that have investigated current and past variability of lake water balances and climate interactions at the landscape scale. As part of a Government of Canada International Polar Year multidisciplinary project, the present and past hydrology of lakes spanning the OCF are being investigated using water isotope tracers and paleolimnological approaches. Water samples were obtained from 57 lakes three times over three ice-free seasons (2007-09) and analyzed for oxygen and hydrogen isotope composition in order to capture seasonal and interannual changes in water balance conditions. Results highlight strong diversity in the hydrology of lakes throughout the OCF. Based on patterns of isotopic evolution and calculations of input source compositions and evaporation-to-inflow ratios, we identified snowmelt-dominated, rainfall-dominated, groundwater-influenced, evaporation-dominated and drained lake types, which represent the dominant hydrological processes influencing lake water balances. Lake physical and catchment land cover characteristics influence dominant input type (rain or snow). Snowmelt-dominated catchments are large relative to lake surface areas and typically contain

  13. A flow balance approach to scenarios for water reclamation by Ania ...

    African Journals Online (AJOL)

    drinie

    ISSN 0378-4738 = Water SA Vol. 27 No. 1 January 2001 115. Available on website http://www.wrc.org.za. Comments on: A flow balance approach to scenarios for water reclamation by Ania MW Grobicki and B Cohen. I would like to offer a brief comment on the above paper, which appeared in Water SA 25 (4), October ...

  14. Estimates of spatial variation in evaporation using satellite-derived surface temperature and a water balance model

    NARCIS (Netherlands)

    Bouwer, L.M.; Biggs, T.W.; Aerts, J.C.J.H.

    2008-01-01

    Evaporation dominates the water balance in arid and semi-arid areas. The estimation of evaporation by land-cover type is important for proper management of scarce water resources. Here, we present a method to assess spatial and temporal patterns of actual evaporation by relating water balance

  15. Water balance disorders after neurosurgery: The triphasic response revisited

    NARCIS (Netherlands)

    E.J. Hoorn (Ewout); R. Zietse (Bob)

    2010-01-01

    textabstractWater balance disorders after neurosurgery are well recognized, but detailed reports of the triphasic response are scarce. We describe a 55-year-old woman, who developed the triphasic response with severe hyper- and hyponatraemia after resection of a suprasellar meningioma. The case

  16. Effects of Water-Based Training on Static and Dynamic Balance of Older Women.

    Science.gov (United States)

    Bento, Paulo Cesar Barauce; Lopes, Maria de Fátima A; Cebolla, Elaine Cristine; Wolf, Renata; Rodacki, André L F

    2015-08-01

    The aim of this study was to evaluate the effects of a water-based exercise program on static and dynamic balance. Thirty-six older women were randomly assigned to a water-based training (3 days/week for 12 weeks) or control group. Water level was kept at the level of the xiphoid process and temperature at ∼28-30°C. Each session included aerobic activities and lower limb strength exercises. The medial-lateral, the anterior-posterior amplitude, and displacement of the center of pressure (CP-D) were measured in a quiet standing position (60 sec eyes opened and closed). The dynamic balance and 8-Foot Up-and-Go tests were also applied. Group comparisons were made using two-way analysis of variance (ANOVA) with repeated measures. No differences were found in the center of pressure variables; however, the WBT group showed better performance in the 8 Foot Up-and-Go Test after training (5.61±0.76 vs. 5.18±0.42; pwater-based training was effective in improving dynamic balance, but not static balance.

  17. Water balance of an earth fill built of organic clay

    Directory of Open Access Journals (Sweden)

    Birle Emanuel

    2016-01-01

    Full Text Available The paper presents investigations on the water balance of an earth fill built of organic clay in humid climate. As the organic soil used for the fill contains geogenetically elevated concentrations of arsenic, particular attention is paid on the seepage flow through the fill. The test fill is 5 m high, 30 m long and 25 m wide. The fill consists of the organic clay compacted at water contents wet and dry of Proctor Optimum covered by a drainage mat and a 60 cm thick top layer. For the determination of the water balance extensive measuring systems were installed. The seepage at the bottom measured so far was less than 2 % of the precipitation. The interflow in the drainage mat above the compacted organic clay was of similar magnitude. The estimated evapotranspiration reached approx. 84 % of the precipitation. According to these measurements the percolation is much lower than the percolation of many landfill covers in humid climates.

  18. Mechanical Balance Laws for Boussinesq Models of Surface Water Waves

    Science.gov (United States)

    Ali, Alfatih; Kalisch, Henrik

    2012-06-01

    Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of these quantities are not known. This work presents a systematic derivation of mass, momentum and energy densities and fluxes associated with a general family of Boussinesq systems. The derivation is based on a reconstruction of the velocity field and the pressure in the fluid column below the free surface, and the derivation of differential balance equations which are of the same asymptotic validity as the evolution equations. It is shown that all these mechanical quantities can be expressed in terms of the principal dependent variables of the Boussinesq system: the surface excursion η and the horizontal velocity w at a given level in the fluid.

  19. Employing Hot Wire Anemometry to Directly Measure the Water Balance in a Proton Exchange membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Hussain, Nabeel; Berning, Torsten

    2015-01-01

    Water management in proton exchange membrane fuel cells (PEMFC’s) remains a critical problem for their durability, cost, and performance. Because the anode side of this fuel cell has the tendency to become dehydrated, measuring the water balance can be an important diagnosis tool during fuel cell...... operation. The water balance indicates how much of the product water leaves at the anode side versus the cathode side. Previous methods of determining the fuel cell water balance often relied on condensing the water in the exhaust gas streams and weighing the accumulated mass which is a time consuming...... process that has limited accuracy. Currently, our group is developing a novel method to accurately determine the water balance in a PEMFC in real time by employing hot-wire anemometry. The amount of heat transferred from the wire to the anode exhaust stream can be translated into a voltage signal which...

  20. A water management strategy for balancing water uses in the Rideau Canal

    International Nuclear Information System (INIS)

    McClennan, B.; Rae, P.; McGonegal, K.

    1995-01-01

    Alternative water management policies for the Rideau Canal system in eastern Ontario were examined. The methodology of analysis and the impact of policy changes on hydro power production were also focussed on. A historical account of the construction and background of the canal system was providid. Water uses such as navigation, hydroelectric power generation, natural environment, flood abatement, recreation, and water supply were described. Current water management practice was outlined. Various single purpose water management policies were investigated. The impact of the most significant policies on hydroelectric power production were discussed. Integrated policy alternatives were presented and their general effects were described. No long term policy was finalized at the time of writing, but a number of short term operating practices were considered, among them to adjust spring flows for walleye, store flows in the Big Rideau for ice flushings, balance drawdown among reservoirs and raise navigation levels in certain lakes

  1. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian

    2017-05-03

    The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download 

  2. General procedure to initialize the cyclic soil water balance by the Thornthwaite and Mather method

    NARCIS (Netherlands)

    Dourado-Neto, D.; Lier, van Q.D.; Metselaar, K.; Reichardt, K.; Nielsen, D.R.

    2010-01-01

    The original Thornthwaite and Mather method, proposed in 1955 to calculate a climatic monthly cyclic soil water balance, is frequently used as an iterative procedure due to its low input requirements and coherent estimates of water balance components. Using long term data sets to establish a

  3. Dynamic regulation and dysregulation of the water channel aquaporin-2: a common cause of and promising therapeutic target for water balance disorders.

    Science.gov (United States)

    Noda, Yumi

    2014-08-01

    The human body is two-thirds water. The ability of ensuring the proper amount of water inside the body is essential for the survival of mammals. The key event for maintenance of body water balance is water reabsorption in the kidney collecting ducts, which is regulated by aquaporin-2 (AQP2). AQP2 is a channel that is exclusively selective for water molecules and never allows permeation of ions or other small molecules. Under normal conditions, AQP2 is restricted within the cytoplasm of the collecting duct cells. However, when the body is dehydrated and needs to retain water, AQP2 relocates to the apical membrane, allowing water reabsorption from the urinary tubule into the cell. Its impairments result in various water balance disorders including diabetes insipidus, which is a disease characterized by a massive loss of water through the kidney, leading to severe dehydration in the body. Dysregulation of AQP2 is also a common cause of water retention and hyponatremia that exacerbate the prognosis of congestive heart failure and hepatic cirrhosis. Many studies have uncovered the regulation mechanisms of AQP2 at the single-molecule level, the whole-body level, and the clinical level. In clinical practice, urinary AQP2 is a useful marker for body water balance (hydration status). Moreover, AQP2 is now attracting considerable attention as a potential therapeutic target for water balance disorders which commonly occur in many diseases.

  4. Depression and selection of positive and negative social feedback: motivated preference or cognitive balance?

    Science.gov (United States)

    Alloy, L B; Lipman, A J

    1992-05-01

    In this commentary we examine Swann, Wenzlaff, Krull, and Pelham's (1992) findings with respect to each of 5 central propositions in self-verification theory. We conclude that although the data are consistent with self-verification theory, none of the 5 components of the theory have been demonstrated convincingly as yet. Specifically, we argue that depressed subjects' selection of social feedback appears to be balanced or evenhanded rather than biased toward negative feedback and that there is little evidence to indicate that depressives actively seek negative appraisals. Furthermore, we suggest that the studies are silent with respect to the motivational postulates of self-verification theory and that a variety of competing cognitive and motivational models can explain Swann et al.'s findings as well as self-verification theory.

  5. Energy balance of hydro-aggregate with Pelton water turbine

    International Nuclear Information System (INIS)

    Obretenov, V.

    2005-01-01

    One of the major tasks in the field of hydraulic power engineering refers to machines and equipment modernization in the hydropower plants and pumped storage power plants commissioned more than 20 years ago. The increase of hydraulic units operation efficiency will allow in a number of cases to substantially reduce the specific water consumption and to drive the output of electric energy up. In these cases it is crucial to find out the operational efficiency of individual system elements and to precisely focus the modernization endeavours on such elements where the energy losses go beyond all admissible limits. Besides, the determination of the energy losses in the hydro energy turbo system will allow valid defining of hydraulic units operational scope. This work treats the methods of balance study of a hydraulic unit with Peiton water turbine. The experimental results of the balance study of Belmeken pumped storage power plant hydraulic unit No 5 under turbine operational mode are presented

  6. An attempt to perform water balance in a Brazilian municipal solid waste landfill.

    Science.gov (United States)

    São Mateus, Maria do Socorro Costa; Machado, Sandro Lemos; Barbosa, Maria Cláudia

    2012-03-01

    This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Carbon and water balance of European croplands throughout the 20th century

    Science.gov (United States)

    Gervois, SéBastien; Ciais, Philippe; de Noblet-Ducoudré, Nathalie; Brisson, Nadine; Vuichard, Nicolas; Viovy, Nicolas

    2008-06-01

    We assessed the effects of rising atmospheric CO2, changing climate, and farmers' practice on the carbon and water balance of European croplands during the past century (1901-2000). The coupled vegetation-crop model ORCHIDEE-STICS is applied over western Europe for C3 crops (winter wheat) and for maize, with prescribed historical agricultural practice changes. Not surprisingly, the enormous crop yield increase observed in all European regions, 300-400% between 1950 and 2000, is found to be dominantly explained by improved practice and varieties selection, rather than by rising CO2 (explaining a ˜11% uniform increase in yield) and changing climate (no further change in yield on average, but causing a decrease of ˜19% in the southern Iberian Peninsula). Agricultural soil carbon stocks in Europe are modeled to have decreased between 1950 and 1970, and since then to have increased again. Thus, the current stocks only differ by 1 ± 6 tC ha-1 from their 1900 value. Compensating effects of increasing yields on the one hand (increasing stocks) and of higher harvest index values and ploughing on the other hand (decreasing stocks) occur. Each of these processes taken individually has the potential to strongly alter the croplands soil carbon balance in the model. Consequently, large uncertainties are associated to the estimated change in carbon stocks between 1901 and 2001, roughly ±6 tC ha-1 a-1. In our most realistic simulation, the current cropland carbon balance is a net sink of 0.16 ± 0.15 tC ha-1 a-1. The annual water balance of cropland soils is influenced by increasing crop water use efficiency, one third of which is caused by rising CO2. However, increasing water use efficiency occurred mainly in spring and winter, when water is not limiting for plant growth, whereas no strong savings of soil water are achieved in summer through elevated CO2. Overall, trends in cultivation practices have caused a 3 times larger increase of water use efficiency than rising CO2.

  8. Soil water balance approach in root zone of maize (95-TZEEY ...

    African Journals Online (AJOL)

    Water balance approach is the simplest method in the study of plant water consumption. The experiment was established in 4.0 x 5.0 m plots in a randomized complete block design containing six (6) treatments water application (3-days, 4-days, 5-days, 6-days, 7-days and 8-days which correspond to T1, T2, T3, T4, T5 and ...

  9. Determining water use of sorghum from two-source energy balance and radiometric temperatures

    Directory of Open Access Journals (Sweden)

    J. M. Sánchez

    2011-10-01

    Full Text Available Estimates of surface actual evapotranspiration (ET can assist in predicting crop water requirements. An alternative to the traditional crop-coefficient methods are the energy balance models. The objective of this research was to show how surface temperature observations can be used, together with a two-source energy balance model, to determine crop water use throughout the different phenological stages of a crop grown. Radiometric temperatures were collected in a sorghum (Sorghum bicolor field as part of an experimental campaign carried out in Barrax, Spain, during the 2010 summer growing season. Performance of the Simplified Two-Source Energy Balance (STSEB model was evaluated by comparison of estimated ET with values measured on a weighing lysimeter. Errors of ±0.14 mm h−1 and ±1.0 mm d−1 were obtained at hourly and daily scales, respectively. Total accumulated crop water use during the campaign was underestimated by 5%. It is then shown that thermal radiometry can provide precise crop water necessities and is a promising tool for irrigation management.

  10. On the sources of vegetation activity variation, and their relation with water balance in Mexico

    Science.gov (United States)

    F. Mora; L.R. Iverson

    1998-01-01

    Natural landscape surface processes are largely controlled by the relationship between climate and vegetation. Water balance integrates the effects of climate on patterns of vegetation distribution and productivity, and for that season, functional relationships can be established using water balance variables as predictors of vegetation response. In this study, we...

  11. Animal water balance drives top-down effects in a riparian forest-implications for terrestrial trophic cascades.

    Science.gov (United States)

    McCluney, Kevin E; Sabo, John L

    2016-08-17

    Despite the clear importance of water balance to the evolution of terrestrial life, much remains unknown about the effects of animal water balance on food webs. Based on recent research suggesting animal water imbalance can increase trophic interaction strengths in cages, we hypothesized that water availability could drive top-down effects in open environments, influencing the occurrence of trophic cascades. We manipulated large spider abundance and water availability in 20 × 20 m open-air plots in a streamside forest in Arizona, USA, and measured changes in cricket and small spider abundance and leaf damage. As expected, large spiders reduced both cricket abundance and herbivory under ambient, dry conditions, but not where free water was added. When water was added (free or within moist leaves), cricket abundance was unaffected by large spiders, but spiders still altered herbivory, suggesting behavioural effects. Moreover, we found threshold-type increases in herbivory at moderately low soil moisture (between 5.5% and 7% by volume), suggesting the possibility that water balance may commonly influence top-down effects. Overall, our results point towards animal water balance as an important driver of direct and indirect species interactions and food web dynamics in terrestrial ecosystems. © 2016 The Author(s).

  12. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  13. Effects of Water and Land-based Sensorimotor Training Programs on Static Balance among University Students

    OpenAIRE

    Abdolhamid Daneshjoo; Ashril Yusof

    2016-01-01

    This study examined the effect of sensorimotor training on static balance in two different environments; in water and on land. Thirty non-clinical university male students (aged 22±0.85 years) were divided randomly into three groups; water, land and control groups. The experimental groups performed their respective sensorimotor training programs for 6 weeks (3 times per week). The Stork Stand Balance Test was used to examine the static balance at pre- and post-time points. Significant main ef...

  14. An estimation of the water balance in a reformer/fuel-cells system

    Energy Technology Data Exchange (ETDEWEB)

    Jovan, Vladimir [Jo-ef Stefan Institute and Centre of Excellence Low-Carbon Technologies (Slovenia); Cufar, Alja [University of Ljubljana, Faculty of Mathematics and Physics (Slovenia)], e-mail: vladimir.jovan@ijs.si

    2011-07-01

    PEM fuel cells use hydrogen as fuel. Since it is a very light element, its energy density is small despite its high caloric value. Thus hydrogen storage requires a lot of space. One possible solution is simultaneous production of hydrogen from higher-density materials, such as methanol. The object of this paper is to determine what is the total water balance in a system consisting of a methanol reformer and a fuel-cells-based generator set, and to determine if water should be supplied to, or removed from, the system. Based on relatively little information obtained from technical sources and on some simple assumptions, this paper presents a model which helps to determine the actual water balance in the system. In conclusion, commercially available fuel-cell systems with realistic water production can be used for fuel reforming purposes in the methanol reformer. It is also shown that under normal operating conditions, and using commercially available devices, there is always an excess of water produced.

  15. Impact of climate forcing uncertainty and human water use on global and continental water balance components

    Directory of Open Access Journals (Sweden)

    H. Müller Schmied

    2016-10-01

    Full Text Available The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans and inland sinks. During 1971–2000, evapotranspiration due to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the highest discharge deviations occurring for river discharge in Africa (−6 to 11 % from the ensemble mean. Uncertain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of the global sum of water consumption in the other water use sector.

  16. Assessing Variation in Water Balance Components in Mountainous Inland River Basin Experiencing Climate Change

    Directory of Open Access Journals (Sweden)

    Zhenliang Yin

    2016-10-01

    Full Text Available Quantification of the changes of water balance components is significant for water resource assessment and management. This paper employed the Soil and Water Assessment Tool (SWAT model to estimate the water balance in a mountainous watershed in northwest China at different spatial scales over the past half century. The results showed that both Nash-Sutcliffe efficiency (NSE and determination coefficient (R2 were over 0.90 for the calibration and validation periods. The water balance components presented rising trends at the watershed scale, and the total runoff increased by 30.5% during 1964 to 2013 period. Rising surface runoff and rising groundwater flow contributed 42.7% and 57.3% of the total rising runoff, respectively. The runoff coefficient was sensitive to increasing precipitation and was not significant to the increase of temperature. The alpine meadow was the main landscape which occupied 51.1% of the watershed and contributed 55.5% of the total runoff. Grass land, forest land, bare land, and glacier covered 14.2%, 18.8%, 15.4%, and 0.5% of the watershed and contributed 8.5%, 16.9%, 15.9%, and 3.2% of the total runoff, respectively. The elevation zone from 3500 to 4500 m occupied 66.5% of the watershed area, and contributed the majority of the total runoff (70.7%. The runoff coefficients in the elevation zone from 1637 to 2800 m, 2800 to 3500 m, 3500 to 4000 m, 4000 to 4500 m, and 4500 to 5062 m were 0.20, 0.27, 0.32, 0.43, and 0.78, respectively, which tend to be larger along with the elevation increase. The quantities and change trends of the water balance components at the watershed scale were calculated by the results of the sub-watersheds. Furthermore, we characterized the spatial distribution of quantities and changes in trends of water balance components at the sub-watershed scale analysis. This study provides some references for water resource management and planning in inland river basins.

  17. SIMULATION OF NEGATIVE PRESSURE WAVE PROPAGATION IN WATER PIPE NETWORK

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-11-01

    Full Text Available Subject: factors such as pipe wall roughness, mechanical properties of pipe materials, physical properties of water affect the pressure surge in the water supply pipes. These factors make it difficult to analyze the transient problem of pressure evolution using simple programming language, especially in the studies that consider only the magnitude of the positive pressure surge with the negative pressure phase being neglected. Research objectives: determine the magnitude of the negative pressure in the pipes on the experimental model. The propagation distance of the negative pressure wave will be simulated by the valve closure scenarios with the help of the HAMMER software and it is compared with an experimental model to verify the quality the results. Materials and methods: academic version of the Bentley HAMMER software is used to simulate the pressure surge wave propagation due to closure of the valve in water supply pipe network. The method of characteristics is used to solve the governing equations of transient process of pressure change in the pipeline. This method is implemented in the HAMMER software to calculate the pressure surge value in the pipes. Results: the method has been applied for water pipe networks of experimental model, the results show the affected area of negative pressure wave from valve closure and thereby we assess the largest negative pressure that may appear in water supply pipes. Conclusions: the experiment simulates the water pipe network with a consumption node for various valve closure scenarios to determine possibility of appearance of maximum negative pressure value in the pipes. Determination of these values in real-life network is relatively costly and time-consuming but nevertheless necessary for identification of the risk of pipe failure, and therefore, this paper proposes using the simulation model by the HAMMER software. Initial calibration of the model combined with the software simulation results and

  18. Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure

    Science.gov (United States)

    Kucharik, Christopher J.; Foley, Jonathan A.; Delire, Christine; Fisher, Veronica A.; Coe, Michael T.; Lenters, John D.; Young-Molling, Christine; Ramankutty, Navin; Norman, John M.; Gower, Stith T.

    2000-09-01

    While a new class of Dynamic Global Ecosystem Models (DGEMs) has emerged in the past few years as an important tool for describing global biogeochemical cycles and atmosphere-biosphere interactions, these models are still largely untested. Here we analyze the behavior of a new DGEM and compare the results to global-scale observations of water balance, carbon balance, and vegetation structure. In this study, we use version 2 of the Integrated Biosphere Simulator (IBIS), which includes several major improvements and additions to the prototype model developed by Foley et al. [1996]. IBIS is designed to be a comprehensive model of the terrestrial biosphere; the model represents a wide range of processes, including land surface physics, canopy physiology, plant phenology, vegetation dynamics and competition, and carbon and nutrient cycling. The model generates global simulations of the surface water balance (e.g., runoff), the terrestrial carbon balance (e.g., net primary production, net ecosystem exchange, soil carbon, aboveground and belowground litter, and soil CO2 fluxes), and vegetation structure (e.g., biomass, leaf area index, and vegetation composition). In order to test the performance of the model, we have assembled a wide range of continental and global-scale data, including measurements of river discharge, net primary production, vegetation structure, root biomass, soil carbon, litter carbon, and soil CO2 flux. Using these field data and model results for the contemporary biosphere (1965-1994), our evaluation shows that simulated patterns of runoff, NPP, biomass, leaf area index, soil carbon, and total soil CO2 flux agree reasonably well with measurements that have been compiled from numerous ecosystems. These results also compare favorably to other global model results.

  19. Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality

    Science.gov (United States)

    Wu, S.; Zhao, J.; Wang, H.

    2017-12-01

    This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.

  20. Snow cover dynamics and water balance in complex high alpine terrain

    Science.gov (United States)

    Warscher, Michael; Kraller, Gabriele; Kunstmann, Harald; Strasser, Ulrich; Franz, Helmut

    2010-05-01

    The water balance in high alpine regions in its full complexity is so far insufficiently understood. High altitudinal gradients, a strong variability of meteorological variables in time and space, complex hydrogeological situations, unquantified lateral snow transport processes and heterogenous snow cover dynamics result in high uncertainties in the quantification of the water balance. To achieve interpretable modeling results we have complemented the deterministic hydrological model WaSiM-ETH with the high-alpine specific snow model AMUNDSEN. The integration of the new snow module was done to improve the modeling of water fluxes influenced by the dynamics of the snow cover, which greatly affect the water cycle in high alpine regions. To enhance the reproduction of snow deposition and ablation processes, the new approach calculates the energy balance of the snow cover considering the terrain-dependent radiation fluxes, the interaction between tree canopy and snow cover as well as lateral snow transport processes. The test site for our study is the Berchtesgaden National Park which is characterized by an extreme topography with mountain ranges covering an altitude from 607 to 2713 m.a.s.l. About one quarter of the investigated catchment area, which comprises 433 km² in total, is terrain steeper than 35°. Due to water soluble limestone being predominant in the region, a high number of subsurface water pathways (karst) exist. The results of several tracer experiments and extensive data of spring observations provide additional information to meet the challenge of modeling the unknown subsurface pathways and the complex groundwater system of the region. The validation of the new snow module is based on a dense network of meteorological stations which have been adapted to measure physical properties of the snow cover like snow water equivalent and liquid water content. We will present first results which show that the integration of the new snow module generates a

  1. Role of water balance in the long-term stability of hazardous waste site cover treatments

    International Nuclear Information System (INIS)

    Barnes, F.J.; Rodgers, J.C.; Trujillo, G.

    1986-01-01

    After the 30-year post-closure maintenance period at hazardous waste landfills, long-term stability must be assured without continued intervention. Understanding water balance in the established vegetative cover system is central to predicting such stability. A Los Alamos National Laboratory research project has established a series of experimental cover treatment plots on a closed waste disposal site which will permit the determination of the effects of such critical parameters as soil cover design, leaf area index, and rooting characteristics on water balance under varied conditions. Data from these experiments are being analyzed by water balance modeling and other means. The results show consistent differences in soil moisture storage between soil profiles and between vegetation cover treatments

  2. The use of material balanced equation to determine the oil water ...

    African Journals Online (AJOL)

    The oil water contact of an oil reservoir can be determined using some geophysical well logs. However, some of the methods might not be accurate. Therefore the material balanced equation which is an accurate means of formation evaluation is critically analysed in this study and then used to determine the oil water contact ...

  3. NUTRIENT BALANCE IN WATER HARVESTING SOILS

    Directory of Open Access Journals (Sweden)

    Díaz, F

    2005-05-01

    Full Text Available Dryland farming on Fuerteventura and Lanzarote (Canary Islands, Spain, which has an annual rainfall of less than 150 mm/year, has been based traditionally on water harvesting techniques (known locally as “gavias”. Periods of high productivity alternate with those of very low yield. The systems are sustainable in that they reduce erosive processes, contribute to soil and soil-water conservation and are largely responsible for maintaining the soil’s farming potential. In this paper we present the chemical fertility status and nutrient balance of soils in five “gavia” systems. The results are compared with those obtained in adjacent soils where this water harvesting technique is not used. The main crops are wheat, barley, maize, lentils and chick-peas. Since neither organic nor inorganic fertilisers are used, nutrients are derived mainly from sediments carried by runoff water. Nutrients are lost mainly through crop harvesting and harvest residues. The soils where water harvesting is used have lower salt and sodium in the exchange complex, are higher in carbon, nitrogen, copper and zinc and have similar phosphorous and potassium content. It is concluded that the systems improve the soil’s natural fertility and also that natural renovation of nutrients occurs thanks to the surface deposits of sediments, which mix with the arable layer. The system helps ensure adequate fertility levels, habitual in arid regions, thus allowing dryland farming to be carried out.

  4. Water and energy balance in the cultivated and bake soil in a montane area in Paraiba, Brazil

    International Nuclear Information System (INIS)

    Lima, Jose Romualdo de Sousa

    2004-02-01

    In the areas of rain fed agriculture it is very important to quantify losses of water by evapotranspiration and soil evaporation. The methods used for measuring evapotranspiration and/or evaporation varies from direct measurements techniques, using lysimeters, to measurements of the water and energy balances. The precision lysimeters have high cost, being only used for research purposes. The water and energy balances methods have been very used due the simplicity, robustness and lower cost. Therefore, the objective of this study was to assess the water and energy balance components in the soil cultivated with cowpea (Vigna unguiculata (L) Walp) and without vegetation, besides comparing the methods used to determine the cowpea evapotranspiration. Two experiments (2002 and 2003) were performed in the 4 ha area of the Centro de Ciencias Agrarias, UFPB, municipality of Areia, Paraiba State (6 deg C 58 S, 5 deg C 41 W). To determine the energy balance, the area was instrumented with a rain gauge, a pyrano meter, a net radiometer, and sensors for measuring air temperature and humidity, and wind speed in two levels. Two locals, in the soil, were instrumented with two temperature sensors located at 2.0 cm and 8.0 cm below soil surface and one heat flux plate placed at 5.0 cm below soil surface. The measurements were recorded every 30 minutes on a data logger. To determine the water balance, three plots were installed, composed one-meter access tube for neutron probe measurements, and 8 tensiometers. The results show very good correlation between the aerodynamic method and the Bowen ration energy balance method, for all atmospherics and soil water conditions. For the two years, in average 72% of the net radiation was used by crop evapotranspiration. The energy and water balance can be used, the determine the crop evapotranspiration and soil evaporation, and regardless of the method used, the major water use by crop occurred in the reproductive stage. In the year of 2002

  5. Assessment of check-dam groundwater recharge with water-balance calculations

    Science.gov (United States)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado; Eliades, Marinos

    2017-04-01

    Studies on the enhancement of groundwater recharge by check-dams in arid and semi-arid environments mainly focus on deriving water infiltration rates from the check-dam ponding areas. This is usually achieved by applying simple water balance models, more advanced models (e.g., two dimensional groundwater models) and field tests (e.g., infiltrometer test or soil pit tests). Recharge behind the check-dam can be affected by the built-up of sediment as a result of erosion in the upstream watershed area. This natural process can increase the uncertainty in the estimates of the recharged water volume, especially for water balance calculations. Few water balance field studies of individual check-dams have been presented in the literature and none of them presented associated uncertainties of their estimates. The objectives of this study are i) to assess the effect of a check-dam on groundwater recharge from an ephemeral river; and ii) to assess annual sedimentation at the check-dam during a 4-year period. The study was conducted on a check-dam in the semi-arid island of Cyprus. Field campaigns were carried out to measure water flow, water depth and check-dam topography in order to establish check-dam water height, volume, evaporation, outflow and recharge relations. Topographic surveys were repeated at the end of consecutive hydrological years to estimate the sediment built up in the reservoir area of the check dam. Also, sediment samples were collected from the check-dam reservoir area for bulk-density analyses. To quantify the groundwater recharge, a water balance model was applied at two locations: at the check-dam and corresponding reservoir area, and at a 4-km stretch of the river bed without check-dam. Results showed that a check-dam with a storage capacity of 25,000 m3 was able to recharge to the aquifer, in four years, a total of 12 million m3 out of the 42 million m3 of measured (or modelled) streamflow. Recharge from the analyzed 4-km long river section without

  6. Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids

    Science.gov (United States)

    Bryson, Steve; Levy, Doron

    2004-01-01

    We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of conservation laws to systems of balance laws one has to find an appropriate discretization of the source terms. We first show that for general triangulations there is no discretization of the source terms that corresponds to a well-balanced form of the KP scheme. We then derive a new variant of a central scheme that can be balanced on triangular meshes. We note in passing that it is straightforward to extend the KP scheme to general unstructured conformal meshes. This extension allows us to recover our previous well-balanced scheme on Cartesian grids. We conclude with several simulations, verifying the second-order accuracy of our scheme as well as its well-balanced properties.

  7. Water balance analysis for efficient water allocation in agriculture. A case study: Balta Brailei, Romania

    Science.gov (United States)

    Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru

    2017-04-01

    Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of

  8. GlobWat – a global water balance model to assess water use in irrigated agriculture (discussion paper)

    NARCIS (Netherlands)

    Hoogeveen, J.; Faures, J.M.; Peiser, L.; Burke, J.; Van de Giesen, N.C.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are

  9. Soil Water Balance and Irrigation Strategies in an Agricultural District of Southern Italy

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2010-06-01

    Full Text Available An efficient management of water resources is considered very important for Mediterranean regions of Italy in order to improve the economical and environmental sustainability of the agricultural activity. The purpose of this study is to analyze the components of soil water balance in an important district included in the regions of Basilicata and Puglia and situated in the Jonical coastal area of Southern Italy and mainly cropped with horticultural crops. The study was performed by using the spatially distributed and physically based model SIMODIS in order to individuate the best irrigation management maximizing the water use efficiency and minimizing water losses by deep percolation and soil evaporation. SIMODIS was applied taking in to account the soil spatial variability and localization of cadastral units for two crops, durum wheat and water melon. For water melon recognition in 2007 a remote sensed image, from SPOT5 satellite, at the spatial resolution of 10 m, has been used. In 2008, a multi-temporal data set was available, from SPOT5 satellite to produce a land cover map for the classes water melon and durum wheat. Water melon cultivation was simulated adopting different water supply managements: rainfed and four irrigation strategies based on (i soil water availability and (ii plant water status adopting a threshold daily stress value. For each management, several water management indicators were calculated and mapped in GIS environment. For seasonal irrigation depth, actual evapotranspiration and irrigation efficiency were also determined. The analysis allowed to individuate the areas particularly sensitive to water losses by deep percolation because of their hydraulic functions characterized by low water retention and large values of saturated hydraulic conductivity. For these areas, the irrigation based on plant water status caused very high water losses by drainage. On the contrary, the irrigation scheduled on soil base allowed to

  10. The effect of the supply of rumen degradable protein and metabolisable protein on negative energy balance and fertility in dairy cows

    NARCIS (Netherlands)

    Tamminga, S.

    2006-01-01

    Reproduction in dairy cattle is negatively affected by a negative energy balance (NEB), a combination of the deposition or mobilisation of fat and protein. The mode of action of NEB on fertility is not always clear, but the severity, length, and probably also the nature of the NEB may be involved.

  11. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  12. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  13. Evaluating water conservation and reuse policies using a dynamic water balance model.

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  14. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  15. Water flow pathways and the water balance within a head-water catchment containing a dambo: inferences drawn from hydrochemical investigations

    Directory of Open Access Journals (Sweden)

    M. P. McCartney

    1999-01-01

    Full Text Available Dambos, seasonally saturated wetlands, are widespread in headwater catchments in sub-Saharan Africa. It is widely believed that they play an important role in regional hydrology but, despite research conducted over the last 25 years, their hydrological functions remain poorly understood. To improve conceptualisation of hydrological flow paths and investigate the water balance of a small Zimbabwean catchment containing a single dambo, measurements of alkalinity and chloride in different water types within the catchment have been used as chemical markers. The temporal variation in alkalinity is consistent with the premise that all stream water, including the prolonged dry season recession, is derived predominantly from shallow sources. The proposition that dry season recession flows are maintained by water travelling at depth within the underlying saprolite is not substantiated. There is evidence that a low permeability clay lens, commonly present in many dambos, acts as a barrier for vertical water exchange. However, the highly heterogeneous chemical composition of different waters precludes quantitative hydrograph split-ting using end member mixing analysis. Calculation of the chloride mass-balance confirms that, after rainfall, evaporation is the largest component of the catchment water budget. The study provides improved understanding of the hydrological functioning of dambos. Such understanding is essential for the development and implementation of sustainable management strategies for this landform.

  16. Water balance along a chain of tundra lakes: A 20-year isotopic perspective

    Science.gov (United States)

    Gibson, J. J.; Reid, R.

    2014-11-01

    Stable isotope measurements and isotope mass balance (IMB) calculations are presented in support of an unprecedented 20-year water balance assessment for a tailings pond and a chain of downstream lakes at the Salmita-Tundra mine site, situated near Courageous Lake, Northwest Territories, Canada (65°03‧N; 111°11‧W). The method is shown to provide a comprehensive annual and interannual perspective of water balance fluxes along a chain of lakes during the period 1991-2010, without the need for continuous streamflow gauging, and reveals important lake-order-dependent patterns of land-surface runoff, discharge accumulation, and several key diagnostic ratios, i.e., evaporation/inflow, evaporation/evapotranspiration, land-surface-runoff/precipitation and discharge/ precipitation. Lake evaporation is found to be a significant component of the water balance, accounting for between 26% and 32% of inflow to natural lakes and between 72% and 100% of inflow to mine-tailings ponds. Evaporation/evapotranspiration averages between 7% and 22% and is found to be higher in low-precipitation years, and in watersheds with a higher proportion of lakes. Runoff ratios for land-surface drainages and runoff ratios for watersheds (including lakes) ranged between 14-47% and 20-47%, respectively, and were higher in low precipitation years, in watersheds with a higher proportion of lakes, and in watersheds less affected by mining development. We propose that in general these two runoff ratios will likely converge as lake order increases and as land cover conditions become regionally representative. Notably, the study demonstrates application of IMB, validated with streamflow measurements, to constrain local water balance in a remote low-arctic region. For IMB chain-of-lakes applications, it underlines the importance of accounting for evaporatively-enriched upstream sources to avoid overestimation of evaporation losses.

  17. Application of a water balance model for estimating deep infiltration in a karstic watershed

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2011-12-01

    Full Text Available The current scenario of water scarcity evidences the need for an adequate management of water resources. In karstic regions, the water flow through fractures significantly increases the water infiltration rate, which explains the small number of rivers and the importance of groundwater for urban supply. Therefore, the water balance is necessary since it may aid decision making processes and guide water management projects. The objective of this paper was to perform the water balance of a watershed situated in a karstic region quantifying infiltration, runoff and evapotranspiration. The study area is located near the Tancredo Neves International Airport in Confins, in the state of Minas Gerais, Brazil. Most of the area consists of forest formations (40.9%, and pastures (34.5%. In order to estimate deep infiltration, the BALSEQ model was used. BALSEQ is a numeric model of sequential water balance in which deep infiltration at the end of the day is given by the difference between daily precipitation and the sum of surface runoff, evapotranspiration and the variation of the amount of water stored in the soil. The results show that approximately 60% of total annual precipitation result in deep infiltration, considering the recharge period from September to March. After the dry period, the areas with no vegetal cover present higher deep infiltration. However, over the months, the contribution of the vegetated areas becomes greater, showing the importance of these areas to aquifer recharge.

  18. Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure

    Science.gov (United States)

    Güntner, Andreas; Reich, Marvin; Mikolaj, Michal; Creutzfeldt, Benjamin; Schroeder, Stephan; Wziontek, Hartmut

    2017-06-01

    In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet-temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85 % of the gravity signal due to local water storage changes originating within a radius of 4000 and 200 m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale.

  19. Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure

    Directory of Open Access Journals (Sweden)

    A. Güntner

    2017-06-01

    Full Text Available In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet–temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings, and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85 % of the gravity signal due to local water storage changes originating within a radius of 4000 and 200 m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale.

  20. Modeling and experimental validation of water mass balance in a PEM fuel cell stack

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Araya, Samuel Simon; Olesen, Anders Christian

    2016-01-01

    Polymer electrolyte membrane (PEM) fuel cells require good hydration in order to deliver high performance and ensure long life operation. Water is essential for proton conductivity in the membrane which increases by nearly six orders of magnitude from dry to fully hydrated. Adequate water...... management in PEM fuel cell is crucial in order to avoid an imbalance between water production and water removal from the fuel cell. In the present study, a novel mathematical zero-dimensional model has been formulated for the water mass balance and hydration of a polymer electrolyte membrane. This model...... is validated against experimental data. In the results it is shown that the fuel cell water balance calculated by this model shows better fit with experimental data-points compared with model where only steady state operation were considered. We conclude that this discrepancy is due a different rate of water...

  1. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    Science.gov (United States)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  2. The soil water balance in a mosaic of clumped vegetation

    Science.gov (United States)

    Pizzolla, Teresa; Manfreda, Salvatore; Caylor, Kelly; Gioia, Andrea; Iacobellis, Vito

    2014-05-01

    The spatio-temporal distribution of soil moisture influences the plant growth and the distribution of terrestrial vegetation. This effect is more evident in arid and semiarid ecosystems where the interaction between individuals and the water limited conditions play a fundamental role, providing environmental conditions which drive a variety of non-linear ecohydrological response functions (such as transpiration, photosynthesis, leakage). In this context, modeling vegetation patterns at multiple spatial aggregation scales is important to understand how different vegetation structures can modify the soil water distribution and the exchanged fluxes between soil and atmosphere. In the present paper, the effect of different spatial vegetation patterns, under different climatic scenarios, is investigated in a patchy vegetation mosaic generated by a random process of individual tree canopies and their accompanying root system. Vegetation pattern are generated using the mathematical framework proposed by Caylor et al. (2006) characterized by a three dimensional stochastic vegetation structure, based on the density, dispersion, size distribution, and allometry of individuals within a landscape. A Poisson distribution is applied to generate different distribution of individuals paying particular attention on the role of clumping on water distribution dynamics. The soil water balance is evaluated using the analytical expression proposed by Laio et al. (2001) to explore the influence of climate and vegetation patterns on soil water balance steady-state components (such as the average rates of evaporation, the root water uptake and leakage) and on the stress-weighted plant water uptake. Results of numerical simulations show that clumping may be beneficial for water use efficiency at the landscape scale. References Caylor, Kelly K., P. D'Odorico and I. Rodriguez Iturbe: On the ecohydrology of structurally heterogeneous semiarid landscape. Water Resour. Res., 28, W07424, 2006

  3. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance.

    Science.gov (United States)

    Janssens, Pilou L H R; Hursel, Rick; Westerterp-Plantenga, Margriet S

    2014-06-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase satiety; therefore, CAPS is of interest for anti-obesity therapy. We investigated the effects of CAPS on appetite profile and ad libitum energy intake in relation to energy balance. Fifteen subjects (seven women and eight men, age: 29.7 ± 10.8yrs, BMI: 23.3 ± 2.9 kg/m(2)) underwent four conditions in a randomized crossover design in 36 hour sessions in a respiration chamber; they received 100% of their daily energy requirements in the conditions "100%Control" and "100%CAPS", and 75% of their daily energy requirements in the conditions "75%Control" and "75%CAPS", followed by an ad libitum dinner. In the 100%CAPS and 75%CAPS conditions, CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units) with every meal. Satiety (P dinner desire to eat, satiety and fullness did not differ between 75%CAPS and 100%Control, while desire to eat was higher (P dinner, capsaicin prevents the effects of the negative energy balance on desire to eat. Copyright © 2014. Published by Elsevier Ltd.

  4. Preliminary estimation of Lake El'gygytgyn water balance and sediment income

    Directory of Open Access Journals (Sweden)

    G. Fedorov

    2013-07-01

    Full Text Available Modern process studies of the hydrologic balance of Lake El'gygytgyn, central Chukotka, and the sediment income from the catchment were carried out during a field campaign in spring and summer 2003. Despite high uncertainties due to the limited data, the results provide important first estimates for better understanding the modern and past sedimentation processes in this basin. Formed ca. 3.6 million years ago as a result of a meteorite impact, the basin contains one of the longest paleoclimate records in the terrestrial Arctic. Fluvial activity is concentrated over the short snowmelt period (about 20 days in second part of June. Underground outflow plays a very important role in the water balance and predominates over surface outflow. The residence time of the lake water is estimated to be about 100 yr.

  5. Bioimpedance measurement of body water correlates with measured volume balance in injured patients.

    Science.gov (United States)

    Rosemurgy, A S; Rodriguez, E; Hart, M B; Kurto, H Z; Albrink, M H

    1993-06-01

    Bioimpedance technology is being used increasingly to determine drug volume of distribution, body water status, and nutrition repletion. Its accuracy in patients experiencing large volume flux is not established. To address this, we undertook this prospective study in 54 consecutive seriously injured adults who had emergency celiotomy soon after arrival in the emergency department. Bioimpedance measurements were obtained in the emergency department before the patient was transported to the operating room, on completion of celiotomy, and 24 hours and 48 hours after celiotomy. Bioimpedance measurements of body water were compared with measured fluid balance. If insensible losses are subtracted from measured fluid balance, the percentage of body weight, which is body water determined by bioimpedance, closely follows fluid flux. This study supports the use of bioimpedance measurements in determining total body water even during periods of surgery, blood loss, and vigorous resuscitation.

  6. Surface energy balance of fresh and saline waters : AquaSEBS

    NARCIS (Netherlands)

    Abdelrady, A.R.; Timmermans, J.; Vekerdy, Z.; Salama, M.S.

    2016-01-01

    Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System) model

  7. Assessing climate change impacts on water balance in the Mount

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  8. Cell water balance of white button mushrooms (Agaricus bisporus) during its post-harvest lifetime studied by quantitative magnetic resonance imaging.

    Science.gov (United States)

    Donker, H C; Van As, H

    1999-04-19

    A combination of quantitative water density and T2 MRI and changes therein observed after infiltration with 'invisible' Gd-DTPA solution was used to study cell water balances, cell water potentials and cell integrity. This method was applied to reveal the evolution and mechanism of redistribution of water in harvested mushrooms. Even when mushrooms did not lose water during the storage period, a redistribution of water was observed from stipe to cap and gills. When the storage condition resulted in a net loss of water, the stipe lost more water than the cap. The water density in the gill increased, probably due to development of spores. Deterioration effects (i.e. leakage of cells, decrease in osmotic water potential) were found in the outer stipe. They were not found in the cap, even at prolonged storage at 293 K and R.H.=70%. The changes in osmotic potential were partly accounted for by changes in the mannitol concentration. Changes in membrane permeability were also indicated. Cells in the cap had a constant low membrane (water) permeability. They developed a decreasing osmotic potential (more negative), whereas the osmotic potential in the outer stipe increased, together with the permeability of cells.

  9. Supplementing an energy adequate, higher protein diet with protein does not enhance fat-free mass restoration after short-term severe negative energy balance.

    Science.gov (United States)

    Berryman, C E; Sepowitz, J J; McClung, H L; Lieberman, H R; Farina, E K; McClung, J P; Ferrando, A A; Pasiakos, S M

    2017-06-01

    Negative energy balance during military operations can be severe and result in significant reductions in fat-free mass (FFM). Consuming supplemental high-quality protein following such military operations may accelerate restoration of FFM. Body composition (dual-energy X-ray absorptiometry) and whole body protein turnover (single-pool [ 15 N]alanine method) were determined before (PRE) and after 7 days (POST) of severe negative energy balance during military training in 63 male US Marines (means ± SD, 25 ± 3 yr, 84 ± 9 kg). After POST measures were collected, volunteers were randomized to receive higher protein (HIGH: 1,103 kcal/day, 133 g protein/day), moderate protein (MOD: 974 kcal/day, 84 g protein/day), or carbohydrate-based low protein control (CON: 1,042 kcal/day, 7 g protein/day) supplements, in addition to a self-selected, ad libitum diet, for the 27-day intervention (REFED). Measurements were repeated POST-REFED. POST total body mass (TBM; -5.8 ± 1.0 kg, -7.0%), FFM (-3.1 ± 1.6 kg, -4.7%), and net protein balance (-1.7 ± 1.1 g protein·kg -1 ·day -1 ) were lower and proteolysis (1.1 ± 1.9 g protein·kg -1 ·day -1 ) was higher compared with PRE ( P energy (4,498 ± 725 kcal/day). All volunteers, independent of group assignment, achieved positive net protein balance (0.4 ± 1.0 g protein·kg -1 ·day -1 ) and gained TBM (5.9 ± 1.7 kg, 7.8%) and FFM (3.6 ± 1.8 kg, 5.7%) POST-REFED compared with POST ( P energy-adequate, higher protein diets with additional protein may not be necessary to restore FFM after short-term severe negative energy balance. NEW & NOTEWORTHY This article demonstrates 1 ) the majority of physiological decrements incurred during military training (e.g., total and fat-free mass loss), with the exception of net protein balance, resolve and return to pretraining values after 27 days and 2 ) protein supplementation, in addition to an ad libitum, higher protein (~2.0 g·kg -1 ·day -1 ), energy adequate diet, is not necessary to

  10. Balancing passive and active systems for evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Fil, N.S.; Allen, P.J.; Kirmse, R.E.; Kurihara, M.; Oh, S.J.; Sinha, R.K.

    1999-01-01

    Advanced concepts of the water-cooled reactors are intended to improve safety, economics and public perception of nuclear power. The potential inclusion of new passive means in addition or instead of traditional active systems is being considered by nuclear plant designers to reach these goals. With respect to plant safety, application of the passive means is mainly intended to simplify the safety systems and to improve their reliability, to mitigate the effect of human errors and equipment malfunction. However, some clear drawbacks and the limited experience and testing of passive systems may raise additional questions that have to be addressed in the design process for each advanced reactor. Therefore the plant designer should find a reasonable balance of active and passive means to effectively use their advantages and compensate their drawbacks. Some considerations that have to be taken into account when balancing active/passive means in advanced water-cooled reactors are discussed in this paper. (author)

  11. Demonstration of isotope-mass balance approach for water budget analyses of El-burulus Lake, Nile Delta, Egypt

    International Nuclear Information System (INIS)

    Sadek, M.A.

    2006-01-01

    The major elements of El-Burulus lake water system are rainfall, agricultural drainage discharge, groundwater, human activities, evaporation and water interaction between the lake and the Mediterranean sea. The principal input sources are agricultural drainage (8 drains at the southern borders of the lake), sea water as well as some contribution of precipitation, groundwater and human activities. Water is lost from the lake through evaporation and surface outflow. The present study has been conducted using isotopic / mass balance approach to investigate the water balance of El-Burulus lake and to emphasize the relative contribution of different input / output components which affect the environmental and hydrological terms of the system. An isotopic evaporation pan experiment was performed to estimate the parameters of relevance to water balance (isotopic composition of free air moisture and evaporating flux) and to simulate the isotopic enrichment of evaporation under atmospheric and hydraulic control. The isotopic mass balance approach employed herein facilitated the estimation of groundwater inflow to the lake, evaporated fraction of total lake inflow (E/I) and its fraction to outflow (E/O), ratio of surface inflow to surface outflow (I/O) as well as residence time of lake water. The isotopic mass balance approach has been validated by comparing the values of estimated parameters with the previous hydrological investigations; a quite good match has been indicated, the relevance of this approach is related to its integrative scale and the more simply implementation

  12. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Science.gov (United States)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  13. Effects of Land Cover Changes to the Quantity of Water Supply and Hydrologic Cycle using Water Balance Models

    Directory of Open Access Journals (Sweden)

    Caja CC

    2018-01-01

    Full Text Available The hydrologic cycle is a recurring consequence of different forms of movement of water and changes of its physical state on a given area of the earth. The land cover of a certain area is a significant factor affecting the watershed hydrology. This also affects the quantity of water supply within the watershed. This study assessed the impacts of the changing land cover of the Ipo watershed, a part of the Angat-Ipo-La Mesa water system which is the main source of Metro Manila’s water supply. The environmental impacts were assessed using the interaction of vegetation cover changes and the output flow rates in Ipo watershed. Using hydrologic modelling system, the hydrological balance using rainfall, vegetation and terrain data of the watershed was simulated. Over the years, there has been a decreasing land cover within the watershed caused mostly by deforestation and other human activities. This significant change in the land cover resulted to extreme increase in water discharge at all streams and rivers in the watershed and the water balance of the area were affected as saturation and shape of the land terrain changes.

  14. A stochastic approach for the description of the water balance dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    S. Manfreda

    2008-09-01

    Full Text Available The present paper introduces an analytical approach for the description of the soil water balance dynamics over a schematic river basin. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance. This equation can be solved assuming known the spatial distribution of the soil moisture over the basin transforming the two-dimensional problem in space in a one dimensional one. This assumption is particularly true in the case of humid and semihumid environments, where spatial redistribution becomes dominant producing a well defined soil moisture pattern. The model allowed to derive the probability density function of the saturated portion of a basin and of its relative saturation. This theory is based on the assumption that the soil water storage capacity varies across the basin following a parabolic distribution and the basin has homogeneous soil texture and vegetation cover. The methodology outlined the role played by the soil water storage capacity distribution of the basin on soil water balance. In particular, the resulting probability density functions of the relative basin saturation were found to be strongly controlled by the maximum water storage capacity of the basin, while the probability density functions of the relative saturated portion of the basin are strongly influenced by the spatial heterogeneity of the soil water storage capacity. Moreover, the saturated areas reach their maximum variability when the mean rainfall rate is almost equal to the soil water loss coefficient given by the sum of the maximum rate of evapotranspiration and leakage loss in the soil water balance. The model was tested using the results of a continuous numerical simulation performed with a semi-distributed model in order to validate the proposed theoretical distributions.

  15. Proposing water balance method for water availability estimation in Indonesian regional spatial planning

    Science.gov (United States)

    Juniati, A. T.; Sutjiningsih, D.; Soeryantono, H.; Kusratmoko, E.

    2018-01-01

    The water availability (WA) of a region is one of important consideration in both the formulation of spatial plans and the evaluation of the effectiveness of actual land use in providing sustainable water resources. Information on land-water needs vis-a-vis their availability in a region determines the state of the surplus or deficit to inform effective land use utilization. How to calculate water availability have been described in the Guideline in Determining the Carrying Capacity of the Environment in Regional Spatial Planning. However, the method of determining the supply and demand of water on these guidelines is debatable since the determination of WA in this guideline used a rational method. The rational method is developed the basis for storm drain design practice and it is essentially a peak discharge method peak discharge calculation method. This paper review the literature in methods of water availability estimation which is described descriptively, and present arguments to claim that water balance method is a more fundamental and appropriate tool in water availability estimation. A better water availability estimation method would serve to improve the practice in preparing formulations of Regional Spatial Plan (RSP) as well as evaluating land use capacity in providing sustainable water resources.

  16. Mammary gene expression profiles during an intramammary challenge reveal potential mechanisms linking negative energy balance with impaired immune response

    DEFF Research Database (Denmark)

    Moyes, Kasey; Drackley, J K; Morin, D E

    2010-01-01

    Our objective was to compare mammary tissue gene expression profiles during a Streptococcus uberis (S. uberis) mastitis challenge between lactating cows subjected to dietary-induced negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive energy balance (PEB; n = 5...... 0.05), with 86 DEG up-regulated and 201 DEG down-regulated. Canonical pathways most affected by NEB were IL-8 Signaling (10 genes), Glucocorticoid Receptor Signaling (13), and NRF2-mediated Oxidative Stress Response (10). Among genes differentially expressed by NEB, Cell Growth and Proliferation (48...

  17. Assessment of green roof systems in terms of water and energy balance

    Directory of Open Access Journals (Sweden)

    Mert Ekşi

    2016-01-01

    Full Text Available Green roofs concept term is used for extensive green roofs which are planted with herbaceous plants that can be adapted into changeable environmental conditions on a shallow substrate layer, require minimal maintenance, installed for their benefits to building and urban scale. Main objective of this study is to determine the characteristics of a green roof such as thermal insulation, water holding capacity, runoff characteristics, plant growth and its interaction with environmental factors in Istanbul climate conditions by performing comparative measurements. In this study, a research site (IU Green Roof Research Station was founded to assess water and energy balance of green roofs. Thus, a typical green roof was evaluated in terms of water and energy balance and its interaction with the building and city was determined. energy efficiency of green roof system was 77% higher than reference roof. Temperature fluctuations on green roof section of the roof were 79% lower. In addition, green roof retained 12,8% - 100% of precipitation and delayed runoff up to 23 hours depending on water content of substrate.

  18. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    Science.gov (United States)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  19. Impact of climate seasonality on catchment yield: A parameterization for commonly-used water balance formulas

    Science.gov (United States)

    de Lavenne, Alban; Andréassian, Vazken

    2018-03-01

    This paper examines the hydrological impact of the seasonality of precipitation and maximum evaporation: seasonality is, after aridity, a second-order determinant of catchment water yield. Based on a data set of 171 French catchments (where aridity ranged between 0.2 and 1.2), we present a parameterization of three commonly-used water balance formulas (namely, Turc-Mezentsev, Tixeront-Fu and Oldekop formulas) to account for seasonality effects. We quantify the improvement of seasonality-based parameterization in terms of the reconstitution of both catchment streamflow and water yield. The significant improvement obtained (reduction of RMSE between 9 and 14% depending on the formula) demonstrates the importance of climate seasonality in the determination of long-term catchment water balance.

  20. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    Science.gov (United States)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  1. Combining remote sensing and water-balance evapotranspiration estimates for the conterminous United States

    Science.gov (United States)

    Reitz, Meredith; Senay, Gabriel; Sanford, Ward E.

    2017-01-01

    Evapotranspiration (ET) is a key component of the hydrologic cycle, accounting for ~70% of precipitation in the conterminous U.S. (CONUS), but it has been a challenge to predict accurately across different spatio-temporal scales. The increasing availability of remotely sensed data has led to significant advances in the frequency and spatial resolution of ET estimates, derived from energy balance principles with variables such as temperature used to estimate surface latent heat flux. Although remote sensing methods excel at depicting spatial and temporal variability, estimation of ET independently of other water budget components can lead to inconsistency with other budget terms. Methods that rely on ground-based data better constrain long-term ET, but are unable to provide the same temporal resolution. Here we combine long-term ET estimates from a water-balance approach with the SSEBop (operational Simplified Surface Energy Balance) remote sensing-based ET product for 2000–2015. We test the new combined method, the original SSEBop product, and another remote sensing ET product (MOD16) against monthly measurements from 119 flux towers. The new product showed advantages especially in non-irrigated areas where the new method showed a coefficient of determination R2 of 0.44, compared to 0.41 for SSEBop or 0.35 for MOD16. The resulting monthly data set will be a useful, unique contribution to ET estimation, due to its combination of remote sensing-based variability and ground-based long-term water balance constraints.

  2. THE USE OF DIETARY FATS AND CONCENTRATES TO ALLEVIATE THE NEGATIVE ENERGY BALANCE IN CROSSBRED COWS IN EARLY LACTATION

    Directory of Open Access Journals (Sweden)

    Carlos F. Aguilar-Pérez

    2014-08-01

    Full Text Available Energy balance (EB is defined as the difference between energy intake and energy expenditure. Fertility in the high-merit cow has been adversely associated with high milk production, low intake of energy and mobilisation of body reserves in early lactation, which combine in the term negative energy balance (NEB.  The timing of insemination usually coincides with peak milk yield, when dairy cows are often in NEB. Crossbred cows (Bos taurus x Bos indicus in the tropics have comparatively lower nutrient requirements and different partition of nutrients than high merit dairy cows. Thus, it would be expected that both the magnitude and length of negative energy balance were different in a crossbred cow. Because of marked differences compared with high-merit cows, crossbred cows in the tropics would be expected to show greater response to additional energy in early lactation improving their energy status and hence reproductive performance. Knowing the influence of nutrition on reproduction, many methods have been proposed for manipulating the diet to avoid or to alleviate negative energy balance. The use of fats is one alternative, which has been extensively studied in dairy and beef cows but with inconclusive results. Another alternative is to use starch-based concentrates, taking into account level of inclusion and quality and availability of pasture, in order to avoid substitution effects and to get maximum profits. Two experiments were carried out in Yucatan Mexico, in order to evaluate the use of bypass fats (calcium soaps of long-chain fatty acids, CAFA or a starch-based concentrate to alleviate the NEB in grazing crossbred cows in early lactation. The NEB in early lactation was successfully avoided by the use of the starch-based concentrate but not by the use of bypass fats, this due to a reduction in the grass DM intake. It was concluded that crossbred cows in the tropics may experience a period of NEB postpartum, which can be avoided if

  3. Fundamentals of the spatially distributed simulation of the water balance of forest sites in a low-range mountain area

    Directory of Open Access Journals (Sweden)

    K. Schwärzel

    2007-05-01

    Full Text Available For a sustainable forest management, a site-specific knowledge on the water balance is a prerequisite. A simple and popular field method for assessing the water balance of forest sites is based on overlaying relief and soil information. Furthermore, climatic influence on the water balance is often restricted to longtime average values of precipitation and air temperature (whole year and/or growing season. However, the impacts of climate change and climatic extremes, as well as silvicultural changes, are inadequately considered. To overcome these short-comings, we integrated the 1D-SVAT model BROOK90 and a radiation model in a GIS to simulate the spatially distributed components of water balance of forest sites. In this paper, we present the model concept and show an approach to describe the influence of a complex terrain on parameters controlling the spatial distribution of energy and water fluxes.

  4. Actual Evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq Using the Surface Energy Balance Algorithm for Land (SEBAL and Water Balance

    Directory of Open Access Journals (Sweden)

    Hussein Jassas

    2015-04-01

    Full Text Available Increasing dependence on groundwater requires a detailed determination of the different outputs and inputs of a basin for better water management. Determination of spatial and temporal actual evapotranspiration (ETa, in this regard, is of vital importance as there is significant water loss from drainage basins. This research paper uses the Surface Energy Balance Algorithm for Land (SEBAL, as well as the water balance, to estimate the spatial and temporal ETa in the Al-Khazir Gomal Basin, Northern Iraq. To compensate for the shortage in rainfall, and to irrigate summer crops, farmers in this basin have been depending, to a large extent, on groundwater extracted from the underlying unconfined aquifer, which is considered the major source for both domestic and agricultural uses in this basin. Rainfed farming of wheat and barley is one of the most important activities in the basin in the winter season, while in the summer season, agricultural activity is limited to small rice fields and narrow strips of vegetable cultivation along the Al-Khazir River. The Landsat Thematic Mapper images (TM5 acquired on 21 November 2006, 9 March 2007, 5 May 2007, 21 July 2007, and 23 September 2007 were used, along with a digital elevation model (DEM and ground-based meteorological data, measured within the area of interest. Estimation of seasonal ETa from periods between satellite overpasses was computed using the evaporative fraction (Ʌ. The water balance approach was utilized, using meteorological data and river hydrograph analysis, to estimate the ETa as the only missing input in the predefined water balance equation. The results of the two applied methods were comparable. SEBAL results were compared with the land use land cover (LULC map. The river showed the highest ETa, as evaporation from the free-water surface. Rice fields, irrigated in the summer season, have a high ETa in the images, as these fields are immersed in water during June, July and August

  5. Evapotranspiration management based on the application of SWAT for balancing water consumption: A case study in Guantao, China

    Science.gov (United States)

    Liu, Bin; Gan, Hong

    2018-06-01

    Rapid social and economic development results in increased demand for water resources. This can lead to the unsustainable development and exploitation of water resources which in turn causes significant environmental problems. Conventional water resource management approaches, such as supply and demand management strategies, frequently fail to restore regional water balance. This paper introduces the concept of water consumption balance, the balance between actual evapotranspiration (ET) and target ET, and establishes a framework to realize regional water balance. The framework consists of three stages: (1) determination of target ET and actual ET; (2) quantification of the water-saving requirements for the region; and (3) reduction of actual ET by implementing various water saving management strategies. Using this framework, a case study was conducted for Guantao County, China. The SWAT model was utilized to aid in the selection of the best water saving management strategy by comparing the ET of different irrigation methods and crop pattern adjustments. Simulation results revealed that determination of SWAT model parameters using remote sensing ET is feasible and that the model is a valuable tool for ET management. Irrigation was found to have a greater influence on the ET of winter wheat as compared to that of maize, indicating that reduction in winter wheat cultivation is the most effective way to reduce regional ET. However, the effect of water-saving irrigation methods on the reduction of ET was not obvious. This indicates that it would be difficult to achieve regional ET reduction using water-saving irrigation methods only. Furthermore, selecting the best water saving management strategy by relying solely on the amount of reduced ET was insufficient, because it ignored the impact of water conservation measures on the livelihood of the agricultural community. Incorporating these considerations with our findings, we recommend changing the current irrigation

  6. Application of SWAT99.2 to sensitivity analysis of water balance components in unique plots in a hilly region

    Directory of Open Access Journals (Sweden)

    Jun-feng Dai

    2017-07-01

    Full Text Available Although many sensitivity analyses using the soil and water assessment tool (SWAT in a complex watershed have been conducted, little attention has been paid to the application potential of the model in unique plots. In addition, sensitivity analysis of percolation and evapotranspiration with SWAT has seldom been undertaken. In this study, SWAT99.2 was calibrated to simulate water balance components for unique plots in Southern China from 2000 to 2001, which included surface runoff, percolation, and evapotranspiration. Twenty-one parameters classified into four categories, including meteorological conditions, topographical characteristics, soil properties, and vegetation attributes, were used for sensitivity analysis through one-at-a-time (OAT sampling to identify the factor that contributed most to the variance in water balance components. The results were shown to be different for different plots, with parameter sensitivity indices and ranks varying for different water balance components. Water balance components in the broad-leaved forest and natural grass plots were most sensitive to meteorological conditions, less sensitive to vegetation attributes and soil properties, and least sensitive to topographical characteristics. Compared to those in the natural grass plot, water balance components in the broad-leaved forest plot demonstrated higher sensitivity to the maximum stomatal conductance (GSI and maximum leaf area index (BLAI.

  7. Balance and Self-Efficacy of Balance in Children with CHARGE Syndrome

    Science.gov (United States)

    Haibach, Pamela S.; Lieberman, Lauren J.

    2013-01-01

    Introduction: Balance is a critical component of daily living, because it affects all movements and the ability to function independently. Children with CHARGE syndrome have sensory and motor impairments that could negatively affect their balance and postural control. The purpose of the study presented in this article was to assess the balance and…

  8. The Effect of Water Exercise Program on Static and Dynamic Balance in Elderly Women

    Directory of Open Access Journals (Sweden)

    Heydar Sadeghi

    2008-01-01

    Full Text Available Objectives: Poor balance is one of risk factors of falling, a cause of injury and even death in elderly. The aim of this study was to evaluate the effect of a water exercise program on static and dynamic balance in elder women. Methods & Materials: Thirty participants aged 55-70 years completed an exercise program (60 min, 3 days and 6 weeks, in 2 groups, exercise and control, voluntarily. Static and dynamic balances were measured before and after exercise program in both groups. Postural sway parameters, including mean displacement of center of pressure and velocity of center of pressure in Medio-Lateral (ML and Anterio-Posterior (AP directions, in single stance position, as a measure of static balance and functional reach test, functional reach right test and functional reach left test, as dynamic measure of balance was considered. T test for deepened groups was used for evaluation of changes within groups, and T test for independent groups was used for between groups' changes at threshold of 0.05 After 6 weeks. Results: Significant changes were observed in results of Functional Reach Test (FRT, Functional Reach Left Test (FRLT after exercise program, also in average displacement of cop and velocity of cop in ML direction. Between groups significant differences were observed in results of average cop displacement and velocity of displacement, FRT and FRLT. Conclusion: These results suggest that challenging the physiological systems involved in balance control, in water, while on the non stable support surface, improved both static and dynamic balance and probably might decrease the risk of falling.

  9. Sustainability of Water Cooled Reactors - Energy Balance for Low Grade Uranium Resources

    International Nuclear Information System (INIS)

    Strupczewski, A.

    2011-01-01

    The opponents of nuclear power claim that as uranium resources get exhausted the energy needed to mine low grade uranium ore will be larger than the energy that can be obtained from fission in a nuclear power plant. This would result in loss of sustainability of nuclear power, with the negative energy balance expected within the next 40-60 years. Since the opponents state clearly that the ore containing less than 0.013% U 3 O 8 cannot yield positive energy balance, the study of the Institute of Atomic Energy in Poland referenced three mines of decreasing ore grade: Ranger 0.234% U 3 O 8 , Rossing 0.028% U 3 O 8 and Trekkopje 0.00126% U 3 O 8 , that is with ore grade below the postulated cut off value. The study considered total energy needs for uranium mining, including not only electricity needed for mining and milling, for water treatment and delivery, but also fuel for transportation and ore crushing, explosives for rock blasting, chemicals for uranium leaching and the energy needed for mine reclamation after completed exploitation. It has been shown that the energy estimates of nuclear opponents are wrong for Ranger mine and go off much further for the mines with lower uranium ore grades. The reasons for erroneous reasoning of nuclear opponents have been found. Their errors arise from treating the uranium ore deposits as if their layout and properties were the same as those of uranium ore mined in the US in the 70-ies. This results in an oversimplified formula, which yields large errors when the thickness of the overlayer is less than it was in the US. In addition the energy needs claimed for mine reclamation are much too high. The study showed that the energy needed for very low grade uranium ore mining and milling increases but the overall energy balance of the nuclear fuel cycle remains strongly positive. (author)

  10. Mathematical modeling of water mass balance for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari; Nik Suhaimi Mat Hassan

    2006-01-01

    Gas and water management are key to achieving good performance from a proton exchange membrane fuel cell (PEMFC) stack. Water plays a critical role in PEMFC. The proton conductivity is increase with the water content. In order to achieve enough hydration, water is normally introduced into the cell externally by a variety of methods such as liquid injection, steam introduction, and humidification of reactants by passing them through humidifiers before entering the cell. In this paper, mathematical modeling of water mass balance for PEMFC at anode and cathode side are proposed by using external humidification and assume that steady state, constant pressure, constant temperature and gases distribution are uniform

  11. CHANGES OF WATER BALANCE COMPONENTS OF MIDFOREST POND IN A HYDROLOGICAL YEARS OF A DIFFERENT METEOROLOGICAL CONDITION COURSE

    Directory of Open Access Journals (Sweden)

    Mariusz Korytowski

    2014-10-01

    years. Evaporation from pond surface which was from 408 mm (2009/2010 to 835 mm (2002/2003 was the dominant factor of outgoing part of water balance. Outflow from the pond to neighboring areas had significant participation – about 44% of precipitation, in water balance in wet 2009/2010 hydrological year.

  12. Assessment of the water balance over France using regionalized Turc-Pike formula

    Science.gov (United States)

    Le Lay, Matthieu; Garçon, Rémy; Gailhard, Joël; Garavaglia, Federico

    2016-04-01

    With extensive use of hydrological models over a wide range of hydro-climatic contexts, bias in hydro-climatic data may lead to unreliable models and thus hydrological forecasts and projections. This issue is particularly pregnant when considering mountainous areas with great uncertainties on precipitations, or when considering complex unconservative catchments (e.g. karstic systems). The Turc-Pike water balance formula, analogous to the classical Budyko formula, is a simple and efficient mathematical formulation relating long-term average streamflow to long-term average precipitation and potential evaporation. In this study, we propose to apply this framework to assess and eventually adjust the water-balance before calibrating an operational hydrologic model (MORDOR model). Considering a large set of 350 french catchments, the Turc-Pike formula is regionalized based on ecohydrologic criterions to handle various hydro-climatic contexts. This interannual regional model is then applied to assess the water-balance over numerous catchments and various conditions, such as karstic, snow-driven or glaciarized and even anthropized catchments. Results show that it is possible to obtain pretty realistic corrections of meteorological inputs (precipitations, temperature or potential evaporation) or hydrologic surface (or runoff). These corrections can often be confirmed a posteriori by exogenous information. Positive impacts on hydrologic model's calibration are also demonstrated. This methodology is now operational for hydrologic applications at EDF (Electricité de France, French electric utility company), and therefore applied on hundreds of catchments.

  13. Metal balance shift induced in small fresh water fish by several environmental stresses

    International Nuclear Information System (INIS)

    Yukawa, Masae; Iso, Hiroyuki; Kodama, Kumiko; Imaseki, Hitoshi; Aoki, Kazuko; Ishikawa, Yuji

    2005-01-01

    Balance of essential elements in organisms might be changed by environmental stresses. Small fresh water fish, Medaka, was burdened with X-ray irradiation (total dose: 17 Gy), keeping in salty water (70% NaCl of sea water) and keeping in metal containing water (10 ppm of Cr and Co). These stresses are not lethal doses. Essential elements in liver, gall bladder, kidney, spleen, heart and brain in the stress-loaded fish were measured by PIXE method and compared with a control fish to determine the effect of the stresses. Various changes of the elemental contents were observed. Effect of X-ray irradiation was the smallest among the stresses. Relatively high content elements such as P, S, Cl and K were hardly affected with the stresses examined in this work. The effect of Cr on the metal balance seems to be larger than the other stresses. As PIXE method can analyze many elements in a small sample simultaneously, change of elemental distribution in small organisms induced by environmental stresses can be determined readily. (author)

  14. An Analysis of Mass Balance of Chilean Glaciers

    Science.gov (United States)

    Ambinakudige, S.; Tetteh, L.

    2013-12-01

    Glaciers in Chile range from very small glacierets found on the isolated volcanoes of northern Chile to the 13,000 sq.km Southern Patagonian Ice Field. Regular monitoring of these glaciers is very important as they are considered as sensitive indicators of climate change. Millions of people's lives are dependent on these glaciers for fresh water and irrigation purpose. In this study, mass balances of several Chilean glaciers were estimated using Aster satellite images between 2007 and 2012. Highly accurate DEMs were created with supplementary information from IceSat data. The result indicated a negative mass balance for many glaciers indicating the need for further monitoring of glaciers in the Andes.

  15. Estimating Water Balance Components of Lakes and Reservoirs Using Various Open Access Satellite Databases

    NARCIS (Netherlands)

    Duan, Z.

    2014-01-01

    There are millions of lakes and ten thousands of reservoirs in the world. The number of reservoirs is still increasing through the construction of large dams to meet the growing demand for water resources, hydroelectricity and economic development. Accurate information on the water balance

  16. Cloud water interception and canopy water balance in the Hawaiian Islands: preliminary results and emerging patterns

    Science.gov (United States)

    Tseng, H.; Giambelluca, T. W.; DeLay, J. K.; Nullet, M.

    2017-12-01

    Steep climate gradients and diverse ecosystems make the Hawaiian Islands an ideal laboratory for ecohydrological experiments. Researchers are able to control physical and ecological variables, which is difficult for most environmental studies, by selecting sites along these gradients. Tropical montane forests, especially those situated in the cloud zone, are known to improve recharge and sustain baseflow. This is probably the result of frequent and persistent fog characteristic to these systems. During fog events, evapotranspiration is suppressed due to high humidity and reduced solar radiation. Moreover, cloud water interception by the forest canopy can produce fog drip and contribute significantly to the local water budget. Because the interception process is a complex interaction between the atmosphere and the vegetation, the effects of the meteorological conditions and canopy characteristics are equally important and sometimes hard to separate. This study aims to examine patterns in cloud water interception and canopy water balance across five tropical montane forest sites on three of the main islands of Hawaii. The sites cover a range of elevations between 1100- 2114 m, annual rainfall between 1155-3375 mm, and different dominant plant species with canopy heights ranging from 1.5 m to 30 m. We investigate the effect of climatic factors by comparing passive fog gauge measurements and other meteorological variables, then examine the differences in canopy water balance by comparing throughfall and stemflow measurements at these sites. While this study is ongoing, we present the first few months of field observations and the results of preliminary analyses. This study will improve understanding of how large-scale climate and vegetation factors interact to control cloud water interception and will inform ongoing watershed management. This is particularly important for oceanic islands such as Hawaii because they rely on precipitation entirely for water supply and

  17. Balancing water resource conservation and food security in China.

    Science.gov (United States)

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  18. Immediate effects of cryotherapy on static and dynamic balance.

    Science.gov (United States)

    Douglas, Matthew; Bivens, Serena; Pesterfield, Jennifer; Clemson, Nathan; Castle, Whitney; Sole, Gisela; Wassinger, Craig A

    2013-02-01

    Cryotherapy is commonly used in physical therapy with many known benefits; however several investigations have reported decreased functional performance following therapeutic application thereof. The purpose of this study was to determine the effect of cryotherapy applied to the ankle on static and dynamic standing balance. It was hypothesized that balance would be decreased after cryotherapy application. Twenty individuals (aged 18 to 40 years) participated in this research project. Each participant was tested under two conditions: an experimental condition where subjects received ice water immersion of the foot and ankle for 15 minutes immediately before balance testing and a control condition completed at room temperature. A Biodex® Balance System was used to quantify balance using anterior/posterior (AP), medial/lateral (ML), and overall balance indices. Paired t-tests were used to compare the balance indices for the two conditions with alpha set at 0.05 a priori. Effect size was also calculated to account for the multiple comparisons made. The static balance indices did not display statistically significant differences between the post-cryotherapy and the control conditions with low effect sizes. Dynamic ML indices significantly increased following the cryotherapy application compared to the control exhibiting a moderate effect size indicating decreased balance following cryotherapy application. No differences were noted between experimental and control conditions for the dynamic AP or overall balance indices while a small effect size was noted for both. The results suggest that cryotherapy to the ankle has a negative effect on the ML component of dynamic balance following ice water immersion. Immediate return to play following cryotherapy application is cautioned given the decreased dynamic ML balance and potential for increased injury risk. 3b Case-control study.

  19. Converting Paddy Rice Field to Urban Use Dramatically Altered the Water and Energy Balances in Southern China

    Science.gov (United States)

    Hao, L.; Sun, G.; Liu, Y.; Qin, M.; Huang, X.; Fang, D.

    2017-12-01

    Paddy rice wetlands are the main land use type across southern China, which impact the regional environments by affecting evapotranspiration (ET) and other water and energy related processes. Our study focuses on the effects of land-cover change on water and energy processes in the Qinhuai River Basin, a typical subtropical humid region that is under rapid ecological and economical transformations. This study integrates multiple methods and techniques including remote sensing, water and energy balance model (i.e., Surface Energy Balance Algorithm for Land, SEBAL), ecohydrological model (i.e., Soil and Water Assessment Tool, SWAT), and ground observation (Eddy Covariance measurement, etc.). We found that conversion of paddy rice field to urban use led to rise in vapor pressure deficit (VPD) and reduction in ET, and thus resulted in changes in local and regional water and heat balance. The effects of the land-use change on ET and VPD overwhelmed the effects of regional climate warming and climate variability. We conclude that the ongoing large-scale urbanization of the rice paddy-dominated regions in humid southern China and East Asia will likely exacerbate environmental consequences (e.g., elevated storm-flow volume, aggravated flood risks, and intensified urban heat island and urban dry island effects). The potential role of vegetated land cover in moderating water and energy balances and maintaining a stable climate should be considered in massive urban planning and global change impact assessment in southern China.

  20. A Generic Water Balance Model for a Trench Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Choi, Hee Joo

    2016-01-01

    To quantify the exposure dose rates from the nuclide release and transport through the various pathways possible in the near- and far-fields of the LILW repository system, various scenarios are to be conveniently simulated in a straightforward manner and extensively with this GoldSim model, as similarly developed for other various types of repositories in previous studies. Through this study, a result from four scenario cases, each of which is or is not associated with water balance, are compared to each other to see what happens in different cases in which an overflow over a trench rooftop, stochastic rainfall on the trench cover, and an unsaturated flow scheme under the trench bottom are combined. The other two latter elements vary periodically owing to stochastic behavior of the time series data for the past rain-fall records. This program is ready for a total system performance assessment and is able to deterministically and probabilistically evaluate the nuclide release from a repository and farther transport into the geosphere and biosphere under various scenarios that can occur after a failure of waste packages with associated uncertainty. An illustration conducted through a study with a new water balance scheme shows the possibility of a stochastic evaluation associated with the stochastic behavior and various pathways that happen around the trench repository.

  1. A Generic Water Balance Model for a Trench Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Choi, Hee Joo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To quantify the exposure dose rates from the nuclide release and transport through the various pathways possible in the near- and far-fields of the LILW repository system, various scenarios are to be conveniently simulated in a straightforward manner and extensively with this GoldSim model, as similarly developed for other various types of repositories in previous studies. Through this study, a result from four scenario cases, each of which is or is not associated with water balance, are compared to each other to see what happens in different cases in which an overflow over a trench rooftop, stochastic rainfall on the trench cover, and an unsaturated flow scheme under the trench bottom are combined. The other two latter elements vary periodically owing to stochastic behavior of the time series data for the past rain-fall records. This program is ready for a total system performance assessment and is able to deterministically and probabilistically evaluate the nuclide release from a repository and farther transport into the geosphere and biosphere under various scenarios that can occur after a failure of waste packages with associated uncertainty. An illustration conducted through a study with a new water balance scheme shows the possibility of a stochastic evaluation associated with the stochastic behavior and various pathways that happen around the trench repository.

  2. INVESTIGATION OF QUANTIFICATION OF FLOOD CONTROL AND WATER UTILIZATION EFFECT OF RAINFALL INFILTRATION FACILITY BY USING WATER BALANCE ANALYSIS MODEL

    OpenAIRE

    文, 勇起; BUN, Yuki

    2013-01-01

    In recent years, many flood damage and drought attributed to urbanization has occurred. At present infiltration facility is suggested for the solution of these problems. Based on this background, the purpose of this study is investigation of quantification of flood control and water utilization effect of rainfall infiltration facility by using water balance analysis model. Key Words : flood control, water utilization , rainfall infiltration facility

  3. Effects of Water Management Strategies on Water Balance in a Water Scarce Region: A Case Study in Beijing by a Holistic Model

    Directory of Open Access Journals (Sweden)

    Zhigong Peng

    2016-08-01

    Full Text Available Irrigation is facing increasing pressure from other competitive water users to reduce water consumption in a water scarce region. Based on the Basin-wide Holistic Integrated Water Assessment (BHIWA model, the effects of water management strategies on water balance in the dry regions of North China were analyzed. The results show that, with the decrease of irrigation water supply reliability (IWSR and the increase of irrigation water use efficiency (WUE, irrigation water use decreased significantly, leading to reduced agriculture water consumption, and sustained ground water levels. Compared with the increase of WUE, the decrease of IWSR contributes more to reducing irrigation water consumption and protecting groundwater. Sensitivity tests show that among various water cycle components, irrigation water use is most sensitive to changes, followed by agriculture water consumption, and then groundwater level. Reducing IWSR is an effective strategy to reduce irrigation water consumption and promote sustainable water resources management, which could be the support of basic data and theory for regional water resources planning.

  4. Calcium Balance in Chronic Kidney Disease.

    Science.gov (United States)

    Hill Gallant, Kathleen M; Spiegel, David M

    2017-06-01

    The kidneys play a critical role in the balance between the internal milieu and external environment. Kidney failure is known to disrupt a number of homeostatic mechanisms that control serum calcium and normal bone metabolism. However, our understanding of calcium balance throughout the stages of chronic kidney disease is limited and the concept of balance itself, especially with a cation as complex as calcium, is often misunderstood. Both negative and positive calcium balance have important implications in patients with chronic kidney disease, where negative balance may increase risk of osteoporosis and fracture and positive balance may increase risk of vascular calcification and cardiovascular events. Here, we examine the state of current knowledge about calcium balance in adults throughout the stages of chronic kidney disease and discuss recommendations for clinical strategies to maintain balance as well as future research needs in this area. Recent calcium balance studies in adult patients with chronic kidney disease show that neutral calcium balance is achieved with calcium intake near the recommended daily allowance. Increases in calcium through diet or supplements cause high positive calcium balance, which may put patients at risk for vascular calcification. However, heterogeneity in calcium balance exists among these patients. Given the available calcium balance data in this population, it appears clinically prudent to aim for recommended calcium intakes around 1000 mg/day to achieve neutral calcium balance and avoid adverse effects of either negative or positive calcium balance. Assessment of patients' dietary calcium intake could further equip clinicians to make individualized recommendations for meeting recommended intakes.

  5. Water Balance and Level Change of Lake Babati, Tanzania: Sensitivity to Hydroclimatic Forcings

    Directory of Open Access Journals (Sweden)

    René P. Mbanguka

    2016-12-01

    Full Text Available We develop and present a novel integrated water balance model that accounts for lake water—groundwater interactions, and apply it to the semi-closed freshwater Lake Babati system, Northern Tanzania, East Africa. The model was calibrated and used to evaluate the lake level sensitivity to changes in key hydro-climatic variables such as temperature, precipitation, humidity and cloudiness. The lake response to the Coupled Model Intercomparison Project, Phase 5 (CMIP5 output on possible future climate outcomes was evaluated, an essential basis in understanding future water security and flooding risk in the region. Results show high lake level sensitivity to cloudiness. Increased focus on cloud fraction measurement and interpretation could likely improve projections of lake levels and surface water availability. Modelled divergent results on the future (21st century development of Lake Babati can be explained by the precipitation output variability of CMIP5 models being comparable to the precipitation change needed to drive the water balance model from lake dry-out to overflow; this condition is likely shared with many other East African lake systems. The developed methodology could be useful in investigations on change-driving processes in complex climate—drainage basin—lake systems, which are needed to support sustainable water resource planning in data scarce tropical Africa.

  6. Research Paper: Effect of Lower Leg Cold Immersion on Dynamic Balance of Athletes and Nonathlete

    Directory of Open Access Journals (Sweden)

    Ruhollah Salehi

    2016-07-01

    Conclusion The results of this study suggest that cryotherapy through immersion of foot and ankle does not have a negative effect on the overall and anteroposterior indices of dynamic balance of athletes and nonathletes following an 8-min ice water immersion. It seems that the immersion process affected only the surface receptors of the skin and did not affect the deeper joint receptors that have a key role in balance.

  7. Propagation of errors from a null balance terahertz reflectometer to a sample's relative water content

    International Nuclear Information System (INIS)

    Hadjiloucas, S; Walker, G C; Bowen, J W; Zafiropoulos, A

    2009-01-01

    The THz water content index of a sample is defined and advantages in using such metric in estimating a sample's relative water content are discussed. The errors from reflectance measurements performed at two different THz frequencies using a quasi-optical null-balance reflectometer are propagated to the errors in estimating the sample water content index.

  8. Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss.

    Science.gov (United States)

    Matthews, Jack S A; Vialet-Chabrand, Silvere R M; Lawson, Tracy

    2017-06-01

    Stomatal control of transpiration is critical for maintaining important processes, such as plant water status, leaf temperature, as well as permitting sufficient CO 2 diffusion into the leaf to maintain photosynthetic rates ( A ). Stomatal conductance often closely correlates with A and is thought to control the balance between water loss and carbon gain. It has been suggested that a mesophyll-driven signal coordinates A and stomatal conductance responses to maintain this relationship; however, the signal has yet to be fully elucidated. Despite this correlation under stable environmental conditions, the responses of both parameters vary spatially and temporally and are dependent on species, environment, and plant water status. Most current models neglect these aspects of gas exchange, although it is clear that they play a vital role in the balance of carbon fixation and water loss. Future efforts should consider the dynamic nature of whole-plant gas exchange and how it represents much more than the sum of its individual leaf-level components, and they should take into consideration the long-term effect on gas exchange over time. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Natural groundwater recharge and water balance at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayer, M.J.; Gee, G.W.; Kanyid, M.J.

    1990-01-01

    The purpose of this report is to present water-balance data collected in 1988 and 1989 from the 300 Area Buried Waste Test Facility and Grass Site, and the 200 East Area closed-bottom lysimeter. This report is an annual update of previous recharge status reports by Gee, Rockhold, and Downs, and Gee. Data from several other lysimeter sites are included for comparison. 43 refs., 28 figs., 7 tabs

  10. Perennial water stratification and the role of freshwater in the mass balance of Arctic ice shelves and multiyear landfast sea ice

    International Nuclear Information System (INIS)

    Jeffries, M.O.

    1991-01-01

    A number of the ice shelves of northern Ellesmere Island in the Canadian High Arctic owe their origin to multiyear landfast sea ice (MLSI) growth during the post-Hypsithermal cooling ca. 3,000-4,000 BP. Since they grew in response to an arctic-wide climatic deterioration and contain evidence of occasional post-4,000 BP climatic ameliorations, they may be expected to be sensitive to future global climate changes manifested in the High Arctic. The purpose of this paper is to examine ice-ocean interactions and feedbacks, and the response of the ice shelves and the MLSI to the improved summer climate of the last ca. 100 years, and implications for the future. There is good evidence that there has been a negative surface mass balance since the turn of the century. Mass balance measurements on the Ward Hunt Ice Shelf between 1966 and 1985 indicate a total ice loss of 1.371 m at a mean annual rate of 68.5 mm. The interannual pattern of accumulation and ablation and the long-term losses on the ice shelf are similar to other Canadian High Arctic glacier mass balance records. It is evident from water and ice core records of salinity, δ 18 0 and tritium, that perennial water stratification is common below and behind the ice shelves and MLSI. The coastal waters are highly stratified, with anything from 0.5 m to 41.0 m of freshwater interposed between the overlying ice and underlying seawater. The primary source of the freshwater is summer run-off of snow-meltwater from the adjacent land and from the ice itself. There is minimal mixing between the influent freshwater and seawater, and the freshwater is either dammed behind the ice shelves and the MLSI, with subsequent under-ice freshwater outflows, or pooled in under-ice depressions

  11. Soil water balance in different densities of Pinus taeda in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Jorge Luiz Moretti Souza

    2016-04-01

    Full Text Available This study aimed to quantify and compare water balance components over the course of a year for different Pinus taeda planting densities in an oxisol in southern Brazil. This experiment was conducted on 6-year-old trees in a clay oxisol at the Monte Alegre Farm, a property of the Klabin Company. The experimental design was a randomized block with four replicates and five treatments with different amounts of soil coverage: T100 (100% coverage - standard planting coverage; (T75, 75; T50, 50; and T25, 25%, and; T0 (without cover - clearcutting. The soil water storage and actual evapotranspiration under non-standard conditions were determined in a weekly estimated soil water balance (SWB with measured components. By the end of the year, the treatments had not reached field capacity or wilting point storage. The average value of total downward drainage was 100.2 mm, and the highest values occurred in the T75 and T100 treatments. The lowest population density (T25 had the highest actual evapotranspiration (ETr, due to the growth of the remaining Pinus taeda trees. The highest evapotranspiration occurred in September, due to the resumption of Pinus taeda growth.

  12. Water balance-based estimation of groundwater recharge in the Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2012-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.

  13. Intra-basin variability of snowmelt water balance calculations in a subarctic catchment

    Science.gov (United States)

    McCartney, Stephen E.; Carey, Sean K.; Pomeroy, John W.

    2006-03-01

    The intra-basin variability of snowmelt and melt-water runoff hydrology in an 8 km2 subarctic alpine tundra catchment was examined for the 2003 melt period. The catchment, Granger Creek, is within the Wolf Creek Research Basin, Yukon, which is typical of mountain subarctic landscapes in northwestern Canada. The study catchment was segmented into nine internally uniform zones termed hydrological response units (HRUs) based on their similar hydrological, physiographic, vegetation and soil properties. Snow accumulation exhibited significant variability among the HRUs, with greatest snow water equivalent in areas of tall shrub vegetation. Melt began first on southerly exposures and at lower elevations, yet average melt rates for the study period varied little among HRUs with the exception of those with steep aspects. In HRUs with capping organic soils, melt water first infiltrated this surface horizon, satisfying its storage capacity, and then percolated into the frozen mineral substrate. Infiltration and percolation into frozen mineral soils was restricted where melt occurred rapidly and organic soils were thin; in this case, melt-water delivery rates exceeded the frozen mineral soil infiltration rate, resulting in high runoff rates. In contrast, where there were slower melt rates and thick organic soils, infiltration was unlimited and runoff was suppressed. The snow water equivalent had a large impact on runoff volume, as soil storage capacity was quickly surpassed in areas of deep snow, diverting the bulk of melt water laterally to the drainage network. A spatially distributed water balance indicated that the snowmelt freshet was primarily controlled by areas with tall shrub vegetation that accumulate large quantities of snow and by alpine areas with no capping organic soils. The intra-basin water balance variability has important implications for modelling freshet in hydrological models.

  14. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    Science.gov (United States)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  15. Recharge contribution to the Guarani Aquifer System estimated from the water balance method in a representative watershed.

    Science.gov (United States)

    Wendland, Edson; Gomes, Luis H; Troeger, Uwe

    2015-01-01

    The contribution of recharge to regional groundwater flow systems is essential information required to establish sustainable water resources management. The objective of this work was to determine the groundwater outflow in the Ribeirão da Onça Basin using a water balance model of the saturated soil zone. The basin is located in the outcrop region of the Guarani Aquifer System (GAS). The water balance method involved the determination of direct recharge values, groundwater storage variation and base flow. The direct recharge was determined by the water table fluctuation method (WTF). The base flow was calculated by the hydrograph separation method, which was generated by a rain-flow model supported by biweekly streamflow measurements in the control section. Undisturbed soil samples were collected at depths corresponding to the variation zone of the groundwater level to determine the specific yield of the soil (drainable porosity). Water balances were performed in the saturated zone for the hydrological years from February 2004 to January 2007. The direct recharge ranged from 14.0% to 38.0%, and groundwater outflow from 0.4% to 2.4% of the respective rainfall during the same period.

  16. The water balance of a seasonal stream in the semi-arid Western Cape (South Africa)

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2012-04-01

    Full Text Available A detailed water balance and conceptual flow model was calculated and developed for the Sandspruit catchment for the period 1990 to 2010 on a winter rainfall water-year (1 April - 31 March) basis. The Sandspruit catchment (quaternary catchment G10J...

  17. THE SIGNIFICANCE OF CUMULATIVE WATER BALANCE IN THE DEVELOPMENT OF EARLY COMPLICATIONS AFTER MAJOR ABDOMINAL SURGERY.

    Science.gov (United States)

    Musaeva, T S; Karipidi, M K; Zabolotskikh, I B

    2016-11-01

    a comprehensive assessment of the water balance on the basis of daily, cumulative balance and 10% of the body weight gain and their role in the development of early complications after major abdominal surgery. A retrospective study of the perioperative period in 150 patients who underwent major abdomi- nal surgery was performed. The physical condition of the patients corresponded to ASA 3 class. The average age was 46 (38-62) years. The following stages ofresearch: an analysis of daily balance and cumulative balance in complicated and uncomplicated group and their role in the development of complications; the timing of development ofcomplications and possible relationship with fluid overload and the development of complications; changes in the level of albumin within 10 days of the postoperative period. The analysis of complications didn't show significant differences between complicated and uncomplicated groups according to the water balance during the surgery and by the end of the first day. When constructing the area under the ROC curve (A UROC) low resolution ofthe balance in intraoperative period and the first day and the balance on the second day to predict complications was shown. Significant diferences according to the cumulative balance was observed from the third day of the postoperative period Also with the third day of the postoperative period there is a good resolution for prediction ofpostoperative complications according to the cumulative balance with the cut-offpoint > of 50,7 ml/kg. the excessive infusion therapy is a predictor of adverse outcome in patients after major abdominal surgery. Therefore, after 3 days of postoperative period it is important to maintain mechanisms for the excretion of excess fluid or limitations of infusion therapy.

  18. Discussion on water resources value accounting and its application

    Science.gov (United States)

    Guo, Biying; Huang, Xiaorong; Ma, Kai; Gao, Linyun; Wang, Yanqiu

    2018-06-01

    The exploration of the compilation of natural resources balance sheet has been proposed since 2013. Several elements of water resources balance sheet have been discussed positively in China, including basic concept, framework and accounting methods, which focused on calculating the amount of water resources with statistical methods but lacked the analysis of the interrelationship between physical volume and magnitude of value. Based on the study of physical accounting of water resources balance sheet, the connotation of water resources value is analyzed in combination with research on the value of water resources in the world. What's more, the theoretical framework, form of measurement and research methods of water resources value accounting are further explored. Taking Chengdu, China as an example, the index system of water resources balance sheet in Chengdu which includes both physical and valuable volume is established to account the depletion of water resources, environmental damage and ecological water occupation caused by economic and social water use. Moreover, the water resources balance sheet in this region which reflects the negative impact of the economy on the environment is established. It provides a reference for advancing water resources management, improving government and social investment, realizing scientific and rational allocation of water resources.

  19. Importance of ecohydrological modelling approaches in the prediction of plant behaviour and water balance at different scales

    Science.gov (United States)

    García-Arias, Alicia; Ruiz-Pérez, Guiomar; Francés, Félix

    2017-04-01

    Vegetation plays a main role in the water balance of most hydrological systems. However, in the past it has been barely considered the effect of the interception and evapotranspiration for hydrological modelling purposes. During the last years many authors have recognised and supported ecohydrological approaches instead of traditional strategies. This contribution is aimed to demonstrate the pivotal role of the vegetation in ecohydrological models and that a better understanding of the hydrological systems can be achieved by considering the appropriate processes related to plants. The study is performed in two scales: the plot scale and the reach scale. At plot scale, only zonal vegetation was considered while at reach scale both zonal and riparian were taken into account. In order to assure the main role of the water on the vegetation development, semiarid environments have been selected for the case studies. Results show an increase of the capabilities to predict plant behaviour and water balance when interception and evapotranspiration are taken into account in the soil water balance

  20. Spatial variability of hillslope water balance, wolf creek basin, subarctic yukon

    Science.gov (United States)

    Carey, Sean K.; Woo, Ming-Ko

    2001-11-01

    A hydrological study was conducted between 1997 and 1999 in the subalpine open woodland of the Wolf Creek Basin, Yukon, to assess the interslope water balance variability. The water balance during the snowmelt and summer periods on four hillslopes revealed strong contrasts in process magnitudes and highlighted important factors including frost, vegetation, soils and microclimate that controlled vertical and lateral fluxes of water. Snow accounted for approximately half the annual water input, while differences in accumulation among hillslopes were related to interception properties of vegetation. Available energy at the snow surface controlled the melt sequence and the snow on some slopes disappeared up to two months earlier than others. Snowmelt runoff was confined to slopes with ice-rich substrates that inhibited deep percolation, with the runoff magnitude governed by the snow storage and the antecedent moisture of the desiccated organic soils prior to melt. During summer, evapotranspiration exceeded rainfall, largely sustained by water from the soil moisture reservoir recharged during the melt period. Differences in net radiation on slopes controlled the potential evapotranspiration, with the actual rates limited by the phenology of the deciduous forests and shrubs. Evapotranspiration was further suppressed on slopes where the organic soils became dry in late summer. Summer runoff was confined to slopes with porous organic layers overlying mineral soils to form a two-layer flow system: (1) quickflow in the surface organic layer and (2) slowflow in the mineral soil. Differences in the rates of flow were related to the position of the water table which may rise into the organic layer to activate quickflow. The presence of ice-rich frost and permafrost impeded vertical drainage and indirectly regulated the position of the water table. The location of the hillslope within a basin influenced recharge and discharge dynamics. Slope segments with large inflows sustained

  1. A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation

    Science.gov (United States)

    Gleason, Colin J.; Wada, Yoshihide; Wang, Jida

    2018-01-01

    Declining gauging infrastructure and fractious water politics have decreased available information about river flows globally. Remote sensing and water balance modeling are frequently cited as potential solutions, but these techniques largely rely on these same in-decline gauge data to make accurate discharge estimates. A different approach is therefore needed, and we here combine remotely sensed discharge estimates made via at-many-stations hydraulic geometry (AMHG) and the PCR-GLOBWB hydrological model to estimate discharge over the Lower Nile. Specifically, we first estimate initial discharges from 87 Landsat images and AMHG (1984-2015), and then use these flow estimates to tune the model, all without using gauge data. The resulting tuned modeled hydrograph shows a large improvement in flow magnitude: validation of the tuned monthly hydrograph against a historical gauge (1978-1984) yields an RMSE of 439 m3/s (40.8%). By contrast, the original simulation had an order-of-magnitude flow error. This improvement is substantial but not perfect: tuned flows have a 1-2 month wet season lag and a negative base flow bias. Accounting for this 2 month lag yields a hydrograph RMSE of 270 m3/s (25.7%). Thus, our results coupling physical models and remote sensing is a promising first step and proof of concept toward future modeling of ungauged flows, especially as developments in cloud computing for remote sensing make our method easily applicable to any basin. Finally, we purposefully do not offer prescriptive solutions for Nile management, and rather hope that the methods demonstrated herein can prove useful to river stakeholders in managing their own water.

  2. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    Science.gov (United States)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  3. Analysis of soil and vegetation patterns in semi-arid Mediterranean landscapes by way of a conceptual water balance model

    Directory of Open Access Journals (Sweden)

    I. Portoghese

    2008-06-01

    Full Text Available This paper investigates the impact of various vegetation types on water balance variability in semi-arid Mediterranean landscapes, and the different strategies they may have developed to succeed in such water-limited environments. The existence of preferential associations between soil water holding capacity and vegetation species is assessed through an extensive soil geo-database focused on a study region in Southern Italy. Water balance constraints that dominate the organization of landscapes are investigated by a conceptual bucket approach. The temporal water balance dynamics are modelled, with vegetation water use efficiency being parameterized through the use of empirically obtained crop coefficients as surrogates of vegetation behavior in various developmental stages. Sensitivity analyses with respect to the root zone depth and soil water holding capacity are carried out with the aim of explaining the existence of preferential soil-vegetation associations and, hence, the spatial distribution of vegetation types within the study region. Based on these sensitivity analyses the degrees of suitability and adaptability of each vegetation type to parts of the study region are explored with respect of the soil water holding capacity, and the model results were found consistent with the observed affinity patterns.

  4. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  5. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    OpenAIRE

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and...

  6. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China

    Science.gov (United States)

    Luo, Xin; Jiao, Jiu Jimmy; Wang, Xu-sheng; Liu, Kun

    2016-03-01

    How lake systems are maintained and water is balanced in the lake areas in the Badain Jaran Desert (BJD), northeast of China have been debated for about a decade. In this study, continuous 222Rn measurement is used to quantify groundwater discharge into two representative fresh and brine water lakes in the desert using a steady-state mass-balance model. Two empirical equations are used to calculate atmospheric evasion loss crossing the water-air interface of the lakes. Groundwater discharge rates yielded from the radon mass balance model based on the two empirical equations are well correlated and of almost the same values, confirming the validity of the model. The fresh water and brine lakes have a daily averaged groundwater discharge rate of 7.6 ± 1.7 mm d-1 and 6.4 ± 1.8 mm d-1, respectively. The temporal fluctuations of groundwater discharge show similar patterns to those of the lake water level, suggesting that the lakes are recharged from nearby groundwater. Assuming that all the lakes have the same discharge rate as the two studied lakes, total groundwater discharge into all the lakes in the desert is estimated to be 1.59 × 105 m3 d-1. A conceptual model of water balance within a desert lake catchment is proposed to characterize water behaviors within the catchment. This study sheds lights on the water balance in the BJD and is of significance in sustainable regional water resource utilization in such an ecologically fragile area.

  7. Water Balance Simulations of a PEM Fuel Cell Using a Two-Fluid Model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2010-01-01

    A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various humidificat...... net water transport coefficient. Thus we can reduce flooding at the cathode and may obtain improved cell performance due to a better humidified membrane. The results also suggest that membrane dehydration may occur at either anode or cathode depending on the net water transport....

  8. Variations in water balance and recharge potential at three western desert sites

    International Nuclear Information System (INIS)

    Gee, G.W.; Fayer, M.J.; Rockhold, M.L.; Wierenga, P.J.; Young, M.H.; Andraski, B.J.

    1994-01-01

    Radioactive and hazardous waste landfills exist at numerous desert locations in the USA. At these locations, annual precipitation is low and soils are generally dry, yet little is known about recharge of water and transport of contaminants to the water table. Recent water balance measurements made at three desert locations, Las Cruces, NM, Beatty, NV, and the U.S. Department of Energy's Hanford Site in the state of Washington, provide information on recharge potential under three distinctly different climate and soil conditions. All three sites show water storage increases with time when soils are coarse textured and plants are removed from the surface, the rate of increase being influenced by climatic variables such as precipitation, radiation, temperature, and wind. Lysimeter data from Hanford and Las Cruces indicate that deep drainage (recharge) from bare, sandy soils can range from 10 to > 50% of the annual precipitation. At Hanford, when desert plants are present on sandy or gravelly surface soils, deep drainage is reduced but not eliminated. When surface soils are silt loams, deep drainage is eliminated whether plants are present or not. At Las Cruces and Beatty, the presence of plants eliminated deep drainage at the measurement sites. Differences in water balance between sites are attributed to precipitation quantity and distribution and to soil and vegetation types. The implication of waste management at desert locations is that surface soil properties and plant characteristics must be considered in waste site design in order to minimize recharge potential. 39 refs., 9 figs., 3 tabs

  9. Energy Balance over One Athletic Season.

    Science.gov (United States)

    Silva, Analiza M; Matias, Catarina N; Santos, Diana A; Thomas, Diana; Bosy-Westphal, Anja; Müller, Manfred J; Heymsfield, Steven B; Sardinha, Luís B

    2017-08-01

    Magnitude and variation in energy balance (EB) components over an athletic season are largely unknown. We investigated the longitudinal changes in EB over one season and explored the association between EB variation and change in the main fat-free mass (FFM) components in highly trained athletes. Eighty athletes (54 males; handball, volleyball, basketball, triathlete, and swimming) were evaluated from the beginning of the season to the main competition stage. Resting and total energy expenditure (REE and TEE, respectively) were assessed by indirect calorimetry and doubly labeled water, respectively. Physical activity energy expenditure was calculated as TEE - 0.1 TEE - REE. Fat mass (FM), FFM, and bone mineral were evaluated with dual-energy x-ray absorptiometry; changed body energy stores were calculated as 1.0(ΔFFM/Δtime) + 9.5(ΔFM/Δtime). Total-body water (TBW) and its compartments were assessed through dilution techniques, and total-body protein was calculated from a four-compartment model, with body volume assessed by air displacement plethysmography. Although a negative EB of -17.4 ± 72.7 kcal·d was observed (P sports and across sex groups resulting in a net weight increase (0.7 ± 2.3 kg) that is attributable to significant changes in FFM (1.2 ± 1.6 kg) and FM (-0.7 ± 1.5 kg) (P sports, and age. The mean negative EB observed over the season resulted from the rate of FM use and FFM accretion, but with a large variation by sex and sports. TBW, but not total-body protein or mineral balance, explained the magnitude of EB, which means that athletes under a positive or a negative EB showed a TBW expansion or shrinkage, respectively, specifically within the cells, over one athletic season.

  10. Water balance and ad libitum water intake in football players during a training session

    Directory of Open Access Journals (Sweden)

    Juan Diego Hernández-Camacho

    2016-01-01

    Full Text Available Introduction: It is known that hydration plays a crucial performance in sports performance. But a great number of studies assessing hydration during football practice have shown that many players have a dehydration state prior to this sport and that most players are not able to replace water loss by sweating with ad libitum water intake. Objectives: To analyze ad libitum water consumption, water balance, thirst sensation and rate of perceived exertion on a sample of young football players during a training session. Material and Methods: A total of 57 players from three teams in the youth category voluntary participated in this study. Weight was collected at the beginning and at the end of training; thirst sensation, rate of perceived exertion and quantification of ingested water were assessed. We used descriptive statistics, correlational and ratio analysis. Results: Mean global intake of players studied was 844.74±351.95mL and an average loss of body water 1274.56±385.82mL. Average rate of dehydration of the initial weight was 0.63%. Average score of 2.81±1.32 on the scale of thirst sensation was obtained. Discussion and conclusions: Rate of loss of body water similar to previous studies is obtained. The players were not able to replace water loss by drinking liquid ad libitum, so the intake of an amount previously scheduled could become helpful.

  11. Estimating Evapotranspiration of an Apple Orchard Using a Remote Sensing-Based Soil Water Balance

    Directory of Open Access Journals (Sweden)

    Magali Odi-Lara

    2016-03-01

    Full Text Available The main goal of this research was to estimate the actual evapotranspiration (ETc of a drip-irrigated apple orchard located in the semi-arid region of Talca Valley (Chile using a remote sensing-based soil water balance model. The methodology to estimate ETc is a modified version of the Food and Agriculture Organization of the United Nations (FAO dual crop coefficient approach, in which the basal crop coefficient (Kcb was derived from the soil adjusted vegetation index (SAVI calculated from satellite images and incorporated into a daily soil water balance in the root zone. A linear relationship between the Kcb and SAVI was developed for the apple orchard Kcb = 1.82·SAVI − 0.07 (R2 = 0.95. The methodology was applied during two growing seasons (2010–2011 and 2012–2013, and ETc was evaluated using latent heat fluxes (LE from an eddy covariance system. The results indicate that the remote sensing-based soil water balance estimated ETc reasonably well over two growing seasons. The root mean square error (RMSE between the measured and simulated ETc values during 2010–2011 and 2012–2013 were, respectively, 0.78 and 0.74 mm·day−1, which mean a relative error of 25%. The index of agreement (d values were, respectively, 0.73 and 0.90. In addition, the weekly ETc showed better agreement. The proposed methodology could be considered as a useful tool for scheduling irrigation and driving the estimation of water requirements over large areas for apple orchards.

  12. Acid-base balance and hydration status following consumption of mineral-based alkaline bottled water

    Directory of Open Access Journals (Sweden)

    Heil Daniel P

    2010-09-01

    Full Text Available Abstract Background The present study sought to determine whether the consumption of a mineral-rich alkalizing (AK bottled water could improve both acid-base balance and hydration status in young healthy adults under free-living conditions. The AK water contains a naturally high mineral content along with Alka-PlexLiquid™, a dissolved supplement that increases the mineral content and gives the water an alkalizing pH of 10.0. Methods Thirty-eight subjects were matched by gender and self-reported physical activity (SRPA, hrs/week and then split into Control (12 women, 7 men; Mean +/- SD: 23 +/- 2 yrs; 7.2 +/- 3.6 hrs/week SRPA and Experimental (13 women, 6 men; 22 +/- 2 yrs; 6.4 +/- 4.0 hrs/week SRPA groups. The Control group consumed non-mineralized placebo bottled water over a 4-week period while the Experimental group consumed the placebo water during the 1st and 4th weeks and the AK water during the middle 2-week treatment period. Fingertip blood and 24-hour urine samples were collected three times each week for subsequent measures of blood and urine osmolality and pH, as well as total urine volume. Dependent variables were analyzed using multivariate repeated measures ANOVA with post-hoc focused on evaluating changes over time within Control and Experimental groups (alpha = 0.05. Results There were no significant changes in any of the dependent variables for the Control group. The Experimental group, however, showed significant increases in both the blood and urine pH (6.23 to 7.07 and 7.52 to 7.69, respectively, a decreased blood and increased urine osmolality, and a decreased urine output (2.51 to 2.05 L/day, all during the second week of the treatment period (P Conclusions Consumption of AK water was associated with improved acid-base balance (i.e., an alkalization of the blood and urine and hydration status when consumed under free-living conditions. In contrast, subjects who consumed the placebo bottled water showed no changes over the

  13. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    Science.gov (United States)

    Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  14. From Drought to Flood: An Analysis of the Water Balance of the Tuolumne River Basin During Extreme Conditions (2015 - 2017)

    Science.gov (United States)

    Hedrick, A. R.; Marks, D. G.; Havens, S.; Robertson, M.; Johnson, M.; Sandusky, M.; Bormann, K. J.; Painter, T. H.

    2017-12-01

    Closing the water balance of a snow-dominated mountain basin has long been a focal point of the hydrologic sciences. This study attempts to more precisely quantify the solid precipitation inputs to a basin using the iSnobal energy balance snowmelt model and assimilated snow depth information from the Airborne Snow Observatory (ASO). Throughout the ablation seasons of three highly dissimilar consecutive water years (2015 - 2017), the ASO captured high resolution snow depth snapshots over the Tuolumne River Basin in California's Central Sierra Nevada. These measurements were used to periodically update the snow depth state variable of iSnobal, thereby nudging the estimates of water storage (snow water equivalent, or SWE) and melt (surface water input, or SWI) toward a more accurate solution. Once precipitation inputs and streamflow outputs are better constrained, the additional loss terms of the water mass balance equation (i.e. groundwater recharge and evapotranspiration) can be estimated with less uncertainty.

  15. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p 0.46, p 0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  16. Seepage water balance of the mixed tailings site IAA Dresden-Coschuetz/Gittersee by means of the two-dimensional model BOWAHALD

    International Nuclear Information System (INIS)

    Helling, C.; Dunger, V.

    1998-01-01

    Uranium mill tailings were deposited in a section of the Kaitzbach valley which was closed by tow dams. The Kaitzbach creek was cased in the area. After the uranium ore processing was finish the dump was used as a municipal waste deposit. The water balance of the IAA Dresden-Coschuetz/Gittersee was only estimated in former works. In this case a modeling of the water balance is very useful in regard to a process orientated quantification of the contaminant transport within the dump as well as into the underground. Simplified and rough estimating methods such as the runoff coefficient concept or rating curves are less suited because of the complexity of the processes. That's why we tried to get a runoff and seepage water balance by means of a two-dimensional water balance model for waste heaps called BOWAHALD. The tailings site IAA Dresden-Coschuetz/Gittersee was divited into several hydrotopes (areas with similar hydrological characteristics). Different exposition and slopes as well as different soils and vegetation were taken into account. The parameter verification is possible due to comparison with available data such hydrochemical and isotopic analysis of seepage water and groundwater. (orig.)

  17. The effect of an angiotensin-converting enzyme inhibitor on water and electrolyte balance in water-restricted sheep

    Directory of Open Access Journals (Sweden)

    R.A. Meintjies

    1999-07-01

    Full Text Available The importance of angiotensin II in the regulation of water and electrolyte balance in sheep is questionable. In this trial the effects of an angiotensin-converting enzyme (ACE inhibitor were quantified in sheep on restricted water intake. Comparing the phase of water restriction only with that of water restriction plus ACE inhibition, significant increases were observed during the latter phase in urine volume, sodium and potassium excretion via the urine, sodium concentration in the plasma and osmolar clearance. Urine osmolarity decreased with inhibition of angiotensin II formation while variables such as water, sodium and potassium loss via the faeces were unaffected. Most of the renal effects of ACE inhibition, except the increase in urinary potassium excretion, were explicable in terms of the established functions of angiotensin II. Furthermore, results of this trial indicate that angiotensin II has no significant effect on the intestine in regulating water and electrolyte excretion via the faeces.

  18. Water Isotope framework for lake water balance monitoring and modelling in the Nam Co Basin, Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Shichang Kang

    2017-08-01

    New hydrological insights: A water isotope framework for the Nam Co basin, including the Local Meteoric Water Line, limiting isotopic composition of evaporation and two hypothetical evaporation trajectories, is established. We further applied the isotope mass balance model to estimate the overall isotopic composition of input water to the Nam Co, the evaporation over inputs ratios (E/I for three consecutive years, and the water yields (Wy, depth equivalent runoff at a basin scale. Our results clearly suggest a positive water budget (i.e., E/I < 1, providing another line of evidence that the subsurface leakage from Nam Co is likely. The discrepancy between isotope-based water yields estimations and field-based runoff observations suggest that, compared to the well-studied Nyainqentanglha Mountains and southwestern mountains, the ridge-and-valley landscape in the western highlands and northwestern hogbacks are possibly low yields area, which should draw more research attentions in future hydrological investigations.

  19. Sustainable smallholder intensification through improved water management requires adjusted fertilizer recommendation

    Science.gov (United States)

    Gedfew, Muluye; Schmitter, Petra; Nakawuka, Prossie; Tilahun, Seifu A.; Steenhuis, Tammo; Langan, Simon

    2017-04-01

    In Sub-Saharan Africa small scale irrigation is developing rapidly. Whilst emphasis is mainly placed on water resource availability and access for irrigation, less attention is paid to the interaction of water management on nutrient balances. The quality and quantity of irrigation water delivered to the field not only controls the nutrient flow dynamic system in the soil media but also affects production and uptake. The objective of this study is to evaluate the effect of different water management methods on partial nutrient balances in irrigated fields of the Ethiopian highlands. The study was conducted during the dry season of 2016 where farmers cultivated consecutively tomato and pepper. Farmers were grouped into three water management treatments: irrigation based on Time Domain reflect meter (TDR), on the standard crop water requirements (CWR) and the traditional farmers practice (FARM). The average water consumption for tomato in the CWR, TDR and FARM groups were 590 mm, 476 mm and 575 mm, respectively. The comparison of the water use at different stages showed that traditional farmer practice used less water at the initial stage and more water at the maturity stage which influenced the crop yield and the nutrient dynamics of NPK. For pepper, the linkage to the supplemental irrigation was slightly different due to the onset of the rainy season. The average tomato yield obtained in the farmer practice plots was 20.8 Mg ha-1 which was significantly lower than those obtained in the TDR (31.67 Mg ha-1) and the CWR (33.2 Mg ha-1) plots. The average partial nitrogen (N) depletion balance obtained for tomato in the TDR, CWR and FARM treatment were -91 kg ha-1, -151 kg ha-1 and 19 kg ha-1 respectively. For phosphorus (P) the calculated depletion balance was -0.6 kg ha-1, -0.5 kg ha-1, and - 0.2 kg ha-1, respectively whereas for potassium (K) the balances were largely negative (i.e. -284 kg ha-1, -270 kg ha-1 and -97 kg ha-1, respectively). Similar observations were

  20. Long-term Evaluation of Landuse Changes On Landscape Water Balance - A Case Study From North-east Germany

    Science.gov (United States)

    Wegehenkel, M.

    In this paper, long-term effects of different afforestation scenarios on landscape wa- ter balance will be analyzed taking into account the results of a regional case study. This analysis is based on using a GIS-coupled simulation model for the the spatially distributed calculation of water balance.For this purpose, the modelling system THE- SEUS with a simple GIS-interface will be used. To take into account the special case of change in forest cover proportion, THESEUS was enhanced with a simple for- est growth model. In the regional case study, model runs will be performed using a detailed spatial data set from North-East Germany. This data set covers a mesoscale catchment located at the moraine landscape of North-East Germany. Based on this data set, the influence of the actual landuse and of different landuse change scenarios on water balance dynamics will be investigated taking into account the spatial distributed modelling results from THESEUS. The model was tested using different experimen- tal data sets from field plots as well as obsverded catchment discharge. Additionally to such convential validation techniques, remote sensing data were used to check the simulated regional distribution of water balance components like evapotranspiration in the catchment.

  1. Negative Pressures and the First Water Siphon Taller than 10.33 Meters.

    Directory of Open Access Journals (Sweden)

    Francisco Vera

    Full Text Available A siphon is a device that is used to drain a container, with water rising inside a hose in the form of an inverted U and then going down towards a discharge point placed below the initial water level. The siphon is the first of a number of inventions of the ancients documented about 2.000 years ago by Hero of Alexandria in his treatise Pneumatics, and although the explanation given by Hero was essentially correct, there is nowadays a controversy about the underlying mechanism that explains the working of this device. Discussions concerning the physics of a siphon usually refer to concepts like absolute negative pressures, the strength of liquid's cohesion and the possibility of a siphon working in vacuum or in the presence of bubbles. Torricelli understood the working principle of the barometer and the impossibility of pumping water out of wells deeper than 10.33 m. Following Torricelli's ideas it would also not be possible to build a siphon that drives pure water to ascend higher than 10.33 m. In this work, we report the first siphon that drives water (with surfactant to ascend higher than the Torricellian limit. Motivated by the rising of sap in trees, we built a 15.4 m siphon that shows that absolute negative pressures are not prohibited, that cohesion plays an important role in transmitting forces through a fluid, and that surfactants can help to the transport of water in a metastable regime of negative pressures.

  2. The Acid-Base Balance Between Organic Acids and Circumneutral Ground Waters in Large Peatlands

    Science.gov (United States)

    Siegel, D. I.; Glaser, P. H.; So, J.

    2006-05-01

    Organic acids supply most of the acidity in the surface waters of bogs in peatlands. Yet, the fundamental geochemical properties of peatland organic acids are still poorly known. To assess the geochemical properties of typical organic acid assemblages in peatlands, we used a triprotic analog model for peat pore waters and surface waters in the Glacial Lake Agassiz Peatlands, optimizing on charge balance and calibrated to estimates of mole site density in DOC and triprotic acid dissociation constants. Before the calibration process, all bog waters and 76% of fen waters had more than +20% charge imbalance. After calibration, most electrochemically balanced within 20%. In the best calibration, the mole site denisty of bog DOC was estimated as ~0.05 mmol/mmol C., approximately 6 times smaller than that for fen DOC or the DOC in the fen deeper fen peats that underlie bogs. The three modeled de-protonation constants were; pKa1 = ~3.0, pKa2 = ~4.5 and pKa3 = ~7.0 for the bog DOC, and; pKa1 = ~5.2, pKa2 =~ 6.5 and pKa3 = ~7.0 for the fen DOC. Bog DOC, behaves as a strong acid despite its small mole site density. The DOC in bog runoff can therefore theoretically acidify the surface waters in adjacent fens wherever these waters do not receive sufficient buffering alkalinity from active groundwater seepage.

  3. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods.

    Science.gov (United States)

    Benoit, Joshua B; Denlinger, David L

    2010-10-01

    In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood-feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the pre-feeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the non-feeding, off-host state. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Hooz A Mendivelso

    Full Text Available A seasonal period of water deficit characterizes tropical dry forests (TDFs. There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  5. Differential Growth Responses to Water Balance of Coexisting Deciduous Tree Species Are Linked to Wood Density in a Bolivian Tropical Dry Forest

    Science.gov (United States)

    Mendivelso, Hooz A.; Camarero, J. Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001

  6. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment

    Directory of Open Access Journals (Sweden)

    G. N. Flerchinger

    2010-06-01

    Full Text Available Precipitation variability and complex topography often create a mosaic of vegetation communities in mountainous headwater catchments, creating a challenge for measuring and interpreting energy and mass fluxes. Understanding the role of these communities in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. The focus of this paper was: (1 to demonstrate the utility of eddy covariance (EC systems in estimating the evapotranspiration component of the water balance of complex headwater mountain catchments; and (2 to compare and contrast the seasonal surface energy and carbon fluxes across a headwater catchment characterized by large variability in precipitation and vegetation cover. Eddy covariance systems were used to measure surface fluxes over sagebrush (Artemesia arbuscula and Artemesia tridentada vaseyana, aspen (Populus tremuloides and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Missing periods of measured data were common and made it necessary to extrapolate measured fluxes to the missing periods using a combination of measured and simulated data. Estimated cumulative evapotranspiratation from the sagebrush, aspen trees, and aspen understory were 384 mm, 314 mm and 185 mm. A water balance of the catchment indicated that of the 699 mm of areal average precipitation, 421 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 22 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher

  7. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  8. BALANCE OF WATER AND ENERGY FOR EUCALYPTUS PLANTATIONS WITH PARTIAL SOIL COVER

    Directory of Open Access Journals (Sweden)

    Mariana Gonçalves dos Reis

    2014-03-01

    Full Text Available http://dx.doi.org/10.5902/1980509813329Eucalyptus plots with initial development ages presented discontinuity in soil cover, resulting in greaterexposure of the leaves to wind and solar radiation, which alters soil-plant-atmosphere interactions. Theobjective of this study was to study the components of the water and energy balances along the first yearof eucalyptus development in the Brazilian coastal plain region. The experimental site is located in anarea belonging to the company Fibria in the municipality of Aracruz, Espírito Santo state, Brazil. Thespace between the planted eucalyptus trees in the area studied was 3 x 3 m and the data of planting wason August 15th , 2004. The period of study lasted from the planting date until the plot reached an ageof 19 months. It was verified that there was a greater availability of energy during the summer and theprecipitation directly influenced the energy balance where during the period of study the energy available necessary for evapotranspiration was always greater than the fraction necessary for heating the soil-plantatmospheresystem, presenting a λE/Rn ratio of 59.57%. It was also observed that the water balance with themodeled evapotranspiration showed a good correspondence with the observed moisture content, presentinga determination coefficient of 0,94. In the majority of trees, greater indices of leaf and root system areasfavored evapotranspiration, indicating that most energy available was utilized for changing the phase ofwater

  9. Variations in annual water-energy balance and their correlations with vegetation and soil moisture dynamics: A case study in the Wei River Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shengzhi; Huang, Qiang; Leng, Guoyong; Zhao, Menglong; Meng, Erhao

    2017-03-01

    It is of importance to investigate watershed water-energy balance variations and to explore their correlations with vegetation and soil moisture dynamics, which helps better understand the interplays between underlying surface dynamics and the terrestrial water cycle. The heuristic segmentation method was adopted to identify change points in the parameter to series in Fu's equation belonging to the Budyko framework in the Wei River Basin (WRB) and its sub-basins aiming to examine the validity of stationary assumptions. Additionally, the cross wavelet analysis was applied to explore the correlations between vegetation and soil moisture dynamics and to variations. Results indicated that (1) the omega variations in the WRB are significant, with some change points identified except for the sub-basin above Zhangjiashan, implying that the stationarity of omega series in the WRB is invalid except for the sub-basin above Zhangjiashan; (2) the correlations between soil moisture series and to series are weaker than those between Normalized Difference Vegetation Index (NDVI) series and omega series; (3) vegetation dynamics show significantly negative correlations with omega variations in 1983-2003 with a 4-8 year signal in the whole WRB, and both vegetation and soil moisture dynamics exert strong impacts on the parameter omega changes. This study helps understanding the interactions between underlying land surface dynamics and watershed water-energy balance. (C) 2017 Elsevier B.V. All rights reserved.

  10. Water vapor mass balance method for determining air infiltration rates in houses

    Science.gov (United States)

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  11. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    Science.gov (United States)

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  12. Two negative regulatory systems of root nodule symbiosis - how are symbiotic benefits and costs balanced?

    Science.gov (United States)

    Nishida, Hanna; Suzaki, Takuya

    2018-05-30

    Root nodule symbiosis is one of the best-characterized mutualistic relationships between plants-microbes symbiosis, where mainly leguminous species can obtain nitrogen sources fixed by nitrogen-fixing rhizobia through the formation of symbiotic organs root nodules. In order to drive this symbiotic process, plants need to provide carbon sources that should be used for their growth. Therefore, a balance between the benefits of obtaining nitrogen sources and the costs of losing carbon sources needs to be maintained during root nodule symbiosis. Plants have developed at least two negative regulatory systems of root nodule symbiosis. One strategy involves the regulation of nodule number in response to rhizobial infection. For this regulation, a systemic long-range signaling between roots and shoots called autoregulation of nodulation has a pivotal role. Another strategy involves the regulation of root nodule symbiosis in response to nitrate, the most abundant form of nitrogen nutrients in the soil. Recent studies indicate that a long-distance signaling is shared between the two strategies, where NIN and NRSYM1, two paralogous RWP-RK transcription factors, can activate the production of nodulation-related CLE peptides in response to different inputs. Here, we give an overview of such progress in our understanding of molecular mechanisms relevant to the control of the symbiotic balance, including their biological significance.

  13. Design of negative refractive index metamaterial with water droplets using 3D-printing

    Science.gov (United States)

    Shen, Zhaoyang; Yang, Helin; Huang, Xiaojun; Yu, Zetai

    2017-11-01

    We numerically and experimentally demonstrate a negative refractive index (NRI) behavior in combined water droplets and photosensitive resin materials operating in the microwave regime. The NRI is achieved over a very wide frequency range in 10.27-15 GHz with bandwidth of 4.63 GHz. The simulated results approximately agree with the experimental results. The negative index band can be controlled by water droplet radius. The proposed metamaterial production process is simple and may have potential applications in broadband tunable devices.

  14. An efficient soil water balance model based on hybrid numerical and statistical methods

    Science.gov (United States)

    Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei

    2018-04-01

    Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new

  15. A conceptual model of daily water balance following partial clearing from forest to pasture

    Directory of Open Access Journals (Sweden)

    M. A. Bari

    2006-01-01

    Full Text Available A simple conceptual water balance model representing the streamflow generation processes on a daily time step following land use change is presented. The model consists of five stores: (i Dry, Wet and Subsurface Stores for vertical and lateral water flow, (ii a transient Stream zone Store (iii a saturated Goundwater Store. The soil moisture balance in the top soil Dry and Wet Stores are the most important components of the model and characterize the dynamically varying saturated areas responsible for surface runoff, interflow and deep percolation. The Subsurface Store describes the unsaturated soil moisture balance, extraction of percolated water by vegetation and groundwater recharge. The Groundwater Store controls the baseflow to stream (if any and the groundwater contribution to the stream zone saturated areas. The daily model was developed following a downward approach by analysing data from Ernies (control and Lemon (53% cleared catchments in Western Australia and elaborating a monthly model. The daily model performed very well in simulating daily flow generation processes for both catchments. Most of the model parameters were incorporated a priori from catchment attributes such as surface slope, soil depth, porosity, stream length and initial groundwater depth, and some were calibrated by matching the observed and predicted hydrographs. The predicted groundwater depth, and streamflow volumes across all time steps from daily to monthly to annual were in close agreement with observations for both catchments.

  16. Impacts of Human Induced Nitrogen Deposition on Ecosystem Carbon Sequestration and Water Balance in China

    Science.gov (United States)

    Sheng, M.; Yang, D.; Tang, J.; Lei, H.

    2017-12-01

    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, many experiments around the world reported that nitrogen availability could limit the sustainability of the ecosystems' response to elevated CO2. In the recent 20 years, atmospheric nitrogen deposition, primarily from fossil fuel combustion, has increased sharply about 25% in China and meanwhile, China has the highest carbon emission in the world, implying a large opportunity to increase vegetation greenness and ecosystem carbon sequestration. Moreover, the water balance of the ecosystem will also change. However, in the future, the trajectory of increasing nitrogen deposition from fossil fuel use is to be controlled by the government policy that shapes the energy and industrial structure. Therefore, the historical and future trajectories of nitrogen deposition are likely very different, and it is imperative to understand how changes in nitrogen deposition will impact the ecosystem carbon sequestration and water balance in China. We here use the Community Land Model (CLM 4.5) to analyze how the change of nitrogen deposition has influenced and will influence the ecosystem carbon and water cycle in China at a high spatial resolution (0.1 degree). We address the following questions: 1) what is the contribution of the nitrogen deposition on historical vegetation greenness? 2) How does the change of nitrogen deposition affect the carbon sequestration? 3) What is its influence to water balance? And 4) how different will be the influence of the nitrogen deposition on ecosystem carbon and water cycling in the future?

  17. Soil Water Balance and Vegetation Dynamics in two Water-limited Mediterranean Ecosystem on Sardinia under past and future climate change

    Science.gov (United States)

    Corona, R.; Montaldo, N.; Albertson, J. D.

    2016-12-01

    Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Historical human influences (e.g., deforestation, urbanization) further altered these ecosystems. Sardinia island is a representative region of Mediterranean ecosystems. It is low urbanized except some plan areas close to the main cities where main agricultural activities are concentrated. Two contrasting case study sites are within the Flumendosa river basin (1700 km2). The first site is a typical grassland on an alluvial plan valley (soil depth > 2m) while the second is a patchy mixture of Mediterranean vegetation species (mainly wild olive trees and C3 herbaceous) that grow in a soil bounded from below by a rocky layer of basalt, partially fractured (soil depth 15 - 40 cm). In both sites land-surface fluxes and CO2 fluxes are estimated by the eddy correlation technique while soil moisture was continuously estimated with water content reflectometers, and periodically leaf area index (LAI) was estimated. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics; 3) evaluate the impact of past and future climate change scenarios on the two contrasting ecosystems. For reaching the objectives an ecohydrologic model that couples a vegetation dynamic model (VDM), and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM) has been used. Historical meteorological data are available from 1922 and hydro-meteorological scenarios are then generated using a weather generator. The VDM-LSM model predict soil water balance and vegetation dynamics for the generated

  18. Water balance and hydrology research in a mountainous permafrost watershed in upland streams of the Kolyma River, Russia: a database from the Kolyma Water-Balance Station, 1948-1997

    Science.gov (United States)

    Makarieva, Olga; Nesterova, Nataliia; Lebedeva, Lyudmila; Sushansky, Sergey

    2018-04-01

    In 2018, 70 years have passed since the beginning of observations at the Kolyma Water-Balance Station (KWBS), a unique scientific research hydrological and permafrost catchment. The volume and duration (50 continuous years) of hydrometeorological standard and experimental data, characterizing the natural conditions and processes occurring in mountainous permafrost conditions, significantly exceed any counterparts elsewhere in the world. The data are representative of mountainous territory of the North-East of Russia. In 1997, the station was terminated, thereby leaving Russia without operating research watersheds in the permafrost zone. This paper describes the dataset containing the series of daily runoff from 10 watersheds with an area from 0.27 to 21.3 km2, precipitation, meteorological observations, evaporation from soil and snow, snow surveys, soil thaw and freeze depths, and soil temperature for the period 1948-1997. It also highlights the main historical stages of the station's existence, its work and scientific significance, and outlines the prospects for its future, where the Kolyma Water-Balance Station could be restored to the status of a scientific research watershed and become a valuable international centre for hydrological research in permafrost. The data are available at https://doi.org/10.1594/PANGAEA.881731.

  19. Computational Studies of Positive and Negative Streamers in Bubbles Suspended in Distilled Water

    KAUST Repository

    Sharma, Ashish

    2017-01-05

    We perform computational studies of nanosecond streamers generated in helium bubbles immersed in distilled water under high pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the chemical kinetics of the discharge. We apply positive and negative trigger voltages much higher than the breakdown voltage and study the dynamic characteristics of the resulting discharge. We observe that, for high positive trigger voltages, the streamer moves along the surface of the gas bubble during the initial stages of the discharge. We also find a considerable difference in the evolution of the streamer discharge for positive and negative trigger voltages with more uniform volumetric distribution of species in the streamer channel for negative trigger voltages due to formation of multiple streamers. We also observe that the presence of water vapor does not influence the breakdown voltage of the discharge but greatly affects the composition of dominant species in the trail of the streamer channel.

  20. Potential groundwater recharge for the State of Minnesota using the Soil-Water-Balance model, 1996-2010

    Science.gov (United States)

    Smith, Erik A.; Westenbroek, Stephen M.

    2015-01-01

    Groundwater recharge is one of the most difficult components of a water budget to ascertain, yet is an important boundary condition necessary for the quantification of water resources. In Minnesota, improved estimates of recharge are necessary because approximately 75 percent of drinking water and 90 percent of agricultural irrigation water in Minnesota are supplied from groundwater. The water that is withdrawn must be supplied by some combination of (1) increased recharge, (2) decreased discharge to streams, lakes, and other surface-water bodies, and (3) removal of water that was stored in the system. Recent pressure on groundwater resources has highlighted the need to provide more accurate recharge estimates for various tools that can assess the sustainability of long-term water use. As part of this effort, the U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, used the Soil-Water-Balance model to calculate gridded estimates of potential groundwater recharge across Minnesota for 1996‒2010 at a 1-kilometer (0.621-mile) resolution. The potential groundwater recharge estimates calculated for Minnesota from the Soil-Water Balance model included gridded values (1-kilometer resolution) of annual mean estimates (that is, the means for individual years from 1996 through 2010) and mean annual estimates (that is, the mean for the 15-year period 1996−2010).

  1. Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring

    Science.gov (United States)

    Wendland, E.; Barreto, C.; Gomes, L. H.

    2007-09-01

    SummaryMain objective of this work was the study of the infiltration and recharge mechanisms in the Guarani Aquifer System (GAS) outcrop zone. The study was based on hydrogeologic monitoring, evapotranspiration and water balance in a pilot watershed. The pilot watershed (Ribeirão da Onça) is situated in the outcrop zone of the Guarani Aquifer between parallels 22°10' and 22°15' (south latitude) and meridians 47°55' and 48°00' (west longitude). For the execution of the research project, a monitoring network (wells, rain gauge and linigraph) was installed in the watershed. Data have been systematically collected during the period of a hydrological year. Water level fluctuation has been used to estimate deep recharge and subsurface storage variation. The method used to estimate the direct recharge adopted the hypothesis that the recession of the groundwater level obeys a function of power law type. Direct recharge is obtained through the difference between the actual level of an unconfined aquifer and the level indicated by extrapolation of the recession curve, in a given period. Base outflow is estimated through a mixed function (linear and exponential). Outflow in the creek has been measured with current meter and monitored continuously with a linigraph. The annual infiltration in 2005 was estimated to be 350 mm, while the deep recharge, based on water balance, appears to be 3.5% of the precipitation (1410 mm). These results indicate that the estimated long term water availability of the Guarani Aquifer System should be studied more carefully.

  2. Logs and completion data for water and mass balance wells in Mortandad and Ten Site Canyons

    International Nuclear Information System (INIS)

    McLin, S.G.; Koch, R.J.

    1997-10-01

    Twenty-four monitoring wells were drilled and completed in December 1994 as part of a water and mass balance study for the shallow perched aquifer in the Mortandad Canyon alluvium and in the lower part of Ten-Site Canyon. The wells penetrated the alluvium containing the aquifer and were completed into the top of the weathered tuff. Twelve of these wells encountered the Tshirege Member (Cooing Unit 1 g) of the Bandelier Tuff below the canyon alluvium, while ten wells made contact with the Cerro Toledo interval, which lies between the Tshirege and Otowi Members of the Bandelier Tuff. The remaining two wells were completed into the alluvium above the weathered tuff contact. These wells provide access for continuous water level measurement and water sampling. Data from these new wells will be used to determine changes in alluvial aquifer water storage, water quality sampling, and estimation of seepage into the unsaturated Bandelier Tuff below the alluvium. This report documents drilling activities and well completion logs for the water and mass balance study. These wells also provide critical new data for fourteen north-south vertical cross-sections constructed for the canyon alluvium

  3. Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau

    Science.gov (United States)

    Biskop, S.; Maussion, F.; Krause, P.; Fink, M.

    2016-01-01

    The contrasting patterns of lake-level fluctuations across the Tibetan Plateau (TP) are indicators of differences in the water balance over the TP. However, little is known about the key hydrological factors controlling this variability. The purpose of this study is to contribute to a more quantitative understanding of these factors for four selected lakes in the southern-central part of the TP: Nam Co and Tangra Yumco (increasing water levels), and Mapam Yumco and Paiku Co (stable or slightly decreasing water levels). We present the results of an integrated approach combining hydrological modeling, atmospheric-model output and remote-sensing data. The J2000g hydrological model was adapted and extended according to the specific characteristics of closed-lake basins on the TP and driven with High Asia Refined analysis (HAR) data at 10 km resolution for the period 2001-2010. Differences in the mean annual water balances among the four basins are primarily related to higher precipitation totals and attributed runoff generation in the Nam Co and Tangra Yumco basins. Precipitation and associated runoff are the main driving forces for inter-annual lake variations. The glacier-meltwater contribution to the total basin runoff volume (between 14 and 30 % averaged over the 10-year period) plays a less important role compared to runoff generation from rainfall and snowmelt in non-glacierized land areas. Nevertheless, using a hypothetical ice-free scenario in the hydrological model, we indicate that ice-melt water constitutes an important water-supply component for Mapam Yumco and Paiku Co, in order to maintain a state close to equilibrium, whereas the water balance in the Nam Co and Tangra Yumco basins remains positive under ice-free conditions. These results highlight the benefits of linking hydrological modeling with atmospheric-model output and satellite-derived data, and the presented approach can be readily transferred to other data-scarce closed lake basins, opening new

  4. Hydrological and Meteorological Role of Forests: Implications for the Regulation of Water and Energy Balances

    Science.gov (United States)

    Salazar, J. F.; Villegas, J. C.; Bettin, D. M.; Molina, R.; Henao, J. J.; Rodríguez, E.; Rendón, A.; Hoyos, I.; Poveda, G.

    2016-12-01

    In last decades, there has been increasing debate about the hydrological and meteorological role of forests, particularly regarding its role in the regulation of the energy and water balances. Here we summarize results from an ongoing research program studying this problem. First, we introduce the notion of ecohydrological scaling to show the existence of two alternative states of regulated or unregulated streamflows in the main tributaries of the Amazon river basin. The transition between both states is associated with the loss of forest cover, with a potential critical threshold at around 40% forest loss in the Amazon. These results imply that large-scale forest loss can force the entire Amazon basin system beyond a critical threshold where its natural streamflow regulation is lost. More generally, our proposed framework provides insights for a physical interpretation of the scaling relations in river basins, as well as foundations and tools to develop early warnings of critical transitions in river basins. Second, we show that long-term rainfall-streamflow ratios converge to low values with low spatial variability in forested basins of the world, independent of location, climatic regime, basin size or forest type. We interpret this as evidence that high forest cover provides long-term regulation of the water balance. Third, we examine the linkage between the presence of tropical forests in South America and the long-term spatial distribution of continental precipitation, and found evidence suggesting that the Amazon forests enhance the atmospheric rivers flowing inland from the Atlantic ocean, particularly during the austral and boreal summers. The associated effects on precipitation may be highly relevant for water availability in river basins located downstream such atmospheric rivers, such as the La Plata and the Orinoco river basins. Finally, we explore the linkage between forest-induced temperature inversions and the vertical transport of atmospheric

  5. Water Balance Study of a Groundwater-dependent Oak Forest

    Directory of Open Access Journals (Sweden)

    MÓRICZ, Norbert

    2010-01-01

    Full Text Available The objectives of this study were (1 to estimate the water balance components of an oak standby calibrating a Hydrus 1-D model, (2 to determine the groundwater consumption by the water tablefluctuation method and (3 to compare the results of the modelling with a remote-sensing based estimation.Model simulation described the observed soil moisture and groundwater level relatively well, theroot mean square errors varied between 12.0 and 14.9% for the soil moisture measurements and 5.0%for the groundwater level. Groundwater consumption was estimated also by the water table fluctuationmethod, which provided slightly different groundwater consumption rates than estimated by theHydrus model simulation. The simulated evapotranspiration was compared with results of a remotesensingbased estimation using the surface temperature database of MODIS.According to the Hydrus model, the estimated evapotranspiration resulted from transpiration(73%, interception loss (23% and soil surface evaporation (4% in the two-year study period. Theproportion of groundwater consumption was 58% of the total transpiration. During the dry growingseason of 2007 the groundwater consumption was significant with 66% of the total transpiration.Water supply from groundwater was found to be less important in the wet growing season of 2008with 50%. The remote-sensing based estimation of evapotranspiration was about 4% lower than themodel based results of nearby comparable sites.

  6. Thermal balance of a LPG fuelled, four stroke SI engine with water addition

    International Nuclear Information System (INIS)

    Ozcan, Hakan; Soeylemez, M.S.

    2006-01-01

    The effect of water injection on a spark ignition engine thermal balance and performance has been experimentally investigated. A four stroke, four cylinder conventional engine was used with LPG (liquid petroleum gas) as fuel. Different water to fuel ratios by mass were used with variable engine speed ranging from 1000 to 4500 rpm. The results showed that as the water injection level to the engine increased, the percentage of useful work increased, while the losses other than unaccounted losses decreased. Additionally, the specific fuel consumption decreases, while the engine thermal efficiency increases. The average increase in the brake thermal efficiency for a 0.5 water to fuel mass ratio is approximately 2.7% over the use of LPG alone for the engine speed range studied

  7. Investigation by tracer method of water balance in filling the gob with slurries

    International Nuclear Information System (INIS)

    Jureczko, J.; Skowronek, E.

    1977-01-01

    Results of investigations on the establishment of conditions of water flow in filling old workings with mud, in order to determine the degree of water hazard for mine workings in one of mines are given. For the inspection of flow, the stable tracer method and the neutron activation analysis were used. Chromium as a complex compound with EDTA was used as tracer. Geological and mining conditions in the area of investigations by tracers are given and the disposal of diluted stowing slurry is characterized. The method of interpretation of results is discussed in order to determine the water flow rate in the gob and to draw up the water balance on the basis of the curve of tracer travel. (author)

  8. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated

  9. Effects of evapotranspiration heterogeneity on catchment water balance in the Southern Sierra Nevada of California

    Science.gov (United States)

    Kerkez, B.; Kelly, A. E.; Lucas, R. G.; Son, K.; Glaser, S. D.; Bales, R. C.

    2011-12-01

    Heterogeneity of Evapotranspiration (ET) is the result of poorly understood interactions between climate, topography, vegetation and soil. Accurate predictions of ET, and thus improved water balance estimates, hinge directly upon an improved understanding of the processes that drive ET across a wide spatio-temporal range. Recent warming trends in the Western US are shifting precipitation toward more rain-dominated patterns, significantly increasing vegetation water stress in historically snow-dominated regimes due to reduced soil moisture and increased vapor deficit during warm summer months. We investigate dominant controls that govern ET variability in a highly instrumented 1km2 mountain catchment at the Southern Sierra Critical Zone Observatory, co-located in the Kings River Experimental Watershed. Various ET estimates are derived from a number of measurement approaches: an eddy flux covariance tower, ET chambers, stream flumes, groundwater monitoring wells, matric potential sensors, as well as data from a distributed wireless sensor network with over 300 sensors. Combined with precipitation data, and high-density distributed soil moisture and snowdepth readings, the ET estimates are utilized to reconstruct the overall catchment water balance. We also apply the Regional Hydro-Ecologic Simulation System (RHESSys), a physically based, spatially distributed hydrologic model, to estimate water balance components. The model predictions are compared with the water budget calculated from field data, and used to identify the key variables controlling spatial and temporal patterns of ET at multiple scales. Initial results show that ET estimates are scale-, and vegetation-dependent, with significant ET variability between vegetation types and physiographic parameters such as elevation, slope, and aspect. In mixed conifer forests terrain, ET is more dependent on soil moisture, while in the meadows, where the soil is generally saturated for the duration of the growing

  10. The relationship between objective balance, perceived sense of balance, and fear of falling in stroke patients.

    Science.gov (United States)

    Oguz, Semra; Demirbuken, Ilksan; Kavlak, Bahar; Acar, Gonul; Yurdalan, Saadet Ufuk; Polat, Mine Gulden

    2017-10-01

    The objective of our study was to investigate the relationship between objective balance, fear of falling, and perceived sense of balance (PSB) in stroke patients. Seventy patients aged 18-65 years with chronically developed hemiplegia or hemiparesis were enrolled in the study. Patients' objective balance scores, fear of falling, and PSB were obtained using the berg balance scale (BBS), the falls efficacy scale (FES), and a visual analog scale, respectively. The Standard Mini-Mental Examination was performed to exclude patients with mental disorders from the study. There was a moderate negative correlation between PSB and BBS scores (p = 0.001, ρ = -0.588); a strong negative correlation between BBS and FES scores (p = 0.001, ρ = -0.808); and a strong positive correlation between PSB and FES scores (p = 0.001, ρ = 0.714). We found that BBS scores had negative correlation with PBS scores in left hemiplegic patients while there was no any relationship between BBS and PBS scores in right hemiplegic patients. PSB assessment, besides the BBS, should be considered among the routine assessment methods that enable the rehabilitation team to be aware of patients' balance capacities.

  11. Surface water management: a user's guide to calculate a water balance using the CREAMS model

    International Nuclear Information System (INIS)

    Lane, L.J.

    1984-11-01

    The hydrologic component of the CREAMS model is described and discussed in terms of calculating a surface water balance for shallow land burial systems used for waste disposal. Parameter estimates and estimation procedures are presented in detail in the form of a user's guide. Use of the model is illustrated with three examples based on analysis of data from Los Alamos, New Mexico and Rock Valley, Nevada. Use of the model in design of trench caps for shallow land burial systems is illustrated with the example applications at Los Alamos

  12. Developmental profiles in tick water balance with a focus on the new Rocky Mountain spotted fever vector, Rhipicephalus sanguineus.

    Science.gov (United States)

    Yoder, J A; Benoit, J B; Rellinger, E J; Tank, J L

    2006-12-01

    Recent reports indicate that the common brown dog tick, or kennel tick, Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae) is a competent vector of Rocky Mountain spotted fever in the U.S.A. This tick is of concern to public health because of its high frequency of contact, as it has a unique ability to thrive within human homes. To assess the moisture requirements necessary for survival, water balance characteristics were determined for each developmental stage, from egg to adult. This is the first time that water relations in ticks have been assessed throughout the complete lifecycle. Notably, R. sanguineus is differentially adapted for life in a dry environment, as characterized by a suppressed water loss rate distinctive for each stage that distinguishes it from other ticks. Analysis of its dehydration tolerance limit and percentage body water content provides no evidence to suggest that the various stages of this tick can function more effectively containing less water, indicating that this species is modified for water conservation, not desiccation hardiness. All stages, eggs excepted, absorb water vapour from the air and can drink free water to replenish water stores. Developmentally, a shift in water balance strategies occurs in the transition from the larva, where the emphasis is on water gain (water vapour absorption from drier air), to the adult, where the emphasis is on water retention (low water loss rate). These results on the xerophilic-nature of R. sanguineus identify overhydration as the primary water stress, indicating that this tick is less dependent upon a moisture-rich habitat for survival, which matches its preference for a dry environment. We suggest that the controlled, host-confined conditions of homes and kennels have played a key role in promoting the ubiquitous distribution of R. sanguineus by creating isolated arid environments that enable this tick to establish within regions that are unfavourable for maintaining water balance.

  13. WATER TEMPERATURE, VOLUNTARY DRINKING AND FLUID BALANCE IN DEHYDRATED TAEKWONDO ATHLETES

    Directory of Open Access Journals (Sweden)

    Saeed Khamnei

    2011-12-01

    Full Text Available Voluntary drinking is one of the major determiners of rehydration, especially as regards exercise or workout in the heat. The present study undertakes to search for the effect of voluntary intake of water with different temperatures on fluid balance in Taekwondo athletes. Six young healthy male Taekwondo athletes were dehydrated by moderate exercise in a chamber with ambient temperature at 38-40°C and relative humidity between 20-30%. On four separate days they were allowed to drink ad libitum plane water with the four temperatures of 5, 16, 26, and 58°C, after dehydration. The volume of voluntary drinking and weight change was measured; then the primary percentage of dehydration, sweat loss, fluid deficit and involuntary dehydration were calculated. Voluntary drinking of water proved to be statistically different in the presented temperatures. Water at 16°C involved the greatest intake, while fluid deficit and involuntary dehydration were the lowest. Intake of water in the 5°C trial significantly correlated with the subject's plasma osmolality change after dehydration, yet it showed no significant correlation with weight loss. In conclusion, by way of achieving more voluntary intake of water and better fluid state, recommending cool water (~16°C for athletes is in order. Unlike the publicly held view, drinking cold water (~5°C does not improve voluntary drinking and hydration status.

  14. Virtual water and water self-sufficiency in agricultural and livestock products in Brazil.

    Science.gov (United States)

    da Silva, Vicente de Paulo R; de Oliveira, Sonaly D; Braga, Célia C; Brito, José Ivaldo B; de Sousa, Francisco de Assis S; de Holanda, Romildo M; Campos, João Hugo B C; de Souza, Enio P; Braga, Armando César R; Rodrigues Almeida, Rafaela S; de Araújo, Lincoln E

    2016-12-15

    Virtual water trade is often considered a solution for restricted water availability in many regions of the world. Brazil is the world leader in the production and export of various agricultural and livestock products. The country is either a strong net importer or a strong net exporter of these products. The objective of this study is to determine the volume of virtual water contained in agricultural and livestock products imported/exported by Brazil from 1997 to 2012, and to define the water self-sufficiency index of agricultural and livestock products in Brazil. The indexes of water scarcity (WSI), water dependency (WDI) and water self-sufficiency (WSSI) were calculated for each Brazilian state. These indexes and the virtual water balance were calculated following the methodology developed by Chapagain and Hoekstra (2008) and Hoekstra and Hung (2005). The total water exports and imports embedded in agricultural and livestock products were 5.28 × 10 10 and 1.22 × 10 10  Gm 3  yr -1 , respectively, which results in positive virtual water balance of 4.05 × 10 10  Gm 3  yr -1 . Brazil is either a strong net importer or a strong net exporter of agricultural and livestock products among the Mercosur countries. Brazil has a positive virtual water balance of 1.85 × 10 10  Gm 3  yr -1 . The indexes used in this study reveal that Brazil is self-sufficient in food production, except for a few products such as wheat and rice. Horticultural products (tomato, onion, potato, cassava and garlic) make up a unique product group with negative virtual water balance in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Simulation of the hydrogeologic effects of oil-shale mining on the neighbouring wetland water balance: case study in north-eastern Estonia

    Science.gov (United States)

    Marandi, Andres; Karro, Enn; Polikarpus, Maile; Jõeleht, Argo; Kohv, Marko; Hang, Tiit; Hiiemaa, Helen

    2013-11-01

    The water balance of wetlands plays an integral role in their function. Developments adjacent to wetlands can affect their water balance through impacts on groundwater flow and increased discharge in the area, and they can cause lowering of the wetland water table. A 430 km2 area was selected for groundwater modelling to asses the effect of underground mining on the water balance of wetlands in north-eastern Estonia. A nature conservation area (encompassing Selisoo bog) is within 3 km of an underground oil-shale mine. Two future mining scenarios with different areal extents of mining were modeled and compared to the present situation. Results show that the vertical hydraulic conductivity of the subsurface is of critical importance to potential wetland dewatering as a result of mining. Significant impact on the Selisoo bog water balance will be caused by the approaching mine but there will be only minor additional impacts from mining directly below the bog. The major impact will arise before that stage, when the underground mine extension reaches the border of the nature conservation area; since the restriction of activities in this area relates to the ground surface, the conservation area’s border is not sufficiently protective in relation to underground development.

  16. Cycle studies: material balance estimation in the domain of pressurized water and boiling water reactors. Experimental qualification

    International Nuclear Information System (INIS)

    Chabert, Christine

    1994-01-01

    This study is concerned with the physics of the fuel cycle the aim being to develop and make recommendations concerning schemes for calculating the neutronics of light water reactor fuel cycles. A preliminary study carried out using the old fuel cycle calculation scheme APOLLO1- KAFKA and the library SERMA79 has shown that for the compositions of totally dissolved assemblies from Pressurized Water Reactors (type 17*17) and also for the first time, for Boiling Water Reactor assemblies (type 8*8), the differences between calculation and measurement are large and must be reduced. The integration of the APOLLO2 neutronics code into the fuel cycle calculation scheme improves the results because it can model the situation more precisely. A comparison between APOLLO1 and APOLLO2 using the same options, demonstrated the consistency of the two methods for PWR and BWR geometries. Following this comparison, we developed an optimised scheme for PWR applications using the library CEA86 and the code APOLLO2. Depending on whether the information required is the detailed distribution of the composition of the irradiated fuel or the average composition (estimation of the total material balance of the fuel assembly), the physics options recommended are different. We show that the use of APOLLO2 and the library CEA86 improves the results and especially the estimation of the Pu 239 content. Concerning the Boiling Water Reactor, we have highlighted the need to treat several axial sections of the fuel assembly (variation of the void-fraction, heterogeneity of composition). A scheme using Sn transport theory, permits one to obtain a better coherence between the consumption of U 235 , the production of plutonium and burnup, and a better estimation of the material balance. (author) [fr

  17. Surface Energy Balance of Fresh and Saline Waters: AquaSEBS

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelrady

    2016-07-01

    Full Text Available Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System model for large water bodies and add the effect of water salinity to the evaporation rate. Firstly, SEBS is modified for fresh-water whereby new parameterizations of the water heat flux and sensible heat flux are suggested. This is achieved by adapting the roughness heights for momentum and heat transfer. Secondly, a salinity correction factor is integrated into the adapted model. Eddy covariance measurements over Lake IJsselmeer (The Netherlands are carried out and used to estimate the roughness heights for momentum (~0.0002 m and heat transfer (~0.0001 m. Application of these values over the Victoria and Tana lakes (freshwater in Africa showed that the calculated latent heat fluxes agree well with the measurements. The root mean-square of relative-errors (rRMSE is about 4.1% for Lake Victoria and 4.7%, for Lake Tana. Verification with ECMWF data showed that the salinity reduced the evaporation at varying levels by up to 27% in the Great Salt Lake and by 1% for open ocean. Our results show the importance of salinity to the evaporation rate and the suitability of the adapted-SEBS model (AquaSEBS for fresh and saline waters.

  18. A multi-criteria decision making approach to balance water supply-demand strategies in water supply systems

    Directory of Open Access Journals (Sweden)

    Géssica Maria Cambrainha

    2018-02-01

    Full Text Available Abstract Paper aims this paper proposes a model to aid a group of decision makers to establish a portfolio of feasible actions (alternatives that are able to balance water supply-demand strategies. Originality Long periods of water shortages cause problems in semi-arid region of northeast Brazil, which affects different sectors such as food, public health, among others. This problem situation is intensified by population growth. Therefore, this type of decision making is complex, and it needs to be solving by a structured model. Research method The model is based on a problem structuring method (PSM and a multi-criteria decision making (MCDM method. Main findings Due to society and government influences, the proposed model showed appropriate to conduct a robust and well-structured decision making. Implications for theory and practice The main contributions were the study in regions suffering from drought and water scarcity, as well as the combination of PSM and MCDM methods to aid in this problem.

  19. Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest.

    Science.gov (United States)

    Gotsch, Sybil G; Asbjornsen, Heidi; Holwerda, Friso; Goldsmith, Gregory R; Weintraub, Alexis E; Dawson, Todd E

    2014-01-01

    The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia. © 2013 John Wiley & Sons Ltd.

  20. Enhancement of a parsimonious water balance model to simulate surface hydrology in a glacierized watershed

    Science.gov (United States)

    Valentin, Melissa M.; Viger, Roland J.; Van Beusekom, Ashley E.; Hay, Lauren E.; Hogue, Terri S.; Foks, Nathan Leon

    2018-01-01

    The U.S. Geological Survey monthly water balance model (MWBM) was enhanced with the capability to simulate glaciers in order to make it more suitable for simulating cold region hydrology. The new model, MWBMglacier, is demonstrated in the heavily glacierized and ecologically important Copper River watershed in Southcentral Alaska. Simulated water budget components compared well to satellite‐based observations and ground measurements of streamflow, evapotranspiration, snow extent, and total water storage, with differences ranging from 0.2% to 7% of the precipitation flux. Nash Sutcliffe efficiency for simulated and observed streamflow was greater than 0.8 for six of eight stream gages. Snow extent matched satellite‐based observations with Nash Sutcliffe efficiency values of greater than 0.89 in the four Copper River ecoregions represented. During the simulation period 1949 to 2009, glacier ice melt contributed 25% of total runoff, ranging from 12% to 45% in different tributaries, and glacierized area was reduced by 6%. Statistically significant (p < 0.05) decreasing and increasing trends in annual glacier mass balance occurred during the multidecade cool and warm phases of the Pacific Decadal Oscillation, respectively, reinforcing the link between climate perturbations and glacier mass balance change. The simulations of glaciers and total runoff for a large, remote region of Alaska provide useful data to evaluate hydrologic, cryospheric, ecologic, and climatic trends. MWBM glacier is a valuable tool to understand when, and to what extent, streamflow may increase or decrease as glaciers respond to a changing climate.

  1. Applying hot wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell - Part 1

    DEFF Research Database (Denmark)

    Berning, Torsten; Al Shakhshir, Saher

    2015-01-01

    In order to accurately determine the water balance of a proton exchange membrane fuel cell it has recently been suggested to employ constant temperature anemometry (CTA), a frequently used method to measure the velocity of a fluid stream. CTA relies on convective heat transfer around a heated wire...... the equations required to calculate the heat transfer coefficient and the resulting voltage signal as function of the fuel cell water balance. The most critical and least understood part is the determination of the Nusselt number to calculate the heat transfer between the wire and the gas stream. Different...... expressions taken from the literature will be examined in detail, and it will be demonstrated that the power-law approach suggested by Hilpert is the only useful one for the current purposes because in this case the voltage response from the hot-wire sensor E/E0 shows the same dependency to the water balance...

  2. A holistic water balance of Austria - how does the quantitative proportion of urban water requirements relate to other users?

    Science.gov (United States)

    Vanham, D

    2012-01-01

    Traditional water use statistics only include the blue water withdrawal/consumption of municipalities, industry and irrigated agriculture. When, however, green water use of the agricultural sector is included as well as the virtual water use/water footprint (WF), water use quantity statistics become very different. In common water use statistics, Austria withdraws in total about 2.5 km(3) per year, only 3% of available resources (total discharge 81.4 km(3) = surface and ground water). The total water consumption (0.5 km(3)) is less than 1% of available resources. Urban (municipal) water requirements account for 27% of total withdrawal or 33% of consumption. When agricultural green water use (cropland) is included in statistics, the fraction of municipal water requirements diminishes to 7.6% of total withdrawal and 2.5% of total consumption. If the evapotranspiration of grassland and alpine meadows is also included in agricultural green water use, this fraction decreases to 3.2% and 0.9% respectively. When the WF is assessed as base value for water use in Austria, the municipal water use represents 5.8% of this value. In this globalized world, these traditional water use statistics are no longer recommendable. Only a holistic water balance approach really represents water use statistics.

  3. Groundwater controls on post-fire permafrost thaw: Water and energy balance effects

    OpenAIRE

    Rocha, Adrian; Mckenzie, Jeffrey; Lamontagne-Halle, Pierrick; Zipper, Samuel

    2018-01-01

    Fire frequency and severity is increasing in high latitude regions, with large impacts on the water and energy balances. However, the degree to which groundwater flow impacts the permafrost response to fire remains poorly understood and understudied. Here, we use the Anaktuvuk River Fire (Alaska, USA) as an archetypal example to investigate groundwater-permafrost interactions following fire. We identify key thermal and hydrologic parameters controlling permafrost and active layer response to ...

  4. User manual of Visual Balan V. 1.0 Interactive code for water balances and refueling estimation

    International Nuclear Information System (INIS)

    Samper, J.; Huguet, L.; Ares, J.; Garcia, M. A.

    1999-01-01

    This document contains the Users Manual of Visual Balan V1.0, an updated version of Visual Balan V0.0 (Samper et al., 1997). Visual Balan V1.0 performs daily water balances in the soil, the unsaturated zone and the aquifer in a user-friendly environment which facilitates both the input data process and the postprocessing of results. The main inputs of the balance are rainfall and irrigation while the outputs are surface runoff, evapotranspiration, interception, inter flow and groundwater flow. The code evaluates all these components in a sequential manner by starting with rainfall and irrigation, which must be provided by the user, and continuing with interception, surface runoff, evapotranspiration, and potential recharge (water flux crossing the bottom of the soil). This potential recharge is the input to the unsaturated zone where water can flow horizontally as subsurface flow (inter flow) or vertically as percolation into the aquifer. (Author)

  5. Simplificado o balanço hídrico de Thornthwaite-Mather Symplifying the Thornthwaite-Mather water balance

    Directory of Open Access Journals (Sweden)

    Antonio Roberto Pereira

    2005-01-01

    Full Text Available Seguindo a abordagem de Mendonça, em 1958, e com princípios básicos de cálculo o balanço hídrico climatológico de Thornthwaite e Mather, em 1955, foi simplificado eliminando-se a coluna de Negativo Acumulado, sem nenhuma perda para os resultados finais. Essa simplificação aumenta a eficiência dos cálculos e torna o balanço hídrico mais fácil de ser entendido.Following the approach presented by Mendonça (1958 and using basic calculus the Thornthwaite & Mather (1955 climatic water balance was simplyfied by eliminating the column Accumulated Potential Water Loss, without any loss for the final results. Such simplification increases the efficiency of the computations and it makes easier to understand the water balance.

  6. The Water, Energy and Food Nexus: Finding the Balance in Infrastructure Investment

    Science.gov (United States)

    Huber-lee, A. T.; Wickel, B.; Kemp-Benedict, E.; Purkey, D. R.; Hoff, H.; Heaps, C.

    2013-12-01

    There is increasing evidence that single-sector infrastructure planning is leading to severely stressed human and ecological systems. There are a number of cross-sectoral impacts in these highly inter-linked systems. Examples include: - Promotion of biofuels that leads to conversion from food crops, reducing both food and water security. - Promotion of dams solely built for hydropower rather than multi-purpose uses, that deplete fisheries and affect saltwater intrusion dynamics in downstream deltas - Historical use of water for cooling thermal power plants, with increasing pressure from other water uses, as well as problems of increased water temperatures that affect the ability to cool plants efficiently. This list can easily be expanded, as these inter-linkages are increasing over time. As developing countries see a need to invest in new infrastructure to improve the livelihoods of the poor, developed countries face conditions of deteriorating infrastructure with an opportunity for new investment. It is crucial, especially in the face of uncertainty of climate change and socio-political realities, that infrastructure planning factors in the influence of multiple sectors and the potential impacts from the perspectives of different stakeholders. There is a need for stronger linkages between science and policy as well. The Stockholm Environment Institute is developing and implementing practical and innovative nexus planning approaches in Latin America, Africa and Asia that brings together stakeholders and ways of integrating uncertainty in a cross-sectoral quantitative framework using the tools WEAP (Water Evaluation and Planning) and LEAP (Long-range Energy Alternatives Planning). The steps used include: 1. Identify key actors and stakeholders via social network analysis 2. Work with these actors to scope out priority issues and decision criteria in both the short and long term 3. Develop quantitative models to clarify options and balances between the needs and

  7. A question of balance: Kinetic balance for electrons and positrons

    International Nuclear Information System (INIS)

    Dyall, Kenneth G.

    2012-01-01

    Graphical abstract: Kinetic balance for both electrons and positrons is achieved by applying the correct relation for positive and negative energy states separately and then using the electron and positron eigensolutions from the separate diagonalizations of the Hamiltonian as a dual basis. Highlights: ► Kinetic balance for electrons and positrons is achieved in a dual atomic basis. ► Dual atomic balance alleviates, but does not eliminate, energy prolapse. ► Positron affinities converge quicker with basis set size with dual atomic balance. - Abstract: The kinetic balance criterion used in current relativistic basis set codes is satisfied by the electron solutions of the Dirac equation, but not the positron solutions. A proposal for applying kinetic balance to both sets of solutions is presented. The method is applied along with “normal” kinetic balance to one-electron systems, to investigate its possible relation to prolapse, and to the positron affinity of F − , to investigate the kinetic energy deficiency for positron solutions. The new method reduces but does not eliminate prolapse for energy-optimized basis sets, and provides faster and smoother convergence with basis set size for the positron affinity.

  8. Modelling the water and heat balances of the Mediterranean Sea using a two-basin model and available meteorological, hydrological, and ocean data

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2015-04-01

    Full Text Available This paper presents a two-basin model of the water and heat balances of the Western and Eastern Mediterranean sub-basins (WMB and EMB, respectively over the 1958–2010 period using available meteorological and hydrological data. The results indicate that the simulated temperature and salinity in both studied Mediterranean sub-basins closely follow the reanalysed data. In addition, simulated surface water in the EMB had a higher mean temperature (by approximately 1.6°C and was more saline (by approximately 0.87 g kg−1 than in the WMB over the studied period. The net evaporation over the EMB (1.52 mm day−1 was approximately 1.7 times greater than over the WMB (0.88 mm day−1. The water balance of the Mediterranean Sea was controlled by net inflow through the Gibraltar Strait and Sicily Channel, the net evaporation rate and freshwater input. The heat balance simulations indicated that the heat loss from the water body was nearly balanced by the solar radiation to the water body, resulting in a net export (import of approximately 13 (11 W m−2 of heat from the WMB (to the EMB.

  9. Effect of preexercise soup ingestion on water intake and fluid balance during exercise in the heat.

    Science.gov (United States)

    Johannsen, Neil M; Sullivan, Zebblin M; Warnke, Nicole R; Smiley-Oyen, Ann L; King, Douglas S; Sharp, Rick L

    2013-06-01

    To determine whether chicken noodle soup before exercise increases ad libitum water intake, fluid balance, and physical and cognitive performance compared with water. Nine trained men (age 25 ± 3 yr, VO2peak 54.2 ± 5.1 ml · kg-1 · min-1; M ± SD) performed cycle exercise in the heat (wet bulb globe temperature = 25.9 ± 0.4 °C) for 90 min at 50% VO2peak, 45 min after ingesting 355 ml of either commercially available bottled water (WATER) or chicken noodle soup (SOUP). The same bottled water was allowed ad libitum throughout both trials. Participants then completed a time trial to finish a given amount of work (10 min at 90% VO2peak; n = 8). Cognitive performance was evaluated by the Stroop color-word task before, every 30 min during, and immediately after the time trial. Ad libitum water intake throughout steady-state exercise was greater in SOUP than with WATER (1,435 ± 593 vs. 1,163 ± 427 g, respectively; p SOUP than in WATER (87.7% ± 7.6% vs. 74.9% ± 21.7%, respectively; p = .09), possibly due to a change in free water clearance (-0.32 ± 1.22 vs. 0.51 ± 1.06 ml/min, respectively; p = .07). Fluid balance tended to be improved with SOUP (-106 ± 603 vs. -478 ± 594 g, p = .05). Likewise, change in plasma volume tended to be reduced in SOUP compared with WATER (p = .06). Only mild dehydration was achieved (SOUP throughout the entire trial (treatment effect; p = .04). SOUP before exercise increased ad libitum water intake and may alter kidney function.

  10. Ecohydrology of saltcedar (Tamarix spp.) in the western United States and implications of water balance following a biocontrol agent introduction

    Science.gov (United States)

    Nagler, P. L.; Glenn, E. P.

    2012-12-01

    With increased demand on water sources for human use and likely diminished supplies due to climate change, it is important to understand the variation in evapotranspiration (ET) and vegetation water use by transpiration (T) in arid and semi-arid zone riparian areas in the western U.S. Understanding riparian plant water use is critical for accuracy of climate models, predictions used in water resources management, and assessment of land use change impacts on the water balance of ecosystems. Moore and Heilman (2011) suggested the following three principles for predicting when vegetation changes will impact the local or regional water budget: (i) variation will result if energy balance partitioning has been altered, (ii) if deeper or shallower active rooting depth has changed the amount of soil moisture accessible to plants, or (iii) if temporary changes in water use add up over longer time scales. They note that large changes in vegetation types do not necessarily result in changes in water discharge. We will use these principles to consider the case of saltcedar (Tamarix spp.) on western U.S. rivers. Once considered a high-water-use plant that out-competed native trees, research over the past two decades has shown that saltcedar water use is low to moderate, and less than native trees. Consequently, the prospects of salvaging water for human use by replacing saltcedar with native trees, once thought to be bright, now appear questionable. Furthermore, saltcedar has come to occupy ecohydrological niches on altered river systems that are no longer available to native plants. However, with the widespread introduction and spread of saltcedar leaf beetles (Diorhabda carinulata) on western rivers, introduced in part to reduce riparian water use through reduction of saltcedar abundance, saltcedar ecology has now entered a new phase. The talk will present a synthesis of the recent literature on saltcedar water use and provide an overview of saltcedar ecohydrology in terms of

  11. Recession and Work-Life Balance Initiatives

    OpenAIRE

    Pranav Naithani

    2010-01-01

    Over the last six decades work-life balance emerged as an important human resource management aspect for employers. Globally, a wide gamut of work-life balance facilities is being provided by a large number of organisations. The recent economic downturn has witnessed a sudden interruption in the spread and growth of work-life balance facilities at the organisational level. This paper presents the key recessionary reasons which have negatively influenced employee work-life balance. Further, im...

  12. Predisposition of cows to mastitis in non-infected mammary glands: effects of dietary-induced negative energy balance during mid-lactation on immune-related genes

    DEFF Research Database (Denmark)

    Moyes, Kasey; Drackley, James K; Morin, Dawn E

    2011-01-01

    Cows experiencing severe postpartal negative energy balance (NEB) are at greater risk of developing mastitis than cows in positive energy balance (PEB). Our objectives were to compare mammary tissue gene expression profiles between lactating cows (n = 5/treatment) subjected to feed restriction...... to induce NEB and cows fed ad libitum to maintain PEB in order to identify genes involved in immune response and cellular metabolism that may predispose cows to an intramammary infection in non-infected mammary gland. The NEB cows were feed-restricted to 60% of calculated net energy for lactation...... requirements, and cows fed PEB cows were fed the same diet ad libitum. At 5 days after feed restriction, one rear mammary gland from all cows was biopsied for RNA extraction and transcript profiling using microarray and quantitative PCR. Energy balance (NEB vs. PEB) resulted in 278 differentially expressed...

  13. Quantifying the water balance of Mfabeni Mire (iSimangaliso Wetland Park, South Africa to understand its importance, functioning and vulnerability

    Directory of Open Access Journals (Sweden)

    P. Grundling

    2015-12-01

    Full Text Available Peatlands occurring in regions with high rates of total evaporation (ET, matching or exceeding precipitation (P during seasonal dry periods or longer-term dry spells, are dependent on sustained groundwater flows to ensure peat accumulation. The objective of this study was to quantify the water balance of Mfabeni Mire in South Africa over one year, and thereby define its contribution to downstream and adjacent ecosystems and identify risks and consequences likely to arise from future shifts in the water balance. P (1,031 mm and ET (1,053 mm dominated the water balance measured from May 2008 to April 2009. These were followed by groundwater inflows (14 mm, stream outflow (9 mm and storage change (-3 mm, a net loss in water stored in the mire with the smallest flux being groundwater outflow (0.3 mm. There were differences in the seasonal patterns of ET from the two dominant plant communities (swamp forest and sedge/reed fen, which probably resulted from their significantly different canopy structures. Limiting factors for ET were low vapour pressure deficit and cloud cover. Although the water balance of Mfabeni Mire was dominated by and equally split between ET and P, it still contributed a small efflux to downstream ecosystems by streamflow. Its value in a landscape where seasonality and long-term dry periods are major ecological drivers lies in its damping effect on climatic variability. This creates a more stable environment for adjacent aquatic ecosystems by contributing to a steady groundwater condition. Mires occurring in areas that experience dry periods, where water stress frequently threatens biodiversity, should be recognised as assets in natural resource management; and their potential to support adjacent ecosystems should be protected through planning and conservation practices. Management of the area should include careful consideration of any proposed changes in land use or encouragement of one plant community at the expense of

  14. Evaluation of a distributed catchment scale water balance model

    Science.gov (United States)

    Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.

  15. QSPR modeling of octanol/water partition coefficient of antineoplastic agents by balance of correlations.

    Science.gov (United States)

    Toropov, Andrey A; Toropova, Alla P; Raska, Ivan; Benfenati, Emilio

    2010-04-01

    Three different splits into the subtraining set (n = 22), the set of calibration (n = 21), and the test set (n = 12) of 55 antineoplastic agents have been examined. By the correlation balance of SMILES-based optimal descriptors quite satisfactory models for the octanol/water partition coefficient have been obtained on all three splits. The correlation balance is the optimization of a one-variable model with a target function that provides both the maximal values of the correlation coefficient for the subtraining and calibration set and the minimum of the difference between the above-mentioned correlation coefficients. Thus, the calibration set is a preliminary test set. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  16. Evaluating the potential of improving residential water balance at building scale.

    Science.gov (United States)

    Agudelo-Vera, Claudia M; Keesman, Karel J; Mels, Adriaan R; Rijnaarts, Huub H M

    2013-12-15

    Earlier results indicated that, for an average household, self-sufficiency in water supply can be achieved by following the Urban harvest Approach (UHA), in a combination of demand minimization, cascading and multi-sourcing. To achieve these results, it was assumed that all available local resources can be harvested. In reality, however, temporal, spatial and location-bound factors pose limitations to this harvest and, thus, to self-sufficiency. This article investigates potential spatial and temporal limitations to harvest local water resources at building level for the Netherlands, with a focus on indoor demand. Two building types were studied, a free standing house (one four-people household) and a mid-rise apartment flat (28 two-person households). To be able to model yearly water balances, daily patterns considering household occupancy and presence of water using appliances were defined per building type. Three strategies were defined. The strategies include demand minimization, light grey water (LGW) recycling, and rainwater harvesting (multi-sourcing). Recycling and multi-sourcing cater for toilet flushing and laundry machine. Results showed that water saving devices may reduce 30% of the conventional demand. Recycling of LGW can supply 100% of second quality water (DQ2) which represents 36% of the conventional demand or up to 20% of the minimized demand. Rainwater harvesting may supply approximately 80% of the minimized demand in case of the apartment flat and 60% in case of the free standing house. To harvest these potentials, different system specifications, related to the household type, are required. Two constraints to recycle and multi-source were identified, namely i) limitations in the grey water production and available rainfall; and ii) the potential to harvest water as determined by the temporal pattern in water availability, water use, and storage and treatment capacities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    Science.gov (United States)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  18. BALANCE OF ENERGY AND COMPONENTS OF VOLTAGE DURING THE ELECTROTECHNICAL MODIFICATION OF PHYSICOCHEMICAL PARAMETERS OF WATER

    Directory of Open Access Journals (Sweden)

    Stiopka O.G

    2006-04-01

    Full Text Available The paper is dealing with results of theoretical and experimental investigations related to the balance of energy and voltage distribution in units for electrochemical units for water treatment. The electrical energy conversion mechanism in electrochemical units equipped with ionic selective membrane is analyzed. The obtained results could be used for design of electrochemical units for the water conditioning for diverse technological processes in agriculture and biotechnology.

  19. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows.

    Science.gov (United States)

    Esposito, Giulia; Irons, Pete C; Webb, Edward C; Chapwanya, Aspinas

    2014-01-30

    The biological cycles of milk production and reproduction determine dairying profitability thus making management decisions dynamic and time-dependent. Diseases also negatively impact on net earnings of a dairy enterprise. Transition cows in particular face the challenge of negative energy balance (NEB) and/or disproportional energy metabolism (fatty liver, ketosis, subacute, acute ruminal acidosis); disturbed mineral utilization (milk fever, sub-clinical hypocalcemia); and perturbed immune function (retained placenta, metritis, mastitis). Consequently NEB and reduced dry matter intake are aggravated. The combined effects of all these challenges are reduced fertility and milk production resulting in diminishing profits. Risk factors such as NEB, inflammation and impairment of the immune response are highly cause-and-effect related. Thus, managing cows during the transition period should be geared toward reducing NEB or feeding specially formulated diets to improve immunity. Given that all cows experience a reduced feed intake and body condition, infection and inflammation of the uterus after calving, there is a need for further research on the immunology of transition dairy cows. Integrative approaches at the molecular, cellular and animal level may unravel the complex interactions between disturbed metabolism and immune function that predispose cows to periparturient diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effect of water intake on the nitrogen balance of sheep fed a low or a ...

    African Journals Online (AJOL)

    Effect of water intake on the nitrogen balance of sheep fed a low or a medium protein diet. JG van der Walt, EA Boomker, A Meintjes, WA Schultheiss. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  1. The effect of water storage change in ET estimation in humid catchments based on water balance models and Budyko framework

    Science.gov (United States)

    Wang, Tingting; Sun, Fubao; Liu, Changming; Liu, Wenbin; Wang, Hong

    2017-04-01

    An accurate estimation of ET in humid catchments is essential in water-energy budget research and water resource management etc, while it remains a huge challenge and there is no well accepted explanation for the difficulty of annual ET estimation in humid catchments so far. Here we presents the ET estimation in 102 humid catchments over China based on the Budyko framework and two hydrological models: abcd model and Xin'anjiang mdoel, in comparison with ET calculated from the water balance equation (ETwb) on the ground that the ΔS is approximately zero at multiannual and annual time scale. We provides a possible explanation for this poorly annual ET estimation in humid catchments as well. The results show that at multi-annual timescale, the Budyko framework works fine in ET estimation in humid catchments, while at annual time scale, neither the Budyko framework nor the hydrological models can estimate ET well. The major cause for this poorly estimated annual ET in humid catchments is the neglecting of the ΔS in ETwb since it enlarge the variability of real actual evapotranspiration. Much improvement has been made when compared estimated ET + ΔS with those ETwb, and the bigger the catchment area is, the better this improvement is. It provides a reasonable explanation for the poorly estimated annual ET in humid catchments and reveals the important role of the ΔS in ET estimation and validation. We highlight that the annual ΔS shouldn't be taken as zero in water balance equation in humid catchments.

  2. Estimation of air-water gas exchange coefficient in a shallow lagoon based on 222Rn mass balance.

    Science.gov (United States)

    Cockenpot, S; Claude, C; Radakovitch, O

    2015-05-01

    The radon-222 mass balance is now commonly used to quantify water fluxes due to Submarine Groundwater Discharge (SGD) in coastal areas. One of the main loss terms of this mass balance, the radon evasion to the atmosphere, is based on empirical equations. This term is generally estimated using one among the many empirical equations describing the gas transfer velocity as a function of wind speed that have been proposed in the literature. These equations were, however, mainly obtained from areas of deep water and may be less appropriate for shallow areas. Here, we calculate the radon mass balance for a windy shallow coastal lagoon (mean depth of 6m and surface area of 1.55*10(8) m(2)) and use these data to estimate the radon loss to the atmosphere and the corresponding gas transfer velocity. We present new equations, adapted to our shallow water body, to express the gas transfer velocity as a function of wind speed at 10 m height (wind range from 2 to 12.5 m/s). When compared with those from the literature, these equations fit particularly well with the one of Kremer et al. (2003). Finally, we emphasize that some gas transfer exchange may always occur, even for conditions without wind. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow.

    Science.gov (United States)

    Wathes, D C; Fenwick, M; Cheng, Z; Bourne, N; Llewellyn, S; Morris, D G; Kenny, D; Murphy, J; Fitzpatrick, R

    2007-09-01

    The peripartum period is of critical importance to subsequent health and fertility. Most cows enter a state of negative energy balance (NEB) associated with many metabolic changes which have carry over effects on the resumption and normality of estrous cyclicity and the success of subsequent inseminations. A dataset on 500 lactations explored the relationships between metabolic traits measured before and after calving with fertility. Stepwise multiple regression analysis showed that longer calving to conception intervals were associated with altered profiles of IGF-I, urea and body condition score. These relationships between metabolic profiles and fertility differed between first lactation cows (which are still growing but produce less milk) and mature animals. Early postpartum the liver undergoes extensive biochemical and morphological modifications to adapt to NEB, the uterus is extensively remodeled and must clear bacterial infections, and the ovary must resume ovulatory cycles. RNA isolated from liver and uterine tissues harvested 2 weeks postpartum from cows in mild (MNEB) and severe (SNEB) energy balance was used to screen the Affymetrix 23K bovine microarray. In liver, SNEB resulted in differential expression of key genes involved in lipid catabolism, gluconeogenesis, and the synthesis and stability of IGF-I. This was accompanied by reduced systemic concentrations of IGF-I which is likely to impact on ovarian function and early embryo development. Within endometrium, cows in SNEB showed histological evidence for higher levels of inflammation and the microarray analysis identified groups of differentially expressed genes involved in tissue remodeling and immune response. This may delay uterine repair after calving, likely contributing to the observed reduction in fertility.

  4. Water and Energy Balance in Response to the Removal of Invasive Phragmites Australis in a Riparian Wetland

    Science.gov (United States)

    Mykleby, P.; Lenters, J. D.; Cutrell, G. J.; Herrman, K.; Istanbulluoglu, E.; Scott, D.

    2011-12-01

    Vegetation plays an important role in the surface energy and water balance of wetlands. Transpiration from phreatophytes, in particular, withdraws water directly from groundwater, often impacting streamflow rates in adjacent tributaries. In the Republican River basin of the Central Plains (USA), streamflow has declined significantly in the past 30-40 years. Invasive vegetation species (such as Phragmites australis) have been removed from portions of the riparian corridor in an effort to halt or reverse the downward trend in streamflow. In this study, we investigated the energy and water balance of a P. australis-dominated riparian wetland in south-central Nebraska to assess the potential effectiveness of such an approach. Evapotranspiration (ET) rates were measured during two growing seasons - one being 2009, when the P. australis was at full growth, and the other during 2010, after the vegetation had been sprayed with herbicide (and remained only as dead, standing biomass). Energy balance measurements at the field site included net radiation, heat storage rates in the canopy, soil, and standing water, and sensible heat flux, which was measured using a large-aperture scintillometer (LAS). Latent heat flux (i.e., ET) was calculated as a residual of the energy balance, and comparisons were made between the two growing seasons. As a result of the spraying of the P. australis vegetation, season-mean ET rates dropped from 4.4 mm day-1 in 2009 to 3.0 mm day-1 in 2010. This decrease in ET was associated with a large increase in sensible heat flux, which more than doubled between the two years (from 33 W m-2 in 2009 to 76 W m-2 in 2010). Meteorological conditions at the site were slightly different from one year to the next, but the differences were not large enough to account for the dramatic changes in latent and sensible heat flux that were observed. We conclude, therefore, that the majority of the ~30% decrease in ET (and ~130% increase in sensible heat flux) was the

  5. Water balance, nutrient and carbon export from a heath forest catchment in central Amazonia, Brazil

    NARCIS (Netherlands)

    Zanchi, F. .B.; Waterloo, M.J.; Tapia, A.P.; Alvarado Barrientos, M.S.; Bolson, M.A.; Luizao, F.J.; Manzi, A.O.; Dolman, A.J.

    2015-01-01

    Carbon storage values in the Amazon basin have been studied through different approaches in the last decades in order to clarify whether the rainforest ecosystem is likely to act as a sink or source for carbon in the near future. This water balance, dissolved organic carbon (DOC) and nutrient export

  6. Ponds' water balance and runoff of endorheic watersheds in the Sahel

    Science.gov (United States)

    Gal, Laetitia; Grippa, Manuela; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Peugeot, Christophe

    2015-04-01

    The Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff

  7. Annual and Intra-Annual Water Balance Components of a Short Rotation Poplar Coppice Based on Sap Flow and Micrometeorological and Hydrological Approaches

    Czech Academy of Sciences Publication Activity Database

    Fischer, Milan; Orság, Matěj; Trnka, Miroslav; Pohanková, Eva; Hlavinka, Petr; Tripathi, Abishek; Žalud, Zdeněk

    2013-01-01

    Roč. 991, JUN 04-07 (2013), s. 401-408 ISSN 0567-7572 Institutional support: RVO:67179843 Keywords : short rotation poplar coppice * water balance * sap flow * Bowen ratio and energy balance method * modeling Subject RIV: EH - Ecology, Behaviour

  8. Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model

    Science.gov (United States)

    Senay, G.B.; Verdin, J.

    2003-01-01

    In many parts of sub-Saharan Africa, subsistence agriculture is characterized by significant fluctuations in yield and production due to variations in moisture availability to staple crops. Widespread drought can lead to crop failures, with associated deterioration in food security. Ground data collection networks are sparse, so methods using geospatial rainfall estimates derived from satellite and gauge observations, where available, have been developed to calculate seasonal crop water balances. Using conventional crop production data for 4 years in Ethiopia (1996-1999), it was found that water-limited and water-unlimited growing regions can be distinguished. Furthermore, maize growing conditions are also indicative of conditions for sorghum. However, another major staple, teff, was found to behave sufficiently differently from maize to warrant studies of its own.

  9. Assessment of structural model and parameter uncertainty with a multi-model system for soil water balance models

    Science.gov (United States)

    Michalik, Thomas; Multsch, Sebastian; Frede, Hans-Georg; Breuer, Lutz

    2016-04-01

    Water for agriculture is strongly limited in arid and semi-arid regions and often of low quality in terms of salinity. The application of saline waters for irrigation increases the salt load in the rooting zone and has to be managed by leaching to maintain a healthy soil, i.e. to wash out salts by additional irrigation. Dynamic simulation models are helpful tools to calculate the root zone water fluxes and soil salinity content in order to investigate best management practices. However, there is little information on structural and parameter uncertainty for simulations regarding the water and salt balance of saline irrigation. Hence, we established a multi-model system with four different models (AquaCrop, RZWQM, SWAP, Hydrus1D/UNSATCHEM) to analyze the structural and parameter uncertainty by using the Global Likelihood and Uncertainty Estimation (GLUE) method. Hydrus1D/UNSATCHEM and SWAP were set up with multiple sets of different implemented functions (e.g. matric and osmotic stress for root water uptake) which results in a broad range of different model structures. The simulations were evaluated against soil water and salinity content observations. The posterior distribution of the GLUE analysis gives behavioral parameters sets and reveals uncertainty intervals for parameter uncertainty. Throughout all of the model sets, most parameters accounting for the soil water balance show a low uncertainty, only one or two out of five to six parameters in each model set displays a high uncertainty (e.g. pore-size distribution index in SWAP and Hydrus1D/UNSATCHEM). The differences between the models and model setups reveal the structural uncertainty. The highest structural uncertainty is observed for deep percolation fluxes between the model sets of Hydrus1D/UNSATCHEM (~200 mm) and RZWQM (~500 mm) that are more than twice as high for the latter. The model sets show a high variation in uncertainty intervals for deep percolation as well, with an interquartile range (IQR) of

  10. Evaluating recharge to an ephemeral dryland stream using a hydraulic model and water, chloride and isotope mass balance

    Science.gov (United States)

    Dogramaci, Shawan; Firmani, Giovanni; Hedley, Paul; Skrzypek, Grzegorz; Grierson, Pauline F.

    2015-02-01

    Dewatering associated with mining below water table to achieve dry mining conditions may exert significant pressure on water balance in terms of lowering the water table and change in the dynamics of interactions between surface water and groundwater. The discharge of surplus mine water into ephemeral streams may also affect the water balance, by elevating groundwater levels and altering the exchange rate between streams and underlying aquifers. However, it is unclear whether volumes and recharge processes are within the range of natural variability. Here, we present a case study of an ephemeral creek in the semi-arid Hamersley Basin of northwest Australia that has received continuous mine discharge for more than six years. We used a numerical model coupled with repeated measurements of water levels, chloride concentrations and the hydrogen and oxygen stable isotope composition (δ2H and δ18O) to estimate longitudinal evapotranspiration and recharge rates along a 27 km length of Weeli Wolli Creek. We found that chloride increased from 73 to 120 mg/L across this length, while δ18O increased from -8.2‰ to -7.00‰. Groundwater is directly connected to the creek for the first 13 km and recharge rates are negligible. Below this point, the creek flows over a highly permeable aquifer and water loss by recharge increases to a maximum rate of 4.4 mm/d, which accounts for ∼65% of the total water discharged to the creek. Evapotranspiration losses account for the remaining ∼35%. The calculated recharge from continuous flow due to surplus water discharge is similar to that measured for rainfall-driven flood events along the creek. Groundwater under the disconnected section of the creek is characterised by a much lower Cl concentration and more depleted δ18O value than mining discharge water but is similar to flood water generated by large episodic rainfall events. Our results suggest that the impact of recharge from continuous flow on the water balance of the creek

  11. Modelled and observed mass balance of Rikha Samba Glacier, Nepal, Central Himalaya

    Science.gov (United States)

    Gurung, T. R.; Kayastha, R. B.; Fujita, K.; Sinisalo, A. K.; Stumm, D.; Joshi, S.; Litt, M.

    2016-12-01

    Glacier mass balance variability has an implication for the regional water resources and it helps to understand the response of glacier to climate change in the Himalayan region. Several mass balance studies have been started in the Himalayan region since 1970s, but they are characterized by frequent temporal gaps and a poor spatial representatively. This study aims at bridging the temporal gaps in a long term mass balance series of the Rikha Samba glacier (5383 - 6475 m a.s.l.), a benchmark glacier located in the Hidden Valley, Mustang, Nepal. The ERA Interim reanalysis data for the period 2011-2015 is calibrated with the observed meteorological variables from an AWS installed near the glacier terminus. We apply an energy mass balance model, validated with the available in-situ measurements for the years 1998 and 2011-2015. The results show that the glacier is shrinking at a moderate negative mass balance rate for the period 1995 to 2015 and the high altitude location of Rikha Samba also prevents a bigger mass loss compared to other small Himalayan glaciers. Precipitation from July to January and the mean air temperature from June to October are the most influential climatic parameters of the annual mass balance variability of Rikha Samba glacier.

  12. Studying Basin Water Balance Variations at Inter- and Intra-annual Time Scales Based On the Budyko Hypothesis and GRACE Gravimetry Satellite Observations

    Science.gov (United States)

    Shen, H.

    2017-12-01

    Increasing intensity in global warming and anthropogenic activities has triggered significant changes over regional climates and landscapes, which, in turn, drive the basin water cycle and hydrological balance into a complex and unstable state. Budyko hypothesis is a powerful tool to characterize basin water balance and hydrological variations at long-term average scale. However, due to the absence of basin water storage change, applications of Budyko theory to the inter-annual and intra-annual time scales has been prohibited. The launch of GRACE gavimetry satellites provides a great opportunity to quantify terrestrial water storage change, which can be further introduced into the Budyko hypothesis to reveal the inter- and intra-annual response of basin water components under impacts of climate variability and/or human activities. This research targeted Hai River Basin (in China) and Murray-Darling Basin (in Australia), which have been identified with a continuous groundwater depletion trend as well as impacts by extreme climates in the past decade. This can help us to explore how annual or seasonal precipitation were redistributed to evapotranspiration and runoff via changing basin water storage. Moreover, the impacts of vegetation on annual basin water balance will be re-examined. Our results are expected to provide deep insights about the water cycle and hydrological behaviors for the targeted basins, as well as a proof for a consideration of basin water storage change into the Budyko model at inter- or intra-annual time steps.

  13. The Effect of Nitrogen Cross-Over on Water Balance Measurements in Proton Exchange Membrane Fuel Cell Using Constant Temperature Anemometry

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Berning, Torsten; Kær, Søren Knudsen

    2016-01-01

    A novel method to obtain an ad-hoc and real time electrical signal of the PEMFC water balance by employing a constant temperature hot wire anemometry has been developed by our fuel cell research group. In this work, the effect of nitrogen-cross over on this method is experimentally demonstrated...... by introducing 1% of nitrogen concentration to the dry and humidified hydrogen flow simulating the PEMFC anode outlet. The hot wire voltage is measured with and without nitrogen and it was slightly lower with the presence of nitrogen. The effect of the voltage reduction on the measured water balance is small...

  14. Implementation and evaluation of a monthly water balance model over the US on an 800 m grid

    Science.gov (United States)

    Hostetler, Steven W.; Alder, Jay R.

    2016-01-01

    We simulate the 1950–2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales.

  15. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    Science.gov (United States)

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven

  16. Water-balance response of Rhinella arenarum (Hensel, 1867 tadpoles to graduated increase in environmental osmolarity

    Directory of Open Access Journals (Sweden)

    L. Ferrari

    Full Text Available The water balance and the upper limit of osmotic tolerance of premetamorphic Rhinella arenarum larvae (Gosner's stage 26 was evaluated after semistatic incubation in electrolyte (NaCl and non-electrolyte (mannitol media following a protocol of progressively increased osmotic pressure. Wet and dry weights were measured to calculate the water content as a derived variable indicative of the hydric balance. Statistical analysis was performed using univariate and integrated multivariate analysis. Tadpoles survived in electrolyte and non-electrolyte solutions up to 200 mOsm. The discriminant function was the best tool to describe the responses of the animals to external environmental stress under experimental conditions. The results were compared with those obtained in previous studies using a protocol of acute exposure to the same media used in this study. It was concluded that a multivariate analysis is an appropriate approach to describe the responses of tadpoles to changes in the environmental physicochemical parameters, and b progressive and acute acclimation to the experimental solutions induced similar responses.

  17. Stable isotopes, δ18O and δ2H, in the study of water balance of Lake Massoko, Tanzania: Investigation of the exchange between lake and underground water

    International Nuclear Information System (INIS)

    Bergonzini, L.; Gibert, E.; Winckel, A.

    2002-01-01

    Full text: The stable oxygen and deuterium isotope compositions of a lake depend upon its water balance. Therefore the balance equations of stable isotopes, which imply calculation of the composition of evaporating moisture α E , provide information for assessing the water balance. In most cases, this approach is used to investigate the relationships between lakes and groundwater. Lake Massoko (8 deg. 20'S, 33 deg. 45'E, 870 m.a.s.l.) is a freshwater maar-lake without surface outlet. The lake surface and its runoff area cover 0.38 and 0.55 km 2 respectively. In contrast with the mean annual rainfall in the other parts of south Tanzania (1000-1200 mm y -1 ), the presence of Lake Malawi to the South, and the high ranges to the North (Mounts Poroto, Rungwe and Livingstone) imply local climatic features. Air masses overloaded with humidity bypassing Lake Malawi are submitted, especially in April, to ascending currents, producing rainfalls up to 2450 mm y -1 over Massoko area. Because of the evaporation rate from the lake's surface (around 2100 mm y -1 ) and without taking into account the runoff from the drainage basin, hydrological balance is positive and imply underground lost. One of most difficult points in the establishment of the isotope balances is the calculation of the composition of the evaporated water (δ E ), which requires an estimation of the isotopic composition of the water vapour in the atmosphere over the lake (δ Atm ). Without direct measurements, two ways can be used for the determination of the vapour composition (i) equilibrium with precipitation and reconstitution from them, or (ii) calculation from the balances of a terminal lake of the region. Both approaches are presented and compared, but only the second one allows physical solutions. δ Atm determined from Lake Rukwa hydrological and isotope balances has been used to calculate values for δ E over Lake Massoko. The estimation of δ Atm obtained from Lake Rukwa budgets presents a deuterium

  18. Characterizing the Water Balance of the Sooke Reservoir, British Columbia over the Last Century

    Directory of Open Access Journals (Sweden)

    Arelia T. Werner

    2015-03-01

    Full Text Available Infrastructure such as dams and reservoirs are critical water-supply features in several regions of the world. However, ongoing population growth, increased demand and climate variability/change necessitate the better understanding of these systems, particularly in terms of their long-term trends. The Sooke Reservoir (SR of British Columbia, Canada is one such reservoir that currently supplies water to ~300,000 people, and is subject to considerable inter and intra-annual climatic variations. The main objectives of this study are to better understand the characteristics of the SR through an in-depth assessment of the contemporary water balance when the basin was intensively monitored (1996–2005, to use standardized runoff to select the best timescale to compute the Standard Precipitation (SPI and Standard Precipitation Evaporation Indices (SPEI to estimate trends in water availability over 1919 to 2005. Estimates of runoff and evaporation were validated by comparing simulated change in storage, computed by adding inputs and subtracting outputs from the known water levels by month, to observed change in storage. Water balance closure was within ±11% of the monthly change in storage on average when excluding months with spill pre-2002. The highest evaporation, dry season (1998 and lowest precipitation, wet season (2000/2001 from the intensively monitored period were used to construct a worst-case scenario to determine the resilience of the SR to drought. Under such conditions, the SR could support Greater Victoria until the start of the third wet season. The SPEI and SPI computed on a three-month timescale had the highest correlation with the standardized runoff, R2 equaled 0.93 and 0.90, respectively. A trend toward drier conditions was shown by SPEI over 1919 to 2005, while moistening over the same period was shown by SPI, although trends were small in magnitude. This study contributes a validated application of SPI and SPEI, giving more

  19. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    Science.gov (United States)

    Gedir, Jay V; Cain, James W; Krausman, Paul R; Allen, Jamison D; Duff, Glenn C; Morgart, John R

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  20. Potential foraging decisions by a desert ungulate to balance water and nutrient intake in a water-stressed environment

    Science.gov (United States)

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  1. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    Directory of Open Access Journals (Sweden)

    Jay V Gedir

    Full Text Available Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons and moisture (autumn and winter during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains, female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental

  2. Water column conditions in a coastal lagoon near Jeddah, Red Sea

    Directory of Open Access Journals (Sweden)

    Alaa M. A. Albarakati

    2012-11-01

    Full Text Available Water column conditions in a lagoon near Jeddah are investigated on the basisof changes in potential energy. Three major factors including balance ofsurface heat at the air-sea interface, wind and tidal mixing are considered.A negative potential energy change dv/dt will developstratification, whereas positive dv/dt will tend to mix the watercolumn. The tidal effect is greater in summer with wind mixing showing nogreat variations. The buoyancy effect of the heat balance at the surface isnegative from April to October. This negative buoyancy effect will tend to developstratification but the positive contributions of wind and tide counteract this andthe water column remains mixed except in September and October, when a weakstratification may develop. Generally, the water column remains practically mixedthroughout the year. The change in heat content of the water column from mid-Aprilto mid-September is about 3.3 × 108 J. During this period the netheat input at the air interface is about 2.0 × 108 J, which isabout 40% less than the heat content of the water column, showing that the heat is advected towards the central area from the shallower periphery of the lagoon.

  3. Radiation chemistry of water at low dose rates with emphasis on the energy balance

    International Nuclear Information System (INIS)

    Fletcher, J.W.

    1982-09-01

    There has been considerable interest in absorbed dose water calorimetry. In order to accurately relate the temperature change to the absorbed dose, the energy balance of the overall chemistry of the system must be known. The radiolytic products and their yields are affected by dose rate, dose and added solutes. The yields of the radiolytic products have been calculated using a computer program developed at Atomic Energy of Canada. The chemical energy balance was determined as a function of dose for various dose rates and initial concentrations of hydrogen (H 2 ), oxygen (O 2 ), and hydrogen peroxide (H 2 O 2 ). In solutions containing H 2 O 2 or O 2 and H 2 the chemical reactions were exothermic; in other cases they were endothermic. Approach to equilibrium and equilbrium conditions are discussed

  4. EU Water Governance: Striking the Right Balance between Regulatory Flexibility and Enforcement?

    Directory of Open Access Journals (Sweden)

    Olivia O. Green

    2013-06-01

    Full Text Available Considering the challenges and threats currently facing water management and the exacerbation of uncertainty by climate change, the need for flexible yet robust and legitimate environmental regulation is evident. The European Union took a novel approach toward sustainable water resource management with the passage of the EU Water Framework Directive in 2000. The Directive promotes sustainable water use through long-term protection of available water resources, progressively reduces discharges of hazardous substances in ground and surface waters, and mitigates the effects of floods and droughts. The lofty goal of achieving good status of all waters requires strong adaptive capacity, given the large amounts of uncertainty in water management. Striking the right balance between flexibility in local implementation and robust and enforceable standards is essential to promoting adaptive capacity in water governance, yet achieving these goals simultaneously poses unique difficulty. Applied resilience science reveals a conceptual framework for analyzing the adaptive capacity of governance structures that includes multiple overlapping levels of control or coordination, information flow horizontally and vertically, meaningful public participation, local capacity building, authority to respond to changed circumstances, and robust monitoring, system feedback, and enforcement. Analyzing the Directive through the lens of resilience science, we highlight key elements of modern European water management and their contribution to the resilience of the system and conclude that the potential lack of enforcement and adequate feedback of monitoring results does not promote managing for resilience. However, the scale-appropriate governance aspects of the EU approach promotes adaptive capacity by enabling vertical and horizontal information flow, building local capacity, and delegating control at multiple relevant scales.

  5. Triple vessel coronary artery disease presenting as a markedly positive stress electrocardiographic test and a negative SPECT-TL scintigram: a case of balanced Ischemia

    Directory of Open Access Journals (Sweden)

    Eyal Herzog

    2011-09-01

    Full Text Available The presence of false negative nuclear stress test in the settings of positive electrocardiographic changes is a very unusual phenomenon and is usually secondary to balanced ischemia of the myocardial segments evaluated by SPECT-TL. We present a case of an 81- year old post-menopausal female who presented to her primary care physician for evaluation of a 6-week dyspnea on exertion and was referred to our institution for exercise stress test with Thallium SPECT with the objective of ruling out coronary artery disease and identifying possible areas of myocardial ischemia. The resting electrocardiogram was unremarkable and stress test evaluation was made. The patient was admitted to the cardiac care unit and coronary artery bypass grafting was successfully performed. The presence of false negative nuclear stress test in the settings of positive electrocardiographic changes is a very unusual phenomenon and is usually secondary to balanced ischemia of the myocardial segments evaluated by SPECT-TL. Patients undergoing stress tests with these characteristics should undergo careful evaluation and a high level of suspicion should be adopted for further diagnostic assessment of coronary artery disease.

  6. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    Science.gov (United States)

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María

    2014-05-01

    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  7. Land surface temperature representativeness in a heterogeneous area through a distributed energy-water balance model and remote sensing data

    Directory of Open Access Journals (Sweden)

    C. Corbari

    2010-10-01

    Full Text Available Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST for a distributed hydrological water balance model (FEST-EWB using LST from AHS (airborne hyperspectral scanner, with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model.

    Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity.

    Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in a hydrological process.

    The study site is the agricultural area of Barrax (Spain that is a heterogeneous area with a patchwork of irrigated and non irrigated vegetated fields and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.

  8. Water balance creates a threshold in soil pH at the global scale

    Science.gov (United States)

    Slessarev, E. W.; Lin, Y.; Bingham, N. L.; Johnson, J. E.; Dai, Y.; Schimel, J. P.; Chadwick, O. A.

    2016-12-01

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility—rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  9. Well-Balanced Second-Order Approximation of the Shallow Water Equations With Friction via Continuous Galerkin Finite Elements

    Science.gov (United States)

    Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.

    2017-12-01

    The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well-balanced

  10. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model

    NARCIS (Netherlands)

    Marhaento, Hero; Booij, Martijn J.; Rientjes, T. H.M.; Hoekstra, Arjen Y.

    2017-01-01

    Changes in the water balance of the Samin catchment (277.9 km2) on Java, Indonesia, can be attributed to land use change using the Soil Water Assessment Tool model. A baseline-altered method was used in which the simulation period 1990–2013 was divided into 4 equal periods to represent baseline

  11. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire sensor...... can be directly converted into the fuel cell water balance. In this work an ex-situ experimental investigation is performed to examine the effect of the wire diameter and the outlet pipe diameter on the voltage signal. For a laboratory fuel cell where the mass flow rate the anode outlet is small...... number Nu range between m = 0.137 and m = 0.246. In general, it is shown that applying hot wire anemometry yields in fact very clear voltage readings with high frequency, and it can be used as a diagnosis tool in various fuel cell applications....

  12. Modeling of seasonal water balance for crop production in Bangladesh with implications for future projection

    Directory of Open Access Journals (Sweden)

    Mohammed R. Karim

    2012-05-01

    Full Text Available Expecting the projected regional or global climate change, weather could have a significant effect on soil moisture and thereby affecting the plant growth. Water deficiency is considered as one of the major climatic restraints for crop production in Bangladesh, especially in the dry season. To better understand the crop responses to moisture variation, a quantitative analysis is done for major water balance components named, potential evapotranspiration (PET, actual evapotranspiration (AET, soil moisture storage (ST, water deficiency (WD and water surplus (WS with the use of Thornthwaite monthly water balance program. Analyses were carried out for three different seasons, together with interannual variability for 12 major rice growing districts of Bangladesh representing the north, central, southern and coastal zones. Hindcasted monthly average surface air temperature and precipitation data were collected from Bangladesh meteorological department during 1986 to 2006. Results suggested, trend of PET was same in every station and generally higher values were observed in the month of July and August. Khulna, the coastal station had the highest annual average PET of 1369 mm. The lowest annual AET of 1108 mm was estimated for Teknaf, while Dinajpur stood in second lowest position. ST was found almost at field capacity from July to September and, the southern station Chittagong experienced the highest average monthly ST. Maximum WD was found in Bogra and second highest shortage was in Dinajpur. The assessment of average WD of 178 mm yr-1 in northern Bangladesh reflected the worst situation among all regions, besides focusing the winter as the most crucial season regarding the water scarcity. Least amount of WS was noticed for the southern station Khulna. Significant positive relationship (p<0.05 between soil moisture and current rice yields proved the importance of surplus water conservation for the drought prone zone of Bangladesh. To boost up the

  13. N balance of different N application rate of winter wheat under water-saving condition

    International Nuclear Information System (INIS)

    Li Shijuan; Zhu Yeping; Sun Kaimeng; E Yue

    2003-01-01

    N uptake and N balance of different N rate applied to wheat under water-saving condition were investigated with 15 N tracer technique and the dynamic N uptake of economic N treatment under two irrigation conditions was compared. The results showed that (1) compared with conventional n treatment, the N loss of economic N treatment reduced while NUE and N residue in soil improved under water-saving condition; (2) Use efficiency of fertilizer applied as basal fertilizer was higher than that as top-dressing fertilizer under water-saving condition; (3) The fertilizer N residue rate was from 29% to 41%, and 60% of N residue, which distributed in 1 m depth soil concentrated in 0-20 cm surface layer; (4) In whole growing stage of wheat, fertilizer N hadn't leach to 130 cm depth; (5) NUE of economic N treatment under conventional irrigation decreased by 16.6% compared with the same n treatment under water-saving condition

  14. Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions.

    Science.gov (United States)

    Rahmati, Mitra; Davarynejad, Gholam Hossein; Génard, Michel; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2015-01-01

    In this study the sensitivity of peach tree (Prunus persica L.) to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration) as well as carbon (C) storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The C source was estimated through the leaf area dynamics and leaf photosynthesis rate along the season. The C sink was estimated for maintenance respiration and growth of shoots and fruits. Water stress significantly reduced gas exchange, and fruit, and shoot growth, but increased fruit dry matter concentration. Growth was more affected by water deficit than photosynthesis, and shoot growth was more sensitive to water deficit than fruit growth. Reduction of shoot growth was associated with a decrease of shoot elongation, emergence, and high shoot mortality. Water scarcity affected tree C assimilation due to two interacting factors: (i) reduction in leaf photosynthesis (-23% and -50% under moderate (MS) and severe (SS) water stress compared to low (LS) stress during growth season) and (ii) reduction in total leaf area (-57% and -79% under MS and SS compared to LS at harvest). Our field data analysis suggested a Ψstem threshold of -1.5 MPa below which daily net C gain became negative, i.e. C assimilation became lower than C needed for respiration and growth. Negative C balance under MS and SS associated with decline of trunk carbohydrate reserves--may have led to drought-induced vegetative mortality.

  15. A Case Study and Balance Sheet Approach to Unemployment.

    Science.gov (United States)

    Hesketh, Beryl; And Others

    1987-01-01

    Describes positive and negative aspects of employment and unemployment in a balance sheet framework. Discusses the value of the balance sheet approach in understanding individual differences in reactions to unemployment. (Author/KS)

  16. Estimates of Ice Sheet Mass Balance from Satellite Altimetry: Past and Future

    Science.gov (United States)

    Zwally, H. Jay; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the 20% uncertainty in current mass balance corresponds to 1.6 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. A principal purpose of obtaining ice sheet elevation changes from satellite altimetry has been estimation of the current ice sheet mass balance. Limited information on ice sheet elevation change and their implications about mass balance have been reported by several investigators from radar altimetry (Seasat, Geosat, ERS-1&2). Analysis of ERS-1&2 data over Greenland for 7 years from 1992 to 1999 shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. Observed seasonal and interannual variations in ice surface elevation are larger than previously expected because of seasonal and interannUal variations in precipitation, melting, and firn compaction. In the accumulation zone, the variations in firn compaction are modeled as a function of temperature leaving variations in precipitation and the mass balance trend. Significant interannual variations in elevation in some locations, in particular the difference in trends from 1992 to 1995 compared to 1995 to 1999, can be explained by changes in precipitation over Greenland. Over the 7 years, trends in elevation are mostly positive at higher elevations and negative at lower elevations. In addition, trends for the winter seasons (from a trend analysis through the average winter elevations) are more positive than the corresponding trends for the summer. At lower elevations, the 7-year trends in some locations are strongly negative for summer and near zero or slightly positive for winter. These

  17. Restoration of the water balance in the lignite mining areas of central Germany and Lusatia; Sanierung des Wasserhaushalts in den Braunkohlenbergbaugebieten Mitteldeutschlands und der Lausitz

    Energy Technology Data Exchange (ETDEWEB)

    Benthaus, Friedrich-Carl [Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft mbH (LMBV), Senftenberg (Germany). Ingenieurbereich Sanierung, Strategie und Entwicklung; Scholz, Eckhard [Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft mbH (LMBV), Senftenberg (Germany). Ingenieurbereich Sanierung; Uhlig, Christiane [Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft mbH (LMBV), Senftenberg (Germany). Ingenieurbereich Sanierung, Geotechnik Mitteldeutschland; Heine, Rudi [Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft mbH (LMBV), Senftenberg (Germany). Ingenieurbereich Sanierung, Planung Wasserbau Lausitz; Totsche, Oliver [Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft mbH (LMBV), Senftenberg (Germany). Ingenieurbereich Sanierung, Geotechnik Lausitz

    2010-10-15

    The lignite mining industry in central Germany and Lusatia has interfered with the water balance in the regions by long-standing lowering of the ground water and changing of the surface waters. The restoration is aimed at re-establishment of a largely self-regulating water balance by flooding and aftercare. The planning of the linkage of the 220 lakes in the aftermath of the mining industry to the public waterway network should be based on the conditions prevailing after abandonment of the mining industry. Innovative geochemical and biological processes are being further developed to improve the water quality, which is characterised by oxidation of the iron sulphides. (orig.)

  18. Balance confidence is related to features of balance and gait in individuals with chronic stroke

    Science.gov (United States)

    Schinkel-Ivy, Alison; Wong, Jennifer S.; Mansfield, Avril

    2016-01-01

    Reduced balance confidence is associated with impairments in features of balance and gait in individuals with sub-acute stroke. However, an understanding of these relationships in individuals at the chronic stage of stroke recovery is lacking. This study aimed to quantify relationships between balance confidence and specific features of balance and gait in individuals with chronic stroke. Participants completed a balance confidence questionnaire and clinical balance assessment (quiet standing, walking, and reactive stepping) at 6 months post-discharge from inpatient stroke rehabilitation. Regression analyses were performed using balance confidence as a predictor variable and quiet standing, walking, and reactive stepping outcome measures as the dependent variables. Walking velocity was positively correlated with balance confidence, while medio-lateral centre of pressure excursion (quiet standing) and double support time, step width variability, and step time variability (walking) were negatively correlated with balance confidence. This study provides insight into the relationships between balance confidence and balance and gait measures in individuals with chronic stroke, suggesting that individuals with low balance confidence exhibited impaired control of quiet standing as well as walking characteristics associated with cautious gait strategies. Future work should identify the direction of these relationships to inform community-based stroke rehabilitation programs for individuals with chronic stroke, and determine the potential utility of incorporating interventions to improve balance confidence into these programs. PMID:27955809

  19. Work-life balance, job satisfaction and turnover intention amongst ...

    African Journals Online (AJOL)

    Work-life balance, job satisfaction and turnover intention amongst ... Employee turnover has signifi cant costs and negative consequences for ... However, no interaction effect was observed between overall work-life balance and job ...

  20. Using Balanced Time Perspective to Explain Well-Being and Planning in Retirement

    Science.gov (United States)

    Mooney, Anna; Earl, Joanne K.; Mooney, Carl H.; Bateman, Hazel

    2017-01-01

    The notion of whether people focus on the past, present or future, and how it shapes their behavior is known as Time Perspective. Fundamental to the work of two of its earliest proponents, Zimbardo and Boyd (2008), was the concept of balanced time perspective and its relationship to wellness. A person with balanced time perspective can be expected to have a flexible temporal focus of mostly positive orientations (past-positive, present-hedonistic, and future) and much less negative orientations (past-negative and present-fatalistic). This study measured deviation from balanced time perspective (DBTP: Zhang et al., 2013) in a sample of 243 mature adults aged 45 to 91 years and explored relationships to Retirement Planning, Depression, Anxiety, Stress, Positive Mood, and Negative Mood. Results indicate that DBTP accounts for unexplained variance in the outcome measures even after controlling for demographic variables. DBTP was negatively related to Retirement Planning and Positive Mood and positively related to Depression, Anxiety, Stress, and Negative Mood. Theoretical and practical implications regarding balanced time perspective are discussed. PMID:29081757

  1. Using Balanced Time Perspective to Explain Well-Being and Planning in Retirement.

    Science.gov (United States)

    Mooney, Anna; Earl, Joanne K; Mooney, Carl H; Bateman, Hazel

    2017-01-01

    The notion of whether people focus on the past, present or future, and how it shapes their behavior is known as Time Perspective. Fundamental to the work of two of its earliest proponents, Zimbardo and Boyd (2008), was the concept of balanced time perspective and its relationship to wellness. A person with balanced time perspective can be expected to have a flexible temporal focus of mostly positive orientations (past-positive, present-hedonistic, and future) and much less negative orientations (past-negative and present-fatalistic). This study measured deviation from balanced time perspective (DBTP: Zhang et al., 2013) in a sample of 243 mature adults aged 45 to 91 years and explored relationships to Retirement Planning, Depression, Anxiety, Stress, Positive Mood, and Negative Mood. Results indicate that DBTP accounts for unexplained variance in the outcome measures even after controlling for demographic variables. DBTP was negatively related to Retirement Planning and Positive Mood and positively related to Depression, Anxiety, Stress, and Negative Mood. Theoretical and practical implications regarding balanced time perspective are discussed.

  2. Using Balanced Time Perspective to Explain Well-Being and Planning in Retirement

    Directory of Open Access Journals (Sweden)

    Anna Mooney

    2017-10-01

    Full Text Available The notion of whether people focus on the past, present or future, and how it shapes their behavior is known as Time Perspective. Fundamental to the work of two of its earliest proponents, Zimbardo and Boyd (2008, was the concept of balanced time perspective and its relationship to wellness. A person with balanced time perspective can be expected to have a flexible temporal focus of mostly positive orientations (past-positive, present-hedonistic, and future and much less negative orientations (past-negative and present-fatalistic. This study measured deviation from balanced time perspective (DBTP: Zhang et al., 2013 in a sample of 243 mature adults aged 45 to 91 years and explored relationships to Retirement Planning, Depression, Anxiety, Stress, Positive Mood, and Negative Mood. Results indicate that DBTP accounts for unexplained variance in the outcome measures even after controlling for demographic variables. DBTP was negatively related to Retirement Planning and Positive Mood and positively related to Depression, Anxiety, Stress, and Negative Mood. Theoretical and practical implications regarding balanced time perspective are discussed.

  3. Water-filled training tubes increase core muscle activation and somatosensory control of balance during squat.

    Science.gov (United States)

    Ditroilo, Massimiliano; O'Sullivan, Rory; Harnan, Brian; Crossey, Aislinn; Gillmor, Beth; Dardis, William; Grainger, Adam

    2018-09-01

    This study examined trunk muscle activation, balance and proprioception while squatting with a water-filled training tube (WT) and a traditional barbell (BB), with either closed (CE) or open eyes (OE). Eighteen male elite Gaelic footballers performed an isometric squat under the following conditions: BB-OE, BB-CE, WT-OE and WT-CE. The activity of rectus abdominis (RA), external oblique (EO) and multifidus (MF) was measured using electromyography, along with sway of the centre of pressure (CoP) using a force platform. Only the EO and the MF muscles exhibited an increased activity with WT (p velocity and range of the CoP increased significantly with WT (p velocity of the CoP was marginally reduced (d = 0.29). WT elicited a greater level core muscle activation and created a greater challenge to postural stability when compared to a BB. It appears that WT does not benefit from vision but emphasises the somatosensory control of balance. The use of WT may be beneficial in those sports requiring development of somatosensory/proprioceptive contribution to balance control.

  4. Negative effects of sugar-sweetened beverages

    Directory of Open Access Journals (Sweden)

    Nataša Fidler Mis

    2013-10-01

    Full Text Available The rising prevalence of obesity in children has been linked in part to the consumption of sugary drinks (sugar-sweetened beverages (SSBs and fruit juices. They have high sugar content, low satiety effect and incomplete compensation for energy, so they pose a risk for promoting positive energy balance. Each extra serving of SSBs children consume per day increases their chance of becoming obese by 60 %. Other main negative health effects of sugary drinks are: the development of preference for sweet taste, poor nutrient supply, lower mineral density, bone fractures, development of dental caries, high blood pressure, cardiovascular disease and type 2 diabetes. SSBs are the leading source of added sugar in the diet of Slovenian adolescents. Water does not contain energy and may support a healthy weight status if it replaces sugary drinks. Cutting back on SSBs can control weight in children and adults. It is necessary that present public health strategies include education about beverage intake. Consumption of SSBs should be discouraged, whereas promoting the consumption of water should be made a priority.

  5. Testing the generalized complementary relationship of evaporation with continental-scale long-term water-balance data

    Science.gov (United States)

    Szilagyi, Jozsef; Crago, Richard; Qualls, Russell J.

    2016-09-01

    The original and revised versions of the generalized complementary relationship (GCR) of evaporation (ET) were tested with six-digit Hydrologic Unit Code (HUC6) level long-term (1981-2010) water-balance data (sample size of 334). The two versions of the GCR were calibrated with Parameter-Elevation Regressions on Independent Slopes Model (PRISM) mean annual precipitation (P) data and validated against water-balance ET (ETwb) as the difference of mean annual HUC6-averaged P and United States Geological Survey HUC6 runoff (Q) rates. The original GCR overestimates P in about 18% of the PRISM grid points covering the contiguous United States in contrast with 12% of the revised version. With HUC6-averaged data the original version has a bias of -25 mm yr-1 vs the revised version's -17 mm yr-1, and it tends to more significantly underestimate ETwb at high values than the revised one (slope of the best fit line is 0.78 vs 0.91). At the same time it slightly outperforms the revised version in terms of the linear correlation coefficient (0.94 vs 0.93) and the root-mean-square error (90 vs 92 mm yr-1).

  6. Hydrological functioning and water balance in a heavily modified hydrographic system

    Science.gov (United States)

    Carbonnel, Vincent; Brion, Natacha; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    Rivers and canals are often the location for the historical settlement of cities and the backbone for their expansion, as they permit the transport of goods and people, the access to water for industrial activities and energy production, and the evacuation of the domestic and industrial wastewaters. In turn, human activities can result in modifications of the natural river systems to allow for instance ship transport or protection against flooding. The complex interconnected hydrographic network composed of the Zenne and the parallel Charleroi-Brussels-Scheldt Canal, which supports the development of the economy and urbanization of Brussels Metropolitan Area (Belgium), is a good example of such an altered system. The natural water course has been profoundly modified by the deviation of rivers to feed the canal, the control of the water flow in the canal by locks and pumps and the overflow exchange of water between the river and the canal for flood protection purposes. Also, the functioning of this system is strongly impacted by urban hydrology in Brussels, which results in amounts of wastewater discharged in the Zenne River that are nearly equivalent to the natural riverine flow. Water and water quality management in such complex and altered systems correspond to difficult tasks. They require, as a first step, a deep understanding of their hydrological functioning. Building an accurate water budget is also a necessary step in the investigation of the pollution sources, sinks, dynamics and mass-balance. In order to assess the water quality and provide insights for water management in the Zenne-Canal hydrographic network (cf. other contributions in this session), we established a detailed box-model representation of the water budget for the whole system, with a particular interest on the importance and the effects of the exchanges of water between the river and the canal. A particularity of this study is that, in contrast to the widespread use of hydrological

  7. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste......-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. The hot wire sensor is placed into a binary mixture of hydrogen and water vapour, and the voltage signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC. A central question...

  8. Regional water balance for the Waste Isolation Pilot Plant (WIPP) site and surrounding area

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1985-12-01

    The WIPP water-balance study area defined here comprises approx.2000 mi 2 in Eddy and Lea Counties, southeastern New Mexico. Inflows to the study area are precipitation (roughly 1.47 x 10 6 ac-ft/y), surface water (roughly 1.1 x 10 5 ac-ft/y), water imported by municipalities and industries (roughly 3 x 10 4 ac-ft/y), and ground water (volume not estimated). Outflows from the area are evapotranspiration (roughly 1.5 x 10 6 ac-ft/y), surface water (roughly 1.2 x 10 5 ac-ft/y), and possibly some ground water. The volume of surface and ground water in storage in Nash Draw has increased since the beginning of potash refining. Regional ground-water flow in aquifers above the Salado Formation is from the northeast to the southwest, although this pattern is interrupted by Clayton Basin, Nash Draw, and San Simon Swale. The Pecos River is the only important perennial stream. Most of the area has no integrated surface-water drainage. The available data suggest that approx.1600 mi 2 of the study area are hydrologically separate from Nash Draw and the WIPP site. Ground water north of Highway 180 apparently discharges into Clayton Basin and evaporates. Water in San Simon Swale apparently percolates downward and flows to the southeast. Data are inadequate to create a water budget for the Nash Draw-WIPP site hydrologic system alone, although an attempt to do so can provide guidance for further study

  9. Water flow and energy balance for a tropical dry semideciduous forest

    Science.gov (United States)

    Andrade, J. L.; Garruña-Hernandez, R.; Leon-Palomo, M.; Us-Santamaria, R.; Sima, J. L.

    2013-05-01

    Tropical forests cool down locally because increase water evaporation from the soil to the atmosphere, reduce albedo and help forming clouds that reflect solar radiation back to the atmosphere; this, aligned to the carbon catchment, increase forests value. We will present an estimation of the sap flow and energy balance for the tropical dry semideciduous forest at Kiuic, Yucatan, Mexico during a year. We use a meteorological tower equipped with a rain gauge, temperature and relative humidity, heat flow plates, thermocouples and volumetric soil water content. We recorded net radiation and soil heat flux and estimated sensible heat and latent heat. Besides, we estimated latent heat by measuring sap flow directly in tres using disispation constant heat probes during the rainy season. Results show the influence of the seasonality on net radiation, air temperatura and vapor pressure deficit, because during the dry season his variables were higher and with more duation than during the rainy and early dry season. Sap flow was different for trees belonging to the family Fabaceae compared to trees from other families.

  10. Balancing the risks and benefits of drinking water disinfection: disability adjusted life-years on the scale.

    OpenAIRE

    Havelaar, A H; De Hollander, A E; Teunis, P F; Evers, E G; Van Kranen, H J; Versteegh, J F; Van Koten, J E; Slob, W

    2000-01-01

    To evaluate the applicability of disability adjusted life-years (DALYs) as a measure to compare positive and negative health effects of drinking water disinfection, we conducted a case study involving a hypothetical drinking water supply from surface water. This drinking water supply is typical in The Netherlands. We compared the reduction of the risk of infection with Cryptosporidium parvum by ozonation of water to the concomitant increase in risk of renal cell cancer arising from the produc...

  11. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers

    Science.gov (United States)

    MacDonald, Lauren A.; Wolfe, Brent B.; Turner, Kevin W.; Anderson, Lesleigh; Arp, Christopher D.; Birks, Jean; Bouchard, Frédéric; Edwards, Thomas W.D.; Farquharson, Nicole; Hall, Roland I.; McDonald, Ian; Narancic, Biljana; Ouimet, Chantal; Pienitz, Reinhard; Tondu, Jana; White, Hilary

    2017-01-01

    Numerous studies utilizing remote sensing imagery and other methods have documented that thermokarst lakes are undergoing varied hydrological transitions in response to recent climate changes, from surface area expansion to drainage and evaporative desiccation. Here, we provide a synthesis of hydrological conditions for 376 lakes of mainly thermokarst origin across high-latitude North America. We assemble surface water isotope compositions measured during the past decade at five lake-rich landscapes including Arctic Coastal Plain (Alaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), northwestern Hudson Bay Lowlands (Manitoba), and Nunavik (Quebec). These landscapes represent the broad range of thermokarst environments by spanning gradients in meteorological, permafrost, and vegetation conditions. An isotope framework was established based on flux-weighted long-term averages of meteorological conditions for each lake to quantify water balance metrics. The isotope composition of source water and evaporation-to-inflow ratio for each lake were determined, and the results demonstrated a substantial array of regional and subregional diversity of lake hydrological conditions. Controls on lake water balance and how these vary among the five landscapes and with differing environmental drivers are assessed. Findings reveal that lakes in the Hudson Bay Lowlands are most vulnerable to evaporative desiccation, whereas those in Nunavik are most resilient. However, we also identify the complexity in predicting hydrological responses of these thermokarst landscapes to future climate change.

  12. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.

    2009-09-28

    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  13. Water Balance of the Eğirdir Lake and the Influence of Budget Components, Isparta,Turkey

    Directory of Open Access Journals (Sweden)

    Ayşen DAVRAZ

    2014-09-01

    Full Text Available Water budget of lakes must be determined regarding to their sustainable usage as for all water resources. One of the major problems in the management of lakes is the estimation of water budget components. The lack of regularly measured data is the biggest problem in calculation of hydrological balance of a lake. A lake water budget is computed by measuring or estimating all of the lake’s water gains and losses and measuring the corresponding changes in the lake volume over the same time period. Eğirdir Lake is one of the most important freshwater lakes in Turkey and is the most important surface water resources in the region due to different usages. Recharge of the Eğirdir Lake is supplied from especially precipitation, surface and subsurface water inflow. The discharge components of the lake are evaporation and water intake for irrigation, drinking and energy purposes. The difference between recharge and discharge of the lake was calculated as 7.78 hm3 for 1970-2010 period. According to rainfall, evaporation and the lake water level relations, rainfall is dominantly effective on the lake water level such as direct recharge to the lake and indirect recharge with groundwater flow

  14. Water Intake in a Sample of Greek Adults Evaluated with the Water Balance Questionnaire (WBQ and a Seven-Day Diary

    Directory of Open Access Journals (Sweden)

    Adelais Athanasatou

    2016-09-01

    Full Text Available Awareness on the importance of hydration in health has created an unequivocal need to enrich knowledge on water intake of the general population and on the contribution of beverages to total water intake. We evaluated in the past water intake in a sample of Greek adults using two approaches. In study A, volunteers completed the Water Balance Questionnaire (WBQ, a food frequency questionnaire, designed to evaluate water intake (n = 1092; 48.1% males; 43 ± 18 years. In study B, a different population of volunteers recorded water, beverage, and food intake in seven-day diaries (n = 178; 51.1% males; 37 ± 12 years. Herein, data were reanalyzed with the objective to reveal the contribution of beverages in total water intake with these different methodologies. Beverage recording was grouped in the following categories: Hot beverages; milk; fruit and vegetable juices; caloric soft drinks; diet soft drinks; alcoholic drinks; other beverages; and water. Total water intake and water intake from beverages was 3254 (SE 43 mL/day and 2551 (SE 39 mL/day in study A; and 2349 (SE 59 mL/day and 1832 (SE 56 mL/day in study B. In both studies water had the highest contribution to total water intake, approximately 50% of total water intake, followed by hot beverages (10% of total water intake and milk (5% of total water intake. These two approaches contribute information on water intake in Greece and highlight the contribution of different beverages; moreover, they point out differences in results obtained from different methodologies attributed to limitations in their use.

  15. Public perceptions of cancer: a qualitative study of the balance of positive and negative beliefs.

    Science.gov (United States)

    Robb, Kathryn A; Simon, Alice E; Miles, Anne; Wardle, Jane

    2014-07-10

    Cancer's insidious onset and potentially devastating outcomes have made it one of the most feared diseases of the 20th century. However, advances in early diagnosis and treatment mean that death rates are declining, and there are more than 30 million cancer survivors worldwide. This might be expected to result in more sanguine attitudes to the disease. The present study used a qualitative methodology to provide an in-depth exploration of attitudes to cancer and describes the balance of negative and positive perspectives. A qualitative study using semistructured interviews with thematic analysis. A university in London, UK. 30 participants (23-73 years), never themselves diagnosed with cancer. Accounts of cancer consistently incorporated negative and positive views. In almost all respondents, the first response identified fear, trauma or death. However, this was followed-sometimes within the same sentence-by acknowledgement that improvements in treatment mean that many patients can survive cancer and may even resume a normal life. Some respondents spontaneously reflected on the contradictions, describing their first response as a 'gut feeling' and the second as a more rational appraisal-albeit one they struggled to believe. Others switched perspective without apparent awareness. People appear to be 'in two minds' about cancer. A rapid, intuitive sense of dread and imminent death coexists with a deliberative, rational recognition that cancer can be a manageable, or even curable, disease. Recognising cancer's public image could help in the design of effective cancer control messages. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Cyber-physical system for a water reclamation plant: Balancing aeration, energy, and water quality to maintain process resilience

    Science.gov (United States)

    Zhu, Junjie

    Aeration accounts for a large fraction of energy consumption in conventional water reclamation plants (WRPs). Although process operations at older WRPs can satisfy effluent permit requirements, they typically operate with excess aeration. More effective process controls at older WRPs can be challenging as operators work to balance higher energy costs and more stringent effluent limitations while managing fluctuating loads. Therefore, understandings of process resilience or ability to quickly return to original operation conditions at a WRP are important. A state-of-art WRP should maintain process resilience to deal with different kinds of perturbations even after optimization of energy demands. This work was to evaluate the applicability and feasibility of cyber-physical system (CPS) for improving operation at Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) Calumet WRP. In this work, a process model was developed and used to better understand the conditions of current Calumet WRP, with additional valuable information from two dissolved oxygen field measurements. Meanwhile, a classification system was developed to reveal the pattern of historical influent scenario based on cluster analysis and cross-tabulation analysis. Based on the results from the classification, typical process control options were investigated. To ensure the feasibility of information acquisition, the reliability and flexibility of soft sensors were assessed to typical influent conditions. Finally, the process resilience was investigated to better balance influent perturbations, energy demands, and effluent quality for long-term operations. These investigations and evaluations show that although the energy demands change as the influent conditions and process controls. In general, aeration savings could be up to 50% from the level of current consumption; with a more complex process controls, the saving could be up to 70% in relatively steady-state conditions and at least 40

  17. Comparison of effects of a proprioceptive exercise program in water and on land the balance of chronic stroke patients.

    Science.gov (United States)

    Han, Seul Ki; Kim, Myung Chul; An, Chang Sik

    2013-10-01

    [Purpose] The purpose of this study was to compare changes in balance ability of land exercise and underwater exercise on chronic stroke patients. [Subjects] A total of 60 patients received exercise for 40 minutes, three times a week, for 6 weeks. [Methods] Subjects from both groups performed general conventional treatment during the experimental period. In addition, all subjects engaged in extra treatment sessions. This extra treatment consisted of unstable surface exercise. The underwater exercise group used wonder boards in a pool (depth 1.1m, water temperature 33.5 °C, air temperature 27 °C) dedicated to underwater exercise, and the land exercise group used balance mats. [Result] The joint position sense, sway area, Berg Balance Scale showed significant improvements in both groups. However, the joint position sense test, sway area, and Berg Balance Scale showed there was more improvement in the underwater exercise group than in the land exercise group. [Conclusion] The results suggest that underwater exercise is more effective than land exercise at improving the joint position sense and balance of stroke patients.

  18. Corrosion product balances for the Ringhals PWR plants based on extensive fuel crud and water chemistry measurements

    International Nuclear Information System (INIS)

    Lundgren, K.; Wikmark, G.; Bengtsson, B.

    2010-01-01

    The corrosion product balance in a PWR plant is of great importance for the fuel performance as well as for the radiation field buildup. This balance is of special concern in connection to steam generator replacement (SGR) and power uprate projects. The Ringhals PWRs are all of Westinghouse design. Two of the plants have performed Steam Generator Replacement (SGR) to I-690 SG tubes and such a replacement is being planned in the third and last unit in 2011. Two of the units are in different phases of power uprate projects. The plants are all on 10-14-months cycles operating with medium to high fuel duty. Water chemistry is controlled by a pH300 in the range ∼7.2 to 7.4 from beginning of cycle to end of cycle (BOC-EOC) in the units with new SGs while kept at a coordinated pH of 7.2 in the one still using I-600. The maximum Li content has recently been increased to about 4.5 to 5 ppm in all units. In order to be able to improve the assessment of corrosion product balances in the plants, comprehensive fuel crud measurements were performed in 2007. Improved integrated reactor water sampling techniques have also been introduced in order to make accurate mass balances possible. The corrosion products covered in the study are the main constituents, Ni, Fe and Cr in the primary circuit Inconel and stainless steel, together with Co. The activated corrosion products, Co-58, Co-60, Cr-51, Fe-59 and Mn-54, are all mainly produced through neutron irradiation of the covered corrosion products. The main results of the corrosion product balances are presented. Observed differences between the plants, indicating significant impact of pH control and SG tube materials, are presented and discussed. The importance of accurate sampling techniques is especially addressed in this paper. (author)

  19. Assimilation of a thermal remote sensing-based soil moisture proxy into a root-zone water balance model

    Science.gov (United States)

    Crow, W. T.; Kustas, W. P.

    2006-05-01

    Two types of Soil Vegetation Atmosphere Transfer (SVAT) modeling approaches are commonly applied to monitoring root-zone soil water availability. Water and Energy Balance (WEB) SVAT modeling are based forcing a prognostic water balance model with precipitation observations. In constrast, thermal Remote Sensing (RS) observations of canopy radiometric temperatures can be integrated into purely diagnostic SVAT models to predict the onset of vegetation water stress due to low root-zone soil water availability. Unlike WEB-SVAT models, RS-SVAT models do not require observed precipitation. Using four growings seasons (2001 to 2004) of profile soil moisture, micro-meteorology, and surface radiometric temperature observations at the USDA's OPE3 site, root-zone soil moisture predictions made by both WEB- and RS-SVAT modeling approaches are intercompared with each other and availible root- zone soil moisture observations. Results indicate that root-zone soil moisture estimates derived from a WEB- SVAT model have slightly more skill in detecting soil moisture anomalies at the site than comporable predictions from a competing RS-SVAT modeling approach. However, the relative advantage of the WEB-SVAT model disappears when it is forced with lower-quality rainfall information typical of continental and global-scale rainfall data sets. Most critically, root-zone soil moisture errors associated with both modeling approaches are sufficiently independent such that the merger of both information from both proxies - using either simple linear averaging or an Ensemble Kalman filter - creates a merge soil moisture estimate that is more accurate than either of its parent components.

  20. Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils

    Science.gov (United States)

    Fu, Jin; Gasche, Rainer; Wang, Na; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2017-04-01

    The impacts of climate and management on the water balance and nutrient leaching of montane grasslands have rarely been investigated, though such ecosystems may represent a major source for ground and surface water nitrates. In this study nitrogen (nitrate, ammonium, dissolved organic nitrogen) and dissolved organic carbon leaching as well as water balance components (precipitation, evapotranspiration, and groundwater recharge) were quantified (2012-2014) by means of replicated (N=3 per site/ treatment) measurements of weighable grassland lysimeters (1 m2 area, 1.2 m soil depth) at three sites (E860: 860 m a.s.l., E770: 770 m a.s.l. and E600: 600 m a.s.l.) in the pre-alpine region of S-Germany. Two grassland management strategies were investigated: a) intensive management with 5 cuts per year and cattle slurry application rates of 280 kg N ha-1 yr-1, and b) extensive management with 3 cuts per year and cattle slurry application rates of 56 kg N ha-1 yr-1. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the E860 site, i.e. the site with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). On the other hand groundwater recharge was substantial lower at E600 (-440.9 mm) as compared to E860. Compared to climate, impacts of grassland management on water balance components were negligible. However, intensive management significantly increased mean total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha-1 year-1 (range: 0.5-6.0 kg N ha-1 year-1) to 4.8 kg N ha-1 year-1 (range: 0.9-12.9 kg N ha-1 year-1). N leaching losses were dominated by nitrate (64.7 %) and equally less by ammonium (14.6 %) and DON (20.7 %). The rather low rates of N leaching (0.8 - 6.9 % of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest

  1. A simulation study of the effect of soil water balance andwater stress on winter wheat production under different climate change scenarios

    Czech Academy of Sciences Publication Activity Database

    Eitzinger, J.; Šťastná, M.; Žalud, Z.; Dubrovský, Martin

    2003-01-01

    Roč. 61, - (2003), s. 195-217 ISSN 0378-3774 R&D Projects: GA ČR GA521/99/D040 Institutional research plan: CEZ:AV0Z3042911 Keywords : water stress effect * soil water balance * DSSAT crop model Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.865, year: 2003

  2. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.

    Directory of Open Access Journals (Sweden)

    Christopher Hepworth

    Full Text Available Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development.

  3. Three-dimensional core analysis on a super fast reactor with negative local void reactivity

    International Nuclear Information System (INIS)

    Cao Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi

    2009-01-01

    Keeping negative void reactivity throughout the cycle life is one of the most important requirements for the design of a supercritical water-cooled fast reactor (super fast reactor). Previous conceptual design has negative overall void reactivity. But the local void reactivity, which is defined as the reactivity change when the coolant of one fuel assembly disappears, also needs to be kept negative throughout the cycle life because the super fast reactor is designed with closed fuel assemblies. The mechanism of the local void reactivity is theoretically analyzed from the neutrons balance point of view. Three-dimensional neutronics/thermal-hydraulic coupling calculation is employed to analyze the characteristics of the super fast reactor including the local void reactivity. Some configurations of the core are optimized to decrease the local void reactivity. A reference core is successfully designed with keeping both overall and local void reactivity negative. The maximum local void reactivity is less than -30 pcm

  4. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma

    2017-08-15

    Disinfection methods like chlorination are increasingly used to sanitize the water, equipment, tools and surfaces in aquaculture facilities. This is to improve water quality, and to maintain a hygienic environment for the well-being of aquatic organisms. However, chlorination can result in formation of regulated disinfection byproducts (DBPs) that can be carcinogenic and toxic. This study aims to evaluate if an optimal balance can be achieved between minimal regulated DBP formation and effective microbial inactivation with either chlorination or monochloramination for application in the Red Sea aquaculture waters. Upon chlorination, the concentration of total trihalomethanes (THMs), primarily bromoform, exceeded the regulatory limit of 80μg/L even at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction of antibiotic-resistant bacteria (ARB) by chlorine ranged from 2.3-log to 3.2-log with different contact time. The average log reduction of ARB by monochloramine was comparatively lower at 1.9 to 2.9-log. Although viable Staphylococcus aureus was recovered from monochloraminated samples as opposed to chlorinated samples, the abundance of S. aureus was not high enough to result in any significant microbial risks. Both chlorination and monochloramination did not provide any significant improvement in the reduction of antibiotic resistance genes (ARGs). This study demonstrates that a systematic evaluation is needed to determine the optimal disinfectant required to balance both microbial and chemical risks. Compared to chlorine, monochloramine may be a more appropriate disinfection strategy for the treatment of aquaculture effluents prior to discharge or for recirculatory use in the aquaculture facility.

  5. Hysteresis and negative differential resistance of the current-voltage characteristic of a water bridge

    Science.gov (United States)

    Oshurko, V. B.; Fedorov, A. N.; Ropyanoi, A. A.; Fedosov, M. V.

    2014-06-01

    It is found experimentally that the properties of nanoporous ion-exchange membranes (hysteresis of the current-voltage characteristic in the solution and negative differential resistance), which have been discussed in recent years, are not associated with the properties of the membrane. It is shown that these effects are also observed in a floating water bridge and in water-filled tubes and are apparently determined by the geometrical shape of the liquid conductor. The observed effects are explained qualitatively.

  6. Water-tunnel studies of heat balance in swimming mako sharks.

    Science.gov (United States)

    Bernal, D; Sepulveda, C; Graham, J B

    2001-12-01

    The mako shark (Isurus oxyrinchus) has specialized vascular networks (retia mirabilia) forming counter-current heat exchangers that allow metabolic heat retention in certain regions of the body, including the aerobic, locomotor red muscle and the viscera. Red muscle, white muscle and stomach temperatures were measured in juvenile (5-13.6 kg) makos swimming steadily in a water tunnel and exposed to stepwise square-wave changes in ambient temperature (T(a)) to estimate the rates of heat transfer and to determine their capacity for the activity-independent control of heat balance. The rates of heat gain of red muscle during warming were significantly higher than the rates of heat loss during cooling, and neither the magnitude of the change in T(a) nor the direction of change in T(a) had a significant effect on red muscle latency time. Our findings for mako red muscle are similar to those recorded for tunas and suggest modulation of retial heat-exchange efficiency as the underlying mechanism controlling heat balance. However, the red muscle temperatures measured in swimming makos (0.3-3 degrees C above T(a)) are cooler than those measured previously in larger decked makos. Also, the finding of non-stable stomach temperatures contrasts with the predicted independence from T(a) recorded in telemetry studies of mako and white sharks. Our studies on live makos provide new evidence that, in addition to the unique convergent morphological properties between makos and tunas, there is a strong functional similarity in the mechanisms used to regulate heat transfer.

  7. FERTILIZER RECOMMENDATION SYSTEM FOR MELON BASED ON NUTRITIONAL BALANCE

    Directory of Open Access Journals (Sweden)

    José Aridiano Lima de Deus

    2015-04-01

    Full Text Available Melon is one of the most demanding cucurbits regarding fertilization, requiring knowledge of soils, crop nutritional requirements, time of application, and nutrient use efficiency for proper fertilization. Developing support systems for decision-making for fertilization that considers these variables in nutrient requirement and supply is necessary. The objective of this study was parameterization of a fertilizer recommendation system for melon (Ferticalc-melon based on nutritional balance. To estimate fertilizer recommendation, the system considers the requirement subsystem (REQ, which includes the demand for nutrients by the plant, and the supply subsystem (SUP, which corresponds to the supply of nutrients through the soil and irrigation water. After determining the REQtotal and SUPtotal, the system calculates the nutrient balances for N, P, K, Ca, Mg, and S, recommending fertilizer application if the balance is negative (SUP < REQ, but not if the balance is positive or zero (SUP ≥ REQ. Simulations were made for different melon types (Yellow, Cantaloupe, Galia and Piel-de-sapo, with expected yield of 45 t ha-1. The system estimated that Galia type was the least demanding in P, while Piel-de-sapo was the most demanding. Cantaloupe was the least demanding for N and Ca, while the Yellow type required less K, Mg, and S. As compared to other fertilizer recommendation methods adopted in Brazil, the Ferticalc system was more dynamic and flexible. Although the system has shown satisfactory results, it needs to be evaluated under field conditions to improve its recommendations.

  8. Thermal Balance in the Process of Fresh Water Production from Atmospheric Air Using the Sea Waves Renewable Energy

    Directory of Open Access Journals (Sweden)

    Mironov Victor

    2018-01-01

    Full Text Available Climatic changes and man-induced environmental load cause to a shortage of drinking quality fresh water. Upon that, fresh water sufficiency is one of the preconditions for quality assurance in adequate living standards as well as for domestic and foreign political stability especially in developing countries. A lot of technologies of fresh drinking water production are known today. Most of them involve significant power consumption and endanger to environment. As a rule these technologies use non-renewable hydrocarbons as power source. The author-developed technology of fresh drinking water obtaining from atmospheric air involves the use of clean renewable energy of the sea. This article bases the method of water production from the air. It is also describes technology implementation energy balance.

  9. Brilliant but Cruel: Perceptions of Negative Evaluators.

    Science.gov (United States)

    Amabile, Teresa M.

    Two studies examined the hypothesis that negative evaluators will be perceived as more intelligent than positive evalutors. Two types of stimuli were used: excerpts from actual negative and positive book reviews, and versions of those excerpts that were edited so that the balance of the reviews varied but the content did not. The results strongly…

  10. Glacier mass balance and its potential impacts in the Altai Mountains over the period 1990-2011

    Science.gov (United States)

    Zhang, Yong; Enomoto, Hiroyuki; Ohata, Tetsuo; Kitabata, Hideyuki; Kadota, Tsutomu; Hirabayashi, Yukiko

    2017-10-01

    The Altai Mountains contain 1281 glaciers covering an area of 1191 km2. These glaciers have undergone significant changes in glacial length and area over the past decade. However, mass changes of these glaciers and their impacts remain poorly understood. Here we present surface mass balances of all glaciers in the region for the period 1990-2011, using a glacier mass-balance model forced by the outputs of a regional climate model. Our results indicate that the mean specific mass balance for the whole region is about -0.69 m w.e. yr-1 over the entire period, and about 81.3% of these glaciers experience negative net mass balance. We detect an accelerated wastage of these glaciers in recent years, and marked differences in mass change and its sensitivity to climate change for different regions and size classes. In particular, higher mass loss and temperature sensitivity are observed for glaciers smaller than 0.5 km2. In addition to temperature rise, a decrease in precipitation in the western part of the region and an increase in precipitation in the eastern part likely contribute to significant sub-region differences in mass loss. With significant glacier wastage, the contribution of all glaciers to regional water resources and sea-level change becomes larger than before, but may not be a potential threat to human populations through impacts on water availability.

  11. Enhancing Water Evaporation with Floating Synthetic Leaves

    Science.gov (United States)

    Boreyko, Jonathan; Vieitez, Joshua; Berrier, Austin; Roseveare, Matthew; Shi, Weiwei

    2017-11-01

    When a wetted nanoporous medium is exposed to a subsaturated ambient environment, the water menisci assume a concave curvature to achieve a negative pressure. This negative water pressure is required to balance the mismatch in water activity across the water-air interface to achieve local equilibrium. Here, we show that the diffusive evaporation rate of water can be greatly modulated by floating a nanoporous synthetic leaf at the water's free interface. For high ambient humidities, adding the leaf serves to enhance the evaporation rate, presumably by virtue of the menisci enhancing the effective liquid-vapor surface area. For low humidities, the menisci cannot achieve a local equilibrium and retreat partway into the leaf, which increases the local humidity directly above the menisci. In light of these two effects, we find the surprising result that leaves exposed to an ambient humidity of 90 percent can evaporate water at the same rate as leaves exposed to only 50 percent humidity. These findings have implications for using synthetic trees to enhance steam generation or water harvesting. This work was supported by the National Science Foundation (CBET-1653631).

  12. Using Water and Agrochemicals in the Soil, Crop and Vadose Environment (WAVE Model to Interpret Nitrogen Balance and Soil Water Reserve Under Different Tillage Managements

    Directory of Open Access Journals (Sweden)

    Zare Narjes

    2014-10-01

    Full Text Available Applying models to interpret soil, water and plant relationships under different conditions enable us to study different management scenarios and then to determine the optimum option. The aim of this study was using Water and Agrochemicals in the soil, crop and Vadose Environment (WAVE model to predict water content, nitrogen balance and its components over a corn crop season under both conventional tillage (CT and direct seeding into mulch (DSM. In this study a corn crop was cultivated at the Irstea experimental station in Montpellier, France under both CT and DSM. Model input data were weather data, nitrogen content in both the soil and mulch at the beginning of the season, the amounts and the dates of irrigation and nitrogen application. The results show an appropriate agreement between measured and model simulations (nRMSE < 10%. Using model outputs, nitrogen balance and its components were compared with measured data in both systems. The amount of N leaching in validation period were 10 and 8 kgha–1 in CT and DSM plots, respectively; therefore, these results showed better performance of DSM in comparison with CT. Simulated nitrogen leaching from CT and DSM can help us to assess groundwater pollution risk caused by these two systems.

  13. The Impact of Para Rubber Expansion on Streamflow and Other Water Balance Components of the Nam Loei River Basin, Thailand

    Directory of Open Access Journals (Sweden)

    Winai Wangpimool

    2016-12-01

    Full Text Available At present, Para rubber is an economical crop which provides a high priced product and is in demand by global markets. Consequently, the government of Thailand is promoting the expansion of Para rubber plantations throughout the country. Traditionally, Para rubber was planted and grown only in the southern areas of the country. However, due to the Government’s support and promotion as well as economic reasons, the expansion of Para rubber plantations in the northeast has increased rapidly. This support has occurred without accounting for suitable cultivation of Para rubber conditions, particularly in areas with steep slopes and other factors which have significant impacts on hydrology and water quality. This study presents the impacts of Para rubber expansion by applying the Soil and Water Assessment Tool (SWAT hydrological model on the hydrology and water balance of the Nam Loei River Basin, Loei Province. The results showed that the displacement of original local field crops and disturbed forest land by Para rubber production resulted in an overall increase of evapotranspiration (ET of roughly 3%. The major factors are the rubber canopy and precipitation. Moreover, the water balance results showed an annual reduction of about 3% in the basin average water yield, especially during the dry season.

  14. [Simulation for balanced effect of soil and water resources on cultivated land in Naoli River Basin, Northeast China under the RCPs climate scene].

    Science.gov (United States)

    Zhou, Hao; Lei, Guo Ping; Yang, Xue Xin; Zhao, Yu Hui; Zhang, Ji Xin

    2018-04-01

    Under the scenarios of climate change, balancing the land and water resources is one of the key problems needed to be solved in land development. To reveal the water dynamics of the cultivated land in Naoli River Basin, we simulated the future scenarios by using the future land use simulation model based on Landsat Satellite images, the DEM data and the meteorological data. Results showed that the growth rate of cultivated land gradually decreased. It showed different changing characteristics in different time periods, which led to different balancing effect between land and water resources. In 1990, the water dynamics of the cultivated land resources was in good state, At the same time, the adjustment of crops structure caused the paddy fields increased dramatically. During 2002 to 2014, the cultivated land that in moderate and serious moisture shortage state increased slightly, the water deficit was deteriorating to a certain degree, and maintained sound development of water profit and loss situation gradually. By comparing the simulation accuracy with different spatial resolutions and time scales, we selected 200 m as the spatial resolution of the simulation, and simulated the land use status in 2038. The simulation results showed that the cultivated land's water profit and loss degree in the river basin showed significant polarization characteristic, in that the water profit and loss degree of the cultivated land would be further intensified, the area with the higher grades of moisture profit and loss degree would distribute more centralized, and partially high evaluated grades for the moisture shortage would expand. It is needed to develop the cultivated land irrigation schemes and adjust the cultivated land in Naoli River Basin to balance soil and water resources.

  15. How accurately are climatological characteristics and surface water and energy balances represented for the Colombian Caribbean Catchment Basin?

    Science.gov (United States)

    Hoyos, Isabel; Baquero-Bernal, Astrid; Hagemann, Stefan

    2013-09-01

    In Colombia, the access to climate related observational data is restricted and their quantity is limited. But information about the current climate is fundamental for studies on present and future climate changes and their impacts. In this respect, this information is especially important over the Colombian Caribbean Catchment Basin (CCCB) that comprises over 80 % of the population of Colombia and produces about 85 % of its GDP. Consequently, an ensemble of several datasets has been evaluated and compared with respect to their capability to represent the climate over the CCCB. The comparison includes observations, reconstructed data (CPC, Delaware), reanalyses (ERA-40, NCEP/NCAR), and simulated data produced with the regional climate model REMO. The capabilities to represent the average annual state, the seasonal cycle, and the interannual variability are investigated. The analyses focus on surface air temperature and precipitation as well as on surface water and energy balances. On one hand the CCCB characteristics poses some difficulties to the datasets as the CCCB includes a mountainous region with three mountain ranges, where the dynamical core of models and model parameterizations can fail. On the other hand, it has the most dense network of stations, with the longest records, in the country. The results can be summarised as follows: all of the datasets demonstrate a cold bias in the average temperature of CCCB. However, the variability of the average temperature of CCCB is most poorly represented by the NCEP/NCAR dataset. The average precipitation in CCCB is overestimated by all datasets. For the ERA-40, NCEP/NCAR, and REMO datasets, the amplitude of the annual cycle is extremely high. The variability of the average precipitation in CCCB is better represented by the reconstructed data of CPC and Delaware, as well as by NCEP/NCAR. Regarding the capability to represent the spatial behaviour of CCCB, temperature is better represented by Delaware and REMO, while

  16. Modeling the monthly mean soil-water balance with a statistical-dynamical ecohydrology model as coupled to a two-component canopy model

    Directory of Open Access Journals (Sweden)

    J. P. Kochendorfer

    2010-10-01

    Full Text Available The statistical-dynamical annual water balance model of Eagleson (1978 is a pioneering work in the analysis of climate, soil and vegetation interactions. This paper describes several enhancements and modifications to the model that improve its physical realism at the expense of its mathematical elegance and analytical tractability. In particular, the analytical solutions for the root zone fluxes are re-derived using separate potential rates of transpiration and bare-soil evaporation. Those potential rates, along with the rate of evaporation from canopy interception, are calculated using the two-component Shuttleworth-Wallace (1985 canopy model. In addition, the soil column is divided into two layers, with the upper layer representing the dynamic root zone. The resulting ability to account for changes in root-zone water storage allows for implementation at the monthly timescale. This new version of the Eagleson model is coined the Statistical-Dynamical Ecohydrology Model (SDEM. The ability of the SDEM to capture the seasonal dynamics of the local-scale soil-water balance is demonstrated for two grassland sites in the US Great Plains. Sensitivity of the results to variations in peak green leaf area index (LAI suggests that the mean peak green LAI is determined by some minimum in root zone soil moisture during the growing season. That minimum appears to be close to the soil matric potential at which the dominant grass species begins to experience water stress and well above the wilting point, thereby suggesting an ecological optimality hypothesis in which the need to avoid water-stress-induced leaf abscission is balanced by the maximization of carbon assimilation (and associated transpiration. Finally, analysis of the sensitivity of model-determined peak green LAI to soil texture shows that the coupled model is able to reproduce the so-called "inverse texture effect", which consists of the observation that natural vegetation in dry climates tends

  17. Hydrologic modeling for monitoring water availability in Eastern and Southern Africa

    Science.gov (United States)

    McNally, A.; Harrison, L.; Shukla, S.; Pricope, N. G.; Peters-Lidard, C. D.

    2017-12-01

    Severe droughts in 2015, 2016 and 2017 in Ethiopia, Southern Africa, and Somalia have negatively impacted agriculture and municipal water supplies resulting in food and water insecurity. Information from remotely sensed data and field reports indicated that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation (FLDAS) accurately tracked both the anomalously low soil moisture, evapotranspiration and runoff conditions. This work presents efforts to more precisely monitor how the water balance responds to water availability deficits (i.e. drought) as estimated by the FLDAS with CHIRPS precipitation, MERRA-2 meteorological forcing and the Noah33 land surface model.Preliminary results indicate that FLDAS streamflow estimates are well correlated with observed streamflow where irrigation and other channel modifications are not present; FLDAS evapotranspiration (ET) is well correlated with ET from the Operational Simplified Surface Energy Balance model (SSEBop) in Eastern and Southern Africa. We then use these results to monitor availability, and explore trends in water supply and demand.

  18. Work-life balance culture, work-home interaction, and emotional exhaustion: a structural equation modeling approach.

    Science.gov (United States)

    Nitzsche, Anika; Pfaff, Holger; Jung, Julia; Driller, Elke

    2013-01-01

    To examine the relationships among employees' emotional exhaustion, positive and negative work-home interaction, and perceived work-life balance culture in companies. Data for this study were collected through online surveys of employees from companies in the micro- and nanotechnology sectors (N = 509). A structural equation modeling analysis was performed. A company culture perceived by employees as supportive of their work-life balance was found to have both a direct negative effect on emotional exhaustion and an indirect negative effect meditated by negative work-home interaction. In addition, whereas negative work-home interaction associated positively with emotional exhaustion, positive work-home interaction had no significant effect. The direct and indirect relationship between work-life balance culture and emotional exhaustion has practical implications for health promotion in companies.

  19. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI) was utilized to estimate CWSI in rain-fed switchgrass (Panicum virgatum L.) usin...

  20. Imbalance of positive and negative links induces regularity

    International Nuclear Information System (INIS)

    Kamal, Neeraj Kumar; Sinha, Sudeshna

    2011-01-01

    Research highlights: → We consider the behaviour of a random weighted network with chaotic neuronal dynamics at the nodes. → We investigate the effect of the balance of positive and negative links on dynamical regularity. → We find that when the connections are predominantly excitatory or inhibitory, one obtains a spatiotemporal fixed point. → However, when the links are balanced, the chaotic nature of the nodal dynamics of the uncoupled case is preserved. → Further we observe that larger network size leads to greater spatiotemporal regularity. - Abstract: We investigate the effect of the interplay of positive and negative links, on the dynamical regularity of a random weighted network, with neuronal dynamics at the nodes. We investigate how the mean J-bar and the variance of the weights of links, influence the spatiotemporal regularity of this dynamical network. We find that when the connections are predominantly positive (i.e. the links are mostly excitatory, with J-bar>0) the spatiotemporal fixed point is stable. A similar trend is observed when the connections are predominantly negative (i.e. the links are mostly inhibitory, with J-bar<0). However, when the positive and negative feedback is quite balanced (namely, when the mean of the connection weights is close to zero) one observes spatiotemporal chaos. That is, the balance of excitatory and inhibitory connections preserves the chaotic nature of the uncoupled case. To be brought to an inactive state one needs one type of connection (either excitatory or inhibitory) to dominate. Further we observe that larger network size leads to greater spatiotemporal regularity. We rationalize our observations through mean field analysis of the network dynamics.

  1. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Commercial Proton Exchange Membrane Fuel Cell Stack

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    2016-01-01

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce...... and increased degradation rates. Clearly, a fundamental understanding of all aspects of water management in PEMFC is imperative. This includes the fuel cell water balance, i.e. which fraction of the product water leaves the fuel cell via the anode channels versus the cathode channel. Our research group...... signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC....

  2. Sport-specific balance.

    Science.gov (United States)

    Zemková, Erika

    2014-05-01

    This review includes the latest findings based on experimental studies addressing sport-specific balance, an area of research that has grown dramatically in recent years. The main objectives of this work were to investigate the postural sway response to different forms of exercise under laboratory and sport-specific conditions, to examine how this effect can vary with expertise, and to provide examples of the association of impaired balance with sport performance and/or increasing risk of injury. In doing so, sports where body balance is one of the limiting factors of performance were analyzed. While there are no significant differences in postural stability between athletes of different specializations and physically active individuals during standing in a standard upright position (e.g., bipedal stance), they have a better ability to maintain balance in specific conditions (e.g., while standing on a narrow area of support). Differences in magnitude of balance impairment after specific exercises (rebound jumps, repeated rotations, etc.) and mainly in speed of its readjustment to baseline are also observed. Besides some evidence on an association of greater postural sway with the increasing risk of injuries, there are many myths related to the negative influence of impaired balance on sport performance. Though this may be true for shooting or archery, findings have shown that in many other sports, highly skilled athletes are able to perform successfully in spite of increased postural sway. These findings may contribute to better understanding of the postural control system under various performance requirements. It may provide useful knowledge for designing training programs for specific sports.

  3. Hydroclimatic regimes: a distributed water-balance framework for hydrologic assessment, classification, and management

    Science.gov (United States)

    Weiskel, Peter K.; Wolock, David M.; Zarriello, Phillip J.; Vogel, Richard M.; Levin, Sara B.; Lent, Robert M.

    2014-01-01

    Runoff-based indicators of terrestrial water availability are appropriate for humid regions, but have tended to limit our basic hydrologic understanding of drylands – the dry-subhumid, semiarid, and arid regions which presently cover nearly half of the global land surface. In response, we introduce an indicator framework that gives equal weight to humid and dryland regions, accounting fully for both vertical (precipitation + evapotranspiration) and horizontal (groundwater + surface-water) components of the hydrologic cycle in any given location – as well as fluxes into and out of landscape storage. We apply the framework to a diverse hydroclimatic region (the conterminous USA) using a distributed water-balance model consisting of 53 400 networked landscape hydrologic units. Our model simulations indicate that about 21% of the conterminous USA either generated no runoff or consumed runoff from upgradient sources on a mean-annual basis during the 20th century. Vertical fluxes exceeded horizontal fluxes across 76% of the conterminous area. Long-term-average total water availability (TWA) during the 20th century, defined here as the total influx to a landscape hydrologic unit from precipitation, groundwater, and surface water, varied spatially by about 400 000-fold, a range of variation ~100 times larger than that for mean-annual runoff across the same area. The framework includes but is not limited to classical, runoff-based approaches to water-resource assessment. It also incorporates and reinterprets the green- and blue-water perspective now gaining international acceptance. Implications of the new framework for several areas of contemporary hydrology are explored, and the data requirements of the approach are discussed in relation to the increasing availability of gridded global climate, land-surface, and hydrologic data sets.

  4. Critical discussion on the "observed" water balances of five sub-basins in the Everest region

    Science.gov (United States)

    Chevallier, P.; Eeckman, J.; Nepal, S.; Delclaux, F.; Wagnon, P.; Brun, F.; Koirala, D.

    2017-12-01

    The hydrometeorological components of five Dudh Koshi River sub-basins on the Nepalese side of the Mount Everest have been monitored during four hydrological years (2013-2017), with altitudes ranging from 2000 m to Everest top, areas between 4.65 and 1207 km², and proportions of glaciated areas between nil and 45%. This data set is completed with glacier mass balance observations. The analysis of the observed data and the resulting water balances show large uncertainties of different types: aleatory, epistemic or semantic, following the classification proposed by Beven (2016). The discussion is illustrated using results from two modeling approaches, physical (ISBA, Noilhan and Planton, 1996) and conceptual (J2000, Krause, 2001), as well as large scale glacier mass balances obtained by the way of a recent remote sensing processing method. References: Beven, K., 2016. Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal 61, 1652-1665. doi:10.1080/02626667.2015.1031761 Krause, P., 2001. Das hydrologische Modellsystem J2000: Beschreibung und Anwendung in groen Flueinzugsgebieten, Schriften des Forschungszentrum Jülich. Reihe Umwelt/Environment; Band 29. Noilhan, J., Planton, S., 1989. A single parametrization of land surface processes for meteorological models. Monthly Weather Review 536-549.

  5. A cross-national study on the antecedents of work–life balance from the fit and balance perspective

    OpenAIRE

    Haar, Jarrod M.; Suñé Torrents, Albert; Russo, Marcello; Ollier-Malaterre, Ariane

    2018-01-01

    Drawing on the perceived work–family fit and balance perspective, this study investigates demands and resources as antecedents of work–life balance (WLB) across four countries (New Zealand, France, Italy and Spain), so as to provide empirical cross-national evidence. Using structural equation modelling analysis on a sample of 870 full time employees, we found that work demands, hours worked and family demands were negatively related to WLB, while job autonomy and supervisor support were posit...

  6. Magnetic hydrophilic-lipophilic balance sorbent for efficient extraction of chemical warfare agents from water samples.

    Science.gov (United States)

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud D, Raghavender; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-02-19

    Magnetic hydrophilic-lipophilic balance (MHLB) hybrid resin was prepared by precipitation polymerization using N-vinylpyrrolidone (PVP) and divinylbenzene (DVB) as monomers and Fe2O3 nanoparticles as magnetic material. These resins were successfully applied for the extraction of chemical warfare agents (CWAs) and their markers from water samples through magnetic dispersive solid-phase extraction (MDSPE). By varying the ratios of monomers, resin with desired hydrophilic-lipophilic balance was prepared for the extraction of CWAs and related esters of varying polarities. Amongst different composites Fe2O3 nanoparticles coated with 10% PVP+90% DVB exhibited the best recoveries varying between 70.32 and 97.67%. Parameters affecting the extraction efficiencies, such as extraction time, desorption time, nature and volume of desorption solvent, amount of extraction sorbent and the effect of salts on extraction were investigated. Under the optimized conditions, linearity was obtained in the range of 0.5-500 ng mL(-1) with correlation ranging from 0.9911-0.9980. Limits of detection and limits of quantification were 0.5-1.0 and 3.0-5.0 ng mL(-1) respectively with RSDs varying from 4.88-11.32% for markers of CWAs. Finally, the developed MDSPE method was employed for extraction of analytes from water samples of various sources and the OPCW proficiency test samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The energy balance within a bubble column evaporator

    Science.gov (United States)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2018-05-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (Δ H vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and Δ H vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining Δ H vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine Δ H vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air

  8. Radium balance in discharge waters from coal mines in Poland the ecological impact of underground water treatment

    International Nuclear Information System (INIS)

    Chalupnik, S.; Wysocka, M.

    2008-01-01

    Saline waters from underground coal mines in Poland often contain natural radioactive isotopes, mainly 226 Ra from the uranium decay series and 228 Ra from the thorium series. More than 70% of the total amount of radium remains underground as radioactive deposits due to spontaneous co-precipitation or water treatment technologies, but several tens of MBq of 226 Ra and even higher activity of 228 Ra are released daily into the rivers along with the other mine effluents from all Polish coal mines. Mine waters can have a severe impact on the natural environment, mainly due to its salinity. Additionally high levels of radium concentration in river waters, bottom sediments and vegetation were also observed. Sometimes radium concentrations in rivers exceeded 0.7 kBq/m 3 , which was the permitted level for wastewaters under Polish law. The investigations described here were carried out for all coal mines and on this basis the total radium balance in effluents has been calculated. Measurements in the vicinity of mine settling ponds and in rivers have given an opportunity to study radium behaviour in river waters and to assess the degree of contamination. For removal of radium from saline waters a method of purification has been developed and implemented in full technical scale in two of Polish coal mines. The purification station in Piast Colliery was unique, the first underground installation for the removal of radium isotopes from saline waters. Very good results have been achieved - approximately 6 m 3 /min of radium-bearing waters were treated there, more than 100 MBq of 226 Ra and 228 Ra remained underground each day. Purification has been started in 1999, therefore a lot of experiences have been gathered during this period. Since year 2006, a new purification station is working in another colliery, Ziemowit, at the level -650 meters. Barium chloride is used as a cleaning , agent, and amount of water to be purified is reaching 9 m 3 /min. Technical measures such as

  9. Accounting for hydro-climatic and water use variability in the assessment of past and future water balance at the basin scale

    Directory of Open Access Journals (Sweden)

    J. Fabre

    2015-06-01

    Full Text Available This study assesses water stress by 2050 in river basins facing increasing human and climatic pressures, by comparing the impacts of various combinations of possible future socio-economic and climate trends. A modelling framework integrating human and hydro-climatic dynamics and accounting for interactions between resource and demand at a 10-day time step was developed and applied in two basins of different sizes and with contrasted water uses: the Herault (2500 km2, France and the Ebro (85 000 km2, Spain basins. Natural streamflow was evaluated using a conceptual hydrological model (GR4j. A demand-driven reservoir management model was designed to account for streamflow regulations from the main dams. Urban water demand was estimated from time series of population and monthly unit water consumption data. Agricultural water demand was computed from time series of irrigated area, crop and soil data, and climate forcing. Indicators comparing water supply to demand at strategic resource and demand nodes were computed. This framework was successfully calibrated and validated under non-stationary human and hydro-climatic conditions over the last 40 years before being applied under four combinations of climatic and water use scenarios to differentiate the impacts of climate- and human-induced changes on streamflow and water balance. Climate simulations from the CMIP5 exercise were used to generate 18 climate scenarios at the 2050 horizon. A baseline water use scenario for 2050 was designed based on demographic and local socio-economic trends. Results showed that projected water uses are not sustainable under climate change scenarios.

  10. Hydrological balancing as applied to shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kobera, P.; Dlouhy, Z.

    1984-02-01

    Shallow ground repositories are suitable disposal means for low and intermediate level radioactive wastes which offer an adequate form of containment of relatively short-lived radionuclides. The majority of safety related problems are connected with occurrence of water at the site. These problems include water accumulation in the disposal modules, high water table, hydrogeological complexity, water erosion, etc. In this context a simple technique is proposed for water balancing in the region of interest which would be relatively inexpensive and could supply large amounts of pertinent information. In the paper several balancing techniques based on water and/or energy balance methods are discussed. The results of a static evaluation of long term water balance averages are presented for the regions of planned shallow ground repositories near Dukovany and Mochovce in the CSSR. Hydrological processes and elements taking part in different hydrological cycles are treated from the dynamical point of view. The calculation methods for application of the kinematic approach are briefly touched. The results may be acquired at relatively low costs

  11. Long-term energy balance and vegetation water stress monitoring of Mediterranean oak savanna using satellite thermal data

    Science.gov (United States)

    González-Dugo, Maria P.; Chen, Xuelong; Andreu, Ana; Carpintero, Elisabet; Gómez-Giraldez, Pedro; Su, Z.(Bob)

    2017-04-01

    Drought is one of the major hazards faced by natural and cropped vegetation in the Mediterranean Sea Basin. Water scarcity is likely to be worsened under the predicted conditions of climate change, which is expected to make this region both warmer and drier. A Holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs. This ecosystem is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural economy. A similar ecosystem is worldwide distributed in areas with Mediterranean climate (as California or South Africa) and shares structural and functional properties with tropical savannas in Africa, Australia and South America. Remote sensing time series can assist the monitoring of the energy balance components, with special attention to the evapotranspiration and vegetation water stress over these areas. Long-term data analysis may improve our understanding of the functioning of the system, helping to assess drought impacts and leading to reduce the economic and environmental vulnerability of this ecosystem. This work analyzes the evolution the surface energy balance components, mapping the evapotranspiration and moisture stress of holm oak woodlands of Spain and Portugal during the last 15 years (2001-2015). The surface energy balance model (SEBS) has been applied over the Iberian Peninsula on a monthly time scale and 0.05° spatial resolution, using multi-satellite and meteorological forcing data. Modelled energy and water fluxes have been validated using ground measurements of two eddy covariance towers located in oak savanna sites during 3 years, resulting in moderate deviations from observations (10-25 W/m2). The departure of actual ET from the

  12. Balancing water resources development and environmental sustainability in Africa: a review of recent research findings and applications.

    Science.gov (United States)

    McClain, Michael E

    2013-09-01

    Sustainable development in Africa is dependent on increasing use of the continent's water resources without significantly degrading ecosystem services that are also fundamental to human wellbeing. This is particularly challenging in Africa because of high spatial and temporal variability in the availability of water resources and limited amounts of total water availability across expansive semi-arid portions of the continent. The challenge is compounded by ambitious targets for increased water use and a rush of international funding to finance development activities. Balancing development with environmental sustainability requires (i) understanding the boundary conditions imposed by the continent's climate and hydrology today and into the future, (ii) estimating the magnitude and spatial distribution of water use needed to meet development goals, and (iii) understanding the environmental water requirements of affected ecosystems, their current status and potential consequences of increased water use. This article reviews recent advancements in each of these topics and highlights innovative approaches and tools available to support sustainable development. While much remains to be learned, scientific understanding and technology should not be viewed as impediments to sustainable development on the continent.

  13. Occupational balance of women with rheumatoid arthritis: a qualitative study.

    Science.gov (United States)

    Stamm, Tanja; Wright, Jon; Machold, Klaus; Sadlo, Gaynor; Smolen, Josef

    2004-01-01

    Occupational balance has been shown to be an important factor in maintaining health. Rheumatoid arthritis (RA) reduces functional ability and quality of life and may thus reduce occupational balance. The aim of this qualitative pilot study was to explore occupational balance in women who have RA. Nine women with RA with past, but not current, paid work experience, no other confounding neuro-motor disease and with disease duration of 0.75-31 years were selected from an Austrian rheumatology outpatient clinic. Age range of the participants was 28-68 years. A semi-structured interview was conducted with each participant and transcribed verbatim. Data were analysed by the constant comparative method from an occupational perspective. Three main categories emerged: (1) The participants experienced a process of change that affected their occupational balance. (2) This new state of occupational balance was characterized by changed levels of involvement in physical, mental, social and rest occupations and by a certain level of unpredictability of symptoms. (3) Overall, the new state of occupational balance was valued differently: positively, indifferently or negatively. RA was found to have a considerable impact on occupational balance. The experience is not invariably seen as negative as previous literature would suggest. Further research should explore the longitudinal dimension of occupational balance in people with RA. Copyright (c) 2004 Whurr Publishers Ltd.

  14. Athletic footwear affects balance in men.

    Science.gov (United States)

    Robbins, S; Waked, E; Gouw, G J; McClaran, J

    1994-06-01

    Stable equilibrium during locomotion is required for both superior performance of sports and prevention of injuries from falls. A recent report indicated that currently available athletic footwear impairs stability in older men. Since this discovery, if confirmed, seems important to both competitive athletes and the physically active general public, we performed an experiment using similar methods on a younger population. We tested the hypothesis that midsole thickness is negatively, and hardness positively related to dynamic equilibrium, in 17 healthy adult men (mean(s.d.) age 33(11.13) years) via a balance beam method. Subjects walked along a 9-m long beam at 0.5 m s-1 once barefoot and six times wearing identical pairs of experimental shoes which differed only in midsole hardness and thickness which spanned the respective ranges currently available in footwear. Falls from the beam (balance failures) were quantified. Balance failures varied significantly in relation to midsole hardness and thickness, and there was a strong trend toward interaction of these variables (P = 0.09). Midsole hardness was positively related to stability, and midsole thickness was negatively related, which confirms the previous report. Hence, shoes with thick-soft soles, similar to modern athletic footwear and 'walking shoes', destabilize men, and shoes with thin-hard soles provide superior stability. The pair with the poorest stability (A 15-thick; 12.34 balance failures per 100 m) produced 217% more balance failures than those associated with the best stability (A 50-thin; 3.89 balance failures per 100 m). Since most types of athletic footwear and many other shoes incorporate midsoles with hardness and thickness associated with poor stability, we conclude that both athletic performance and public safety could be enhanced through stability optimized footwear.

  15. Human Water and Electrolyte Balance

    National Research Council Canada - National Science Library

    Montain, S. J; Cheuvront, S. N; Carter, R; Sawka, M. N

    2006-01-01

    .... Sweat losses, if not replaced, reduce body water volume and electrolyte content. Excessive body water or electrolyte losses can disrupt physiological homeostasis and threaten both health and performance...

  16. Cold-water immersion alters muscle recruitment and balance of basketball players during vertical jump landing.

    Science.gov (United States)

    Macedo, Christiane de Souza Guerino; Vicente, Rafael Chagas; Cesário, Mauricio Donini; Guirro, Rinaldo Roberto de Jesus

    2016-01-01

    The purpose of this study was to evaluate the effects of cold-water immersion on the electromyographic (EMG) response of the lower limb and balance during unipodal jump landing. The evaluation comprised 40 individuals (20 basketball players and 20 non-athletes). The EMG response in the lateral gastrocnemius, tibialis anterior, fibular longus, rectus femoris, hamstring and gluteus medius; amplitude and mean speed of the centre of pressure, flight time and ground reaction force (GRF) were analysed. All volunteers remained for 20 min with their ankle immersed in cold-water, and were re-evaluated immediately post and after 10, 20 and 30 min of reheating. The Shapiro-Wilk test, Friedman test and Dunn's post test (P lower for the athletes. Lower jump flight time and GRF, greater amplitude and mean speed of centre of pressure were predominant in the athletes. Cold-water immersion decreased the EMG activity of the lower limb, flight time and GRF and increased the amplitude and mean speed of centre of pressure.

  17. Probabilistic modelling and uncertainty analysis of flux and water balance changes in a regional aquifer system due to coal seam gas development.

    Science.gov (United States)

    Sreekanth, J; Cui, Tao; Pickett, Trevor; Rassam, David; Gilfedder, Mat; Barrett, Damian

    2018-09-01

    Large scale development of coal seam gas (CSG) is occurring in many sedimentary basins around the world including Australia, where commercial production of CSG has started in the Surat and Bowen basins. CSG development often involves extraction of large volumes of water that results in depressurising aquifers that overlie and/or underlie the coal seams thus perturbing their flow regimes. This can potentially impact regional aquifer systems that are used for many purposes such as irrigation, and stock and domestic water. In this study, we adopt a probabilistic approach to quantify the depressurisation of the Gunnedah coal seams and how this impacts fluxes to, and from the overlying Great Artesian Basin (GAB) Pilliga Sandstone aquifer. The proposed method is suitable when effects of a new resource development activity on the regional groundwater balance needs to be assessed and account for large scale uncertainties in the groundwater flow system and proposed activity. The results indicated that the extraction of water and gas from the coal seam could potentially induce additional fluxes from the Pilliga Sandstone to the deeper formations due to lowering pressure heads in the coal seams. The median value of the rise in the maximum flux from the Pilliga Sandstone to the deeper formations is estimated to be 85ML/year, which is considered insignificant as it forms only about 0.29% of the Long Term Annual Average Extraction Limit of 30GL/year from the groundwater management area. The probabilistic simulation of the water balance components indicates only small changes being induced by CSG development that influence interactions of the Pilliga Sandstone with the overlying and underlying formations and with the surface water courses. The current analyses that quantified the potential maximum impacts of resource developments and how they influences the regional water balance, would greatly underpin future management decisions. Copyright © 2018 Elsevier B.V. All rights

  18. Hydrological Balance of Lake Tana, Upper Blue Nile Basin, Ethiopia

    NARCIS (Netherlands)

    Rientjes, T.H.M.; Perera, Janaka B.U.; Haile, Alemseged T.; Haile, A.T.; Gieske, Ambro S.M.; Booij, Martijn J.; Reggiani, Paolo; Melesse, Assefa M.

    2011-01-01

    In recent years, few studies are presented on the water balance of Lake Tana. In these studies, the water balance is closed by unknown runoff contributions from ungauged catchments. Studies relied on simple procedures of area comparison to estimate runoff from ungauged catchments. In this study,

  19. Use of Water Balance and Tracer-Based Approaches to Monitor Groundwater Recharge in the Hyper-Arid Gobi Desert of Northwestern China

    Directory of Open Access Journals (Sweden)

    Tomohiro Akiyama

    2018-05-01

    Full Text Available The groundwater recharge mechanism in the hyper-arid Gobi Desert of Northwestern China was analyzed using water balance and tracer-based approaches. Investigations of evaporation, soil water content, and their relationships with individual rainfall events were conducted from April to August of 2004. Water sampling of rainwater, groundwater, and surface water was also conducted. During this period, 10 precipitation events with a total amount of 41.5 mm, including a maximum of 28.9 mm, were observed. Evaporation during the period was estimated to be 33.1 mm. Only the soil water, which was derived from the heaviest precipitation, remained in the vadose zone. This is because a dry surface layer, which was formed several days after the heaviest precipitation event, prevented evaporation. Prior to that, the heaviest precipitation rapidly infiltrated without being affected by evaporation. This is corroborated by the isotopic evidence that both the heaviest precipitation and the groundwater retained no trace of significant kinetic evaporation. Estimated δ-values of the remaining soil water based on isotopic fractionation and its mass balance theories also demonstrated no trace of kinetic fractionation in the infiltration process. Moreover, stable isotopic compositions of the heaviest precipitation and the groundwater were very similar. Therefore, we concluded that the high-intensity precipitation, which rapidly infiltrated without any trace of evaporation, was the main source of the groundwater.

  20. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland

    Directory of Open Access Journals (Sweden)

    Smarzyńska Karolina

    2016-06-01

    Full Text Available Soil and Water Assessment Tool (SWAT ver. 2005 was applied to study water balance and nitrogen load pathways in a small agricultural watershed in the lowlands of central Poland. The natural flow regime of the Zgłowiączka River was strongly modified by human activity (deforestation and installation of a subsurface drainage system to facilitate stable crop production. SWAT was calibrated for daily and monthly discharge and monthly nitrate nitrogen load. Model efficiency was tested using manual techniques (subjective and evaluation statistics (objective. Values of Nash–Sutcliffe efficiency coefficient (NSE, coefficient of determination (R2 and percentage of bias for daily/monthly discharge simulations and monthly load indicated good or very good fit of simulated discharge and nitrate nitrogen load to the observed data set. Model precision and accuracy of fit was proved in validation. The calibrated and validated SWAT was used to assess water balance and nitrogen fluxes in the watershed. According to the results, the share of tile drainage in water yield is equal to 78%. The model analysis indicated the most significant pathway of NO3-N to surface waters in the study area, namely the tile drainage combined with lateral flow. Its share in total NO3-N load amounted to 89%. Identification of nitrogen fluxes in the watershed is crucial for decision makers in order to manage water resources and to implement the most effective measures to limit diffuse pollution from arable land to surface waters.

  1. Water and energy balance in the cultivated and bake soil in a montane area in Paraiba, Brazil; Balanco hidrico e de energia em solo cultivado e sem vegetacao, para as condicoes do brejo paraibano

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Jose Romualdo de Sousa

    2004-02-01

    In the areas of rain fed agriculture it is very important to quantify losses of water by evapotranspiration and soil evaporation. The methods used for measuring evapotranspiration and/or evaporation varies from direct measurements techniques, using lysimeters, to measurements of the water and energy balances. The precision lysimeters have high cost, being only used for research purposes. The water and energy balances methods have been very used due the simplicity, robustness and lower cost. Therefore, the objective of this study was to assess the water and energy balance components in the soil cultivated with cowpea (Vigna unguiculata (L) Walp) and without vegetation, besides comparing the methods used to determine the cowpea evapotranspiration. Two experiments (2002 and 2003) were performed in the 4 ha area of the Centro de Ciencias Agrarias, UFPB, municipality of Areia, Paraiba State (6 deg C 58 S, 5 deg C 41 W). To determine the energy balance, the area was instrumented with a rain gauge, a pyrano meter, a net radiometer, and sensors for measuring air temperature and humidity, and wind speed in two levels. Two locals, in the soil, were instrumented with two temperature sensors located at 2.0 cm and 8.0 cm below soil surface and one heat flux plate placed at 5.0 cm below soil surface. The measurements were recorded every 30 minutes on a data logger. To determine the water balance, three plots were installed, composed one-meter access tube for neutron probe measurements, and 8 tensiometers. The results show very good correlation between the aerodynamic method and the Bowen ration energy balance method, for all atmospherics and soil water conditions. For the two years, in average 72% of the net radiation was used by crop evapotranspiration. The energy and water balance can be used, the determine the crop evapotranspiration and soil evaporation, and regardless of the method used, the major water use by crop occurred in the reproductive stage. In the year of 2002

  2. Cold induced changes in the water balance affect immunocytolocalization pattern of one of the aquaporins in the vascular system in the leaves of maize (Zea mays L.).

    Science.gov (United States)

    Bilska-Kos, Anna; Szczepanik, Jarosław; Sowiński, Paweł

    2016-10-20

    Chilling stress is known to affect the water balance in plants, which often manifests itself in the decrease of the water potential in different organs. Relationships between chilling, assimilate transport and water balance are far from being understood. Although aquaporins play a key role in regulating water balance in plants, especially under stress conditions, the role of individual aquaporins in stress response remains unclear. In this report we show the specific localization within plasma membranes of one of the aquaporins (PIP2;3) in the leaves of two maize inbred lines differing in their chilling-sensitivity. This form of aquaporin has been also observed in thick-walled sieve elements - an additional type of sieve tubes of unclear function found only in monocotyledons. Moderate chilling (about 15°C) caused significant reduction of labelling in these cells accompanied by a steep decrease in the water potential in leaves of chilling-sensitive maize line. Our results suggest that both PIP2;3 and thick-walled sieve tubes may be an unknown element of the mechanism of the response of maize to cold stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Long-term integrated river basin planning and management of water quantity and water quality in mining impacted catchments

    Science.gov (United States)

    Pohle, Ina; Zimmermann, Kai; Claus, Thomas; Koch, Hagen; Gädeke, Anne; Uhlmann, Wilfried; Kaltofen, Michael; Müller, Fabian; Redetzky, Michael; Schramm, Martina; Schoenheinz, Dagmar; Grünewald, Uwe

    2015-04-01

    water quality model GGM (mining related water quality parameters of lakes and river reaches). Based on the STAR 0K scenario, only minor changes in the natural water balance are simulated, while managed discharges slightly decrease due to declining mining discharges. In the STAR 2K scenario natural and managed discharges decrease resulting in negative consequences on reservoir volumes and on water availability to the users. Additionally, the risk of a re-acidification of mining lakes and increasing sulphate and iron concentrations is much higher in the STAR 2K scenario than in the STAR 0K scenario. In order to compensate for negative impacts on water quantity and water quality, adaptation measures were analysed. While water transfers from the River Elbe into the study region showed positive impacts on both, water quantity and water quality, potentially negative impacts on water quality can also be compensated by technical measures (e.g. in-lake-neutralisation of mining lakes).

  4. Analysis of shallow-groundwater dynamic responses to water supply change in the Haihe River plain

    Science.gov (United States)

    Lin, Z.; Lin, W.; Pengfei, L.

    2015-05-01

    When the middle route of the South-to-North Water Diversion Project is completed, the water supply pattern of the Haihe River plain in North China will change significantly due to the replenishment of water sources and groundwater-exploitation control. The water-cycle-simulation model - MODCYCLE, has been used in simulating the groundwater dynamic balance for 2001-2010. Then different schemes of water supply in 2020 and 2030 were set up to quantitatively simulate the shallow-groundwater dynamic responses in the future. The results show that the total shallow-groundwater recharge is mainly raised by the increases in precipitation infiltration and surface-water irrigation infiltration. Meanwhile, the decrease of groundwater withdrawal contributes to reduce the total discharge. The recharge-discharge structure of local groundwater was still in a negative balance but improved gradually. The shallow-groundwater level in most parts was still falling before 2030, but more slowly. This study can benefit the rational exploitation of water resources in the Haihe River plain.

  5. The modelled liquid water balance of the Greenland Ice Sheet

    Science.gov (United States)

    Steger, Christian R.; Reijmer, Carleen H.; van den Broeke, Michiel R.

    2017-11-01

    Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS) contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB) of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with the SNOWPACK model for the GrIS and over the period 1960-2014 with a special focus on the LWB and refreezing. Evaluations of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model-observation agreement. Results of the LWB analysis reveal a spatially uniform increase in surface melt (0.16 m w.e. a-1) during 1990-2014. As a response, refreezing and run-off also indicate positive changes during this period (0.05 and 0.11 m w.e. a-1, respectively), where refreezing increases at only half the rate of run-off, implying that the majority of the additional liquid input runs off the ice sheet. This pattern of refreeze and run-off is spatially variable. For instance, in the south-eastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. Modelled increase in refreezing leads to a decrease in firn air content and to a substantial increase in near-surface firn temperature. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases are more gradual and are associated with the migration of firn aquifers to higher elevations.

  6. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    Science.gov (United States)

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the

  7. A dynamic human water and electrolyte balance model for verification and optimization of life support systems in space flight applications

    Science.gov (United States)

    Hager, P.; Czupalla, M.; Walter, U.

    2010-11-01

    In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those

  8. Resilience Through Disturbance: Effects of Wildfire on Vegetation and Water Balance in the Sierra Nevadas

    Science.gov (United States)

    Boisrame, G. F. S.; Thompson, S. E.; Stephens, S.; Collins, B.; Tague, N.

    2015-12-01

    A century of fire suppression in the Western United States has drastically altered the historically fire-adapated ecology in California's Sierra Nevada Mountains. Fire suppression is understood to have increased the forest cover, as well as the stem density, canopy cover and water demand of montane forests, reducing resilience of the forests to drought, and increasing the risk of catastrophic fire by drying the landscape and increasing fuel loads. The potential to reverse these trends by re-introducing fire into the Sierra Nevada is highly promising, but the likely effects on vegetation structure and water balance are poorly quantified. The Illilouette Creek Basin in Yosemite National Park represents a unique experiment in the Sierra Nevada, in which managers have moved from fire suppression to allowing a near-natural fire regime to prevail since 1972. Changes in vegetation structure in the Illilouette since the restoration of natural burning provides a unique opportunity to examine how frequent, mixed severity fires can reshape the Sierra Nevada landscape. We characterize these changes from 1969 to the present using a combination of Landsat products and high-resolution aerial imagery. We describe how the landscape structure has changed in terms of vegetation composition and its spatial organization, and explore the drivers of different post-fire vegetation type transitions (e.g. forest to shrubland vs. forest to meadow). By upscaling field data using vegetation maps and Landsat wetness indices, we explore how these vegetation transitions have impacted the water balance of the Illilouette Creek Basin, potentially increasing its resilience in the face of drought, climate change, and catastrophic fire. In a region that is adapted to frequent disturbance from fire, this work helps us understand how allowing such natural disturbances to take place can increase the sustainability of diverse landscapes in the long term.

  9. Comparison of the psychometric properties of two balance scales in children with cerebral palsy.

    Science.gov (United States)

    Jeon, Yong-Jin; Kim, Gyoung-Mo

    2016-12-01

    [Purpose] The purpose of this study was to compare the item difficulty degree between the Pediatric Balance Scale and Fullerton Advanced Balance scale for children with cerebral palsy. [Subjects and Methods] Forty children with cerebral palsy (male=17, female=23) voluntarily participated in the study. Item difficulty was expressed in the Rasch analysis using a logit value, with a higher value indicative of increasing item difficulty. [Results] Among the 24 items of the combined Pediatric Balance Scale and Fullerton Advanced Balance scale, the most difficult item was "Walk with head turns", whereas, the easiest item was "Sitting with back unsupported and feet supported on the floor". Among the 14 items of the Pediatric Balance Scale, 9 items (item 1, 2, 3, 4, 5, 6, 7, 11, and 12) had negative logit values, whereas for the Fullerton Advanced Balance scale, only 1 item (item 1) had a negative logit value. [Conclusion] The Fullerton Advanced Balance scale is a more appropriate tool to assess balance ability than the Pediatric Balance Scale in in a group of higher functioning children with cerebral palsy.

  10. THE USE OF DRINKING WATER IN THE CONDITIONS OF MAINTAINING ECOLOGICAL BALANCE

    Directory of Open Access Journals (Sweden)

    Avtandil SILAGADZE

    2016-02-01

    pipelines. Thus, there is proposed a model of bacteriological pure underground artesian water supply from Georgia to Europe in the conditions of maintaining ecological balance. This model takes into account the analysis of water pipeline alternatives, “Georgia-Europe” pipeline construction, as Europe's population is in need of high-quality drinking water, and Georgia is interested in its export.

  11. Organisational factors and occupational balance in working parents in Sweden.

    Science.gov (United States)

    Borgh, Madeleine; Eek, Frida; Wagman, Petra; Håkansson, Carita

    2018-05-01

    Parents with small children constitute a vulnerable group as they have an increased risk of sick leave due to stress-related disorders compared to adults without children. It has been shown that mothers and fathers to small children together spend more time in paid work than any other group, which could create negative stress and an experience of low occupational balance. The aim of this study was to examine associations between organisational factors and occupational balance among parents with small children in Sweden. Data were collected by a survey including questions about occupational balance, organisational factors and age, sex, employment rate, work position, monthly household income, number of children at home, separation/divorce last five years and overtime. The total number of parents included in this study was 718 (490 mothers and 228 fathers). Logistic regression models were applied to examine the odds ratios for occupational balance in relation to organisational factors. Parents who experienced positive attitudes towards parenthood and parental leave among colleagues and managers were more likely to experience high occupational balance than parents who experienced negative or neutral attitudes. Having a clear structure for handover when absent from work was also strongly associated with high occupational balance. The result of the present study indicates that some organisational factors could be important for the occupational balance of parents with small children.

  12. Positive and Negative Impacts of a Continuing Professional Development Intervention on Pharmacist Practice: A Balanced Measure Evaluation.

    Science.gov (United States)

    Sidhu, Sukhjinder; Gorman, Sean K; Slavik, Richard S; Ramsey, Tasha; Bruchet, Nicole; Murray, Sarah

    2017-01-01

    Evaluations of behavior change interventions aimed at improving professional practice are increasingly focused on impacts at the practice and patient outcome levels. Many of these evaluations assume that if the intended changes occur, the result represents an improvement. However, given the systemic nature of clinical practice, a change in one area can produce changes in other areas as well, some of which may adversely affect the patient. Balancing measures are used to determine whether unintended consequences of an intervention have been introduced into other areas of the system. The aims of this study were to evaluate the impact of behavior change intervention-based continuing professional development (CPD) on pharmacist interventions (resolution of drug therapy problems-DTPs) and resolution of quality indicator DTPs and knowledge change for urinary tract infections (UTI) and pneumonia. As a balancing measure, we aimed to determine whether delivery of behavior change interventions targeting pneumonia and UTI practice results in a negative impact on other important pharmacist interventions, specifically the resolution of heart failure DTPs. A quasiexperimental study was conducted at a Canadian health authority that evaluated the impacts of an 8-week multifaceted behavior change intervention delivered to 58 ward-based pharmacists. The primary outcome was change in proportion of UTI and pneumonia DTPs resolved from the 6-month preintervention to 6-month postintervention phase. Secondary outcomes were changes in proportion of UTI and pneumonia quality indicator DTPs resolved, knowledge quiz scores, and proportion of quality indicator DTPs resolved for heart failure as a balancing measure. A total of 58 pharmacists were targets of the intervention. The proportion of resolved UTI and pneumonia DTPs increased from 17.8 to 27.2% (relative risk increase 52.8%, 95% confidence interval [CI] 42.8-63.6%; P UTI and pneumonia quality indicator DTPs increased from 12.2% to 18

  13. Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957-2014

    Science.gov (United States)

    Ims Østby, Torbjørn; Vikhamar Schuler, Thomas; Ove Hagen, Jon; Hock, Regine; Kohler, Jack; Reijmer, Carleen H.

    2017-01-01

    Estimating the long-term mass balance of the high-Arctic Svalbard archipelago is difficult due to the incomplete geodetic and direct glaciological measurements, both in space and time. To close these gaps, we use a coupled surface energy balance and snow pack model to analyse the mass changes of all Svalbard glaciers for the period 1957-2014. The model is forced by ERA-40 and ERA-Interim reanalysis data, downscaled to 1 km resolution. The model is validated using snow/firn temperature and density measurements, mass balance from stakes and ice cores, meteorological measurements, snow depths from radar profiles and remotely sensed surface albedo and skin temperatures. Overall model performance is good, but it varies regionally. Over the entire period the model yields a climatic mass balance of 8.2 cm w. e. yr-1, which corresponds to a mass input of 175 Gt. Climatic mass balance has a linear trend of -1.4 ± 0.4 cm w. e. yr-2 with a shift from a positive to a negative regime around 1980. Modelled mass balance exhibits large interannual variability, which is controlled by summer temperatures and further amplified by the albedo feedback. For the recent period 2004-2013 climatic mass balance was -21 cm w. e. yr-1, and accounting for frontal ablation estimated by Błaszczyk et al.(2009) yields a total Svalbard mass balance of -39 cm w. e. yr-1 for this 10-year period. In terms of eustatic sea level, this corresponds to a rise of 0.037 mm yr-1. Refreezing of water in snow and firn is substantial at 22 cm w. e. yr-1 or 26 % of total annual accumulation. However, as warming leads to reduced firn area over the period, refreezing decreases both absolutely and relative to the total accumulation. Negative mass balance and elevated equilibrium line altitudes (ELAs) resulted in massive reduction of the thick (> 2 m) firn extent and an increase in the superimposed ice, thin (ice extents. Atmospheric warming also leads to a marked change in the thermal regime, with cooling of the

  14. Biological effects of drinking-water mineral composition on calcium balance and bone remodeling markers.

    Science.gov (United States)

    Roux, S; Baudoin, C; Boute, D; Brazier, M; De La Guéronniere, V; De Vernejoul, M C

    2004-01-01

    To compare the effects of 2 drinking waters containing similar calcium (Ca) concentration in order to analyze the role of ions other than Ca on bone metabolism. These mineral drinking-waters differed by their mineral composition primarily concerning the concentration of bicarbonate (HCO3-), high in the HB, and sulfate, high in HS water. Of 60 included women, 39 completed the study. Patients were randomly assigned to an intake of 1 liter per day of mineral water HB or HS for 28 d, followed by cross-over to the alternative drinking-water for a further 28 d. At baseline and after each period of one month, Ca metabolism parameters, acid-base status, and bone remodeling markers were measured. Changes in Ca metabolism were significant in the HB group where the ionized Ca increased and the PTH decreased. Serum pH showed a similar increase whatever the used drinking water compared to baseline. In the HB group, significant increase in urine pH, and significant decrease in AT-HCO3- and NH4+ were observed. Bone resorption markers, urinary CTx/Cr, Pyr/Cr, and D-Pyr/Cr, significantly decreased in the HB group compared to baseline, and were not significantly modified in the HS group. These results showed a beneficial effect of the bicarbonaterich HB water on bone metabolism. This may account for a better bioavailability of the Ca, a greater alkalinization, and a larger decrease in PTH level secondary to a higher ionized Ca level. The higher content of silica in HB water may have also participated to the positive action on bone balance that was observed. In this short term study, these data underlined the potential role of the mineral drinking water composition on bone metabolism.

  15. Body mass, energy intake, and water consumption of rats and humans during space flight

    Science.gov (United States)

    Wade, C. E.; Miller, M. M.; Baer, L. A.; Moran, M. M.; Steele, M. K.; Stein, T. P.

    2002-01-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  16. A multimodal assessment of balance in elderly and young adults

    Science.gov (United States)

    King, Gregory W.; Abreu, Eduardo L.; Cheng, An-Lin; Chertoff, Keyna K.; Brotto, Leticia; Kelly, Patricia J.; Brotto, Marco

    2016-01-01

    Falling is a significant health issue among elderly adults. Given the multifactorial nature of falls, effective balance and fall risk assessment must take into account factors from multiple sources. Here we investigate the relationship between fall risk and a diverse set of biochemical and biomechanical variables including: skeletal muscle-specific troponin T (sTnT), maximal strength measures derived from isometric grip and leg extension tasks, and postural sway captured from a force platform during a quiet stance task. These measures were performed in eight young and eleven elderly adults, along with estimates of fall risk derived from the Tinetti Balance Assessment. We observed age-related effects in all measurements, including a trend toward increased sTnT levels, increased postural sway, reduced upper and lower extremity strength, and reduced balance scores. We observed a negative correlation between balance scores and sTnT levels, suggesting its use as a biomarker for fall risk. We observed a significant positive correlation between balance scores and strength measures, adding support to the notion that muscle strength plays a significant role in postural control. We observed a significant negative correlation between balance scores and postural sway, suggesting that fall risk is associated with more loosely controlled center of mass regulation. PMID:26934319

  17. Nexus of Poverty, Energy Balance and Health

    Science.gov (United States)

    Mishra, C. P.

    2012-01-01

    Since the inception of planning process in India, health planning was an integral component of socio-economic planning. Recommendations of several committees, policy documents and Millennium development goals were instrumental in development of impressive health infrastructure. Several anti-poverty and employment generation programmes were instituted to remove poverty. Spectacular achievements took place in terms of maternal and child health indicators and expectancy of life at birth. However, communicable diseases and undernutrition remain cause of serious concern and non-communicable diseases are imposing unprecedented challenge to planners and policy makers. Estimates of poverty based on different criteria point that it has remained a sustained problem in the country and emphasizes on revisiting anti-poverty programmes, economic policies and social reforms. Poverty affects purchasing power and thereby, food consumption. Energy intake data has inherent limitations. It must be assessed in terms of energy expenditure. Energy balance has been least explored area of research. The studies conducted in three different representative population group of Eastern Uttar Pradesh revealed that 69.63% rural adolescent girls (10-19 years), 79.9% rural reproductive age group females and 62.3% rural geriatric subjects were in negative energy balance. Negative energy balance was significantly less in adolescent girls belonging to high SES (51.37%), having main occupation of family as business (55.3%), and highest per capita income group (57.1%) with respect to their corresponding sub-categories. In case of rural reproductive age groups, this was maximum (93.0%) in SC/ST category and least (65.7%) in upper caste group. In case of geriatric group, higher adjusted Odd's Ratio for negative energy balance for subjects not cared by family members (AOR 23.43, CI 3.93-139.56), not kept money (AOR 5.27, CI 1.58-17.56), belonging to lower and upper middle SES by Udai Pareekh Classification

  18. Nexus of poverty, energy balance and health

    Directory of Open Access Journals (Sweden)

    C P Mishra

    2012-01-01

    Full Text Available Since the inception of planning process in India, health planning was an integral component of socio-economic planning. Recommendations of several committees, policy documents and Millennium development goals were instrumental in development of impressive health infrastructure. Several anti-poverty and employment generation programmes were instituted to remove poverty. Spectacular achievements took place in terms of maternal and child health indicators and expectancy of life at birth. However, communicable diseases and undernutrition remain cause of serious concern and non-communicable diseases are imposing unprecedented challenge to planners and policy makers. Estimates of poverty based on different criteria point that it has remained a sustained problem in the country and emphasizes on revisiting anti-poverty programmes, economic policies and social reforms. Poverty affects purchasing power and thereby, food consumption. Energy intake data has inherent limitations. It must be assessed in terms of energy expenditure. Energy balance has been least explored area of research. The studies conducted in three different representative population group of Eastern Uttar Pradesh revealed that 69.63% rural adolescent girls (10-19 years, 79.9% rural reproductive age group females and 62.3% rural geriatric subjects were in negative energy balance. Negative energy balance was significantly less in adolescent girls belonging to high SES (51.37%, having main occupation of family as business (55.3%, and highest per capita income group (57.1% with respect to their corresponding sub-categories. In case of rural reproductive age groups, this was maximum (93.0% in SC/ST category and least (65.7% in upper caste group. In case of geriatric group, higher adjusted Odd′s Ratio for negative energy balance for subjects not cared by family members (AOR 23.43, CI 3.93-139.56, not kept money (AOR 5.27, CI 1.58-17.56, belonging to lower and upper middle SES by Udai Pareekh

  19. Dew contribution to the water balance in a semiarid coastal steppe ecosystem (Cabo de Gata, SE Spain)

    International Nuclear Information System (INIS)

    Moro, M. J.; Were, A.; Morillas, L.; Villagarcia, L.; Canton, Y.; Lazaro, R.; Serrano-Ortiz, P.; Kowalski, A. S.; Domingo, F.

    2009-01-01

    Dewfall deposition can be a significant source of moisture in arid and semiarid ecosystems, thus contribution to improve daily and annual water balances. Occurrence, frequency and amount of dewfall were measured in the Balsa Blanca site (Cabo de Gata, Almeria, Spain) from January 2007 to May 2008. this area has a sparse vegetation cover dominated by Stipa tenacissima combined with bare soil and biological soil crusts. (Author) 3 refs.

  20. Flexible working and work-life balance: Midwives’ experiences and views

    OpenAIRE

    Prowse, Julie; Prowse, Peter

    2015-01-01

    This article presents midwives’ views and experiences of flexible working and work–life balance. Both flexible working and work–life balance are important contemporary agendas within midwifery and can have both positive and negative consequences for midwives. Full-time midwives and those without caring commitments feel disadvantaged by flexible working and work–life balance policies as they have to fit when they work around part-time midwives and are increasingly expected to cover extra work....

  1. A Mass Balance Model of Lyell and Maclure Glaciers in Yosemite National Park

    Science.gov (United States)

    Mendoza, K. A.; Stock, G. M.; Sharping, J. E.

    2015-12-01

    The Lyell and Maclure glaciers, two historically important glaciers of Yosemite National Park, have been rapidly retreating since the late 1800's. I attempted to quantify the water balance of two basins containing these glaciers. Water inputs were calculated by applying snow pillow data and two precipitation vs. elevation slope models. Water outputs consisted of a simplified evapotranspiration model and stream runoff data. Fifty-six linear combinations of precipitation and evaporation were used to develop water balance models. Most of these models predicted melt rates from the two glaciers outside of empirical observations. However, both the Lyell Glacier Basin and the Lyell Fork of the Tuolumne Basin water balance spreads had notable Kolmogorov-Smirnov test statistics: Lyell Glacier with p = 0.34 for 2013 and p = 0.37 for 2014, and Lyell Fork with p = 0.45 for 2009. The basin containing Lyell Glacier had a water balance spread of between -1,105×10^3m^3 and +58×10^3m^3+ (interquartile range) with a mean of -564×10^3m^3 for the 2013 hydrologic year, and between -1,137×10^3m^3 and +21×10^3m^3 (interquartile range) with a mean of-583×10^3m^3 for the 2014 hydrologic year. The Lyell fork of the Tuolumne basin containing both Lyell and Maclure Glaciers had a water balance spread of between-14,350×10^3m^3 and +7,454×10^3m^3 (interquartile range) with a mean of -2,426×10^3m^3 for the 2009 hydrologic year. Variations observed in water balance models for Lyell Glacier in this study are an order of magnitude larger than the expected melt signal, and two orders of magnitude for the Lyell Fork of the Tuolumne water balance models.

  2. Effects of Supplemental Energy on Protein Balance during 4-d Arctic Military Training.

    Science.gov (United States)

    Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Gundersen, Yngvar; Castellani, John W; Karl, J Philip; Carrigan, Christopher T; Teien, Hilde-Kristin; Madslien, Elisabeth-Henie; Montain, Scott J; Pasiakos, Stefan M

    2016-08-01

    Soldiers often experience negative energy balance during military operations that diminish whole-body protein retention, even when dietary protein is consumed within recommended levels (1.5-2.0 g·kg·d). The objective of this study is to determine whether providing supplemental nutrition spares whole-body protein by attenuating the level of negative energy balance induced by military training and to assess whether protein balance is differentially influenced by the macronutrient source. Soldiers participating in 4-d arctic military training (AMT) (51-km ski march) were randomized to receive three combat rations (CON) (n = 18), three combat rations plus four 250-kcal protein-based bars (PRO, 20 g protein) (n = 28), or three combat rations plus four 250-kcal carbohydrate-based bars daily (CHO, 48 g carbohydrate) (n = 27). Energy expenditure (D2O) and energy intake were measured daily. Nitrogen balance (NBAL) and protein turnover were determined at baseline (BL) and day 3 of AMT using 24-h urine and [N]-glycine. Protein and carbohydrate intakes were highest (P balance (-3313 ± 776 kcal·d), net protein balance (NET) (-0.24 ± 0.60 g·d), and NBAL (-68.5 ± 94.6 mg·kg·d) during AMT were similar between groups. In the combined cohort, energy intake was associated (P balance and NBAL during AMT. These data reinforce the importance of consuming sufficient energy during periods of high energy expenditure to mitigate the consequences of negative energy balance and attenuate whole-body protein loss.

  3. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise

    DEFF Research Database (Denmark)

    Avnstorp, Magnus B; Rasmussen, Peter; Brassard, Patrice

    2015-01-01

    both circumstances. No cerebral net exchange of Na(+) or K(+) was evident. Likewise, no significant net-exchange of water over the brain was demonstrated and the arterial and jugular venous hemoglobin concentrations were similar. CONCLUSION: Challenging exercise in hypoxia for 30 min affected muscle......Avnstorp, Magnus B., Peter Rasmussen, Patrice Brassard, Thomas Seifert, Morten Overgaard, Peter Krustrup, Niels H. Secher, and Nikolai B. Nordsborg. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise. High Alt Med Biol 16:000-000, 2015.-Background...... intense exercise is carried out in hypoxia and monitored the influence of muscle metabolism for changes in arterial variables. METHODS: On two separate days, in random order, 30 min cycling exercise was performed in either hypoxia (10% O2) or normoxia at an intensity that was exhaustive in the hypoxic...

  4. Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance.

    Science.gov (United States)

    Contreras, G Andres; Thelen, Kyan; Schmidt, Sarah E; Strieder-Barboza, Clarissa; Preseault, Courtney L; Raphael, William; Kiupel, Matti; Caron, John; Lock, Adam L

    2016-12-01

    Excessive rates of demand lipolysis in the adipose tissue (AT) during periods of negative energy balance (NEB) are associated with increased susceptibility to disease and limited lactation performance. Lipolysis induces a remodeling process within AT that is characterized by an inflammatory response, cellular proliferation, and changes in the extracellular matrix (ECMT). The adipose tissue macrophage (ATM) is a key component of the inflammatory response. Infiltration of ATM-forming cellular aggregates was demonstrated in transition cows, suggesting that ATM trafficking and phenotype changes may be associated with disease. However, it is currently unknown if ATM infiltration occurs in dairy cows only during NEB states related to the transition period or also during NEB-induced lipolysis at other stages of lactation. The objective of this study was to evaluate changes in ATM trafficking and inflammatory phenotypes, and the expression of genetic markers of AT remodeling in healthy late-lactation cows during feed restriction-induced NEB. After a 14-d (d -14 to d -1) preliminary period, Holstein cows were randomly assigned to 1 of 2 feeding protocols, ad libitum (AL) or feed restriction (FR), for 4 d (d 1-4). Caloric intake was reduced in FR to achieve a targeted energy balance of -15 Mcal/d of net energy for lactation. Omental and subcutaneous AT samples were collected laparoscopically to harvest stromal vascular fraction (SVF) cells on d -3 and 4. The FR induced a NEB of -14.1±0.62 Mcal/d of net energy for lactation, whereas AL cows remained in positive energy balance (3.2±0.66 Mcal/d of NE L ). The FR triggered a lipolytic response reflected in increased plasma nonesterified fatty acids (0.65±0.05 mEq/L on d 4), enhanced phosphorylation of hormone sensitive lipase, and reduced adipocyte diameter. Flow cytometry and immunohistochemistry analysis revealed that on d 4, FR cows had increased numbers of CD172a + , an ATM (M1 and M2) surface marker, cells in SVF that

  5. Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: sensitivity of future changes to projected climate changes and soil type

    Science.gov (United States)

    Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; O'Leary, Garry; Macadam, Ian; Yang, Yonghui

    2016-02-01

    Wheat production is expected to be affected by climate change through changing components of the crop water balance such as rainfall, evapotranspiration (ET), runoff and drainage. We used the Agricultural Production Systems Simulator (APSIM)-wheat model to simulate the potential impact of climate change on field water balance, ET and water use efficiency (WUE) under the SRES A2 emissions scenario. We ran APSIM with daily climate data statistically downscaled from 18 Global Circulation Models (GCMs). Twelve soil types of varying plant available water holding capacity (PAWC) at six sites across semi-arid southeastern Australia were considered. Biases in the GCM-simulated climate data were bias-corrected against observations for the 1961-1999 baseline period. However, biases in the APSIM output data relative to APSIM simulations forced with climate observations remained. A secondary bias correction was therefore performed on the APSIM outputs. Bias-corrected APSIM outputs for a future period (2021-2040) were compared with APSIM outputs generated using observations for the baseline period to obtain future changes. The results show that effective rainfall was decreased over all sites due to decreased growing season rainfall. ET was decreased through reduced soil evaporation and crop transpiration. There were no significant changes in runoff at any site. The variation in deep drainage between sites was much greater than for runoff, ranging from less than a few millimetres at the drier sites to over 100 mm at the wetter. However, in general, the averaged drainage over different soil types were not significantly different between the baseline (1961-1999) and future period of 2021-2040 ( P > 0.05). For the wetter sites, the variations in the future changes in drainage and runoff between the 18 GCMs were larger than those of the drier sites. At the dry sites, the variation in drainage decreased as PAWC increased. Overall, water use efficiency based on transpiration (WUE

  6. Does plant diversity affect the water balance of established grassland systems?

    Science.gov (United States)

    Leimer, Sophia; Bischoff, Sebastian; Blaser, Stefan; Boch, Steffen; Busch, Verena; Escher, Peter; Fischer, Markus; Kaupenjohann, Martin; Kerber, Katja; Klaus, Valentin; Michalzik, Beate; Prati, Daniel; Schäfer, Deborah; Schmitt, Barbara; Schöning, Ingo; Schwarz, Martin T.; Siemens, Jan; Thieme, Lisa; Wilcke, Wolfgang

    2017-04-01

    The water cycle drives nutrient cycles and plant productivity. The impact of land use on the water cycle has been extensively studied and there is experimental evidence that biodiversity modifies the water cycle in grasslands. However, the combined influences of land-use and associated biodiversity on the water cycle in established land-use systems are unclear. Therefore, we investigated how evapotranspiration (ETa), downward water flux (DF), and capillary rise (CR) in topsoil and subsoil are related to land-use and plant diversity in established, commercially managed grassland and compared these results to findings from experiments where plant diversity was manipulated. In three Central European regions ("Biodiversity Exploratories"), we studied 29 grassland plots (50 m x 50 m; 9-11 plots per region) from 2010 to 2015. The land-use types cover pasture, mown pasture, and meadow in at least triplicate per region. On each plot, we measured soil water contents, meteorological data (hourly resolution), cumulative precipitation (biweekly), plant species richness, the number of plants in the functional groups of grasses, herbs, and legumes (annually), and root biomass (once). Potential evapotranspiration (ETp) was calculated from meteorological data per plot. Missing data points of ETp and soil water contents were estimated with Bayesian hierarchical models. ETa, DF, and CR were calculated for two soil layers with a soil water balance model. The model is based on changes in soil water storage between subsequent observation dates and ETp, which was partitioned between soil layers according to root distribution. Water fluxes in annual resolution were statistically analyzed for land-use and biodiversity effects using repeated-measures analysis of variance (ANOVA). Land-use type did not affect water fluxes. Species richness did not influence DF and CR. DF from topsoil was higher on plots with more grass species, which is opposite to the results from a manipulative

  7. Research of the Landscape Structure of the Water Balance of the Trialeti Range Northern Slope according to the Natural Recreation Resources

    International Nuclear Information System (INIS)

    Beritashvili, B.; Meskhia, R.; Savishvili, N.; Kartvelishvili, L.; Mikautadze, D.; Chikhladze, N.

    2006-01-01

    The work deals with the landscape-differentiated analysis of the water balance elements of the rivers on the Northern slope of the Trialeti Range using the 1961-2000 years observation data. Regularities of their variation are given according to the altitude. (author)

  8. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    Bhattarai, Nishan; Wagle, Pradeep; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-11-01

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass (Panicum virgatum L.) has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI; 0 = extremely wet or no water stress condition and 1 = extremely dry or no transpiration) was utilized to estimate CWSI in rain-fed switchgrass using Landsat-derived evapotranspiration (ET) from five remote sensing based single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and Operational Simplified Surface Energy Balance (SSEBop). CWSI estimates from the five SEB models and a simple regression model that used normalized difference vegetation index (NDVI), near-surface temperature difference, and measured soil moisture (SM) as covariates were compared with those derived from eddy covariance measured ET (CWSIEC) for the 32 Landsat image acquisition dates during the 2011 (dry) and 2013 (wet) growing seasons. Results indicate that most SEB models can predict CWSI reasonably well. For example, the root mean square error (RMSE) ranged from 0.14 (SEBAL) to 0.29 (SSEBop) and the coefficient of determination (R2) ranged from 0.25 (SSEBop) to 0.72 (SEBAL), justifying the added complexity in CWSI modeling as compared to results from the simple regression model (R2 = 0.55, RMSE = 0.16). All SEB models underestimated CWSI in the dry year but the estimates from SEBAL and S-SEBI were within 7% of the mean CWSIEC and explained over 60% of variations in CWSIEC. In the wet year, S-SEBI mostly overestimated CWSI (around 28%), while estimates from METRIC, SEBAL, SEBS, and SSEBop were within 8% of the mean CWSIEC. Overall, SEBAL was the most robust model under all conditions followed by METRIC, whose performance was slightly worse and better than SEBAL in dry and wet years

  9. Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Science.gov (United States)

    John T. Abatzoglou; Solomon Z. Dobrowski; Sean A. Parks; Katherine C. Hegewisch

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from...

  10. Foreseen hydrological changes drive efforts to formulate water balance improvement measures as part of the management options of adaptation at Lake Balaton, Hungary

    Science.gov (United States)

    Molnar, Gabor; Kutics, Karoly

    2013-04-01

    Located in Western Hungary, Lake Balaton (LB) is one of the shallowest large lakes of the world. The catchment area including the lake is 5775 km2, only 10 times more than the lake surface area of 593 km2. This relatively small catchment area and the relatively dry climate results in high vulnerability of the lake water budget to any hydro-meteorological changes. Due to the combined effects of planned water quality protection measures (refer to adjoining article on LB water quality) water quality was not as serious a concern over the last 15 years. However, a new and potentially more damaging threat, decreasing water level started to emerge in 2000. The natural water budget was negative half of the time, i.e. 6 years in the last 12 years. It hadn't occurred in the previous 80 years, since 1921, the year from which detailed meteorological data on the area are available. This new phenomenon raised and continues to raise serious sustainability concerns in the Lake Balaton area requiring better understanding of climatic changes and their foreseen impacts on hydrological and ecological processes that would lead decision makers to formulate the appropriate vulnerability and adaptation policies. Based on the common methodologies of the EULAKES project, present state of the hydrological conditions was analyzed as well as qualitative vulnerability assessment carried out to the area. Using the climate scenarios developed by the project partner Austrian Institute of Technology, calculations on water budget changes was possible. It is estimated that by the middle of the 21st century the lake will experience a drastic drop in the inflow and, accompanied by the increased evaporation, it is likely that years without outflow and serious drops in water-level would occur. The increased frequency of unfavorable water deficit will cause not only ecological, but also socio-economic conflicts in the multipurpose usage of the lake. Therefore, a qualitative vulnerability assessment was

  11. Newton's Third Law on a Scale Balance

    Science.gov (United States)

    Nopparatjamjomras, Suchai; Panijpan, Bhinyo; Huntula, Jiradawan

    2009-01-01

    We propose a series of experiments involving balance readings of an object naturally floating or forced to be partially or fully immersed in water contained in a beaker sitting on an electronic scale balance. Students were asked to predict, observe and explain each case. The teacher facilitated the learning by asking probing questions, giving…

  12. College Students’ Views of Work–Life Balance in STEM Research Careers: Addressing Negative Preconceptions

    Science.gov (United States)

    Tan-Wilson, Anna; Stamp, Nancy

    2015-01-01

    In career discussions, female undergraduates said that if they were to attend graduate school in science, technology, engineering, and mathematics (STEM) and were to follow a career based on their research training, they would have to give up having a family. A subsequent survey showed that many students, both men and women, thought work–life balance would be more difficult to achieve in a STEM research path than in other professions they were considering. Their views of STEM research being less family-friendly were more pronounced on issues of parental leaves and caring for children than finding a spouse/partner and landing two jobs in the same locality. To provide role models of work–life balance in STEM professions, we convened panels of dual-career couples who described how they worked together to raise their children while advancing their scientific careers. Our selection of panelists and topics of discussion were based on findings of social science research on work–life balance. On a survey with the same questions administered afterward, the changes in paired responses of male and female students with respect to all four issues showed a significant shift toward thinking that a research-based STEM career would be no more difficult than other careers they were considering. PMID:26163564

  13. Evaporation estimates from the Dead Sea and their implications on its water balance

    Science.gov (United States)

    Oroud, Ibrahim M.

    2011-12-01

    The Dead Sea (DS) is a terminal hypersaline water body situated in the deepest part of the Jordan Valley. There is a growing interest in linking the DS to the open seas due to severe water shortages in the area and the serious geological and environmental hazards to its vicinity caused by the rapid level drop of the DS. A key issue in linking the DS with the open seas would be an accurate determination of evaporation rates. There exist large uncertainties of evaporation estimates from the DS due to the complex feedback mechanisms between meteorological forcings and thermophysical properties of hypersaline solutions. Numerous methods have been used to estimate current and historical (pre-1960) evaporation rates, with estimates differing by ˜100%. Evaporation from the DS is usually deduced indirectly using energy, water balance, or pan methods with uncertainty in many parameters. Accumulated errors resulting from these uncertainties are usually pooled into the estimates of evaporation rates. In this paper, a physically based method with minimum empirical parameters is used to evaluate historical and current evaporation estimates from the DS. The more likely figures for historical and current evaporation rates from the DS were 1,500-1,600 and 1,200-1,250 mm per annum, respectively. Results obtained are congruent with field observations and with more elaborate procedures.

  14. Energy balance concept in the evaluation of water table management effects on corn growth: experimental investigation

    International Nuclear Information System (INIS)

    Kalita, P.K.; Kanwar, R.S.

    1992-01-01

    The effects of water table management practices (WTMP) on corn growth in 1989 and 1990 at two field sites, Ames and Ankeny, Iowa, were evaluated by calculating crop water stress index (CWSI) and monitoring plant physiological parameters during the growing seasons. Experiments were conducted on field lysimeters at the Ames site by maintaining water tables at 0.3-, 0.6-, and 0.9-m depths and in a subirrigation field at the Ankeny site with 0.2-, 0.3-, 0.6-, 0.9-, and 1.1-m water table depths, and periodically measuring leaf and air temperature, transpiration rate, stomatal conductance, and photosynthetically active radiation (PAR) using leaf chamber techniques. Net radiation of canopy was estimated using the leaf energy balance equation and leaf chamber measurements and then correlated with PAR. Analysis of data revealed that net radiation, leaf air temperature differential, transpiration rate, stomatal conductance, and CWSI were strongly related to WTMP during vegetative and flowering stages of corn growth. Excess water in the root zone with a water table depth of 0.2 m caused the maximum crop water stress and ceased crop growth. Both water and oxygen could be adequately maintained for favorable crop growth by adopting the best WTMP. Results indicate that plant physiological parameters and CWSI could be used to evaluate the effectiveness of WTMP and develop the best WTMP for corn growth in the humid region

  15. Modelling of the carbon and water balances of olive (Olea europaea, L.)

    International Nuclear Information System (INIS)

    Villalobos, F.J.

    1999-01-01

    Olive orchards are the main component of numerous agricultural systems in the Mediterranean region. In this work we present the development of a simulation model of olive orchards, which is used here to illustrate some specific features of the water and carbon balances of olives. The fraction of daily Photosynthetically-Active Radiation (PAR) intercepted by the trees (Qd) changes substantially with solar declination. For a given LAI Qd increases as tree size is smaller. Canopy volume has a much larger effect on Qd than Leaf Area Density (LAD), implying that a submodel for canopy volume will be required. Estimates of Radiation-Use Efficiency for yield are 0.35 g dry matter/(MJ PAR) and 0.16 g oil/(MJ PAR) which are around 80% of those for sunflower under the same environment. Crop evaporation in olive orchards is characterized by a high proportion of evaporation from the soil surface (Es) and by the response of stomata to air humidity. Results from a evapotranspiration corresponds to Es, and that Water-Use Efficiency relative to transpiration is 0.9 kg fruit dry matter m-3, which is equal to that of sunflower. Important gaps in our knowledge of olive ecophysiology (dry matter partitioning and growth) require further research

  16. Modelo de simulación del balance hídrico en suelos con freática poco profunda Water balance simulation model in shallow watertable soils

    Directory of Open Access Journals (Sweden)

    Américo Degioanni

    2006-07-01

    Full Text Available Los suelos con capa freática poco profunda poseen mayor probabilidad de ser afectados por anegamiento. La predicción de la oscilación temporal del nivel freático constituye una importante herramienta para valorar el riesgo de ocurrencia de tal proceso. El objetivo de este trabajo es presentar los fundamentos teóricos, la estructura operativa y la capacidad predictiva del modelo de simulación del balance hídrico Freat.1. El modelo se fundamenta en el cálculo de la transferencia de agua entre la atmósfera, el perfil del suelo, la vegetación y la capa freática. Los procesos de transferencia simulados son: escurrimiento superficial saliente, ascenso del nivel freático por efecto de la lluvia neta y del escurrimiento subterráneo entrante y descenso del nivel freático por efectos del escurrimiento subterráneo saliente, evaporación, ascenso capilar desde la capa freática y transpiración de la vegetación. Se evalúan los resultados de su aplicación en un Haplustol udorténtico y en un Natralbol típico ambos con freática oscilando a menos de tres metros de profundidad. El error de predicción estimado como la raíz del error cuadrático medio entre registros freáticos observados y simulados es menor de 15 cm para ambos suelos. Se concluye que el modelo resulta apropiado para predecir oscilaciones temporales de capa freática y evaluar el riesgo de inundación por anegamiento en suelos con capa freática cercana a la superficie.Soils with shallow water table have greater probability of being affected by waterlogging. The prediction of the water table depth temporal oscillation is an important tool to assess the risk of occurrence of such processes. The goal of this paper is to present the theoretical foundations, operative structure and predictive capacity of the water balance simulation model Freat.1. This model is based on the calculus of water transference between atmosphere, soil profile, vegetation and water table. The

  17. Mass balance model parameter transferability on a tropical glacier

    Science.gov (United States)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  18. Theoretical study of soil water balance and process of soil moisture evaporation

    Directory of Open Access Journals (Sweden)

    Yu. A. Savel'ev

    2017-01-01

    Full Text Available Nearly a half of all grain production in the Russian Federation is grown in dry regions. But crop production efficiency there depends on amount of moisture, available to plants. However deficit of soil moisture is caused not only by a lack of an atmospheric precipitation, but also inefficient water saving: losses reach 70 percent. With respect thereto it is important to reveal the factors influencing intensity of soil moisture evaporation and to develop methods of decrease in unproductive moisture losses due to evaporation. The authors researched soil water balance theoretically and determined the functional dependences of moisture loss on evaporation. Intensity of moisture evaporation depends on physicomechanical characteristics of the soil, a consistence of its surface and weather conditions. To decrease losses of moisture for evaporation it is necessary, first, to improve quality of crumbling of the soil and therefore to reduce the evaporating surface of the soil. Secondly - to create the protective mulching layer which will allow to enhance albedo of the soil and to reduce its temperature that together will reduce unproductive evaporative water losses and will increase its inflow in case of condensation from air vapors. The most widespread types of soil cultivation are considered: disk plowing and stubble mulch plowing. Agricultural background «no tillage» was chosen as a control. Subsoil mulching tillage has an essential advantage in a storage of soil moisture. So, storage of soil moisture after a disking and in control (without tillage decreased respectively by 24.9 and 19.8 mm while at the mulching tillage this indicator revised down by only 15.6 mm. The mulching layer has lower heat conductivity that provides decrease in unproductive evaporative water losses.

  19. Large-Scale Land Acquisition and Its Effects on the Water Balance in Investor and Host Countries.

    Science.gov (United States)

    Breu, Thomas; Bader, Christoph; Messerli, Peter; Heinimann, Andreas; Rist, Stephan; Eckert, Sandra

    2016-01-01

    This study examines the validity of the assumption that international large-scale land acquisition (LSLA) is motivated by the desire to secure control over water resources, which is commonly referred to as 'water grabbing'. This assumption was repeatedly expressed in recent years, ascribing the said motivation to the Gulf States in particular. However, it must be considered of hypothetical nature, as the few global studies conducted so far focused primarily on the effects of LSLA on host countries or on trade in virtual water. In this study, we analyse the effects of 475 intended or concluded land deals recorded in the Land Matrix database on the water balance in both host and investor countries. We also examine how these effects relate to water stress and how they contribute to global trade in virtual water. The analysis shows that implementation of the LSLAs in our sample would result in global water savings based on virtual water trade. At the level of individual LSLA host countries, however, water use intensity would increase, particularly in 15 sub-Saharan states. From an investor country perspective, the analysis reveals that countries often suspected of using LSLA to relieve pressure on their domestic water resources--such as China, India, and all Gulf States except Saudi Arabia--invest in agricultural activities abroad that are less water-intensive compared to their average domestic crop production. Conversely, large investor countries such as the United States, Saudi Arabia, Singapore, and Japan are disproportionately externalizing crop water consumption through their international land investments. Statistical analyses also show that host countries with abundant water resources are not per se favoured targets of LSLA. Indeed, further analysis reveals that land investments originating in water-stressed countries have only a weak tendency to target areas with a smaller water risk.

  20. Large-Scale Land Acquisition and Its Effects on the Water Balance in Investor and Host Countries.

    Directory of Open Access Journals (Sweden)

    Thomas Breu

    Full Text Available This study examines the validity of the assumption that international large-scale land acquisition (LSLA is motivated by the desire to secure control over water resources, which is commonly referred to as 'water grabbing'. This assumption was repeatedly expressed in recent years, ascribing the said motivation to the Gulf States in particular. However, it must be considered of hypothetical nature, as the few global studies conducted so far focused primarily on the effects of LSLA on host countries or on trade in virtual water. In this study, we analyse the effects of 475 intended or concluded land deals recorded in the Land Matrix database on the water balance in both host and investor countries. We also examine how these effects relate to water stress and how they contribute to global trade in virtual water. The analysis shows that implementation of the LSLAs in our sample would result in global water savings based on virtual water trade. At the level of individual LSLA host countries, however, water use intensity would increase, particularly in 15 sub-Saharan states. From an investor country perspective, the analysis reveals that countries often suspected of using LSLA to relieve pressure on their domestic water resources--such as China, India, and all Gulf States except Saudi Arabia--invest in agricultural activities abroad that are less water-intensive compared to their average domestic crop production. Conversely, large investor countries such as the United States, Saudi Arabia, Singapore, and Japan are disproportionately externalizing crop water consumption through their international land investments. Statistical analyses also show that host countries with abundant water resources are not per se favoured targets of LSLA. Indeed, further analysis reveals that land investments originating in water-stressed countries have only a weak tendency to target areas with a smaller water risk.

  1. Getting the balance right

    International Nuclear Information System (INIS)

    1987-01-01

    This 8 page leaflet is published by the Nuclear Electricity Information Group (NEIG) which is made up of eight different bodies working within the nuclear industry. It aims to present a balanced outline of the facts needed to form an opinion about energy policy in the UK. It looks at the price of electricity, other sources of electricity, (oil and coal, solar power, wind power, water power), safety in the nuclear industry, nuclear waste disposal and risks from radiation. The NEIG is in favour of a balanced energy programme with nuclear energy being only a part of the overall scheme. (U.K.)

  2. Assessing the effect, on animal model, of mixture of food additives, on the water balance.

    Science.gov (United States)

    Friedrich, Mariola; Kuchlewska, Magdalena

    2013-01-01

    The purpose of this study was to determine, on the animal model, the effect of modification of diet composition and administration of selected food additives on water balance in the body. The study was conducted with 48 males and 48 females (separately for each sex) of Wistar strain rats divided into four groups. For drinking, the animals from groups I and III were receiving water, whereas the animals from groups II and IV were administered 5 ml of a solution of selected food additives (potassium nitrate - E 252, sodium nitrite - E 250, benzoic acid - E 210, sorbic acid - E 200, and monosodium glutamate - E 621). Doses of the administered food additives were computed taking into account the average intake by men, expressed per body mass unit. Having drunk the solution, the animals were provided water for drinking. The mixture of selected food additives applied in the experiment was found to facilitate water retention in the body both in the case of both male and female rats, and differences observed between the volume of ingested fluids and the volume of excreted urine were statistically significant in the animals fed the basal diet. The type of feed mixture provided to the animals affected the site of water retention - in the case of animals receiving the basal diet analyses demonstrated a significant increase in water content in the liver tissue, whereas in the animals fed the modified diet water was observed to accumulate in the vascular bed. Taking into account the fact of water retention in the vascular bed, the effects of food additives intake may be more adverse in the case of females.

  3. [i]Legionella spp[/i]., amoebae and not-fermenting Gram negative bacteria in an Italian university hospital water system

    Directory of Open Access Journals (Sweden)

    Pasqualina Laganà

    2014-09-01

    Full Text Available [b]Introduction. [/b]In hospital and other health care facilities, contamination of water systems by potentially infectious microorganisms, such as bacteria, viruses and protozoa, is a source of nosocomial infections, which may originate fromcolonization of water pipes, cooling towers, spa pools, taps, showers and water supplies. [b]Objective. [/b]The study focuses on the occurrence of [i]Legionella spp.[/i], free-living amoebae and non-fermenting Gram-negative microorganisms in a University hospital water system located in the town of Messina (Sicily, Italy, which had never been examined previously. Materials and Methods. From January 2008 – March 2009, hot tap water samples were collected from 10 wards.[i] Legionella spp[/i]. recovered on selective culture medium were identified by microagglutination latex test; free-living amoebae were cultured using [i]Escherichia coli [/i]as a food source. Non-fermenting Gram negative microorganisms were identified by API 20 NE strips. [b]Results.[/b] [i]Legionella spp.[/i] were found in 33.33% of the samples. [i]L. pneumophila[/i] serogroup 1 was recovered from the Laboratory Diagnostic and Anaesthesia-Neurology Wards, with a peak of 3.5 × 10[sup]4[/sup] cfu/L in May 2008. [i]L. pneumophila[/i] serogroups 2–14 were found in the Othorhinolaryngology, Pathologic Anatomy, Paediatrics and Surgery Wards, and peaked (4 × 10[sup]4[/sup] cfu/L in April 2008. Pseudomonadaceae and Hyphomycetes were also detected. Legionella spp. were recovered from samples positive for non-pathogenic amoebae [i]Hartmannella spp[/i]. [b]Conclusion.[/b] This first study of a Messina hospital water system suggested potential health risks related to the detection of [i]Hartmannella spp[/i]., as reservoirs for[i] Legionella spp.[/i], and Pseudomonas aeruginosa, a Gram negative non-fermenting bacterium frequently causing nosocomial pneumonia. The urgent need for monitoring programmes and prevention measures to ensure hospital water

  4. Shallow-water sloshing in a moving vessel with variable cross-section and wetting-drying using an extension of George's well-balanced finite volume solver

    Science.gov (United States)

    Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.

    2016-06-01

    A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.

  5. A molecular mechanism for diacylglycerol-mediated promotion of negative caloric balance

    Directory of Open Access Journals (Sweden)

    Yanai H

    2009-12-01

    study demonstrated that 1-monoacylglycerol, a digestive product of DAG, increases serotonin release from the Caco-2 cells, and enhances expression of genes associated with β-oxidation, FA metabolism, and thermogenesis, and that serotonin increases expression of these genes, proposing a novel molecular mechanism for DAG-mediated promotion of negative caloric balance.Keywords: diacylglycerol, energy expenditure, intestine, serotonin, triacylglycerol

  6. Impacts of climate change on the water balance of a large nonhumid natural basin in China

    Science.gov (United States)

    Liu, Qiang; Liang, Liqiao

    2015-08-01

    Water resources are contingent on the combined effects of climate change and watershed characteristics. An analytical model devised from the Budyko framework was used to investigate the partitioning of precipitation ( P) into actual evapotranspiration ( E) and streamflow ( Q) parameters for the Yellow River Basin (YRB), a water-limited basin, to estimate the response of E and Q to P and potential evapotranspiration ( E p ). Although a steady state was assumed, the analytical model, incorporating an adjustable parameter characteristic of catchment conditions ( ω), can be run to analyze the sensitivity of catchment characteristics on water resources. The theory predicts that Q and E are more sensitive to P than to E p . For example, a 10 % increase in P will result in a 22.8 % increase in Q, while a 10 % increase in E p will decrease Q by 13.2 %. The model shows that, to some extent, water balance is governed by changing catchment characteristics (such as changes in vegetation on annual scales). These findings indicate that additional elucidative data can be drawn from the Budyko framework when taking into account catchment characteristics. Furthermore, the model can analyze the response of water resources to climate change on different temporal and spatial scales.

  7. Effects of Hydrologic Restoration on the Residence Times and Water Quality of a Coastal Wetland in the Florida Everglades

    Science.gov (United States)

    Sandoval, E.; Price, R. M.; Melesse, A. M.; Whitman, D.

    2013-05-01

    The Everglades, located in southern Florida, is a dominantly freshwater coastal wetland ecosystem that has experienced many alterations and changes led by urbanization and water management practices with most cases resulting in decreased water flow across the system. The Comprehensive Everglades Restoration Plan, passed in 2000, has the final goal of restoring natural flow and clean water to the Everglades while also balancing flood control and water supply needs of the south Florida population with approximately 60 projects to be constructed and completed in the following 30 years. One way to assess the success of restoration projects is to observe long-term hydrological and geochemical changes as the projects undergo completion. The purpose of this research was to investigate the effects of restoration on the water balance, flushing time, and water chemistry of Taylor Slough; one of the main natural waterways located within the coastal Everglades. A water balance equation was used to solve for groundwater-surface water exchange. The major parameters for the water balance equation (precipitation, evapotranspiration (ET), surface water storage, inflow and outflow) were obtained from the U.S. Geological Survey and Everglades National Park databases via the Everglades Depth Estimation Network (EDEN). Watershed flushing times were estimated as the surface water volume divided by the total outputs from the watershed. Both the water balance equation and water flushing time were calculated on a monthly time step from 2001 - 2011. Water chemistry of major ions and Total Nitrogen (TN) and Total Phosphorus (TP) was analyzed on water samples, 3-day composites collected every 18 hours from 2008 - 2012, and correlated with water flushing times. Stable isotopes of oxygen and hydrogen of water samples were obtained to support the dominant inputs of water into Taylor Slough as identified by the water budget equation. Results for flushing times varied between 3 and 78 days, with

  8. Relationships between energy balance and health traits of dairy cattle in early lactation.

    Science.gov (United States)

    Collard, B L; Boettcher, P J; Dekkers, J C; Petitclerc, D; Schaeffer, L R

    2000-11-01

    The objective of the study was to calculate phenotypic relationships between energy balance in early lactation and health and reproduction in that lactation. Data were 26,701 daily records of dry matter intake and milk production, periodic measures of milk composition and body weight, and all health and reproductive information from 140 multiparous Holstein cows. Daily energy balance was calculated by multiplying feed intake by the concentration of energy of the ration and subtracting the amount of energy required for maintenance (based on parity and body weight) and for milk production (based on yield and concentrations of fat, protein, and lactose). Six measures of energy balance were defined: mean daily energy balance during the first 20, 50, and 100 d of lactation; minimum daily energy balance; days in negative energy balance; and total energy deficit. Measures of health were the numbers of occurrences of each of the following during lactation: all udder problems, mastitis, all locomotive problems, laminitis, digestive problems, and reproductive problems. Reproductive traits were the number of days to first observed estrus and number of inseminations. Several significant relationships between energy balance and health were observed. Increased digestive and locomotive problems were associated with longer and more extreme periods of negative energy balance.

  9. 20 years of long-term water balance measurements of a landfill cover system with components constructed from pre-treated dredged material

    NARCIS (Netherlands)

    Berger, K.; Groengroeft, A.; Gebert, J.; Harms, C.; Eschenbach, A.

    2017-01-01

    The cover system of the mono-landfill Hamburg-Francop for disposal of dredged
    material comprises a mineral liner of pre-treated fine-grained dredged material (‘METHAmaterial’) and an overlying drainage layer of pre-treated sandy dredged material (‘METHAsand’). Water balance and effectiveness of

  10. Assessing the controls of the snow energy balance and water available for runoff in a rain-an-snow environment

    Science.gov (United States)

    Adam B. Mazurkiewicz; David G. Callery; Jeffrey J. McDonnell

    2008-01-01

    Rain-on-snow (ROS) melt production and its contribution to water available for runoff is poorly understood. In the Pacific Northwest (PNW) of the USA, ROS drives many runoff events with turbulent energy exchanges dominating the snow energy balance (EB). While previous experimental work in the PNW (most notably the H.J. Andrews Experimental Forest (HJA» has quantified...

  11. Effect of smart phone using duration and gender on dynamic balance

    Directory of Open Access Journals (Sweden)

    Doaa Rafat El Azab

    2017-01-01

    Full Text Available Smart phones are constantly used for extended periods while looking at the visual display terminals this may causes musculoskeletal problems. So, the purpose of this study was to investigate effect of smart phone using duration and gender on dynamic balance. Subjects: Sixty normal subjects included in this study their age ranged from 20 years to 35 years were divided into three groups, A not using smart phone, B using smart phone less than 4 h per day, C using smart phone more than 4 h per day. Methods: Biodex Stability System was utilized to assess dynamic balance; 3 trials were performed from which the mean value was calculated. Results: there is a significant decrease in all balance directions for group B and C (using smart phone with favor reduction for group C (using smart phone more than 4 h per day and there is a significant difference between male and female subjects as dynamic balance decreased more in female subjects more than male subjects. Conclusion: Long duration of smart phone using affect negatively the balance ability especially in females, so we should develop preventive programs to alleviate its negative effects.

  12. Follow-up barium study after a negative water-soluble contrast examination for suspected esophageal leak: is it necessary?

    Science.gov (United States)

    Sanchez, Thomas R; Holz, Grant S; Corwin, Michael T; Wood, Robert J; Wootton-Gorges, Sandra L

    2015-10-01

    The purpose of this study was to determine the value of follow-up barium esophogram in diagnosing esophageal injury or leak if the initial water-soluble contrast examination of the esophagus is normal. An institutional review board (IRB)-approved retrospective review of all pediatric patients less than 18 years old referred to the radiology department for evaluation of esophageal injury or leak was performed for a 9-year period from 2005 to 2014. The majority of patients had unexplained pneumomediastinum, chest trauma (gunshot or puncture wound), or foreign body ingestion as the reason for the referral. Forty-nine patients (age range 10 days to 17 years) underwent an initial water-soluble esophogram immediately followed by a barium esophogram. Forty-six studies were negative on both water-soluble contrast and barium studies. Two studies were both positive on the initial water-soluble contrast and subsequent barium studies. A single study showed the esophageal leak only in the water-soluble study, with the follow-up barium exam being normal. The result of this study indicates that a single-contrast water-soluble esophogram alone is sensitive in the diagnosis of esophageal injury or leak. It has a 100 % sensitivity and negative predictive value. A follow-up barium esophogram only increases the study time and radiation dose to the patient.

  13. Water balance estimation in high Alpine terrain by combining distributed modeling and a neural network approach (Berchtesgaden Alps, Germany

    Directory of Open Access Journals (Sweden)

    G. Kraller

    2012-07-01

    Full Text Available The water balance in high Alpine regions is often characterized by significant variation of meteorological variables in space and time, a complex hydrogeological situation and steep gradients. The system is even more complex when the rock composition is dominated by soluble limestone, because unknown underground flow conditions and flow directions lead to unknown storage quantities. Reliable distributed modeling cannot be implemented by traditional approaches due to unknown storage processes at local and catchment scale. We present an artificial neural network extension of a distributed hydrological model (WaSiM-ETH that allows to account for subsurface water transfer in a karstic environment. The extension was developed for the Alpine catchment of the river "Berchtesgadener Ache" (Berchtesgaden Alps, Germany, which is characterized by extreme topography and calcareous rocks. The model assumes porous conditions and does not account for karstic environments, resulting in systematic mismatch of modeled and measured runoff in discharge curves at the outlet points of neighboring high alpine subbasins. Various precipitation interpolation methods did not allow to explain systematic mismatches, and unknown subsurface hydrological processes were concluded as the underlying reason. We introduce a new method that allows to describe the unknown subsurface boundary fluxes, and account for them in the hydrological model. This is achieved by an artificial neural network approach (ANN, where four input variables are taken to calculate the unknown subsurface storage conditions. This was first developed for the high Alpine subbasin Königsseer Ache to improve the monthly water balance. We explicitly derive the algebraic transfer function of an artificial neural net to calculate the missing boundary fluxes. The result of the ANN is then implemented in the groundwater module of the hydrological model as boundary flux, and considered during the consecutive model

  14. Balance between calibration objectives in a conceptual hydrological model

    NARCIS (Netherlands)

    Booij, Martijn J.; Krol, Martinus S.

    2010-01-01

    Three different measures to determine the optimum balance between calibration objectives are compared: the combined rank method, parameter identifiability and model validation. Four objectives (water balance, hydrograph shape, high flows, low flows) are included in each measure. The contributions of

  15. Ice nucleation triggered by negative pressure.

    Science.gov (United States)

    Marcolli, Claudia

    2017-11-30

    Homogeneous ice nucleation needs supercooling of more than 35 K to become effective. When pressure is applied to water, the melting and the freezing points both decrease. Conversely, melting and freezing temperatures increase under negative pressure, i.e. when water is stretched. This study presents an extrapolation of homogeneous ice nucleation temperatures from positive to negative pressures as a basis for further exploration of ice nucleation under negative pressure. It predicts that increasing negative pressure at temperatures below about 262 K eventually results in homogeneous ice nucleation while at warmer temperature homogeneous cavitation, i. e. bubble nucleation, dominates. Negative pressure occurs locally and briefly when water is stretched due to mechanical shock, sonic waves, or fragmentation. The occurrence of such transient negative pressure should suffice to trigger homogeneous ice nucleation at large supercooling in the absence of ice-nucleating surfaces. In addition, negative pressure can act together with ice-inducing surfaces to enhance their intrinsic ice nucleation efficiency. Dynamic ice nucleation can be used to improve properties and uniformity of frozen products by applying ultrasonic fields and might also be relevant for the freezing of large drops in rainclouds.

  16. Water balance of two earthen landfill caps in a semi-arid climate

    International Nuclear Information System (INIS)

    Khire, M.V.; Benson, C.H.; Bosscher, P.J.

    1997-01-01

    Water balance data are presented that were obtained from two earthen cap test sections located in a semi-arid region. The test sections were constructed on a municipal solid waste landfill in East Wenatchee, Washington, USA. One test section represents a traditional resistive barrier, and is constructed with a compacted silty clay barrier 60 cm thick and a vegetated silty clay surface layer 15 cm thick. The other test section represents a capillary barrier and has a sand layer 75 cm thick overlain by a 15-cm-thick vegetated surface layer of silt. Extensive hydrological and meteorological data have been collected since November 1992. Unsaturated hydraulic properties of soils, hydrologic parameters, and vegetation have been extensively characterized. Results of the study show that capillary barriers can be effective caps in semi-arid and arid regions. They are also cheaper to construct and can perform better than traditional resistive barriers

  17. Water in the Balance: A Parking Lot Story

    Science.gov (United States)

    Haas, N. A.; Vitousek, S.

    2017-12-01

    The greater Chicagoland region has seen a high degree of urbanization since 1970. For example, between 1970-1990 the region experienced 4% population growth, a 35% increase in urban land use, and approximately 454 square miles of agricultural land was mostly converted into urban uses. Transformation of land into urban uses in the Chicagoland region has altered the stream and catchment response to rainfall events, specifically an increase in stream flashiness and increase in urban flooding. Chicago has begun to address these changes through green infrastructure. To understand the impact of green infrastructure at local, city-wide, and watershed scales, individual projects need to be accurately and sufficiently modeled. A traditional parking lot conversion into a porous parking lot at the University of Illinois at Chicago was modeled using SWMM and scrutinized using field data to look at stormwater runoff and water balance prior and post reconstruction. SWMM modeling suggested an 87% reduction in peak flow as well as a 100% reduction in flooding for a 24 hour, 1.72-inch storm. For the same storm, field data suggest an 89% reduction in peak flow as well as a 100% reduction in flooding. Modeling suggested 100% reductions in flooding for longer duration storms (24 hour+) and a smaller reduction in peak flow ( 66%). The highly parameterized SWMM model agrees well with collected data and analysis. Further effort is being made to use data mining to create correlations within the collected datasets that can be integrated into a model that follows a standardized formation process and reduces parameterization.

  18. Improving Water Balance Estimation in the Nile by Combining Remote Sensing and Hydrological Modelling: a Template for Ungauged Basins

    Science.gov (United States)

    Gleason, C. J.; Wada, Y.; Wang, J.

    2017-12-01

    Declining gauging infrastructure and fractious water politics have decreased available information about river flows globally, especially in international river basins. Remote sensing and water balance modelling are frequently cited as a potential solutions, but these techniques largely rely on the same in decline gauge data to constrain or parameterize discharge estimates, thus creating a circular approach to estimating discharge inapplicable to ungauged basins. To address this, we here combine a discontinued gauge, remotely sensed discharge estimates made via at-many-stations hydraulic geometry (AMHG) and Landsat data, and the PCR-GLOBWB hydrological model to estimate discharge for an ungauged time period for the Lower Nile (1978-present). Specifically, we first estimate initial discharges from 86 Landsat images and AMHG (1984-2015), and then use these flow estimates to tune the hydrologic model. Our tuning methodology is purposefully simple and can be easily applied to any model without the need for calibration/parameterization. The resulting tuned modelled hydrograph shows large improvement in flow magnitude over previous modelled hydrographs, and validation of tuned monthly model output flows against the historical gauge yields an RMSE of 343 m3/s (33.7%). By contrast, the original simulation had an order-of-magnitude flow error. This improvement is substantial but not perfect: modelled flows have a one-to two-month wet season lag and a negative bias. More sophisticated model calibration and training (e.g. data assimilation) is needed to improve upon our results, however, our results achieved by coupling physical models and remote sensing is a promising first step and proof of concept toward future modelling of ungauged flows. This is especially true as massive cloud computing via Google Earth Engine makes our method easily applicable to any basin without current gauges. Finally, we purposefully do not offer prescriptive solutions for Nile management, and

  19. Evaluation of globally available precipitation data products as input for water balance models

    Science.gov (United States)

    Lebrenz, H.; Bárdossy, A.

    2009-04-01

    Subject of this study is the evaluation of globally available precipitation data products, which are intended to be used as input variables for water balance models in ungauged basins. The selected data sources are a) the Global Precipitation Climatology Centre (GPCC), b) the Global Precipitation Climatology Project (GPCP) and c) the Climate Research Unit (CRU), resulting into twelve globally available data products. The data products imply different data bases, different derivation routines and varying resolutions in time and space. For validation purposes, the ground data from South Africa were screened on homogeneity and consistency by various tests and an outlier detection using multi-linear regression was performed. External Drift Kriging was subsequently applied on the ground data and the resulting precipitation arrays were compared to the different products with respect to quantity and variance.

  20. Geochemical mole-balance modeling with uncertain data

    Science.gov (United States)

    Parkhurst, David L.

    1997-01-01

    Geochemical mole-balance models are sets of chemical reactions that quantitatively account for changes in the chemical and isotopic composition of water along a flow path. A revised mole-balance formulation that includes an uncertainty term for each chemical and isotopic datum is derived. The revised formulation is comprised of mole-balance equations for each element or element redox state, alkalinity, electrons, solvent water, and each isotope; a charge-balance equation and an equation that relates the uncertainty terms for pH, alkalinity, and total dissolved inorganic carbon for each aqueous solution; inequality constraints on the size of the uncertainty terms; and inequality constraints on the sign of the mole transfer of reactants. The equations and inequality constraints are solved by a modification of the simplex algorithm combined with an exhaustive search for unique combinations of aqueous solutions and reactants for which the equations and inequality constraints can be solved and the uncertainty terms minimized. Additional algorithms find only the simplest mole-balance models and determine the ranges of mixing fractions for each solution and mole transfers for each reactant that are consistent with specified limits on the uncertainty terms. The revised formulation produces simpler and more robust mole-balance models and allows the significance of mixing fractions and mole transfers to be evaluated. In an example from the central Oklahoma aquifer, inclusion of up to 5% uncertainty in the chemical data can reduce the number of reactants in mole-balance models from seven or more to as few as three, these being cation exchange, dolomite dissolution, and silica precipitation. In another example from the Madison aquifer, inclusion of the charge-balance constraint requires significant increases in the mole transfers of calcite, dolomite, and organic matter, which reduce the estimated maximum carbon 14 age of the sample by about 10,000 years, from 22,700 years to

  1. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 3. The large catchment model

    Science.gov (United States)

    Sivapalan, Murugesu; Viney, Neil R.; Jeevaraj, Charles G.

    1996-03-01

    This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1-5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing.The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.

  2. Effects of vegetation structure on biomass accumulation in a Balanced Optimality Structure Vegetation Model (BOSVM v1.0

    Directory of Open Access Journals (Sweden)

    Z. Yin

    2014-05-01

    Full Text Available A myriad of interactions exist between vegetation and local climate for arid and semi-arid regions. Vegetation function, structure and individual behavior have large impacts on carbon–water–energy balances, which consequently influence local climate variability that, in turn, feeds back to the vegetation. In this study, a conceptual vegetation structure scheme is formulated and tested in the new Balanced Optimality Structure Vegetation Model (BOSVM to explore the importance of vegetation structure and vegetation adaptation to water stress on equilibrium biomass states. Surface energy, water and carbon fluxes are simulated for a range of vegetation structures across a precipitation gradient in West Africa and optimal vegetation structures that maximize biomass for each precipitation regime are determined. Two different strategies of vegetation adaptation to water stress are included. Under dry conditions vegetation tries to maximize the water use efficiency and leaf area index as it tries to maximize carbon gain. However, a negative feedback mechanism in the vegetation–soil water system is found as the vegetation also tries to minimize its cover to optimize the surrounding bare ground area from which water can be extracted, thereby forming patches of vertical vegetation. Under larger precipitation, a positive feedback mechanism is found in which vegetation tries to maximize its cover as it then can reduce water loss from bare soil while having maximum carbon gain due to a large leaf area index. The competition between vegetation and bare soil determines a transition between a "survival" state to a "growing" state.

  3. Contribution of supra-permafrost discharge to thermokarst lake water balances on the northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Pan, Xicai; Yu, Qihao; You, Yanhui; Chun, Kwok Pan; Shi, Xiaogang; Li, Yanping

    2017-12-01

    The seasonal hydrological mechanisms of two thermokarst lakes on the northeastern Qinghai-Tibet Plateau (QTP) were characterized by three-year intensive field observations and a water balance model. In three ice-free seasons, the supra-permafrost discharge contributed a mean ratio of over 170% of the precipitation. In the ice-cover seasons, the supra-permafrost discharge contribution varied between -20% and 22% of the water storage change. Results show that a large portion of the lake water storage change is because of the supra-permafrost discharge resulting from precipitation. Furthermore, a precipitation-subsurface runoff function is preliminarily identified in which the supra-permafrost discharge nonlinearly increased with more precipitation. Our results show that the recent lake expansion is linked with increasing supra-permafrost discharge dominated by precipitation. This study also suggests that we need to pay attention to the nonlinear increase of precipitation-controlled supra-permafrost discharge on the large lake expansion at the catchment scale in the QTP region, instead of only looking at the inputs (e.g., precipitation and river discharge) as shown in the previous studies.

  4. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015

    OpenAIRE

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and sol...

  5. Assessing the impact of climate variability on catchment water balance and vegetation cover

    Directory of Open Access Journals (Sweden)

    X. Xu

    2012-01-01

    Full Text Available Understanding the interactions among climate, vegetation cover and the water cycle lies at the heart of the study of watershed ecohydrology. Recently, considerable attention is being paid to the effect of climate variability on catchment water balance and also associated vegetation cover. In this paper, we investigate the general pattern of long-term water balance and vegetation cover (as reflected by fPAR among 193 study catchments in Australia through statistical analysis. We then employ the elasticity analysis approach for quantifying the effects of climate variability on hydrologic partitioning (including total, surface and subsurface runoff and on vegetation cover (including total, woody and non-woody vegetation cover. Based on the results of statistical analysis, we conclude that annual runoff (R, evapotranspiration (E and runoff coefficient (R/P increase with vegetation cover for catchments in which woody vegetation is dominant and annual precipitation is relatively high. Control of water available on annual evapotranspiration in non-woody dominated catchments is relatively stronger compared to woody dominated ones. The ratio of subsurface runoff to total runoff (Rg/R also increases with woody vegetation cover. Through the elasticity analysis of catchment runoff, it is shown that precipitation (P in current year is the most important factor affecting the change in annual total runoff (R, surface runoff (Rs and subsurface runoff (Rg. The significance of other controlling factors is in the order of annual precipitation in previous years (P−1 and P−2, which represents the net effect of soil moisture and annual mean temperature (T in current year. Change of P by +1% causes a +3.35% change of R, a +3.47% change of Rs and a +2.89% change of

  6. Pressure balanced type membrane covered polarographic oxygen detectors for use in high temperature-high pressure water, (1)

    International Nuclear Information System (INIS)

    Nakayama, Norio; Uchida, Shunsuke

    1984-01-01

    A pressure balanced type membrane covered polarographic oxygen detector was developed to determine directly oxygen concentrations in high temperature, high pressure water without cooling and pressure reducing procedures. The detector is characterized by the following features: (1) The detector body and the membrane for oxygen penetration are made of heat resistant resin. (2) The whole detector body is contained in a pressure chamber where interior and exterior pressures of the detector are balanced. (3) Thermal expansion of the electrolyte is absorbed by deformation of a diaphragm attached to the detector bottom. (4) The effect of dissolved Ag + on the signal current is eliminated by applying a guard electrode. As a result of performance tests at elevated temperature, it was demonstrated that a linear relationship between oxygen concentration and signal current was obtained up to 285 0 C, which was stabilized by the guard electrode. The minimum O 2 concentration detectable was 0.03ppm (9.4 x 10 -7 mol/kg). (author)

  7. Thermoregulation and water balance as affected by water and food restrictions in Sudanese desert goats fed good-quality and poor-quality diets.

    Science.gov (United States)

    Ahmed, Muna M M; El Kheir, I M

    2004-02-01

    Nine desert goats were used in a 3 x 3 Latin square design in which they were subjected to (a) ad libitum water and food (control), (b) ad libitum food and water restricted to about 40% of the control, and (c) ad libitum water and restricted food (same amount as given to group b). Parameters measured were dry matter intake (DMI), water intake, rectal temperature (Tr), respiration rate (RR), water balance and body weight (BW) changes. The acute effects of the above treatments on these parameters were monitored during the dry summer using two types of feed. The ratio of DMI to water intake decreased (p < 0.01) due to water restriction but increased (p < 0.01) with Lucerne hay compared to grass hay. With both feeds, BW decreased (p < 0.01) with water restriction, with a further decrease (p < 0.01) observed with food restriction. The control group showed a higher (p < 0.01) gain with Lucerne hay than grass hay. Tr and RR increased (p < 0.01) from morning to afternoon; Tr decreased due to food restriction during both morning and afternoon with Lucerne hay (p < 0.05) and grass hay (p < 0.05), whereas RR decreased (p < 0.01) with both types of feeds. For all groups of animals, Tr was higher (p < 0.05) with Lucerne hay than with grass hay, this effect being more pronounced (p < 0.01) with the control group. With both feeds, water restriction decreased (p < 0.01) water turnover rate and evaporative losses, with decreased (p < 0.05) faecal losses observed in the water-restricted groups on Lucerne hay but higher (p < 0.05) losses of urine. The tolerance of desert goats to thermal stress and their coping with shortage of water and food depended on their capacity to lose heat through panting and cutenaous evaporation as well as their ability to concentrate urine.

  8. A model-based approach for identifying signatures of ancient balancing selection in genetic data.

    Science.gov (United States)

    DeGiorgio, Michael; Lohmueller, Kirk E; Nielsen, Rasmus

    2014-08-01

    While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates.

  9. A model-based approach for identifying signatures of ancient balancing selection in genetic data.

    Directory of Open Access Journals (Sweden)

    Michael DeGiorgio

    2014-08-01

    Full Text Available While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates.

  10. A Baseline Load Schedule for the Manual Calibration of a Force Balance

    Science.gov (United States)

    Ulbrich, N.; Gisler, R.

    2013-01-01

    A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.

  11. User manual of Visual Balan V. 1.0 Interactive code for water balances and refueling estimation; Manual del usuario del programa Visual Balan V. 1.0. Codigo interactivo para la realizacion de balances hidrologicos y la estimacion de la recarga

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Huguer, L.; Ares, J.; Garcia, M. A. [Universidad de La Coruna (Spain)

    1999-07-01

    This document contains the Users Manual of Visual Balan V1.0, an updated version of Visual Balan V0.0 (Samper et al., 1997). Visual Balan V1.0 performs daily water balances in the soil, the unsaturated zone and the aquifer in a user-friendly environment which facilitates both the input data process and the postprocessing of results. The main inputs of the balance are rainfall and irrigation while the outputs are surface runoff, evapotranspiration, interception, inter flow and groundwater flow. The code evaluates all these components in a sequential manner by starting with rainfall and irrigation, which must be provided by the user, and continuing with interception, surface runoff, evapotranspiration, and potential recharge (water flux crossing the bottom of the soil). This potential recharge is the input to the unsaturated zone where water can flow horizontally as subsurface flow (inter flow) or vertically as percolation into the aquifer. (Author)

  12. Water balance model and eucalyptus growth simulation in the rio doce basin, Brazil - doi: 10.4025/actasciagron.v35i4.16955

    Directory of Open Access Journals (Sweden)

    Welliam Chaves Monteiro Silva

    2013-05-01

    Full Text Available Although the 3-PG model is widely used for forest productivity calculations, there are processes that do not present appropriate physical treatment. The aim of this study was to generate a tool to improve the water balance calculation in the model to enhance the energy balance and transpiration process. The calculation of transpiration was modified to account for variations in solar radiation with the inclination and azimuth of the terrain; the vapor pressure deficit was changed based on the relative humidity and air temperature; and the stomatal conductance varied according to solar radiation, vapor pressure deficit and air temperature. The water storage in the soil varied with the depth of the root system and the total water availability (TWA in the soil. The assessment was also changed from a monthly to an hourly basis. The study was conducted in areas surrounding Cenibra, and the data were collected from the Rio Doce river basin, in the Brazilian state of Minas Gerais. Taken together, these modifications improved growth - modeling processes and enhanced the capacity of this analytical tool to differentiate intra - region productivity.

  13. Effects of single and repeated doses of the calcium antagonist felodipine on blood pressure, renal function, electrolytes and water balance, and renin-angiotensin-aldosterone system in hypertensive patients.

    Science.gov (United States)

    Leonetti, G; Gradnik, R; Terzoli, L; Fruscio, M; Rupoli, L; Cuspidi, C; Sampieri, L; Zanchetti, A

    1986-01-01

    Doses of 10 mg b.i.d. of the new dihydropyridine calcium antagonist, felodipine, were tested for seven consecutive days in 11 hospitalized hypertensive patients. A significant reduction of both systolic and diastolic blood pressures, with patients in both the supine and upright positions, occurred immediately after the first dose and was maintained (daily average 15%) throughout the following days. An increase in heart rate was observed after the first dose (15 and 23 beats/min, in supine and upright postures), and subsequently declined to average values of 8 and 14 beats/min on the seventh day. There was a marked natriuretic response during the first and second day, during which an average negative sodium balance of 95 mmol developed; on the following days sodium output was not significantly different from control, but a negative balance averaging 135 mmol was still present on the seventh day of felodipine administration. A moderate negative potassium balance also progressively developed and reached -48 mmol on the seventh day. Glomerular filtration rate was unchanged, but renal plasma flow increased significantly during administration of felodipine. Plasma renin activity and plasma aldosterone were also increased very moderately by felodipine. Compared with previous observations by our group with higher doses of felodipine (12.5, 25, and 50 mg t.i.d.), 10 mg b.i.d. of this new calcium antagonist appear to exert a marked and prolonged blood pressure reduction, accompanied by a definite natriuretic instead of an antinatriuretic effect.

  14. Effects of easy-to-use protein-rich energy bar on energy balance, physical activity and performance during 8 days of sustained physical exertion.

    Directory of Open Access Journals (Sweden)

    Minna M Tanskanen

    Full Text Available BACKGROUND: Previous military studies have shown an energy deficit during a strenuous field training course (TC. This study aimed to determine the effects of energy bar supplementation on energy balance, physical activity (PA, physical performance and well-being and to evaluate ad libitum fluid intake during wintertime 8-day strenuous TC. METHODS: Twenty-six men (age 20±1 yr. were randomly divided into two groups: The control group (n = 12 had traditional field rations and the experimental (Ebar group (n = 14 field rations plus energy bars of 4.1 MJ•day(-1. Energy (EI and water intake was recorded. Fat-free mass and water loss were measured with deuterium dilution and elimination, respectively. The energy expenditure was calculated using the intake/balance method and energy availability as (EI/estimated basal metabolic rate. PA was monitored using an accelerometer. Physical performance was measured and questionnaires of upper respiratory tract infections (URTI, hunger and mood state were recorded before, during and after TC. RESULTS: Ebar had a higher EI and energy availability than the controls. However, decreases in body mass and fat mass were similar in both groups representing an energy deficit. No differences were observed between the groups in PA, water balance, URTI symptoms and changes in physical performance and fat-free mass. Ebar felt less hunger after TC than the controls and they had improved positive mood state during the latter part of TC while controls did not. Water deficit associated to higher PA. Furthermore, URTI symptoms and negative mood state associated negatively with energy availability and PA. CONCLUSION: An easy-to-use protein-rich energy bars did not prevent energy deficit nor influence PA during an 8-day TC. The high content of protein in the bars might have induced satiation decreasing energy intake from field rations. PA and energy intake seems to be primarily affected by other factors than energy

  15. Enhanced shock wave generation via pre-breakdown acceleration using water electrolysis in negative streamer pulsed spark discharges

    Science.gov (United States)

    Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.

    2018-03-01

    This paper presents a method for enhancement of shock waves generated from underwater pulsed spark discharges with negative (anode-directed) subsonic streamers, for which the pre-breakdown process is accelerated by preconditioning a gap with water electrolysis. Hydrogen microbubbles are produced at the cathode by the electrolysis and move towards the anode during the preconditioning phase. The numbers and spatial distributions of the microbubbles vary with the amplitude and duration of each preconditioning pulse. Under our experimental conditions, the optimum pulse duration is determined to be ˜250 ms at a pulse voltage of 400 V, where the buoyancy force overwhelms the electric force and causes the microbubbles to be swept out from the water gap. When a high-voltage pulse is applied to the gap just after the preconditioning pulse, the pre-breakdown process is significantly accelerated in the presence of the microbubbles. At the optimum preconditioning pulse duration, the average breakdown delay is reduced by 87% and, more importantly, the energy consumed during the pre-breakdown period decreases by 83%. This reduced energy consumption during the pre-breakdown period, when combined with the morphological advantages of negative streamers, such as thicker and longer stalks, leads to a significant improvement in the measured peak pressure (˜40%) generated by the underwater pulsed spark discharge. This acceleration of pre-breakdown using electrolysis overcomes the biggest drawback of negative subsonic discharges, which is slow vapor bubble formation due to screening effects, and thus enhances the efficiency of the shock wave generation process using pulsed spark discharges in water.

  16. Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship

    Science.gov (United States)

    Abatzoglou, John T.; Ficklin, Darren L.

    2017-09-01

    The geographic variability in the partitioning of precipitation into surface runoff (Q) and evapotranspiration (ET) is fundamental to understanding regional water availability. The Budyko equation suggests this partitioning is strictly a function of aridity, yet observed deviations from this relationship for individual watersheds impede using the framework to model surface water balance in ungauged catchments and under future climate and land use scenarios. A set of climatic, physiographic, and vegetation metrics were used to model the spatial variability in the partitioning of precipitation for 211 watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. A generalized additive model found that four widely available variables, precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow, explained 81.2% of the variability in ω. The ω model applied to the Budyko equation explained 97% of the spatial variability in long-term Q for an independent set of watersheds. The ω model was also applied to estimate the long-term water balance across the CONUS for both contemporary and mid-21st century conditions. The modeled partitioning of observed precipitation to Q and ET compared favorably across the CONUS with estimates from more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western United States.

  17. Negative, Null and Beneficial Effects of Drinking Water on Energy Intake, Energy Expenditure, Fat Oxidation and Weight Change in Randomized Trials: A Qualitative Review

    Directory of Open Access Journals (Sweden)

    Jodi J. D. Stookey

    2016-01-01

    Full Text Available Drinking water has heterogeneous effects on energy intake (EI, energy expenditure (EE, fat oxidation (FO and weight change in randomized controlled trials (RCTs involving adults and/or children. The aim of this qualitative review of RCTs was to identify conditions associated with negative, null and beneficial effects of drinking water on EI, EE, FO and weight, to generate hypotheses about ways to optimize drinking water interventions for weight management. RCT conditions that are associated with negative or null effects of drinking water on EI, EE and/or FO in the short term are associated with negative or null effects on weight over the longer term. RCT conditions that are associated with lower EI, increased EE and/or increased FO in the short term are associated with less weight gain or greater weight loss over time. Drinking water instead of caloric beverages decreases EI when food intake is ad libitum. Drinking water increases EE in metabolically-inflexible, obese individuals. Drinking water increases FO when blood carbohydrate and/or insulin concentrations are not elevated and when it is consumed instead of caloric beverages or in volumes that alter hydration status. Further research is needed to confirm the observed associations and to determine if/what specific conditions optimize drinking water interventions for weight management.

  18. Metabolic balances of 210Pb and 210Po at natural levels

    International Nuclear Information System (INIS)

    Spencer, H.; Holtzman, R.B.; Kramer, L.; Ilcewicz, F.H.

    1977-01-01

    Metabolic balances of 210 Po and 210 Pb were determined under strictly controlled dietary conditions in adult males. The intakes of the two nuclides were due to the dietary contents of these radioisotopes, inhalation from the atmosphere, and smoking of cigarettes. No additional radioisotope was given. The mean dietary intake of 210 Pb was 1.25 pCi/day and of 210 Po, 1.63 pCi/day. The major pathway of excretion of both nuclides is via the gastrointestinal tract and the urinary excretion is much lower. The total excretions of 210 Pb and 210 Po were greater than the dietary intake and the overall balances were -0.28 and -0.16 pCi/day for the two nuclides, respectively, during a low calcium intake. The 210 Pb balances did not change significantly when the calcium intake was increased 7- to 10-fold except for one patient in whom the balance became more negative. The 210 Po balance was more negative during calcium intakes of 800 and 2200 mg than during a low calcium intake of 200 mg/day. The urinary and fecal excretions of the two radionuclides were not affected by the intake of sodium fluoride, while the diuretic compound Hydrodiuril appeared to decrease the fecal 210 Pb excretion

  19. Metabolic balances of 210Pb and 210Po at natural levels

    International Nuclear Information System (INIS)

    Spencer, H.; Holtzman, R.B.; Kramer, L.; Ilcewicz, F.H.

    1977-01-01

    Metabolic balances of 210 Po and 210 Pb were determined under strictly controlled dietary conditions in adult males. The intakes of the two nuclides were due to the dietary contents of these radioisotopes, inhalation from the atmosphere, and smoking of cigarettes. No additional radioisotope was given. The mean dietary intake of 210 Pb was 1.25 pCi/day and of 210 Po, 1.63 pCi/day. The major pathway of excretion of both nuclides is via the gastrointestinal tract; the urinary excretion is much lower. The total excretions of 210 Pb and 210 Po were greater than the dietary intake and the overall balances were -0.28 and -0.16 pCi/day for the two nuclides, respectively, during a low calcium intake. The 210 Pb balances did not change significantly when the calcium intake was increased 7- to 10-fold except for one patient in whom the balance became more negative. The 210 Po balance was more negative during calcium intakes of 800 and 2200 mg than during a low calcium intake of 200 mg/day. The urinary and fecal excretions of the two radionuclides were not affected by the intake of sodium fluoride, while the diuretic compound, Hydrodiuril, appeared to decrease the fecal 210 Pb excretion

  20. Influence of exogenous lactoferrin on the oxidant/antioxidant balance and molecular profile of hormone receptor-positive and -negative human breast cancer cells in vitro.

    Science.gov (United States)

    Zalutskii, I V; Lukianova, N Y; Storchai, D M; Burlaka, A P; Shvets, Y V; Borikun, T V; Todor, I M; Lukashevich, V S; Rudnichenko, Y A; Chekhun, V F

    2017-07-01

    To investigate the mechanisms of cytotoxic activity and pro-/antioxidant effect of lactoferrin on hormone receptor-positive and receptor-negative breast cancer cells in vitro. The study was performed on receptor-positive (MCF-7, T47D) and receptor-negative (MDA-MB-231, MDA-MB-468) human breast cancer cell lines. Immunocytochemical staining, flow cytometry, low-temperature electron paramagnetic resonance, and the Comet assay were used. Upon treatment with lactoferrin, the increased levels of reactive oxygen species (ROS) (p < 0.05), NO generation rate by inducible NO-synthase (p < 0.05) and the level of "free" iron (p < 0.05) were observed. Moreover, the effects of lactoferrin were more pronounced in receptor-negative MDA-MB-231 and MDA-MB-468 cells. These changes resulted in increased expression of proapoptotic Bax protein (p < 0.05), reduced expression of the antiapoptotic Bcl-2 protein (p < 0.05) and level of not-oxidized mitochondrial cardiolipin (1.4-1.7-fold, p < 0.05). This, in turn, caused an increase in the percentage of apoptotic cells (by 14-24%, p < 0.05). Cytotoxic effects of lactoferrin were accompanied by an increase in the percentage of DNA in the comet tail and blocking cell cycle at G2/M phase, especially in receptor-negative cell lines. The study showed that exogenous lactoferrin causes a violation of an antioxidant balance by increasing the level of ROS, "free" iron and NO generation rate, resalting in the blocking of cell cycle at G2/M-phase and apoptosis of malignant cells.

  1. Independent effects of adding weight and inertia on balance during quiet standing.

    Science.gov (United States)

    Costello, Kerry Elizabeth; Matrangola, Sara Louise; Madigan, Michael Lawrence

    2012-04-16

    Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance.

  2. The Mass Balance of Glacier No. 1 at the Headwaters of the Urumqi River in Relation to Northern Hemisphere Teleconnection Patterns

    Directory of Open Access Journals (Sweden)

    Feifei Yuan

    2016-03-01

    Full Text Available Most small glaciers in the world have significantly decreased their volume during the last century, which has caused water shortage problems. Glacier No. 1, at the headwaters of the Urumqi River, Tianshan, China, has been monitored since 1959 and similarly has experienced significant mass and volume losses over the last few decades. Thus, we examined the trend and potential abrupt changes of the mass balance of Glacier No. 1. Principal component analysis and singular value decomposition were used to find significant relations between the mass balance of Glacier No. 1 and Northern Hemisphere teleconnection patterns using climate indices. It was found that the mass balance of Glacier No. 1 had a significantly decreasing trend corresponding to −14.5 mm/year from 1959 to 2010. A change point was detected in 1997 with 99% confidence level. Two time periods with different mass balances were identified as 1959–1996 and 1997–2010. The mass balance for the first period was −136.4 mm/year and up to −663.9 mm/year for the second period. The mass balance of Glacier No. 1 is positively related to the Scandinavian Pattern (SCA, and negatively related to the East Atlantic Pattern (EA. These relationships are useful in better understanding the interaction between glacier mass balance and climate variability.

  3. Plant balance model for RELAP/SCDAPSIM; Modelo de balance de planta para RELAP/SCDAPSIM

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza M, R. [Consultor independiente, Ciudad de Mexico (Mexico); Filio L, C. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, 07738 Ciudad de Mexico (Mexico); Araiza M, E.; Ortiz V, J., E-mail: rafael_mendozam_esfm@live.com.mx [ININ, Carretera Mexico-Touca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    In this work we developed an integral model for a nuclear power plant and have a more general picture of what happens in both the Nuclear Steam Supply System (NSSS) and the Balance of Plant (Bop) system during abnormal events that are presented in operation. RELAP/SCDAPSIM (RSS) is a computation code of the type of best estimate that can simulate the transient and accident behavior of a nuclear installation. The development of a Bop model for RSS can result in the simulation of transients such as turbine trip due to loss of vacuum in the main steam condenser. This work shows the development of models of the Bop main components for the RSS code, such as the set of high and low pressure turbines, as well as their steam extractions to the feed water heaters, the main steam condenser, a feed water heater and the condensate and water feed pumps. This new model of the Plant Balance system was then coupled to the NSSS model that is already in RSS. First, results of the steady state with this new integral model are show, to later show results of the transients simulation: 1) turbine trip due to loss of vacuum in the main steam condenser; 2) loss of condensate pumps; and 3) failure of the feed water heater. (Author)

  4. Modelling the snowmelt and the snow water equivalent by creating a simplified energy balance conceptual snow model

    Science.gov (United States)

    Riboust, Philippe; Thirel, Guillaume; Le Moine, Nicolas; Ribstein, Pierre

    2016-04-01

    A better knowledge of the accumulated snow on the watersheds will help flood forecasting centres and hydro-power companies to predict the amount of water released during spring snowmelt. Since precipitations gauges are sparse at high elevations and integrative measurements of the snow accumulated on watershed surface are hard to obtain, using snow models is an adequate way to estimate snow water equivalent (SWE) on watersheds. In addition to short term prediction, simulating accurately SWE with snow models should have many advantages. Validating the snow module on both SWE and snowmelt should give a more reliable model for climate change studies or regionalization for ungauged watersheds. The aim of this study is to create a new snow module, which has a structure that allows the use of measured snow data for calibration or assimilation. Energy balance modelling seems to be the logical choice for designing a model in which internal variables, such as SWE, could be compared to observations. Physical models are complex, needing high computational resources and many different types of inputs that are not widely measured at meteorological stations. At the opposite, simple conceptual degree-day models offer to simulate snowmelt using only temperature and precipitation as inputs with fast computing. Its major drawback is to be empirical, i.e. not taking into account all of the processes of the energy balance, which makes this kind of model more difficult to use when willing to compare SWE to observed measurements. In order to reach our objectives, we created a snow model structured by a simplified energy balance where each of the processes is empirically parameterized in order to be calculated using only temperature, precipitation and cloud cover variables. This model's structure is similar to the one created by M.T. Walter (2005), where parameterizations from the literature were used to compute all of the processes of the energy balance. The conductive fluxes into the

  5. Pengaruh Work-life Balance dan Burnout terhadap Kepuasan Kerja

    OpenAIRE

    Livi Pangemanan, Friane; Johnly Pio, Riane; Tumbel, Tinneke M

    2017-01-01

    The purpose of this study is to examine the influence of work-life balance and burnout on job satisfaction of the employees in PT. Jasa Raharja (Persero) Branch of Sulawesi Utara. Data were collected from questionnaires completed by 32 participants and analysed using multiple regression analysis. The findings reveal that work-life balance had a positive and significant impact to job satisfaction. Further, burnout had a negative impact to job satisfaction but the result was insignificant. Thi...

  6. Water Reserves Program. An adaptation strategy to balance water in nature

    Science.gov (United States)

    Lopez Perez, M.; Barrios, E.; Salinas-Rodriguez, S.; Wickel, B.; Villon, R. A.

    2013-05-01

    Freshwater ecosystems occupy approximately 1% of the earth's surface yet possess about 12% of all known animal species. By virtue of their position in the landscape they connect terrestrial and coastal marine biomes and provide and sustain ecosystem services vital to the health and persistence of human communities. These services include the supply of water for food production, urban and ind ustrial consumption, among others. Over the past century many freshwater ecosystems around the world have been heavily modified or lost due to the alteration of flow regimes (e.g. due to damming, canalization, diversion, over-abstraction). The synergistic impacts of land use change, changes in flows, chemical deterioration, and climate change have left many systems and their species very little room to adjust to change, while future projections indicate a steady increase in water demand for food and energy production and water supply to suit the needs of a growing world population. In Mexico, the focus has been to secure water for human development and maximize economic growth, which has resulted in allocation of water beyond available amounts. As a consequence episodic water scarcity severely constrains freshwater ecosystems and the services they provide. Climatic change and variability are presenting serious challenges to a country that already is experiencing serious strain on its water resources. However, freshwater ecosystems are recognized by law as legitimate user of water, and mandate a flow allocation for the environment ("water reserve" or "environmental flows"). Based on this legal provision the Mexican government through the National Water Commission (Conagua), with support of the Alliance WWF - Fundación Gonzalo Río Arronte, and the Interamerican Development Bank, has launched a national program to identify and implement "water reserves": basins where environmental flows will be secured and allocated and where the flow regime is then protected before over

  7. Spatiotemporal characteristics and water budget of water cycle elements in different seasons in northeast China

    International Nuclear Information System (INIS)

    Zhou Jie; Zhao Jun-Hu; He Wen-Ping; Zhi-Qiang Gong

    2015-01-01

    In this paper, we study the spatiotemporal characteristics of precipitable water, precipitation, evaporation, and water–vapor flux divergence in different seasons over northeast China and the water balance of that area. The data used in this paper is provided by the European Center for Medium-Range Weather Forecasts (ECMWF). The results show that the spatial distributions of precipitable water, precipitation, and evaporation feature that the values of elements above in the southeastern area are larger than those in the northwestern area; in summer, much precipitation and evaporation occur in the Changbai Mountain region as a strong moisture convergence region; in spring and autumn, moisture divergence dominates the northeast of China; in winter, the moisture divergence and convergence are weak in this area. From 1979 to 2010, the total precipitation of summer and autumn in northeast China decreased significantly; especially from 1999 to 2010, the summer precipitation always demonstrated negative anomaly. Additionally, other elements in different seasons changed in a truly imperceptible way. In spring, the evaporation exceeded the precipitation in northeast China; in summer, the precipitation was more prominent; in autumn and winter, precipitation played a more dominating role than the evaporation in the northern part of northeast China, while the evaporation exceeded the precipitation in the southern part.The Interim ECMWF Re-Analysis (ERA-Interim) data have properly described the water balance of different seasons in northeast China. Based on ERA-Interim data, the moisture sinks computed through moisture convergence and moisture local variation are quite consistent with those computed through precipitation and evaporation, which proves that ERA-Interim data can be used in the research of water balance in northeast China. On a seasonal scale, the moisture convergence has a greater influence than the local moisture variation on a moisture sink, and the latter is

  8. Spatiotemporal characteristics and water budget of water cycle elements in different seasons in northeast China

    Institute of Scientific and Technical Information of China (English)

    周杰; 赵俊虎; 何文平; 龚志强

    2015-01-01

    In this paper, we study the spatiotemporal characteristics of precipitable water, precipitation, evaporation, and water–vapor flux divergence in different seasons over northeast China and the water balance of that area. The data used in this paper is provided by the European Center for Medium-Range Weather Forecasts (ECMWF). The results show that the spatial distributions of precipitable water, precipitation, and evaporation feature that the values of elements above in the southeastern area are larger than those in the northwestern area;in summer, much precipitation and evaporation occur in the Changbai Mountain region as a strong moisture convergence region;in spring and autumn, moisture divergence dominates the northeast of China;in winter, the moisture divergence and convergence are weak in this area. From 1979 to 2010, the total precipitation of summer and autumn in northeast China decreased significantly; especially from 1999 to 2010, the summer precipitation always demonstrated negative anomaly. Additionally, other elements in different seasons changed in a truly imperceptible way. In spring, the evaporation exceeded the precipitation in northeast China; in summer, the precipitation was more prominent;in autumn and winter, precipitation played a more dominating role than the evaporation in the northern part of northeast China, while the evaporation exceeded the precipitation in the southern part. The Interim ECMWF Re-Analysis (ERA-Interim) data have properly described the water balance of different seasons in northeast China. Based on ERA-Interim data, the moisture sinks computed through moisture convergence and moisture local variation are quite consistent with those computed through precipitation and evaporation, which proves that ERA-Interim data can be used in the research of water balance in northeast China. On a seasonal scale, the moisture convergence has a greater influence than the local moisture variation on a moisture sink, and the latter is

  9. Energy partitioning in dairy cows : effects of lipogenic and glucogenic diets on energy balance, metabolites and reproduction variables in early lactation

    NARCIS (Netherlands)

    Knegsel, van A.T.M.

    2007-01-01

    Keywords: dairy cows; dietary energy source; glucogenic nutrients; lipogenic nutrients; negative energy balance; metabolic disorders; reproduction, immune system Dairy cows experience a negative energy balance (NEB) in early lactation which results from high energy requirements for milk production

  10. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Abid, A. A., E-mail: abidaliabid1@hotmail.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Khan, M. Z., E-mail: mzk-qau@yahoo.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yap, S. L. [Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Terças, H., E-mail: hugo.tercas@tecnico.ul.pt [Physics of Information Group, Instituto de Telecomunicações, Av. Rovisco Pais, Lisbon 1049-001 (Portugal); Mahmood, S. [Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A2 (Canada)

    2016-01-15

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q{sub d} = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U{sub 0}) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0.

  11. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    International Nuclear Information System (INIS)

    Abid, A. A.; Khan, M. Z.; Yap, S. L.; Terças, H.; Mahmood, S.

    2016-01-01

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q d  = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U 0 ) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0

  12. [Ensure - complete and balanced nutrition, convenient on work].

    Science.gov (United States)

    Kurenkov, A V; Iuriatin, A A

    2013-01-01

    The work conditions often may compromise a company ability to supply their employees with adequate, hot meals. For heavy labor workers and some office employees it is important to restore energy and nutrients with food, balanced in nutrients. The lack of adequate nutritive support can give a negative impact on different organs functions. One of the main principles of healthy nutrition is - diet must be balanced in nutrients. Which is easy to say, but difficult to implement, especially on some industries. Complete and balanced liquid and ready-to-use nutrition is new trend in nutrition of healthy people who cannot consume optimal diet, and in people with the risk of nutrient deficiencies. One-two packs of Ensure daily can significantly improve a worker ration. 2 and more packs could serve as a real complete and balanced lunch (>or=780 kcal). Also Ensure is easy to store and to deliver in distant places of work and can be recommended for use as a convenient, complete and balanced nutrition on work.

  13. Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia).

    Science.gov (United States)

    Mas-Pla, Josep; Menció, Anna

    2018-04-11

    Climate change will affect the dynamics of the hydrogeological systems and their water resources quality; in particular nitrate, which is herein taken as a paradigmatic pollutant to illustrate the effects of climate change on groundwater quality. Based on climatic predictions of temperature and precipitation for the horizon of 2021 and 2050, as well as on land use distribution, water balances are recalculated for the hydrological basins of distinct aquifer systems in a western Mediterranean region as Catalonia (NE Spain) in order to determine the reduction of available water resources. Besides the fact that climate change will represent a decrease of water availability, we qualitatively discuss the modifications that will result from the future climatic scenarios and their impact on nitrate pollution according to the geological setting of the selected aquifers. Climate effects in groundwater quality are described according to hydrological, environmental, socio-economic, and political concerns. Water reduction stands as a major issue that will control stream-aquifer interactions and subsurface recharge, leading to a general modification of nitrate in groundwater as dilution varies. A nitrate mass balance model provides a gross estimation of potential nitrate evolution in these aquifers, and it points out that the control of the fertilizer load will be crucial to achieve adequate nitrate content in groundwater. Reclaimed wastewater stands as local reliable resource, yet its amount will only satisfy a fraction of the loss of available resources due to climate change. Finally, an integrated management perspective is necessary to avoid unplanned actions from private initiatives that will jeopardize the achievement of sustainable water resources exploitation under distinct hydrological scenarios.

  14. College Students' Views of Work-Life Balance in STEM Research Careers: Addressing Negative Preconceptions.

    Science.gov (United States)

    Tan-Wilson, Anna; Stamp, Nancy

    2015-01-01

    In career discussions, female undergraduates said that if they were to attend graduate school in science, technology, engineering, and mathematics (STEM) and were to follow a career based on their research training, they would have to give up having a family. A subsequent survey showed that many students, both men and women, thought work-life balance would be more difficult to achieve in a STEM research path than in other professions they were considering. Their views of STEM research being less family-friendly were more pronounced on issues of parental leaves and caring for children than finding a spouse/partner and landing two jobs in the same locality. To provide role models of work-life balance in STEM professions, we convened panels of dual-career couples who described how they worked together to raise their children while advancing their scientific careers. Our selection of panelists and topics of discussion were based on findings of social science research on work-life balance. On a survey with the same questions administered afterward, the changes in paired responses of male and female students with respect to all four issues showed a significant shift toward thinking that a research-based STEM career would be no more difficult than other careers they were considering. © 2015 A. Tan-Wilson and N. Stamp. et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Hydrological behaviour and water balance analysis for Xitiaoxi catchment of Taihu Basin

    Directory of Open Access Journals (Sweden)

    Xue Lijuan

    2008-09-01

    Full Text Available With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas. Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.

  16. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  17. Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance

    Science.gov (United States)

    Lotz, Albert

    2008-01-01

    Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…

  18. Water balance in the complex mountainous terrain of Bhutan and linkages to land use

    DEFF Research Database (Denmark)

    Dorji, Ugyen; Olesen, Jørgen Eivind; Seidenkrantz, Marit-Solveig

    2016-01-01

    Bhutan is located in the Himalayas with extreme variation in elevation, climatic conditions and land use. The high dependency of the economy on agriculture and natural resources emphasizes the importance of understanding inter- and intra-seasonal variation in water balance linked to monsoonal...... precipitation and evapotranspiration. We used data from 71 meteorological stations across Bhutan, each encompassing data series ranging from a few years till two decades. The temperature-based Hargreaves (H) equation for reference evapotranspiration (ETo) calculation was calibrated in reference to the FAO...... Penman-Monteith (PM) equation giving good estimates of average monthly ETo. Various published versions of the H equations consistently computed average ETo around 32% higher than the average ETo computed by PM. The difference could be largely attributed to higher mean relative humidity and a lower...

  19. The relationship between anterior pelvic tilt and gait, balance in patient with chronic stroke.

    Science.gov (United States)

    Kim, Myoung-Kwon; Kim, Seong-Gil; Shin, Young-Jun; Choi, Eun-Hong; Choe, Yu-Won

    2018-01-01

    [Purpose] The aim of this study is to find out the association between anterior pelvic tilt and gait and balance in chronic stroke. [Subjects and Methods] Fourteen chronic stroke patients were included in this study. A palpation meter was employed to measure the anterior inclination of the pelvis. A GAITRite system automates measuring temporal and spatial gait parameters. A 10-Meter Walk test was used to measure gait speed. The Timed Up and Go test was used to measure the dynamic balance ability and gait ability of the participants. A BioRescue was used to assess balance by measuring the moving distance and area of the center of pressure. [Results] There were significant negative correlations between pelvic anterior tilt and velocity, step length, and stride. There were significant positive correlations between velocity and cadence, step length, and stride length. There were significant negative correlations between velocity and cycle time, H-H base, TUG, and 10MWT. There was significant negative correlation between cadence and cycle time and H-H base. [Conclusion] This study showed a negative correlation between pelvic anterior tilt and gait function including gait speed and step length.

  20. Water and tritium balance of the Ems region, 1951 through 1983

    International Nuclear Information System (INIS)

    Krause, W.J.

    1988-03-01

    The distribution of tritium flows was presented in tabular form for this period of time by means of monthly and annual values in the form of tritium contents and tritium transports for the individual component flows and interpreted by means of graphical representations. The contributions of the Northwest German canal system to the tritium input and discharge and the tritium emission from the nuclear power station 'Lingen' were also considered, whose shares refered to the inland Ems area only amount to approximately 2% or max. 1% of the tritium load. The most important tritium flows are the tritium evaporation with a mean value of 65% over many years, the tritium load with 28% and the tritium decompostion with 6.5% compared with the impact (100%). The division of the tritium discharge between groundwater discharge and direct discharge amounts, on average, to approximately 2 to 3; this ratio can drastically shift in the case of heavy changes of the tritium input. The applied balance model describes the groundwater by 4 compartments on the basis of data extrapolated and measured for surface water. (orig./HP) [de

  1. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    Science.gov (United States)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  2. Greater expression of TLR2, TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA and HLA-A in bovine blood neutrophils after intramammary mastitis challenge with Streptococcus uberis

    DEFF Research Database (Denmark)

    Moyes, Kasey; Drackley, James K; Morin, Dawn E

    2010-01-01

    Our objectives were to compare gene expression profiles in blood polymorphonuclear cells (PMN) during a Streptococcus uberis intramammary challenge between lactating cows subjected to feed restriction to induce negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive ener...

  3. Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants.

    Science.gov (United States)

    Gao, Feng; Catalayud, Vicent; Paoletti, Elena; Hoshika, Yasutomo; Feng, Zhaozhong

    2017-11-01

    Tropospheric ozone (O 3 ) pollution frequently overlaps with drought episodes but the combined effects are not yet understood. We investigated the physiological and biomass responses of an O 3 sensitive hybrid poplar clone ('546') under three O 3 levels (charcoal-filtered ambient air, non-filtered ambient air (NF), and NF plus 40 ppb) and two watering regimes (well-watered (WW) and reduced watering (RW), i.e. 40% irrigation) for one growing season. Water stress increased chlorophyll and carotenoid contents, protecting leaves from pigment degradation by O 3 . Impairment of photosynthesis by O 3 was also reduced by stomatal closure due to water stress, which preserved light-saturated CO 2 assimilation rate, and the maximum carboxylation efficiency. Water stress increased water use efficiency of the leaves while O 3 decreased it, showing significant interactions. Effects were more evident in older leaves than in younger leaves. Water stress reduced biomass production, but the negative effects of O 3 were less in RW than in WW for total biomass per plant. A stomatal O 3 flux-based dose-response relationship was parameterized considering water stress effects, which explained biomass losses much better than a concentration-based approach. The O 3 critical level of Phytotoxic Ozone Dose over a threshold of 7 nmol O 3 .m -2 .s -1 (POD 7 ) for a 4% biomass loss in this poplar clone under different water regimes was 4.1 mmol m -2 . Our results suggest that current O 3 levels in most parts of China threaten poplar growth and that interaction with water availability is a key factor for O 3 risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High water availability increases the negative impact of a native hemiparasite on its non-native host.

    Science.gov (United States)

    Cirocco, Robert M; Facelli, José M; Watling, Jennifer R

    2016-03-01

    Environmental factors alter the impacts of parasitic plants on their hosts. However, there have been no controlled studies on how water availability modulates stem hemiparasites' effects on hosts. A glasshouse experiment was conducted to investigate the association between the Australian native stem hemiparasite Cassytha pubescens and the introduced host Ulex europaeus under high (HW) and low (LW) water supply. Cassytha pubescens had a significant, negative effect on the total biomass of U. europaeus, which was more severe in HW than LW. Regardless of watering treatment, infection significantly decreased shoot and root biomass, nodule biomass, nodule biomass per unit root biomass, F v/F m, and nitrogen concentration of U. europaeus. Host spine sodium concentration significantly increased in response to infection in LW but not HW conditions. Host water potential was significantly higher in HW than in LW, which may have allowed the parasite to maintain higher stomatal conductances in HW. In support of this, the δ(13)C of the parasite was significantly lower in HW than in LW (and significantly higher than the host). C. pubescens also had significantly higher F v/F m and 66% higher biomass per unit host in the HW compared with the LW treatment. The data suggest that the enhanced performance of C. pubescens in HW resulted in higher parasite growth rates and thus a larger demand for resources from the host, leading to poorer host performance in HW compared with LW. C. pubescens should more negatively affect U. europaeus growth under wet conditions rather than under dry conditions in the field. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany.

    Science.gov (United States)

    Fu, Jin; Gasche, Rainer; Wang, Na; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2017-10-01

    In this study water balance components as well as nitrogen and dissolved organic carbon leaching were quantified by means of large weighable grassland lysimeters at three sites (860, 770 and 600 m a.s.l.) for both intensive and extensive management. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the site (E860) with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). Seepage water formation was substantially lower at E600 (-440.9 mm) as compared to E860. Compared to climate, impacts of management on water balance components were negligible. However, intensive management significantly increased total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha -1 year -1 (range: 0.5-6.0 kg N ha -1 year -1 ) to 4.8 kg N ha -1 year -1 (range: 0.9-12.9 kg N ha -1 year -1 ). N leaching losses were dominated by nitrate (64.7%) and less by ammonium (14.6%) and DON (20.7%). The low rates of N leaching (0.8-6.9% of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest. Moreover, plant uptake was often exceeding slurry application rates, suggesting further supply of N due to soil organic matter decomposition. The low risk of nitrate losses via leaching and surface runoff of cut grassland on non-sandy soils with vigorous grass growth may call for a careful site and region specific re-evaluation of fixed limits of N fertilization rates as defined by e.g. the German Fertilizer Ordinance following requirements set by the European Water Framework and Nitrates Directive. Copyright © 2017. Published by Elsevier Ltd.

  6. Evapotranspiration and water balance in a hot pepper (Capsicum frutescens L.) field during a dry season in the tropics

    Science.gov (United States)

    Laban, S.; Oue, H.; Rampisela, D. A.

    2018-05-01

    Evapotranspiration and water balance in a hot pepper (Capsicum frutescens L.) field during the 2nd dry season were analyzed in this study. Actual evapotranspiration (ET) was estimated by Bowen Ratio Energy Budget (BREB) method, potential evaporation (EP) was calculated by Penman method, and irrigation volume of water was measured manually. Meteorological instruments were installed in the experimental field during hot pepper cultivation. Leaf area index increased during the growing stages where the highest LAI of 1.65 in the generative stage. The daily average of ET was 1.94 and EP was 6.71 mm resulting in low Kc. The Kc values were significantly different between stage to stage under T-test analysis (α = 0.05). Moreover, Kc in every stage could be related to soil water content (SWC) in logarithmic function. Totally, ET during hot pepper cultivation was 179.19 mm, while rainfall was 180.0 mm and irrigation water was 27.42 mm. However, there was a water shortages during vegetative and generative stages. This study suggested that consumptive water of hot pepper was complimented by soil and groundwater under the condition of water shortages in the vegetative and generative stages during the 2nd dry season.

  7. Virtual water trade: an assessment of water use efficiency in the international food trade

    Directory of Open Access Journals (Sweden)

    H. Yang

    2006-01-01

    Full Text Available Amid an increasing water scarcity in many parts of the world, virtual water trade as both a policy instrument and practical means to balance the local, national and global water budget has received much attention in recent years. Building upon the knowledge of virtual water accounting in the literature, this study assesses the efficiency of water use embodied in the international food trade from the perspectives of exporting and importing countries and at the global and country levels. The investigation reveals that the virtual water flows primarily from countries of high crop water productivity to countries of low crop water productivity, generating a global saving in water use. Meanwhile, the total virtual water trade is dominated by green virtual water, which constitutes a low opportunity cost of water use as opposed to blue virtual water. A sensitivity analysis, however, suggests high uncertainties in the virtual water accounting and the estimation of the scale of water saving. The study also raises awareness of the limited effect of water scarcity on the global virtual water trade and the negative implications of the global water saving for the water use efficiency and food security in importing countries and the environment in exporting countries. The analysis shows the complexity in evaluating the efficiency gains in the international virtual water trade. The findings of the study, nevertheless, call for a greater emphasis on rainfed agriculture to improve the global food security and environmental sustainability.

  8. 30 CFR 817.46 - Hydrologic balance: Siltation structures.

    Science.gov (United States)

    2010-07-01

    ...-UNDERGROUND MINING ACTIVITIES § 817.46 Hydrologic balance: Siltation structures. (a) For the purposes of this... to streamflow or runoff outside the permit area shall be prevented to the extent possible using the... this requirement. (6) Any point-source discharge of water from underground workings to surface waters...

  9. Water Quality Assessment of Selected Domestic Water Sources

    African Journals Online (AJOL)

    Nwokem et al.

    @yahoo.com ... were collected in clean sterilized plastic bottles in the rainy ... centers often depend on the water vendors for domestic water supply ... MATERIALS AND METHODS .... water balance problems for individual aquatic organisms.

  10. Disorders of water homeostasis in neurosurgical patients.

    LENUS (Irish Health Repository)

    Hannon, Mark J

    2012-05-01

    Context: Disorders of water balance are common in neurosurgical patients and usually manifest as hypo- or hypernatremia. They are most commonly seen after subarachnoid hemorrhage, traumatic brain injury, with intracranial tumors, and after pituitary surgery. Setting: We reviewed the experience of endocrine evaluation and management of disorders of salt and water balance in a large cohort of inpatients attending the national neurosciences referral centre in Dublin, Ireland, and compared this experience with findings from other studies. Patients: The study group included unselected neurosurgical patients admitted to our centre and requiring endocrine evaluation. Interventions: We conducted investigations to determine the underlying mechanistic basis for disorders of salt and water balance in neurosurgical patients and treatment to restore normal metabolism. Main Outcome Measures: Morbidity and mortality associated with deranged salt and water balance were measured. Results: The underlying pathophysiology of disordered water balance in neurosurgical patients is complex and varied and dictates the optimal therapeutic approach. Conclusions: A systematic and well-informed approach is needed to properly diagnose and manage disorders of salt and water balance in neurosurgical patients.

  11. Effects of postexercise ice-water and room-temperature water immersion on the sensory organization of balance control and lower limb proprioception in amateur rugby players: A randomized controlled trial.

    Science.gov (United States)

    Chow, Gary C C; Yam, Timothy T T; Chung, Joanne W Y; Fong, Shirley S M

    2017-02-01

    This single-blinded, three-armed randomized controlled trial aimed to compare the effects of postexercise ice-water immersion (IWI), room-temperature water immersion (RWI), and no water immersion on the balance performance and knee joint proprioception of amateur rugby players. Fifty-three eligible amateur rugby players (mean age ± standard deviation: 21.6 ± 2.9 years) were randomly assigned to the IWI group (5.3 °C), RWI group (25.0 °C), or the no immersion control group. The participants in each group underwent the same fatigue protocol followed by their allocated recovery intervention, which lasted for 1 minute. Measurements were taken before and after the fatigue-recovery intervention. The primary outcomes were the sensory organization test (SOT) composite equilibrium score (ES) and the condition-specific ES, which were measured using a computerized dynamic posturography machine. The secondary outcome was the knee joint repositioning error. Two-way repeated measures analysis of variance was used to test the effect of water immersion on each outcome variable. There were no significant within- and between-group differences in the SOT composite ESs or the condition-specific ESs. However, there was a group-by-time interaction effect on the knee joint repositioning error. It seems that participants in the RWI group had lower errors over time, but those in the IWI and control groups had increased errors over time. The RWI group had significantly lower error score than the IWI group at postintervention. One minute of postexercise IWI or RWI did not impair rugby players' sensory organization of balance control. RWI had a less detrimental effect on knee joint proprioception to IWI at postintervention.

  12. Water balance of field-excavated aestivating Australian desert frogs, the cocoon-forming Neobatrachus aquilonius and the non-cocooning Notaden nichollsi (Amphibia: Myobatrachidae).

    Science.gov (United States)

    Cartledge, Victoria A; Withers, Philip C; McMaster, Kellie A; Thompson, Graham G; Bradshaw, S Don

    2006-09-01

    Burrowed aestivating frogs of the cocoon-forming species Neobatrachus aquilonius and the non-cocooning species Notaden nichollsi were excavated in the Gibson Desert of central Australia. Their hydration state (osmotic pressure of the plasma and urine) was compared to the moisture content and water potential of the surrounding soil. The non-cocooning N. nichollsi was consistently found in sand dunes. While this sand had favourable water potential properties for buried frogs, the considerable spatial and temporal variation in sand moisture meant that frogs were not always in positive water balance with respect to the surrounding soil. The cocoon-forming N. aquilonius was excavated from two distinct habitat types, a claypan in which frogs had a well-formed cocoon and a dune swale where frogs did not have a cocoon. Cocoons of excavated frogs ranged in thickness from 19.4 microm to 55.61 microm and consisted of 81-229 layers. Cocooned claypan N. aquilonius were nearing exhaustion of their bladder water reserves and had a urine osmolality approaching that of the plasma. By contrast, non-cocooned N. aquilonius from the dune swale were fully hydrated, although soil moisture levels were not as high as calculated to be necessary to maintain water balance. Both species had similar plasma arginine vasotocin (AVT) concentrations ranging from 9.4 to 164 pg ml(-1), except for one cocooned N. aquilonius with a higher concentration of 394 pg ml(-1). For both species, AVT showed no relationship with plasma osmolality over the lower range of plasma osmolalities but was appreciably increased at the highest osmolality recorded. This study provides the first evidence that cocoon formation following burrowing is not obligatory in species that are capable of doing so, but that cocoon formation occurs when soil water conditions are more desiccating than for non-cocooned frogs.

  13. Experimental study on thermal-hydraulic behaviors of a pressure balanced coolant injection system for a passive safety light water reactor JPSR

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takashi; Watanabe, Hironori; Araya, Fumimasa; Nakajima, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwamura, Takamichi; Murao, Yoshio

    1998-02-01

    A conceptual design study of a passive safety light water reactor JPSR has been performed at Japan Atomic Energy Research Institute JAERI. A pressure balanced coolant injection experiment has been carried out, with an objective to understand thermal-hydraulic characteristics of a passive coolant injection system which has been considered to be adopted to JPSR. This report summarizes experimental results and data recorded in experiment run performed in FY. 1993 and 1994. Preliminary experiments previously performed are also briefly described. As the results of the experiment, it was found that an initiation of coolant injection was delayed with increase in a subcooling in the pressure balance line. By inserting a separation device which divides the inside of core make-up tank (CMT) into several small compartments, a diffusion of a high temperature region formed just under the water surface was restrained and then a steam condensation was suppressed. A time interval from an uncovery of the pressure balance line to the initiation of the coolant injection was not related by a linear function with a discharge flow rate simulating a loss-of-coolant accident (LOCA) condition. The coolant was injected intermittently by actuation of a trial fabricated passive valve actuated by pressure difference for the present experiment. It was also found that the trial passive valve had difficulties in setting an actuation set point and vibrations noises and some fraction of the coolant was remained in CMT without effective use. A modification was proposed for resolving these problems by introducing an anti-closing mechanism. (author)

  14. [Brief disserting on the balance of internal environment in burn disease].

    Science.gov (United States)

    Han, C M; Wang, X G

    2017-08-20

    The essential internal environment in human being involves water, electrolyte, and acid-base balance, which is the basis of balance and stability of internal environment in other systems. For burn patients, the balance of internal environment, referring to metabolism, nutrition, inflammatory response, and immunoreaction, is one of the most important aspects in burn disease. This paper aims to briefly elaborate the balance of internal environment after burn, with the purpose to promote the basic and clinical research in this field.

  15. Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China

    International Nuclear Information System (INIS)

    Ye Baisheng; Yang Daqing; Ma Lijuan

    2012-01-01

    This study quantifies the effect of precipitation bias corrections on basin water balance calculations for the Yellow River Source region (YRS). We analyse long-term (1959–2001) monthly and yearly data of precipitation, runoff, and ERA-40 water budget variables and define a water balance regime. Basin precipitation, evapotranspiration and runoff are high in summer and low in winter. The basin water storage change is positive in summer and negative in winter. Monthly precipitation bias corrections, ranging from 2 to 16 mm, do not significantly alter the pattern of the seasonal water budget. The annual bias correction of precipitation is about 98 mm (19%); this increase leads to the same amount of evapotranspiration increase, since yearly runoff remains unchanged and the long-term storage change is assumed to be zero. Annual runoff and evapotranspiration coefficients change, due to precipitation bias corrections, from 0.33 and 0.67 to 0.28 and 0.72, respectively. These changes will impact the parameterization and calibration of land surface and hydrological models. The bias corrections of precipitation data also improve the relationship between annual precipitation and runoff. (letter)

  16. Determination of metal balance shift induced in small fresh water fish by X-ray irradiation using PIXE analysis

    International Nuclear Information System (INIS)

    Yukawa, M.; Aoki, K.; Iso, H.; Kodama, K.; Imaseki, H.; Ishikawa, Y.

    2005-01-01

    In the environmental pollution studies, it is very important to detect not only pollutants but also changes induced in organisms in the environment with various environmental stresses such as heavy metal toxicity radiation and agricultural chemicals. In the latter, monitoring is carried out using biological indicators to find out the changes, which have wide spectra from visible like deformity of the body to invisible such as changes in some enzyme activities. Changes of the balance of essential elements could occur in organisms to deal with the stresses. If we detect an elemental balance shift, we may see the environmental pollution in its early stages. Moreover, in the actual environment, combined effects, additive or reductive with coexistent elements or other stresses, is an important subject for investigation. Therefore, measurement of many elements in the biological indicator's simultaneously and determination of the distribution in the organisms are useful in clarifying the action of pollutants at sublethal levels. A small fresh water fish, Medaka can be used as one of the biological-indicators for determination of water quality. In the National Institute of Radiological Sciences (NIRS), an inbred strain of Medaka Orizias laptipes was established and has been maintained for the research purposes. Since the genetic background of inbred animals is almost uniform, the individual deviation among animals is very small. This characteristic is very useful to investigate the physiological effects of environmental stresses. We have continued to investigate the balance shift of essential elements induced in the bodies of Medaka by several stresses. In this paper, elemental content in various organs of the X-ray irradiated fish determined by PIXE method are reported in comparison with that of the control fish to observe the effect of the X-rays. Body size of Medaka is about 3 cm long, and the internal organs are very small (about l mm on average). PIXE is the most

  17. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    Directory of Open Access Journals (Sweden)

    A. Alessandri

    2012-11-01

    Full Text Available Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C. We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1 with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K.

    Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950–2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B.

    The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our

  18. Site evaluation approach for reforestations based on SVAT water balance modeling considering data scarcity and uncertainty analysis of model input parameters from geophysical data

    OpenAIRE

    Mannschatz, Theresa

    2015-01-01

    Extensive deforestations, particularly in the (sub)tropics, have led to intense soil degradation and erosion with concomitant reduction in soil fertility. Reforestations or plantations on those degraded sites may provide effective measures to mitigate further soil degradation and erosion, and can lead to improved soil quality. However, a change in land use from, e.g., grassland to forest may have a crucial impact on water balance. This may affect water availability even under humid tropical c...

  19. Geometrical properties of negatively curved spaces. A revival

    International Nuclear Information System (INIS)

    Signore, R.L.

    2000-01-01

    The negatively curved space is generally kept in the background behind the much more popular positively curved space. The goal of the article is to re-establish a balance between these two different spaces. In the first part, negatively curved space is considered in se, some of its geometric properties are investigated and its Minkowskian properties emphasized. The Lobatchevsky-Bolyai geometry is also illustrated. In a second part, space is assumed to be in expansion in an inflation are. World lines, null geodesics, particle horizon, event horizon are considered

  20. The complexity of role balance: support for the Model of Juggling Occupations.

    Science.gov (United States)

    Evans, Kiah L; Millsteed, Jeannine; Richmond, Janet E; Falkmer, Marita; Falkmer, Torbjorn; Girdler, Sonya J

    2014-09-01

    This pilot study aimed to establish the appropriateness of the Model of Juggling Occupations in exploring the complex experience of role balance amongst working women with family responsibilities living in Perth, Australia. In meeting this aim, an evaluation was conducted of a case study design, where data were collected through a questionnaire, time diary, and interview. Overall role balance varied over time and across participants. Positive indicators of role balance occurred frequently in the questionnaires and time diaries, despite the interviews revealing a predominance of negative evaluations of role balance. Between-role balance was achieved through compatible role overlap, buffering, and renewal. An exploration of within-role balance factors demonstrated that occupational participation, values, interests, personal causation, and habits were related to role balance. This pilot study concluded that the Model of Juggling Occupations is an appropriate conceptual framework to explore the complex and dynamic experience of role balance amongst working women with family responsibilities. It was also confirmed that the case study design, including the questionnaire, time diary, and interview methods, is suitable for researching role balance from this perspective.