WorldWideScience

Sample records for nebulin regulates thin

  1. Disorder profile of nebulin encodes a vernierlike position sensor for the sliding thin and thick filaments of the skeletal muscle sarcomere.

    Science.gov (United States)

    Wu, Ming-Chya; Forbes, Jeffrey G; Wang, Kuan

    2016-06-01

    Nebulin is an about 1μm long intrinsically disordered scaffold for the thin filaments of skeletal muscle sarcomere. It is a multifunctional elastic protein that wraps around actin filament, stabilizes thin filaments, and regulates Ca-dependent actomyosin interactions. This study investigates whether the disorder profile of nebulin might encode guidelines for thin and thick filament interactions in the sarcomere of the skeletal muscle. The question was addressed computationally by analyzing the predicted disorder profile of human nebulin (6669 residues, ∼200 actin-binding repeats) by pondr and the periodicity of the A-band stripes (reflecting the locations of myosin-associated proteins) in the electron micrographs of the sarcomere. Using the detrended fluctuation analysis, a scale factor for the A-band stripe image data with respect to the nebulin disorder profile was determined to make the thin and thick filaments aligned to have maximum correlation. The empirical mode decomposition method was then applied to identify hidden periodicities in both the nebulin disorder profile and the rescaled A-band data. The decomposition reveals three characteristic length scales (45 nm, 100 nm, and 200 nm) that are relevant for correlational analysis. The dynamical cross-correlation analyses with moving windows at various sarcomere lengths depict a vernierlike design for both periodicities, thus enabling nebulin to sense position and fine tune sarcomere overlap. This shows that the disorder profile of scaffolding proteins may encode a guideline for cellular architecture.

  2. Disorder profile of nebulin encodes a vernierlike position sensor for the sliding thin and thick filaments of the skeletal muscle sarcomere

    Science.gov (United States)

    Wu, Ming-Chya; Forbes, Jeffrey G.; Wang, Kuan

    2016-06-01

    Nebulin is an about 1 μ m long intrinsically disordered scaffold for the thin filaments of skeletal muscle sarcomere. It is a multifunctional elastic protein that wraps around actin filament, stabilizes thin filaments, and regulates Ca-dependent actomyosin interactions. This study investigates whether the disorder profile of nebulin might encode guidelines for thin and thick filament interactions in the sarcomere of the skeletal muscle. The question was addressed computationally by analyzing the predicted disorder profile of human nebulin (6669 residues, ˜200 actin-binding repeats) by pondr and the periodicity of the A-band stripes (reflecting the locations of myosin-associated proteins) in the electron micrographs of the sarcomere. Using the detrended fluctuation analysis, a scale factor for the A-band stripe image data with respect to the nebulin disorder profile was determined to make the thin and thick filaments aligned to have maximum correlation. The empirical mode decomposition method was then applied to identify hidden periodicities in both the nebulin disorder profile and the rescaled A-band data. The decomposition reveals three characteristic length scales (45 nm, 100 nm, and 200 nm) that are relevant for correlational analysis. The dynamical cross-correlation analyses with moving windows at various sarcomere lengths depict a vernierlike design for both periodicities, thus enabling nebulin to sense position and fine tune sarcomere overlap. This shows that the disorder profile of scaffolding proteins may encode a guideline for cellular architecture.

  3. Comparative decline of the protein profiles of nebulin in response to denervation in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jih-Hua [Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan (China); Chang, Nen-Chung [Division of Cardiology, Department of Internal Medicine, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chen, Sy-Ping [Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China); Geraldine, Pitchairaj [Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu (India); Jayakumar, Thanasekaran, E-mail: tjaya_2002@yahoo.co.in [Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Fong, Tsorng-Harn, E-mail: thfong@tmu.edu.tw [Department of Anatomy and Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2015-10-09

    The sliding filament model of the sarcomere was developed more than half a century ago. This model, consisting only of thin and thick filaments, has been efficacious in elucidating many, but not all, features of skeletal muscle. Work during the 1980s revealed the existence of two additional filaments: the giant filamentous proteins titin and nebulin. Nebulin, a giant myofibrillar protein, acts as a protein ruler to maintain the lattice arrays of thin filaments and plays a role in signal transduction and contractile regulation. However, the change of nebulin and its effect on thin filaments in denervation-induced atrophic muscle remains unclear. The purpose of this study is to examine the content and pattern of nebulin, myosin heavy chain (MHC), actin, and titin in innervated and denervated tibialis anterior (TA) muscles of rats using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), densitometry and electron microscopic (EM) analyses. The results revealed that denervation induced muscle atrophy is accompanied by decreased nebulin content in a time-dependent manner. For instant, the levels of nebulin in denervated muscles were markedly (P < 0.05) decreased, about 24.6% and 40.2% in comparison with innervated muscle after denervation of 28 and 56 days, respectively. The nebulin/MHC, nebulin/actin, and nebulin/titin ratios were decreased, suggesting a concomitant reduction of nebulin in denervated muscle. Moreover, a western blotting assay proved that nebulin declined faster than titin on 28 and 56 days of denervated muscle. In addition, EM study revealed that the disturbed arrangements of myofilaments and a disorganized contractile apparatus were also observed in denervated muscle. Overall, the present study provides evidence that nebulin is more sensitive to the effect of denervation than MHC, actin, and titin. Nebulin decline indeed resulted in disintegrate of thin filaments and shortening of sarcomeres. - Highlights: • We successfully

  4. The sarcomeric protein nebulin: another multifunctional giant in charge of muscle strength optimization.

    Science.gov (United States)

    Ottenheijm, Coen A C; Granzier, Henk; Labeit, Siegfried

    2012-01-01

    The sliding filament model of the sarcomere was developed more than half a century ago. This model, consisting only of thin and thick filaments, has been successful in explaining many, but not all, features of skeletal muscle. Work during the 1980s revealed the existence of two additional filaments: the giant filamentous proteins titin and nebulin. Whereas the role of titin rapidly progressed, nebulin's role in muscle structure and function remained long nebulous. An important feature of muscle structure and function that has remained relatively obscure concerns the mechanisms that are involved in regulating thin filament length. Filament length is an important aspect of muscle function as force production is proportional to the amount of overlap between thick and thin filaments. Recent advances, due in part to the generation of nebulin KO models, reveal that nebulin plays an important role in the regulation of thin filament length, most likely by stabilizing F-actin assemblies. Another structural feature of skeletal muscle that has been incompletely understood concerns the mechanisms involved in maintaining Z-disk structure and the regular lateral alignment of adjacent sarcomeres during contraction. Recent studies indicate that nebulin is part of a protein complex that mechanically links adjacent myofibrils. In addition to these structural roles in support of myofibrillar force generation, nebulin has been also shown to regulate directly muscle contraction at the level of individual crossbridges: cycling kinetics and the calcium sensitivity of force producing crossbridges is enhanced in the presence of nebulin. Thus, these recent data all point to nebulin being important for muscle force optimization. Consequently, muscle weakness as the lead symptom develops in the case of patients with nemaline myopathy that have mutations in the nebulin gene. Here, we discuss these important novel insights into the role of nebulin in skeletal muscle function.

  5. New Insights into the Structural Roles of Nebulin in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Coen A. C. Ottenheijm

    2010-01-01

    Full Text Available One important feature of muscle structure and function that has remained relatively obscure is the mechanism that regulates thin filament length. Filament length is an important aspect of muscle function as force production is proportional to the amount of overlap between thick and thin filaments. Recent advances, due in part to the generation of nebulin KO models, reveal that nebulin plays an important role in the regulation of thin filament length. Another structural feature of skeletal muscle that is not well understood is the mechanism involved in maintaining the regular lateral alignment of adjacent sarcomeres, that is, myofibrillar connectivity. Recent studies indicate that nebulin is part of a protein complex that mechanically links adjacent myofibrils. Thus, novel structural roles of nebulin in skeletal muscle involve the regulation of thin filament length and maintaining myofibrillar connectivity. When these functions of nebulin are absent, muscle weakness ensues, as is the case in patients with nemaline myopathy with mutations in nebulin. Here we review these new insights in the role of nebulin in skeletal muscle structure.

  6. The sarcomeric protein nebulin: another multifunctional giant in charge of muscle strength optimization

    Directory of Open Access Journals (Sweden)

    Coen eOttenheijm

    2012-02-01

    Full Text Available The sliding filament model of the sarcomere was developed more than half a century ago. This model, consisting only of thin and thick filaments, has been successful in explaining many, but not all, features of skeletal muscle. Work during the 1980s revealed the existence of two additional filaments: the giant filamentous proteins titin and nebulin. Whereas the role of titin rapidly progressed, nebulin’s role in muscle structure and function remained long nebulous. An important feature of muscle structure and function that has remained relatively obscure concerns the mechanisms that are involved in regulating thin filament length. Filament length is an important aspect of muscle function as force production is proportional to the amount of overlap between thick and thin filaments. Recent advances, due in part to the generation of nebulin KO models, reveal that nebulin plays an important role in the regulation of thin filament length, most likely by stabilizing F-actin assemblies. Another structural feature of skeletal muscle that has been incompletely understood concerns the mechanisms involved in maintaining Z-disk structure and the regular lateral alignment of adjacent sarcomeres during contraction. Recent studies indicate that nebulin is part of a protein complex that mechanically links adjacent myofibrils. In addition to these structural roles in support of myofibrillar force generation, nebulin has been also shown to regulate directly muscle contraction at the level of individual cross bridges: cycling kinetics and the calcium sensitivity of force producing cross-bridges is enhanced in the presence of nebulin. Thus, these recent data all point to nebulin being important for muscle force optimization. Consequently, muscle weakness as the lead symptom develops in the case of patients with nemaline myopathy that have mutations in the nebulin gene. Here, we discuss these important novel insights into the role of nebulin in skeletal muscle

  7. Targeting of nebulin fragments to the cardiac sarcomere.

    Science.gov (United States)

    Panaviene, Zivile; Deng, Xiaodi A; Esham, Michael; Moncman, Carole L

    2007-03-10

    Nebulin, a vertebrate skeletal muscle actin binding protein, plays an important role in thin filament architecture. Recently, a number of reports have indicated evidence for nebulin expression in vertebrate hearts. To investigate the ability of nebulin to interact with cardiac myofilaments, we have expressed nebulin cDNA fragments tagged with green fluorescent protein (GFP) in chicken cardiomyocytes and PtK2 cells. Nebulin fragments from both the superrepeats and single repeats were expressed minus and plus the nebulin linker. Nebulin fragment incorporation was monitored by fluorescent microscopy and compared with the distribution of actin, alpha-actinin and titin. Expression of nebulin N-terminal superrepeats displayed a punctate cytoplasmic distribution in PtK2 cells and cardiomyocytes. Addition of the nebulin linker to the superrepeats resulted in association of the punctate staining with the myofibrils. Nebulin C-terminal superrepeats plus and minus the linker localized with stress fibers of PtK2 cells and associated with the cardiac myofilaments at the level of the Z-line. Expression of the single repeats plus and minus the nebulin linker region resulted in both a Z-line distribution and an A-band distribution. These data suggest that N-terminal superrepeat nebulin modules are incapable of supporting interactions with the cardiac myofilaments; whereas the C-terminal nebulin modules can. The expression of the N-terminal or C-terminal superrepeats did not alter the distribution of actin, alpha-actinin or titin in either atrial or ventricular cultures.

  8. Deleting exon 55 from the nebulin gene induces severe muscle weakness in a mouse model for nemaline myopathy.

    Science.gov (United States)

    Ottenheijm, Coen A C; Buck, Danielle; de Winter, Josine M; Ferrara, Claudia; Piroddi, Nicoletta; Tesi, Chiara; Jasper, Jeffrey R; Malik, Fady I; Meng, Hui; Stienen, Ger J M; Beggs, Alan H; Labeit, Siegfried; Poggesi, Corrado; Lawlor, Michael W; Granzier, Henk

    2013-06-01

    Nebulin--a giant sarcomeric protein--plays a pivotal role in skeletal muscle contractility by specifying thin filament length and function. Although mutations in the gene encoding nebulin (NEB) are a frequent cause of nemaline myopathy, the most common non-dystrophic congenital myopathy, the mechanisms by which mutations in NEB cause muscle weakness remain largely unknown. To better understand these mechanisms, we have generated a mouse model in which Neb exon 55 is deleted (Neb(ΔExon55)) to replicate a founder mutation seen frequently in patients with nemaline myopathy with Ashkenazi Jewish heritage. Neb(ΔExon55) mice are born close to Mendelian ratios, but show growth retardation after birth. Electron microscopy studies show nemaline bodies--a hallmark feature of nemaline myopathy--in muscle fibres from Neb(ΔExon55) mice. Western blotting studies with nebulin-specific antibodies reveal reduced nebulin levels in muscle from Neb(ΔExon55) mice, and immunofluorescence confocal microscopy studies with tropomodulin antibodies and phalloidin reveal that thin filament length is significantly reduced. In line with reduced thin filament length, the maximal force generating capacity of permeabilized muscle fibres and single myofibrils is reduced in Neb(ΔExon55) mice with a more pronounced reduction at longer sarcomere lengths. Finally, in Neb(ΔExon55) mice the regulation of contraction is impaired, as evidenced by marked changes in crossbridge cycling kinetics and by a reduction of the calcium sensitivity of force generation. A novel drug that facilitates calcium binding to the thin filament significantly augmented the calcium sensitivity of submaximal force to levels that exceed those observed in untreated control muscle. In conclusion, we have characterized the first nebulin-based nemaline myopathy model, which recapitulates important features of the phenotype observed in patients harbouring this particular mutation, and which has severe muscle weakness caused by

  9. Troponin activator augments muscle force in nemaline myopathy patients with nebulin mutations.

    Science.gov (United States)

    de Winter, Josine Marieke; Buck, Danielle; Hidalgo, Carlos; Jasper, Jeffrey R; Malik, Fady I; Clarke, Nigel F; Stienen, Ger J M; Lawlor, Michael W; Beggs, Alan H; Ottenheijm, Coen A C; Granzier, Henk

    2013-06-01

    Nemaline myopathy-the most common non-dystrophic congenital myopathy-is caused by mutations in thin filament genes, of which the nebulin gene is the most frequently affected one. The nebulin gene codes for the giant sarcomeric protein nebulin, which plays a crucial role in skeletal muscle contractile performance. Muscle weakness is a hallmark feature of nemaline myopathy patients with nebulin mutations, and is caused by changes in contractile protein function, including a lower calcium-sensitivity of force generation. To date no therapy exists to treat muscle weakness in nemaline myopathy. Here, we studied the ability of the novel fast skeletal muscle troponin activator, CK-2066260, to augment force generation at submaximal calcium levels in muscle cells from nemaline myopathy patients with nebulin mutations. Contractile protein function was determined in permeabilised muscle cells isolated from frozen patient biopsies. The effect of 5 μM CK-2066260 on force production was assessed. Nebulin protein concentrations were severely reduced in muscle cells from these patients compared to controls, while myofibrillar ultrastructure was largely preserved. Both maximal active tension and the calcium-sensitivity of force generation were lower in patients compared to controls. Importantly, CK-2066260 greatly increased the calcium-sensitivity of force generation-without affecting the cooperativity of activation-in patients to levels that exceed those observed in untreated control muscle. Fast skeletal troponin activation is a therapeutic mechanism to augment contractile protein function in nemaline myopathy patients with nebulin mutations and with other neuromuscular diseases.

  10. The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse.

    Science.gov (United States)

    Yamamoto, Daniel L; Vitiello, Carmen; Zhang, Jianlin; Gokhin, David S; Castaldi, Alessandra; Coulis, Gerald; Piaser, Fabio; Filomena, Maria Carmela; Eggenhuizen, Peter J; Kunderfranco, Paolo; Camerini, Serena; Takano, Kazunori; Endo, Takeshi; Crescenzi, Marco; Luther, Pradeep K L; Lieber, Richard L; Chen, Ju; Bang, Marie-Louise

    2013-12-01

    Nemaline myopathy (NM) is a congenital myopathy with an estimated incidence of 150,000 live births. It is caused by mutations in thin filament components, including nebulin, which accounts for about 50% of the cases. The identification of NM cases with nonsense mutations resulting in loss of the extreme C-terminal SH3 domain of nebulin suggests an important role of the nebulin SH3 domain, which is further supported by the recent demonstration of its role in IGF-1-induced sarcomeric actin filament formation through targeting of N-WASP to the Z-line. To provide further insights into the functional significance of the nebulin SH3 domain in the Z-disk and to understand the mechanisms by which truncations of nebulin lead to NM, we took two approaches: (1) an affinity-based proteomic screening to identify novel interaction partners of the nebulin SH3 domain; and (2) generation and characterization of a novel knockin mouse model with a premature stop codon in the nebulin gene, eliminating its C-terminal SH3 domain (NebΔSH3 mouse). Surprisingly, detailed analyses of NebΔSH3 mice revealed no structural or histological skeletal muscle abnormalities and no changes in gene expression or localization of interaction partners of the nebulin SH3 domain, including myopalladin, palladin, zyxin and N-WASP. Also, no significant effect on peak isometric stress production, passive tensile stress or Young's modulus was found. However, NebΔSH3 muscle displayed a slightly altered force-frequency relationship and was significantly more susceptible to eccentric contraction-induced injury, suggesting that the nebulin SH3 domain protects against eccentric contraction-induced injury and possibly plays a role in fine-tuning the excitation-contraction coupling mechanism.

  11. Neb: a zebrafish model of nemaline myopathy due to nebulin mutation.

    Science.gov (United States)

    Telfer, William R; Nelson, Darcee D; Waugh, Trent; Brooks, Susan V; Dowling, James J

    2012-05-01

    Nemaline myopathy is one of the most common and severe non-dystrophic muscle diseases of childhood. Patients typically present in infancy with hypotonia, weakness, delayed motor development, and bulbar and respiratory difficulties. Mutations in six different genes are associated with nemaline myopathy, with nebulin mutations being the most common. No treatments or disease-modifying therapies have been identified for this disease. One of the major barriers to treatment development is the lack of models amenable to rapid and coordinated testing of potential therapeutic strategies. To overcome this barrier, we have characterized the first zebrafish model of nemaline myopathy. This model, termed neb, harbors a recessive mutation in the nebulin gene that results in decreased Nebulin protein levels, a severe motor phenotype and premature lethality. In addition to impaired motor function, neb zebrafish exhibit many of the features associated with human nemaline myopathy. These include impaired force generation, altered thin filament length and the presence of specific histopathological changes, including the formation of nemaline bodies. In summary, neb zebrafish mirror the genetic, clinical and pathological aspects of nemaline myopathy due to NEB mutation, and thus are an excellent model for future therapy development for this devastating disorder.

  12. neb: a zebrafish model of nemaline myopathy due to nebulin mutation

    Directory of Open Access Journals (Sweden)

    William R. Telfer

    2012-05-01

    Nemaline myopathy is one of the most common and severe non-dystrophic muscle diseases of childhood. Patients typically present in infancy with hypotonia, weakness, delayed motor development, and bulbar and respiratory difficulties. Mutations in six different genes are associated with nemaline myopathy, with nebulin mutations being the most common. No treatments or disease-modifying therapies have been identified for this disease. One of the major barriers to treatment development is the lack of models amenable to rapid and coordinated testing of potential therapeutic strategies. To overcome this barrier, we have characterized the first zebrafish model of nemaline myopathy. This model, termed neb, harbors a recessive mutation in the nebulin gene that results in decreased Nebulin protein levels, a severe motor phenotype and premature lethality. In addition to impaired motor function, neb zebrafish exhibit many of the features associated with human nemaline myopathy. These include impaired force generation, altered thin filament length and the presence of specific histopathological changes, including the formation of nemaline bodies. In summary, neb zebrafish mirror the genetic, clinical and pathological aspects of nemaline myopathy due to NEB mutation, and thus are an excellent model for future therapy development for this devastating disorder.

  13. Deleting exon 55 from the nebulin gene induces severe muscle weakness in a mouse model for nemaline myopathy

    OpenAIRE

    Ottenheijm, Coen A. C.; Buck, Danielle; de Winter, Josine M; Ferrara, Claudia; Piroddi, Nicoletta; Tesi, Chiara; Jasper, Jeffrey R.; Malik, Fady I.; Meng, Hui; Stienen, Ger J. M.; Beggs, Alan H.; Labeit, Siegfried; Poggesi, Corrado; Lawlor, Michael W.; Granzier, Henk

    2013-01-01

    Nebulin—a giant sarcomeric protein—plays a pivotal role in skeletal muscle contractility by specifying thin filament length and function. Although mutations in the gene encoding nebulin (NEB) are a frequent cause of nemaline myopathy, the most common non-dystrophic congenital myopathy, the mechanisms by which mutations in NEB cause muscle weakness remain largely unknown. To better understand these mechanisms, we have generated a mouse model in which Neb exon 55 is deleted (NebΔExon55) to repl...

  14. Mutations in the nebulin gene can cause severe congenital nemaline myopathy

    NARCIS (Netherlands)

    Wallgren-Pettersson, C; Donner, K; Sewry, C; Lammens, M; Bushby, K; Uzielli, MLG; Lapi, E; Odent, S; Akcoren, Z; Topaloglu, H; Pelin, K; Bijlsma, E.

    2002-01-01

    Previously, we reported results indicating that nebulin was the gene causing the typical form of autosomal recessive nemaline (rod) myopathy. Here we describe the identification of mutations in the nebulin gene in seven offspring of five families affected by the severe congenital form of nemaline

  15. Mutations in the nebulin gene can cause severe congenital nemaline myopathy.

    NARCIS (Netherlands)

    Wallgren-Pettersson, C.; Donner, K.; Sewry, C.A.; Bijlsma, E.; Lammens, M.M.Y.; Bushby, K.; Giovannucci Uzielli, M.L.; Lapi, E.; Odent, S.; Akcoren, Z.; Topaloglu, H.; Pelin, K.

    2002-01-01

    Previously, we reported results indicating that nebulin was the gene causing the typical form of autosomal recessive nemaline (rod) myopathy. Here we describe the identification of mutations in the nebulin gene in seven offspring of five families affected by the severe congenital form of nemaline

  16. Mutation Update: The Spectra of Nebulin Variants and Associated Myopathies

    Science.gov (United States)

    Lehtokari, Vilma-Lotta; Kiiski, Kirsi; Sandaradura, Sarah A.; Laporte, Jocelyn; Repo, Pauliina; Frey, Jennifer A.; Donner, Kati; Marttila, Minttu; Saunders, Carol; Barth, Peter G.; den Dunnen, Johan T.; Beggs, Alan H.; Clarke, Nigel F.; North, Kathryn N.; Laing, Nigel G.; Romero, Norma B.; Winder, Thomas L.; Pelin, Katarina; Wallgren-Pettersson, Carina

    2015-01-01

    A mutation update on the nebulin gene (NEB) is necessary because of recent developments in analysis methodology, the identification of increasing numbers and novel types of variants, and a widening in the spectrum of clinical and histological phenotypes associated with this gigantic, 183 exons containing gene. Recessive pathogenic variants in NEB are the major cause of nemaline myopathy (NM), one of the most common congenital myopathies. Moreover, pathogenic NEB variants have been identified in core-rod myopathy and in distal myopathies. In this update, we present the disease-causing variants in NEB in 159 families, 143 families with NM, and 16 families with NM-related myopathies. Eighty-eight families are presented here for the first time. We summarize 86 previously published and 126 unpublished variants identified in NEB. Furthermore, we have analyzed the NEB variants deposited in the Exome Variant Server (http://evs.gs.washington.edu/EVS/), identifying that pathogenic variants are a minor fraction of all coding variants (~7%). This indicates that nebulin tolerates substantial changes in its amino acid sequence, providing an explanation as to why variants in such a large gene result in relatively rare disorders. Lastly, we discuss the difficulties of drawing reliable genotype–phenotype correlations in NEB-associated disease. PMID:25205138

  17. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy.

    Science.gov (United States)

    Li, Frank; Buck, Danielle; De Winter, Josine; Kolb, Justin; Meng, Hui; Birch, Camille; Slater, Rebecca; Escobar, Yael Natelie; Smith, John E; Yang, Lin; Konhilas, John; Lawlor, Michael W; Ottenheijm, Coen; Granzier, Henk L

    2015-09-15

    Nebulin is a giant filamentous protein that is coextensive with the actin filaments of the skeletal muscle sarcomere. Nebulin mutations are the main cause of nemaline myopathy (NEM), with typical adult patients having low expression of nebulin, yet the roles of nebulin in adult muscle remain poorly understood. To establish nebulin's functional roles in adult muscle, we studied a novel conditional nebulin KO (Neb cKO) mouse model in which nebulin deletion was driven by the muscle creatine kinase (MCK) promotor. Neb cKO mice are born with high nebulin levels in their skeletal muscles, but within weeks after birth nebulin expression rapidly falls to barely detectable levels Surprisingly, a large fraction of the mice survive to adulthood with low nebulin levels (Muscles rich in glycolytic fibers upregulate proteolysis pathways (MuRF-1, Fbxo30/MUSA1, Gadd45a) and undergo hypotrophy with smaller cross-sectional areas (CSAs), worsening their force deficit. Muscles rich in oxidative fibers do not have smaller weights and can even have hypertrophy, offsetting their specific-force deficit. These studies reveal nebulin as critically important for force development and trophicity in adult muscle. The Neb cKO phenocopies important aspects of NEM (muscle weakness, oxidative fiber-type predominance, variable trophicity effects, nemaline rods) and will be highly useful to test therapeutic approaches to ameliorate muscle weakness. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Mutations in the nebulin gene in a child with nemaline (rod) myopathy.

    Science.gov (United States)

    Kapoor, Seema; Singh, Ankur; Lehtokari, Vilma-Lotta; Wallgren-Pettersson, Carina; Batra, Vineeta Vijay

    2013-08-01

    Nemaline myopathy, also called rod myopathy, is a relatively common congenital myopathy and probably second in incidence only to central core disease. The mainstay of diagnosis is histopathology, but detection of the causative mutation is mandatory for determining the mode of inheritance and for prenatal diagnosis. The authors report two siblings with nemaline myopathy caused by mutations in the nebulin gene.

  19. A two-segment model for thin filament architecture in skeletal muscle.

    Science.gov (United States)

    Gokhin, David S; Fowler, Velia M

    2013-02-01

    Correct specification of myofilament length is essential for efficient skeletal muscle contraction. The length of thin actin filaments can be explained by a novel 'two-segment' model, wherein the thin filaments consist of two concatenated segments, which are of either constant or variable length. This is in contrast to the classic 'nebulin ruler' model, which postulates that thin filaments are uniform structures, the lengths of which are dictated by nebulin. The two-segment model implicates position-specific microregulation of actin dynamics as a general principle underlying actin filament length and stability.

  20. Two novel nebulin variants in an adult patient with congenital nemaline myopathy.

    Science.gov (United States)

    Güttsches, Anne K; Dekomien, Gabriele; Claeys, Kristl G; von der Hagen, Maja; Huebner, Angela; Kley, Rudolf A; Kirschner, Janbernd; Vorgerd, Matthias

    2015-05-01

    Congenital myopathies are clinically and genetically heterogeneous disorders, which often remain genetically undiagnosed for many years. Here we present a 40-year old patient with an almost lifelong history of a congenital myopathy of unknown cause. Muscle biopsy in childhood revealed mild myopathic features and rods. Clinical examination on presentation at the age of 40 revealed a facial weakness, atrophy and weakness of the arm muscles and distal leg muscles with mild contractures of the foot flexors and the right elbow. Subsequently, the nebulin gene was identified as a putative candidate gene by linkage analyses, but sequence analysis only revealed one heterozygous splice site mutation in intron 73 (c.10872+1G>T). Therefore, "Next Generation Sequencing" was performed, which revealed a second pathogenic variant in exon 145 (c.21622A>C). Compound-heterozygous carrier status was confirmed via sequence analysis of the index patient's parents. Whole body muscle MRI showed a muscle involvement as previously described in nebulin-associated myopathies. Based on biopsy material, genetic analyses and muscle MRI, we identified two novel, compound-heterozygous variants in the nebulin gene after a 30 year clinical history, which cause a classical childhood type of nemaline myopathy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Nemaline myopathy type 2 (NEM2): two novel mutations in the nebulin (NEB) gene.

    Science.gov (United States)

    Gajda, Anna; Horváth, Emese; Hortobágyi, Tibor; Gergev, Gyurgyinka; Szabó, Hajnalka; Farkas, Katalin; Nagy, Nikoletta; Széll, Márta; Sztriha, László

    2015-04-01

    Nemaline myopathy is a type of the heterogeneous group of congenital myopathies. Generalized hypotonia, weakness, and delayed motor development are the main clinical features of the typical congenital form. Histopathology shows characteristic nemaline rods in the muscle biopsy. Mutations in at least 7 genes, including nebulin gene (NEB), proved to be responsible for this muscle disease. We present a boy with nemaline myopathy type 2 (NEM2) caused by compound heterozygosity for 2 novel mutations, a deletion and a duplication in the NEB gene. The deletion was inherited from the father and the duplication from the mother. Testing all family members supports genetic counseling. © The Author(s) 2013.

  2. Novel mutations in NEB cause abnormal nebulin expression and markedly impaired muscle force generation in severe nemaline myopathy

    Directory of Open Access Journals (Sweden)

    Lawlor Michael W

    2011-06-01

    Full Text Available Abstract Background Nemaline myopathy (NM is a congenital muscle disease associated with weakness and the presence of nemaline bodies (rods in muscle fibers. Mutations in seven genes have been associated with NM, but the most commonly mutated gene is nebulin (NEB, which is thought to account for roughly 50% of cases. Results We describe two siblings with severe NM, arthrogryposis and neonatal death caused by two novel NEB mutations: a point mutation in intron 13 and a frameshift mutation in exon 81. Levels of detectable nebulin protein were significantly lower than those in normal control muscle biopsies or those from patients with less severe NM due to deletion of NEB exon 55. Mechanical studies of skinned myofibers revealed marked impairment of force development, with an increase in tension cost. Conclusions Our findings demonstrate that the mechanical phenotype of severe NM is the consequence of mutations that severely reduce nebulin protein levels and suggest that the level of nebulin expression may correlate with the severity of disease.

  3. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  4. Cardiac thin filament regulation and the Frank-Starling mechanism.

    Science.gov (United States)

    Kobirumaki-Shimozawa, Fuyu; Inoue, Takahiro; Shintani, Seine A; Oyama, Kotaro; Terui, Takako; Minamisawa, Susumu; Ishiwata, Shin'ichi; Fukuda, Norio

    2014-07-01

    The heart has an intrinsic ability to increase systolic force in response to a rise in ventricular filling (the Frank-Starling law of the heart). It is widely accepted that the length dependence of myocardial activation underlies the Frank-Starling law of the heart. Recent advances in muscle physiology have enabled the identification of the factors involved in length-dependent activation, viz., titin (connectin)-based interfilament lattice spacing reduction and thin filament "on-off" regulation, with the former triggering length-dependent activation and the latter determining the number of myosin molecules recruited to thin filaments. Patients with a failing heart have demonstrated reduced exercise tolerance at least in part via depression of the Frank-Starling mechanism. Recent studies revealed that various mutations occur in the thin filament regulatory proteins, such as troponin, in the ventricular muscle of failing hearts, which consequently alter the Frank-Starling mechanism. In this article, we review the molecular mechanisms of length-dependent activation, and the influence of troponin mutations on the phenomenon.

  5. Nebulin (NEB) mutations in a childhood onset distal myopathy with rods and cores uncovered by next generation sequencing

    OpenAIRE

    Scoto, Mariacristina; Cullup, Thomas; Cirak, Sebahattin; Yau, Shu; Manzur, Adnan Y.; Feng, Lucy; Jacques, Thomas S; Anderson, Glenn; Abbs, Stephen; Sewry, Caroline; Jungbluth, Heinz; Muntoni, Francesco

    2013-01-01

    Recessive nebulin (NEB) mutations are a common cause of nemaline myopathy (NM), typically characterized by generalized weakness of early-onset and nemaline rods on muscle biopsy. Exceptional adult cases with additional cores and an isolated distal weakness have been reported. The large NEB gene with 183 exons has been an obstacle for the genetic work-up. Here we report a childhood-onset case with distal weakness and a core-rod myopathy, associated with recessive NEB mutations identified by ne...

  6. Muscle histopathology in nebulin-related nemaline myopathy: ultrastrastructural findings correlated to disease severity and genotype.

    Science.gov (United States)

    Malfatti, Edoardo; Lehtokari, Vilma-Lotta; Böhm, Johann; De Winter, Josine M; Schäffer, Ursula; Estournet, Brigitte; Quijano-Roy, Susana; Monges, Soledad; Lubieniecki, Fabiana; Bellance, Remi; Viou, Mai Thao; Madelaine, Angéline; Wu, Bin; Taratuto, Ana Lía; Eymard, Bruno; Pelin, Katarina; Fardeau, Michel; Ottenheijm, Coen A C; Wallgren-Pettersson, Carina; Laporte, Jocelyn; Romero, Norma B

    2014-04-12

    Nemaline myopathy (NM) is a rare congenital myopathy characterised by hypotonia, muscle weakness, and often skeletal muscle deformities with the presence of nemaline bodies (rods) in the muscle biopsy. The nebulin (NEB) gene is the most commonly mutated and is thought to account for approximately 50% of genetically diagnosed cases of NM. We undertook a detailed muscle morphological analysis of 14 NEB-mutated NM patients with different clinical forms to define muscle pathological patterns and correlate them with clinical course and genotype. Three groups were identified according to clinical severity. Group 1 (n = 5) comprises severe/lethal NM and biopsy in the first days of life. Group 2 (n = 4) includes intermediate NM and biopsy in infancy. Group 3 (n = 5) comprises typical/mild NM and biopsy in childhood or early adult life. Biopsies underwent histoenzymological, immunohistochemical and ultrastructural analysis. Fibre type distribution patterns, rod characteristics, distribution and localization were investigated. Contractile performance was studied in muscle fibre preparations isolated from seven muscle biopsies from each of the three groups. G1 showed significant myofibrillar dissociation and smallness with scattered globular rods in one third of fibres; there was no type 1 predominance. G2 presented milder sarcomeric dissociation, dispersed or clustered nemaline bodies, and type 1 predominance/uniformity. In contrast, G3 had well-delimited clusters of subsarcolemmal elongated rods and type 1 uniformity without sarcomeric alterations. In accordance with the clinical and morphological data, functional studies revealed markedly low forces in muscle bundles from G1 and a better contractile performance in muscle bundles from biopsies of patients from G2, and G3.In conclusion NEB-mutated NM patients present a wide spectrum of morphological features. It is difficult to establish firm genotype phenotype correlation. Interestingly, there was a correlation

  7. Fast skeletal muscle troponin activation increases force of mouse fast skeletal muscle and ameliorates weakness due to nebulin-deficiency.

    Directory of Open Access Journals (Sweden)

    Eun-Jeong Lee

    Full Text Available The effect of the fast skeletal muscle troponin activator, CK-2066260, on calcium-induced force development was studied in skinned fast skeletal muscle fibers from wildtype (WT and nebulin deficient (NEB KO mice. Nebulin is a sarcomeric protein that when absent (NEB KO mouse or present at low levels (nemaline myopathy (NM patients with NEB mutations causes muscle weakness. We studied the effect of fast skeletal troponin activation on WT muscle and tested whether it might be a therapeutic mechanism to increase muscle strength in nebulin deficient muscle. We measured tension-pCa relations with and without added CK-2066260. Maximal active tension in NEB KO tibialis cranialis fibers in the absence of CK-2066260 was ∼60% less than in WT fibers, consistent with earlier work. CK-2066260 shifted the tension-calcium relationship leftwards, with the largest relative increase (up to 8-fold at low to intermediate calcium levels. This was a general effect that was present in both WT and NEB KO fiber bundles. At pCa levels above ∼6.0 (i.e., calcium concentrations <1 µM, CK-2066260 increased tension of NEB KO fibers to beyond that of WT fibers. Crossbridge cycling kinetics were studied by measuring k(tr (rate constant of force redevelopment following a rapid shortening/restretch. CK-2066260 greatly increased k(tr at submaximal activation levels in both WT and NEB KO fiber bundles. We also studied the sarcomere length (SL dependence of the CK-2066260 effect (SL 2.1 µm and 2.6 µm and found that in the NEB KO fibers, CK-2066260 had a larger effect on calcium sensitivity at the long SL. We conclude that fast skeletal muscle troponin activation increases force at submaximal activation in both wildtype and NEB KO fiber bundles and, importantly, that this troponin activation is a potential therapeutic mechanism for increasing force in NM and other skeletal muscle diseases with loss of muscle strength.

  8. Cardiac thin filament regulation and the Frank–Starling mechanism

    OpenAIRE

    Kobirumaki-Shimozawa, Fuyu; Inoue, Takahiro; Shintani, Seine A.; Oyama, Kotaro; Terui, Takako; Minamisawa, Susumu; Ishiwata, Shin’ichi; Fukuda, Norio

    2014-01-01

    The heart has an intrinsic ability to increase systolic force in response to a rise in ventricular filling (the Frank–Starling law of the heart). It is widely accepted that the length dependence of myocardial activation underlies the Frank–Starling law of the heart. Recent advances in muscle physiology have enabled the identification of the factors involved in length-dependent activation, viz., titin (connectin)-based interfilament lattice spacing reduction and thin filament “on–off” regulati...

  9. Variants in Nebulin (NEB Are Linked to the Development of Familial Primary Angle Closure Glaucoma in Basset Hounds.

    Directory of Open Access Journals (Sweden)

    Dina F Ahram

    Full Text Available Several dog breeds are susceptible to developing primary angle closure glaucoma (PACG, which suggests a genetic basis for the disease. We have identified a four-generation Basset Hound pedigree with characteristic autosomal recessive PACG that closely recapitulates PACG in humans. Our aim is to utilize gene mapping and whole exome sequencing approaches to identify PACG-causing sequence variants in the Basset. Extensive clinical phenotyping of all pedigree members was conducted. SNP-chip genotyping was carried out in 9 affected and 15 unaffected pedigree members. Two-point and multipoint linkage analyses of genome-wide SNP data were performed using Superlink-Online SNP-1.1 and a locus was mapped to chromosome 19q with a maximum LOD score of 3.24. The locus contains 12 Ensemble predicted canine genes and is syntenic to a region on chromosome 2 in the human genome. Using exome-sequencing analysis, a possibly damaging, non-synonymous variant in the gene Nebulin (NEB was found to segregate with PACG which alters a phylogenetically conserved Lysine residue. The association of this variants with PACG was confirmed in a secondary cohort of unrelated Basset Hounds (p = 3.4 × 10-4, OR = 15.3 for homozygosity. Nebulin, a protein that promotes the contractile function of sarcomeres, was found to be prominently expressed in the ciliary muscles of the anterior segment. Our findings may provide insight into the molecular mechanisms that underlie PACG. The phenotypic similarities of disease presentation in dogs and humans may enable the translation of findings made in this study to patients with PACG.

  10. Troponin-like regulation in muscle thin filaments of the mussel Crenomytilus grayanus (Bivalvia: Mytiloida).

    Science.gov (United States)

    Vyatchin, Ilya G; Shevchenko, Ulyana V; Lazarev, Stanislav S; Matusovsky, Oleg S; Shelud'ko, Nikolay S

    2015-10-01

    Muscles of bivalve molluscs have double calcium regulation--myosin-linked and actin-linked. While the mechanism of myosin-linked regulation is sufficiently studied, there is still no consensus on the mechanism of actin-linked regulation. Earlier we showed a high degree of Ca2+-sensitivity of thin filaments from the adductor muscle of the mussel Crenomytilus grayanus (Mytiloida). In order to elucidate the nature of this regulation, we isolated the fraction of minor proteins from the mussel thin filaments, which confers Ca2+-sensitivity to reconstituted actomyosin-tropomyosin. Proteins of this fraction, ABP-19, ABP-20, and ABP-28, were chromatographically purified and identified. According to the results of mass spectrometry and Western blot analysis, as well as by their functional properties, these mussel actin-binding proteins appeared to correspond to the troponin components from the skeletal muscles of vertebrates (TnC, TnI and TnT). The reconstituted mussel troponin complex confers to actomyosin-tropomyosin more than 80% Ca2+-sensitivity. The in vivo molar ratio of actin/tropomyosin/troponin was calculated to be 7:1:0.5, i.e., the content of troponin in mussel thin filaments is two times lower than in thin filaments of skeletal muscles of vertebrates. These data demonstrate that troponin-like regulation found in the catch muscle of the mussel C. grayanus is present at least in two suborders of bivalves: Pectinoida and Mytiloida.

  11. Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction.

    Science.gov (United States)

    Leavis, P C; Gergely, J

    1984-01-01

    Recent developments in the field of myofibrillar proteins will be reviewed. Consideration will be given to the proteins that participate in the contractile process itself as well as to those involved in Ca-dependent regulation of striated (skeletal and cardiac) and smooth muscle. The relation of protein structure to function will be emphasized and the relation of various physiologically and histochemically defined fiber types to the proteins found in them will be discussed.

  12. Titin Isoform Size is Not Correlated with Thin Filament Length in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Marion Lewis Greaser

    2014-02-01

    Full Text Available The mechanisms controlling thin filament length in muscle remain controversial. It was recently reported that thin filament length was related to titin size, and that the latter might be involved in thin filament length determination. Titin plays several crucial roles in the sarcomere, but its function as it pertains to the thin filament has not been explored. We tested this relationship using several muscles from wild type rats and from a mutant rat model which results in increased titin size. Myofibrils were isolated from skeletal muscles (extensor digitorum longus, external oblique, gastrocnemius, longissimus dorsi, psoas major, and tibialis anterior using both adult wild type (WT and homozygous mutant (HM rats. Phalloidin and antibodies against tropomodulin-4 and nebulin’s N-terminus were used to determine thin filament length. The WT rats studied express skeletal muscle titin sizes ranging from 3.2 to 3.7 MDa, while the HM rats express a giant titin isoform sized at 3.7 MDa. No differences in phalloidin-based thin filament length, nebulin N terminus distances from the Z line, or tropomodulin distances from the Z line were observed across genotypes. The data indicates that, although titin performs many sarcomeric functions, its correlation with thin filament length and structure could not be demonstrated in the rat. Current models of thin filament assembly are inadequate to explain the phalloidin, nebulin N terminus, and tropomodulin staining patterns in the myofibril.

  13. Muscle weakness in respiratory and peripheral skeletal muscles in a mouse model for nebulin-based nemaline myopathy.

    Science.gov (United States)

    Joureau, Barbara; de Winter, Josine M; Stam, Kelly; Granzier, Henk; Ottenheijm, Coen A C

    2017-01-01

    Nemaline myopathy is among the most common non-dystrophic congenital myopathies, and is characterized by the presence of nemaline rods in skeletal muscles fibers, general muscle weakness, and hypotonia. Although respiratory failure is the main cause of death in nemaline myopathy, only little is known regarding the contractile strength of the diaphragm, the main muscle of inspiration. To investigate diaphragm contractility, in the present study we took advantage of a mouse model for nebulin-based nemaline myopathy that we recently developed. In this mouse model, exon 55 of Neb is deleted (Neb(ΔExon55)), a mutation frequently found in patients. Diaphragm contractility was determined in permeabilized muscle fibers and was compared to the contractility of permeabilized fibers from three peripheral skeletal muscles: soleus, extensor digitorum longus, and gastrocnemius. The force generating capacity of diaphragm muscle fibers of Neb(ΔExon55) mice was reduced to 25% of wildtype levels, indicating severe contractile weakness. The contractile weakness of diaphragm fibers was more pronounced than that observed in soleus muscle, but not more pronounced than that observed in extensor digitorum longus and gastrocnemius muscles. The reduced muscle contractility was at least partly caused by changes in cross-bridge cycling kinetics which reduced the number of bound cross-bridges. The severe diaphragm weakness likely contributes to the development of respiratory failure in Neb(ΔExon55) mice and might explain their early, postnatal death. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effects of electrical stimulation and postmortem storage on changes in titin, nebulin, desmin, troponin-T, and muscle ultrastructure in Bos indicus crossbred cattle.

    Science.gov (United States)

    Ho, C Y; Stromer, M H; Rouse, G; Robson, R M

    1997-02-01

    The effects of electrical stimulation (ES) on degradation of titin, nebulin, desmin, and troponin-T (TN-T) and on structural changes in the longissimus muscle (LM) from Brahman x Simmental (B x S) cattle (Bos indicus cross) were determined. The left side of seven B x S beef carcasses was stimulated (200 V, 20 Hz) within 1 h of death, and the right side was the nonstimulated (NS) control. Myofibrils for SDS-PAGE and samples for transmission electron microscopy were prepared from the LM at 0, 1, 3, 7, 14, and 28 d postmortem (PM). The SDS-PAGE results showed that the T1 band of titin was absent by 7 d in two animals, by 14 d in four animals, and by 28 d in one animal in both NS and ES samples. By SDS-PAGE, intact nebulin was gone by 7 d in two animals and by 14 d in five animals, but in blots, nebulin decreased by 7 d and was absent by 14 d in both NS and ES samples. The desmin band could still be seen as a light band at 28 d in Western blots of both NS and ES samples. A decrease in TN-T and a concomitant increase in the 30-kDa polypeptide were observed in both NS and ES samples. Western blots with a monoclonal antibody to TN-T confirmed that TN-T decreased at similar rates in NS and ES samples but showed that the 30-kDa polypeptide was more heavily labeled in ES samples from 7 to 28 d. Contraction nodes were present in O-d ES samples and were still observed in 28-d ES samples. Narrow, intermediate, and wide I-band fractures were seen earlier and at a greater frequency in ES than in NS samples. Overall, ES had no detectable effect on titin, nebulin, desmin, or TN-T degradation but accelerated the appearance and enhanced the frequency of three types of I-band fractures in the LM from Bos indicus crossbred cattle.

  15. Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females.

    Science.gov (United States)

    Vijayakumar, Nandita; Whittle, Sarah; Yücel, Murat; Dennison, Meg; Simmons, Julian; Allen, Nicholas B

    2014-11-01

    Adolescence is a crucial period for the development of adaptive emotion regulation strategies. Despite the fact that structural maturation of the prefrontal cortex during adolescence is often assumed to underlie the maturation of emotion regulation strategies, no longitudinal studies have directly assessed this relationship. This study examined whether use of cognitive reappraisal strategies during late adolescence was predicted by (i) absolute prefrontal cortical thickness during early adolescence and (ii) structural maturation of the prefrontal cortex between early and mid-adolescence. Ninety-two adolescents underwent baseline and follow-up magnetic resonance imaging scans when they were aged approximately 12 and 16 years, respectively. FreeSurfer software was used to obtain cortical thickness estimates for three prefrontal regions [anterior cingulate cortex; dorsolateral prefrontal cortex (dlPFC); ventrolateral prefrontal cortex (vlPFC)]. The Emotion Regulation Questionnaire was completed when adolescents were aged approximately 19 years. Results showed that greater cortical thinning of the left dlPFC and left vlPFC during adolescence was significantly associated with greater use of cognitive reappraisal in females, though no such relationship was evident in males. Furthermore, baseline left dlPFC thickness predicted cognitive reappraisal at trend level. These findings suggest that cortical maturation may play a role in the development of adaptive emotion regulation strategies during adolescence. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Effect of levosimendan on the contractility of muscle fibers from nemaline myopathy patients with mutations in the nebulin gene.

    Science.gov (United States)

    de Winter, Josine M; Joureau, Barbara; Sequeira, Vasco; Clarke, Nigel F; van der Velden, Jolanda; Stienen, Ger Jm; Granzier, Henk; Beggs, Alan H; Ottenheijm, Coen Ac

    2015-01-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is characterized by generalized skeletal muscle weakness, often from birth. To date, no therapy exists that enhances the contractile strength of muscles of NM patients. Mutations in NEB, encoding the giant protein nebulin, are the most common cause of NM. The pathophysiology of muscle weakness in NM patients with NEB mutations (NEB-NM) includes a lower calcium-sensitivity of force generation. We propose that the lower calcium-sensitivity of force generation in NEB-NM offers a therapeutic target. Levosimendan is a calcium sensitizer that is approved for use in humans and has been developed to target cardiac muscle fibers. It exerts its effect through binding to slow skeletal/cardiac troponin C. As slow skeletal/cardiac troponin C is also the dominant troponin C isoform in slow-twitch skeletal muscle fibers, we hypothesized that levosimendan improves slow-twitch muscle fiber strength at submaximal levels of activation in patients with NEB-NM. To test whether levosimendan affects force production, permeabilized slow-twitch muscle fibers isolated from biopsies of NEB-NM patients and controls were exposed to levosimendan and the force response was measured. No effect of levosimendan on muscle fiber force in NEB-NM and control skeletal muscle fibers was found, both at a submaximal calcium level using incremental levosimendan concentrations, and at incremental calcium concentrations in the presence of levosimendan. In contrast, levosimendan did significantly increase the calcium-sensitivity of force in human single cardiomyocytes. Protein analysis confirmed that the slow skeletal/cardiac troponin C isoform was present in the skeletal muscle fibers tested. These findings indicate that levosimendan does not improve the contractility in human skeletal muscle fibers, and do not provide rationale for using levosimendan as a therapeutic to restore muscle weakness in NEB-NM patients. We stress the

  17. The effects of "thin ideal" media on women's body image concerns and eating-related intentions: the beneficial role of an autonomous regulation of eating behaviors.

    Science.gov (United States)

    Mask, Lisa; Blanchard, Céline M

    2011-09-01

    The present study examines the protective role of an autonomous regulation of eating behaviors (AREB) on the relationship between trait body dissatisfaction and women's body image concerns and eating-related intentions in response to "thin ideal" media. Undergraduate women (n=138) were randomly assigned to view a "thin ideal" video or a neutral video. As hypothesized, trait body dissatisfaction predicted more negative affect and size dissatisfaction following exposure to the "thin ideal" video among women who displayed less AREB. Conversely, trait body dissatisfaction predicted greater intentions to monitor food intake and limit unhealthy foods following exposure to the "thin ideal" video among women who displayed more AREB.

  18. Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females

    OpenAIRE

    Vijayakumar, Nandita; Whittle, Sarah; Yücel, Murat; Dennison, Meg; Simmons, Julian; Allen, Nicholas B.

    2014-01-01

    Adolescence is a crucial period for the development of adaptive emotion regulation strategies. Despite the fact that structural maturation of the prefrontal cortex during adolescence is often assumed to underlie the maturation of emotion regulation strategies, no longitudinal studies have directly assessed this relationship. This study examined whether use of cognitive reappraisal strategies during late adolescence was predicted by (i) absolute prefrontal cortical thickness during early adole...

  19. Solarbus Solar Array Innovative Light Weight Mechanical Architecture with Thin Lateral Panels Deployed with Shape Memory Alloy Regulator

    Science.gov (United States)

    D'Abrigeon, Laurent; Carpine, Anne; Laduree, Gregory

    2005-05-01

    The standard ALCATEL SOLAR ARRAY PLANAR CONCEPT on the TELECOM market today on flight is named SOLARBUS. This concept is: • 3 to 10 identical panels covered with Si Hi-η cell technology. • A central mast constitute by 3 to 4 panels and 1 yoke linked together by hinges and synchronized by cables. • From 2 to 6 lateral panels This concept is able to fit with the customer requirements in order to have a competitive "global offer at system level" (mass to power ratio 48-50 W/Kg) But, for the near future, in line with the market trend, and based on the previous experience, an improvement of the SOLARBUS Solar Array concept in term of W/kg/€ is essential in order to maintain the competitiveness of the global ALCATEL offer at system level. In order to increase the W/Kg performance Alcatel has developed a new architecture named Lightweight Panel Structure (LPS). The objectives of this new structure are : • To decrease the kg/m2 ratio • To be compatible of all promising cells technology including Si Hi-n, GaAs, GaAs+ small reflectors. This new architecture is based on the fact that during the 3 major life phases of a Solar Array (Launch/Deployment/Deployed orbital life), the structural needs are more important for the central panels than for the lateral panels. So two different panels have been designed : • Central panels (named LPS1) • Lateral panels (named LPS2) The stowing configuration as been adapted : 2 thin lateral panels LPS2 between 2 structural central panels LPS1, and local bumpers to transfer the loads from LPS2 to LPS1. Also one of the more stringent loads applied to the panels are corresponding to deployment loads. In order to limit the mass of reinforcement of the panels, a deployment speed regulator shall be used. In the frame of the new generation of solar arrays, Alcatel has developed a new actuator based on shape memory alloy torsional rod. This light weight component is directly connected to heaters lines and is able to provide great

  20. Regulation of the forming process and the set voltage distribution of unipolar resistance switching in spin-coated CoFe2O4 thin films.

    Science.gov (United States)

    Mustaqima, Millaty; Yoo, Pilsun; Huang, Wei; Lee, Bo Wha; Liu, Chunli

    2015-01-01

    We report the preparation of (111) preferentially oriented CoFe2O4 thin films on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating process. The post-annealing conditions and film thickness were varied for cobalt ferrite (CFO) thin films, and Pt/CFO/Pt structures were prepared to investigate the resistance switching behaviors. Our results showed that resistance switching without a forming process is preferred to obtain less fluctuation in the set voltage, which can be regulated directly from the preparation conditions of the CFO thin films. Therefore, instead of thicker film, CFO thin films deposited by two times spin-coating with a thickness about 100 nm gave stable resistance switching with the most stable set voltage. Since the forming process and the large variation in set voltage have been considered as serious obstacles for the practical application of resistance switching for non-volatile memory devices, our results could provide meaningful insights in improving the performance of ferrite material-based resistance switching memory devices.

  1. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy.

    Science.gov (United States)

    Garg, Ankit; O'Rourke, Jason; Long, Chengzu; Doering, Jonathan; Ravenscroft, Gianina; Bezprozvannaya, Svetlana; Nelson, Benjamin R; Beetz, Nadine; Li, Lin; Chen, She; Laing, Nigel G; Grange, Robert W; Bassel-Duby, Rhonda; Olson, Eric N

    2014-08-01

    Nemaline myopathy (NM) is a congenital myopathy that can result in lethal muscle dysfunction and is thought to be a disease of the sarcomere thin filament. Recently, several proteins of unknown function have been implicated in NM, but the mechanistic basis of their contribution to disease remains unresolved. Here, we demonstrated that loss of a muscle-specific protein, kelch-like family member 40 (KLHL40), results in a nemaline-like myopathy in mice that closely phenocopies muscle abnormalities observed in KLHL40-deficient patients. We determined that KLHL40 localizes to the sarcomere I band and A band and binds to nebulin (NEB), a protein frequently implicated in NM, as well as a putative thin filament protein, leiomodin 3 (LMOD3). KLHL40 belongs to the BTB-BACK-kelch (BBK) family of proteins, some of which have been shown to promote degradation of their substrates. In contrast, we found that KLHL40 promotes stability of NEB and LMOD3 and blocks LMOD3 ubiquitination. Accordingly, NEB and LMOD3 were reduced in skeletal muscle of both Klhl40-/- mice and KLHL40-deficient patients. Loss of sarcomere thin filament proteins is a frequent cause of NM; therefore, our data that KLHL40 stabilizes NEB and LMOD3 provide a potential basis for the development of NM in KLHL40-deficient patients.

  2. Reguladores vegetais e o desbaste químico de frutos de tangor murcote Plant growth regulators and 'Honey' orange fruit chemical thinning

    Directory of Open Access Journals (Sweden)

    Marcio Christian Serpa Domingues

    2001-09-01

    Full Text Available O tangor 'Murcote' apresenta necessidade de desbaste de frutos devido a alternância de produção, caracterizado por anos de excessiva produção intercalado com anos de baixa produção, evitando assim, a diminuição da qualidade dos frutos. O presente trabalho teve por objetivo avaliar a eficiência de reguladores vegetais, a auxina ANA (ácido naftalenacético e ethephon (etileno no desbaste químico de frutos de tangor 'Murcote' aplicado 40 dias após o pleno florescimento. O experimento foi conduzido em Pratânia, SP, onde plantas de 5 anos de idade, enxertadas sobre o limoeiro 'Cravo', foram pulverizadas com ANA a 0, 100, 200, 300 e 400 mg L-1 e com ethephon a 200, 300 e 400 mg L-1, ambos em solução aquosa juntamente com adjuvante não iônico a 0,05%. A contagem dos frutos foi realizada previamente aos tratamentos em 2 ramos marcados por planta. O ANA não interferiu significativamente no desbaste de frutos, com porcentagens de queda variando entre 7 a 14%, enquanto que as pulverizações com ethephon mostraram maior eficiência no desbaste de frutos, principalmente na dose de 400 mg L-1, promovendo 66,6% de queda de frutos, sem contudo induzir a abscisão foliar. As doses inferiores de ethephon também promoveram desbaste de frutos da ordem de 40%. As porcentagens de queda de frutos foram pequenas, para plantas pulverizadas com ANA, enquanto que a aplicação de ethephon promoveu maior eficiência no desbaste de frutos.Alternate bearing is an important caracteristic of some mandarins that reduces fruit quality and yield in tangor Murcott, and to reduce this effect is necessary to perform fruit thinning to avoid high and low production year by year. To evaluate the effects of plant growth regulators on fruit thinning of the 'honey' orange, an auxin (NAA-naphthalene acetic acid and ethephon (ethylene, were applied 40 days after full bloom in an experiment carried out at Pratania, S.P., Brazil. Five-year-old plants grafted on Rangpur

  3. Light regulated I-V hysteresis loop of Ag/BiFeO3/FTO thin film

    Science.gov (United States)

    Wei, Lujun; Sun, Bai; Zhao, Wenxi; Li, Hongwei; Chen, Peng

    2017-01-01

    A hysteresis loop of current-voltage characteristics based multiferroic BiFeO3 nanoribbons memory device is observed. Moreover, the white-light can greatly regulate both the current-voltage hysteresis loop and the ferroelectric hysteresis loop. The stored space charges within the electrodes/BiFeO3 interface can lead to hysteresis-type I-V characteristics of Ag/BiFeO3/FTO devices. The white-light controlled I-V loop and ferroelectric loop result from photon-generated carries. Since the I-V hysteresis loop and ferroelectric hysteresis loop have a potential application prospect to the memory devices, these two white-light controlled the hysteresis loops curves are likely to provide promising opportunity for developing the multi-functional memory devices.

  4. Ca++-sensitizing mutations in troponin, P(i), and 2-deoxyATP alter the depressive effect of acidosis on regulated thin-filament velocity.

    Science.gov (United States)

    Longyear, Thomas J; Turner, Matthew A; Davis, Jonathan P; Lopez, Joseph; Biesiadecki, Brandon; Debold, Edward P

    2014-05-01

    Repeated, intense contractile activity compromises the ability of skeletal muscle to generate force and velocity, resulting in fatigue. The decrease in velocity is thought to be due, in part, to the intracellular build-up of acidosis inhibiting the function of the contractile proteins myosin and troponin; however, the underlying molecular basis of this process remains poorly understood. We sought to gain novel insight into the decrease in velocity by determining whether the depressive effect of acidosis could be altered by 1) introducing Ca(++)-sensitizing mutations into troponin (Tn) or 2) by agents that directly affect myosin function, including inorganic phosphate (Pi) and 2-deoxy-ATP (dATP) in an in vitro motility assay. Acidosis reduced regulated thin-filament velocity (VRTF) at both maximal and submaximal Ca(++) levels in a pH-dependent manner. A truncated construct of the inhibitory subunit of Tn (TnI) and a Ca(++)-sensitizing mutation in the Ca(++)-binding subunit of Tn (TnC) increased VRTF at submaximal Ca(++) under acidic conditions but had no effect on VRTF at maximal Ca(++) levels. In contrast, both Pi and replacement of ATP with dATP reversed much of the acidosis-induced depression of VRTF at saturating Ca(++). Interestingly, despite producing similar magnitude increases in VRTF, the combined effects of Pi and dATP were additive, suggesting different underlying mechanisms of action. These findings suggest that acidosis depresses velocity by slowing the detachment rate from actin but also by possibly slowing the attachment rate.

  5. Ca++-sensitizing mutations in troponin, Pi, and 2-deoxyATP alter the depressive effect of acidosis on regulated thin-filament velocity

    Science.gov (United States)

    Longyear, Thomas J.; Turner, Matthew A.; Davis, Jonathan P.; Lopez, Joseph; Biesiadecki, Brandon

    2014-01-01

    Repeated, intense contractile activity compromises the ability of skeletal muscle to generate force and velocity, resulting in fatigue. The decrease in velocity is thought to be due, in part, to the intracellular build-up of acidosis inhibiting the function of the contractile proteins myosin and troponin; however, the underlying molecular basis of this process remains poorly understood. We sought to gain novel insight into the decrease in velocity by determining whether the depressive effect of acidosis could be altered by 1) introducing Ca++-sensitizing mutations into troponin (Tn) or 2) by agents that directly affect myosin function, including inorganic phosphate (Pi) and 2-deoxy-ATP (dATP) in an in vitro motility assay. Acidosis reduced regulated thin-filament velocity (VRTF) at both maximal and submaximal Ca++ levels in a pH-dependent manner. A truncated construct of the inhibitory subunit of Tn (TnI) and a Ca++-sensitizing mutation in the Ca++-binding subunit of Tn (TnC) increased VRTF at submaximal Ca++ under acidic conditions but had no effect on VRTF at maximal Ca++ levels. In contrast, both Pi and replacement of ATP with dATP reversed much of the acidosis-induced depression of VRTF at saturating Ca++. Interestingly, despite producing similar magnitude increases in VRTF, the combined effects of Pi and dATP were additive, suggesting different underlying mechanisms of action. These findings suggest that acidosis depresses velocity by slowing the detachment rate from actin but also by possibly slowing the attachment rate. PMID:24651988

  6. 7 CFR 29.3648 - Thin Leaf (C Group).

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER... tolerance. C3M Good Quality Mixed Thin Leaf. Mature, thin, firm leaf structure, crepy, oily, normal...

  7. Thin book

    DEFF Research Database (Denmark)

    En lille bog om teater og organisationer, med bidrag fra 19 teoretikere og praktikere, der deltog i en "Thin Book Summit" i Danmark i 2005. Bogen bidrager med en state-of-the-art antologi om forskellige former for samarbejde imellem teater og organisationer. Bogen fokuserer både på muligheder og...

  8. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  9. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  10. 7 CFR 29.2438 - Thin Leaf (C Group).

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER... color intensity, narrow, 60 percent uniform, and 40 percent injury tolerance. C3M Good Mixed Color Thin...

  11. 7 CFR 29.2663 - Thin Leaf (C Group).

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER..., 60 percent uniform, and 40 percent injury tolerance. C3M Good Mixed Color or Variegated Thin Leaf...

  12. 'Active' Thin Sections

    NARCIS (Netherlands)

    De Rooij, M.R.; Bijen, J.M.J.M.

    1999-01-01

    Optical microscopy using thin sections has become more and more important over the last decade to study concrete. Unfortunately, this technique is not capable of studying actually hydrating cement paste. At Delft University of Technology a new technique has been developed using 'active' thin section

  13. Insect thin films as solar collectors.

    Science.gov (United States)

    Heilman, B D; Miaoulis, L N

    1994-10-01

    A numerical method for simulation of microscale radiation effects in insect thin-film structures is described. Accounting for solar beam and diffuse radiation, the model calculates the reflectivity and emissivity of such structures. A case study examines microscale radiation effects in butterfuly wings, and results reveal a new function of these multilayer thin films: thermal regulation. For film thicknesses of the order of 0.10 µm, solar absorption levels vary by as much as 25% with small changes in film thickness; for certain existing structures, absorption levels reach 96%., This is attributed to the spectral distribution of the reflected radiation, which consists of a singular reflectance peak within the solar spectrum.

  14. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  15. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  16. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  17. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  18. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  19. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  20. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  1. Multifunctional thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  2. Active Vibration Control of a Thin Steel Sheet

    OpenAIRE

    Yohji Okada; Ken-Ichi Matsuda; Junji Tani

    1995-01-01

    The commercial rolling process used in the steel industry to manufacture thin steel sheets tends to cause plate vibrations that lower the quality of the surface finish. This article introduces a noncontact method of active vibration control for reducing the flexural vibrations of a thin steel sheet. The proposed electromagnetic method of control has been implemented in a simple experimental setup where the signal from a motion sensor regulates the attractive force of the magnets that produce ...

  3. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  4. Biomimetic thin film deposition

    Science.gov (United States)

    Rieke, P. C.; Campbell, A. A.; Tarasevich, B. J.; Fryxell, G. E.; Bentjen, S. B.

    1991-04-01

    Surfaces derivatized with organic functional groups were used to promote the deposition of thin films of inorganic minerals. These derivatized surfaces were designed to mimic the nucleation proteins that control mineral deposition during formation of bone, shell, and other hard tissues in living organisms. By the use of derivatized substrates control was obtained over the phase of mineral deposited, the orientation of the crystal lattice and the location of deposition. These features are of considerable importance in many technically important thin films, coatings, and composite materials. Methods of derivatizing surfaces are considered and examples of controlled mineral deposition are presented.

  5. Galactic Thin Disk

    NARCIS (Netherlands)

    van der Kruit, P.; Murdin, P.; Murdin, Paul

    2000-01-01

    Of the components of our MILKY WAY GALAXY, the thin disk is the most prominent part to our eyes. It manifests itself as the band of faint light that we see encircling the whole sky. Except for the bulge in the direction of the center of our Galaxy, the stars that make up the Milky Way as we see it

  6. Zapping thin film transistors

    NARCIS (Netherlands)

    Golo-Tosic, N.; Kuper, F.G.; Mouthaan, A.J.

    2002-01-01

    It was expected that hydrogenated amorphous silicon thin film transistors (alpha-Si:H TFTs) behave similarly to crystalline silicon transistors under electrostatic discharge (ESD) stress. It will be disproved in this paper. This knowledge is necessary in the design of the transistors used in a ESD

  7. Thin Lens Ray Tracing.

    Science.gov (United States)

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  8. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  9. Thin supported silica membranes

    NARCIS (Netherlands)

    Zivkovic, Tijana

    2007-01-01

    This thesis discusses several transport-related aspects relevant for the application of thin supported silica membranes for gas separation and nanofiltration. The influence of support geometry on overall membrane performance is investigated. Planar (i.e., flat plate), tubular, and multichannel suppo

  10. Modern Thin-Layer Chromatography.

    Science.gov (United States)

    Poole, Colin F.; Poole, Salwa K.

    1989-01-01

    Some of the important modern developments of thin-layer chromatography are introduced. Discussed are the theory and instrumentation of thin-layer chromatography including multidimensional and multimodal techniques. Lists 53 references. (CW)

  11. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  12. Modern Thin-Layer Chromatography.

    Science.gov (United States)

    Poole, Colin F.; Poole, Salwa K.

    1989-01-01

    Some of the important modern developments of thin-layer chromatography are introduced. Discussed are the theory and instrumentation of thin-layer chromatography including multidimensional and multimodal techniques. Lists 53 references. (CW)

  13. Thin films for material engineering

    Science.gov (United States)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  14. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  15. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  16. [Spectral emissivity of thin films].

    Science.gov (United States)

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  17. Rate-dependent force, intracellular calcium, and action potential voltage alternans are modulated by sarcomere length and heart failure induced-remodeling of thin filament regulation in human heart failure: A myocyte modeling study.

    Science.gov (United States)

    Zile, Melanie A; Trayanova, Natalia A

    2016-01-01

    Microvolt T-wave alternans (MTWA) testing identifies heart failure patients at risk for lethal ventricular arrhythmias at near-resting heart rates (voltage alternans (APV-ALT), the cellular driver of MTWA. Our goal was to uncover the mechanisms linking APV-ALT and FORCE-ALT in failing human myocytes and to investigate how the link between those alternans was affected by pacing rate and by physiological conditions such as sarcomere length and heart failure induced-remodeling of mechanical parameters. To achieve this, a mechanically-based, strongly coupled human electromechanical myocyte model was constructed. Reducing the sarcoplasmic reticulum calcium uptake current (Iup) to 27% was incorporated to simulate abnormal calcium handling in human heart failure. Mechanical remodeling was incorporated to simulate altered thin filament activation and crossbridge (XB) cycling rates. A dynamical pacing protocol was used to investigate the development of intracellular calcium concentration ([Ca]i), voltage, and active force alternans at different pacing rates. FORCE-ALT only occurred in simulations incorporating reduced Iup, demonstrating that alternans in the intracellular calcium concentration (CA-ALT) induced FORCE-ALT. The magnitude of FORCE-ALT was found to be largest at clinically relevant pacing rates (<110 bpm), where APV-ALT was smallest. We found that the magnitudes of FORCE-ALT, CA-ALT and APV-ALT were altered by heart failure induced-remodeling of mechanical parameters and sarcomere length due to the presence of myofilament feedback. These findings provide important insight into the relationship between heart-failure-induced electrical and mechanical alternans and how they are altered by physiological conditions at near-resting heart rates.

  18. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  19. Thin film superfluid optomechanics

    CERN Document Server

    Baker, Christopher G; McAuslan, David L; Sachkou, Yauhen; He, Xin; Bowen, Warwick P

    2016-01-01

    Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid $^4$He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates $g_0>2\\pi \\times 100$ kHz and single photon cooperativities $C_0>10$ are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as $g_0>\\Omega_M$ and opens the prospect of laser cooling a liquid into its quantum ground state.

  20. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  1. Thin, Lightweight Solar Cell

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Weinberg, Irving

    1991-01-01

    Improved design for thin, lightweight solar photovoltaic cells with front contacts reduces degradation of electrical output under exposure to energetic charged particles (protons and electrons). Increases ability of cells to maintain structural integrity under exposure to ultraviolet radiation by eliminating ultraviolet-degradable adhesives used to retain cover glasses. Interdigitated front contacts and front junctions formed on semiconductor substrate. Mating contacts formed on back surface of cover glass. Cover glass and substrate electrostatically bonded together.

  2. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  3. SUMO: regulating the regulator

    Directory of Open Access Journals (Sweden)

    Bossis Guillaume

    2006-06-01

    Full Text Available Abstract Post-translational modifiers of the SUMO (Small Ubiquitin-related Modifier family have emerged as key regulators of protein function and fate. While the past few years have seen an enormous increase in knowledge on SUMO enzymes, substrates, and consequences of modification, regulation of SUMO conjugation is far from being understood. This brief review will provide an overview on recent advances concerning (i the interplay between sumoylation and other post-translational modifications at the level of individual targets and (ii global regulation of SUMO conjugation and deconjugation.

  4. Carbon Superatom Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Canning, A. [Cray Research, PSE, EPFL, 1015 Lausanne (Switzerland); Canning, A.; Galli, G. [Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA), IN-Ecublens, 1015 Lausanne (Switzerland); Kim, J. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    1997-06-01

    We report on quantum molecular dynamics simulations of C{sub 28} deposition on a semiconducting surface. Our results show that under certain deposition conditions C{sub 28} {close_quote}s act as building blocks on a nanometer scale to form a thin film of nearly defect-free molecules. The C{sub 28} {close_quote}s behave as carbon superatoms, with the majority of them being threefold or fourfold coordinated, similar to carbon atoms in amorphous systems. The microscopic structure of the deposited film supports recent suggestions about the stability of a new form of carbon, the hyperdiamond solid. {copyright} {ital 1997} {ital The American Physical Society}

  5. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  6. First Thin Film Festival

    Science.gov (United States)

    Samson, Philippe

    2005-05-01

    The constant evolution of the satellite market is asking for better technical performances and reliability for a reduced cost. Solar array is in front line of this challenge. This can be achieved by present technologies progressive improvement in cost reduction or by technological breakthrough. To reach an effective End Of Live performance100 W/kg of solar array is not so easy, even if you suppose that the mass of everything is nothing! Thin film cells are potential candidate to contribute to this challenge with certain confidence level and consequent development plan validation and qualification on ground and flight. Based on a strong flight heritage in flexible Solar Array design, the work has allowed in these last years, to pave the way on road map of thin film technologies . This is encouraged by ESA on many technological contracts put in concurrent engineering. CISG was selected cell and their strategy of design, contributions and results will be presented. Trade-off results and Design to Cost solutions will discussed. Main technical drivers, system design constraints, market access, key technologies needed will be detailed in this paper and the resulting road-map and development plan will be presented.

  7. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  8. Spinodal dewetting of thin films

    Science.gov (United States)

    Jaiswal, Prabhat K.; Puri, S.

    2009-01-01

    Stable thin liquid films are of various scientific and technological applications, e.g., in optical coating, painting technologies, coating thin wires and fibers, lubricants, adhesives, etc. However, the instabilities in a thin film may lead to rupture, hole formation, and other morphological changes which amplify the nonuniformity in the thin film [1]. This morphological evolution in an unstable thin film is generally known as `dewetting' [2]. There have recently been a number of theoretical and experimental studies on dewetting in thin films [3-6]. The process of `spinodal dewetting' comes into the category of a general class of phenomena, spinodal decomposition [7]. The pattern formation taking place during dewetting can also be of great importance in nanotechnology, e.g., for preparing quantum dots [8], nanorings [9], etc. We numerically solve the nonlinear two-dimensional thin film equation [2] for a thin liquid film subjected to the long range van der Waals attraction and short range Born repulsion. The simulation results for the temporal evolution of domains and height profile along diagonal direction of the lattice show the `hills and valleys' short of structures which is the typical morphology obtained during the spinodal dewetting [10]. We obtain the dynamical correlation function and structure factor showing the existence of a characteristic length scale in the system at late time. We give the scaling arguments for the length scale of the drops to be proportional to t1/3 which is in agreement with our numerical results for the domain growth.

  9. Thin lenses of asymmetric power

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2009-12-01

    Full Text Available It is generally supposed that thin systems, including refracting surfaces and thin lenses, have powers that are necessarily symmetric.  In other words they have powers which can be represented assymmetric dioptric power matrices and in the familar spherocylindrical form used in optometry and ophthalmology.  This paper shows that this is not correct and that it is indeed possible for a thin system to have a power that is not symmetric and which cannot be expressed in spherocylindrical form.  Thin systems of asymmetric power are illustratedby means of a thin lens that is modelled with small prisms and is chosen to have a dioptric power ma-trix that is antisymmetric.  Similar models can be devised for a thin system whose dioptric power matrix is any  2 2 ×  matrix.  Thus any power, symmetric, asymmetric or antisymmetric, is possible for a thin system.  In this sense our understanding of the power of thin systems is now complete.

  10. Thin Film Inorganic Electrochemical Systems.

    Science.gov (United States)

    1995-07-01

    determined that thin film cathodes of LiCoO2 can be readily performed by either spray pyrolysis or spin coating . These cathodes are electrochemically...active. We have also determined that thin film anodes of Li4Ti5O12 can be prepared by spray pyrolysis or spin coating . These anodes are also

  11. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  12. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  13. Polyimide Aerogel Thin Films

    Science.gov (United States)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  14. Thin EFG octagons

    Science.gov (United States)

    Kalejs, J. P.

    1994-03-01

    This report describes work to advance the manufacturing line capabilities in crystal growth and laser cutting of Mobil Solar's unique edge-defined film-fed growth (EFG) octagon technology and to reduce the manufacturing costs of 10 cm x 10 cm polycrystalline silicon EFG wafers. The report summarizes the significant technical improvements in EFG technology achieved in the first 6 months of the PVMaT Phase 2 and the success in meeting program milestones. Technical results are reported for each of the three main pregrain areas: Task 5 -- Thin octagon growth (crystal growth) to reduce the thickness of the octagon to 200 microns; Task 6 -- Laser cutting-to improve the laser cutting process so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and Task 7 -- Process control and product specification to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.

  15. Thin film interconnect processes

    Science.gov (United States)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  16. Active Vibration Control of a Thin Steel Sheet

    Directory of Open Access Journals (Sweden)

    Yohji Okada

    1995-01-01

    Full Text Available The commercial rolling process used in the steel industry to manufacture thin steel sheets tends to cause plate vibrations that lower the quality of the surface finish. This article introduces a noncontact method of active vibration control for reducing the flexural vibrations of a thin steel sheet. The proposed electromagnetic method of control has been implemented in a simple experimental setup where the signal from a motion sensor regulates the attractive force of the magnets that produce a damping force on the steel sheet.

  17. Nonlinear optical thin films

    Science.gov (United States)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  18. The religion of thinness

    Directory of Open Access Journals (Sweden)

    Michelle Lelwica

    2011-01-01

    Full Text Available This paper examines the almost religious-like devotion of especially women in pursuing the goal of a thinner body. The quest for a slender body is analysed as a ‘cultural religion’, which the author calls the ‘Religion of Thinness’. The analysis revolves around four observations. The first is that for many women in the US today, the quest for a slender body serves what has historically been a ‘religious’ function: providing a sense of purpose that orients and gives meaning to their lives, especially in times of suffering and uncertainty. Second, this quest has many features in common with traditional religions, including beliefs, myths, rituals, moral codes, and sacred images—all of which encourage women to find ‘salvation’ (i.e., happiness and well-being through the pursuit of a ‘better’ (i.e., thinner body.Third, this secular faith draws so many adherents in large part because it appeals to and addresses what might be referred to as spiritual needs—including the need for a sense of purpose, inspiration, security, virtue, love, and well-being—even though it shortchanges these needs, and, in the long run, fails to deliver the salvation it promises. Fourth, a number of traditional religious ideas, paradigms and motifs tacit­ly inform and support the Religion of Thinness. More specifically, its soteri­ology resurrects and recycles the misogynist, anti-body, other-worldly, and exclusivist aspects of patriarchal religion. Ultimately, the analysis is not only critical of the Religion of Thinness; it also raises suspicions about any clear-cut divisions between ‘religion’, ‘culture’, and ‘the body’. In fact, examining the functions, features, and ideologies embedded in this secular devotion gives us insight into the constitutive role of the body in the production and apprehension of religious and cultural meanings.

  19. Market, Regulation, Market, Regulation

    DEFF Research Database (Denmark)

    Frankel, Christian; Galland, Jean-Pierre

    2015-01-01

    This paper focuses on the European Regulatory system which was settled both for opening the Single Market for products and ensuring the consumers' safety. It claims that the New Approach and Standardization, and the Global Approach to conformity assessment, which suppressed the last technical...... barriers to trade in Europe, realized the free movement of products by organizing progressively several orders of markets and regulation. Based on historical and institutional documents, on technical publications, and on interviews, this article relates how the European Commission and the Member States had...... alternatively recourse to markets and to regulations, at the three main levels of the New Approach Directives implementation. The article focuses also more specifically on the Medical Devices sector, not only because this New Approach sector has long been controversial in Europe, and has recently been concerned...

  20. Market, Regulation, Market, Regulation

    DEFF Research Database (Denmark)

    Frankel, Christian; Galland, Jean-Pierre

    2015-01-01

    This paper focuses on the European Regulatory system which was settled both for opening the Single Market for products and ensuring the consumers' safety. It claims that the New Approach and Standardization, and the Global Approach to conformity assessment, which suppressed the last technical...... barriers to trade in Europe, realized the free movement of products by organizing progressively several orders of markets and regulation. Based on historical and institutional documents, on technical publications, and on interviews, this article relates how the European Commission and the Member States had...... alternatively recourse to markets and to regulations, at the three main levels of the New Approach Directives implementation. The article focuses also more specifically on the Medical Devices sector, not only because this New Approach sector has long been controversial in Europe, and has recently been concerned...

  1. Big Five Personality Traits and Eating Attitudes in Intensively Training Dancers: The Mediating Role of Internalized Thinness Norms

    Directory of Open Access Journals (Sweden)

    Stéphanie Scoffier-Mériaux, Charlène Falzon, Peter Lewton-Brain, Edith Filaire, Fabienne d’Arripe-Longueville

    2015-09-01

    Full Text Available Dancers are at high risk of developing disordered eating attitudes, notably because of internalized thinness norms. Although the big five personality traits have been shown to be associated with eating attitudes in daily life, in dancers where eating issues and thinness norms internalization could be salient little is known about these associations and the role of the internalization of thinness norms in this relationship. The main objectives of this study were thus to examine the relationships between the personality traits defined in the big five model and the self-regulation of eating attitudes, and to assess the role of internalized thinness norms in this association. The study included 180 intensively training dancers with an average age of 15.6 years (SD = 2.8. Dancers completed questionnaires measuring the big five personality traits, internalization of thinness norms and self-regulation of eating attitudes in sport. Bootstrapped mediation analyses showed that neuroticism was negatively associated with self-regulation of eating attitudes, both directly and indirectly through the mediating role of internalized thinness norms. This study suggested that: (a neuroticism is a vulnerability factor for self-regulation of eating attitudes in dancers, as already evidenced in the general population, and (b the internalization of thinness norms is a pathway through which neuroticism affects self-regulation of eating attitudes. The big five model is therefore partially related to the internalization of thinness norms and eating attitudes in dancers.

  2. Big Five Personality Traits and Eating Attitudes in Intensively Training Dancers: The Mediating Role of Internalized Thinness Norms.

    Science.gov (United States)

    Scoffier-Mériaux, Stéphanie; Falzon, Charlène; Lewton-Brain, Peter; Filaire, Edith; d'Arripe-Longueville, Fabienne

    2015-09-01

    Dancers are at high risk of developing disordered eating attitudes, notably because of internalized thinness norms. Although the big five personality traits have been shown to be associated with eating attitudes in daily life, in dancers where eating issues and thinness norms internalization could be salient little is known about these associations and the role of the internalization of thinness norms in this relationship. The main objectives of this study were thus to examine the relationships between the personality traits defined in the big five model and the self-regulation of eating attitudes, and to assess the role of internalized thinness norms in this association. The study included 180 intensively training dancers with an average age of 15.6 years (SD = 2.8). Dancers completed questionnaires measuring the big five personality traits, internalization of thinness norms and self-regulation of eating attitudes in sport. Bootstrapped mediation analyses showed that neuroticism was negatively associated with self-regulation of eating attitudes, both directly and indirectly through the mediating role of internalized thinness norms. This study suggested that: (a) neuroticism is a vulnerability factor for self-regulation of eating attitudes in dancers, as already evidenced in the general population, and (b) the internalization of thinness norms is a pathway through which neuroticism affects self-regulation of eating attitudes. The big five model is therefore partially related to the internalization of thinness norms and eating attitudes in dancers. Key pointsThe big five model relates to the internalization of thinness norms and eating attitudes in dancers.Neuroticism is negatively related to the self-regulation of eating attitudes.The internalization of thinness norms is correlated to the relationship between neuroticism and self-regulation of eating attitudes.

  3. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  4. Learning unit: Thin lenses

    Science.gov (United States)

    Nita, L.-S.

    2012-04-01

    Learning unit: Thin lenses "Why objects seen through lenses are sometimes upright and sometimes reversed" Nita Laura Simona National College of Arts and Crafts "Constantin Brancusi", Craiova, Romania 1. GEOMETRIC OPTICS. 13 hours Introduction (models, axioms, principles, conventions) 1. Thin lenses (Types of lenses. Defining elements. Path of light rays through lenses. Image formation. Required physical quantities. Lens formulas). 2. Lens systems (Non-collated lenses. Focalless systems). 3. Human eye (Functioning as an optical system. Sight defects and their corrections). 4. Optical instruments (Characteristics exemplified by a magnifying glass. Paths of light rays through a simplified photo camera. Path of light rays through a classical microscope) (Physics curriculum for the IXth grade/ 2011). This scenario exposes a learning unit based on experimental sequences (defining specific competencies), as a succession of lessons started by noticing a problem whose solution assumes the setup of an experiment under laboratory conditions. Progressive learning of theme objectives are realised with sequential experimental steps. The central cognitive process is the induction or the generalization (development of new knowledge based on observation of examples or counterexamples of the concept to be learnt). Pupil interest in theme objectives is triggered by problem-situations, for example: "In order to better see small objects I need a magnifying glass. But when using a magnifier, small object images are sometimes seen upright and sometimes seen reversed!" Along the way, pupils' reasoning will converge to the idea: "The image of an object through a lens depends on the relative distances among object, lens, and observer". Associated learning model: EXPERIMENT Specific competencies: derived from the experiment model, in agreement with the following learning unit steps I. Evoking - Anticipation: Size of the problem, formulation of hypotheses and planning of experiment. II

  5. Carbonaceous Chondrite Thin Section Preparation

    Science.gov (United States)

    Harrington, R.; Righter, K.

    2017-01-01

    Carbonaceous chondrite meteorites have long posed a challenge for thin section makers. The variability in sample hardness among the different types, and sometimes within individual sections, creates the need for an adaptable approach at each step of the thin section making process. This poster will share some of the procedural adjustments that have proven to be successful at the NASA JSC Meteorite Thin Section Laboratory. These adjustments are modifications of preparation methods that have been in use for decades and therefore do not require investment in new technology or materials.

  6. Thin layer chromatography.

    Science.gov (United States)

    Santiago, Marina; Strobel, Scott

    2013-01-01

    In many experiments, it is important to be able to separate a mixture into its chemical components in order to isolate one compound or to assess the purity of the mixture. Thin layer chromatography (TLC) is one of the easiest and most versatile methods of doing this because of its low cost, simplicity, quick development time, high sensitivity, and good reproducibility. TLC is used by many industries and fields of research, including pharmaceutical production, clinical analysis, industrial chemistry, environmental toxicology, food chemistry, water, inorganic, and pesticide analysis, dye purity, cosmetics, plant materials, and herbal analysis. In its simplest form, glass plates are coated with a uniform layer of silica gel (SiO2). The dissolved sample is placed on the plate, and the plate is inserted into a screw-top jar containing the developing solvent and a piece of filter paper. When the solvent has risen to near the top of the plate, the plate is removed, dried, and visualized using UV light. Variations on this protocol are used for different purposes, including pretreating the sample, changing the sorbent, plate material, the solvent system, the development techniques, and method of detection and visualization or by coupling TLC to other techniques. © 2013 Elsevier Inc. All rights reserved.

  7. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  8. Thin, Flexible IMM Solar Array

    Science.gov (United States)

    Walmsley, Nicholas

    2015-01-01

    NASA needs solar arrays that are thin, flexible, and highly efficient; package compactly for launch; and deploy into large, structurally stable high-power generators. Inverted metamorphic multijunction (IMM) solar cells can enable these arrays, but integration of this thin crystalline cell technology presents certain challenges. The Thin Hybrid Interconnected Solar Array (THINS) technology allows robust and reliable integration of IMM cells into a flexible blanket comprising standardized modules engineered for easy production. The modules support the IMM cell by using multifunctional materials for structural stability, shielding, coefficient of thermal expansion (CTE) stress relief, and integrated thermal and electrical functions. The design approach includes total encapsulation, which benefits high voltage as well as electrostatic performance.

  9. Walking a thin line: the regulation of EPGs

    NARCIS (Netherlands)

    B. van der Sloot

    2012-01-01

    The digitisation of television broadcasting has facilitated an exponential growth both in the number and the diversity of programs and channels. Electronic Programme Guides (EPGs) help consumers find their way in this abundance of offerings.EPGs serve as a classical listing magazine or broadcasting

  10. Rotating thin-shell wormhole

    Science.gov (United States)

    Ovgun, A.

    2016-11-01

    We construct a rotating thin-shell wormhole using a Myers-Perry black hole in five dimensions, using the Darmois-Israel junction conditions. The stability of the wormhole is analyzed under perturbations. We find that exotic matter is required at the throat of the wormhole to keep it stable. Our analysis shows that stability of the rotating thin-shell wormhole is possible if suitable parameter values are chosen.

  11. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  12. Rotating Thin-Shell Wormhole

    CERN Document Server

    Ovgun, A

    2016-01-01

    In this article, we construct rotating thin shell wormhole using a Myers-Perry black hole in five dimensions. The stability of the wormhole is analyzed under perturbations follows from the Darmois-Israel junction conditions. We find that it required exotic matter at the throat to keep throat of wormhole stable. Our analysis shows that the stability of the rotating thin-shell wormhole is available with choosing suitable values of parameters.

  13. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  14. Thin EFG octagons

    Science.gov (United States)

    Kalejs, J. P.

    1994-01-01

    Mobil Solar Energy Corporation currently practices a unique crystal growth technology for producing crystalline silicon sheet, which is then cut with lasers into wafers. The wafers are processed into solar cells and incorporated into modules for photovoltaic applications. The silicon sheet is produced using a method known as Edge-defined Film-fed growth (EFG), in the form of hollow eight-sided polygons (octagons) with 10 cm faces. These are grown to lengths of 5 meters and thickness of 300 microns, with continuous melt replenishment, in compact furnaces designed to operate at a high sheet area production area of 135 sq cm/min. The present Photovoltaic Manufacturing Technology (PVMaT) three-year program seeks to advance the manufacturing line capabilities of the Mobil Solar crystal growth and cutting technologies. If successful, these advancements will provide significant reductions in already low silicon raw material usage, improve process productivity, laser cutting throughput and yield, and so lower both individual wafer cost and the cost of module production. This report summarizes the significant technical improvements in EFG technology achieved in Phase 1 of this program. Technical results are reported for each of the three main program areas: (1) thin octagon growth (crystal growth) -- to reduce the thickness of the octagon to an interim goal of 250 microns during Phase 1, with an ultimate goal of achieving 200 micron thicknesses; (2) laser cutting -- to improve the laser cutting process, so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and (3) process control and product specification -- to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.

  15. [A comment on chiral thin layer chromatography].

    Science.gov (United States)

    Chen, Xuexian; Yuan, Liming

    2016-01-01

    In recent eight years, authors' group has repeated a lot of experiments of chiral thin layer chromatography coming from literature. From the practical opinion, we summarized that there are nine characteristics for chiral thin layer chromatography. Some progresses of chiral thin layer chromatography are reviewed, and the enantioselectivity of a commercial chiral thin layer plate is introduced. The study of vancomycin as the chiral selector in thin layer chromatography is also reported.

  16. The endometrium in assisted reproductive technology: How thin is thin?

    Directory of Open Access Journals (Sweden)

    Nalini Mahajan

    2016-01-01

    Full Text Available A thin endometrium is encountered infrequently (2.4% in assisted reproductive technology cycles. When it does occur it is a cause of concern as it is associated with lower implantation rate and pregnancy rate. Though pregnancies have been reported at 4 and 5 mm it is apparent that an endometrial thickness <6 mm is associated with a trend toward lower probability of pregnancy. Hormone replacement therapy – frozen embryo transfer (FET cycles appear to give better results due to an improvement in endometrial receptivity (ER. The etiology of thin endometrium plays a significant part in its receptivity. A number of treatments have been tried to improve endometrial growth, but none has been validated so far. Confirming ER of a thin endometrium by an ER array test before FET offers reassurance.

  17. Studies on Thin-shells and Thin-shell Wormholes

    CERN Document Server

    Övgün, Ali

    2016-01-01

    The study of traversable wormholes is very hot topic for the past 30 years. One of the best possible way to make traversable wormhole is using the thin-shells to cut and paste two spacetime which has tunnel from one region of space-time to another, through which a traveler might freely pass in wormhole throat. These geometries need an exotic matter which involves a stress-energy tensor that violates the null energy condition. However, this method can be used to minimize the amount of the exotic matter. The goal of this thesis study is to study on thin-shell and thin-shell wormholes in general relativity in 2+1 and 3+1 dimensions. We also investigate the stability of such objects.

  18. Thin-film metal hydrides.

    Science.gov (United States)

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  19. Thin-film solar cell

    OpenAIRE

    Metselaar, J.W.; Kuznetsov, V. I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with the light-collecting surface. In this context, the relationships 45 < alpha < 135 degrees and 45 < beta < 135 degrees apply. The invention also relates to a panel provided with a plurality of such t...

  20. Thin-film solar cell

    OpenAIRE

    Metselaar, J.W.; V. I. Kuznetsov

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with the light-collecting surface. In this context, the relationships 45 < alpha < 135 degrees and 45 < beta < 135 degrees apply. The invention also relates to a panel provided with a plurality of such t...

  1. Birefringent non-polarizing thin film design

    Institute of Scientific and Technical Information of China (English)

    QI Hongji; HONG Ruijin; HE Hongbo; SHAO Jianda; FAN Zhengxiu

    2005-01-01

    In this paper, 2×2 characteristic matrices of uniaxially anisotropic thin film for extraordinary and ordinary wave are deduced at oblique incidence. Furthermore, the reflectance and transmittance of thin films are calculated separately for two polarizations, which provide a new concept for designing non-polarizing thin films at oblique incidence. Besides, using the multilayer birefringent thin films, non-polarizing designs, such as beam splitter thin film at single wavelength, edge filter and antireflection thin film over visible spectral region are obtained at oblique incidence.

  2. Size effects in thin films

    CERN Document Server

    Tellier, CR; Siddall, G

    1982-01-01

    A complete and comprehensive study of transport phenomena in thin continuous metal films, this book reviews work carried out on external-surface and grain-boundary electron scattering and proposes new theoretical equations for transport properties of these films. It presents a complete theoretical view of the field, and considers imperfection and impurity effects.

  3. Thin Film Research. Volume 1

    Science.gov (United States)

    1985-05-30

    1928), and later by Coper, Frommer and Zocher (1931), followed. From that time, when thin film technology was in its early stages of evolution, we...personal communication (1983). Cau, Marcel, Comtes Rendues 186, 1293 (1928). Coper, H. K., Frommer , L., and Zocher, H., Ztschr. Elektrochem. 37, 571

  4. High Performance Thin Layer Chromatography.

    Science.gov (United States)

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  5. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, th...... and quantified. (C) 1999 The Society of Rheology. [S0148-6055(99)00103-0]....

  6. Observability inequalities for thin shells

    Institute of Scientific and Technical Information of China (English)

    柴树根; 姚鹏飞

    2003-01-01

    We consider the exact controllability problem from boundary for thin shells. Under some check-able geometric assumptions on the middle surface, we establish the observability inequalities via the Bochnertechnique for the Dirichlet control and the Neumann control problems. We also give several examples to verifythe geometric assumptions.

  7. High Performance Thin Layer Chromatography.

    Science.gov (United States)

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  8. Shear Thinning of Noncolloidal Suspensions

    Science.gov (United States)

    Vázquez-Quesada, Adolfo; Tanner, Roger I.; Ellero, Marco

    2016-09-01

    Shear thinning—a reduction in suspension viscosity with increasing shear rates—is understood to arise in colloidal systems from a decrease in the relative contribution of entropic forces. The shear-thinning phenomenon has also been often reported in experiments with noncolloidal systems at high volume fractions. However its origin is an open theoretical question and the behavior is difficult to reproduce in numerical simulations where shear thickening is typically observed instead. In this letter we propose a non-Newtonian model of interparticle lubrication forces to explain shear thinning in noncolloidal suspensions. We show that hidden shear-thinning effects of the suspending medium, which occur at shear rates orders of magnitude larger than the range investigated experimentally, lead to significant shear thinning of the overall suspension at much smaller shear rates. At high particle volume fractions the local shear rates experienced by the fluid situated in the narrow gaps between particles are much larger than the averaged shear rate of the whole suspension. This allows the suspending medium to probe its high-shear non-Newtonian regime and it means that the matrix fluid rheology must be considered over a wide range of shear rates.

  9. Thin film corrosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Raut, M.K.

    1980-06-01

    Corrosion of chromium/gold (Cr/Au) thin films during photolithography, prebond etching, and cleaning was evaluated. Vapors of chromium etchant, tantalum nitride etchant, and especially gold etchant were found to corrosively attack chromium/gold films. A palladium metal barrier between the gold and chromium layers was found to reduce the corrosion from gold etchant.

  10. Thin films under chemical stress

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  11. Ultra-thin chip technology and applications

    CERN Document Server

    2010-01-01

    Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.

  12. Thinning spatial point processes into Poisson processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Schoenberg, Frederic Paik

    2010-01-01

    are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and...

  13. Thinning spatial point processes into Poisson processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Schoenberg, Frederic Paik

    , and where one simulates backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and thus can...

  14. Selective epitaxial growth for YBCO thin films

    NARCIS (Netherlands)

    Damen, C.A.J.; Smilde, H.-J.H.; Blank, D.H.A.; Rogalla, H.

    1998-01-01

    A novel selective epitaxial growth (SEG) technique for (YBCO) thin films is presented. The method involves the deposition of a thin (about 10 nm) metal layer, in the desired pattern, on a substrate before the deposition of the superconducting thin film. During growth the metal reacts with the YBCO,

  15. Regulating Transplants

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Legislation to determine brain death is viewed as essential in controlling the organ transplant industry Organ transplant represents a very sensitive and complicated issue. Experts say the temporary administrative regulations recently promulgated by the Central Government are an important step, but relevant laws and regulations must follow. Among these, the

  16. Thin-Film Metamaterials called Sculptured Thin Films

    CERN Document Server

    Lakhtakia, Akhlesh

    2010-01-01

    Morphology and performance are conjointed attributes of metamaterials, of which sculptured thin films (STFs) are examples. STFs are assemblies of nanowires that can be fabricated from many different materials, typically via physical vapor deposition onto rotating substrates. The curvilinear--nanowire morphology of STFs is determined by the substrate motions during fabrication. The optical properties, especially, can be tailored by varying the morphology of STFs. In many cases prototype devices have been fabricated for various optical, thermal, chemical, and biological applications.

  17. Transfinite thin plate spline interpolation

    CERN Document Server

    Bejancu, Aurelian

    2009-01-01

    Duchon's method of thin plate splines defines a polyharmonic interpolant to scattered data values as the minimizer of a certain integral functional. For transfinite interpolation, i.e. interpolation of continuous data prescribed on curves or hypersurfaces, Kounchev has developed the method of polysplines, which are piecewise polyharmonic functions of fixed smoothness across the given hypersurfaces and satisfy some boundary conditions. Recently, Bejancu has introduced boundary conditions of Beppo Levi type to construct a semi-cardinal model for polyspline interpolation to data on an infinite set of parallel hyperplanes. The present paper proves that, for periodic data on a finite set of parallel hyperplanes, the polyspline interpolant satisfying Beppo Levi boundary conditions is in fact a thin plate spline, i.e. it minimizes a Duchon type functional.

  18. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  19. Thin film fuel cell electrodes.

    Science.gov (United States)

    Asher, W. J.; Batzold, J. S.

    1972-01-01

    Earlier work shows that fuel cell electrodes prepared by sputtering thin films of platinum on porous vycor substrates avoid diffusion limitations even at high current densities. The presented study shows that the specific activity of sputtered platinum is not unusually high. Performance limitations are found to be controlled by physical processes, even at low loadings. Catalyst activity is strongly influenced by platinum sputtering parameters, which seemingly change the surface area of the catalyst layer. The use of porous nickel as a substrate shows that pore size of the substrate is an important parameter. It is noted that electrode performance increases with increasing loading for catalyst layers up to two microns thick, thus showing the physical properties of the sputtered layer to be different from platinum foil. Electrode performance is also sensitive to changing differential pressure across the electrode. The application of sputtered catalyst layers to fuel cell matrices for the purpose of obtaining thin total cells appears feasible.

  20. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  1. Ultimately Thin Metasurface Wave Plates

    CERN Document Server

    Keene, David; Durach, Maxim

    2015-01-01

    Optical properties of a metasurface which can be considered a monolayer of two classical uniaxial metamaterials, parallel-plate and nanorod arrays, are investigated. It is shown that such metasurface acts as an ultimately thin sub-50 nm wave plate. This is achieved via an interplay of epsilon-near-zero and epsilon-near-pole behavior along different axes in the plane of the metasurface allowing for extremely rapid phase difference accumulation in very thin metasurface layers. These effects are shown to not be disrupted by non-locality and can be applied to the design of ultrathin wave plates, Pancharatnam-Berry phase optical elements and plasmon-carrying optical torque wrench devices.

  2. Fundamentals of thin solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yablonovitch, E. [Univ. of California, Los Angeles, CA (United States)

    1995-08-01

    It is now widely recognized that thin solar cells can present certain advantages for performance and cost. This is particularly the case when light trapping in the semiconductor film is incorporated, as compensation for the diminished single path thickness of the solar cell. In a solar cell thinner than a minority carrier diffusion length, the current collection is of course very easy. More importantly the concentration of an equivalent number of carriers in a thinner volume results in a higher Free Energy, or open circuit voltage. This extra Free Energy may be regarded as due to the concentration factor, just as it would be for photons, electrons, or for any chemical species. The final advantage of a thin solar cell is in the diminished material usage, a factor of considerable importance when we consider the material cost of the high quality semiconductors which we hope to employ.

  3. Methods and costs of thin-seam mining. Final report, 25 September 1977-24 January 1979. [Thin seam in association with a thick seam

    Energy Technology Data Exchange (ETDEWEB)

    Finch, T.E.; Fidler, E.L.

    1981-02-01

    This report defines the state of the art (circa 1978) in removing thin coal seams associated with vastly thicker seams found in the surface coal mines of the western United States. New techniques are evaluated and an innovative method and machine is proposed. Western states resource recovery regulations are addressed and representative mining operations are examined. Thin seam recovery is investigated through its effect on (1) overburden removal, (2) conventional seam extraction methods, and (3) innovative techniques. Equations and graphs are used to accommodate the variable stratigraphic positions in the mining sequence on which thin seams occur. Industrial concern and agency regulations provided the impetus for this study of total resource recovery. The results are a compendium of thin seam removal methods and costs. The work explains how the mining industry recovers thin coal seams in western surface mines where extremely thick seams naturally hold the most attention. It explains what new developments imply and where to look for new improvements and their probable adaptability.

  4. Fat and Thin Fisher Zeroes

    CERN Document Server

    Janke, W; Stathakopoulos, M

    2002-01-01

    We show that it is possible to determine the locus of Fisher zeroes in the thermodynamic limit for the Ising model on planar (``fat'') phi4 random graphs and their dual quadrangulations by matching up the real part of the high- and low-temperature branches of the expression for the free energy. Similar methods work for the mean-field model on generic, ``thin'' graphs. Series expansions are very easy to obtain for such random graph Ising models.

  5. Thin Film Deposition Techniques (PVD)

    Science.gov (United States)

    Steinbeiss, E.

    The most interesting materials for spin electronic devices are thin films of magnetic transition metals and magnetic perovskites, mainly the doped La-manganites [1] as well as several oxides and metals for passivating and contacting the magnetic films. The most suitable methods for the preparation of such films are the physical vapor deposition methods (PVD). Therefore this report will be restricted to these deposition methods.

  6. Thinning increases climatic resilience of red pine

    Science.gov (United States)

    Magruder, Matthew; Chhin, Sophan; Palik, Brian; Bradford, John B.

    2013-01-01

    Forest management techniques such as intermediate stand-tending practices (e.g., thinning) can promote climatic resiliency in forest stands by moderating tree competition. Residual trees gain increased access to environmental resources (i.e., soil moisture, light), which in turn has the potential to buffer trees from stressful climatic conditions. The influences of climate (temperature and precipitation) and forest management (thinning method and intensity) on the productivity of red pine (Pinus resinosa Ait.) in Michigan were examined to assess whether repeated thinning treatments were able to increase climatic resiliency (i.e., maintaining productivity and reduced sensitivity to climatic stress). The cumulative productivity of each thinning treatment was determined, and it was found that thinning from below to a residual basal area of 14 m2·ha−1 produced the largest average tree size but also the second lowest overall biomass per acre. On the other hand, the uncut control and the thinning from above to a residual basal area of 28 m2·ha−1 produced the smallest average tree size but also the greatest overall biomass per acre. Dendrochronological methods were used to quantify sensitivity of annual radial growth to monthly and seasonal climatic factors for each thinning treatment type. Climatic sensitivity was influenced by thinning method (i.e., thinning from below decreased sensitivity to climatic stress more than thinning from above) and by thinning intensity (i.e., more intense thinning led to a lower climatic sensitivity). Overall, thinning from below to a residual basal area of 21 m2·ha−1 represented a potentially beneficial compromise to maximize tree size, biomass per acre, and reduced sensitivity to climatic stress, and, thus, the highest level of climatic resilience.

  7. New thin materials for electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Schwartzberg, Adam

    2012-02-01

    The work described in this report is from an Early Career LDRD to develop and investigate novel thin film organic conductors with drastically improved electronic properties over the current state of the art. In collaboration with the Molecular Foundry at Lawrence Berkeley National Laboratory a Langmuir-Blodgett trough (LB) was built from scavenged parts and added to a scanning Raman microscope at LBNL. First order thin peptoid film samples were fabricated for testing Raman and photoluminescence imagining techniques. Tests showed that a single peptoid sheet can be successfully imaged using confocal Raman spectroscopy and a peptoid sheet can be successfully imaged using near-field photoluminescence at a resolution less than 70 nm. These results have helped position Sandia for advances in this area of MOF film creation. In collaboration with the Molecular Foundry at Lawrence Berkeley National Laboratory, a Langmuir-Blodgett trough (LB) was built and added to a scanning Raman microscope at LBNL. Thin peptoid film samples were fabricated for testing Raman and photoluminescence imagining techniques. Tests showed that a single peptoid sheet can be successfully imaged using confocal Raman spectroscopy, and a peptoid sheet can be successfully imaged using near-field photoluminescence at a resolution less than 70 nm. These results have positioned Sandia for advance in this area of MOF film creation. The interactions with LBNL also led to award of two user projects at the Molecular Foundry at LBNL led by current Sandia staff and the appointment of a current Sandia staff to the Molecular Foundry User Executive Committee.

  8. Thin Wall Austempered Ductile Iron (TWADI

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-07-01

    Full Text Available In this paper the analysis of thin walled castings made of ductile iron is considered. It is shown that thin wall austempered ductile iron can be obtained by means of short-term heat treatment of thin wall castings without addition of alloying elements. Metallographic examinations of 2 mm thin walled castings along with casting with thicker wall thickness (20x28 mm after different austempring conditions are presented. It has been proved that short-term heat treatment amounted 20 minutes of austenitizing at 880 oC followed by holding at 400 oC for 5 minutes causes ausferrite matrix in 2 mm wall thickness castings, while casting with thicker wall thickness remain untransformed and martensite is still present in a matrix. Finally there are shown that thin wall ductile iron is an excellent base material for austempering heat treatments. As a result high mechanical properties received in thin wall plates made of austempered ductile iron.

  9. NORM regulations

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P. [ed.

    1997-02-01

    The author reviews the question of regulation for naturally occuring radioactive material (NORM), and the factors that have made this a more prominent concern today. Past practices have been very relaxed, and have often involved very poor records, the involvment of contractors, and the disposition of contaminated equipment back into commercial service. The rationale behind the establishment of regulations is to provide worker protection, to exempt low risk materials, to aid in scrap recycling, to provide direction for remediation and to examine disposal options. The author reviews existing regulations at federal and state levels, impending legislation, and touches on the issue of site remediation and potential liabilities affecting the release of sites contaminated by NORM.

  10. Thin-film crystalline silicon solar cells

    CERN Document Server

    Brendel, Rolf

    2011-01-01

    This introduction to the physics of silicon solar cells focuses on thin cells, while reviewing and discussing the current status of the important technology. An analysis of the spectral quantum efficiency of thin solar cells is given as well as a full set of analytical models. This is the first comprehensive treatment of light trapping techniques for the enhancement of the optical absorption in thin silicon films.

  11. The effect of different complexing agents on the properties of zinc sulfide thin films deposited from aqueous solutions

    OpenAIRE

    2016-01-01

    The zinc sulfide (ZnS) thin films were prepared on glass substrates by chemical bath deposition using the aqueous solutions of zinc chloride, thiourea, pH regulator and complexing agent (ammonia and hydrazine hydrate, trisodium citrate or sodium hydroxide). The calculations of boundary conditions for formation of zinc sulfide and zinc hydroxide were made at various zinc salt concentrations with different complexing agents. The structural, morphology and optical properties of the ZnS thin film...

  12. Thin Wall Austempered Ductile Iron (TWADI)

    OpenAIRE

    M. Górny; E. Fraś

    2009-01-01

    In this paper the analysis of thin walled castings made of ductile iron is considered. It is shown that thin wall austempered ductile iron can be obtained by means of short-term heat treatment of thin wall castings without addition of alloying elements. Metallographic examinations of 2 mm thin walled castings along with casting with thicker wall thickness (20x28 mm) after different austempring conditions are presented. It has been proved that short-term heat treatment amounted 20 minutes of a...

  13. Beryllium thin films for resistor applications

    Science.gov (United States)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  14. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  15. Drying of thin colloidal films

    Science.gov (United States)

    Routh, Alexander F.

    2013-04-01

    When thin films of colloidal fluids are dried, a range of transitions are observed and the final film profile is found to depend on the processes that occur during the drying step. This article describes the drying process, initially concentrating on the various transitions. Particles are seen to initially consolidate at the edge of a drying droplet, the so-called coffee-ring effect. Flow is seen to be from the centre of the drop towards the edge and a front of close-packed particles passes horizontally across the film. Just behind the particle front the now solid film often displays cracks and finally the film is observed to de-wet. These various transitions are explained, with particular reference to the capillary pressure which forms in the solidified region of the film. The reasons for cracking in thin films is explored as well as various methods to minimize its effect. Methods to obtain stratified coatings through a single application are considered for a one-dimensional drying problem and this is then extended to two-dimensional films. Different evaporative models are described, including the physical reason for enhanced evaporation at the edge of droplets. The various scenarios when evaporation is found to be uniform across a drying film are then explained. Finally different experimental techniques for examining the drying step are mentioned and the article ends with suggested areas that warrant further study.

  16. Flexible thin film magnetoimpedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Fernández, E. [BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Svalov, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Burgoa Beitia, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); García-Arribas, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain)

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti]{sub 3}/Cu/[FeNi/Ti]{sub 3} films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  17. Exome sequencing reveals a nebulin nonsense mutation in a dog model of nemaline myopathy.

    Science.gov (United States)

    Evans, Jacquelyn M; Cox, Melissa L; Huska, Jonathan; Li, Frank; Gaitero, Luis; Guo, Ling T; Casal, Margaret L; Granzier, Henk L; Shelton, G Diane; Clark, Leigh Anne

    2016-10-01

    Nemaline myopathy (NM) is a congenital muscle disorder associated with muscle weakness, hypotonia, and rod bodies in the skeletal muscle fibers. Mutations in 10 genes have been implicated in human NM, but spontaneous cases in dogs have not been genetically characterized. We identified a novel recessive myopathy in a family of line-bred American bulldogs (ABDs); rod bodies in muscle biopsies established this as NM. Using SNP profiles from the nuclear family, we evaluated inheritance patterns at candidate loci and prioritized TNNT1 and NEB for further investigation. Whole exome sequencing of the dam, two affected littermates, and an unaffected littermate revealed a nonsense mutation in NEB (g.52734272 C>A, S8042X). Whole tissue gel electrophoresis and western blots confirmed a lack of full-length NEB in affected tissues, suggesting nonsense-mediated decay. The pathogenic variant was absent from 120 dogs of 24 other breeds and 100 unrelated ABDs, suggesting that it occurred recently and may be private to the family. This study presents the first molecularly characterized large animal model of NM, which could provide new opportunities for therapeutic approaches.

  18. Interleukin-7 Plasma Levels in Human Differentiate Anorexia Nervosa, Constitutional Thinness and Healthy Obesity

    Science.gov (United States)

    Germain, Natacha; Viltart, Odile; Loyens, Anne; Bruchet, Céline; Nadin, Katia; Wolowczuk, Isabelle; Estour, Bruno; Galusca, Bogdan

    2016-01-01

    Introduction Interleukin-7 (IL-7) is a cytokine involved in energy homeostasis as demonstrated in rodents. Anorexia nervosa is characterized by restrained eating behavior despite adaptive orexigenic regulation profile including high ghrelin plasma levels. Constitutional thinness is a physiological condition of resistance to weight gain with physiological anorexigenic profile including high Peptide YY plasma level. Healthy obesity can be considered as a physiological state of resistance to weight loss with opposite appetite regulating profile to constitutional thinness including low Peptide YY plasma level. No studies in IL-7 are yet available in those populations. Therefore we evaluated circadian plasma levels of IL-7 in anorexia nervosa compared to constitutional thinness, healthy obese and control females. Materials and Methods 10 restrictive-type anorexia nervosa women, 5 bingeing/purging anorexia nervosa woman, 5 recovered restrictive anorexia nervosa women, 4 bulimic females, 10 constitutional thinness women, 7 healthy obese females, and 10 normal weight women controls were enrolled in this cross-sectional study, performed in endocrinology unit and academic laboratory. Twelve-point circadian profiles of plasma IL-7 levels were measured in each subject. Results 24h mean IL-7 plasma levels (pg/ml, mean±SEM) were decreased in restrictive-type anorexia nervosa (123.4±14.4, pobese patients (51±3.2, pobesity, with low IL-7, is once again in mirror image of constitutional thinness with normal high IL-7. PMID:27611669

  19. Thin Filament Structure and the Steric Blocking Model.

    Science.gov (United States)

    Lehman, William

    2016-03-15

    By interacting with the troponin-tropomyosin complex on myofibrillar thin filaments, Ca2+ and myosin govern the regulatory switching processes influencing contractile activity of mammalian cardiac and skeletal muscles. A possible explanation of the roles played by Ca2+ and myosin emerged in the early 1970s when a compelling "steric model" began to gain traction as a likely mechanism accounting for muscle regulation. In its most simple form, the model holds that, under the control of Ca2+ binding to troponin and myosin binding to actin, tropomyosin strands running along thin filaments either block myosin-binding sites on actin when muscles are relaxed or move away from them when muscles are activated. Evidence for the steric model was initially based on interpretation of subtle changes observed in X-ray fiber diffraction patterns of intact skeletal muscle preparations. Over the past 25 years, electron microscopy coupled with three-dimensional reconstruction directly resolved thin filament organization under many experimental conditions and at increasingly higher resolution. At low-Ca2+, tropomyosin was shown to occupy a "blocked-state" position on the filament, and switched-on in a two-step process, involving first a movement of tropomyosin away from the majority of the myosin-binding site as Ca2+ binds to troponin and then a further movement to fully expose the site when small numbers of myosin heads bind to actin. In this contribution, basic information on Ca2+-regulation of muscle contraction is provided. A description is then given relating the voyage of discovery taken to arrive at the present understanding of the steric regulatory model.

  20. Discontinious Galerkin formulations for thin bending problems

    NARCIS (Netherlands)

    Nguyen, T.D.

    2008-01-01

    A structural thin bending problem is essentially associated with a fourth-order partial differential equation. Within the finite element framework, the numerical solution of thin bending problems demands the use of C^1 continuous shape functions. Elements using these functions are challenging and di

  1. Christhin: Quantitative Analysis of Thin Layer Chromatography

    CERN Document Server

    Barchiesi, Maximiliano; Renaudo, Carlos; Rossi, Pablo; Pramparo, María de Carmen; Nepote, Valeria; Grosso, Nelson Ruben; Gayol, María Fernanda

    2012-01-01

    Manual for Christhin 0.1.36 Christhin (Chromatography Riser Thin) is software developed for the quantitative analysis of data obtained from thin-layer chromatographic techniques (TLC). Once installed on your computer, the program is very easy to use, and provides data quickly and accurately. This manual describes the program, and reading should be enough to use it properly.

  2. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...... layers, Fracture mechanics, Crack closure, Steady state crack propagation....

  3. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...

  4. Thin disk lasers: history and prospects

    Science.gov (United States)

    Speiser, Jochen

    2016-04-01

    During the early 1990s, collaboration between the German Aerospace Center and the University of Stuttgart started to work on the Thin Disk concept. The core idea behind the thin disk design is the use of a thin, disk-shaped active medium that is cooled through one of the flat faces of the disk. This ensures a large surface-to-volume ratio and therefore provides very efficient thermal management. Today, the thin disk concept is used in various commercial lasers - ranging from compact, efficient low power systems to multi-kW lasers, including cw lasers and also pulsed (femtosecond to nanosecond) oscillators and amplifiers. The whole development of the Thin Disk laser was and will be accompanied by numerical modeling and optimization of the thermal and thermo-mechanic behavior of the disk and also the heat sink structure, mostly based on finite element models. For further increasing the energy and efficiency of pulsed Thin Disk lasers, the effects of amplified spontaneous emission (ASE) are a core issue. Actual efforts are oriented towards short pulse and ultra-short pulse amplifiers with (multi-)kW average power or Joule-class Thin Disk amplifiers, but also on new designs for cw thin disk MOPA designs.

  5. Delamination of Compressed thin Layers at Corners

    DEFF Research Database (Denmark)

    Clausen, Johan; Jensen, Henrik Myhre; Sørensen, Kim Dalsten

    2008-01-01

    An analysis of delamination for a thin elastic film, attached to a substrate with a corner, is carried out. The film is in compression and the analysis is performed by combining results from fracture mechanics and the theory of thin shells. The results show a very strong dependency of the angle...

  6. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  7. Neutron activation analysis of thin orange pottery

    Energy Technology Data Exchange (ETDEWEB)

    Harbottle, G; Sayre, E V; Abascal, R

    1976-01-01

    The evidence thus far obtained supports the idea of ''Thin Orange'' ware, typical of classic Teotihuacan culture, easily identifiable petrographically or chemically, not necessarily made at Teotihuacan itself but widely traded, and ''thin, orange'' pottery, fabricated in many other places, and perhaps at other times as well.

  8. Reconstitution of the muscle thin filament from recombinant troponin components and the native thin filaments.

    Science.gov (United States)

    Matsumoto, Fumiko; Deshimaru, Shungo; Oda, Toshiro; Fujiwara, Satoru

    2010-04-15

    We have developed a technique by which muscle thin filaments are reconstituted from the recombinant troponin components and the native thin filaments. By this technique, the reconstituted troponin complex is exchanged into the native thin filaments in the presence of 20% glycerol and 0.3M KCl at pH 6.2. More than 90% of endogenous troponin complex was replaced with the recombinant troponin complex. Structural integrity and Ca(2+) sensitivity of the reconstituted thin filament prepared by this technique was confirmed by X-ray fiber diffraction measurements and the thin filament-activated myosin subfragment 1 ATPase measurements, respectively.

  9. Spin glasses on thin graphs

    CERN Document Server

    Baillie, C F; Johnston, D A; Plechác, P

    1995-01-01

    In a recent paper we found strong evidence from simulations that the Ising antiferromagnet on ``thin'' random graphs - Feynman diagrams - displayed a mean-field spin glass transition. The intrinsic interest of considering such random graphs is that they give mean field results without long range interactions or the drawbacks, arising from boundary problems, of the Bethe lattice. In this paper we reprise the saddle point calculations for the Ising and Potts ferromagnet, antiferromagnet and spin glass on Feynman diagrams. We use standard results from bifurcation theory that enable us to treat an arbitrary number of replicas and any quenched bond distribution. We note the agreement between the ferromagnetic and spin glass transition temperatures thus calculated and those derived by analogy with the Bethe lattice, or in previous replica calculations. We then investigate numerically spin glasses with a plus or minus J bond distribution fo rthe Ising and Q=3,3,10,50 state Potts models, paying particular attention t...

  10. Ising spins on thin graphs

    CERN Document Server

    Baillie, C F; Kownacki, J P

    1994-01-01

    The Ising model on ``thin'' graphs (standard Feynman diagrams) displays several interesting properties. For ferromagnetic couplings there is a mean field phase transition at the corresponding Bethe lattice transition point. For antiferromagnetic couplings the replica trick gives some evidence for a spin glass phase. In this paper we investigate both the ferromagnetic and antiferromagnetic models with the aid of simulations. We confirm the Bethe lattice values of the critical points for the ferromagnetic model on \\phi^3 and \\phi^4 graphs and examine the putative spin glass phase in the antiferromagnetic model by looking at the overlap between replicas in a quenched ensemble of graphs. We also compare the Ising results with those for higher state Potts models and Ising models on ``fat'' graphs, such as those used in 2D gravity simulations.

  11. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  12. BDS thin film damage competition

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  13. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  14. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  15. HTML thin client and transactions

    CERN Document Server

    Touchette, J F

    1999-01-01

    When writing applications for thin clients such as Web browsers, you face several challenges that do not exist with fat-client applications written in Visual Basic, Delphi, or Java. For one thing, your development tools do not include facilities for automatically building reliable, nonrepeatable transactions into applications. Consequently, you must devise your own techniques to prevent users from transmitting duplicate transactions. The author explains how to implement reliable, nonrepeatable transactions using a technique that is applicable to any Java Server Development Kit based architecture. Although the examples presented are based on the IBM WebSphere 2.1 Application Server, they do not make use of any IBM WebSphere extensions. In short, the concepts presented here can be implemented in Perl CGI and ASP scripts, and the sample code has been tested with JDK 1.1.6 and 1.2. (0 refs).

  16. TEC – Thin Environmental Cladding

    Directory of Open Access Journals (Sweden)

    Alan Tomasi

    2015-05-01

    Full Text Available Permasteelisa Group developed with Fiberline Composites a new curtain wall system (Thin Environmental Cladding or TEC, making use of pultruded GFRP (Glass Fiber Reinforced Polymer material instead of traditional aluminum. Main advantages using GFRP instead of aluminum are the increased thermal performance and the limited environmental impact. Selling point of the selected GFRP resin is the light transmission, which results in pultruded profiles that allow the visible light to pass through them, creating great aesthetical effects. However, GFRP components present also weaknesses, such as high acoustic transmittance (due to the reduced weight and anisotropy of the material, low stiffness if compared with aluminum (resulting in higher facade deflection and sensible fire behavior (as combustible material. This paper will describe the design of the TEC-facade, highlighting the functional role of glass within the facade concept with regards to its acoustic, structural, aesthetics and fire behavior.

  17. Strain engineering on structures and properties in ferroelectric thin films with perovskite structures

    Directory of Open Access Journals (Sweden)

    TANG Yanxue

    2015-08-01

    Full Text Available Ferroelectric thin films possess ferroelectric,piezoelectric,pyroelectric and photovoltaic properties,which have bright prospect for transducers,actuators,sensors,energy harvesting and solar cells.The properties of ferroelectric films are closely related to their strain due to films constrained by substrates.Therefore,the key to improve the properties of ferroelectric films is how to use substrates to regulate and control their strain,and then regulate their polarized state.This paper review the research progress of regulating the properties of ferroelectric films with perovskite structure by strain engineering and the problems needed to be resolved.

  18. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  19. A monolithic thin film electrochromic window

    Energy Technology Data Exchange (ETDEWEB)

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. (Tufts Univ., Medford, MA (United States). Electro-Optics Technology Center); Wei, G. (Mobil Solar Energy Corp., Billerica, MA (United States)); Yu, P.C. (PPG Industries, Inc., Monroeville, PA (United States))

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  20. A monolithic thin film electrochromic window

    Energy Technology Data Exchange (ETDEWEB)

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. [Tufts Univ., Medford, MA (United States). Electro-Optics Technology Center; Wei, G. [Mobil Solar Energy Corp., Billerica, MA (United States); Yu, P.C. [PPG Industries, Inc., Monroeville, PA (United States)

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  1. Magnetostrictive thin films for microwave spintronics.

    Science.gov (United States)

    Parkes, D E; Shelford, L R; Wadley, P; Holý, V; Wang, M; Hindmarch, A T; van der Laan, G; Campion, R P; Edmonds, K W; Cavill, S A; Rushforth, A W

    2013-01-01

    Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.

  2. Squirming through shear-thinning fluids

    CERN Document Server

    Datt, Charu; Elfring, Gwynn J; Pak, On Shun

    2015-01-01

    Many microorganisms find themselves immersed in fluids displaying non-Newtonian rheological properties such as viscoelasticity and shear-thinning viscosity. The effects of viscoelasticity on swimming at low Reynolds numbers have already received considerable attention, but much less is known about swimming in shear-thinning fluids. A general understanding of the fundamental question of how shear-thinning rheology influences swimming still remains elusive. To probe this question further, we study a spherical squirmer in a shear-thinning fluid using a combination of asymptotic analysis and numerical simulations. Shear-thinning rheology is found to affect a squirming swimmer in nontrivial and surprising ways; we predict and show instances of both faster and slower swimming depending on the surface actuation of the squirmer. We also illustrate that while a drag and thrust decomposition can provide insights into swimming in Newtonian fluids, extending this intuition to problems in complex media can prove problemat...

  3. Thinning in artificially regenerated young beech stands

    Directory of Open Access Journals (Sweden)

    Novák Jiří

    2015-12-01

    Full Text Available Although beech stands are usually regenerated naturally, an area of up to 5,000 ha year−1 is artificially regenerated by beech in the Czech Republic annually. Unfortunately, these stands often showed insufficient stand density and, consequently, lower quality of stems. Therefore, thinning methods developed for naturally regenerated beech stands are applicable with difficulties. The paper evaluates the data from two thinning experiments established in young artificially regenerated beech stands located in different growing conditions. In both experiments, thinning resulted in the lower amount of salvage cut in following years. Positive effect of thinning on periodic stand basal area increment and on periodic diameter increment of dominant trees was found in the beech stand located at middle elevations. On the other hand, thinning effects in mountain conditions were negligible. Thinning focusing on future stand quality cannot be commonly applied in artificially regenerated beech stands because of their worse initial quality and lower density. However, these stands show good growth and response to thinning, hence their management can be focused on maximising beech wood production.

  4. Near-field optical thin microcavity theory

    Science.gov (United States)

    Wu, Jiu Hui; Hou, Jiejie

    2016-01-01

    The thin microcavity theory for near-field optics is proposed in this study. By applying the power flow theorem and the variable theorem,the bi-harmonic differential governing equation for electromagnetic field of a three-dimensional thin microcavity is derived for the first time. Then by using the Hankel transform, this governing equation is solved exactly and all the electromagnetic components inside and outside the microcavity can be obtained accurately. According to the above theory, the near-field optical diffraction from a subwavelength aperture embedded in a thin conducting film is investigated, and numerical computations are performed to illustrate the edge effect by an enhancement factor of 1.8 and the depolarization phenomenon of the near-field transmission in terms of the distance from the film surface. This thin microcavity theory is verified by the good agreement between our results and those in the previous literatures. The thin microcavity theory presented in the study should be useful in the possible applications of the thin microcavities in near-field optics and thin-film optics.

  5. Instrument platforms for thin-layer chromatography.

    Science.gov (United States)

    Bernard-Savary, Pierre; Poole, Colin F

    2015-11-20

    High performance column and thin-layer chromatography are both instrumental techniques but differ in that column chromatography requires a fully integrated instrument platform with high pressure capability while for thin-layer chromatography separate devices are used for each unit operation, usually at or close to atmospheric pressure, and afford higher flexibility supporting on-line or off-line operation. The unit operations of thin-layer chromatography are defined as sample application, development and evaluation with derivatization as an optional step. The diversity of equipment for each operation contributes to the flexibility of analysis by thin-layer chromatography and supports manual, semi-automated or full-automation of the separation process. Instrument platforms are more than a convenience as they affect performance, repeatability, sample detectability, and time management. The current trend in thin-layer chromatography is to make the unit operations independent of the user so that analysts can perform other tasks while each step is performed. In addition, in thin-layer chromatography it is general practice to separate several samples simultaneously, and instrument platforms are required to accommodate this feature. In this article, we review contemporary instrumentation employed in thin-layer chromatography for sample application, development, derivatization, photodocumentation, densitometric evaluation, and hyphenation with spectroscopic detectors with an emphasis on the variety and performance of commercially available systems. Some suggestions for best practices and avoidance of common mistakes are included. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Fillability of Thin-Wall Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  7. Raman spectroscopy of thin films

    Science.gov (United States)

    Burgess, James Shaw

    Raman spectroscopy was used in conjunction with x-ray diffraction and x-ray photoelectron spectroscopy to elucidate structural and compositional information on a variety of samples. Raman was used on the unique La 2NiMnO6 mixed double perovskite which is a member of the LaMnO3 family of perovskites and has multiferroic properties. Raman was also used on nanodiamond films as well as some boron-doped carbon compounds. Finally, Raman was used to identify metal-dendrimer bonds that have previously been overlooked. Vibrational modes for La2NiMnO6 were ascribed by comparing spectra with that for LaMnO3 bulk and thin film spectra. The two most prominent modes were labeled as an asymmetric stretch (A g) centered around 535 cm-1 and a symmetric stretch (B g) centered around 678 cm. The heteroepitaxial quality of La2NiMnO 6 films on SrTiO3 (100) and LaAlO3 (100) substrates were examined using the Raman microscope by way of depth profile experiments and by varying the thickness of the films. It was found that thin films (10 nm) had much greater strain on the LaAlO3 substrate than on the SrTiO3 substrate by examining the shifts of the Ag and the Bg modes from their bulk positions. Changes in the unit cell owing to the presence of oxygen defects were also monitored using Raman spectroscopy. It was found that the Ag and Bg modes shifted between samples formed with different oxygen partial pressures. These shifts could be correlated to changes in the symmetry of the manganese centers due to oxygen defects. Raman spectroscopy was used to examine the structural and compositional characteristics of carbon materials. Nanocrystalline diamond coated cutting tools were examined using the Raman Microscope. Impact, abrasion, and depth profile experiments indicated that delamination was the primary cause of film failure in these systems. Boron doped material of interest as catalyst supports were also examined. Monitoring of the G-mode and intensities of the D- and G-modes indicated that

  8. A review of CANDU feeder wall thinning

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Han Sub [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Flow Accelerated Corrosion is an active degradation mechanism of CANDU feeder. The tight bend downstream to Grayloc weld connection, close to reactor face, suffers significant wall thinning by FAC. Extensive in-service inspection of feeder wall thinning is very difficult because of the intense radiation field, complex geometry, and space restrictions. Development of a knowledge-based inspection program is important in order to guarantee that adequate wall thickness is maintained throughout the whole life of feeder. Research results and plant experiences are reviewed, and the plant inspection databases from Wolsong Units One to Four are analyzed in order to support developing such a knowledge-based inspection program. The initial thickness before wall thinning is highly non-uniform because of bending during manufacturing stage, and the thinning rate is non-uniform because of the mass transfer coefficient distributed non-uniformly depending on local hydraulics. It is obvious that the knowledge-based feeder inspection program should focus on both fastest thinning locations and thinnest locations. The feeder wall thinning rate is found to be correlated proportionately with QV of each channel. A statistical model is proposed to assess the remaining life of each feeder using the QV correlation and the measured thicknesses. W-1 feeder suffered significant thinning so that the shortest remaining life barely exceeded one year at the end of operation before replacement. W-2 feeder showed far slower thinning than W-1 feeder despite the faster coolant flow. It is believed that slower thinning in W-2 is because of higher chromium content in the carbon steel feeder material. The average Cr content of W-2 feeder is 0.051%, while that value is 0.02% for W-1 feeder. It is to be noted that FAC is reduced substantially even though the Cr content of W-2 feeder is still very low

  9. Carbon nanotube based transparent conductive thin films.

    Science.gov (United States)

    Yu, X; Rajamani, R; Stelson, K A; Cui, T

    2006-07-01

    Carbon nanotube (CNT) based optically transparent and electrically conductive thin films are fabricated on plastic substrates in this study. Single-walled carbon nanotubes (SWNTs) are chemically treated with a mixture of concentrated sulfuric acid and nitric acid before being dispersed in aqueous surfactant-contained solutions. SWNT thin films are prepared from the stable SWNT solutions using wet coating techniques. The 100 nm thick SWNT thin film exhibits a surface resistivity of 6 kohms/square nanometer with an average transmittance of 88% on the visible light range, which is three times better than the films prepared from the high purity as-received SWNTs.

  10. Stability of generic cylindrical thin shell wormholes

    CERN Document Server

    Mazharimousavi, S Habib; Amirabi, Z

    2014-01-01

    We revisit the stability analysis of cylindrical thin shell wormholes which have been studied in literature so far. Our approach is more systematic and in parallel to the method which is used in spherically symmetric thin shell wormholes. The stability condition is summarized as the positivity of the second derivative of an effective potential at the equilibrium radius, i.e. $V^{\\prime \\prime}\\left(a_{0}\\right) >0$. This may serve as the master equation in all stability problems for the cylindrical thin-shell wormholes.

  11. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  12. TEC – Thin Environmental Cladding

    Directory of Open Access Journals (Sweden)

    Alan Tomasi

    2014-06-01

    Full Text Available Corresponding author: Alan Tomasi, Group R&D Project Manager, Permasteelisa S.p.A., viale E. Mattei 21/23 | 31029 Vittorio Veneto, Treviso, Italy. Tel.: +39 0438 505207; E-mail: a.tomasi@permasteelisagroup.com; www.permasteelisagroup.com Permasteelisa Group developed with Fiberline Composites a new curtain wall system (Thin Environmental Cladding or TEC, making use of pultruded GFRP (Glass Fiber Reinforced Polymer material instead of traditional aluminum. Main advantages using GFRP instead of aluminum are the increased thermal performance and the limited environmental impact. Selling point of the selected GFRP resin is the light transmission, which results in pultruded profiles that allow the visible light to pass through them, creating great aesthetical effects. However, GFRP components present also weaknesses, such as high acoustic transmittance (due to the reduced weight and anisotropy of the material, low stiffness if compared with aluminum (resulting in higher facade deflection and sensible fire behavior (as combustible material. This paper will describe the design of the TEC-facade, highlighting the functional role of glass within the facade concept with regards to its acoustic, structural, aesthetics and fire behavior.

  13. Studies in thin film flows

    CERN Document Server

    McKinley, I S

    2000-01-01

    the general case of non-zero capillary number numerically. Using the lubrication approximation to the Navier-Stokes equations we investigate the evolution and stability of a thin film of incompressible Newtonian fluid on a planar substrate subjected to a jet of air blowing normally to the substrate. For the simple model of the air jet we adopt, the initially axisymmetric problems we study are identical to those of a drop spreading on a turntable rotating at constant angular velocity (the simplest model for spin coating). We consider both drops without a dry patch (referred to as 'non-annular') and drops with a dry patch at their centre (referred to as 'annular'). First, both symmetric two-dimensional and axisymmetric three-dimensional drops are considered in the quasi-static limit of small capillary number. The evolution of both non-annular and annular drops and the stability of equilibrium solutions to small perturbations with zero wavenumber are determined. Using a specially developed finite-difference code...

  14. Reconnection in thin current sheets

    Science.gov (United States)

    Tenerani, Anna; Velli, Marco; Pucci, Fulvia; Rappazzo, A. F.

    2016-05-01

    It has been widely believed that reconnection is the underlying mechanism of many explosive processes observed both in nature and laboratory, but the question of reconnection speed and initial trigger have remained mysterious. How is fast magnetic energy release triggered in high Lundquist (S) and Reynolds (R) number plasmas?It has been shown that a tearing mode instability can grow on an ideal timescale, i.e., independent from the the Lundquist number, once the current sheet thickness becomes thin enough, or rather the inverse aspect ratio a/L reaches a scale a/L~S-1/3. As such, the latter provides a natural, critical threshold for current sheets that can be formed in nature before they disrupt in a few Alfvén time units. Here we discuss the transition to fast reconnection extended to simple viscous and kinetic models and we propose a possible scenario for the transition to explosive reconnection in high-Lundquist number plasmas, that we support with fully nonlinear numerical MHD simulations of a collapsing current sheet.

  15. De Sitter thin brane model

    Science.gov (United States)

    Nishi, Masato

    2016-07-01

    We discuss the large mass hierarchy problem in a braneworld model which represents our acceleratively expanding universe. The Randall-Sundrum (RS) model with one extra warped dimension added to a flat four-dimensional space-time cannot describe our expanding universe. Here, we study instead the de Sitter thin brane model. This is described by the same action as that for the RS model, but the four-dimensional space-time on the branes is dS_4. We study the model for both the cases of positive five-dimensional cosmological constant Λ_5 and a negative one. In the positive Λ_5 case, the four-dimensional large hierarchy necessitates a five-dimensional large hierarchy, and we cannot get a natural explanation. On the other hand, in the negative Λ_5 case, the large hierarchy is naturally realized in the five-dimensional theory in the same manner as in the RS model. Moreover, another large hierarchy between the Hubble parameter and the Planck scale is realized by the O(10^2) hierarchy of the five-dimensional quantities. Finally, we find that the lightest mass of the massive Kaluza-Klein modes and the intervals of the mass spectrum are of order 10^2 GeV, which are the same as in the RS case and do not depend on the value of the Hubble parameter.

  16. Ultra-thin multilayer capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy Jerome; Monson, Todd C.

    2009-06-01

    The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report details some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.

  17. de Sitter Thin Brane Model

    CERN Document Server

    Nishi, Masato

    2015-01-01

    We discuss the large mass hierarchy problem in a braneworld model which represents our acceleratively expanding universe. The RS model with warped one extra dimension added to flat 4-dimensional space-time cannot describe our expanding universe. Here, we study instead the de Sitter thin brane model. This is described by the same action as that for the RS model, but the 4-dimensional space-time on the branes is $\\rm dS_4$. We study the model for both the cases of positive 5-dimensional cosmological constant $\\Lambda_5$ and negative one. In the positive $\\Lambda_5$ case, the 4-dimensional large hierarchy necessitates a 5-dimensional large hierarchy, and we cannot get a natural explanation. On the other hand, in the negative $\\Lambda_5$ case, the large hierarchy is naturally realized in the 5-dimensional theory in the same manner as in the RS model. Moreover, another large hierarchy between the Hubble parameter and the Planck scale is realized by the $\\cal{O}\\rm (10^2)$ hierarchy of the 5-dimensional quantities....

  18. Photoconductivity of thin organic films

    Science.gov (United States)

    Tkachenko, Nikolai V.; Chukharev, Vladimir; Kaplas, Petra; Tolkki, Antti; Efimov, Alexander; Haring, Kimmo; Viheriälä, Jukka; Niemi, Tapio; Lemmetyinen, Helge

    2010-04-01

    Thin organic films were deposited on silicon oxide surfaces with golden interdigitated electrodes (interelectrode gap was 2 μm), and the film resistivities were measured in dark and under white light illumination. The compounds selected for the measurements include molecules widely used in solar cell applications, such as polythiophene ( PHT), fullerene ( C60), pyrelene tetracarboxylic diimide ( PTCDI) and copper phthalocyanine ( CuPc), as well as molecules potentially interesting for photovoltaic applications, e.g. porphyrin-fullerene dyads. The films were deposited using thermal evaporation (e.g. for C60 and CuPc films), spin coating for PHT, and Langmuir-Schaeffer for the layer-by-layer deposition of porphyrin-fullerene dyads. The most conducting materials in the series are films of PHT and CuPc with resistivities 1.2 × 10 3 Ω m and 3 × 10 4 Ω m, respectively. Under light illumination resistivity of all films decreases, with the strongest light effect observed for PTCDI, for which resistivity decreases by 100 times, from 3.2 × 10 8 Ω m in dark to 3.1 × 10 6 Ω m under the light.

  19. Photoconductivity of thin organic films

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, Nikolai V. [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere (Finland); Chukharev, Vladimir, E-mail: Vladimir.Chukharev@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere (Finland); Kaplas, Petra; Tolkki, Antti; Efimov, Alexander [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere (Finland); Haring, Kimmo; Viheriaelae, Jukka; Niemi, Tapio [Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland); Lemmetyinen, Helge [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere (Finland)

    2010-04-01

    Thin organic films were deposited on silicon oxide surfaces with golden interdigitated electrodes (interelectrode gap was 2 {mu}m), and the film resistivities were measured in dark and under white light illumination. The compounds selected for the measurements include molecules widely used in solar cell applications, such as polythiophene (PHT), fullerene (C{sub 60}), pyrelene tetracarboxylic diimide (PTCDI) and copper phthalocyanine (CuPc), as well as molecules potentially interesting for photovoltaic applications, e.g. porphyrin-fullerene dyads. The films were deposited using thermal evaporation (e.g. for C{sub 60} and CuPc films), spin coating for PHT, and Langmuir-Schaeffer for the layer-by-layer deposition of porphyrin-fullerene dyads. The most conducting materials in the series are films of PHT and CuPc with resistivities 1.2 x 10{sup 3} {Omega} m and 3 x 10{sup 4} {Omega} m, respectively. Under light illumination resistivity of all films decreases, with the strongest light effect observed for PTCDI, for which resistivity decreases by 100 times, from 3.2 x 10{sup 8} {Omega} m in dark to 3.1 x 10{sup 6} {Omega} m under the light.

  20. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  1. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    Rachana Gupta; Mukul Gupta; Thomas Gutberlet

    2008-11-01

    Thin films of permalloy (Ni80Fe20) were prepared using an Ar+N2 mixture with magnetron sputtering technique at ambient temperature. The film prepared with only Ar gas shows reflections corresponding to the permalloy phase in X-ray diffraction (XRD) pattern. The addition of nitrogen during sputtering results in broadening of the peaks in XRD pattern, which finally leads to an amorphous phase. The - loop for the sample prepared with only Ar gas is matching well with the values obtained for the permalloy. For the samples prepared with increased nitrogen partial pressure the magnetic moment decreased rapidly and the values of coercivity increased. The polarized neutron reflectivity measurements (PNR) were performed in the sample prepared with only Ar gas and with nitrogen partial pressure of 5 and 10%. It was found that the spin-up and spin-down reflectivities show exactly similar reflectivity for the sample prepared with Ar gas alone, while PNR measurements on 5 and 10% sample show splitting in the spin-up and spin-down reflectivity.

  2. Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy

    Science.gov (United States)

    Cohen, Shenhav; Zhai, Bo; Gygi, Steven P.

    2012-01-01

    During muscle atrophy, myofibrillar proteins are degraded in an ordered process in which MuRF1 catalyzes ubiquitylation of thick filament components (Cohen et al. 2009. J. Cell Biol. http://dx.doi.org/10.1083/jcb.200901052). Here, we show that another ubiquitin ligase, Trim32, ubiquitylates thin filament (actin, tropomyosin, troponins) and Z-band (α-actinin) components and promotes their degradation. Down-regulation of Trim32 during fasting reduced fiber atrophy and the rapid loss of thin filaments. Desmin filaments were proposed to maintain the integrity of thin filaments. Accordingly, we find that the rapid destruction of thin filament proteins upon fasting was accompanied by increased phosphorylation of desmin filaments, which promoted desmin ubiquitylation by Trim32 and degradation. Reducing Trim32 levels prevented the loss of both desmin and thin filament proteins. Furthermore, overexpression of an inhibitor of desmin polymerization induced disassembly of desmin filaments and destruction of thin filament components. Thus, during fasting, desmin phosphorylation increases and enhances Trim32-mediated degradation of the desmin cytoskeleton, which appears to facilitate the breakdown of Z-bands and thin filaments. PMID:22908310

  3. Thin films for geothermal sensing: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The report discusses progress in three components of the geothermal measurement problem: (1) developing appropriate chemically sensitive thin films; (2) discovering suitably rugged and effective encapsulation schemes; and (3) conducting high temperature, in-situ electrochemical measurements. (ACR)

  4. Manganese ferrite thin films Part II: Properties

    NARCIS (Netherlands)

    Hulscher, W.S.

    1972-01-01

    Some properties of evaporated manganese ferrite thin films are investigated, e.g. resistivity, magnetization reversal, Curie temperature, Faraday rotation and optical absorption. The properties are partly related to the partial oxygen pressure present during a preceding annealing process.

  5. Statics of Thin-Walled Pretwisted Beams

    DEFF Research Database (Denmark)

    Krenk, Steen; Gunneskov, O.

    1981-01-01

    The displacement and strain fields of thin-walled pretwisted beams are prescribed in terms of generalized displacements for extension, bending, torsion and warping. Differential equations and boundary conditions are obtained from the elastic potential energy functional without assuming coincidenc...

  6. TiO2 thin film photocatalyst

    Institute of Scientific and Technical Information of China (English)

    YU Jiaguo

    2004-01-01

    It is well known that the photocatalytic activity of TiO2 thin films strongly depends on the preparing methods and post-treatment conditions, since they have a decisive influence on the chemical and physical properties of TiO2 thin films.Therefore, it is necessary to elucidate the influence of the preparation process and post-treatment conditions on the photocatalytic activity and surface microstructures of the films. This review deals with the preparation of TiO2 thin film photocatalysts by wet-chemical methods (such as sol-gel, reverse micellar and liquid phase deposition) and the comparison of various preparation methods as well as their advantage and disadvantage. Furthermore, it is discussed that the advancement of photocatalytic activity, super-hydrophilicity and bactericidal activity of TiO2 thin film photocatalyst in recent years.

  7. A comparative study of fingerprint thinning algorithms

    CSIR Research Space (South Africa)

    Khanyile, NP

    2011-08-01

    Full Text Available , Optical Character Recognition (OCR), biological cell structures and fingerprint patterns. With so many thinning algorithms available, deciding which one is appropriate for a particular application has become very difficult. In an effort to assist...

  8. Thin Flexible IMM Solar Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Inverted Metamorphic (IMM) solar cells have achieved high efficiency at very low mass, but integration of the thin crystalline photovoltaic device into a flexible...

  9. Thin Film Photovoltaics: Markets and Industry

    National Research Council Canada - National Science Library

    Jäger-Waldau, Arnulf

    2012-01-01

    ...% of worldwide production. Between 2005 and 2009, thin film production capacity and volume increased more than the overall industry but did not keep up in 2010 and 2011 due to the rapid price decline for solar modules...

  10. Thin Flexible IMM Solar Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thin, flexible, and highly efficient solar arrays are needed that package compactly for launch and deploy into large, structurally stable high power generators....

  11. Highly stretchable wrinkled gold thin film wires

    Science.gov (United States)

    Kim, Joshua; Park, Sun-Jun; Nguyen, Thao; Chu, Michael; Pegan, Jonathan D.; Khine, Michelle

    2016-02-01

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  12. Ellipsometric Studies on Silver Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    M. Pandiaraman

    2011-01-01

    Full Text Available Silver telluride thin films of thickness between 45 nm and 145 nm were thermally evaporated on well cleaned glass substrates at high vacuum better than 10 – 5 mbar. Silver telluride thin films are polycrystalline with monoclinic structure was confirmed by X-ray diffractogram studies. AFM and SEM images of these films are also recorded. The phase ratio and amplitude ratio of these films were recorded in the wavelength range between 300 nm and 700 nm using spectroscopic ellipsometry and analysed to determine its optical band gap, refractive index, extinction coefficient, and dielectric functions. High absorption coefficient determined from the analysis of recorded spectra indicates the presence of direct band transition. The optical band gap of silver telluride thin films is thickness dependent and proportional to square of reciprocal of thickness. The dependence of optical band gap of silver telluride thin films on film thickness has been explained through quantum size effect.

  13. Carrier lifetimes in thin-film photovoltaics

    Science.gov (United States)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  14. Highly stretchable wrinkled gold thin film wires

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joshua, E-mail: joshuk7@uci.edu; Park, Sun-Jun; Nguyen, Thao [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Chu, Michael [Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States); Pegan, Jonathan D. [Department of Materials and Manufacturing Technology, University of California, Irvine, California 92697 (United States); Khine, Michelle, E-mail: mkhine@uci.edu [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States)

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  15. Thin solid-lubricant films in space

    Science.gov (United States)

    Roberts, E. W.

    Low-friction films of thickness as low as 1 micron, created through sputter-deposition of low shear strength materials, are required in spacecraft applications requiring low power dissipation, such as cryogenic devices, and low torque noise, such as precision-pointing mechanisms. Due to their thinness, these coatings can be applied to high precision-machined tribological components without compromising their functional accuracy. Attention is here given to the cases of thin solid films for ball bearings, gears, and journal bearings.

  16. Environmentally stable sputter-deposited thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, D.J.

    1978-03-01

    Accelerated corrosion data are presented for the titanium-silver and chrome-gold thin film metallization systems presently used at Sandia Laboratories. Improvements in corrosion, hence reliability, as a result of interposing a thin intermediate layer of either platinum or palladium are shown. Potentiometric measurements showing the alteration of corrosion potential with the use of palladium for the titanium-silver system are also presented.

  17. Thermal Expansion Coefficients of Thin Crystal Films

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.

  18. Atomic resolution probe for allostery in the regulatory thin filament

    Science.gov (United States)

    Williams, Michael R.; Lehman, Sarah J.; Tardiff, Jil C.; Schwartz, Steven D.

    2016-01-01

    Calcium binding and dissociation within the cardiac thin filament (CTF) is a fundamental regulator of normal contraction and relaxation. Although the disruption of this complex, allosterically mediated process has long been implicated in human disease, the precise atomic-level mechanisms remain opaque, greatly hampering the development of novel targeted therapies. To address this question, we used a fully atomistic CTF model to test both Ca2+ binding strength and the energy required to remove Ca2+ from the N-lobe binding site in WT and mutant troponin complexes that have been linked to genetic cardiomyopathies. This computational approach is combined with measurements of in vitro Ca2+ dissociation rates in fully reconstituted WT and cardiac troponin T R92L and R92W thin filaments. These human disease mutations represent known substitutions at the same residue, reside at a significant distance from the calcium binding site in cardiac troponin C, and do not affect either the binding pocket affinity or EF-hand structure of the binding domain. Both have been shown to have significantly different effects on cardiac function in vivo. We now show that these mutations independently alter the interaction between the Ca2+ ion and cardiac troponin I subunit. This interaction is a previously unidentified mechanism, in which mutations in one protein of a complex indirectly affect a third via structural and dynamic changes in a second to yield a pathogenic change in thin filament function that results in mutation-specific disease states. We can now provide atom-level insight that is potentially highly actionable in drug design. PMID:26957598

  19. Printable CIGS thin film solar cells

    Science.gov (United States)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  20. Carbon Nanotube Thin-Film Antennas.

    Science.gov (United States)

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  1. Which trees should be removed in thinning?

    Directory of Open Access Journals (Sweden)

    Timo Pukkala

    2015-12-01

    Full Text Available Background: In economically optimal management, trees that are removed in a thinning treatment should be selected on the basis of their value, relative value increment and the effect of removal on the growth of remaining trees. Large valuable trees with decreased value increment should be removed, especially when they overtop smaller trees. Methods: This study optimized the tree selection rule in the thinning treatments of continuous cover management when the aim is to maximize the profitability of forest management. The weights of three criteria (stem value, relative value increment and effect of removal on the competition of remaining trees were optimized together with thinning intervals. Results and conclusions: The results confirmed the hypothesis that optimal thinning involves removing predominantly large trees. Increasing stumpage value, decreasing relative value increment, and increasing competitive influence increased the likelihood that removal is optimal decision. However, if the spatial distribution of trees is irregular, it is optimal to leave large trees in sparse places and remove somewhat smaller trees from dense places. However, the benefit of optimal thinning, as compared to diameter limit cutting is not usually large in pure one-species stands. On the contrary, removing the smallest trees from the stand may lead to significant (30–40 % reductions in the net present value of harvest incomes. Keywords: Continuous cover forestry, Tree selection, High thinning, Optimal management, Spatial distribution, Spatial growth model

  2. Ultra Thin Quantum Well Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dr Saeid Ghamaty

    2012-08-16

    This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W

  3. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  4. Micromotors using magnetostrictive thin films

    Science.gov (United States)

    Claeyssen, Frank; Le Letty, Ronan; Barillot, Francois; Betz, Jochen; MacKay, Ken; Givord, Dominique; Bouchilloux, Philippe

    1998-07-01

    This study deals with a micromotor based on the use of magnetostrictive thin films. This motor belongs to the category of the Standing Wave Ultrasonic Motors. The active part of the motor is the rotor, which is a 100 micrometers thick ring vibrating in a flexural mode. Teeth (300 micrometers high) are placed on special positions of the rotor and produce an oblique motion which can induce the relative motion of any object in contact with them. The magnetic excitation field is radial and uses the transverse coupling of the 4 micrometers thick magnetostrictive film. The film, deposited by sputtering on the ring, consists of layers of different rare-earth/iron alloys and was developed during a European Brite-Euram project. The finite element technique was used in order to design a prototype of the motor and to optimize the active rotor and the energizer coil. The prototype we built delivered a speed of 30 turns per minute with a torque of 2 (mu) N.m (without prestress applied on the rotor). Our experimental results show that the performance of this motor could easily be increased by a factor of 5. The main advantage of this motor is the fact that it is remotely powered and controlled. The excitation coil, which provides both power and control, can be placed away from the active rotor. Moreover, the rotor is completely wireless and is not connected to its support or to any other part. It is interesting to note that it would not be possible to build this type of motor using piezoelectric technology. Medical applications of magnetostrictive micromotors could be found for internal microdistributors of medication (the coil staying outside the body). Other applications include remote control micropositioning, micropositioning of optical components, and for the actuation of systems such as valves, electrical switches, and relays.

  5. Switching Muscles On and Off in Steps: The McKillop-Geeves Three-State Model of Muscle Regulation.

    Science.gov (United States)

    Lehman, William

    2017-06-20

    BJ Classic highlighting the article "Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament." Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Constitutional thinness and anorexia nervosa: a possible misdiagnosis?

    Science.gov (United States)

    Estour, Bruno; Galusca, Bogdan; Germain, Natacha

    2014-01-01

    Clinical and biological aspects of restrictive anorexia nervosa (R-AN) are well documented. More than 10,000 articles since 1911 and more than 600 in 2013 have addressed R-AN psychiatric, somatic, and biological aspects. Genetic background, ineffectiveness of appetite regulating hormones on refeeding process, bone loss, and place of amenorrhea in the definition are widely discussed and reviewed. Oppositely, constitutional thinness (CT) is an almost unknown entity. Only 32 articles have been published on this topic since 1953. Similar symptoms associating low body mass index, low fat, and bone mass are reported in both CT and R-AN subjects. Conversely, menses are preserved in CT women and almost the entire hormonal profile is normal, except for leptin and PYY. The aim of the present review is to alert the clinician on the confusing clinical presentation of these two situations, a potential source of misdiagnosis, especially since R-AN definition has changed in DSM5.

  7. Constitutional thinness and anorexia nervosa: a possible misdiagnosis?

    Directory of Open Access Journals (Sweden)

    Bruno eEstour

    2014-10-01

    Full Text Available Clinical and biological aspects of restrictive anorexia nervosa (R-AN are well documented. More than ten thousand articles since 1911 and more than six hundred in 2013 have addressed R-AN psychiatric, somatic and biological aspects. Genetic background, ineffectiveness of appetite regulating hormones on refeeding process, bone loss and place of amenorrhea in the definition are widely discussed and reviewed. Oppositely, constitutional thinness (CT is an almost unknown entity. Only 32 articles have been published on this topic since 1953. Similar symptoms associating low BMI, low fat and bone mass are reported in both CT and R-AN subjects. Conversely, menses are preserved in CT women and almost the entire hormonal profile is normal, except for leptin and PYY. The aim of the present review is to alert the clinician on the confusing clinical presentation of these two situations, a potential source of misdiagnosis, especially since R-AN definition has changed in DSM-5.

  8. Thinning procedures and strains in the zones near crack tips of thin foils

    Institute of Scientific and Technical Information of China (English)

    李红旗; 陈奇志; 褚武扬

    1999-01-01

    Thinning procedures were observed by TEM in 310 stainless steel and pure aluminum. Foils thinned through shearing of mode Ⅲ crack or through tearing of mode I crack. Using micro-beam electron diffraction, the strains in the areas right ahead of crack tips of pure aluminum and TiAI alloy were measured to be 0.05 or more.

  9. Childhood Risk Factors for Thin Body Preoccupation and Social Pressure to Be Thin

    Science.gov (United States)

    Agras, W. Stewart; Bryson, Susan; Hammer, Lawrence D.; Kraemer, Helena C.

    2007-01-01

    Objective: Thin body preoccupation and social pressure to be thin (TBPSP) in adolescence are risk factors for the development of full and partial bulimia nervosa and binge eating disorder. This study examined precursors of these potent risk factors. Method: A prospective study followed 134 children from birth to 11.0 years and their parents.…

  10. A coarse-grained model to study calcium activation of the cardiac thin filament

    Science.gov (United States)

    Zhang, Jing; Schwartz, Steven

    2015-03-01

    Familial hypertrophic cardiomyopathy (FHC) is one of the most common heart disease caused by genetic mutations. Cardiac muscle contraction and relaxation involve regulation of crossbridge binding to the cardiac thin filament, which regulates actomyosin interactions through calcium-dependent alterations in the dynamics of cardiac troponin (cTn) and tropomyosin (Tm). An atomistic model of cTn complex interacting with Tm has been studied by our group. A more realistic model requires the inclusion of the dynamics of actin filament, which is almost 6 times larger than cTn and Tm in terms of atom numbers, and extensive sampling of the model becomes very resource-demanding. By using physics-based protein united-residue force field, we introduce a coarse-grained model to study the calcium activation of the thin filament resulting from cTn's allosteric regulation of Tm dynamics on actin. The time scale is much longer than that of all-atom molecular dynamics simulation because of the reduction of the degrees of freedom. The coarse-grained model is a good template for studying cardiac thin filament mutations that cause FHC, and reduces the cost of computational resources.

  11. Optical Constants of Cadmium Telluride Thin Film

    Science.gov (United States)

    Nithyakalyani, P.; Pandiaraman, M.; Pannir, P.; Sanjeeviraja, C.; Soundararajan, N.

    2008-04-01

    Cadmium Telluride (CdTe) is II-VI direct band gap semiconductor compound with potential application in Solar Energy conversion process. CdTe thin film of thickness 220 mn was prepared by thermal evaporation technique at a high vacuum better than 10-5 m.bar on well cleaned glass substrates of dimensions (l cm×3 cm). The transmittance spectrum and the reflectance spectrum of the prepared CdTc thin film was recorded using UV-Vis Spectrophotometer in the wavelength range between 300 nm and 900 nm. These spectral data were analyzed and the optical band and optical constants of CdTe Thin film have been determined by adopting suitable relations. The optical band gap of CdTe thin film is found to be 1.56 eV and this value is also agreeing with the published works of CdTe thin film prepared by various techniques. The absorption coefficient (α) has been higher than 106 cm-1. The Refractive index (n) and the Extinction Coefficient (k) are found to be varying from 3.0 to 4.0 and 0.1 Cm-1 to 0.5 Cm-1 respectively by varying the energy from l.0 eV to 4.0 eV. These results are also compared with the literature.

  12. Thin Ice Films at Mineral Surfaces.

    Science.gov (United States)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood.

  13. Ferromagnetic properties of fcc Gd thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, T. P., E-mail: tambauh@gmail.com; Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y. [Universidade Federal do Espírito Santo, Departamento de Física, Vitória/ES 29075-910 (Brazil); Pessoa, M. S. [Universidade Federal do Espírito Santo, Departamento de Ciências Naturais, São Mateus/ES 29932-540 (Brazil)

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  14. Pulsed laser deposition of ferroelectric thin films

    Science.gov (United States)

    Sengupta, Somnath; McKnight, Steven H.; Sengupta, Louise C.

    1997-05-01

    It has been shown that in bulk ceramic form, the barium to strontium ratio in barium strontium titanium oxide (Ba1- xSrxTiO3, BSTO) affects the voltage tunability and electronic dissipation factor in an inverse fashion; increasing the strontium content reduces the dissipation factor at the expense of lower voltage tunability. However, the oxide composites of BSTO developed at the Army Research Laboratory still maintain low electronic loss factors for all compositions examined. The intent of this study is to determine whether such effects can be observed in the thin film form of the oxide composites. The pulsed laser deposition (PLD) method has been used to deposit the thin films. The different compositions of the compound (with 1 wt% of the oxide additive) chosen were: Ba0.3Sr0.7TiO3, Ba0.4Sr0.6TiO3, Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3, and Ba0.7Sr0.3TiO3. The electronic properties investigated in this study were the dielectric constant and the voltage tunability. The morphology of the thin films were examined using the atomic force microscopy. Fourier transform Raman spectroscopy was also utilized for optical characterization of the thin films. The electronic and optical properties of the thin films and the bulk ceramics were compared. The results of these investigations are discussed.

  15. The bio-ethanol production with the thin stillage recirculation

    Directory of Open Access Journals (Sweden)

    M. Rakin

    2009-01-01

    Full Text Available In this paper, the bioethanol production with the thin stillage recirculation in mashing was investigated. The mashing was performed with recirculation of: 0, 10, 20 and 30 % of the thin stillage. The thin stillage recirculation was repeated six times. In the experiment without the thin stillage, the recirculation bioethanol yield (compared to the theoretical yield was 97.96 %, which implicates that the experiment conditions were chosen and performed well. With the addition of the thin stillage, the bioethanol yield increased and was above 100 %. Higher bioethanol yield than 100 % can be explained by the fact that the thin stillage contains carbohydrates, amino acids and yeast cells degradation products. The bioethanol yield increased with the increased number of thin stillage recirculation cycles. Dry matter content in fermenting slurry increased with the increased thin stillage quantity and the number of the thin stillage recirculation cycles (8.04 % for the first and 9.40 % for the sixth cycle. Dry matter content in thin stillage increased with the increased thin stillage quantity and the number of thin stillage recirculation cycles. Based on the obtained results it can be concluded that thin stillage recirculation increased the bioethanol yield. The highest bioethanol yields were obtained with recirculation of 10% thin stillage.

  16. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  17. Magnetoelectric thin film composites with interdigital electrodes

    Science.gov (United States)

    Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J. L.; Gerken, M.; Knöchel, R.; Quandt, E.

    2013-07-01

    Magnetoelectric (ME) thin film composites on silicon cantilevers are fabricated using Pb(Zr0.52Ti0.45)O3 (PZT) films with interdigital transducer electrodes on the top side and FeCoSiB amorphous magnetostrictive thin films on the backside. These composites without any direct interface between the piezoelectric and magnetostrictive phase are superior to conventional plate capacitor-type thin film ME composites. A limit of detection of 2.6 pT/Hz1/2 at the mechanical resonance is determined which corresponds to an improvement of a factor of approximately 2.8 compared to the best plate type sensor using AlN as the piezoelectric phase and even a factor of approximately 4 for a PZT plate capacitor.

  18. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  19. Thin wall ductile and austempered iron castings

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2010-07-01

    Full Text Available It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm(without chills, cold laps and misruns. Thin wall ductile iron castings can be lighter (380 g than their substitutes made of aluminium alloys (580g. The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dilatometic studies. It has been shown that in thin wall ductile iron castings austenitising at 880 oC for 20 minutes is adequate to obtain the austenite matrix at the end of the first stage of austempering heat treatment cycle.

  20. Domains in Ferroic Crystals and Thin Films

    CERN Document Server

    Tagantsev, Alexander K; Fousek, Jan

    2010-01-01

    Domains in Ferroic Crystals and Thin Films presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observation of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. Domains in Ferroic Crystals and Thin Films covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In most solid state physics books, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In co...

  1. Interfacial Effects on Pentablock Ionomer Thin Films

    Science.gov (United States)

    Etampawala, Thusitha; Ratnaweera, Dilru; Osti, Naresh; Shrestha, Umesh; Perahia, Dvora; Majewski, Jaroslaw

    2011-03-01

    The interfacial behavior of multi block copolymer thin films results from a delicate balance between inherent phase segregation due to incompatibility of the blocks and the interactions of the individual blocks with the interfaces. Here in we report a study of thin films of ABCBA penta block copolymers, anionically synthesized, comprising of centered randomly sulfonated polystyrene block to which rubbery poly-ethylenebutalene is connected, terminated by blocks of poly-t-butylstyrene, kindly provided by Kraton. AFM and neutron reflectometry studies have shown that the surface structure of pristine films depends on film thickness and ranges from trapped micelles to thin layered films. Annealing above Tg for the styrene block results in rearrangements into relatively featureless air interface. Neutron reflectivity studies have shown that annealed films forms layers whose plane are parallel to the solid substrate with the bulky block at the air interface and the ionic block at the solid interface.

  2. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  3. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  4. Study of the Thin Film Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-yuan; SHI Yu; WEN Qi-ye

    2005-01-01

    A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and a Cu thin film coil, deposited on the micro-crystal glass substrate directly. The thickness of thin film core is between 1 and 3 μm, and the area is between 4mm×6 mm and 12mm×6 mm. The coils provide a relatively high induce of 0.8 μm and can be well operated in a frequency range of 0.001~20 MHz.

  5. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  6. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  7. Thin metal electrodes for semitransparent organic photovoltaics

    KAUST Repository

    Lee, Kyusung

    2013-08-01

    We demonstrate semitransparent organic photovoltaics (OPVs) based on thin metal electrodes and polymer photoactive layers consisting of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester. The power conversion efficiency of a semitransparent OPV device comprising a 15-nm silver (Ag) rear electrode is 1.98% under AM 1.5-G illumination through the indium-tin-oxide side of the front anode at 100 mW/cm2 with 15.6% average transmittance of the entire cell in the visible wavelength range. As its thickness increases, a thin Ag electrode mainly influences the enhancement of the short circuit current density and fill factor. Its relatively low absorption intensity makes a Ag thin film a viable option for semitransparent electrodes compatible with organic layers. © 2013 ETRI.

  8. Multifractal characteristics of titanium nitride thin films

    Directory of Open Access Journals (Sweden)

    Ţălu Ştefan

    2015-09-01

    Full Text Available The study presents a multi-scale microstructural characterization of three-dimensional (3-D micro-textured surface of titanium nitride (TiN thin films prepared by reactive DC magnetron sputtering in correlation with substrate temperature variation. Topographical characterization of the surfaces, obtained by atomic force microscopy (AFM analysis, was realized by an innovative multifractal method which may be applied for AFM data. The surface micromorphology demonstrates that the multifractal geometry of TiN thin films can be characterized at nanometer scale by the generalized dimensions Dq and the singularity spectrum f(α. Furthermore, to improve the 3-D surface characterization according with ISO 25178-2:2012, the most relevant 3-D surface roughness parameters were calculated. To quantify the 3-D nanostructure surface of TiN thin films a multifractal approach was developed and validated, which can be used for the characterization of topographical changes due to the substrate temperature variation.

  9. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  10. Tungsten-doped thin film materials

    Science.gov (United States)

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  11. MOF thin films: existing and future applications.

    Science.gov (United States)

    Shekhah, O; Liu, J; Fischer, R A; Wöll, Ch

    2011-02-01

    The applications and potentials of thin film coatings of metal-organic frameworks (MOFs) supported on various substrates are discussed in this critical review. Because the demand for fabricating such porous coatings is rather obvious, in the past years several synthesis schemes have been developed for the preparation of thin porous MOF films. Interestingly, although this is an emerging field seeing a rapid development a number of different applications on MOF films were either already demonstrated or have been proposed. This review focuses on the fabrication of continuous, thin porous films, either supported on solid substrates or as free-standing membranes. The availability of such two-dimensional types of porous coatings opened the door for a number of new perspectives for functionalizing surfaces. Also for the porous materials themselves, the availability of a solid support to which the MOF-films are rigidly (in a mechanical sense) anchored provides access to applications not available for the typical MOF powders with particle sizes of a few μm. We will also address some of the potential and applications of thin films in different fields like luminescence, QCM-based sensors, optoelectronics, gas separation and catalysis. A separate chapter has been devoted to the delamination of MOF thin films and discusses the potential to use them as free-standing membranes or as nano-containers. The review also demonstrates the possibility of using MOF thin films as model systems for detailed studies on MOF-related phenomena, e.g. adsorption and diffusion of small molecules into MOFs as well as the formation mechanism of MOFs (101 references).

  12. Magnetically actuated peel test for thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowicki, G.T.; Sitaraman, S.K., E-mail: suresh.sitaraman@me.gatech.edu

    2012-03-30

    Delamination along thin film interfaces is a prevalent failure mechanism in microelectronic, photonic, microelectromechanical systems, and other engineering applications. Current interfacial fracture test techniques specific to thin films are limited by either sophisticated mechanical fixturing, physical contact near the crack tip, or complicated stress fields. Moreover, these techniques are generally not suitable for investigating fatigue crack propagation under cyclical loading. Thus, a fixtureless and noncontact experimental test technique with potential for fatigue loading is proposed and implemented to study interfacial fracture toughness for thin film systems. The proposed test incorporates permanent magnets surface mounted onto micro-fabricated released thin film structures. An applied external magnetic field induces noncontact loading to initiate delamination along the interface between the thin film and underlying substrate. Characterization of the critical peel force and peel angle is accomplished through in situ deflection measurements, from which the fracture toughness can be inferred. The test method was used to obtain interfacial fracture strength of 0.8-1.9 J/m{sup 2} for 1.5-1.7 {mu}m electroplated copper on natively oxidized silicon substrates. - Highlights: Black-Right-Pointing-Pointer Non-contact magnetic actuation test for interfacial fracture characterization. Black-Right-Pointing-Pointer Applied load is determined through voltage applied to the driving electromagnet. Black-Right-Pointing-Pointer Displacement and delamination propagation is measured using an optical profiler. Black-Right-Pointing-Pointer Critical peel force and peel angle is measured for electroplated Cu thin-film on Si. Black-Right-Pointing-Pointer The measured interfacial fracture energy of Cu/Si interface is 0.8-1.9 J/m{sup 2}.

  13. Yb Thin-Disk Laser Results

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, L E; Beach, R A; Mitchell, S; Payne, S A

    2002-05-14

    Thin-disk laser configurations have recently been demonstrated at cw output povters exceeding 1 kW [1]. Thin-disk lasers enable the generation of high average power by minimizing the distance over which waste heat is transported. A disk-laser of transverse dimensions significantly larger than its thickness will sustain laser output with intensity proportional to the thermal flux it dissipates. The fracture strength of the laser material limits the maximum temperature difference of a credible design. Further increases in the heat dissipation capacity of a disk varies inversely with the disk thickness (t) thus, the average laser output intensity of a thin/disk laser scales as 1/t; that is, to maximize the output intensity we must use the thinnest possible disk that is consistent with the pump geometry. The main challenge for the laser designer is then to coerce a thin gain sample into absorbing pump power efficiently. For this purpose, use of a highly absorbing gain medium is desirable in combination with a pumping geometry that allows multi-passing of the pump light. An important feature of the thin-disk laser is that one-dimensional thermal gradients away from the edges are made to align with the extraction beam Thus, as long as pumping and cooling fields are uniformly distributed, the contributions to wavefront error from dn/dT and the stress optic effect integrate along a 1-dimensional thermal gradient and a constant optical path-length-difference across the extent of the beam. The thin-disk laser therefore, holds promise for high beam quality at high average power.

  14. Thin shells joining local cosmic string geometries

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F. [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Rubin de Celis, Emilio; Simeone, Claudio [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Ciudad Universitaria Pabellon I, IFIBA-CONICET, Buenos Aires (Argentina)

    2016-10-15

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)

  15. Feasibility Study of Thin Film Thermocouple Piles

    Science.gov (United States)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  16. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  17. SIGN LANGUAGE RECOGNITION USING THINNING ALGORITHM

    Directory of Open Access Journals (Sweden)

    S. N. Omkar

    2011-08-01

    Full Text Available In the recent years many approaches have been made that uses computer vision algorithms to interpret sign language. This endeavour is yet another approach to accomplish interpretation of human hand gestures. The first step of this work is background subtraction which achieved by the Euclidean distance threshold method. Thinning algorithm is then applied to obtain a thinned image of the human hand for further analysis. The different feature points which include terminating points and curved edges are extracted for the recognition of the different signs. The input for the project is taken from video data of a human hand gesturing all the signs of the American Sign Language.

  18. Thin shells joining local cosmic string geometries

    CERN Document Server

    Eiroa, Ernesto F; Simeone, Claudio

    2016-01-01

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a standard thin shell and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters.

  19. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    D. Κ. Ojha

    2000-06-01

    This paper presents an analysis of the first 2MASS (The Two Micron All Sky Survey) sampler data as observed at lower Galactic latitude in our Galaxy. These new near-infrared data provide insight into the structure of the thin disk of our Galaxy, The interpretation of star counts and color distributions of stars in the near-infrared with the synthetic stellar population model, gives strong evidence that the Galactic thin disk density scale length, ℎ, is rather short (2.7 ± 0.1 kpc).

  20. Anisotropic Heisenberg model in thin film geometry

    Energy Technology Data Exchange (ETDEWEB)

    Akıncı, Ümit

    2014-01-01

    The effect of the anisotropy in the exchange interaction on the phase diagrams and magnetization behavior of the Heisenberg thin film has been investigated with effective field formulation in a two spin cluster using the decoupling approximation. Phase diagrams and magnetization behaviors have been obtained for several different cases, by grouping the systems in accordance with, whether the surfaces/interior of the film has anisotropic exchange interaction or not. - Highlights: • Phase diagrams of the anisotropic Heisenberg model on the thin film obtained • Dependence of the critical properties on the film thickness obtained • Effect of the anisotropy on the magnetic properties obtained.

  1. Thin wall ductile and austempered iron castings

    OpenAIRE

    E. Fraś; M. Górny

    2010-01-01

    It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm(without chills, cold laps and misruns). Thin wall ductile iron castings can be lighter (380 g) than their substitutes made of aluminium alloys (580g). The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dil...

  2. NLO properties of functionalized DNA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Oksana [University d' Angers, Laboratoire POMA CNRS UMR 6136, France, 2 Bd. Lavoisier, 49045 (France)], E-mail: okrupka@mail.ru; El-ghayoury, Abdelkrim [University d' Angers, UFR Sciences, Laboratoire CIMMA UMR CNRS 6200, 2 Bd. Lavoisier, 49045 (France); Rau, Ileana; Sahraoui, Bouchta [University d' Angers, Laboratoire POMA CNRS UMR 6136, France, 2 Bd. Lavoisier, 49045 (France); Grote, James G. [Air Force Research Laboratory Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, 3005 Hobson Way, Dayton, OH 45433-7707 (United States); Kajzar, Francois [University d' Angers, Laboratoire POMA CNRS UMR 6136, France, 2 Bd. Lavoisier, 49045 (France)

    2008-10-31

    In this paper we investigate the third-order nonlinear optical properties of spin deposited thin films of DNA-based complexes using the optical third harmonic generation (THG) technique at a fundamental wavelength of 1064 nm. We found that the third-order susceptibility, {chi}{sup (3)}(- 3{omega};{omega},{omega},{omega}), of DNA-based films was about one order of magnitude larger than that of our reference, a pure silica slab. In thin films doped with 5% of the chromophore disperse red 1 (DR1), a two order of magnitude larger value of {chi}{sup (3)}(- 3{omega};{omega},{omega},{omega}) was observed.

  3. Micro-sensor thin-film anemometer

    Science.gov (United States)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  4. Impedance matched thin metamaterials make metals absorbing.

    Science.gov (United States)

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin ( 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  5. Optimisation of superconducting thin films by TEM

    NARCIS (Netherlands)

    Bals, S.; van Tendeloo, G.; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Leca, V.; Salluzzo, M.

    2002-01-01

    High-resolution electron microscopy is used to study the initial growth of different REBa2Cu3O7−δ thin films. In DyBa2Cu3O7−δ ultra-thin films, deposited on TiO2 terminated SrTiO3, two different types of interface arrangements occur: bulk–SrO–TiO2–BaO–CuO–BaO–CuO2–Dy–CuO2–BaO–bulk and bulk–SrO–TiO2–

  6. Magnetic shape memory effect in thin foils

    Science.gov (United States)

    Heczko, Oleg; Soroka, Aleksandr; Hannula, Simo-Pekka

    2008-07-01

    The magnetic shape memory (MSM) effect was observed in Ni-Mn-Ga freestanding thin foils down to 90μm in thickness using top-down approach. The foils were prepared by thinning the bulk crystals exhibiting MSM effect. The effect was evaluated from the magnetization curves. The significant decrease in magnetic field needed to initiate the MSM effect (magnetic field induced strain or martensite structure reorientation) was observed for the studied foils down to μ0H=0.088T or H =70kA/m. Observation suggests that the pinning of twin boundaries on the internal obstacles rather than pinning on surface lowers twin boundaries' mobility.

  7. Advances in thin-film solar cells

    CERN Document Server

    Dharmadasa, I M

    2012-01-01

    This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines

  8. Emittance Theory for Thin Film Selective Emitter

    Science.gov (United States)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  9. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  10. Rapamycin up-regulates triglycerides in hepatocytes by down-regulating Prox1.

    Science.gov (United States)

    Kwon, Sora; Jeon, Ji-Sook; Kim, Su Bin; Hong, Young-Kwon; Ahn, Curie; Sung, Jung-Suk; Choi, Inho

    2016-02-27

    Although the prolonged use of rapamycin may cause unwanted side effects such as hyperlipidemia, the underlying mechanism remains unknown. Prox1 is a transcription factor responsible for the development of several tissues including lymphatics and liver. There is growing evidences that Prox1 participates in metabolism in addition to embryogenesis. However, whether Prox1 is directly related to lipid metabolism is currently unknown. HepG2 human hepatoma cells were treated with rapamycin and total lipids were analyzed by thin layer chromatography. The effect of rapamycin on the expression of Prox1 was determined by western blotting. To investigate the role of Prox1 in triglycerides regulation, siRNA and overexpression system were employed. Rapamycin was injected into mice for 2 weeks and total lipids and proteins in liver were measured by thin layer chromatography and western blot analysis, respectively. Rapamycin up-regulated the amount of triglyceride and down-regulated the expression of Prox1 in HepG2 cells by reducing protein half-life but did not affect its transcript. The loss-of-function of Prox1 was coincident with the increase of triglycerides in HepG2 cells treated with rapamycin. The up-regulation of triglycerides by rapamycin in HepG2 cells reverted to normal levels by the compensation of Prox1 using the overexpression system. Rapamycin also down-regulated Prox1 expression but increased triglycerides in mouse liver. This study suggests that rapamycin can increase the amount of triglycerides by down-regulating Prox1 expression in hepatocytes, which means that the mammalian target of rapamycin (mTOR) signaling is important for the regulation of triglycerides by maintaining Prox1 expression.

  11. Drag Coefficient of Thin Flexible Cylinder

    Science.gov (United States)

    Subramanian, Chelakara; Gurram, Harika

    2015-11-01

    Measurements of drag coefficients of thin flexible cylindrical wires are described for the Reynolds number range between 250 - 1000. Results indicate that the coefficient values are about 20 to 30 percent lower than the reported laminar flow values for rigid cylinders. Possible fluid dynamics mechanism causing the reduction in drag will be discussed.

  12. A thin-film magnetoresistive angle detector

    NARCIS (Netherlands)

    Eijkel, Kees J.M.; Wieberdink, Johan W.; Fluitman, Jan H.J; Popma, Theo J.A.; Groot, Peter; Leeuwis, Henk

    1990-01-01

    An overview is given of the results of our research on a contactless angle detector based on the anisotropic magnetoresistance effect (AMR effect) in a permalloy thin film. The results of high-temperature annealing treatment of the pemalloy film are discussed. Such a treatment suppresses the effects

  13. Thick Slice and Thin Slice Teaching Evaluations

    Science.gov (United States)

    Tom, Gail; Tong, Stephanie Tom; Hesse, Charles

    2010-01-01

    Student-based teaching evaluations are an integral component to institutions of higher education. Previous work on student-based teaching evaluations suggest that evaluations of instructors based upon "thin slice" 30-s video clips of them in the classroom correlate strongly with their end of the term "thick slice" student evaluations. This study's…

  14. Amorphous silicon for thin-film transistors

    NARCIS (Netherlands)

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and addres

  15. Thin Layer Chromatography (TLC) of Chlorophyll Pigments.

    Science.gov (United States)

    Foote, Jerry

    1984-01-01

    Background information, list of materials needed, procedures used, and discussion of typical results are provided for an experiment on the thin layer chromatography of chlorophyll pigments. The experiment works well in high school, since the chemicals used are the same as those used in paper chromatography of plant pigments. (JN)

  16. Nonsymmetric Dynamical Thin-Shell Wormhole

    CERN Document Server

    Svitek, O

    2016-01-01

    The thin-shell wormhole created using the Darmois--Israel formalism applied to Robinson--Trautman family of spacetimes is presented. The stress energy tensor created on the throat is interpreted in terms of two dust streams and it is shown that asymptotically this wormhole settles to the Schwarzschild wormhole with throat on the horizon.

  17. Self-thinning in four pine species

    NARCIS (Netherlands)

    Brunet-Navarro, Pau; Sterck, Frank J.; Vayreda, Jordi; Martinez-Vilalta, Jordi; Mohren, Frits

    2016-01-01


    Key message

    Self-thinning lines are species- and climate-specific, and they should be used when assessing the capacity of different forest stands to increase biomass/carbon storage.


    Context

    The capacity of forests to store carbon can help to mitigate the effects

  18. Universality for directed polymers in thin rectangles

    CERN Document Server

    Auffinger, Antonio; Corwin, Ivan

    2012-01-01

    We consider the fluctuations of the free energy of positive temperature directed polymers in thin rectangles (N,N^{\\alpha}), \\alpha < 3/14. For general weight distributions with finite fourth moment we prove that the distribution of these fluctuations converges as N goes to infinity to the GUE Tracy-Widom distribution.

  19. Electrostatic Discharge Effects in Thin Film Transistors

    NARCIS (Netherlands)

    Golo, Natasa

    2002-01-01

    Although amorphous silicon thin film transistors (α-Si:H TFT’s) have a very low electron mobility and pronounced instabilities of their electrical characteristics, they are still very useful and they have found their place in the semiconductors industry, as they possess some very good properties: th

  20. Thin-Film Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  1. Carbon nanofiber growth on thin rhodium layers

    NARCIS (Netherlands)

    Chinthaginjala, J.K.; Unnikrishnan, S.; Smithers, M.A.; Kip, G.A.M.; Lefferts, L.

    2012-01-01

    A thinlayer of carbon nanofibers (CNFs) was synthesized on a thin polycrystalline rhodium (Rh) metal layer by decomposing ethylene in the presence of hydrogen. Interaction of Rh crystals with carbon results in fragmentation and formation of Rh-nanoparticles, facilitating CNF growth. CNFs are immobil

  2. Welding Wires To Thin Thermocouple Films

    Science.gov (United States)

    Holanda, Raymond; Kim, Walter S.; Danzey, Gerald A.; Pencil, Eric; Wadel, Mary

    1993-01-01

    Parallel-gap resistance welding yields joints surviving temperatures of about 1,000 degrees C. Much faster than thermocompression bonding. Also exceeds conductive-paste bonding and sputtering thin films through porous flame-sprayed insulation on prewelded lead wires. Introduces no foreign material into thermocouple circuit and does not require careful control of thickness of flame-sprayed material.

  3. Thin Time-Of-Flight PET project

    CERN Multimedia

    The pre-R&D aims at designing and producing a compact and thin Time-Of-Flight PET detector device with depth of interaction measurement capability, which employs layered silicon sensors as active material, with a readout consisting of a new generation of very-low noise and very fast electronics based on SiGe Heterojunction Bipolar Transistors (HBT) components.

  4. Intelligent Processing of Ferroelectric Thin Films

    Science.gov (United States)

    1994-05-31

    unsatisfactory. To detect the electroopic effects of thin films deposited on opaque substrates a waveguide refractometry of category 3 was reported. An advantage...of the waveguide refractometry is its capability of resolving the change in ordinary index from the change in the extraordinary index. Some successes

  5. Recent progress in thin film organic photodiodes

    NARCIS (Netherlands)

    Inganäs, Olle; Roman, Lucimara S.; Zhang, Fengling; Johansson, D.M.; Andersson, M.R.; Hummelen, J.C.

    2001-01-01

    We review current developments in organic photodiodes, with special reference to multilayer thin film optics, and modeling of organic donor-acceptor photodiodes. We indicate possibilities to enhance light absorption in devices by nanopatterning as well as by blending, and also discuss materials

  6. Recent progress in thin film organic photodiodes

    NARCIS (Netherlands)

    Inganäs, Olle; Roman, Lucimara S.; Zhang, Fengling; Johansson, D.M.; Andersson, M.R.; Hummelen, J.C.

    2001-01-01

    We review current developments in organic photodiodes, with special reference to multilayer thin film optics, and modeling of organic donor-acceptor photodiodes. We indicate possibilities to enhance light absorption in devices by nanopatterning as well as by blending, and also discuss materials scie

  7. Proof of the Thin Sandwich Conjecture

    CERN Document Server

    Bartnik, R; Bartnik, Robert; Fodor, Gyula

    1993-01-01

    We prove that the Thin Sandwich Conjecture in general relativity is valid, provided that the data $(g_{ab},\\dot g_{ab})$ satisfy certain geometric conditions. These conditions define an open set in the class of possible data, but are not generically satisfied. The implications for the ``superspace'' picture of the Einstein evolution equations are discussed.

  8. On the Theory of Thin Shallow Shells

    Science.gov (United States)

    Nazarov, A. A.

    1956-01-01

    This report is concerned with the theory of thin shallow shells. It does not employ the lines of curvature as the coordinate system, but employs "almost cartesian coordinates" or the coordinates obtained by cutting the surface into two mutually orthogonal systems of parallel planes.

  9. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and prem

  10. Exotic thin films made from cobalt ferrite

    NARCIS (Netherlands)

    Lisfi, A.; Lisfi, A.; Williams, C.M.; Johnson, A.; Chang, P.; Corcoran, H.; Nguyen, L.T.; Lodder, J.C.; Morgan, W.; Soohoo, R.F.

    2005-01-01

    Epitaxial CoFe2O4 thin films have been grown by PLD on (100) MgO substrate. Two types of spin-reorientation have been observed in such films upon annealing or increasing the film-thickness. In the as-deposited layers and at low thickness the easy axis is confined to the normal to the film plane

  11. Thin Layer Chromatography (TLC) of Chlorophyll Pigments.

    Science.gov (United States)

    Foote, Jerry

    1984-01-01

    Background information, list of materials needed, procedures used, and discussion of typical results are provided for an experiment on the thin layer chromatography of chlorophyll pigments. The experiment works well in high school, since the chemicals used are the same as those used in paper chromatography of plant pigments. (JN)

  12. Polarization Fatigue in Ferroelectric Thin Films

    Institute of Scientific and Technical Information of China (English)

    王忆; K.H.WONG; 吴文彬

    2002-01-01

    The fatigue problem in ferroelectric thin films is investigated based on the switched charge per unit area versus switching cycles. The temperature, dielectric permittivity, voltage bias, frequency and defect valence dependent switching polarization properties are calculated quantitatively with an extended Dawber-Scott model. The results are in agreement with the recent experiments.

  13. Process development of thin strip steel casting

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  14. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic inst

  15. Residual stresses of thin, short rectangular plates

    Science.gov (United States)

    Andonian, A. T.; Danyluk, S.

    1985-01-01

    The analysis of the residual stresses in thin, short rectangular plates is presented. The analysis is used in conjunction with a shadow moire interferometry technique by which residual stresses are obtained over a large spatial area from a strain measurement. The technique and analysis are applied to a residual stress measurement of polycrystalline silicon sheet grown by the edge-defined film growth technique.

  16. Rechargeable Thin-film Lithium Batteries

    Science.gov (United States)

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  17. Bilaterally Microstructured Thin Polydimethylsiloxane Film Production

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Yu, Liyun; Hassouneh, Suzan Sager;

    2015-01-01

    Thin PDMS films with complex microstructures are used in the manufacturing of dielectric electro active polymer (DEAP) actuators, sensors and generators, to protect the metal electrode from large strains and to assure controlled actuation. The current manufacturing process at Danfoss Polypower A/...

  18. Microstructured extremely thin absorber solar cells

    DEFF Research Database (Denmark)

    Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed...

  19. Flexible thin-film NFC tags

    NARCIS (Netherlands)

    Myny, K.; Tripathi, A.K.; Steen, J.L. van der; Cobb, B.

    2015-01-01

    Thin-film transistor technologies have great potential to become the key technology for leafnode Internet of Things by utilizing the NFC protocol as a communication medium. The main requirements are manufacturability on flexible substrates at a low cost while maintaining good device performance char

  20. Bauschinger effect in unpassivated freestanding thin films

    NARCIS (Netherlands)

    Shishvan, S.S.; Nicola, L.; Van der Giessen, E.

    2010-01-01

    Two-dimensional (2D) discrete dislocation plasticity simulations are carried out to investigate the Bauschinger effect (BE) in freestanding thin films. The BE in plastic flow of polycrystalline materials is generally understood to be caused by inhomogeneous deformation during loading, leading to res

  1. Quasifree Mg–H thin films

    NARCIS (Netherlands)

    Baldi, A.; Palmisano, V.; Gonzalez-Silveira, M.; Pivak, Y.; Slaman, M.; Schreuders, H.; Dam, B.; Griessen, R.

    2009-01-01

    The thermodynamics of hydrogen absorption in Pd-capped Mg films are strongly dependent on the magnesium thickness. In the present work, we suppress such dependency by inserting a thin Ti layer between Mg and Pd. By means of optical measurements, we show that the surface energy contribution to the de

  2. Flexoelectricity in barium strontium titanate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiao Tong University, Xi' an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  3. Titanium diffusion in gold thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, William E. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States); Gregori, Giuliano, E-mail: g.gregori@fkf.mpg.d [California NanoSystems Institute, University of California, Santa Barbara, CA 93106-5050 (United States); Mates, Thomas [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States)

    2010-03-01

    In the present study, diffusion phenomena in titanium/gold (Ti/Au) thin films occurring at temperatures ranging between 200 and 400 {sup o}C are investigated. The motivation is twofold: the first objective is to characterize Ti diffusion into Au layer as an effect of different heat-treatments. The second goal is to prove that the implementation of a thin titanium nitride (TiN) layer between Ti and Au can remarkably reduce Ti diffusion. It is observed that Ti atoms can fully diffuse through polycrystalline Au thin films (260 nm thick) already at temperatures as a low as 250 {sup o}C. Starting from secondary ion mass spectroscopy data, the overall diffusion activation energy {Delta}E = 0.66 eV and the corresponding pre-exponential factor D{sub 0} = 5 x 10{sup -11} cm{sup 2}/s are determined. As for the grain boundary diffusivity, both the activation energy range 0.54 < {Delta}E{sub gb} < 0.66 eV and the pre-exponential factor s{sub 0}D{sub gb0} = 1.14 x 10{sup -8} cm{sup 2}/s are obtained. Finally, it is observed that the insertion of a thin TiN layer (40 nm) between gold and titanium acts as an effective diffusion barrier up to 400 {sup o}C.

  4. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c. depos...

  5. Thin-film photovoltaics: Buffer against degradation

    Science.gov (United States)

    Guha, Supratik

    2017-03-01

    Cheap, efficient, and stable thin photovoltaics that use abundant and non-toxic materials can deliver widespread renewable energy. New results using Earth-abundant and potentially cheap ZnO/Sb2Se3 solar cells indicate promising levels of stability.

  6. Resistance contact thin-film resistor

    Directory of Open Access Journals (Sweden)

    Spirin V. G.

    2008-10-01

    Full Text Available The analytical model of the calculation of the contact resistance of the thin-film resistor is Offered. The Explored dependency of the contact resistance from wedge of the pickling. The Considered influence adhesive layer on warm-up stability of the resistor. They Are Received formulas of the calculation systematic and casual inaccuracy contributed by contact resistance.

  7. Electrospinning of ultra-thin polymer fibers

    NARCIS (Netherlands)

    Jaeger, C.R.; Bergshoef, M.M.; Martin i Batlle, C.; Schönherr, H.; Vancso, G.J.

    1998-01-01

    The electrospinning technique was used to spin ultra-thin fibers from several polymer/solvent systems. The diameter of the electrospun fibers ranged from 16 nm to 2 μm. The morphology of these fibers was investigated with an atomic force microscope (AFM) and an optical microscope. Polyethylene oxide

  8. Electrical characterization of thin film ferroelectric capacitors

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Beelen, D.; Keur, W.; Schmitz, Jurriaan; Hueting, Raymond Josephus Engelbart

    2006-01-01

    Tunable capacitors can be used to facilitate the reduction of components in wireless technologies. The tunability of the capacitors is caused by the sensitivity of the relative dielectric constant to a change in polarization with electric field. Thin film ferroelectric MIM capacitors on silicon

  9. Electrical analysis of niobium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Graça, M.P.F., E-mail: mpfg@ua.pt [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Saraiva, M. [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Freire, F.N.A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Valente, M.A.; Costa, L.C. [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2015-06-30

    In this work, a series of niobium oxide thin films was deposited by reactive magnetron sputtering. The total pressure of Ar/O{sub 2} was kept constant at 1 Pa, while the O{sub 2} partial pressure was varied up to 0.2 Pa. The depositions were performed in a grounded and non-intentionally heated substrate, resulting in as-deposited amorphous thin films. Raman spectroscopy confirmed the absence of crystallinity. Dielectric measurements as a function of frequency (40 Hz–110 MHz) and temperature (100 K–360 K) were performed. The dielectric constant for the film samples with thickness (d) lower than 650 nm decreases with the decrease of d. The same behaviour was observed for the conductivity. These results show a dependence of the dielectric permittivity with the thin film thickness. The electrical behaviour was also related with the oxygen partial pressure, whose increment promotes an increase of the Nb{sub 2}O{sub 5} stoichiometry units. - Highlights: • Niobium oxide thin films were deposited by reactive magnetron sputtering. • XRD showed a phase change with the increase of the P(O{sub 2}). • Raman showed that increasing P(O{sub 2}), Nb{sub 2}O{sub 5} amorphous increases. • Conductivity tends to decrease with the increase of P(O{sub 2}). • Dielectric analysis indicates the inexistence of preferential grow direction.

  10. Surface roughness evolution of nanocomposite thin films

    NARCIS (Netherlands)

    Turkin, A; Pei, Y.T.; Shaha, K.P.; Chen, C.Q.; Vainchtein, David; Hosson, J.Th.M. De

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growin

  11. Process development of thin strip steel casting

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  12. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  13. Detecting Psychopathy from Thin Slices of Behavior

    Science.gov (United States)

    Fowler, Katherine A.; Lilienfeld, Scott O.; Patrick, Christopher J.

    2009-01-01

    This study is the first to demonstrate that features of psychopathy can be reliably and validly detected by lay raters from "thin slices" (i.e., small samples) of behavior. Brief excerpts (5 s, 10 s, and 20 s) from interviews with 96 maximum-security inmates were presented in video or audio form or in both modalities combined. Forty raters used…

  14. Strong field electrodynamics of a thin foil

    Science.gov (United States)

    Bulanov, S. S.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Rykovanov, S.; Pegoraro, F.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2017-03-01

    A new one-dimensional analytical model of a thin double layer foil interaction with a laser pulse is presented. It is based on one-dimensional electrodynamics. This model can be used for the study of high intensity laser pulse interactions with overdense plasmas, leading to frequency upshifting, high order harmonic generation, and ion acceleration in different regimes.

  15. An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode

    Science.gov (United States)

    DeAngelis, Thomas P.; Heineman, William R.

    1976-01-01

    Describes a unified experiment in which an optically transparent thin layer electrode is used to illustrate the techniques of thin layer electrochemistry, cyclic voltammetry, controlled potential coulometry, and spectroelectrochemistry. (MLH)

  16. Ultra thin continuously reinforced concrete pavement research in south Africa

    CSIR Research Space (South Africa)

    Perrie, BD

    2007-08-01

    Full Text Available Ultra thin continuously reinforced concrete pavements (UTCRCP), in literature also referred to as Ultra Thin Reinforced High Performance Concrete (UTHRHPC), have been used in Europe successfully as a rehabilitation measure on steel bridge decks...

  17. Characteristics of heat transfer fouling of thin stillage using model thin stillage and evaporator concentrates

    Science.gov (United States)

    Challa, Ravi Kumar

    The US fuel ethanol demand was 50.3 billion liters (13.3 billion gallons) in 2012. Corn ethanol was produced primarily by dry grind process. Heat transfer equipment fouling occurs during corn ethanol production and increases the operating expenses of ethanol plants. Following ethanol distillation, unfermentables are centrifuged to separate solids as wet grains and liquid fraction as thin stillage. Evaporator fouling occurs during thin stillage concentration to syrup and decreases evaporator performance. Evaporators need to be shutdown to clean the deposits from the evaporator surfaces. Scheduled and unscheduled evaporator shutdowns decrease process throughput and results in production losses. This research were aimed at investigating thin stillage fouling characteristics using an annular probe at conditions similar to an evaporator in a corn ethanol production plant. Fouling characteristics of commercial thin stillage and model thin stillage were studied as a function of bulk fluid temperature and heat transfer surface temperature. Experiments were conducted by circulating thin stillage or carbohydrate mixtures in a loop through the test section which consisted of an annular fouling probe while maintaining a constant heat flux by electrical heating and fluid flow rate. The change in fouling resistance with time was measured. Fouling curves obtained for thin stillage and concentrated thin stillage were linear with time but no induction periods were observed. Fouling rates for concentrated thin stillage were higher compared to commercial thin stillage due to the increase in solid concentration. Fouling rates for oil skimmed and unskimmed concentrated thin stillage were similar but lower than concentrated thin stillage at 10% solids concentration. Addition of post fermentation corn oil to commercial thin stillage at 0.5% increments increased the fouling rates up to 1% concentration but decreased at 1.5%. As thin stillage is composed of carbohydrates, protein, lipid

  18. Tailoring electronic structure of polyazomethines thin films

    Directory of Open Access Journals (Sweden)

    J. Weszka

    2010-09-01

    Full Text Available Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic devices.Findings: The method used allow for pure pristine polymer thin films to be prtepared without any unintentional doping taking place during prepoaration methods. This is a method based on polycondensation process, where polymer chain developing is running directly due to chemical reaction between molecules of bifunctional monomers. The method applied to prepare thin films of polyazomethines takes advantage of monomer transporting by mreans of neutral transport agent as pure argon is.Research limitations/implications: The main disadvantage of alternately conjugated polymers seems to be quite low mobility of charge carrier that is expected to be a consequence of their backbone being built up of sp2 hybridized carbon and nitrogen atoms. Varying technological conditions towards increasing reagents mass transport to the substrate is expected to give such polyazomethine thin films organization that phenylene rin stacking can result in special π electron systems rather than linear ones as it is the case.Originality/value: Our results supply with original possibilities which can be useful in ooking for good polymer materials for optoelectronic and photovoltaic applications. These results have been gained on polyazomethine thin films but their being isoelectronic counterpart to widely used poly p-phenylene vinylene may be very convenient to develop high efficiency polymer solar cells

  19. Workshop on thin film thermal conductivity measurements

    Science.gov (United States)

    Feldman, Albert; Balzaretti, Naira M.; Guenther, Arthur H.

    1998-04-01

    On a subject of considerable import to the laser-induced damage community, a two day workshop on the topic, Thin Film Thermal Conductivity Measurement was held as part of the 13th Symposium on Thermophysical Properties at the University of Colorado in Boulder CO, June 25 and 26, 1997. The Workshop consisted of 4 sessions of 17 oral presentations and two discussion sessions. Two related subjects of interest were covered; 1) methods and problems associated with measuring thermal conductivity ((kappa) ) of thin films, and 2) measuring and (kappa) of chemical vapor deposited (CVD) diamond. On the subject of thin film (kappa) measurement, several recently developed imaginative techniques were reviewed. However, several authors disagreed on how much (kappa) in a film differs from (kappa) in a bulk material of the same nominal composition. A subject of controversy was the definition of an interface. In the first discussion session, several questions were addressed, a principal one being, how do we know that the values of (kappa) we obtain are correct and is there a role for standards in thin film (kappa) measurement. The second discussion session was devoted to a round-robin interlaboratory comparison of (kappa) measurements on a set of CVD diamond specimens and several other specimens of lower thermal conductivity. Large interlaboratory differences obtained in an earlier round robin had been attributed to specimen inhomogeneity. Unfortunately, large differences were also observed in the second round robin even though the specimens were more homogenous. There was good consistency among the DC measurements, however, the AC measurements showed much greater variability. There was positive feedback from most of the attenders regarding the Workshop with nearly all respondents recommending another Workshop in three or fewer years. There was general recognition that thin film thermal conductivity measurements are important for predicting the resistance of optical coating

  20. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  1. Thin films for micro solid oxide fuel cells

    Science.gov (United States)

    Beckel, D.; Bieberle-Hütter, A.; Harvey, A.; Infortuna, A.; Muecke, U. P.; Prestat, M.; Rupp, J. L. M.; Gauckler, L. J.

    Thin film deposition as applied to micro solid oxide fuel cell (μSOFC) fabrication is an emerging and highly active field of research that is attracting greater attention. This paper reviews thin film (thickness ≤1 μm) deposition techniques and components relevant to SOFCs including current research on nanocrystalline thin film electrolyte and thin-film-based model electrodes. Calculations showing the geometric limits of μSOFCs and first results towards fabrication of μSOFCs are also discussed.

  2. Gestalt-binding of tropomyosin on actin during thin filament activation.

    Science.gov (United States)

    Lehman, William; Orzechowski, Marek; Li, Xiaochuan Edward; Fischer, Stefan; Raunser, Stefan

    2013-08-01

    Our thesis is that thin filament function can only be fully understood and muscle regulation then elucidated if atomic structures of the thin filament are available to reveal the positions of tropomyosin on actin in all physiological states. After all, it is tropomyosin influenced by troponin that regulates myosin-crossbridge cycling on actin and therefore controls contraction in all muscles. In addition, we maintain that a complete appreciation of thin filament activation also requires that the mechanical properties of tropomyosin itself are recognized and then related to the effect of myosin-association on actin. Taking the Gestalt-binding of tropomyosin into account, coupled with our electron microscopy structures and computational chemistry, we propose a comprehensive mechanism for tropomyosin regulatory movement over the actin filament surface that explains the cooperative muscle activation process. In fact, well-known point mutations of critical amino acids on the actin-tropomyosin binding interface disrupt Gestalt-binding and are associated with a number of inherited myopathies. Moreover, dysregulation of tropomyosin may also be a factor that interferes with the gatekeeping operation of non-muscle tropomyosin in the controlling interactions of a wide variety of cellular actin-binding proteins. The clinical relevance of Gestalt-binding is discussed in articles by the Marston and the Gunning groups in this special journal issue devoted to the impact of tropomyosin on biological systems.

  3. Thin Images Reflected in the Water: Narcissism and Girls' Vulnerability to the Thin-Ideal.

    Science.gov (United States)

    Thomaes, Sander; Sedikides, Constantine

    2016-10-01

    The purpose of this research is to test how adolescent girls' narcissistic traits-characterized by a need to impress others and avoid ego-threat-influence acute adverse effects of thin-ideal exposure. Participants (11-15 years; total N = 366; all female) reported their narcissistic traits. Next, in two experiments, they viewed images of either very thin or average-sized models, reported their wishful identification with the models (Experiment 2), and tasted high-calorie foods in an alleged taste test (both experiments). Narcissism kept girls from wishfully identifying with thin models, which is consistent with the view that narcissistic girls are prone to disengage from thin-ideal exposure. Moreover, narcissism protected vulnerable girls (those who experience low weight-esteem) from inhibiting their food intake, and led other girls (those who consider their appearance relatively unimportant) to increase their food intake. These effects did not generalize to conceptually related traits of self-esteem and perfectionism, and were not found for a low-calorie foods outcome, attesting to the specificity of findings. These experiments demonstrate the importance of narcissism at reducing girls' thin-ideal vulnerability. Girls high in narcissism disengage self-protectively from threats to their self-image, a strategy that renders at least subsets of them less vulnerable to the thin-ideal.

  4. Distribution and Radiative Forcing of Tropical Thin Cirrus Clouds

    Science.gov (United States)

    2009-12-01

    depths of thin cirrus clouds. 1. Introduction Numerous studies have demonstrated that thin cirrus clouds are frequently present near the tropical tropo ...Methodology a. Optical depth of tropical thin cirrus clouds Cirrus clouds are often present in the upper tropo - sphere or lower stratosphere, and more than

  5. A HYBRID THINNING ALGORITHM FOR BINARY TOPOGRAPHY MAP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A hybrid thinning algorithm for binary topography maps is proposed on the basis of parallel thinning templates in this paper.The algorithm has a high processing speed and the strong ability of noise immunity and preservation of connectivity and skeleton symmetry. Experimental results show that the algorithm can solve t he thinning problem of binary maps effectively.

  6. Potentiostatic Deposition and Characterization of Cuprous Oxide Thin Films

    OpenAIRE

    2013-01-01

    Electrodeposition technique was employed to deposit cuprous oxide Cu2O thin films. In this work, Cu2O thin films have been grown on fluorine doped tin oxide (FTO) transparent conducting glass as a substrate by potentiostatic deposition of cupric acetate. The effect of deposition time on the morphologies, crystalline, and optical quality of Cu2O thin films was investigated.

  7. Monte Carlo simulation of magnetic nanostructured thin films

    Institute of Scientific and Technical Information of China (English)

    Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu

    2004-01-01

    @@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.

  8. Practical design and production of optical thin films

    CERN Document Server

    Willey, Ronald R

    2002-01-01

    Fundamentals of Thin Film Optics and the Use of Graphical Methods in Thin Film Design Estimating What Can Be Done Before Designing Fourier Viewpoint of Optical Coatings Typical Equipment for Optical Coating Production Materials and Process Know-How Process Development Monitoring and Control of Thin Film Growth Appendix: Metallic and Semiconductor Material Graphs Author IndexSubject Index

  9. Growth induced magnetic anisotropy in crystalline and amorphous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, F.

    1998-07-20

    The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and Ni-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials. A brief summary of work done in each area is given.

  10. Nonlocal thin films in calculations of the Casimir force

    NARCIS (Netherlands)

    Esquivel-Sirvent, R.; Svetovoy, V.B.

    2005-01-01

    The Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than th

  11. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms

    DEFF Research Database (Denmark)

    Srinivasan, Supriya; Sadegh, Leila; Elle, Ida C;

    2008-01-01

    We investigated serotonin signaling in C. elegans as a paradigm for neural regulation of energy balance and found that serotonergic regulation of fat is molecularly distinct from feeding regulation. Serotonergic feeding regulation is mediated by receptors whose functions are not required for fat ...... of the nervous system to the perception of nutrient availability....... feeding behavior. These findings suggest that, as in mammals, C. elegans feeding behavior is regulated by extrinsic and intrinsic cues. Moreover, obesity and thinness are not solely determined by feeding behavior. Rather, feeding behavior and fat metabolism are coordinated but independent responses...

  12. Choroidal thinning in high myopia measured by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Ikuno Y

    2013-05-01

    Full Text Available Yasushi Ikuno, Satoko Fujimoto, Yukari Jo, Tomoko Asai, Kohji NishidaDepartment of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, JapanPurpose: To investigate the rate of choroidal thinning in highly myopic eyes.Patients and methods: A retrospective observational study of 37 eyes of 26 subjects (nine males and 17 females, mean age 39.6 ± 7.7 years with high myopia but no pathologies who had undergone spectral domain optical coherence tomography and repeated the test 1 year later (1 ± 0.25 year at Osaka University Hospital, Osaka, Japan. Patients older than 50 years with visual acuity worse than 20/40 or with whitish chorioretinal atrophy involving the macula were excluded. Two masked raters measured the choroidal thicknesses (CTs at the foveda, 3 mm superiorly, inferiorly, temporally, and nasally on the images and averaged the values. The second examination was about 365 days after the baseline examination. The CT reduction per year (CTRPY was defined as (CT 1 year after - baseline CT/days between the two examinations × 365. The retinal thicknesses were also investigated.Results: The CTRPY at the fovea was −1.0 ± 22.0 µm (range –50.2 to 98.5 at the fovea, –6.5 ± 24.3 µm (range −65.8 to 90.2 temporally, –0.5 ± 22.3 µm (range –27.1 to 82.5 nasally, –9.7 ± 21.7 µm (range –40.1 to 60.1 superiorly, and –1.4 ± 25.5 µm (range –85.6 to 75.2 inferiorly. There were no significant differences in the CTRPY at each location (P = 0.34. The CT decreased significantly (P < 0.05 only superiorly. The superior CTRPY was negatively correlated with the axial length (P < 0.05. The retinal thickness at the fovea did not change. Stepwise analysis for CTRPY selected axial length (P = 0.04, R2 = 0.13 and age (P = 0.08, R2 = 0.21 as relevant factors.Conclusions: The highly myopic choroid might gradually thin and be affected by many factors. Location and axial length are key factors to regulate the rate of choroidal

  13. A Simple Substrate Heater Device With Temperature Controller for Thin Film Preparation

    Directory of Open Access Journals (Sweden)

    G. Rendón

    2012-08-01

    Full Text Available A simple substrate heater and its temperature controller were designed and built in order to prepare thin films in a highvacuum deposition system. The substrate heater was elaborated with a glass-ceramic body and a molybdenum foilheater. The applied power and the temperature are regulated by a power controller board using a microcontrollerprogrammed with a proportional-integrative-derivative algorithm. The heater/controller system was tested in a highvacuum deposition system and the results of its characterization at 100, 200, 300 and 400 °C are presented. Avariation in temperature better than ± 0.5 °C was obtained for all the tested temperatures. An application of thesubstrate heater is demonstrated by evaporating gold thin films on heated glass substrates.

  14. Method of transferring a thin crystalline semiconductor layer

    Science.gov (United States)

    Nastasi, Michael A.; Shao, Lin; Theodore, N. David

    2006-12-26

    A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.

  15. Thin film bismuth iron oxides useful for piezoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  16. Vibrations in High Speed Milling of Thin-walled Components

    Institute of Scientific and Technical Information of China (English)

    WANG Tongyue; HE Ning; LI Liang

    2006-01-01

    Thin-walled structures have been widely used in the aerospace industry. The dynamic interaction between the milling cutter and thin-walled workpiece can easily lead to vibration. This paper investigates the vibration caused during milling the thin-walled workpiece on the NC machining center, presents a theoretical milling vibration model of thin-walled beam. The model was verified by using milling experiments and numerical simulations. Some valuable conclusions are derived, this will be references to scientific research and guides to the vibration-free milling of thin-walled structures at different cutting speeds.

  17. Using global gene expression to discriminate thin melanomas with poor outcomes.

    Science.gov (United States)

    Hothem, Zachary; Bayci, Andrew; Thibodeau, Bryan J; Ketelsen, Billie E; Fortier, Laura E; Uzieblo, Alison F; Cosner, Diane; Totoraitis, Kristin; Keidan, Richard D; Wilson, George D

    2017-01-01

    Most melanomas present as thin lesions (≤1.0 mm) with a good prognosis; however, a small percentage of patients with thin lesions experience recurrence or metastasis. The aim of our study was to identify a distinct pattern of gene expression within thin melanomas known to have eventually metastasized to regional lymph nodes or distant sites compared with those that followed the typical course with good response to wide local excision alone. Patients who were disease-free for a minimum of 10 y served as controls (n = 10) to the experimental group who developed metastasis (n = 9). Laser capture microdissection was used to specifically isolate cancer cells from formalin-fixed paraffin-embedded tissue with subsequent gene expression analysis on Affymetrix Human Transcriptome Array 2.0 Arrays. Although gene expression differences were observed between the patients with thin melanoma with poor clinical outcome and those with good clinical outcome, neither the number of genes nor the magnitude of the fold difference was very substantial or significant. Cluster analysis with this subset of genes could definitively separate a subset of the poor responders from the good responders, but there remained a mixed group of tumors that could not be predicted from gene expression alone. Pathway analysis identified cellular processes that were regulated based on the response, including categories commonly associated with melanoma progression. Ultimately, we concluded that there were very few differences between these groups. Future research will be required and investigation of the mutational landscape may be another strategy to uncover genomic changes that drive recurrence and metastasis in thin melanoma.

  18. Electrostatic Discharge Effects on Thin Film Resistors

    Science.gov (United States)

    Sampson, Michael J.; Hull, Scott M.

    1999-01-01

    Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.

  19. Multiferroic oxide thin films and heterostructures

    Science.gov (United States)

    Lu, Chengliang; Hu, Weijin; Tian, Yufeng; Wu, Tom

    2015-06-01

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  20. Fabrication of MEMS Resonators in Thin SOI

    CERN Document Server

    Grogg, D; Ionescu, Adrian Mihai

    2008-01-01

    A simple and fast process for micro-electromechanical (MEM) resonators with deep sub-micron transduction gaps in thin SOI is presented in this paper. Thin SOI wafers are important for advanced CMOS technology and thus are evaluated as resonator substrates for future co-integration with CMOS circuitry on a single chip. As the transduction capacitance scales with the resonator thickness, it is important to fabricate deep sub-micron trenches in order to achieve a good capacitive coupling. Through the combination of conventional UV-lithography and focused ion beam (FIB) milling the process needs only two lithography steps, enabling therefore a way for fast prototyping of MEM-resonators. Different FIB parameters and etching parameters are compared in this paper and their effect on the process are reported.

  1. Multiferroic oxide thin films and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chengliang, E-mail: cllu@mail.hust.edu.cn, E-mail: Tao.Wu@kaust.edu.sa [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Hu, Weijin; Wu, Tom, E-mail: cllu@mail.hust.edu.cn, E-mail: Tao.Wu@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Tian, Yufeng [School of Physics, Shandong University, Jinan 250100 (China)

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  2. Triboelectric Nanogenerator Using Lithium Niobate Thin Film

    Science.gov (United States)

    Geng, Juan; Zhang, Xinzheng; Kong, Yongfa; Xu, Jingjun

    2017-06-01

    We present a triboelectric nanogenerator (TENG) using a lithium niobate thin film, as one of the triboelectric pairs which was grown on a silicon substrate by laser molecule beam epitaxy (LMBE). The designed TENG has the advantages of simple structure, easy fabrication, small size (1.1*1.0*0.15 cm3). An open-circuit voltage of 136 V and a short-circuit current of 8.40 μA have been achieved. The maximum output power is 307.5μW under the load resistance of 10MΩ. This is the first time to use lithium niobate thin film as one of the friction pair, which may make it possible to expand the application of triboelectric nanogenerator to optical field.

  3. Thin Films of Polypyrrole on Particulate Aluminum

    Science.gov (United States)

    2009-02-01

    C H R I S T O P H E R V E T T E R , X I A O N I N G Q I , S U B R A M A N Y A M V . K A S I S O M A Y A J U L A , A N D Thin Films of Polypyrrole on...1. REPORT DATE FEB 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Thin Films of Polypyrrole on...layer 3 Why Polypyrrole /Flake? Polypyrrole  Poor mechanical properties  Poor adhesion  Solubility issues  Continuous layer needed 4 Polypyrrole Coated

  4. COMPACT SUPPORT THIN PLATE SPLINE ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Li Jing; Yang Xuan; Yu Jianping

    2007-01-01

    Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other and minimizes the bending energy of the whole image. However,in real application, such scheme would deform the image globally when deformation is only local.CSRBF needs manually determine the support size, although its deformation is limited local. Therefore,to limit the effect of the deformation, new Compact Support Thin Plate Spline algorithm (CSTPS) is approached, analyzed and applied. Such new approach gains optimal mutual information, which shows its registration result satisfactory. The experiments also show it can apply in both local and global elastic registration.

  5. Thin Magnetically Soft Wires for Magnetic Microsensors

    Directory of Open Access Journals (Sweden)

    Arcady Zhukov

    2009-11-01

    Full Text Available Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires with reduced geometrical dimensions (of order of 1–30 μm in diameter have gained importance within the last few years. These thin wires combine excellent soft magnetic properties (with coercivities up to 4 A/m with attractive magneto-transport properties (Giant Magneto-impedance effect, GMI, Giant Magneto-resistance effect, GMR and an unusual re-magnetization process in positive magnetostriction compositions exhibiting quite fast domain wall propagation. In this paper we overview the magnetic and magneto-transport properties of these microwires that make them suitable for microsensor applications.

  6. Review of Zinc Oxide Thin Films

    Science.gov (United States)

    2014-12-23

    the increase in ionized impurity scattering.       Figure 1.48: Resistivity versus %Ga [125]  ZnO:Ga films were also  deposited  by  spray   pyrolysis ...Ilican  [137]  deposited   In‐doped  ZnO  thin  films  onto  glass  substrates  by  the  spray   pyrolysis   method at 350 oC substrate temperature. The...structure  of  ZnO  presented  the  following  findings:     The Polycrystalline ZnO  thin  films were  deposited  on a glass  substrate by a  spray

  7. A conserved quantity in thin body dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, J.A., E-mail: hannaj@vt.edu [Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Pendar, H. [Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2016-02-15

    Thin, solid bodies with metric symmetries admit a restricted form of reparameterization invariance. Their dynamical equilibria include motions with both rigid and flowing aspects. On such configurations, a quantity is conserved along the intrinsic coordinate corresponding to the symmetry. As an example of its utility, this conserved quantity is combined with linear and angular momentum currents to construct solutions for the equilibria of a rotating, flowing string, for which it is akin to Bernoulli's constant. - Highlights: • A conserved quantity relevant to the dynamical equilibria of thin structures. • A mixed Lagrangian–Eulerian non-material action principle for fixed windows of axially moving systems. • Analytical solutions for rotating, flowing strings (yarn balloons). • Noether meets Bernoulli in a textile factory.

  8. Magnetite thin films: A simulational approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazo-Zuluaga, J. [Grupo de Estado Solido y Grupo de Instrumentacion Cientifica y Microelectronica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia)]. E-mail: jomazo@fisica.udea.edu.co; Restrepo, J. [Grupo de Estado Solido y Grupo de Instrumentacion Cientifica y Microelectronica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia)

    2006-10-01

    In the present work the study of the magnetic properties of magnetite thin films is addressed by means of the Monte Carlo method and the Ising model. We simulate LxLxd magnetite thin films (d being the film thickness and L the transversal linear dimension) with periodic boundary conditions along transversal directions and free boundary conditions along d direction. In our model, both the three-dimensional inverse spinel structure and the interactions scheme involving tetrahedral and octahedral sites have been considered in a realistic way. Results reveal a power-law dependence of the critical temperature with the film thickness accordingly by an exponent {nu}=0.81 and ruled out by finite-size scaling theory. Estimates for the critical exponents of the magnetization and the specific heat are finally presented and discussed.

  9. Ultra-thin plasma radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Peter S.

    2017-01-24

    A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.

  10. MISSE 5 Thin Films Space Exposure Experiment

    Science.gov (United States)

    Harvey, Gale A.; Kinard, William H.; Jones, James L.

    2007-01-01

    The Materials International Space Station Experiment (MISSE) is a set of space exposure experiments using the International Space Station (ISS) as the flight platform. MISSE 5 is a co-operative endeavor by NASA-LaRC, United Stated Naval Academy, Naval Center for Space Technology (NCST), NASA-GRC, NASA-MSFC, Boeing, AZ Technology, MURE, and Team Cooperative. The primary experiment is performance measurement and monitoring of high performance solar cells for U.S. Navy research and development. A secondary experiment is the telemetry of this data to ground stations. A third experiment is the measurement of low-Earth-orbit (LEO) low-Sun-exposure space effects on thin film materials. Thin films can provide extremely efficacious thermal control, designation, and propulsion functions in space to name a few applications. Solar ultraviolet radiation and atomic oxygen are major degradation mechanisms in LEO. This paper is an engineering report of the MISSE 5 thm films 13 months space exposure experiment.

  11. Undulatory swimming in shear-thinning fluids

    CERN Document Server

    Gagnon, David A; Arratia, Paulo E

    2014-01-01

    The swimming behaviour of microorganisms can be strongly influenced by the rheology of their fluid environment. In this manuscript, we experimentally investigate the effects of shear-thinning viscosity on the swimming behaviour of an undulatory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer's kinematic data (including propulsion speed) and velocity fields. We find that shear-thinning viscosity modifies the velocity fields produced by the swimming nematode but does not modify the nematode's speed and beating kinematics. Velocimetry data show significant enhancement in local vorticity and circulation, and an increase in fluid velocity near the nematode's tail, compared to Newtonian fluids of similar effective viscosity. These findings are in good agreement with recent theoretical and numerical results.

  12. Photonic band gap in thin wire metamaterials.

    Science.gov (United States)

    Hock, Kai Meng

    2008-03-01

    We investigate the band structure of a class of photonic crystals made from only thin wires. Using a different method, we demonstrate that a complete photonic band gap is possible for such materials. Band gap materials normally consist of space filling dielectric or metal, whereas thin wires occupy a very small fraction of the volume. We show that this is related to the large increase in scattering at the Brillouin zone boundary. The method we developed brings together the calculation techniques in three different fields. The first is the calculation of scattering from periodic, tilted antennas, which we improve upon. The second is the standard technique for frequency selective surface design. The third is obtained directly from low energy electron diffraction theory. Good agreements with experiments for left handed materials, negative materials, and frequency selective surfaces are demonstrated.

  13. Sprayed lanthanum doped zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bouznit, Y., E-mail: Bouznit80@gmail.com [Laboratory of Materials Study, Jijel University, Jijel 18000 (Algeria); Beggah, Y. [Laboratory of Materials Study, Jijel University, Jijel 18000 (Algeria); Ynineb, F. [Laboratory of Thin Films and Interface, University Mentouri, Constantine 25000 (Algeria)

    2012-01-15

    Lanthanum doped zinc oxide thin films were deposited on soda-lime glass substrates using a pneumatic spray pyrolysis technique. The films were prepared using different lanthanum concentrations at optimum deposition parameters. We studied the variations in structural, morphological and optical properties of the samples due to the change of doping concentration in precursor solutions. X-ray diffraction (XRD) patterns show that pure and La-doped ZnO thin films are highly textured along c-axis perpendicular to the surface of the substrate. Scanning electron micrographs show that surface morphology of ZnO films undergoes a significant change according to lanthanum doping. All films exhibit a transmittance higher than 80% in the visible region.

  14. Sprayed lanthanum doped zinc oxide thin films

    Science.gov (United States)

    Bouznit, Y.; Beggah, Y.; Ynineb, F.

    2012-01-01

    Lanthanum doped zinc oxide thin films were deposited on soda-lime glass substrates using a pneumatic spray pyrolysis technique. The films were prepared using different lanthanum concentrations at optimum deposition parameters. We studied the variations in structural, morphological and optical properties of the samples due to the change of doping concentration in precursor solutions. X-ray diffraction (XRD) patterns show that pure and La-doped ZnO thin films are highly textured along c-axis perpendicular to the surface of the substrate. Scanning electron micrographs show that surface morphology of ZnO films undergoes a significant change according to lanthanum doping. All films exhibit a transmittance higher than 80% in the visible region.

  15. Adhesion and friction of thin metal films

    Science.gov (United States)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  16. Thin Film Electrodes for Rare Event Detectors

    Science.gov (United States)

    Odgers, Kelly; Brown, Ethan; Lewis, Kim; Giordano, Mike; Freedberg, Jennifer

    2017-01-01

    In detectors for rare physics processes, such as neutrinoless double beta decay and dark matter, high sensitivity requires careful reduction of backgrounds due to radioimpurities in detector components. Ultra pure cylindrical resistors are being created through thin film depositions onto high purity substrates, such as quartz glass or sapphire. By using ultra clean materials and depositing very small quantities in the films, low radioactivity electrodes are produced. A new characterization process for cylindrical film resistors has been developed through analytic construction of an analogue to the Van Der Pauw technique commonly used for determining sheet resistance on a planar sample. This technique has been used to characterize high purity cylindrical resistors ranging from several ohms to several tera-ohms for applications in rare event detectors. The technique and results of cylindrical thin film resistor characterization will be presented.

  17. Why are some galaxy disks extremely thin?

    CERN Document Server

    Banerjee, Arunima

    2012-01-01

    Some low surface brightness galaxies are known to have extremely thin stellar disks with the vertical to planar axes ratio 0.1 or less, often referred to as superthin disks. Although their existence is known for over three decades, the physical origin for the thin distribution is not understood. We model the stellar thickness for a two-component (gravitationally coupled stars and gas) disk embedded in a dark matter halo, for a superthin galaxy UGC 7321 which has a dense, compact halo, and compare with a typical dwarf galaxy HoII which has a non-compact halo. We show that while the presence of gas does constrain the disk thickness, it is the compact dark matter halo which plays the decisive role in determining the superthin disk distribution in low-mass disks. Thus the compact dark matter halo significantly affects the disk structure and this could be important for the early evolution of galaxies.

  18. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. [ed.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  19. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. (ed.)

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  20. Metallurgical quality of CSP thin slabs

    Institute of Scientific and Technical Information of China (English)

    Deguang Zhou; Jie Fu; Yonglin Kang; Zhongbing Wang; Jing Li; Zhongbo Xu

    2004-01-01

    The casting structure, chemical composition segregation, dendrite arm space, inclusiona and during the CSP (compact strip production) rolling process were investigated. The results show that the CSP thin slab has a feature of uniform fme grains, more columnar crystals, less central porosity and segregation etc. There is no great difference in macrostructure between the CSP thin slab and conventional slab; however, the fine dendrite structure of the CSP slab is more uniform. Moreover, the central porosity and segregation are obviously improved after the first pass; and the dendrite is bent along the rolling direction rather than broken into pieces.Small inclusions with the diameter less than 10 μm in the CSP slab are dominantly consisted of aluminates formed by A1 deoxidation and Ca treatment and not floating out of the melt. The large size inclusions found in the continuous casting slab are very few.

  1. Thin Silicon MEMS Contact-Stress Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kotovsky, J; Tooker, A; Horsley, D

    2010-03-22

    This thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid interface loads in embedded systems over tens of thousands of load cycles. Unlike all other interface load sensors, the CS sensor is extremely thin (< 150 {micro}m), provides accurate, high-speed measurements, and exhibits good stability over time with no loss of calibration with load cycling. The silicon CS sensor, 5 mm{sup 2} and 65 {micro}m thick, has piezoresistive traces doped within a load-sensitive diaphragm. The novel package utilizes several layers of flexible polyimide to mechanically and electrically isolate the sensor from the environment, transmit normal applied loads to the diaphragm, and maintain uniform thickness. The CS sensors have a highly linear output in the load range tested (0-2.4 MPa) with an average accuracy of {+-} 1.5%.

  2. Structures of magnetized thin accretion disks

    Institute of Scientific and Technical Information of China (English)

    LI; xiaoqing(李晓卿); JI; Haisheng(季海生)

    2002-01-01

    We investigate the magnetohydrodynamic (MHD) process in thin accretion disks. Therelevant momentum as well as magnetic reduction equations in the thin disk approximation areincluded. On the basis of these equations, we examine numerically the stationary structures, includingdistributions of the surface mass density, temperature and flow velocities of a disk around a youngstellar object (YSO). The numerical results are as follows: (i) There should be an upper limit to themagnitude of magnetic field, such an upper limit corresponds to the equipartition field. For relevantmagnitude of magnetic field of the disk's interior the disk remains approximately Keplerian. (ii) Thedistribution of effective temperature T(r) is a smoothly decreasing function of radius with power 1 corresponding to the observed radiation flux density, provided that the magnetic fieldindex γ= -1/2,is suitably chosen.

  3. Thin-film forces in pseudoemulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, V.; Radke, C.J. [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  4. Method for casting thin metal objects

    Energy Technology Data Exchange (ETDEWEB)

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  5. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  6. Thermal conductivity of nanoscale thin nickel films

    Institute of Scientific and Technical Information of China (English)

    YUAN Shiping; JIANG Peixue

    2005-01-01

    The inhomogeneous non-equilibrium molecular dynamics (NEMD) scheme is applied to model phonon heat conduction in thin nickel films. The electronic contribution to the thermal conductivity of the film is deduced from the electrical conductivity through the use of the Wiedemann-Franz law. At the average temperature of T = 300 K, which is lower than the Debye temperature ()D = 450 K,the results show that in a film thickness range of about 1-11 nm, the calculated cross-plane thermal conductivity decreases almost linearly with the decreasing film thickness, exhibiting a remarkable reduction compared with the bulk value. The electrical and thermal conductivities are anisotropic in thin nickel films for the thickness under about 10 nm. The phonon mean free path is estimated and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

  7. Rechargeable thin-film lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6-{mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin-film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin-film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin-film lithium batteries.

  8. Incoherent and Laser Photodeposition on Thin Films.

    Science.gov (United States)

    1980-09-01

    mixing system. Both a carbon dioxide and dry chemical fire extinguisher were on hand in case a fire was initiated by the compounds. The dimethvlzinc was...summarizes three months of experimental effort devoted toward the production of thin films by the photodissociation of organometallic molecules containing the...that the threshold wavelength for the photodissociation of both Zn- 0 and Se- (CH3 )2 was approximately 2420A. Consequently, these laser photodeposition

  9. Thin-ice Arctic Acoustic Window (THAAW)

    Science.gov (United States)

    2014-09-30

    STATEMENT A. Approved for public release; distribution is unlimited. Thin- ice Arctic Acoustic Window (THAAW) Peter F. Worcester Scripps Institution of...of the ice cover and extensive warming of the intermediate layers. The multiyear ice is melting . Ice keels are getting smaller. With more open water...determine the fundamental limits to signal processing in the Arctic imposed by ocean and ice processes. The hope is that these first few new steps will

  10. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  11. Flexible Thin Metal Film Thermal Sensing System

    Science.gov (United States)

    Thomsen, Donald Laurence (Inventor)

    2012-01-01

    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.

  12. Variational thermodynamics of relativistic thin disks

    Science.gov (United States)

    Gutiérrez-Piñeres, Antonio C.; Lopez-Monsalvo, Cesar S.; Quevedo, Hernando

    2015-12-01

    We present a relativistic model describing a thin disk system composed of two fluids. The system is surrounded by a halo in the presence of a non-trivial electromagnetic field. We show that the model is compatible with the variational multifluid thermodynamics formalism, allowing us to determine all the thermodynamic variables associated with the matter content of the disk. The asymptotic behavior of these quantities indicates that the single fluid interpretation should be abandoned in favor of a two-fluid model.

  13. Massive thin accretion discs. Pt. 2; Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Laor, A.; Netzer, H. (Tel Aviv Univ. (Israel)); Piran, T. (Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics)

    1990-02-15

    Thin accretion discs around massive black holes are believed to produce much of the observed optical-UV emission from AGN. Classical calculations predict that this radiation is highly polarized at large inclination angles, in contrast to observations of quasars and Seyfert galaxies. We have calculated the spectrum and polarization of such discs using an improved radiative transfer method with all the relevant opacity sources, and a full general relativistic treatment of the radiation propagation. (author).

  14. Flexural modulus identification of thin polymer sheets

    Science.gov (United States)

    Gluhihs, S.; Kovalovs, A.; Tishkunovs, A.; Chate, A.

    2011-06-01

    The method of determination of the flexural Young's modulus is based on a solution to the problem of compression of a thin-walled cylindrical specimen by two parallel planes (TWCS method). This method was employed to calculate the flexural modulus for PET polymer compositions. The flexural modules received by TWCS method were verified by comparing the experimentally measured eigenfrequencies by Polytec vibrometer with numerical results from ANSYS program.

  15. Flexural modulus identification of thin polymer sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gluhihs, S; Kovalovs, A; Tishkunovs, A; Chate, A, E-mail: s_gluhih@inbox.lv [Riga Technical University, Institute of Materials and Structures, Azenes 16/22, LV-1048, Riga (Latvia)

    2011-06-23

    The method of determination of the flexural Young's modulus is based on a solution to the problem of compression of a thin-walled cylindrical specimen by two parallel planes (TWCS method). This method was employed to calculate the flexural modulus for PET polymer compositions. The flexural modules received by TWCS method were verified by comparing the experimentally measured eigenfrequencies by Polytec vibrometer with numerical results from ANSYS program.

  16. Quantized Nanocrystalline CdTe Thin Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanocrystalline CdTe thin films were prepared by asymmetric rectangular pulse electrodeposition in organic solution at 110°C. STM image shows a porous network morphology constructed by interconnected spherical CdTe crystallites with a mean diameter of 4.2 nm. A pronounced size quantization was indicated in the action and absorption spectra. Potentials dependence dual conductive behavior was revealed in the photocurrent-potential (I-V) curves.

  17. Surface morphology of thin films polyoxadiazoles

    OpenAIRE

    J. Weszka; M.M. Szindler; M. Chwastek-Ogierman; BRUMA M.; P. Jarka; Tomiczek, B.

    2011-01-01

    urpose: The purpose of this paper was to analyse the surface morphology of thin films polyoxadiazoles. Design/methodology/approach: SSix different polymers which belong to the group of polyoxadiazoles were dissolved in the solvent NMP. Each of these polymer was deposited on a glass substrate and a spin coating method was applied with a spin speed of 1000, 2000 and 3000 rev/min. Changes in surface topography and roughness were observed. An atomic force microscope AFM Park System has been used....

  18. Transport properties of nanoperforated Nb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Trezza, M., E-mail: trezza@sa.infn.i [Laboratorio Regionale SuperMat, CNR-INFM Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Baronissi I-84081 (Italy); Cirillo, C. [Laboratorio Regionale SuperMat, CNR-INFM Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Baronissi (Saudi Arabia) I-84081 (Italy); Prischepa, S.L. [State University of Informatics and RadioElectronics, P. Brovka Street 6, Minsk 220013 (Belarus); Attanasio, C. [Laboratorio Regionale SuperMat, CNR-INFM Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Baronissi I-84081 (Italy)

    2010-10-01

    Porous silicon, obtained by electrochemical etching, has been used as a substrate for the growth of nanoperforated Nb thin films. The films, deposited by UHV magnetron sputtering, inherited from the Si substrates their structure, made of holes of 10 nm diameter and of 20 and 40 nm spacing, which provide an artificial pinning lattice. Commensurability effects between the Abrikosov vortex lattice and the artificial array of holes were investigated by transport measurements.

  19. Thin-shell wormholes linearization stability

    CERN Document Server

    Poisson, E; Poisson, Eric; Visser, Matt

    1995-01-01

    The class of spherically-symmetric thin-shell wormholes provides a particularly elegant collection of exemplars for the study of traversable Lorentzian wormholes. In the present paper we consider linearized (spherically symmetric) perturbations around some assumed static solution of the Einstein field equations. This permits us to relate stability issues to the (linearized) equation of state of the exotic matter which is located at the wormhole throat.

  20. Cathodoluminescence degradation of PLD thin films

    Science.gov (United States)

    Swart, H. C.; Coetsee, E.; Terblans, J. J.; Ntwaeaborwa, O. M.; Nsimama, P. D.; Dejene, F. B.; Dolo, J. J.

    2010-12-01

    The cathodoluminescence (CL) intensities of Y2SiO5:Ce3+, Gd2O2S:Tb3+ and SrAl2O4:Eu2+,Dy3+ phosphor thin films that were grown by pulsed laser deposition (PLD) were investigated for possible application in low voltage field emission displays (FEDs) and other infrastructure applications. Several process parameters (background gas, laser fluence, base pressure, substrate temperature, etc.) were changed during the deposition of the thin films. Atomic force microscopy (AFM) was used to determine the surface roughness and particle size of the different films. The layers consist of agglomerated nanoparticle structures. Samples with good light emission were selected for the electron degradation studies. Auger electron spectroscopy (AES) and CL spectroscopy were used to monitor changes in the surface chemical composition and luminous efficiency of the thin films. AES and CL spectroscopy were done with 2 keV energy electrons. Measurements were done at 1×10-6 Torr oxygen pressure. The formation of different oxide layers during electron bombardment was confirmed with X-ray photoelectron spectroscopy (XPS). New non-luminescent layers that formed during electron bombardment were responsible for the degradation in light intensity. The adventitious C was removed from the surface in all three cases as volatile gas species, which is consistent with the electron stimulated surface chemical reaction (ESSCR) model. For Y2SiO5:Ce3+ a luminescent SiO2 layer formed during the electron bombardment. Gd2O3 and SrO thin films formed on the surfaces of Gd2O2S:Tb3+ and SrAl2O4:Eu2+,Dy3+, respectively, due to ESSCRs.

  1. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  2. Perovskite thin films via atomic layer deposition.

    Science.gov (United States)

    Sutherland, Brandon R; Hoogland, Sjoerd; Adachi, Michael M; Kanjanaboos, Pongsakorn; Wong, Chris T O; McDowell, Jeffrey J; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J; Sargent, Edward H

    2015-01-01

    A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3 NH3 PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm(-1) .

  3. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  4. Pulsed laser deposition of pepsin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Nogradi, A. [Department of Ophthalmology, University of Szeged, H-6720, Szeged, Koranyi fasor 10-11 (Hungary)

    2005-07-15

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ({lambda} = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm{sup 2}. The pressure in the PLD chamber was 2.7 x 10{sup -3} Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm{sup 2}. The protein digesting capacity of the transferred pepsin was tested by adapting a modified 'protein cube' method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  5. Thin, thick and dark discs in LCDM

    CERN Document Server

    Read, J I; Agertz, O; Debattista, Victor P

    2008-01-01

    In a LCDM cosmology, the Milky Way accretes satellites into the stellar disc. We use cosmological simulations to assess the frequency of near disc plane and higher inclination accretion events, and collisionless simulations of satellite mergers to quantify the final state of the accreted material and the effect on the thin disc. On average, a Milky Way-sized galaxy has 1.5 subhalos with vmax>80km/s; 5 with vmax>60km/s; and 13 with vmax>40km/s merge at redshift z>1. A third of these merge at an impact angle 20 degrees) are twice as likely as low inclination ones. These lead to structures that closely resemble the recently discovered inner/outer stellar halos. They also do more damage to the Milky Way stellar disc creating a more pronounced flare, and warp; both long-lived and consistent with current observations. The most massive mergers (vmax > 80km/s) heat t he thin disc enough to produce a thick disc. These heated thin disc stars are essential for obtaining a thick disc as massive as that seen in the Milky ...

  6. A new look on blood shear thinning

    Science.gov (United States)

    Abkarian, Manouk; Lanotte, Luca; Fromental, Jean-Marc; Mendez, Simon; Fedosov, Dmitry; Gompper, Gerhard; Mauer, Johannes; Claveria, Viviana

    2015-11-01

    Blood is a shear-thinning fluid. At shear rates γ˙ blood cells (RBCs). For higher γ˙ in the range 10 - 1000 s-1 , where RBCs flow as single elements, studies demonstrated that RBCs suspended in a viscous fluid mimicking the viscosity of whole blood, deformed into ellipsoids aligned steadily in the direction of the flow, while their membrane rotated about their center of mass like a tank-tread. Such drop-like behavior seemed to explain shear-thinning. Here, using rheometers, microfluidics and simulations, we show that the dynamics of single RBCs in plasma-like fluids display a different sequence of deformation for increasing shear rates going from discocytes to successively, stomatocytes, folded stomatocytes, trilobes and tetralobes, but never ellipsoids. This result is also identical for physiological hematocrits. We correlate this shape diagram to the different regimes in blood rheology for high shear rates and propose a new-look on the interpretation of blood shear-thinning behavior.

  7. Cortical thinning in former professional soccer players.

    Science.gov (United States)

    Koerte, Inga K; Mayinger, Michael; Muehlmann, Marc; Kaufmann, David; Lin, Alexander P; Steffinger, Denise; Fisch, Barbara; Rauchmann, Boris-Stephan; Immler, Stefanie; Karch, Susanne; Heinen, Florian R; Ertl-Wagner, Birgit; Reiser, Maximilian; Stern, Robert A; Zafonte, Ross; Shenton, Martha E

    2016-09-01

    Soccer is the most popular sport in the world. Soccer players are at high risk for repetitive subconcussive head impact when heading the ball. Whether this leads to long-term alterations of the brain's structure associated with cognitive decline remains unknown. The aim of this study was to evaluate cortical thickness in former professional soccer players using high-resolution structural MR imaging. Fifteen former male professional soccer players (mean age 49.3 [SD 5.1] years) underwent high-resolution structural 3 T MR imaging, as well as cognitive testing. Fifteen male, age-matched former professional non-contact sport athletes (mean age 49.6 [SD 6.4] years) served as controls. Group analyses of cortical thickness were performed using voxel-based statistics. Soccer players demonstrated greater cortical thinning with increasing age compared to controls in the right inferolateral-parietal, temporal, and occipital cortex. Cortical thinning was associated with lower cognitive performance as well as with estimated exposure to repetitive subconcussive head impact. Neurocognitive evaluation revealed decreased memory performance in the soccer players compared to controls. The association of cortical thinning and decreased cognitive performance, as well as exposure to repetitive subconcussive head impact, further supports the hypothesis that repetitive subconcussive head impact may play a role in early cognitive decline in soccer players. Future studies are needed to elucidate the time course of changes in cortical thickness as well as their association with impaired cognitive function and possible underlying neurodegenerative process.

  8. Crystallization of zirconia based thin films.

    Science.gov (United States)

    Stender, D; Frison, R; Conder, K; Rupp, J L M; Scherrer, B; Martynczuk, J M; Gauckler, L J; Schneider, C W; Lippert, T; Wokaun, A

    2015-07-28

    The crystallization kinetics of amorphous 3 and 8 mol% yttria stabilized zirconia (3YSZ and 8YSZ) thin films grown by pulsed laser deposition (PLD), spray pyrolysis and dc-magnetron sputtering are explored. The deposited films were heat treated up to 1000 °C ex situ and in situ in an X-ray diffractometer. A minimum temperature of 275 °C was determined at which as-deposited amorphous PLD grown 3YSZ films fully crystallize within five hours. Above 325 °C these films transform nearly instantaneously with a high degree of micro-strain when crystallized below 500 °C. In these films the t'' phase crystallizes which transforms at T > 600 °C to the t' phase upon relaxation of the micro-strain. Furthermore, the crystallization of 8YSZ thin films grown by PLD, spray pyrolysis and dc-sputtering are characterized by in situ XRD measurements. At a constant heating rate of 2.4 K min(-1) crystallization is accomplished after reaching 800 °C, while PLD grown thin films were completely crystallized already at ca. 300 °C.

  9. Design and characterization of thin film microcoolers

    Science.gov (United States)

    LaBounty, Chris; Shakouri, Ali; Bowers, John E.

    2001-04-01

    Thin film coolers can provide large cooling power densities compared to bulk thermoelectrics due to the close spacing of hot and cold junctions. Important parameters in the design of such coolers are investigated theoretically and experimentally. A three-dimensional (3D) finite element simulator (ANSYS) is used to model self-consistently thermal and electrical properties of a complete device structure. The dominant three-dimensional thermal and electrical spreading resistances acquired from the 3D simulation are also used in a one-dimensional model (MATLAB) to obtain faster, less rigorous results. Heat conduction, Joule heating, thermoelectric and thermionic cooling are included in these models as well as nonideal effects such as contact resistance, finite thermal resistance of the substrate and the heat sink, and heat generation in the wire bonds. Simulations exhibit good agreement with experimental results from InGaAsP-based thin film thermionic emission coolers which have demonstrated maximum cooling of 1.15 °C at room temperature. With the nonideal effects minimized, simulations predict that single stage thin film coolers can provide up to 20-30 °C degrees centigrade cooling with cooling power densities of several 1000 W/cm2.

  10. Photophysical properties of Alq3 thin films

    Science.gov (United States)

    Zawadzka, A.; Płóciennik, P.; Strzelecki, J.; Łukasiak, Z.; Sahraoui, B.

    2013-11-01

    This work contains investigation results of the photophysical properties of aluminum (III) tris(8-hydroxyquinoline) thin films. The Alq3 thin films were successfully fabricated by Physical Vapor Deposition technique. The films were grown on transparent: (quartz and glass) and semiconductor (n-type silica) substrates kept at room temperature during the deposition process. Selected films were annealed after fabrication in ambient atmosphere for 12 h at the temperature equal to 100 °C and 150 °C. Morphology of the films was investigated by AFM technique. Photophysical properties were characterized via photoluminescence, transmission, second and third harmonic generation measurements. The thin films exhibit high structural quality regardless of the annealing process, but the stability of the film can be improved by using an appropriate temperature during the annealing process. Photoluminescence of Alq3 films obtained in air were efficient and stable. The measurements of transmission, SHG and THG spectra allowed us to determine optical constant of the films. We find that the photophysical properties were strictly connected with the morphology and the annealing process significantly changes the structural properties of the films.

  11. Polycrystalline thin film materials and devices

    Energy Technology Data Exchange (ETDEWEB)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  12. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  13. Conformation of the troponin core complex in the thin filaments of skeletal muscle during relaxation and active contraction.

    Science.gov (United States)

    Knowles, Andrea C; Irving, Malcolm; Sun, Yin-Biao

    2012-08-03

    Contraction of skeletal and cardiac muscles is regulated by Ca(2+) binding to troponin in the actin-containing thin filaments, leading to an azimuthal movement of tropomyosin around the filament that uncovers the myosin binding sites on actin. Here, we use polarized fluorescence to determine the orientation of the C-terminal lobe of troponin C (TnC) in skeletal muscle cells as a step toward elucidating the molecular mechanism of troponin-mediated regulation. Assuming, as shown by X-ray crystallography, that this lobe of TnC is part of a well-defined troponin domain called the IT arm, we show that the coiled coil formed by troponin components I and T makes an angle of about 55° with the thin filament axis in relaxed muscle, in contrast with previous models based on electron microscopy in which this angle is close to 0°. The E helix of TnC makes an angle of about 45° with the thin filament axis. Both the IT coiled coil and the TnC E helix tilt by about 10° on muscle activation. By combining in situ measurements of the orientation of the IT arm and regulatory domain of troponin, which together form the troponin core complex, with published intermolecular distances between thin filament components, we derive models of thin filament structure in which the IT arm of troponin holds its regulatory domain close to the actin surface. Although the structure and function of troponin regions outside the core complex remain to be characterized, the present results provide useful constraints for molecular models of the mechanism of muscle regulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Combinatorial Gene Regulation Using Auto-Regulation

    Science.gov (United States)

    Hermsen, Rutger; Ursem, Bas; ten Wolde, Pieter Rein

    2010-01-01

    As many as 59% of the transcription factors in Escherichia coli regulate the transcription rate of their own genes. This suggests that auto-regulation has one or more important functions. Here, one possible function is studied. Often the transcription rate of an auto-regulator is also controlled by additional transcription factors. In these cases, the way the expression of the auto-regulator responds to changes in the concentrations of the “input” regulators (the response function) is obviously affected by the auto-regulation. We suggest that, conversely, auto-regulation may be used to optimize this response function. To test this hypothesis, we use an evolutionary algorithm and a chemical–physical model of transcription regulation to design model cis-regulatory constructs with predefined response functions. In these simulations, auto-regulation can evolve if this provides a functional benefit. When selecting for a series of elementary response functions—Boolean logic gates and linear responses—the cis-regulatory regions resulting from the simulations indeed often exploit auto-regulation. Surprisingly, the resulting constructs use auto-activation rather than auto-repression. Several design principles show up repeatedly in the simulation results. They demonstrate how auto-activation can be used to generate sharp, switch-like activation and repression circuits and how linearly decreasing response functions can be obtained. Auto-repression, on the other hand, resulted only when a high response speed or a suppression of intrinsic noise was also selected for. The results suggest that, while auto-repression may primarily be valuable to improve the dynamical properties of regulatory circuits, auto-activation is likely to evolve even when selection acts on the shape of response function only. PMID:20548950

  15. Thin-slab casting – New possibilities

    Indian Academy of Sciences (India)

    Amit Chatterjee; Sanjay Chandra

    2001-02-01

    Changes in the IT industry are known to proceed at a scorching pace. In sharp contrast, the rate of development in the steel industry is generally slow. Nonetheless, The impact of recent technical developments on the steel industry has been quite significant. The production chain from iron ore to final rolled steel is a long one and the shortening of this length has long been the endeavour of scientists and engineers. The initial development came in the form of speeding up the process of steelmaking by reducing the slow open-hearth process (8 h tap-to-tap time) with the 45 min tap-tp-tap time of the Basic Oxygen Furnace (BOF) process. Significant developments thereafter have been in the process of continuous production of billets and blooms from liquid steel thereby doing away with the large blooming mills needed for rolling ingots. For a fairly long time after the stabilisation of continuous casting. hot rolling involved reheating thick (200-250 mm) slabs and reducing them in a hot-strip mill. The advent of thin-slab casters has made even these large hot-strip mills redundant. The new installtion produce thin slabs (50-70 mm) that are directly rolled into strips without the need of an intermediate furnace for raising the stock temperature; the so-called tunnel furance prior to the rolling stands serving only to equalise stock temperatures. Additionally, what started as a step for reducing investment in hot rolling has, in fact, given new opportunity for direct hot rolling of thickness that were, for long, considered to be feasible only through the cold-rolling route. This article discuss the slow but steady encroachment of hot-rolled sheets into the domain of strip thickness hitherto produced by cold rolling and tries to show how the development of thin-slab casters has allowed this process to be accelerated. A techno-economic analysis of thin-slab casting has been presented along with the benefits that arise when a thin-slab caster is linked to the blast furnace

  16. Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se₂/ZnS thin film solar cells.

    Science.gov (United States)

    Tan, Xiao-Hui; Chen, Yu; Liu, Ye-Xiang

    2014-05-20

    Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se₂ (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased.

  17. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  18. Deposition and characterization of CuInS2 thin films deposited over copper thin films

    Science.gov (United States)

    Thomas, Titu; Kumar, K. Rajeev; Kartha, C. Sudha; Vijayakumar, K. P.

    2015-06-01

    Simple, cost effective and versatile spray pyrolysis method is effectively combined with vacuum evaporation for the deposition of CuIns2 thin films for photovoltaic applications. In the present study In2s3 was spray deposited over vacuum evaporated Cu thin films and Cu was allowed to diffuse in to the In2S3 layer to form CuInS2. To analyse the dependence of precursor volume on the formation of CuInS2 films structural, electrical and morphological analzes are carried out. Successful deposition of CuInS2thin films with good crystallinity and morphology with considerably low resistivity is reported in this paper.

  19. Inorganic and Organic Solution-Processed Thin Film Devices

    Institute of Scientific and Technical Information of China (English)

    Morteza Eslamian

    2017-01-01

    Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging tech-nologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials, conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique prop-erties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.

  20. Trout Stream Special Regulations

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer shows Minnesota trout streams that have a special regulation as described in the 2006 Minnesota Fishing Regulations. Road crossings were determined using...

  1. Effects of food limitation and emigration on self-thinning in experimental minnow cohorts

    Science.gov (United States)

    Dunham, J.B.; Dickerson, B. R.; Beever, E.; Duncan, R. D.; Vinyard, G.L.

    2000-01-01

    1. The theory of food-regulated self-thinning (FST) for mobile animals predicts population density (N) to be an inverse function of mean body mass (W) scaled to an exponent (b), such that N = k W−b, where k is a constant. FST also predicts energy requirements (or energy flow) to remain constant over time (termed energetic equivalence) as losses to cohorts (e.g. emigration and mortality) are balanced by increased growth of surviving individuals.

  2. Somatic Embryogenesis of Lilium from Microbulb Transverse Thin Cell Layers.

    Science.gov (United States)

    Marinangeli, Pablo

    2016-01-01

    A reliable somatic embryogenesis protocol is a prerequisite for application of other plant biotechniques. Several protocols were reported for genus Lilium, with variable success. Between them, transverse Thin Cell Layers (tTCL) were used efficiently to induce indirect somatic embryogenesis of Lilium. Somatic embryogenesis potential is dependent on the genotype, explant, and culture medium composition, especially as for plant growth regulators and environmental conditions. Usually, the process comprises three phases: embryogenic callus induction, embryogenic callus proliferation and somatic embryo germination. Somatic embryo germination can be achieved in light or dark. In the first case, complete plantlets are formed, with green leaves and pseudobulb in the base. In darkness, microbulbs are formed from single somatic embryos or clusters. A last phase of microbulb enlargement allows plantlets or microbulbs to increase their biomass. These enlarged microbulbs do not need special acclimatization conditions when transferred to soil and quickly produce sturdy plants. This chapter describes a protocol for somatic embryogenesis of Lilium using tTCL from microbulbs.

  3. Electrochromic Characterization of Electrodeposited WO3 Thin Films

    Science.gov (United States)

    Vijayalakshmi, R.; Jayachandran, M.; Sanjeeviraja, C.

    2002-12-01

    The electrochromic properties of certain transition metal oxides have been studied for several years resulting in commercial films are deposited as thin layers (0.1 to 0.4 microns) onto a transparent conductive automotive mirror and sun-glass products. The largest potential application of electrochromics is in window to regulate heat and light flow. Fabrication cost is one of the greatest barriers for large area development of the smart windows. Tungsten trioxide (WO3) can be colored deeply in with an optical irradiation of appropriate energy (photochromism) or with an applied electric field (electrochromism). These processes have received considerable attention because of their potential application in electrochromic windows, display devices, sensors, and so on. For these purposes, tungsten trioxide films prepared by various physical methods such as molecular beam epitaxy, CVD, etc have been reported. These methods are generally expensive and it is difficult to form large area films. However electrodeposition method is probably most economical method for making the films in addition to its relative ease in forming in large area films. In this paper, tungsten trioxide (WO3) films are prepared through the electrodeposition route and these films are used to study the electrochromic behavior in the various electrolytes by changing the concentrations. When coloration, the film attains deep blue color and in reduced state it becomes colorless. After the ion intercalation, the optical properties are also studied in the UV-Vis-NIR region.

  4. Hepcidin: regulation of the master iron regulator

    Science.gov (United States)

    Rishi, Gautam; Wallace, Daniel F.; Subramaniam, V. Nathan

    2015-01-01

    Iron, an essential nutrient, is required for many diverse biological processes. The absence of a defined pathway to excrete excess iron makes it essential for the body to regulate the amount of iron absorbed; a deficiency could lead to iron deficiency and an excess to iron overload and associated disorders such as anaemia and haemochromatosis respectively. This regulation is mediated by the iron-regulatory hormone hepcidin. Hepcidin binds to the only known iron export protein, ferroportin (FPN), inducing its internalization and degradation, thus limiting the amount of iron released into the blood. The major factors that are implicated in hepcidin regulation include iron stores, hypoxia, inflammation and erythropoiesis. The present review summarizes our present knowledge about the molecular mechanisms and signalling pathways contributing to hepcidin regulation by these factors. PMID:26182354

  5. General Theories of Regulation

    NARCIS (Netherlands)

    Hertog, J.A. den

    1999-01-01

    This chapter makes a distinction between three types of theories of regulation: public interest theories, the Chicago theory of regulation and the public choice theories. The Chicago theory is mainly directed at the explanation of economic regulation; public interest theories and public choice theor

  6. Polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  7. Back diffusion from thin low permeability zones.

    Science.gov (United States)

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2015-01-06

    Aquitards can serve as long-term contaminant sources to aquifers when contaminant mass diffuses from the aquitard following aquifer source mass depletion. This study describes analytical and experimental approaches to understand reactive and nonreactive solute transport in a thin aquitard bounded by an adjacent aquifer. A series of well-controlled laboratory experiments were conducted in a two-dimensional flow chamber to quantify solute diffusion from a high-permeability sand into and subsequently out of kaolinite clay layers of vertical thickness 15 mm, 20 mm, and 60 mm. One-dimensional analytical solutions were developed for diffusion in a finite aquitard with mass exchange with an adjacent aquifer using the method of images. The analytical solutions showed very good agreement with measured breakthrough curves and aquitard concentration distributions measured in situ by light reflection visualization. Solutes with low retardation accumulated more stored mass with greater penetration distance in the aquitard compared to high-retardation solutes. However, because the duration of aquitard mass release was much longer, high-retardation solutes have a greater long-term back diffusion risk. The error associated with applying a semi-infinite domain analytical solution to a finite diffusion domain increases as a function of the system relative diffusion length scale, suggesting that the solutions using image sources should be applied in cases with rapid solute diffusion and/or thin clay layers. The solutions presented here can be extended to multilayer aquifer/low-permeability systems to assess the significance of back diffusion from thin layers.

  8. Theoretical investigation of the thermodynamic properties of metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Vu Van [Vietnam Education Publishing House, 81 Tran Hung Dao, Hanoi (Viet Nam); Phuong, Duong Dai [Hanoi National University of Education, 136 Xuan Thuy, Hanoi (Viet Nam); Hoa, Nguyen Thi [University of Transport and Communications, Lang Thuong, Dong Da, Hanoi (Viet Nam); Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2015-05-29

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks.

  9. Metallic Thin-Film Bonding and Alloy Generation

    Science.gov (United States)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  10. Thin-liquid-film evaporation at contact line

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Zhenai PAN; Zhao CHEN

    2009-01-01

    When a liquid wets a solid wall, the extended meniscus near the contact line may be divided into three regions: a nonevaporating region, where the liquid is adsorbed on the wall; a transition region or thin-film region, where effects of long-range molecular forces (disjoining pressure) are felt; and an intrinsic meniscus region, where capillary forces dominate. The thin liquid film, with thickness from nanometers up to micrometers, covering the transition region and part of intrinsic meniscus, is gaining interest due to its high heat transfer rates. In this paper, a review was made of the researches on thin-liquid-film evaporation. The major characteristics of thin film, thin-film modeling based on continuum theory, simulations based on molecular dynamics, and thin-film profile and temperature measurements were summarized.

  11. Distortional Modes of Thin-Walled Beams

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Andreassen, Michael Joachim

    2009-01-01

    The classic thin-walled beam theory for open and closed cross-sections can be generalized by including distortional displacement modes. The introduction of additional displacement modes leads to coupled differential equations, which seems to have prohibited the use of exact shape functions...... in the modelling of coupled torsion and distortion. However, if the distortional displacement modes are chosen as those which decouple the differential equations as in non proportionally damped modal dynamic analysis then it may be possible to use exact shape functions and perform analysis on a reduced problem...

  12. Photoluminescence Study of Copper Selenide Thin Films

    Science.gov (United States)

    Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.

    2011-10-01

    Thin films of Copper Selenide of composition of composition Cu7Se4 with thickness 350 nm are deposited on glass substrate at a temperature of 498 K±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%) and Selenium (99.99%) as the elemental starting material. The deposited film is characterized structurally using X-ray Diffraction. The structural parameters such as lattice constant, particle size, dislocation density; number of crystallites per unit area and strain in the film are evaluated. Photoluminescence of the film is analyzed at room temperature using Fluoro Max-3 Spectrofluorometer.

  13. Liquid phase deposition of electrochromic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Thomas J.; Rubin, Michael D.

    2000-08-18

    Thin films of titanium, zirconium and nickel oxides were deposited on conductive SnO2:F glass substrates by immersion in aqueous solutions. The films are transparent, conformal, of uniform thickness and appearance, and adhere strongly to the substrates. On electrochemical cycling, TiO2, mixed TiO2-ZrO2, and NiOx films exhibited stable electrochromism with high coloration efficiencies. These nickel oxide films were particularly stable compared with films prepared by other non-vacuum techniques. The method is simple, inexpensive, energy efficient, and readily scalable to larger substrates.

  14. Thermoviscoelastic models for polyethylene thin films

    DEFF Research Database (Denmark)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-01-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach...... is that the experimentally inaccessible out-of-plane material properties are determined by fitting the model predictions to the measured nonlinear behavior of the film. Creep tests, uniaxial tension tests, and biaxial bubble tests are used to determine the material parameters. The model has been validated experimentally...

  15. A particular thin-shell wormhole

    Science.gov (United States)

    Övgün, A.; Sakalli, I.

    2017-01-01

    Using a black hole with scalar hair, we construct a scalar thin-shell wormhole ( TSW) in 2+1 dimensions by applying the Visser cut and paste technique. The surface stress, which is concentrated at the wormhole throat, is determined using the Darmois-Israel formalism. Using various gas models, we analyze the stability of the TSW. The stability region is changed by tuning the parameters l and u. We note that the obtained TSW originating from a black hole with scalar hair could be more stable with a particular value of the parameter l, but it still requires exotic matter.

  16. Nonlinear phononics using atomically thin membranes

    Science.gov (United States)

    Midtvedt, Daniel; Isacsson, Andreas; Croy, Alexander

    2014-09-01

    Phononic crystals and acoustic metamaterials are used to tailor phonon and sound propagation properties by utilizing artificial, periodic structures. Analogous to photonic crystals, phononic band gaps can be created, which influence wave propagation and, more generally, allow engineering of the acoustic properties of a system. Beyond that, nonlinear phenomena in periodic structures have been extensively studied in photonic crystals and atomic Bose-Einstein condensates in optical lattices. However, creating nonlinear phononic crystals or nonlinear acoustic metamaterials remains challenging and only few examples have been demonstrated. Here, we show that atomically thin and periodically pinned membranes support coupled localized modes with nonlinear dynamics. The proposed system provides a platform for investigating nonlinear phononics.

  17. INVESTIGATION OF PHOTOELECTROCHROMIC THIN FILM AND DEVICE

    Institute of Scientific and Technical Information of China (English)

    M.J. Chen; H. Shen

    2005-01-01

    Photoelectrochromic device is a combination of dye-sensitized solar cells and electrochromic WO3 layers. Ectrochroelmic WO3 layer and TiO2 layer had been prepared by the sol-gel process, then be assembled to pohotoelectrochromic device. The effects of heating temperature on photoelectrochromic were investigated. The results showed that thin films prepared by dip-coating and spin-coating had good film quality and the device made by the method mentioned in the paper had good photoelectrochromie properties.

  18. Infrared control coating of thin film devices

    Science.gov (United States)

    Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell

    2017-02-28

    Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.

  19. Robust, Thin Optical Films for Extreme Environments

    Science.gov (United States)

    2006-01-01

    The environment of space presents scientists and engineers with the challenges of a harsh, unforgiving laboratory in which to conduct their scientific research. Solar astronomy and X-ray astronomy are two of the more challenging areas into which NASA scientists delve, as the optics for this high-tech work must be extremely sensitive and accurate, yet also be able to withstand the battering dished out by radiation, extreme temperature swings, and flying debris. Recent NASA work on this rugged equipment has led to the development of a strong, thin film for both space and laboratory use.

  20. Relativistic Static Thin Disks of Polarized Matter

    Science.gov (United States)

    Navarro, Anamaria; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-03-01

    An infinite family of exact solutions of the electrovacuum Einstein-Maxwell equations is presented. The family is static, axially symmetric and describe thin disks composed by electrically polarized material in a conformastatic spacetime. The form of the conformastatic metric allows us to write down the metric functions and the electromagnetic potentials in terms of a solution of the Laplace equation. We find a general expression for the surface energy density of the disk, the pressure, the polarization vector, the electromagnetic fields and the velocity rotation for circular orbits. As an example, we present the first model of the family and show the behavior of the different physical variables.

  1. Laser Cutting of Thin Nickel Bellows

    Science.gov (United States)

    Butler, C. L.

    1986-01-01

    Laser cutting technique produces narrow, precise, fast, and repeatable cuts in thin nickel-allow bellows material. Laser cutting operation uses intense focused beam to melt material and assisting gas to force melted material through part thickness, creating void. When part rotated or moved longitudinally, melting and material removal continuous and creates narrow, fast, precise, and repeatable cut. Technique used to produce cuts of specified depths less than material thickness. Avoids distortion, dents, and nicks produced in delicate materials during lathe trimming operations, which require high cutting-tool pressure and holding-fixture forces.

  2. Infrared control coating of thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell

    2017-02-28

    Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.

  3. Atomically thin quantum light-emitting diodes

    Science.gov (United States)

    Palacios-Berraquero, Carmen; Barbone, Matteo; Kara, Dhiren M.; Chen, Xiaolong; Goykhman, Ilya; Yoon, Duhee; Ott, Anna K.; Beitner, Jan; Watanabe, Kenji; Taniguchi, Takashi; Ferrari, Andrea C.; Atatüre, Mete

    2016-09-01

    Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.

  4. Pyroelectric coupling in thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Victor G.; Shvydka, Diana [Department of Physics and Astronomy, University of Toledo, OH (United States)

    2007-07-15

    We propose a theory of thin film photovoltaics in which one of the polycrystalline films is made of a pyroelectric material grains such as CdS. That film is shown to generate strong polarization improving the device open circuit voltage. Implications and supporting facts for the major photovoltaic types based on CdTe and CuIn(Ga)Se{sub 2} absorber layers are discussed. Band diagram of a pyroelectric (CdS) based PV junction. Arrows represent the charge carrier photo-generation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Variational thermodynamics of relativistic thin disks

    CERN Document Server

    Gutiérrez-Piñeres, A C; Quevedo, H

    2013-01-01

    We present a relativistic model describing a thin disk system composed of two fluids. The system is surrounded by a halo in the presence of a non-trivial electromagnetic field. We show that the model is compatible with the variational multi-fluid thermodynamics formalism, allowing us to determine all the thermodynamic variables associated with the matter content of the disk. The asymptotic behaviour of these quantities indicates that the single fluid interpretation should be abandoned in favour of a two-fluid model.

  6. More About Thin-Membrane Biosensor

    Science.gov (United States)

    Case, George D.; Worley, Jennings F., III

    1994-01-01

    Report presents additional information about device described in "Thin-Membrane Sensor With Biochemical Switch" (MFS-26121). Device is modular sensor that puts out electrical signal indicative of chemical or biological agent. Signal produced as membrane-crossing ion current triggered by chemical reaction between agent and recognition protein conjugated to channel blocker. Prototype of biosensor useful in numerous laboratory, industrial, or field applications; such as to detect bacterial toxins in food, to screen for disease-producing micro-organisms, or to warn of toxins or pollutants in air.

  7. Radiation from optically thin accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Tylenda, R. (Polska Akademia Nauk, Torun. Pracownia Astrofizyki)

    1981-01-01

    Accretion discs in cataclysmic variables with low rates of mass transfer, M < or approx. 10/sup 16/g s/sup -1/, have outer regions optically thin in continuum. A simple approach that allows one to calculate the radiation spectra from such discs is presented. A great number of disc models has been obtained in order to study the influence of various parameters (accretion rate, outer radius of the disc, inclination angle, mass of the accreting degenerate dwarf, viscosity parameter) of discs on the outgoing continuous spectra, emission lines and the UBV colours.

  8. Study of iron mononitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Akhil, E-mail: mgupta@csr.res.in; Gupta, Mukul, E-mail: mgupta@csr.res.in; Phase, D. M., E-mail: mgupta@csr.res.in; Reddy, V. R., E-mail: mgupta@csr.res.in; Gupta, Ajay, E-mail: mgupta@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore,-452001 (India)

    2014-04-24

    In this work we have studied the crystal structural and local ordering of iron and nitrogen in iron mononitride thin films prepared using dc magnetron sputtering at sputtering power of 100W and 500W. The films were sputtered using pure nitrogen to enhance the reactivity of nitrogen with iron. The x-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and soft x-ray absorption spectroscopy (SXAS) studies shows that the film crystallizes in ZnS-type crystal structure.

  9. Fluorine ion transmission through thin biological samples

    Institute of Scientific and Technical Information of China (English)

    XueJian-Ming; WangYu-Gang; 等

    1998-01-01

    F2+ beam with 3MeV is used to irradiate thin biological samples(onion inner suface membrane and kidney bean coat)in the transmission measurement ,its current density is 400-800nA/cm2,Results show that the onion samples can be broken up quickly under ion irradiating;as to kidney bean samples,about 60% of the implanted ions penetrate the samples,most of them lose part of their eneregy,fewer ions are found to be able to transmit through the sample without energy loss.SEM experiments are carried out to study sample's damage induced by the ions irradiation.

  10. Transient vibration of thin viscoelastic orthotropic plates

    Institute of Scientific and Technical Information of China (English)

    J. Soukup; F. Vale(s); J. Volek; J. Sko(c)ilas

    2011-01-01

    This article deals with solutions of transient vibration of a rectangular viscoelastic orthotropic thin 2D plate for particular deformation models according to Flügge and Timoshenko-Mindlin. The linear model, a general standard viscoelastic body, of the rheologic properties of a viscoelastic material was applied. The time and coordinate curves of the basic quantities displacement, rotation, velocity, stress and deformation are compared. The results obtained by an approximate analytic method are compared with numerical results for 3D plate generated by FEM application and with experimental investigation.

  11. Synthesis and Characterization of Thin Films.

    Science.gov (United States)

    1987-07-10

    j,k tinteger; freq comp % array CO..203 of integer; A, phase ~carg : array CC. .2CJ of realI begin woriteln(’enter numfourierpts’);N readln(num fourier...Thesis DTIG SELECTfE: rmas do~amaat hau s appvildlttb tol a.l e... . . .o fix paut reloc~e and 9010) Is . < " ,,.’. 5’ , , "" "’’"°"" % Is ViifmyI lr...URIP) grants. 2. THIN FILM FACILITY A 1983 DoD University Research Instrumentation Program Grant to ISU was used for construction of the first phase

  12. Thin structured rigid body for acoustic absorption

    Science.gov (United States)

    Starkey, T. A.; Smith, J. D.; Hibbins, A. P.; Sambles, J. R.; Rance, H. J.

    2017-01-01

    We present a thin acoustic metamaterial absorber, comprised of only rigid metal and air, that gives rise to near unity absorption of airborne sound on resonance. This simple, easily fabricated, robust structure comprising a perforated metal plate separated from a rigid wall by a deeply subwavelength channel of air is an ideal candidate for a sound absorbing panel. The strong absorption in the system is attributed to the thermo-viscous losses arising from a sound wave guided between the plate and the wall, defining the subwavelength channel.

  13. Birefringent thin films and polarizing elements

    CERN Document Server

    Hodgkinson, Ian J

    1997-01-01

    This book describes the propagation of light in biaxial media, the properties of biaxial thin films, and applications such as birefringent filters for tuning the wavelength of dye lasers.A novel feature of the first part is the parallel treatment of Stokes, Jones, and Berreman matrix formalisms in a chapter-by-chapter development of wave equations, basis vectors, transfer matrices, reflection and transmission equations, and guided waves. Computational tools for MATLAB are included.The second part focuses on an emerging planar technology in which anisotropic microstructures are formed by obliqu

  14. Epitaxy of layered semiconductor thin films

    Science.gov (United States)

    Brahim Otsmane, L.; Emery, J. Y.; Jouanne, M.; Balkanski, M.

    1993-03-01

    Epilayers of InSe on InSe(00.1) and GaSe(00.1) have been grown by the molecular beam epitaxy (MBE) technique. Raman spectroscopy was used for a characterization of the structure and crystallinity in InSe/InSe(00.1) (homoepitaxy) and InSe/GaSe(00.1) (heteroepitaxy). The Raman spectra of the InSe thin films are identical to those of polytype γ-InSe. An activation of the E(LO) mode at 211 cm -1 is observed in these films here. Scanning electron microscopy (SEM) is also used to investigate surfaces of these films.

  15. Vortex motion in YBCO thin films

    Science.gov (United States)

    Shapiro, V.; Verdyan, A.; Lapsker, I.; Azoulay, J.

    1999-09-01

    Hall resistivity measurements as function of temperature in the vicinity of Tc were carried out on a thin films YBCO superconductors. A sign reversal of Hall voltage with external magnetic field applied along c axis have been observed upon crossing Tc. Hall voltage in the mixed state was found to be insensitive to the external magnetic field inversion. These effects are discussed and explained in terms of vortex motion under the influence of Magnus force balanced by large damping force. It is argued that in this model the flux-line velocity has component opposite to the superfluid current direction thus yielding a negative Hall voltage.

  16. Failure Modes of thin supported Membranes

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Høgsberg, J.R.; Kjeldsen, Ane Mette;

    2007-01-01

    Four different failure modes relevant to tubular supported membranes (thin dense films on a thick porous support) were analyzed. The failure modes were: 1) Structural collapse due to external pressure 2) burst of locally unsupported areas, 3) formation of surface cracks in the membrane due to TEC......-mismatches, and finally 4) delamination between membrane and support due to expansion of the membrane on use. Design criteria to minimize risk of failure by the four different modes are discussed. The theoretical analysis of the two last failure modes is compared to failures observed on actual components....

  17. Thin-film optical shutter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  18. Novel photon management for thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajesh [Univ. of Utah, Salt Lake City, UT (United States)

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  19. 3D Field Simulation of Magnetic Thin Film Inductor

    OpenAIRE

    FUJIWARA, Toshiyasu; CHOI, Kyung-Ku; SATO, SHIGEKI

    2006-01-01

    The 3D magnetic field simulations with FEM (finite element method) have been performed to predictand understand the performance of Magnetic Thin Film Inductor (MTFl). Inductor structures of planar electroplated Cu spiralcoil, which are sandwiched and underlaid with magnetic thin films, are considered as the simulation models. The inductance increment of 300% compared to air-core inductor was predicted when the sandwiched 5μm thickness magnetic thin film with relative permeability of 600 was a...

  20. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  1. Paramedian forehead flap thinning using a flexible razor blade.

    Science.gov (United States)

    Justiniano, Hilda; Edwards, Julia; Eisen, Daniel B

    2009-03-15

    Paramedian forehead flaps are sometimes required to resurface large or deep nasal defects. The flap often needs to be thinned to match the contour of the surrounding skin at the recipient site. We describe a technique to thin the distal potion of the paramedian forehead flap using a flexible razor blade, the Dermablade. Once familiar with it, this same technique may be applied to thin other interpolation flaps.

  2. Crystal structure of fiber structured pentacene thin films

    OpenAIRE

    2007-01-01

    This PhD thesis presents a technique based on the grazing incidence crystal truncation rod (GI-CTR) X-ray diffraction method used to solve the crystal structure of substrate induced fiber structured organic thin films. The crystal structures of pentacene thin films grown on technologically relevant gate dielectric substrates are reported. It is widely recognized, that the intrinsic charge transport properties in organic thin film transistors (OTFTs) depend strongly on the crystal structur...

  3. Thin and thick primary cutaneous melanomas reveal distinct patterns of somatic copy number alterations.

    Science.gov (United States)

    Montagnani, Valentina; Benelli, Matteo; Apollo, Alessandro; Pescucci, Chiara; Licastro, Danilo; Urso, Carmelo; Gerlini, Gianni; Borgognoni, Lorenzo; Luzzatto, Lucio; Stecca, Barbara

    2016-05-24

    Cutaneous melanoma is one of the most aggressive type of skin tumor. Early stage melanoma can be often cured by surgery; therefore current management guidelines dictate a different approach for thin (thick (>4mm) melanomas. We have carried out whole-exome sequencing in 5 thin and 5 thick fresh-frozen primary cutaneous melanomas. Unsupervised hierarchical clustering analysis of somatic copy number alterations (SCNAs) identified two groups corresponding to thin and thick melanomas. The most striking difference between them was the much greater abundance of SCNAs in thick melanomas, whereas mutation frequency did not significantly change between the two groups. We found novel mutations and focal SCNAs in genes that are embryonic regulators of axon guidance, predominantly in thick melanomas. Analysis of publicly available microarray datasets provided further support for a potential role of Ephrin receptors in melanoma progression. In addition, we have identified a set of SCNAs, including amplification of BRAF and ofthe epigenetic modifier EZH2, that are specific for the group of thick melanomas that developed metastasis during the follow-up. Our data suggest that mutations occur early during melanoma development, whereas SCNAs might be involved in melanoma progression.

  4. ANALYSIS OF MECHANICS IN BALL SPINNING OF THIN-WALLED TUBE

    Institute of Scientific and Technical Information of China (English)

    JIANG Shuyong; REN Zhengyi

    2008-01-01

    Ball spinning is applied to manufacturing thin-walled tube with high precision and high mechanical properties. On the basis of plastic mechanics, by simplifying ball spinning of thin-walled tube as plane strain problem, slab method is used for the purpose of calculating the contact deformation pressure. The spinning force components, the torsional moment, the deformation power and the deformation work are calculated further as well. The influence of the two important process parameters such as the feed ratio and the ball diameter on the spinning force components is analyzed in order to further control the spinning force components by regulating the two process variables during the ball spinning process. The stress and strain state in deformable zone as well as mechanics boundary conditions in ball spinning are obtained. The effect of the three spinning force components on the formability of the spun part is analyzed and validated through the ball spinning experiments. The theoretical and experimental results show that the radial spinning component plays a significant role in ball spinning of thin-walled tube, and the mechanics situation in backward ball spinning contributes to enhancing the plasticity of the metal material, but that in forward ball spinning contributes to advancing the axial flow of the metal material.

  5. Emotional dysregulation and anxiety control in the psychopathological mechanism underlying drive for thinness

    Directory of Open Access Journals (Sweden)

    Francesca eFiore

    2014-04-01

    Full Text Available Emotional dysregulation is a process which consists in mitigating, intensifying or maintaining a given emotion and is the trigger for some psychological disorders. Research has shown that a anxiety control plays an important role in emotional expression and regulation and, in addition, for anorexia nervosa and, more in general, in drive for thinness. Scientific literature suggests that in anorexia nervosa there is a core of emotional dysregulation and anxiety control. The aim of this study is to explore the roles of emotional dysregulation and anxiety control as independent or third variables in a mediational regression model related to drive for thinness. 154 clinical individuals with anorexia participated in the study and all completed a set of self-report questionnaires: eating disorders inventory version 3 (EDI-3, DERS, and the anxiety control questionnaire (ACQ. The data confirmed a mediational model in which the relation between emotional dysregulation and drive for thinness is mediated by anxiety control. The current study partially supports a clinical model in which emotional dysregulation is a distal factor in eating disorders while the mediator variable anxiety control is a proximal factor in the psychopathological process underlying it.

  6. Thin Images Reflected in the Water : Narcissism and Girls’ Vulnerability to the Thin-Ideal

    NARCIS (Netherlands)

    Thomaes, Sander; Sedikides, Constantine

    2016-01-01

    The purpose of this research is to test how adolescent girls’ narcissistic traits—characterized by a need to impress others and avoid ego-threat—influence acute adverse effects of thin-ideal exposure. Participants (11–15 years; total N = 366; all female) reported their narcissistic traits. Next, in

  7. Thin Images Reflected in the Water : Narcissism and Girls’ Vulnerability to the Thin-Ideal

    NARCIS (Netherlands)

    Thomaes, Sander; Sedikides, Constantine

    2016-01-01

    The purpose of this research is to test how adolescent girls’ narcissistic traits—characterized by a need to impress others and avoid ego-threat—influence acute adverse effects of thin-ideal exposure. Participants (11–15 years; total N = 366; all female) reported their narcissistic traits. Next, in

  8. Riparian buffers and forest thinning: Effects on headwater vertebrates 10 years after thinning

    Science.gov (United States)

    Deanna H. Olson; Jeffery B. Leirness; Patrick G. Cunningham; E. Ashley Steel

    2014-01-01

    We monitored instream vertebrate and stream-bank-dwelling amphibian counts during a stand-scale experiment of the effect of riparian buffer width with upland forest thinning in western Oregon, USA using a before/after/control methodology. We analyzed animal counts along 45 streams at 8 study sites, distributed from the foothills of Mount Hood to Coos Bay, Oregon using...

  9. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  10. The design of thin disk laser multi-pass amplifier

    Science.gov (United States)

    Song, Enmao; Zhu, Guangzhi; Zhu, Xiao; Yu, Jinbo; Zhao, Wenguang

    2016-11-01

    In this paper, a thin disk multi-pass amplification system is designed based on the conjugated double parabolic mirror pumping thin disk laser module, which realizes 20 passes transmitting through the thin disk crystal. The light transmission matrix is used to optimize optical mode matching of seed laser spot size and pumping spot size during the multi-pass transmission. At the same time, anti-misalignment stability of the thin disk multi-pass amplification system and the aberration of output laser beam are analyzed in deeply.

  11. Thin and Automated Blanket Lamination and Encapsulation Systems (TABLES) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flexible photovoltaic array technologies require very thin and precisely controlled deposition of the polymeric films used to fabricate them. In most flexible...

  12. A mathematical consideration of vortex thinning in 2D turbulence

    CERN Document Server

    Yoneda, Tsuyoshi

    2016-01-01

    In two dimensional turbulence, vortex thinning process is one of the attractive mechanism to explain inverse energy cascade in terms of vortex dynamics. By direct numerical simulation to the two-dimensional Navier-Stokes equations with small-scale forcing and large-scale damping, Xiao-Wan-Chen-Eyink (2009) found an evidence that inverse energy cascade may proceed with the vortex thinning mechanism. The aim of this paper is to analyze the vortex-thinning mechanism mathematically (using the incompressible Euler equations), and give a mathematical evidence that large-scale vorticity gains energy from small-scale vorticity due to the vortex-thinning process.

  13. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  14. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  15. Genetic influences on thinning of the cerebral cortex during development.

    Science.gov (United States)

    van Soelen, I L C; Brouwer, R M; van Baal, G C M; Schnack, H G; Peper, J S; Collins, D L; Evans, A C; Kahn, R S; Boomsma, D I; Hulshoff Pol, H E

    2012-02-15

    During development from childhood to adulthood the human brain undergoes considerable thinning of the cerebral cortex. Whether developmental cortical thinning is influenced by genes and if independent genetic factors influence different parts of the cortex is not known. Magnetic resonance brain imaging was done in twins at age 9 (N = 190) and again at age 12 (N = 125; 113 repeated measures) to assess genetic influences on changes in cortical thinning. We find considerable thinning of the cortex between over this three year interval (on average 0.05 mm; 1.5%), particularly in the frontal poles, and orbitofrontal, paracentral, and occipital cortices. Cortical thinning was highly heritable at age 9 and age 12, and the degree of genetic influence differed for the various areas of the brain. One genetic factor affected left inferior frontal (Broca's area), and left parietal (Wernicke's area) thinning; a second factor influenced left anterior paracentral (sensory-motor) thinning. Two factors influenced cortical thinning in the frontal poles: one of decreasing influence over time, and another independent genetic factor emerging at age 12 in left and right frontal poles. Thus, thinning of the cerebral cortex is heritable in children between the ages 9 and 12. Furthermore, different genetic factors are responsible for variation in cortical thickness at ages 9 and 12, with independent genetic factors acting on cortical thickness across time and between various brain areas during childhood brain development.

  16. Design and Simulation of the Thin Film Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-yuan; SHI Yu; WEN Qi-ye

    2005-01-01

    A new thin film pulse transformer for using in ISND and ADSL systems has been designed based on a domain wall pinning model, the parameters of nano-magnetic thin film such as permeability and coercivity can be calculated. The main properties of the thin film transformer including the size,parallel inductance, Q value and turn ratio have been simulated and optimized. Simulation results show that the thin film transformer can be fairly operated in a frequency range of 0. 001~20 MHz.

  17. Non-local thin films in Casimir force calculations

    CERN Document Server

    Esquivel, R

    2005-01-01

    he Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than the mean free path for electrons, the difference between local and nonlocal calculations of the Casimir force is of the order of a few tenths of a percent. Thus the local description of thin metallic films is adequate within the current experimental precision and range of separations.

  18. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  19. Assessment of Feeder Wall Thinning of Wolsong Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Han Sub [KEPRI, Daejeon (Korea, Republic of)

    2010-05-15

    The reactor of CANDUs of Wolsong Nuclear Power generating station is composed of 380 pressure tubes. The primary heat transport circuit of CANDU connects each pressure tube to headers on the way to and from the steam generators. The feeder is A-106 carbon steel, and suffers from wall thinning by Flow Accelerated Corrosion. Excessive thinning deteriorates the pressure retaining capability of piping so that the minimum allowable thickness of feeder should be maintained throughout the life of feeder. The feeder wall thinning should be monitored by in-service inspection. Knowledge-based inspection strategy needs to be developed since combination of high radiation field and geometric restriction near the tight bend location makes extensive inspection very difficult. A thermo hydraulic assessment using computational fluid dynamics software and feeder wall thinning simulation experiments using plaster of Paris may provide valuable information to understand characteristic features of the feeder wall thinning. Plant in-service inspection database may be another source of valuable information. This paper summarizes a review of feeder wall thinning in Wolsong CANDU station. W-1 feeder suffered significant thinning so that it is being replaced along with the plant refurbishment campaign. The other units, W-2approx4, are still in the early portion of their operation life. A result of feeder wall thinning simulation test using plaster of Paris is presented. The knowledge presented in this paper is important information to design a knowledge-based in-service inspection program of feeder wall thinning

  20. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  1. Thin-Film Materials Synthesis and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a wide capability for deposition and processing of thin films, including sputter and ion-beam deposition, thermal evaporation, electro-deposition,...

  2. Structure-stress-resistivity relationship in WTi alloy ultra-thin and thin films prepared by magnetron sputtering

    Science.gov (United States)

    Le Priol, A.; Le Bourhis, E.; Renault, P.-O.; Muller, P.; Sik, H.

    2013-06-01

    WTi thin films were prepared from an alloyed target (W:Ti ˜ 70:30 at. %) by magnetron sputtering. Body-centered cubic WxTi1-x solid solutions with a {110} fiber texture and columnar grains have been produced with 0.75WTi thin films is about 60-200 μΩ cm, depending on the film thickness and microstructure (sputtering conditions). For both ultra-thin (9.5 nm) and thin (180 nm) films, a stress transition from compressive to tensile is observed as the working pressure increases. The process-structure-property relations of the WTi ultra-thin and thin films are discussed in relation with the state of the art.

  3. Thin blend films of cellulose and polyacrylonitrile

    Science.gov (United States)

    Lu, Rui; Zhang, Xin; Mao, Yimin; Briber, Robert; Wang, Howard

    Cellulose is the most abundant renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. To further expand the potential applications of cellulose materials, their alloying with synthetic polymers has been investigated. In this study, thin films of cotton linter cellulose (CLC) and polyacrylonitrile (PAN) blends with various compositions spanning the entire range from neat CLC to neat PAN were spun cast on silicon wafers from common solutions in dimethyl sulfoxide / ionic liquid mixtures. The morphologies of thin films were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray reflectivity. Morphologies of as-cast films are highly sensitive to the film preparation conditions; they vary from featureless smooth films to self-organized ordered nano-patterns to hierarchical structures spanning over multiple length scales from nanometers to tens of microns. By selectively removing the PAN-rich phase, the structures of blend films were studied to gain insights in their very high stability in hot water, acid and salt solutions.

  4. Dynamic Characterization of Thin Film Magnetic Materials

    Science.gov (United States)

    Gu, Wei

    A broadband dynamic method for characterizing thin film magnetic material is presented. The method is designed to extract the permeability and linewidth of thin magnetic films from measuring the reflection coefficient (S11) of a house-made and short-circuited strip line testing fixture with or without samples loaded. An adaptive de-embedding method is applied to remove the parasitic noise of the housing. The measurements were carried out with frequency up to 10GHz and biasing magnetic fields up to 600 Gauss. Particular measurement setup and 3-step experimental procedures are described in detail. The complex permeability of a 330nm thick continuous FeGaB, 435nm thick laminated FeGaB film and a 100nm thick NiFe film will be induced dynamically in frequency-biasing magnetic field spectra and compared with a theoretical model based on Landau-Lifshitz-Gilbert (LLG) equations and eddy current theories. The ferromagnetic resonance (FMR) phenomenon can be observed among these three magnetic materials investigated in this thesis.

  5. Thin Silicon MEMS Contact-Stress Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kotovsky, J; Tooker, A; Horsley, D A

    2009-12-07

    This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying, contact-stress between two solid interfaces (e.g. in vivo cartilage contact-stress and body armor dynamic loading). This CS sensor is a silicon-based device with a load sensitive diaphragm. The diaphragm is doped to create piezoresistors arranged in a full Wheatstone bridge. The sensor is similar in performance to established silicon pressure sensors, but it is reliably produced to a thickness of 65 {micro}m. Unlike commercial devices or other research efforts, this CS sensor, including packaging, is extremely thin (< 150 {micro}m fully packaged) so that it can be unobtrusively placed between contacting structures. It is built from elastic, well-characterized materials, providing accurate and high-speed (50+ kHz) measurements over a potential embedded lifetime of decades. This work explored sensor designs for an interface load range of 0-2 MPa; however, the CS sensor has a flexible design architecture to measure a wide variety of interface load ranges.

  6. Rechargeable thin-film lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  7. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1986-08-01

    The major objective of this work was to demonstrate CdTe devices grown by chemical vapor deposition (CVD) with a total area greater than 1 cm2 and photovoltic efficiencies of at least 13%. During the period covered, various processing steps were investigated for the preparation of thin-film CdTe heterojunction solar cells of the inverted configuration. Glass coated with fluorine-doped tin oxide was used as the substrate. Thin-film heterojunction solar cells were prepared by depositing p-CdTe films on substrates using CVD and close-spaced sublimation (CSS). Cells prepared from CSS CdTe usually have a higher conversion efficiency than those prepared from CVD CdTe, presumably due to the chemical interaction between CdS and CdTe at the interface during the CVD process. The best cell, about 1.2 sq cm in area, had an AM 1.5 (global) efficiency of 10.5%, and further improvements are expected by optimizing the process parameters.

  8. EMAT Evaluation of Thin Conductive Sheets

    Directory of Open Access Journals (Sweden)

    Ivo Cap

    2006-01-01

    Full Text Available At present a non-destructive testing of conducting materials becomes very important one in connection with monitoring and control of strategic technical facilities, e.g. nuclear power plants. There are more methods of material testing and evaluation and every of them has its advantages and disadvantages. Recently the electromagnetic methods are in increasing interest. There are many ways of conducting material testing. One of them often used utilises investigation of eddy currents induced in the surface layer by means of a proper coil. The arrangement is very simple and inexpensive but it offers only local information on cracks and other inhomogeneities in the thin surface layer. On the other hand there exist a method based on an electromagnetic – acoustic transducer (EMAT, which is able to generate and detect acoustic wave in a conducting body in a contact-less way. The present paper deals with a survey of EMATs for investigation of thin metalliclayers by means of Lamb waves. The new design of generation coil is presented.

  9. Capillary wrinkling of thin bilayer polymeric sheets

    Science.gov (United States)

    Chang, Jooyoung; Menon, Narayanan; Russell, Thomas

    We have investigated capillary force induced wrinkling on a floated polymeric bilayer thin sheet. The origin of the wrinkle pattern is compressional hoop stress caused by the capillary force of a water droplet placed on the floated polymeric thin sheet afore investigated. Herein, we study the effect of the differences of surface energy arising from the hydrophobicity of Polystyrene (PS Mw: 97 K, Contact Angle: 88 º) and the hydrophilicity of Poly(methylmethacrylate) (PMMA Mw: 99K, Contact Angle: 68 º) on two sides of a bilayer film. We measure the number and the length of the wrinkles by broadly varying the range of thicknesses of top (9 nm to 550 nm) and bottom layer (25 nm to 330 nm). At the same, there is only a small contrast in mechanical properties of the two layers (PS E = 3.4 GPa, and PMMA E = 3 GPa). The number of the wrinkles is not strongly affected by the composition (PS(Top)/PMMA(Bottom) or PMMA(Top)/PS(Bottom)) and the thickness of each and overall bilayer system. However, the length of the wrinkle is governed by the contact angle of the drop on the top layer of bilayer system. We also compare this to the wrinkle pattern obtained in monolayer systems over a wide range of thickness from PS and PMMA (7 nm to 1 μm). W.M. Keck Foundation.

  10. Thin-Profile Transducers for Intraoperative Hemostasis

    Science.gov (United States)

    Zderic, Vesna; Mera, Thomas; Vaezy, Shahram

    2005-03-01

    Our goal has been to develop thin-profile HIFU applicators for intraoperative hemostasis. The HIFU device consisted of a concave PZT element encased in a spoon-shaped aluminum housing with the diameter of 4 cm and thickness of 1 cm. The housing front surface had a thickness of 3/4 ultrasound wavelength in aluminum (0.92 mm) to provide acoustic matching. The device had a resonant frequency of 6.26 MHZ, and efficiency of 42%. The ultrasound field was observed using hydrophone field mapping and radiation force balance. The full-width half-maximum (FWHM) dimensions of the focal region were 0.6 mm and 2.2 mm in lateral and axial direction, respectively. The maximal intensity at the focus was 9,500 W/cm2 (in water). The device was tested using BSA-polyacrylamide gel phantom and rabbit kidney in vivo. HIFU application for 10 s produced lesions in the gel phantom (lesion width of 3 mm), and rabbit kidney in vivo (lesion width of 8 mm). A thin-profile HIFU applicator has advantages of high efficiency, simple design, and small dimensions.

  11. Diffusion through thin membranes: Modeling across scales

    Science.gov (United States)

    Aho, Vesa; Mattila, Keijo; Kühn, Thomas; Kekäläinen, Pekka; Pulkkinen, Otto; Minussi, Roberta Brondani; Vihinen-Ranta, Maija; Timonen, Jussi

    2016-04-01

    From macroscopic to microscopic scales it is demonstrated that diffusion through membranes can be modeled using specific boundary conditions across them. The membranes are here considered thin in comparison to the overall size of the system. In a macroscopic scale the membrane is introduced as a transmission boundary condition, which enables an effective modeling of systems that involve multiple scales. In a mesoscopic scale, a numerical lattice-Boltzmann scheme with a partial-bounceback condition at the membrane is proposed and analyzed. It is shown that this mesoscopic approach provides a consistent approximation of the transmission boundary condition. Furthermore, analysis of the mesoscopic scheme gives rise to an expression for the permeability of a thin membrane as a function of a mesoscopic transmission parameter. In a microscopic model, the mean waiting time for a passage of a particle through the membrane is in accordance with this permeability. Numerical results computed with the mesoscopic scheme are then compared successfully with analytical solutions derived in a macroscopic scale, and the membrane model introduced here is used to simulate diffusive transport between the cell nucleus and cytoplasm through the nuclear envelope in a realistic cell model based on fluorescence microscopy data. By comparing the simulated fluorophore transport to the experimental one, we determine the permeability of the nuclear envelope of HeLa cells to enhanced yellow fluorescent protein.

  12. Characterization of Thin Films Using Local Magneometer

    CERN Document Server

    Katzan N.

    2016-01-01

    SIS nanocomposite (Superconductor/Insulator/Superconductor) could improve the efficiency of bulk Nb accelerating cavities as proposed in 2006 by A. Gurevich [1]. The SRF multilayers concept takes advantage of the enhancement of HC1 of thin layers with thickness d~. The use of thin layers makes it easier to prevent avalanche penetration of vortices in case of local defects that could promote early penetration. The external field is not fully attenuated in such configuration, so several layers are necessary in order to screen the external field down to values below Nb HC1, decoupled from each other with a dielectric layer. Many deposition techniques exist that can allow the deposition of such multilayers but a few of them are adapted for accelerating cavities shapes. Moreover we do not know yet how the predicted properties evolve in realistic deposition conditions. It seems reasonable to start the optimization of such structure on samples. Two parameters need to be measured to predict their behavior in condi...

  13. Strong thin membrane structure. [solar sails

    Science.gov (United States)

    Frazer, R. E. (Inventor)

    1979-01-01

    A continuous process is described for producing strong lightweight structures for use as solar sails for spacecraft propulsion by radiation pressure. A thin reflective coating, such as aluminum, is applied to a rotating cylinder. A nylon mesh, applied over the aluminum coating, is then coated with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum. An emissivity increasing material such as chromium or silicon monoxide is applied to the polymer film to disperse such material colloidally into the growing polymer film, or to the final polymer film. The resulting membrane structure is then removed from the cylinder. Alternately, the membrane structure can be formed by etching a substrate in the form of an organic film such as a polymide, or a metal foil, to remove material from the substrate and reduce its thickness. A thin reflective coating (aluminum) is applied on one side of the substrate, and an emissivity increasing coating is applied on the reverse side of the substrate.

  14. Antimony selenide thin-film solar cells

    Science.gov (United States)

    Zeng, Kai; Xue, Ding-Jiang; Tang, Jiang

    2016-06-01

    Due to their promising applications in low-cost, flexible and high-efficiency photovoltaics, there has been a booming exploration of thin-film solar cells using new absorber materials such as Sb2Se3, SnS, FeS2, CuSbS2 and CuSbSe2. Among them, Sb2Se3-based solar cells are a viable prospect because of their suitable band gap, high absorption coefficient, excellent electronic properties, non-toxicity, low cost, earth-abundant constituents, and intrinsically benign grain boundaries, if suitably oriented. This review surveys the recent development of Sb2Se3-based solar cells with special emphasis on the material and optoelectronic properties of Sb2Se3, the solution-based and vacuum-based fabrication process and the recent progress of Sb2Se3-sensitized and Sb2Se3 thin-film solar cells. A brief overview further addresses some of the future challenges to achieve low-cost, environmentally-friendly and high-efficiency Sb2Se3 solar cells.

  15. Thin film cadmium telluride photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.; Bohn, R. (Toledo Univ., OH (United States))

    1992-04-01

    This report describes research to develop to vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD) and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl{sub 2}, as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO{sub 2}-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally ({ge} 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. 19 refs.

  16. Granular materials interacting with thin flexible rods

    Science.gov (United States)

    Neto, Alfredo Gay; Campello, Eduardo M. B.

    2017-04-01

    In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.

  17. Stripe glasses in ferromagnetic thin films

    Science.gov (United States)

    Principi, Alessandro; Katsnelson, Mikhail I.

    2016-02-01

    Domain walls in magnetic multilayered systems can exhibit a very complex and fascinating behavior. For example, the magnetization of thin films of hard magnetic materials is in general perpendicular to the thin-film plane, thanks to the strong out-of-plane anisotropy, but its direction changes periodically, forming an alternating spin-up and spin-down stripe pattern. The latter is stabilized by the competition between the ferromagnetic coupling and dipole-dipole interactions, and disappears when a moderate in-plane magnetic field is applied. It has been suggested that such a behavior may be understood in terms of a self-induced stripe glassiness. In this paper we show that such a scenario is compatible with the experimental findings. The strong out-of-plane magnetic anisotropy of the film is found to be beneficial for the formation of both stripe-ordered and glassy phases. At zero magnetic field the system can form a glass only in a narrow interval of fairly large temperatures. An in-plane magnetic field, however, shifts the glass transition towards lower temperatures, therefore enabling it at or below room temperature. In good qualitative agreement with the experimental findings, we show that a moderate in-plane magnetic field of the order of 50 mT can lead to the formation of defects in the stripe pattern, which sets the onset of the glass transition.

  18. Tunable plasmons in atomically thin gold nanodisks

    Science.gov (United States)

    Manjavacas, Alejandro; Garcia de Abajo, Javier

    2015-03-01

    The ability to modulate light at high speeds is of paramount importance for telecommunications, information processing, and medical imaging technologies. This has stimulated intense efforts to master optoelectronic switching at visible and near-infrared (vis-NIR) frequencies, although coping with current computer speeds in integrated architectures still remains a major challenge. Here we show that atomically thin noble metal nanoislands can extend optical modulation to the vis-NIR spectral range. We find plasmons in thin metal nanodisks to produce similar absorption cross-sections as spherical particles of the same diameter. Using realistic levels of electrical doping, plasmons are shifted by about half their width, thus leading to a factor-of-two change in light absorption. These results are supported by a microscopic quantum-mechanical calculations based on the random-phase approximation (RPA), which we compare with classical simulations obtained solving Maxwell's equations using tabulated dielectric functions. Both approaches result in an excellent agreement for nanodisks with diameters above 13 nm, although quantum confinement and nonlocal effects play an important role for smaller sizes. A.M. acknowledges financial support from the Welch foundation through the J. Evans Attwell-Welch Postdoctoral Fellowship Program of the Smalley Institute of Rice University (Grant L-C-004).

  19. Granular materials interacting with thin flexible rods

    Science.gov (United States)

    Neto, Alfredo Gay; Campello, Eduardo M. B.

    2016-01-01

    In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.

  20. Nanomechanics of Ferroelectric Thin Films and Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Chen , L.Q.

    2016-08-31

    The focus of this chapter is to provide basic concepts of how external strains/stresses altering ferroelectric property of a material and how to evaluate quantitatively the effect of strains/stresses on phase stability, domain structure, and material ferroelectric properties using the phase-field method. The chapter starts from a brief introduction of ferroelectrics and the Landau-Devinshire description of ferroelectric transitions and ferroelectric phases in a homogeneous ferroelectric single crystal. Due to the fact that ferroelectric transitions involve crystal structure change and domain formation, strains and stresses can be produced inside of the material if a ferroelectric transition occurs and it is confined. These strains and stresses affect in turn the domain structure and material ferroelectric properties. Therefore, ferroelectrics and strains/stresses are coupled to each other. The ferroelectric-mechanical coupling can be used to engineer the material ferroelectric properties by designing the phase and structure. The followed section elucidates calculations of the strains/stresses and elastic energy in a thin film containing a single domain, twinned domains to complicated multidomains constrained by its underlying substrate. Furthermore, a phase field model for predicting ferroelectric stable phases and domain structure in a thin film is presented. Examples of using substrate constraint and temperature to obtain interested ferroelectric domain structures in BaTiO3 films are demonstrated b phase field simulations.

  1. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures.

    Science.gov (United States)

    Ahnood, Arman; Zhou, H; Suzuki, Y; Sliz, R; Fabritius, T; Nathan, Arokia; Amaratunga, G A J

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics.

  2. Viscoelasticity and shear thinning of nanoconfined water

    Science.gov (United States)

    Kapoor, Karan; Amandeep, Patil, Shivprasad

    2014-01-01

    Understanding flow properties and phase behavior of water confined to nanometer-sized pores and slits is central to a wide range of problems in science, such as percolation in geology, lubrication of future nano-machines, self-assembly and interactions of biomolecules, and transport through porous media in filtration processes. Experiments with different techniques in the past have reported that viscosity of nanoconfined water increases, decreases, or remains close to bulk water. Here we show that water confined to less than 20-nm-thick films exhibits both viscoelasticity and shear thinning. Typically viscoelasticity and shear thinning appear due to shearing of complex non-Newtonian mixtures possessing a slowly relaxing microstructure. The shear response of nanoconfined water in a range of shear frequencies (5 to 25 KHz) reveals that relaxation time diverges with reducing film thickness. It suggests that slow relaxation under confinement possibly arises due to existence of a critical point with respect to slit width. This criticality is similar to the capillary condensation in porous media.

  3. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    For the thin polycrystalline Si films fabricated with the aluminium-induced-layer-exchange (ALILE) process a good structural quality up to a layer-thickness value of 10 nm was determined. For 5 nm thick layers however after the layer exchange no closes poly-silicon film was present. In this case the substrate was covered with spherically arranged semiconductor material. Furthermore amorphous contributions in the layer could be determined. The electrical characterization of the samples at room temperature proved a high hole concentration in the range 10{sup 18} cm{sup -3} up to 9.10{sup 19} cm{sup -3}, which is influenced by the process temperature and the layer thickness. Hereby higher hole concentrations at higher process temperatures and thinner films were observed. Furthermore above 150-200 K a thermically activated behaviour of the electrical conductivity was observed. At lower temperatures a deviation of the measured characteristic from the exponential Arrhenius behaviour was determined. For low temperatures (below 20 K) the conductivity follows the behaviour {sigma}{proportional_to}[-(T{sub 0}/T){sup 1/4}]. The hole mobility in the layers was lowered by a passivation step, which can be explained by defect states at the grain boundaries. The for these very thin layers present situation was simulated in the framework of the model of Seto, whereby both the defect states at the grain boundaries (with an area density Q{sub t}) and the defect states at the interfaces (with an area density Q{sub it}) were regarded. By this the values Q{sub t}{approx}(3-4).10{sup 12} cm{sup -2} and Q{sub it}{approx}(2-5).10{sup 12} cm{sup -2} could be determined for these thin ALILE layers on quartz substrates. Additionally th R-ALILE process was studied, which uses the reverse precursor-layer sequence substrate/amorphous silicon/oxide/aluminium. Hereby two steps in the crystallization process of the R-ALILE process were found. First a substrate/Al-Si mixture/poly-Si layer structure

  4. TOWARD MORE EFFECTIVE REGULATION

    Energy Technology Data Exchange (ETDEWEB)

    J. GRAF

    2000-06-01

    This paper proposes a model relationship between the operator engaged in a hazardous activity, the regulator of that activity, and the general public. The roles and responsibilities of each entity are described in a way that allows effective communication flow. The role of the regulator is developed using the steam boiler as an example of a hazard subject to regulation; however, the model applies to any regulated activity. In this model the safety analyst has the extremely important role of communicating sometimes difficult technical information to the regulator in a way that the regulator can provide credible assurance to the general public as to the adequacy of the control of the hazardous activity. The conclusion asserts that acceptance of the model, understanding of the roles and responsibilities and definition of who communicates what information to whom will mitigate frustration on the part of each of the three entities.

  5. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    Science.gov (United States)

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.

  6. Benchmarking and Regulation

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    nchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of benchmarking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques....... In this paper, we review the modern foundations for frontier-based regulation and we discuss its actual use in several jurisdictions....

  7. Reconceptualizing Civil Regulation

    DEFF Research Database (Denmark)

    Galang, Roberto Martin; Castello, Itziar

    2011-01-01

    This article re-conceptualizes the notion of civil regulation, through an analysis of 775 projects by firms located in 21 Asian countries, wherein we map the state of civil regulation initiatives in the region. We challenge two established assumptions in the Corporate Social Responsibility...... literature. First, contrary to what is commonly argued, we claim that strong states in Asia promote civil regulation in what we call the “paradox of the weak state”. Second, we not only argue that civil regulation is mainly enforced by multinational enterprises willing to promote international social...

  8. Novel regulators of spermatogenesis.

    Science.gov (United States)

    Fok, Kin Lam; Chen, Hao; Ruan, Ye Chun; Chan, Hsiao Chang

    2014-05-01

    Spermatogenesis is a multistep process that supports the production of millions of sperm daily. Understanding of the molecular mechanisms that regulate spermatogenesis has been a major focus for decades. Yet, the regulators involved in different cellular processes of spermatogenesis remain largely unknown. Human diseases that result in defective spermatogenesis have provided hints on the molecular mechanisms regulating this process. In this review, we have summarized recent findings on the function and signaling mechanisms of several genes that are known to be associated with disease or pathological processes, including CFTR, CD147, YWK-II and CT genes, and discuss their potential roles in regulating different processes of spermatogenesis.

  9. Thin and fat sets for doubling measures in metric spaces

    CERN Document Server

    Ojala, Tuomo; Suomala, Ville

    2011-01-01

    We consider sets in uniformly perfect metric spaces which are null for every doubling measure of the space or which have positive measure for all doubling measures. These sets are called thin and fat, respectively. In our main results, we give sufficient conditions for certain cut-out sets being thin or fat.

  10. Dynamic stiffness for thin-walled structures by power series

    Institute of Scientific and Technical Information of China (English)

    ZHU Bin; LEUNG A.Y.T.

    2006-01-01

    The dynamic stiffness method is introduced to analyze thin-walled structures including thin-walled straight beams and spatial twisted helix beam. A dynamic stiffness matrix is formed by using frequency dependent shape functions which are exact solutions of the governing differential equations. With the obtained thin-walled beam dynamic stiffness matrices, the thin-walled frame dynamic stiffness matrix can also be formulated by satisfying the required displacements compatibility and forces equilibrium, a method which is similar to the finite element method (FEM). Then the thin-walled structure natural frequencies can be found by equating the determinant of the system dynamic stiffness matrix to zero. By this way, just one element and several elements can exactly predict many modes of a thin-walled beam and a spatial thin-walled frame, respectively. Several cases are studied and the results are compared with the existing solutions of other methods. The natural frequencies and buckling loads of these thin-walled structures are computed.

  11. Thin slices of child personality: Perceptual, situational, and behavioral contributions.

    Science.gov (United States)

    Tackett, Jennifer L; Herzhoff, Kathrin; Kushner, Shauna C; Rule, Nicholas

    2016-01-01

    The present study examined whether thin-slice ratings of child personality serve as a resource-efficient and theoretically valid measurement of child personality traits. We extended theoretical work on the observability, perceptual accuracy, and situational consistency of childhood personality traits by examining intersource and interjudge agreement, cross-situational consistency, and convergent, divergent, and predictive validity of thin-slice ratings. Forty-five unacquainted independent coders rated 326 children's (ages 8-12) personality in 1 of 15 thin-slice behavioral scenarios (i.e., 3 raters per slice, for over 14,000 independent thin-slice ratings). Mothers, fathers, and children rated children's personality, psychopathology, and competence. We found robust evidence for correlations between thin-slice and mother/father ratings of child personality, within- and across-task consistency of thin-slice ratings, and convergent and divergent validity with psychopathology and competence. Surprisingly, thin-slice ratings were more consistent across situations in this child sample than previously found for adults. Taken together, these results suggest that thin slices are a valid and reliable measure to assess child personality, offering a useful method of measurement beyond questionnaires, helping to address novel questions of personality perception and consistency in childhood.

  12. Thin-Layer Chromatography: Four Simple Activities for Undergraduate Students.

    Science.gov (United States)

    Anwar, Jamil; And Others

    1996-01-01

    Presents activities that can be used to introduce thin-layer chromatography at the undergraduate level in relatively less developed countries and that can be performed with very simple and commonly available apparati in high schools and colleges. Activities include thin-layer chromatography with a test-tube, capillary feeder, burette, and rotating…

  13. Thermochemical Analysis of Molybdenum Thin Films on Porous Alumina.

    Science.gov (United States)

    Lee, Kyoungjin; de Lannoy, Charles-François; Liguori, Simona; Wilcox, Jennifer

    2017-01-12

    Molybdenum (Mo) thin films (thickness thin-film composites were stable below 300 °C but had no reactivity toward gases. Mo thin films showed nitrogen incorporation on the surface as well as in the subsurface at 450 °C, as confirmed by X-ray photoelectron spectroscopy. The reactivity toward nitrogen was diminished in the presence of CO2, although no carbon species were detected either on the surface or in the subsurface. The Mo thin films have a very stable native oxide layer, which may further oxidize to higher oxidation states above 500 °C due to the reaction with the porous anodized alumina substrate. The oxidation of Mo thin films was accelerated in the presence of oxidizing gases. At 600 °C in N2, the Mo thin film on anodized alumina was completely oxidized and may also have been volatilized. The results imply that choosing thermally stable and inactive porous supports and operating in nonoxidizing conditions below 500 °C will likely maintain the stability of the Mo composite. This study provides key information about the chemical and structural stability of a Mo thin film on a porous substrate for future membrane applications and offers further insights into the integrity of thin-film composites when exposed to harsh conditions.

  14. Tools to Synthesize the Learning of Thin Films

    Science.gov (United States)

    Rojas, Roberto; Fuster, Gonzalo; Slusarenko, Viktor

    2011-01-01

    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase…

  15. Stretchable, adhesive and ultra-conformable elastomer thin films.

    Science.gov (United States)

    Sato, Nobutaka; Murata, Atsushi; Fujie, Toshinori; Takeoka, Shinji

    2016-11-16

    Thermoplastic elastomers are attractive materials because of the drastic changes in their physical properties above and below the glass transition temperature (Tg). In this paper, we report that free-standing polystyrene (PS, Tg: 100 °C) and polystyrene-polybutadiene-polystyrene triblock copolymer (SBS, Tg: -70 °C) thin films with a thickness of hundreds of nanometers were prepared by a gravure coating method. Among the mechanical properties of these thin films determined by bulge testing and tensile testing, the SBS thin films exhibited a much lower elastic modulus (ca. 0.045 GPa, 212 nm thickness) in comparison with the PS thin films (ca. 1.19 GPa, 217 nm thickness). The lower elastic modulus and lower thickness of the SBS thin films resulted in higher conformability and thus higher strength of adhesion to an uneven surface such as an artificial skin model with roughness (Ra = 10.6 μm), even though they both have similar surface energies. By analyzing the mechanical properties of the SBS thin films, the elastic modulus and thickness of the thin films were strongly correlated with their conformability to a rough surface, which thus led to a high adhesive strength. Therefore, the SBS thin films will be useful as coating layers for a variety of materials.

  16. Front and backside processed thin film electronic devices

    Science.gov (United States)

    Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang; Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.

    2012-01-03

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  17. A thin polymer insulator for Josephson tunneling applications

    Science.gov (United States)

    Wilmsen, C. M.

    1973-01-01

    The use of an organic monolayer formed from a vapor as an insulating barrier for thin film Josephson junctions is considered, and the effect of an organic monolayer on the transition temperature of a thin film superconductor is investigated. Also analyzed are the geometric factors which influence Josephson junctions and Josephson junction interferometers.

  18. Stereological estimates of nuclear volume in thin malignant melanomas

    DEFF Research Database (Denmark)

    Björnhagen, V; Månsson-Brahme, E; Lindholm, J;

    1998-01-01

    Stereological estimation of nuclear volume was performed in a case control study of 72 malignant melanomas, thickness < or = 0.8 mm and Clark's level II-III. However, stereological measurements could be performed in only 57 thin melanomas due to too sparse cellularity. Thus, 21 thin metastasizing...

  19. Weighted thinned linear array design with the iterative FFT technique

    CSIR Research Space (South Africa)

    Du Plessis, WP

    2011-09-01

    Full Text Available A version of the iterative Fourier technique (IFT) for the design of thinned antenna arrays with weighted elements is presented. The structure of the algorithm means that it is well suited to the design of weighted thinned arrays with low current...

  20. Thin-Layer Fuel Cell for Teaching and Classroom Demonstrations

    Science.gov (United States)

    Shirkhanzadeh, M.

    2009-01-01

    A thin-layer fuel cell is described that is simple and easy to set up and is particularly useful for teaching and classroom demonstrations. The cell is both an electrolyzer and a fuel cell and operates using a thin layer of electrolyte with a thickness of approximately 127 micrometers and a volume of approximately 40 microliters. As an…