WorldWideScience

Sample records for near-edge spectroscopy xanes

  1. Quantitative measurement of the reduction of platinum(IV) complexes using X-ray absorption near-edge spectroscopy (XANES).

    Science.gov (United States)

    Hall, Matthew D; Daly, Helen L; Zhang, Jenny Z; Zhang, Mei; Alderden, Rebecca A; Pursche, Daniel; Foran, Garry J; Hambley, Trevor W

    2012-06-01

    The platinum(II) drugs cisplatin, carboplatin and oxaliplatin are usefully employed against a range of malignancies, but toxicities and resistance have spurred the search for improved analogs. This has included investigation of the platinum(IV) oxidation state, which provides greater kinetic inertness. It is generally accepted that Pt(IV) complexes must be reduced to Pt(II) for activation. As such, the ability to monitor reduction of Pt(IV) complexes is critical to guiding the design of candidates, and providing mechanistic understanding. Here we report in full that the white line height of X-ray absorption near-edge spectra (XANES) of Pt complexes, normalized to the post-edge minima, can be used to quantitatively determine the proportion of each oxidation state in a mixture. A series of Pt(IV) complexes based on the Pt(II) complexes cisplatin and transplatin were prepared with chlorido, acetato or hydroxido axial ligands, and studies into their reduction potential and cytotoxicity against A2780 human ovarian cancer cells were performed, demonstrating the relationship between reduction potential and cytotoxicity. Analysis of white line height demonstrated a clear and consistent difference between Pt(II) (1.52 ± 0.05) and Pt(IV) (2.43 ± 0.19) complexes. Reduction of Pt(IV) complexes over time in cell growth media and A2780 cells was observed by XANES, and shown to correspond with their reduction potentials and cytotoxicities. We propose that this method is useful for monitoring reduction of metal-based drug candidates in complex biological systems.

  2. Identification of sources of lead in the atmosphere by chemical speciation using X-ray absorption near-edge structure (XANES) spectroscopy.

    Science.gov (United States)

    Sakata, Kohei; Sakaguchi, Aya; Tanimizu, Masaharu; Takaku, Yuichi; Yokoyama, Yuka; Takahashi, Yoshio

    2014-02-01

    Sources of Pb pollution in the local atmosphere together with Pb species, major ions, and heavy metal concentrations in a size-fractionated aerosol sample from Higashi-Hiroshima (Japan) have been determined by X-ray absorption near-edge structure (XANES) spectroscopy, ion chromatography, and ICP-MS/AES, respectively. About 80% of total Pb was concentrated in fine aerosol particles. Lead species in the coarse aerosol particles were PbC2O4, 2PbCO3 Pb(OH)2, and Pb(NO3)2, whereas Pb species in the fine aerosol particles were PbC2O4, PbSO4, and Pb(NO3)2. Chemical speciation and abundance data suggested that the source of Pb in the fine aerosol particles was different from that of the coarse ones. The dominant sources of Pb in the fine aerosol particles were judged to be fly ash from a municipal solid waste incinerator and heavy oil combustion. For the coarse aerosol particles, road dust was considered to be the main Pb source. In addition to Pb species, elemental concentrations in the aerosols were also determined. The results suggested that Pb species in size-fractionated aerosols can be used to identify the origin of aerosol particles in the atmosphere as an alternative to Pb isotope ratio measurement.

  3. Order-disorder in olivine minerals by synchrotron X-ray absorption near-edge structure (Xane) spectroscopy at the Mg, Fe and Ca K edges

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Marcelli, A.; Cibin, G. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Mottana, A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Rome Univ. Roma Tre, Rome (Italy). Dipt. di Scienze Geologiche; Paris, E.; Giuli, G [INFM, Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra

    1999-07-01

    In this paper, are presented new, high-resolution experimental spectra at the Mg and Fe K edges for the two Fe-Mg end members F o and F a, and for three other olivines. Two are the Ca end members of the family, namely monticellite (Mtc: CaMgSiO4) and kirschsteinite (Krs: CaFeSiO4). The main purpose of this work is to investigate the effects of Mg, Fe, and Ca partition in the Pbnm (or {alpha}) olivine structure on the electronic properties, as well as the relationships that exist between chemical substitutions and features occurring in Xanes spectra. One wants to explore the relationships that intervene between LRO, as determined by XRD, and SRO, as determined by Xanes, on the endmembers and on a well-known intermediate member as well, and deduce from it a model for the behavior of the entire olivine solid-solution system.

  4. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Chu, W.S.; Yang, F.F.; Yu, M.J.; Chen, D.L.; Guo, X.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhou, D.W.; Shi, N. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Niu, L.W.; Teng, M.K. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Gong, W.M. [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Benfatto, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Wu, Z.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy)], E-mail: wuzy@ihep.ac.cn

    2007-09-21

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase (LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  5. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    Science.gov (United States)

    Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

    2007-09-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  6. Structural analysis of sulfur in natural rubber using X-ray absorption near-edge spectroscopy.

    Science.gov (United States)

    Pattanasiriwisawa, Wanwisa; Siritapetawee, Jaruwan; Patarapaiboolchai, Orasa; Klysubun, Wantana

    2008-09-01

    X-ray absorption near-edge spectroscopy (XANES) has been applied to natural rubber in order to study the local environment of sulfur atoms in sulfur crosslinking structures introduced in the vulcanization process. Different types of chemical accelerators in conventional, semi-efficient and efficient vulcanization systems were investigated. The experimental results show the good sensitivity and reproducibility of XANES to characterize the local geometry and electronic environment of the sulfur K-shell under various conditions of vulcanization and non-vulcanization of natural rubber. Several applications of XANES in this study demonstrate an alternative way of identifying sulfur crosslinks in treated natural rubber based on differences in their spectra and oxidation states.

  7. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    Science.gov (United States)

    Dorchies, F.; Fedorov, N.; Lecherbourg, L.

    2015-07-01

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%-20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ˜1 mn and ˜100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  8. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy.

    Science.gov (United States)

    Dorchies, F; Fedorov, N; Lecherbourg, L

    2015-07-01

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%-20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  9. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dorchies, F., E-mail: dorchies@celia.u-bordeaux1.fr; Fedorov, N.; Lecherbourg, L. [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, Talence F-33405 (France)

    2015-07-15

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%–20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  10. Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy

    NARCIS (Netherlands)

    Mesu, J. Gerbrand; Beale, Andrew M.|info:eu-repo/dai/nl/325802068; de Groot, Frank M. F.|info:eu-repo/dai/nl/08747610X; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2006-01-01

    Time-resolved in situ video monitoring and ultraviolet-visible spectroscopy in combination with X-ray absorption near-edge spectroscopy (XANES) have been used for the first time in a combined manner to study the effect of synchrotron radiation on a series of homogeneous aqueous copper solutions in a

  11. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution.

    Science.gov (United States)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5'-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5'-monophosphate, and adenosine 5'-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  12. In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition

    Energy Technology Data Exchange (ETDEWEB)

    McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.; Majidi, Hasti; Bunker, Bruce A.; Baxter, Jason B. (Drexel); (Notre)

    2010-12-03

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example, this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.

  13. Micro-X-ray absorption near edge structure spectroscopy investigations of baroque tin-amalgam mirrors at BESSY using a capillary focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Bartoll, J. [Stiftung Preussische Schloesser und Gaerten, Postfach 601462, 14414 Potsdam (Germany); Roehrs, S. [Technische Universitaet Berlin, Institut fuer Chemie, Strasse des 17. Juni 135, 10623 Berlin (Germany); Erko, A. [Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung (BESSY) mbH, Albert-Einstein Str. 15, 12489 Berlin (Germany)]. E-mail: erko@bessy.de; Firsov, A. [Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung (BESSY) mbH, Albert-Einstein Str. 15, 12489 Berlin (Germany); Bjeoumikhov, A. [IfG-Institut fuer Geraetebau GmbH Rudower Chaussee, 29-31, 12489 Berlin (Germany); Langhoff, N. [IfG-Institut fuer Geraetebau GmbH Rudower Chaussee, 29-31, 12489 Berlin (Germany)

    2004-10-08

    An elliptically shaped glass monocapillary with a spatial resolution of 5 {mu}m has been used for the fine focusing of the pre-focused X-ray beam produced by the graded-crystal monochromator beamline, KMC-2. The flux density gain of 50 was experimentally measured. The microprobe has been used in the energy range of 3.5-15 keV. Micro-X-ray fluorescence analysis ({mu}XFA) and micro-X-ray absorption near edge structure spectroscopy ({mu}XANES) measurements on test samples and investigations of baroque tin-amalgam mirrors were done.

  14. Micro-X-ray absorption near edge structure spectroscopy investigations of baroque tin-amalgam mirrors at BESSY using a capillary focusing system

    Science.gov (United States)

    Bartoll, J.; Röhrs, S.; Erko, A.; Firsov, A.; Bjeoumikhov, A.; Langhoff, N.

    2004-10-01

    An elliptically shaped glass monocapillary with a spatial resolution of 5 μm has been used for the fine focusing of the pre-focused X-ray beam produced by the graded-crystal monochromator beamline, KMC-2. The flux density gain of 50 was experimentally measured. The microprobe has been used in the energy range of 3.5-15 keV. Micro-X-ray fluorescence analysis (μXFA) and micro-X-ray absorption near edge structure spectroscopyXANES) measurements on test samples and investigations of baroque tin-amalgam mirrors were done.

  15. X-ray absorption near edge spectroscopy at the Mn K-edge in highly homogeneous GaMnN diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A. [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Martinez-Criado, G.; Salome, M.; Susini, J. [ESRF, Polygone Scientifique Louis Neel, 6 rue Jules Horowitz, 38000 Grenoble (France); Olguin, D. [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D.F. (Mexico); Dhar, S.; Ploog, K. [Paul Drude Institute, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2006-06-15

    We have studied by X-ray absorption spectroscopy the local environment of Mn in highly homogeneous Ga{sub 1-x}Mn{sub x}N (0.06near edge spectroscopy (XANES) results. The comparison of the XANES spectra corresponding to the Ga and Mn edges indicates that Mn is substitutional to Ga in all samples studied. The XANES spectra measured at the Mn absorption edge shows in the near-edge region a double peak and a shoulder below the absorption edge and the main absorption peak after the edge, separated around 15 eV above the pre-edge structure. We have compared the position of the edge with that of MnO (Mn{sup 2+}) and Mn{sub 2}O{sub 3} (Mn{sup 3+}). All samples studied present the same Mn oxidation state, 2{sup +}. In order to interprete the near-edge structure, we have performed ab initio calculations with a 2 x 2 x 1supercell ({proportional_to}6% Mn) using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of Mn anti-bonding t{sub 2g} bands, which are responsible for the pre-edge absorption. The shoulder and main absorption peaks are due to transitions from the valence band 1s-states of Mn to the p-contributions of the conduction bands. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588 (Japan); Fujii, Kentaro; Yokoya, Akinari [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Fukuda, Yoshihiro; Saitoh, Yuji [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Sayo-gun, Hyougo 679-5148 (Japan)

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5{sup ′}-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5{sup ′}-monophosphate, and adenosine 5{sup ′}-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  17. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    Science.gov (United States)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-06-01

    Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn2+ and OH-) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (Tc) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated Eg values are in the range 3.28-3.41 eV and 3.22-3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm2 V-1 s-1 and 126.2 to 204.7 cm2 V-1 s-1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core electrons into the unoccupied Zn 4p states of the conduction band. Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valence band electrons is different. Moreover, the density states of Zn 4p are higher for ZnO nanorods.

  18. X-ray structure analysis of a metalloprotein with enhanced active-site resolution using in situ x-ray absorption near edge structure spectroscopy.

    Science.gov (United States)

    Arcovito, Alessandro; Benfatto, Maurizio; Cianci, Michele; Hasnain, S Samar; Nienhaus, Karin; Nienhaus, G Ulrich; Savino, Carmelinda; Strange, Richard W; Vallone, Beatrice; Della Longa, Stefano

    2007-04-10

    X-ray absorption spectroscopy is exquisitely sensitive to the coordination geometry of an absorbing atom and therefore allows bond distances and angles of the surrounding atomic cluster to be measured with atomic resolution. By contrast, the accuracy and resolution of metalloprotein active sites obtainable from x-ray crystallography are often insufficient to analyze the electronic properties of the metals that are essential for their biological functions. Here, we demonstrate that the combination of both methods on the same metalloprotein single crystal yields a structural model of the protein with exceptional active-site resolution. To this end, we have collected an x-ray diffraction data set to 1.4-A resolution and Fe K-edge polarized x-ray absorption near edge structure (XANES) spectra on the same cyanomet sperm whale myoglobin crystal. The XANES spectra were quantitatively analyzed by using a method based on the multiple scattering approach, which yielded Fe-heme structural parameters with +/-(0.02-0.07)-A accuracy on the atomic distances and +/-7 degrees on the Fe-CN angle. These XANES-derived parameters were subsequently used as restraints in the crystal structure refinement. By combining XANES and x-ray diffraction, we have obtained an cyanomet sperm whale myoglobin structural model with a higher precision of the bond lengths and angles at the active site than would have been possible with crystallographic analysis alone.

  19. 近边X光吸收谱(XANES)的发展%Advances in X-Ray Absorpion Near Edge Struture (XANES)

    Institute of Scientific and Technical Information of China (English)

    寇元; 殷元骐

    1989-01-01

    @@微观的局部有序指明了了解复杂体系性质的道路。蛋白质的生物功能、催化剂的活性、金属表面的吸附及超导体的电性能等,测定其局部结构是认识这些体系的第一步。科学的不断发展使局部结构测定的必要性日增,而发展的科学本身又从理论上和技术上孕育了新的实验探测方法。 以同步辐射为光源的X光吸收精细结构谱(X-ray Absorption Fine Structure Spectroscopy,简称X光吸收谱,XAS)是研究复杂体系的有力工具。它的潜力,从理论上讲,在于可以探测非晶体系中任选原子的局部结构。 虽然早期的研究已经明确地将X光吸收谱分为两个能量范围,低能的Kossel结构和高能的Kronig结构,但是只是由于70年代Sayers等人的工作[1,2]才使Kronig结构的分析趋于成熟,成为探测无序体系近邻结构的独特有效的EXAFS方法。同步辐射X光源的应用及EXAFS取得的成功促进了Kossel结构研究的发展。近年来X光吸收近边结构谱(XANES,即X-ray Absorption NearEdge Structure)已作为直接探测原子电荷密度、分子终态能级和配位几何信息的新技术而成为与EXAFS互补的另一有力工具[3-5]。

  20. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Sigircik, Gokmen, E-mail: gsigircik@cu.edu.tr [Chemistry Department, University of Cukurova, 01330 Adana (Turkey); Erken, Ozge [Department of Physics, Faculty Science and Letters, Adiyaman University, 02040 Adiyaman (Turkey); Tuken, Tunc [Chemistry Department, University of Cukurova, 01330 Adana (Turkey); Gumus, Cebrail [Physics Department, University of Cukurova, 01330 Adana (Turkey); Ozkendir, Osman M. [Department of Energy Systems Engineering Tarsus Technology Faculty, Mersin University, 33400 Tarsus (Turkey); Ufuktepe, Yuksel [Physics Department, University of Cukurova, 01330 Adana (Turkey)

    2015-06-15

    Highlights: • Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. • Uniform and well-defined ZnO nano-towers and rods have been obtained via electrochemical deposition. • The presence of chloride ions altered the nucleation rate of ZnO particles on ITO substrates and resulting crystallographic properties. • Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valance band electrons is different. - Abstract: Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn{sup 2+} and OH{sup −}) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (T{sub c}) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated E{sub g} values are in the range 3.28–3.41 eV and 3.22–3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm{sup 2} V{sup −1} s{sup −1} and 126.2 to 204.7 cm{sup 2} V{sup −1} s{sup −1} for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K

  1. Near-edge X-ray absorption fine structure spectroscopy of MDI and TDI polyurethane polymers

    Energy Technology Data Exchange (ETDEWEB)

    Urquhart, S.G.; Smith, A.P.; Ade, H.W. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics; Hitchcock, A.P. [McMaster Univ., Hamilton, Ontario (Canada). Brockhouse Inst. for Materials Research; Rightor, E.G. [Dow Chemical USA, Midland, MI (United States); Lidy, W. [Dow Chemical USA, Freeport, TX (United States)

    1999-06-03

    The sensitivity of near-edge X-ray absorption fine structure (NEXAFS) to differences in key chemical components of polyurethane polymers is presented. Carbon is NEXAFS spectra of polyurethane polymers made from 4,4{prime}-methylene di-p-phenylene isocyanate (MDI) and toluene diisocyanate (TDI) isocyanate monomers illustrate that there is an unambiguous spectroscopic fingerprint for distinguishing between MDI-based and TDI-based polyurethane polymers. NEXAFS spectra of MDI and TDI polyurea and polyurethane models show that the urea and carbamate (urethane) linkages in these polymers can be distinguished. The NEXAFS spectroscopy of the polyether component of these polymers is discussed, and the differences between the spectra of MDI and TDI polyurethanes synthesized with polyether polyols of different molecular composition and different molecular weight are presented. These polymer spectra reported herein provide appropriate model spectra to represent the pure components for quantitative microanalysis.

  2. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  3. X-ray absorption near-edge structure (XANES) studies on Sb-doped Bi2UO6 at Bi and U edges

    Science.gov (United States)

    Yadav, A. K.; Misra, N. L.; Dhara, Sangita; Phatak, Rohan; Poswal, A. K.; Jha, S. N.; Bhattacharyya, D.

    2013-02-01

    X-ray absorption spectroscopy (XAS) measurements at Bi and U LIII edges with synchrotron radiation have been carried out on Bi2-xSbxUO6 samples for x= 0.04, 0.08, 0.12, 0.16 and 0.40 which are possible by-products of Bi based coolant and Uranium based fuels in advanced high temperature nuclear reactors. The chemical shift of the Bi absorption edges in the samples have been determined accurately from the XANES region of the X-ray absorption spectra and have been explained in terms of the difference in electronegativity values of Sb and Bi. The chemical shift of absorption edges show systematic variation only upto x = 0.08 (i.e., 4% Sb doping), which shows that the Sb enter in the matrix properly up to 4% doping concentration. The local structure of U is found to remain unchanged on Sb doping indicating clearly that Sb dopants preferably replace Bi atoms.

  4. Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine Interface - A Proposal for High Mobility, Organic Graphene Field Effect Transistors

    Science.gov (United States)

    2015-07-01

    AFRL-AFOSR-UK-TR-2015-0034 Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine...April 2015 4. TITLE AND SUBTITLE Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine Interface - A

  5. Characterization of Phosphorus Species in Biosolids and Manures Using XANES Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shober,A.; Hesterberg, D.; Sims, J.; Gardner, S.

    2006-01-01

    Received for publication March 10, 2006. Identification of the chemical P species in biosolids or manures will improve our understanding of the long-term potential for P loss when these materials are land applied. The objectives of this study were to determine the P species in dairy manures, poultry litters, and biosolids using X-ray absorption near-edge structure (XANES) spectroscopy and to determine if chemical fractionation techniques can provide useful information when interpreted based on the results of more definitive P speciation studies. Our XANES fitting results indicated that the predominant forms of P in organic P sources included hydroxylapatite, PO{sub 4} sorbed to Al hydroxides, and phytic acid in lime-stabilized biosolids and manures; hydroxylapatite, PO{sub 4} sorbed on ferrihydrite, and phytic acid in lime- and Fe-treated biosolids; and PO{sub 4} sorbed on ferrihydrite, hydroxylapatite, {beta}-tricalcium phosphate ({beta}-TCP), and often PO{sub 4} sorbed to Al hydroxides in Fe-treated and digested biosolids. Strong relationships existed between the proportions of XANES PO{sub 4} sorbed to Al hydroxides and NH{sub 4}Cl- + NH{sub 4}F-extractable P, XANES PO{sub 4} sorbed to ferrihydrite + phytic acid and NaOH-extractable P, and XANES hydroxylapatite + {beta}-TCP and dithionite-citrate-bicarbonate (DCB)- + H{sub 2}SO{sub 4}-extractable P ({gamma}{sup 2} = 0.67 [P = 0.01], 0.78 [P = 0.01], and 0.89 [P = 0.001], respectively). Our XANES fitting results can be used to make predictions about long-term solubility of P when biosolids and manures are land applied. Fractionation techniques indicate that there are differences in the forms of P in these materials but should be interpreted based on P speciation data obtained using more advanced analytical tools.

  6. Diurnal Variation and Spatial Distribution Effects on Sulfur Speciation in Aerosol Samples as Assessed by X-Ray Absorption Near-Edge Structure (XANES

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2012-01-01

    Full Text Available This paper focuses on providing new results relating to the impacts of Diurnal variation, Vertical distribution, and Emission source on sulfur K-edge XANES spectrum of aerosol samples. All aerosol samples used in the diurnal variation experiment were preserved using anoxic preservation stainless cylinders (APSCs and pressure-controlled glove boxes (PCGBs, which were specially designed to prevent oxidation of the sulfur states in PM10. Further investigation of sulfur K-edge XANES spectra revealed that PM10 samples were dominated by S(VI, even when preserved in anoxic conditions. The “Emission source effect” on the sulfur oxidation state of PM10 was examined by comparing sulfur K-edge XANES spectra collected from various emission sources in southern Thailand, while “Vertical distribution effects” on the sulfur oxidation state of PM10 were made with samples collected from three different altitudes from rooftops of the highest buildings in three major cities in Thailand. The analytical results have demonstrated that neither “Emission source” nor “Vertical distribution” appreciably contribute to the characteristic fingerprint of sulfur K-edge XANES spectrum in PM10.

  7. XANES and IR spectroscopy study of the electronic structure and chemical composition of porous silicon on n- and p-type substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lenshin, A. S., E-mail: lenshinas@phys.vsu.ru; Kashkarov, V. M.; Seredin, P. V. [Voronezh State University (Russian Federation); Spivak, Yu. M.; Moshnikov, V. A. [LETI St. Petersburg State Electrotechnical University (Russian Federation)

    2011-09-15

    The differences in the electronic structure and composition of porous silicon samples obtained under identical conditions of electrochemical etching on the most commonly used n- and p-type substrates with different conductivities are demonstrated by X-ray absorption near-edge spectroscopy (XANES) and Fourier transform IR spectroscopy (FTIR) methods. It is shown that significantly higher oxidation and saturation with hydrogen is observed for the porous layer on n-type substrates.

  8. Standard Protocol and Quality Assessment of Soil Phosphorus Speciation by P K-Edge XANES Spectroscopy.

    Science.gov (United States)

    Werner, Florian; Prietzel, Jörg

    2015-09-01

    Phosphorus (P) in soils is most often bound as phosphate to one or more of the following four elements or compounds: calcium, aluminum, iron, and soil organic matter. A promising method for direct P speciation in soils is synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy at the K-edge of P. However, the quality of this method is debated controversially, partly because a standard protocol for reproducible spectrum deconvolution is lacking and minor modifications of the applied deconvolution procedure can lead to considerable changes in the P speciation results. On the basis of the observation that appropriate baseline correction and edge-step normalization are crucial for correct linear combination (LC) fitting results, we established a standard protocol for the deconvolution and LC fitting of P K-edge XANES spectra. We evaluated the quality of LC fits obtained according to this standard protocol with 16 defined dilute (2 mg P g(-1)) ternary mixtures of aluminum phosphate, iron phosphate, hydroxyapatite, and phytic acid in a quartz matrix. The LC fitting results were compared with the contribution of the different P compounds to total P in the various mixtures. Compared to using a traditional LC fitting procedure, our standard protocol reduced the fitting error by 6% (absolute). However, P portions smaller than 5% should be confirmed with other methods or excluded from the P speciation results. A publicly available database of P K-edge XANES reference spectra was initiated.

  9. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    Science.gov (United States)

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB.

  10. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mantouvalou, I., E-mail: ioanna.mantouvalou@tu-berlin.de; Witte, K.; Martyanov, W.; Jonas, A.; Grötzsch, D.; Kanngießer, B. [Institute for Optics and Atomic Physics, Technical University of Berlin, D-10623 Berlin (Germany); Streeck, C. [Physikalisch-Technische Bundesanstalt (PTB), D-10587 Berlin (Germany); Löchel, H.; Rudolph, I.; Erko, A. [Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Stiel, H. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, D-12489 Berlin (Germany)

    2016-05-16

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ∼ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns. Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.

  11. Lead uptake in diverse plant families: a study applying X-ray absorption near edge spectroscopy.

    Science.gov (United States)

    Bovenkamp, Gudrun L; Prange, Alexander; Schumacher, Wolfgang; Ham, Kyungmin; Smith, Aaron P; Hormes, Josef

    2013-05-07

    The chemical environment of lead in roots and leaves of plants from four different plant families and a lichen from a former lead mining site in the Eifel Mountains in Germany was determined by Pb L3-edge XANES measurements using solid reference compounds and also aqueous solutions of different ionic strength simulating the plant environment. Pb(2+) ions in the plants were found to have two major coordinations, one with nine oxygen atoms in the first coordination shell similar to outer-sphere complexation and a second coordination with just three oxygen atoms similar to inner-sphere complexation. This can be interpreted assuming that lead is sorbed on the surface of cell walls depending on the concentration of lead in the soil solution. Pb L3-edge XANES spectra of dried and fresh plant samples are very similar because sorption does not change with removal of water but only because of the initial ionic strength. No bonding to biologically important groups (-S, - N) or precipitation (-PO4) was found.

  12. Quantification of chemical sulphur species in bulk soil and organic sulphur fractions by S K-edge Xanes spectroscopy

    DEFF Research Database (Denmark)

    Boye, K; Almkvist, G; Nilsson, S I

    2011-01-01

    A new data treatment method for fitting spectra obtained by sulphur (S) K-edge X-ray absorption near-edge structure (XANES) spectroscopy was used to quantify the chemical S speciation at three experimental sites with arable soils receiving the same long-term field treatments. Two treatments, crop...... the opposite trend was observed. Sulphur XANES spectroscopy of acetylacetone extracts of physically protected and unprotected organic S in two of the soils revealed that physical protection was not related to S speciation; however, intermediate forms of oxidized S species appeared to accumulate in the residual...... enhanced the reliability of quantitative determination of contributing S species in soil samples and soil extracts. The results indicated that long-term FYM application shifted S species composition from highly oxidized towards intermediate oxidization in two of the soils, but in the third soil...

  13. Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite.

    Science.gov (United States)

    Xiong, Wenhui; Peng, Jian; Hu, Yongfeng

    2012-02-15

    This paper presents a novel technique integrating bulk-sensitive and surface-sensitive XANES methods to distinguish between physisorption and chemisorption for phosphate adsorption onto ferrihydrite-modified diatomite (FHMD). XANES P K-edge, L-edge, and Fe M-edge spectra were obtained for reference samples (K(2)HPO(4) and FePO(4)·2H(2)O) and test samples (phosphate adsorbed onto FHMD (FHMD-Ps) and Si-containing ferrihydrite (FHYD-Ps)). A resolvable pre-edge peak in the P K-edge spectra of FHMD-Ps and FHYD-Ps provided direct evidence for the formation of P-O-Fe(III) coordination and the occurrence of chemisorption. The resemblance between the P L-edge spectra of K(2)HPO(4) and FHMD-Ps and the marked difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O indicated the intact existence of the adsorbate and the adsorbent. The similarity between Fe M-edge spectra of FHMD and FHMD-Ps and the difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O confirmed the findings from P L-edge analyses. Therefore, chemisorption and physisorption coexisted during phosphate adsorption onto FHMD. Phosphate chemisorption occurred in the deeper zone of FHMD (from 50 nm to 5 μm); whereas physisorption occurred in the zone of FHMD shallower than 50 nm since the probing depth of XANES P K-edge method is 5 μm and that of P L-edge and Fe M-edge methods is 50 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Near-edge X-ray absorption fine structure spectroscopy-assisted purification of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan Dongwei [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Zhong Jun [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wang Chunru [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: crwang@iccas.ac.cn; Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: wuzy@ihep.ac.cn

    2007-07-15

    Single-walled carbon nanotubes were produced by the conventional arc discharge method, and purified with a two-step treatment. First, the raw soot containing single-walled carbon nanotubes was burned up at ca. 350 deg. C in air to remove amorphous carbon, and then it was treated by strong acidic solvents to remove metal catalysts. Near-edge X-ray absorption fine structure spectroscopy was applied to analyze the defects on single-walled carbon nanotubes in whole purification process, so the experimental conditions can be optimized, and finally high-purity single-walled carbon nanotubes were obtained as revealed by various spectroscopic characterizations such as scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and Raman spectroscopy.

  15. The chemical sensitivity of X-ray spectroscopy: high energy resolution XANES versus X-ray emission spectroscopy of substituted ferrocenes.

    Science.gov (United States)

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2013-06-07

    X-ray spectroscopy at the metal K-edge is an important tool for understanding catalytic processes and provides insight into the geometric and electronic structures of transition metal complexes. In particular, X-ray emission-based methods such as high-energy resolution fluorescence detection (HERFD), X-ray absorption near-edge spectroscopy (XANES) and valence-to-core X-ray emission spectroscopy (V2C-XES) hold the promise of providing increased chemical sensitivity compared to conventional X-ray absorption spectroscopy. Here, we explore the ability of HERFD-XANES and V2C-XES spectroscopy to distinguish substitutions beyond the directly coordinated atoms for the example of ferrocene and selected ferrocene derivatives. The experimental spectra are assigned and interpreted through the use of density functional theory (DFT) calculations. We find that while the pre-edge peaks in the HERFD-XANES spectra are affected by substituents at the cyclopentadienyl ring containing π-bonds [A. J. Atkins, Ch. R. Jacob and M. Bauer, Chem.-Eur. J., 2012, 18, 7021], the V2C-XES spectra are virtually unchanged. The pre-edge in HERFD-XANES probes the weak transition to unoccupied metal d-orbitals, while the V2C-XES spectra are determined by dipole-allowed transitions from occupied ligand orbitals to the 1s core hole. The latter turn out to be less sensitive to changes beyond the first coordination shell.

  16. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; /SLAC; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  17. Near-edge X-ray absorption fine-structure spectroscopy of naphthalene diimide-thiophene co-polymers

    Energy Technology Data Exchange (ETDEWEB)

    Gann, Eliot; McNeill, Christopher R., E-mail: christopher.mcneill@monash.edu [Department of Materials Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 (Australia); Szumilo, Monika; Sirringhaus, Henning [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Sommer, Michael [Institute of Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg (Germany); Maniam, Subashani; Langford, Steven J. [School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800 (Australia); Thomsen, Lars [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2014-04-28

    Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy is an important tool for probing the structure of conjugated polymer films used in organic electronic devices. High-performance conjugated polymers are often donor-acceptor co-polymers which feature a repeat unit with multiple functional groups. To facilitate better application of NEXAFS spectroscopy to the study of such materials, improved understanding of the observed NEXAFS spectral features is required. In order to examine how the NEXAFS spectrum of a donor-acceptor co-polymer relates to the properties of the sub-units, a series of naphthalene diimide-thiophene-based co-polymers have been studied where the nature and length of the donor co-monomer has been systematically varied. The spectra of these materials are compared with that of a thiophene homopolymer and naphthalene diimide monomer enabling peak assignment and the influence of inter-unit electronic coupling to be assessed. We find that while it is possible to attribute peaks within the π* manifold as arising primarily due to the naphthalene diimide or thiophene sub-units, very similar dichroism of these peaks is observed indicating that it may not be possible to separately probe the molecular orientation of the separate sub-units with carbon K-edge NEXAFS spectroscopy.

  18. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.

  19. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    Science.gov (United States)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.

  20. Determining Orientational Structure of Diamondoid Thiols Attached to Silver Using Near Edge X-ray Absorption Fine Structure Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Lee, J I; Fabbri, J D; Wang, D; Nielsen, M; Randel, J C; Schreiner, P R; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J P; Carlson, R K; Terminello, L J; Melosh, N A; van Buuren, T

    2008-10-07

    Near-edge x-ray absorption fine structure spectroscopy (NEXAFS) is a powerful tool for determination of molecular orientation in self-assembled monolayers and other surface-attached molecules. A general framework for using NEXAFS to simultaneously determine molecular tilt and twist of rigid molecules attached to surfaces is presented. This framework is applied to self-assembled monolayers of higher diamondoid, hydrocarbon molecules with cubic-diamond-cage structures. Diamondoid monolayers chemisorbed on metal substrates are known to exhibit interesting electronic and surface properties. This work compares molecular orientation in monolayers prepared on silver substrates using two different thiol positional isomers of [121]tetramantane, and thiols derived from two different pentamantane structural isomers, [1212]pentamantane and [1(2,3)4]pentamantane. The observed differences in monolayer structure demonstrate the utility and limitations of NEXAFS spectroscopy and the framework. The results also demonstrate the ability to control diamondoid assembly, in particular the molecular orientational structure, providing a flexible platform for the modification of surface properties with this exciting new class of nanodiamond materials.

  1. Experimental hole densities in HgBa2Can-1CunO2n+2+delta compounds from near-edge x-ray-absorption spectroscopy

    NARCIS (Netherlands)

    Pellegrin, E; Fink, J; Chen, CT; Xiong, Q; Lin, QM; Chu, CW

    1996-01-01

    Near-edge x-ray-absorption spectroscopy measurements have been performed on the O K'- and Cu L-absorption edges on a series of underdoped and optimally doped HgBa2Can-1CunO2n+2+delta samples in order to get quantitative information on the changes in the electronic structure under doping with excess

  2. INVESTIGATION OF BONDING IN NANO-SiO2 BY Si L2,3 X-RAY ABSORPTION NEAR-EDGE STRUCTURE SPECTROSCOPY

    Institute of Scientific and Technical Information of China (English)

    Z.Y. Wu; K. Ibrahim; G. Li; J. Zhang; F.Q. Liu; M.I. Abbas; R. Hu; H.J. Qian; F.Q. Tang

    2001-01-01

    The Si L2,3 X-ray absorption near-edge structure (XANES) can be used to probe thelocal structure around Si and derive electronic information of the unoccupied s- andd-like partial density of states in nano-size SiO2. We present Si L2,3-edge for threedifferent size silicates acquired by total electron yield (TEY) at the photoemission sta-tion of Beijing Synchrotron Radiation Facility (BSRF). The Si L2,3-edge spectra areinterpreted based on ab initio full multiple-scattering (MS) calculation. The Si L2.3-edge of nano-size materials has XANES similar to that of a-quartz. The similaritiesbetween the Si L2.3-edge shapes attest to a common molecular-orbital picture of theirSi-O bonding and the same coordination state. However, a considerable broadeningof Si L2,3-edge XANES spectra as decrease of particle size is also an indicative ofpolyhedral distortions.

  3. Combined Speciation Analysis by X-ray Absorption Near-Edge Structure Spectroscopy, Ion Chromatography, and Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry To Evaluate Biotreatment of Concentrated Selenium Wastewaters

    NARCIS (Netherlands)

    Lenz, M.; Hullebusch, van E.D.; Farges, F.; Nikitenko, S.; Corvini, P.F.X.; Lens, P.N.L.

    2011-01-01

    In this study we evaluate the potential of anaerobic granular sludge as an inoculum for the bioremediation of selenium-contaminated waters using species-specific analytical methods. Solid species formed by microbial reduction were investigated using X-ray absorption near-edge structure (XANES) spect

  4. Element distribution and iron speciation in mature wheat grains (Triticum aestivum L.) using synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure (XANES) imaging.

    Science.gov (United States)

    De Brier, Niels; Gomand, Sara V; Donner, Erica; Paterson, David; Smolders, Erik; Delcour, Jan A; Lombi, Enzo

    2016-08-01

    Several studies have suggested that the majority of iron (Fe) and zinc (Zn) in wheat grains are associated with phytate, but a nuanced approach to unravel important tissue-level variation in element speciation within the grain is lacking. Here, we present spatially resolved Fe-speciation data obtained directly from different grain tissues using the newly developed synchrotron-based technique of X-ray absorption near-edge spectroscopy imaging, coupling this with high-definition μ-X-ray fluorescence microscopy to map the co-localization of essential elements. In the aleurone, phosphorus (P) is co-localized with Fe and Zn, and X-ray absorption near-edge structure imaging confirmed that Fe is chelated by phytate in this tissue layer. In the crease tissues, Zn is also positively related to P distribution, albeit less so than in the aleurone. Speciation analysis suggests that Fe is bound to nicotianamine rather than phytate in the nucellar projection, and that more complex Fe structures may also be present. In the embryo, high Zn concentrations are present in the root and shoot primordium, co-occurring with sulfur and presumably bound to thiol groups. Overall, Fe is mainly concentrated in the scutellum and co-localized with P. This high resolution imaging and speciation analysis reveals the complexity of the physiological processes responsible for element accumulation and bioaccessibility.

  5. Biogeochemical reductive release of soil embedded arsenate around a crater area (Guandu) in northern Taiwan using X-ray absorption near-edge spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Kai-Ying Chiang; Tsan-Yao Chen; Chih-Hao Lee; Tsang-Lang Lin; Ming-Kuang Wang; Ling-Yun Jang; Jyh-Fu Lee

    2013-01-01

    This study investigates biogeochemical reductive release of arsenate from beudantite into solution in a crater area in northern Taiwan,using a combination of X-ray absorption near-edge structure (XANES) and atomic absorption spectrometry.Total arsenic (As)concentrations in the soil were more than 200 mg/kg.Over four months of laboratory experiments,less than 0.8% As was released into solution after reduction experiments.The 71% to 83% As was chemically reduced into arsenite (As(Ⅲ)) and partially weathering into the soluble phase.The kinetic dissolution and re-precipitation of As,Fe,Pb and sulfate in this area of paddy soils merits further study.

  6. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    Science.gov (United States)

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  7. Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy

    Science.gov (United States)

    Ma, Tianyuan; Xu, Gui-Liang; Zeng, Xiaoqiao; Li, Yan; Ren, Yang; Sun, Chengjun; Heald, Steve M.; Jorne, Jacob; Amine, Khalil; Chen, Zonghai

    2017-02-01

    In situ high energy X-ray diffraction (HEXRD) and in situ X-ray absorption near edge spectroscopy (XANES) were carried out to understand the solid state synthesis of NaxMnO2, with particular interest on the synthesis of P2 type Na2/3MnO2. It was found that there were multi intermediate phases formed before NaMnO2 appeared at about 600 °C. And the final product after cooling process is a combination of O‧3 NaMnO2 with P2 Na2/3MnO2. A P2 type Na2/3MnO2 was synthesized at reduced temperature (600 °C). The influence of Na2CO3 impurity on the electrochemical performance of P2 Na2/3MnO2 was thoroughly investigated in our work. It was found that the content of Na2CO3 can be reduced by optimizing Na2CO3/MnCO3 ratio during the solid state reaction or other post treatment such as washing with water. We expected our results could provide a good guide for future development of high performance cathode materials for sodium-ion batteries.

  8. Structure analyses using X-ray photoelectron spectroscopy and X-ray absorption near edge structure for amorphous MS3 (M: Ti, Mo) electrodes in all-solid-state lithium batteries

    Science.gov (United States)

    Matsuyama, Takuya; Deguchi, Minako; Mitsuhara, Kei; Ohta, Toshiaki; Mori, Takuya; Orikasa, Yuki; Uchimoto, Yoshiharu; Kowada, Yoshiyuki; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2016-05-01

    Electronic structure changes of sulfurs in amorphous TiS3 and MoS3 for positive electrodes of all-solid-state lithium batteries are examined by X-ray photoelectron spectroscopy (XPS) and the X-ray absorption near edge structure (XANES). The all-solid-state cell with amorphous TiS3 electrode shows the reversible capacity of about 510 mAh g-1 for 10 cycles with sulfur-redox in amorphous TiS3 during charge-discharge process. On the other hand, the cell with amorphous MoS3 shows the 1st reversible capacity of about 720 mAh g-1. The obtained capacity is based on the redox of both sulfur and molybdenum in amorphous MoS3. The irreversible capacity of about 50 mAh g-1 is observed at the 1st cycle, which is attributed to the irreversible electronic structure change of sulfur during the 1st cycle. The electronic structure of sulfur in amorphous MoS3 after the 10th charge is similar to that after the 1st charge. Therefore, the all-solid-state cell with amorphous MoS3 electrode shows relatively good cyclability after the 1st cycle.

  9. Cyclic voltammetry and near edge X-ray absorption fine structure spectroscopy at the Ag L3-edge on electrochemical halogenation of Ag layers on Au(111)

    Science.gov (United States)

    Endo, Osamu; Nakamura, Masashi

    2011-05-01

    One to three layers of Ag grown on a Au(111) electrode were studied by cyclic voltammetry in chloride and bromide solutions and by ex-situ near-edge X-ray absorption fine structure spectroscopy at the Ag L3-edge (Ag L3-NEXAFS). The one and two layers obtained by underpotential deposition exhibited reduced intensity at the absorption edge in the Ag L3-NEXAFS spectra, which suggests the gain of d-electrons in these layers. The cyclic voltammograms and the Ag L3-NEXAFS spectra indicate that the second and third layers of Ag halogenated at positive potentials, whereas the first layer remained in metallic form.

  10. Determination of redox-active centers in praseodymium doped ceria by in situ-XANES spectroscopy

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Chatzichristodoulou, Christodoulos; Werchmeister, Rebecka Maria Larsen;

    2012-01-01

    Praseodymium doped ceria, a material of interest for electrochemical flue gas purification, was investigated with in situ X-ray Absorption Near Edge Structure spectroscopy between room temperature and 500°C in air and diluted nitrogen(II) oxide (NO/Ar) (1% NO in Ar). For temperatures above 400°C...

  11. Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy

    Science.gov (United States)

    Seuthe, T.; Höfner, M.; Reinhardt, F.; Tsai, W. J.; Bonse, J.; Eberstein, M.; Eichler, H. J.; Grehn, M.

    2012-05-01

    The effects of femtosecond laser pulse irradiation on the glass structure of alkaline silicate glasses were investigated by x-ray absorption near edge structure spectroscopy using the beamline of the Physikalisch-Technische Bundesanstalt at the electron synchrotron BESSY II in Berlin (Germany) by analyzing the magnesium K-edge absorption peak for different laser fluences. The application of fluences above the material modification threshold (2.1 J/cm2) leads to a characteristic shift of ˜1.0 eV in the K-edge revealing a reduced (˜3%) mean magnesium bond length to the ligated oxygen ions (Mg-O) along with a reduced average coordination number of the Mg ions.

  12. Communication: Near edge x-ray absorption fine structure spectroscopy of aqueous adenosine triphosphate at the carbon and nitrogen K-edges.

    Science.gov (United States)

    Kelly, Daniel N; Schwartz, Craig P; Uejio, Janel S; Duffin, Andrew M; England, Alice H; Saykally, Richard J

    2010-09-14

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen and carbon K-edges was used to study the hydration of adenosine triphosphate in liquid microjets. The total electron yield spectra were recorded as a function of concentration, pH, and the presence of sodium, magnesium, and copper ions (Na(+)/Mg(2+)/Cu(2+)). Significant spectral changes were observed upon protonation of the adenine ring, but not under conditions that promote π-stacking, such as high concentration or presence of Mg(2+), indicating that NEXAFS is insensitive to the phenomenon. Intramolecular inner-sphere association of Cu(2+) did create observable broadening of the nitrogen spectrum, whereas outer-sphere association with Mg(2+) did not.

  13. Near-edge x-ray absorption fine structure spectroscopy at atmospheric pressure with a table-top laser-induced soft x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Kühl, Frank-Christian, E-mail: Frank-christian.kuehl@mail.de; Müller, Matthias, E-mail: matthias.mueller@llg-ev.de; Schellhorn, Meike; Mann, Klaus [Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen (Germany); Wieneke, Stefan [Hochschule für angewandte Wissenschaft und Kunst, Von-Ossietzky-Str 99, D-37085 Göttingen (Germany); Eusterhues, Karin [Friedrich-Schiller-Universität Jena, Fürstengraben 1, D-07743 Jena (Germany)

    2016-07-15

    The authors present a table-top soft x-ray absorption spectrometer, accomplishing investigations of the near-edge x-ray absorption fine structure (NEXAFS) in a laboratory environment. The system is based on a low debris plasma ignited by a picosecond laser in a pulsed krypton gas jet, emitting soft x-ray radiation in the range from 1 to 5 nm. For absorption spectroscopy in and around the “water window” (2.3–4.4 nm), a compact helium purged sample compartment for experiments at atmospheric pressure has been constructed and tested. NEXAFS measurements on CaCl{sub 2} and KMnO{sub 4} samples were conducted at the calcium and manganese L-edges, as well as at the oxygen K-edge in air, atmospheric helium, and under vacuum, respectively. The results indicate the importance of atmospheric conditions for an investigation of sample hydration processes.

  14. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N. (Connecticut); (USARL)

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  15. φXANES: In vivo imaging of metal-protein coordination environments

    Science.gov (United States)

    James, Simon A.; Hare, Dominic J.; Jenkins, Nicole L.; de Jonge, Martin D.; Bush, Ashley I.; McColl, Gawain

    2016-02-01

    We have developed an X-ray absorption near edge structure spectroscopy method using fluorescence detection for visualizing in vivo coordination environments of metals in biological specimens. This approach, which we term fluorescence imaging XANESXANES), allows us to spatially depict metal-protein associations in a native, hydrated state whilst avoiding intrinsic chemical damage from radiation. This method was validated using iron-challenged Caenorhabditis elegans to observe marked alterations in redox environment.

  16. A XANES characterization of structural defects in single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Jun [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Song Li [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Yan Dongwei [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China) and National Center for NanoScience and Technology, Beijing 100080 (China)]. E-mail: wuzy@mail.ihep.ac.cn; Wang Chunru [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Xie Sishen [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Qian Haijie [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2006-11-15

    Structural defects play an important role in the physics of carbon nanototube. However, very few investigations of the structural changes induced by purifying process and other treatments have been performed by means of X-ray absorption near-edge structure (XANES) spectroscopy. We used XANES spectroscopy to detect the presence of defects induced in single-walled carbon nanotubes (SWNTs) by nitric acid treated processes and by an Ar{sup +} ion bombardment. The relationship between the features in XANES spectrum and the structural defects has been discussed systematically. Data also addresses evidence of oxygen effect induced by aging on nanotubes.

  17. Diffraction Anomalous Near-Edge Structure

    Science.gov (United States)

    Moltaji, Habib O., Jr.

    1995-11-01

    To determine the atomic structure about atom of an element in a sample of a condensed multicomponent single crystal, contrast radiation is proposed with the use of Diffraction Anomalous Near-Edge Structure (DANES), which combines the long-range order sensitivity of the x-ray diffraction and short-range order of the x-ray absorption near-edge techniques. This is achieved by modulating the photon energy of the x-ray beam incident on the sample over a range of energies near an absorption edge of the selected element. Due to anomalous dispersion, x-ray diffraction, and x-ray absorption, the DANES intensity with respect to the selected element is obtained in a single experiment. I demonstrate that synchrotron DANES measurements for the single crystal of thin film and the powder samples and provide the same local atomic structural information as the x-ray absorption near-edge with diffraction condition and can be used to provide enhanced site selectivity. I demonstrate calculations of DAFS intensity and measurements of polarized DANES and XANES intensity.

  18. Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy

    Science.gov (United States)

    Debret, Baptiste; Andreani, Muriel; Delacour, Adélie; Rouméjon, Stéphane; Trcera, Nicolas; Williams, Helen

    2017-05-01

    Sulfur is one of the main redox sensitive and volatile elements involved in chemical transfers between earth surface and the deep mantle. At mid-oceanic ridges, sulfur cycle is highly influenced by serpentinite formation which acts as a sink of sulfur under various oxidation states (S2-, S-, S0 and S6+). Sulfur sequestration in serpentinites is usually attributed to the crystallization of secondary minerals, such as sulfides (e.g. pyrite, pyrrhotite) or sulfates (e.g. anhydrite). However, the role of serpentine minerals as potential sulfur carriers is not constrained. We investigate the distribution and redox state of sulfur at micro-scale combining in situ spectroscopic (X-ray absorption near-edge structure: XANES) and geochemical (SIMS) measurements in abyssal serpentinites from the SWIR (South West Indian Ridge), the Rainbow and the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) areas. These serpentinites are formed in different tectono-metamorphic settings and provide a meaningful database to understand the fate of sulfur during seafloor serpentinization. XANES spectra of serpentinite powders show that the sulfur budget of the studied samples is dominated by oxidized sulfur (S6+ / ∑ S = 0.6- 1) although sulfate micro-phases, such as barite and anhydrite, are absent. Indeed, μ-XANES analyses of mesh, bastite and antigorite veins in thin sections and of serpentine grains rather suggest the presence of S6+ ions incorporated into serpentine minerals. The structural incorporation of S in serpentine minerals is also supported by X-ray fluorescence mapping revealing large areas (1600 μm2) of serpentinite where S is homogeneously distributed. Our observations show that serpentine minerals can incorporate high S concentrations, from 140 to 1350 ppm, and that this can account for 60 to 100% of the sulfur budget of abyssal serpentinites. Serpentine minerals thus play an important role in S exchanges between the hydrosphere and the mantle at mid-oceanic ridges and may

  19. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles

    Science.gov (United States)

    Lehmann, Johannes; Liang, Biqing; Solomon, Dawit; Lerotic, Mirna; LuizãO, Flavio; Kinyangi, James; SchäFer, Thorsten; Wirick, Sue; Jacobsen, Chris

    2005-03-01

    Small-scale heterogeneity of organic carbon (C) forms in soils is poorly quantified since appropriate analytical techniques were not available up to now. Specifically, tools for the identification of functional groups on the surface of micrometer-sized black C particles were not available up to now. Scanning Transmission X-ray Microscopy (STXM) using synchrotron radiation was used in conjunction with Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy to investigate nano-scale distribution (50-nm resolution) of C forms in black C particles and compared to synchrotron-based FTIR spectroscopy. A new embedding technique was developed that did not build on a C-based embedding medium and did not pose the risk of heat damage to the sample. Elemental sulfur (S) was melted to 220°C until it polymerized and quenched with liquid N2 to obtain a very viscous plastic S in which the black C could be embedded until it hardened to a noncrystalline state and was ultrasectioned. Principal component and cluster analysis followed by singular value decomposition was able to resolve distinct areas in a black carbon particle. The core of the studied biomass-derived black C particles was highly aromatic even after thousands of years of exposure in soil and resembled the spectral characteristics of fresh charcoal. Surrounding this core and on the surface of the black C particle, however, much larger proportions of carboxylic and phenolic C forms were identified that were spatially and structurally distinct from the core of the particle. Cluster analysis provided evidence for both oxidation of the black C particle itself as well as adsorption of non-black C. NEXAFS spectroscopy has great potential to allow new insight into black C properties with important implications for biogeochemical cycles such as mineralization of black C in soils and sediments, and adsorption of C, nutrients, and pollutants as well as transport in the geosphere, hydrosphere, and atmosphere.

  20. [Effects of long-term fertilization on organic carbon functional groups in black soil as revealed by synchrotron radiation soft X-ray near-edge absorption spectroscopy].

    Science.gov (United States)

    Wang, Nan; Wang, Shuai; Wang, Qing-He; Dong, Pei-Bo; Li, Cui-Lan; Zhang, Jin-Jing; Gao, Qiang; Zhao, Yi-Dong

    2012-10-01

    A 20 years (1984-2004) stationary field experiment was conducted to evaluate the effects of long-term application of chemical fertilizers (N or NPK) alone or in combination with low (0.125 kg x hm(-2)) or high dose of corn stalk (0.25 kg x hm(-2)) on organic carbon functional groups in black soil using synchrotron radiation soft X-ray near-edge absorption spectroscopy (C-1s NEXAFS). Compared with the control (CK) treatment, the aromatic C and the carboxyl C of soil increased, whereas the aliphatic C, the carbonyl C and the aliphatic C/aromatic C ratio decreased after the application of chemical fertilizer alone. After the application of chemical fertilizations in combined with corn stalk, the aromatic C decreased while the aliphatic C and the aliphatic C/aromatic C ratio increased as compared to N or NPK fertilizer treatment. And the change tendency was more obvious with the increase in the dose of corn stalk applied. Regardless of corn stalk application, the aromatic C, the aliphatic C, and the aliphatic C/aromatic C ratio were all higher for NPK than for N fertilizer treatment. The above results indicated that, compared with the no-fertilizer control treatment, the application of chemical fertilizers alone resulted in the relative proportion of aromatic compounds increased whereas that of aliphatic hydrocarbon compounds decreased. On the other hand, the relative proportion of the aliphatic hydrocarbon compounds was higher after the application of chemical fertilizers with than without corn stalk, with high than with low dose of corn stalk, and with NPK than with N fertilization. C-1s NEXAFS spectroscopy could characterize in situ the changes of organic carbon functional groups in soil under long-term stationary fertilization.

  1. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Willey, Trevor M. [Univ. of California, Davis, CA (United States)

    2004-04-01

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the

  2. Sulfur speciation in heavy petroleums: Information from X-ray absorption near-edge structure

    Science.gov (United States)

    Waldo, Geoffrey S.; Carlson, Robert M. K.; Moldowan, J. Michael; Peters, Kenneth E.; Penner-hahn, James E.

    1991-03-01

    The chemical speciation of sulfur in heavy petroleums, petroleum source rock extracts, and source rock pyrolysis products was studied using X-ray absorption near-edge structure (XANES) spectroscopy. The good energy resolution (ca. 0.5 eV) at the sulfur K edge and the strong dependence of XANES on the sulfur environment combine to give excellent sensitivity to changes in the electronic and structural environment of the sulfur. This has permitted identification and approximate quantitation of different classes of sulfur-containing compounds (e.g., sulfur, sulfides (including disulfides and polysulfides as a group), thiophenes, sulfoxides, sulfones, sulfinic acids, sulfonic acids, and sulfate) in a series of petroleums and petroleum source rocks. Our results indicate that the sulfur speciation of geological samples can be correlated with differences in source depositional environment, thermal maturity, and aromaticity. We report organosulfur compositions for the asphaltene, maltene, and liquid Chromatographie fractions of two sulfur-rich oils. In addition, we find that the organosulfur species in some, but not all, oils are subject to oxidation upon storage and thus may also be susceptible to oxidation in shallow reservoirs exposed to oxic waters. This work illustrates the utility of XANES as a direct spectroscopic probe for the quantitative determination of sulfur species in geological samples.

  3. Study of the Warm Dense Matter with XANES spectroscopy - Applications to planetary interiors

    Science.gov (United States)

    Denoeud, Adrien

    With the recent discovery of many exoplanets, modelling the interior of these celestial bodies is becoming a fascinating scientific challenge. In this context, it is crucial to accurately know the equations of state and the macroscopic and microscopic physical properties of their constituent materials in the Warm Dense Matter regime (WDM). Moreover, planetary models rely almost exclusively on physical properties obtained using first principles simulations based on density functional theory (DFT) predictions. It is thus of paramount importance to validate the basic underlying mechanisms occurring for key planetary constituents (metallization, dissociation, structural modifications, phase transitions, etc....) as pressure and temperature both increase. In this work, we were interested in two materials that can be mainly found in the Earth-like planets: silica, or SiO2, as a model compound of the silicates that constitute the major part of their mantles, and iron, which is found in abundance in their cores. These two materials were compressed and brought to the WDM regime by using strong shock created by laser pulses during various experiments performed on the LULI2000 (Palaiseau, France) and the JLF (Livermore, US) laser facilities and on the LCLS XFEL (Stanford, US). In order to penetrate this dense matter and to have access to its both ionic and electronic structures, we have probed silica and iron with time-resolved X-ray Absorption Near Edge Structure (XANES). In parallel with these experiments, we performed quantum molecular dynamics simulations based on DFT at conditions representative of the region investigated experimentally so as to extract the interesting physical processes and comprehend the limits of the implemented models. In particular, these works allowed us to highlight the metallization processes of silica in temperature and the structural changes of its liquid in density, as well as to more constrain the melting curve of iron at very high pressures.

  4. Valence determination of rare earth elements in lanthanide silicates by L 3-XANES spectroscopy

    Science.gov (United States)

    Kravtsova, Antonina N.; Guda, Alexander A.; Goettlicher, Joerg; Soldatov, Alexander V.; Taroev, Vladimir K.; Kashaev, Anvar A.; Suvorova, Lyudmila F.; Tauson, Vladimir L.

    2016-05-01

    Lanthanide silicates have been hydrothermally synthesized using Cu and Ni containers. Chemical formulae of the synthesized compounds correspond to K3Eu[Si6O15] 2H2O, HK6Eu[Si10O25], K7Sm3[Si12O32], K2Sm[AlSi4O12] 0.375H2O, K4Yb2[Si8O21], K4Ce2[Al2Si8O24]. The oxidation state of lanthanides (Eu, Ce, Tb, Sm, Yb) in these silicates has been determined using XANES spectroscopy at the Eu, Ce, Tb, Sm, Yb, L 3- edges. The experimental XANES spectra were recorded using the synchrotron radiation source ANKA (Karlsruhe Institute of Technology) and the X-ray laboratory spectrometer Rigaku R- XAS. By comparing the absorption edge energies and white line intensities of the silicates with the ones of reference spectra the oxidation state of lanthanides Eu, Ce, Tb, Sm, Yb has been found to be equal to +3 in all investigated silicates except of the Ce-containing silicate from the run in Cu container where the cerium oxidation state ranges from +3 (Ce in silicate apatite and in a KCe silicate with Si12O32 layers) to +4 (starting CeO2 or oxidized Ce2O3).

  5. A Mexican kaolin deposit: XANES characterization, mineralogical phase analysis and applications

    OpenAIRE

    Martínez, A.; Garza, L. L.; L. M. Torres; Vázquez, F.; López, W.

    2009-01-01

    A kaolin obtained from Villa de Reyes, a region near to San Luis Potosí (México) was characterized by means of X-ray powder diffraction (XRD, optical microscopy (OM), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-Ray Absorption Near Edge Spectroscopy (XANES), thermal analysis (DTA/TGA), dilatometry (DIL), and chemical analysis. Mineralogical and morphological characteristics of the mineral are presented. The kaolin sample was formed mainly by kaolinite, but other minor phase...

  6. Luminescence, vibrational and XANES studies of AlN nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Popov, A.I. [Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Institute for Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Balasubramanian, C. [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Department of Environmental, Occupational and Social Medicine, University of Rome Tor Vergata, 00133 Rome (Italy); Cinque, G.; Marcelli, A. [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Karbovnyk, I. [Ivan Franko National University of Lviv, Faculty of Electronics, 107 Tarnavskogo str., 79017 Lviv (Ukraine)], E-mail: ivan_karbovnyck@yahoo.com; Savchyn, V.; Krutyak, N. [Ivan Franko National University of Lviv, Faculty of Electronics, 107 Tarnavskogo str., 79017 Lviv (Ukraine)

    2007-04-15

    The paper reports comparative studies on synthesized aluminium nitride nanotubes, nanoparticles and commercially available micron-sized AlN powder using different spectroscopic techniques: cathodoluminescence measurements (CL), X-ray absorption near edge spectroscopy (XANES) and Fourier-transform infrared spectroscopy (FTIR). Crucial distinctions in CL spectra are observed for nano- and microsized aluminium nitride powders; systematic shift of the IR absorption maximum has been detected for nanostructured aluminium nitride as compared to commercial samples. Through XANES experiments on Al K-edge structural differences between nano- and bulk AlN are revealed, intensity of features in absorption spectra has been found to be a function of wurtzite and zincblend phases amount in nanostructured samples.

  7. Infrared and X-ray Absorption Near Edge Structure Spectroscopy Analyses of the Titan Haze Simulation (THS) Aerosols Produced at Low Temperature (200 K)

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Salama, Farid

    2016-10-01

    We present our latest results on the Titan Haze Simulation (THS) experiment developed on the COSmIC simulation chamber at NASA Ames. In Titan's atmosphere, a complex organic chemistry induced by UV radiation and electron bombardment occurs between N2 and CH4 and leads to the production of larger molecules and solid aerosols. In the THS, Titan's chemistry is simulated by pulsed plasma in the stream of a supersonic expansion, at Titan-like temperature (200 K). The residence time of the gas in the pulsed plasma discharge is ~3 µs, hence the chemistry is truncated allowing us to probe the first and intermediate steps of the chemistry, by adding heavier precursors into the initial N2-CH4 gas mixture. Experiments have been performed in different gas mixtures from the simpler N2-CH4 (98:2 and 95:5), to more complex mixtures: N2-CH4-C2H2 (91:5:4 and 94.5:5:0.5), N2-CH4-C6H6 (90:5:5) and N2-CH4-C2H2-C6H6 (86:5:4:5). Both the gas and solid phases have been analyzed using a combination of in situ and ex situ diagnostics.A recent mass spectrometry analysis of the gas phase demonstrated that the THS is a unique tool to monitor the different steps of the N2-CH4 chemistry [1]. The results of the solid phase study are consistent with the chemical growth evolution observed in the gas phase. The solid phase products are in the form of grains produced in volume and not from interaction on the substrate's surface. Scanning Electron Microscopy images have shown that more complex mixtures produce larger aggregates (100-500 nm in N2-CH4, up to 5 µm in N2-CH4-C2H2-C6H6). Moreover, the morphology of the grains seems to depend on the precursors, a finding that could have an impact on Titan haze microphysical models. We will present the latest results of the infrared and x-ray absorption near edge structure spectroscopic measurements that have been performed on all four mixtures. These results provide information on the nature of the different functional groups present in our samples as

  8. Probing cation antisite disorder in Gd2 Ti2 O7 pyrochlore by site-specific near-edge x-ray-absorption fine structure and x-ray photoelectron spectroscopy

    Science.gov (United States)

    Nachimuthu, P.; Thevuthasan, S.; Engelhard, M. H.; Weber, W. J.; Shuh, D. K.; Hamdan, N. M.; Mun, B. S.; Adams, E. M.; McCready, D. E.; Shutthanandan, V.; Lindle, D. W.; Balakrishnan, G.; Paul, D. M.; Gullikson, E. M.; Perera, R. C. C.; Lian, J.; Wang, L. M.; Ewing, R. C.

    2004-09-01

    Disorder in Gd2Ti2O7 is investigated by near-edge x-ray-absorption fine structure (NEXAFS) and x-ray photoelectron spectroscopy (XPS). NEXAFS shows Ti4+ ions occupy octahedral sites with a tetragonal distortion induced by vacant oxygen sites. O1s XPS spectra obtained with a charge neutralization system from Gd2Ti2O7(100) and the Gd2Ti2O7 pyrochlore used by Chen [Phys. Rev. Lett. 88, 105901 (2002)], both yielded a single peak, unlike the previous result on the latter that found two peaks. The current results give no evidence for an anisotropic distribution of Ti and O. The extra features reported in the aforementioned communication resulted from charging effects and incomplete surface cleaning. Thus, a result confirming the direct observation of simultaneous cation-anion antisite disordering and lending credence to the split vacancy model has been clarified.

  9. XANES Reveals the Flexible Nature of Hydrated Strontium in Aqueous Solution.

    Science.gov (United States)

    D'Angelo, Paola; Migliorati, Valentina; Sessa, Francesco; Mancini, Giordano; Persson, Ingmar

    2016-05-05

    X-ray absorption near-edge structure (XANES) spectroscopy has been used to determine the structure of the hydrated strontium in aqueous solution. The XANES analysis has been carried out using solid [Sr(H2O)8](OH)2 as reference model. Classical and Car-Parrinello molecular dynamics (MD) simulations have been carried out and in the former case two different sets of Lennard-Jones parameters have been used for the Sr(2+) ion. The best performing theoretical approach has been chosen on the basis of the experimental results. XANES spectra have been calculated starting from MD trajectories, without carrying out any minimization of the structural parameters. This procedure allowed us to properly account for thermal and structural fluctuations occurring in the aqueous solution in the analysis of the experimental spectrum. A deconvolution procedure has been applied to the raw absorption data thus increasing the sensitivity of XANES spectroscopy. One of the classical MD simulations has been found to provide a XANES theoretical spectrum in better agreement with the experimental data. An 8-fold hydration complex with a Sr-O distance of 2.60 Å has been found to be compatible with the XANES data, in agreement with previous findings. However, the hydration shells of the strontium ions have been found to have a flexible nature with a fast ligand exchange rate between the first and second hydration shell occurring in the picosecond time scale.

  10. The competitive growth of cubic domains in Ti(1-x)AlxN films studied by diffraction anomalous near-edge structure spectroscopy.

    Science.gov (United States)

    Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D

    2015-11-01

    Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.

  11. XANES spectra of metal phytate compounds

    Science.gov (United States)

    Metal speciation of phosphate and metal-phosphate interactions can be investigated by molecular-scale X-ray absorption near edge structure (XANES) spectroscopic analysis. Much of the effort, however, has been focused on inorganic P speciation (i. e. metal-orthophosphate interactions). Phytate (inosi...

  12. XANES analysis of dried and calcined bones

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Jayapradhi [Materials Science and Engineering Department, University of Texas at Arlington (United States); Gialanella, Stefano [Materials Science and Industrial Technology Department, University of Trento (Italy); Aswath, Pranesh B., E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington (United States)

    2013-10-15

    The structure of dried and calcined bones from chicken, bovine, deer, pig, sheep and chamois was examined using X-ray Absorption Near Edge Structure (XANES) spectroscopy. The oxygen K-edge absorption edge indicates that the surface of dried bone has a larger proportion of carbonate than the interior that is made up of phosphates. The phosphorus L and K edge clearly indicate that pyrophosphates, α-tricalcium phosphate (α-TCP) and hydrogen phosphates of Ca do not exist in either the dried bone or calcined bone and phosphorus exists as either β-tricalcium phosphate (β-TCP) or hydroxyapatite, both in the dried and calcined conditions. The Ca K-edge analysis indicates that β-TCP is the likely form of phosphate in both the dried and calcined conditions. - Highlights: • For the first time bones of five different species of vertebrates have been compared in both the dried and calcined states. • O, P and Ca edges detail the local coordination of these atoms in dried and calcined bone. • O K-edge shows that the surface of bone has more CO{sub 3} while the interior has more PO{sub 4}. • P and Ca edges eliminate the presence of pyrophosphates and confirmed the presence of HA and β-TCP. • The stability of these phosphates on calcination has been examined using XANES.

  13. Combined use of synchrotron radiation based micro-X-ray fluorescence, micro-X-ray diffraction, micro-X-ray absorption near-edge, and micro-fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by Van Gogh.

    Science.gov (United States)

    Van der Snickt, Geert; Janssens, Koen; Dik, Joris; De Nolf, Wout; Vanmeert, Frederik; Jaroszewicz, Jacub; Cotte, Marine; Falkenberg, Gerald; Van der Loeff, Luuk

    2012-12-04

    Over the past years a number of studies have described the instability of the pigment cadmium yellow (CdS). In a previous paper we have shown how cadmium sulfide on paintings by James Ensor oxidizes to CdSO(4)·H(2)O. The degradation process gives rise to the fading of the bright yellow color and the formation of disfiguring white crystals that are present on the paint surface in approximately 50 μm sized globular agglomerations. Here, we study cadmium yellow in the painting "Flowers in a blue vase" by Vincent van Gogh. This painting differs from the Ensor case in the fact that (a) a varnish was superimposed onto the degraded paint surface and (b) the CdS paint area is entirely covered with an opaque crust. The latter obscures the yellow color completely and thus presents a seemingly more advanced state of degradation. Analysis of a cross-sectioned and a crushed sample by combining scanning microscopic X-ray diffraction (μ-XRD), microscopic X-ray absorption near-edge spectroscopy (μ-XANES), microscopic X-ray fluorescence (μ-XRF) based chemical state mapping and scanning microscopic Fourier transform infrared (μ-FT-IR) spectrometry allowed unravelling the complex alteration pathway. Although no crystalline CdSO(4) compounds were identified on the Van Gogh paint samples, we conclude that the observed degradation was initially caused by oxidation of the original CdS pigment, similar as for the previous Ensor case. However, due to the presence of an overlying varnish containing lead-based driers and oxalate ions, secondary reactions took place. In particular, it appears that upon the photoinduced oxidation of its sulfidic counterion, the Cd(2+) ions reprecipitated at the paint/varnish interface after having formed a complex with oxalate ions that themselves are considered to be degradation products of the resin and/or oil in the varnish. The SO(4)(2-) anions, for their part, found a suitable reaction partner in Pb(2+) ions stemming from a dissolved lead

  14. Phosphorus Speciation of Forest-soil Organic Surface Layers using P K-edge XANES Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    J Prietzel; J Thieme; D Paterson

    2011-12-31

    The phosphorus (P) speciation of organic surface layers from two adjacent German forest soils with different degree of water-logging (Stagnosol, Rheic Histosol) was analyzed by P K-edge XANES and subsequent Linear Combination Fitting. In both soils, {approx}70% of the P was inorganic phosphate and {approx}30% organic phosphate; reduced P forms such as phosphonate were absent. The increased degree of water-logging in the Histosol compared to the Stagnosol did not affect P speciation.

  15. Probing the orientation of electrostatically immobilized Protein G B1 by time-of-flight secondary ion spectrometry, sum frequency generation, and near-edge X-ray adsorption fine structure spectroscopy.

    Science.gov (United States)

    Baio, Joe E; Weidner, Tobias; Baugh, Loren; Gamble, Lara J; Stayton, Patrick S; Castner, David G

    2012-01-31

    To fully develop techniques that provide an accurate description of protein structure at a surface, we must start with a relatively simple model system before moving to increasingly complex systems. In this study, X-ray photoelectron spectroscopy (XPS), sum frequency generation spectroscopy (SFG), near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to probe the orientation of Protein G B1 (6 kDa) immobilized onto both amine (NH(3)(+)) and carboxyl (COO(-)) functionalized gold. Previously, we have shown that we could successfully control orientation of a similar Protein G fragment via a cysteine-maleimide bond. In this investigation, to induce opposite end-on orientations, a charge distribution was created within the Protein G B1 fragment by first substituting specific negatively charged amino acids with neutral amino acids and then immobilizing the protein onto two oppositely charged self-assembled monolayer (SAM) surfaces (NH(3)(+) and COO(-)). Protein coverage, on both surfaces, was monitored by the change in the atomic % N, as determined by XPS. Spectral features within the SFG spectra, acquired for the protein adsorbed onto a NH(3)(+)-SAM surface, indicates that this electrostatic interaction does induce the protein to form an oriented monolayer on the SAM substrate. This corresponded to the polarization dependence of the spectral feature related to the NEXAFS N(1s)-to-π* transition of the β-sheet peptide bonds within the protein layer. ToF-SIMS data demonstrated a clear separation between the two samples based on the intensity differences of secondary ions stemming from amino acids located asymmetrically within Protein G B1 (methionine: 62 and 105 m/z; tyrosine: 107 and 137 m/z; leucine: 86 m/z). For a more quantitative examination of orientation, we developed a ratio comparing the sum of the intensities of secondary-ions stemming from the amino acid residues at either end

  16. In situ XANES study on TiO2-SiO2 aerogels and flame made materials

    DEFF Research Database (Denmark)

    Grunwaldt, J.D.; Beck, C.; Stark, W.;

    2002-01-01

    The structures of TiO2-SiO2 based aerogels and flame made particles, used as epoxidation catalysts, are compared by X-ray absorption near edge structure (XANES) spectroscopy and in situ XANES during dehydration of the calcined catalyst samples. The results are interpreted in terms of the titanium...... species present in the catalyst and the catalytic performance in the test reaction, the epoxidation of 2-cyclohexene-1-ol by tert butylhydroperoxide ( THBP) at 90degreesC. XANES shows that tetrahedral titanium sites are the favoured sites at low TiO2 concentrations (1-3.2 wt. % in this study......). The catalytic performance (turnover frequency, selectivity) of such aerogels or flame made materials with low TiO2 content is much better than that of corresponding samples with high TiO2 content. In aerogels, regardless of the TiO2 content, the amount of titanium with tetrahedral coordination increases...

  17. Chemical state analysis of conversion coatings by SR-XPS and TEY-XANES

    CERN Document Server

    Noro, H; Nagoshi, M

    2002-01-01

    Chromate coatings on galvanized steel have been studied by Synchrotron Radiation (SR) based techniques that include X-ray Photoelectron Spectroscopy (XPS) and Total-Electron-Yield X-ray Absorption Near Edge Structure (TEY-XANES). Non-destructive depth profiling of the coatings by SR-XPS reveals the enhancement of Cr sup 6 sup + in the outer surface. TEY-XANES spectroscopy based on simple specimen current measurement is demonstrated as an effective technique for analyzing chemical states of conversion coatings on general bulk substrates. The sampling depth of this technique, which exceeds several tens of nanometer, is determined by the penetration length of Auger electrons excited by X-ray and the inelastic mean free path of secondary electrons excited by inelastically scattered Auger electrons. The chemical states of phosphoric acid added chromate coatings are studied using this technique. The phosphoric acid is taken into the chromate coatings as partially changed into zinc and chromium phosphates, and the r...

  18. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  19. A XANES study of chromophores in archaeological glass

    Energy Technology Data Exchange (ETDEWEB)

    Arletti, Rossella [Universita di Torino, Dipartimento di Scienze della Terra, Torino (Italy); Quartieri, Simona [Universita di Messina, Dipartimento di Fisica e Scienze della Terra, Messina S' Agata (Italy); Freestone, Ian C. [Institute of Archaeology, London (United Kingdom)

    2013-04-15

    We applied X-ray absorption near edge spectroscopy (XANES) to obtain information on the origin of glass colour of several archaeological samples and on the oxidation conditions employed during their production. We studied a series of selected glass fragments - mainly from excavated primary and secondary production centres and dated to the first millennium AD - containing iron and manganese in a wide compositional range. In most of the studied samples iron is rather oxidised, while Mn K-edge XANES data show that, in all the studied glasses, Mn is mainly present in its reduced form (predominantly 2+), with the possible subordinate presence of Mn{sup 3+}. The most oxidised samples are the HIMT (high iron manganese titanium) glasses, while the less oxidised ones belong to the primary natron glass series from the early Islamic tank furnaces at Bet Eliezer (Israel), and to the series coming from a Roman glass workshop excavated in Basinghall Street, London. In these glasses, iron is approximately equally distributed over the 2+ and 3+ oxidation states. The XANES analyses of two glasses which had been deliberately decolourized using Sb- and Mn-based decolourizers demonstrate that Sb is more effective than Mn as oxidant. (orig.)

  20. X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method.

    Science.gov (United States)

    Ching, Wai-Yim; Rulis, Paul

    2009-03-11

    Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B(12)) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.

  1. X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method

    Energy Technology Data Exchange (ETDEWEB)

    Ching, W.-Y.; Rulis, Paul [Department of Physics, University of Missouri-Kansas City, Kansas City, MO 64110 (United States)

    2009-03-11

    Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a {sigma}31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B{sub 12}) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.

  2. X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method

    Science.gov (United States)

    Ching, Wai-Yim; Rulis, Paul

    2009-03-01

    Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B12) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.

  3. Characterization of phosphorus species in sediments from the Arabian Sea oxygen minimum zone: Combining sequential extractions and X-ray spectroscopy

    NARCIS (Netherlands)

    Kraal, Peter; Bostick, Benjamin C.; Behrends, Thilo; Reichart, Gert-Jan; Slomp, Caroline P.

    2015-01-01

    The bulk phosphorus (P) distribution in sediment samples from the oxygen minimum zone of the northern Arabian Sea was determined using two methods: sequential chemical extraction (the ‘SEDEX’ procedure) and X-ray absorption near-edge structure (XANES) spectroscopy of the phosphorus K-edge. Our

  4. HIGHER ORDER SPECIATION EFFECTS ON PLUTONIUM L3 X-RAY ABSORPTION NEAR EDGE SPECTRA.

    Energy Technology Data Exchange (ETDEWEB)

    Conradson, Steven D.; Abney, Kent D.; Begg, Bruce D.; Brady, Erik D.; Clark, David L.; den Auwer, Christophe; Ding, Mei; Dorhout, Peter K.; Espinosa-Faller, Francisco J.; Gordon, Pamela L.; Hess, Nancy J.; Hess, Ryan F.; Keogh, D. Webster; Lander, Gerard H.; Lupinetti, Anthony J.; Neu, Mary P.; Palmer, Phillip D.; Paviet-Hartmann, Patricia; Reilly, Sean D.; Runde, Wolfgang H.; Tait, C. Drew; Veirs, D. Kirk

    2003-06-09

    Pu L{sub 3} X-ray Near Edge Absorption Spectra for Pu(0-VII) are reported for more than 50 chalcogenides, chlorides, hydrates, hydroxides, nitrates, carbonates, oxy-hydroxides, and other compounds both as solids and in solution, and substituted in zirconlite, perovksite, and borosilicate glass. This large data base extends the known correlations between the energy and shape of these spectra from the usual association of the XANES with valence and site symmetry to higher order chemical effects. Because of the large number of compounds of these different types a number of novel and unexpected behaviors are observed.

  5. XANES study of Fe-implanted strontium titanate

    Science.gov (United States)

    Lobacheva, O.; Goncharova, L. V.; Chavarha, M.; Sham, T. K.

    2014-03-01

    Properties of strontium titanate SrTiO3 (STO) depend to a great extent on the substitutional dopants and defects of crystal structure. The ion beam implantation method was used for doping STO (001) crystals with Fe at different doses. Implanted samples were then annealed at 350°C in oxygen to induce recrystallization and remove oxygen vacancies produced during ion implantation process. The effect of Fe doping and post-implantation annealing was studied by X-ray Absorption Near Edge Spectroscopy (XANES) method and Superconducting Quantum Interference Device (SQUID). XANES allowed to monitor the change in structure of STO crystals and in the local environment of Fe following the implantation and annealing steps. SQUID measurements revealed correlation between magnetic moment and Fe implantation dose. Ferromagnetic hysteresis was observed on selected Fe-implanted STO at 5 K. The observed magnetic properties can be correlated with the several Fe oxide phases in addition to the presence of O/Ti vacancies.

  6. High-resolution X-ray absorption spectroscopy of iron carbonyl complexes.

    Science.gov (United States)

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2015-06-07

    We apply high-energy-resolution fluorescence-detected (HERFD) X-ray absorption near-edge spectroscopy (XANES) to study iron carbonyl complexes. Mono-, bi-, and tri-nuclear carbonyl complexes and pure carbonyl complexes as well as carbonyl complexes containing hydrocarbon ligands are considered. The HERFD-XANES spectra reveal multiple pre-edge peaks with individual signatures for each complex, which could not be detected previously with conventional XANES spectroscopy. These peaks are assigned and analysed with the help of TD-DFT calculations. We demonstrate that the pre-edge peaks can be used to distinguish the different types of iron-iron interactions in carbonyl complexes. This opens up new possibilities for applying HERFD-XANES spectroscopy to probe the electronic structure of iron catalysts.

  7. Diamond xenolith and matrix organic matter in the Sutter's Mill meteorite measured by C-XANES

    Science.gov (United States)

    Kebukawa, Yoko; Zolensky, Michael E.; Kilcoyne, A. L. David; Rahman, Zia; Jenniskens, Peter; Cody, George D.

    2014-11-01

    The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2-5 surrounded by fine-grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine-grained matrix employing carbon and nitrogen X-ray absorption near-edge structure (C-XANES and N-XANES) spectroscopy using a scanning transmission X-ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2-5 contains C-rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C-XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen-bearing functional groups were observed with N-XANES. One of the possible diamond grains contains a Ca-bearing inclusion that is not carbonate. C-XANES features of the diamond-edges suggest that the diamond might have formed by the CVD process, or in a high-temperature and -pressure environment in the interior of a much larger parent body.

  8. In Situ XANES/XPS Investigation of Doped Manganese Perovskite Catalysts

    Directory of Open Access Journals (Sweden)

    Daniel Mierwaldt

    2014-04-01

    Full Text Available Studying catalysts in situ is of high interest for understanding their surface structure and electronic states in operation. Herein, we present a study of epitaxial manganite perovskite thin films (Pr1−xCaxMnO3 active for the oxygen evolution reaction (OER from electro-catalytic water splitting. X-ray absorption near-edge spectroscopy (XANES at the Mn L- and O K-edges, as well as X-ray photoemission spectroscopy (XPS of the O 1s and Ca 2p states have been performed in ultra-high vacuum and in water vapor under positive applied bias at room temperature. It is shown that under the oxidizing conditions of the OER a reduced Mn2+ species is generated at the catalyst surface. The Mn valence shift is accompanied by the formation of surface oxygen vacancies. Annealing of the catalysts in O2 atmosphere at 120 °C restores the virgin surfaces.

  9. First Principles Fe L2,3-Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides.

    Science.gov (United States)

    Sassi, Michel; Pearce, Carolyn I; Bagus, Paul S; Arenholz, Elke; Rosso, Kevin M

    2017-09-21

    X-ray absorption near edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. Analysis of these spectra for transition metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectra of Fe(II)O6, Fe(III)O6 and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point charge embedding and small distortions of the first shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green's function approach completes the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.

  10. A comparison between powders and thin films of single-walled carbon nanotubes for the adsorption behaviors of phenylalanine and glycine by XANES study

    Institute of Scientific and Technical Information of China (English)

    IBRAHIM; Kurash

    2010-01-01

    We have compared the adsorption behaviors between single-walled carbon nanotube (SWCNT) powders and thin films with amino acids such as phenylalanine and glycine by using the X-ray absorption near edge structure (XANES) spectroscopy. On SWCNT powders very weak adsorption occurs as confirmed also by studies at high solution concentrations. The comparison of the adsorption behaviors with previous reports for thin films of SWCNTs shows that, due to their compact structure, thin films favor the adsorption of amino acids and represent themselves good candidate for a reliable evaluation of the interaction among amino acids and SWCNTs.

  11. Phosphorus dynamics in Swedish agricultural soils as influenced by fertilization and mineralogical properties: Insights gained from batch experiments and XANES spectroscopy.

    Science.gov (United States)

    Eriksson, Ann Kristin; Hesterberg, Dean; Klysubun, Wantana; Gustafsson, Jon Petter

    2016-10-01

    The soil chemistry of phosphorus (P) is important for understanding the processes governing plant availability as well as the risk of environmental losses of P. The objective of this research was to investigate both the speciation and the pH-dependent solubility patterns of P in clayey agricultural soils in relation to soil mineralogy and fertilization history. The study focused on soil samples from six fields that were subjected to different P fertilization regimes for periods of 45 to 57years. Soil P speciation was analyzed by P K-edge XANES spectroscopy and chemical fractionation, sorption isotherms were constructed, and dissolved P was measured as a function of pH. The XANES fitting results showed that organic P and P adsorbed to Fe and Al (hydr)oxides were common P constituents in all soils. Calcium phosphates were identified in five of six soil samples. The XANES results also indicated an increase in P adsorbed to Al and to a lesser extent Fe (hydr)oxides as a result of fertilization. Moreover, the fluorescence intensity from the P K-edge XANES analysis was most strongly correlated with HCl-digestible P (r=0.81***). Consistent with the XANES analysis, laboratory sorption isotherm models showed that the Freundlich sorption coefficient (KF) was most closely related to oxalate-extractable Al. Greater proportions of Ca phosphate in two of the heavily fertilized soils in combination with enhanced PO4 solubilization upon sample acidification indicated neoformation of Ca-phosphate precipitates. The results for the unfertilized soil samples generally showed a minimum in dissolved PO4 between pH6.5 and 7.5, with increases particularly at lower pH. This behavior can be explained either by the dissolution of Al-hydroxide-type sorbents or Ca phosphates at lower pH. In fertilized soils, there was no consistent trend in pH-dependent solubilization of P, with a complex relationship to solid-phase speciation. To conclude, inorganic P species changed most dynamically in

  12. Microstructure of organic–inorganic composite coatings studied by TEM and XANES

    Directory of Open Access Journals (Sweden)

    Etsuo Hamada, Masayasu Nagoshi, Kaoru Sato, Akira Matsuzaki, Takafumi Yamaji and Kotaro Kuroda

    2003-01-01

    Full Text Available Chromate coatings on Zn or Zn alloy coated steel sheets often include silica for the aim to improve corrosion resistance. In the case of dry-in-place chromate coatings containing acrylic resin (hereafter referred to as an organic–inorganic composite coating, an addition of silica, however, did not show an improvement in corrosion resistance. The microstructures of the organic–inorganic composite coatings were observed by transmission electron microscopy (TEM and the chemical states of Cr were investigated by the total electron yield X-ray absorption near edge structure (TEY-XANES method. TEM samples were successfully prepared by dry ultramicrotomy preventing water-soluble components in the coatings from dissolving out. TEY-XANES revealed the chemical states of components even in the organic matrix. Using these methods, it was found that the addition of silica changed just the morphology of the chromium compound in the organic–inorganic composite coating but not the chemical state of Cr. This is a reason for the addition of silica being not effective at improving corrosion resistance. The combination of dry ultramicrotomy-TEM and TEY-XANES spectroscopy was proven to be a powerful tool for characterizing organic–inorganic composite coatings.

  13. Quantitative structural refinement of Mn K edge XANES in LaMnO{sub 3} and CaMnO{sub 3} perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Monesi, C. [Dipartimento di Fisica, Universita di ' Roma Tre' , Via Della Vasca Navale, 84, I-00146 Rome (Italy); Meneghini, C. [Dipartimento di Fisica, Universita di ' Roma Tre' , Via Della Vasca Navale, 84, I-00146 Rome (Italy) and INFM-GILDA, c/o ESRF, Grenoble (France)]. E-mail: meneghini@fis.uniroma3.it; Bardelli, F. [Dipartimento di Fisica, Universita di ' Roma Tre' , Via Della Vasca Navale, 84, I-00146 Rome (Italy); INFM-GILDA, c/o ESRF, Grenoble (France); Benfatto, M. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (Italy); Mobilio, S. [Dipartimento di Fisica, Universita di ' Roma Tre' , Via Della Vasca Navale, 84, I-00146 Rome (Italy); INFM-GILDA, c/o ESRF, Grenoble (France); INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (Italy); Manju, U. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India); Sarma, D.D. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India)

    2006-05-15

    The special magnetotransport properties of hole doped manganese perovskites originate from a complex interplay among structural, magnetic and electronic degree of freedom. In this picture the local atomic structure around Mn ions plays a special role and this is the reason why short range order techniques like X-ray absorption spectroscopy (XAS) have been deeply exploited for studying these compounds. The analysis of near edge region features (XANES) of XAS spectra can provide very fine details of the local structure around Mn, complementary to the EXAFS, so contributing to the full understanding of the peculiar physical properties of these materials. Nevertheless the XANES analysis is complicated by the large amount of structural and electronic details involved making difficult the quantitative interpretation. This work exploits the recently developed MXAN code to achieve a full structural refinement of the Mn K edge XANES of LaMnO{sub 3} and CaMnO{sub 3} compounds; they are the end compounds of the doped manganite series La {sub x}Ca{sub 1-x}MnO{sub 3}, in which the Mn ions are present only in one charge state as Mn{sup 3+} and Mn{sup 4+} respectively. The good agreement between the results derived from the analysis of near edge and extended region of the XAS spectra demonstrates that a quantitative picture of the local structure can be obtained from structural refinement of Mn K edge XANES data in these crystalline compounds. The XANES analysis offers, in addition, the possibility to directly achieve information on the topology of local atomic structure around the absorber not directly achievable from EXAFS.

  14. Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure.

    Science.gov (United States)

    Timoshenko, Janis; Shivhare, Atal; Scott, Robert W J; Lu, Deyu; Frenkel, Anatoly I

    2016-07-20

    We adopted ab initio X-ray absorption near edge structure (XANES) modeling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modeling, where the candidate structures are known, and the inverse modeling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by revealing the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.

  15. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite.

    Science.gov (United States)

    Zougrou, I M; Katsikini, M; Brzhezinskaya, M; Pinakidou, F; Papadopoulou, L; Tsoukala, E; Paloura, E C

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  16. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite

    Science.gov (United States)

    Zougrou, I. M.; Katsikini, M.; Brzhezinskaya, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  17. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution.

    Science.gov (United States)

    Shimada, Hiroyuki; Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2015-05-07

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5'-monophosphate (CMP), 2'-deoxythymidine 5'-monophosphate (dTMP), and uridine 5'-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.

  18. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hiroyuki, E-mail: hshimada@cc.tuat.ac.jp; Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588 (Japan); Fujii, Kentaro; Yokoya, Akinari [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Fukuda, Yoshihiro; Saitoh, Yuji [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Sayo-gun, Hyogo 679-5148 (Japan)

    2015-05-07

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5′-monophosphate (CMP), 2′-deoxythymidine 5′-monophosphate (dTMP), and uridine 5′-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.

  19. Hemeproteins: Recent Advances in Quantitative XANES Analysis

    Science.gov (United States)

    Arcovito, Alessandro; Benfatto, Maurizio; D'Angelo, Paola; Della Longa, Stefano

    2007-02-01

    Recently, we have shown that multiple scattering (MS) theory, via the MXAN package, is able to reproduce the experimental X-ray absorption near edge structure (XANES) data of biological samples, in particular hemeproteins, from the rising edge up to ˜150-200 eV above the edge. In the present work, we illustrate how XANES can be used either as an independent tool to provide bond-lengths and bond-angles for a metalloprotein active site in solution, or in combination with X-ray Diffraction for structural determinations of ligand binding geometry of the same diffracting protein crystal, providing atomic precision even for crystallographic structures solved at > 1.2 Å resolution. At low temperature, XANES can be applied to provide the Fe-heme structure of trapped intermediate conformations of light triggered processes, and some aspects of the ligand binding dynamics. Very recently, XANES difference spectra have been analyzed to provide the Fe-heme structure of multiple intermediates of carbonmonoxy-myoglobin, obtained under different photolysis protocols in solution state.

  20. EXAFS and XANES analysis of oxides at the nanoscale

    Directory of Open Access Journals (Sweden)

    Alexei Kuzmin

    2014-11-01

    Full Text Available Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.. As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs and iron oxide nanoparticles.

  1. Characterization of local chemistry and disorder in synthetic and natural {alpha}-Al{sub 2}O{sub 3} materials by X-ray absorption near edge structure spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mottana, A. [Rome, Univ. `Roma Tre` (Italy). Dip. di Scienze Geologiche]|[INFN, Laboratori Nazionali di Frascati, Rome (Italy); Murata, T. [Kyoto, Univ. of Education (Japan). Dept. of Physics; Marcelli, A. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)] [and others

    1997-11-01

    X-ray absorption fine spectra at the Al K-edge were measured experimentally on and calculated theoretically via the multiple-scattering formalism for a chemically pure and physically perfect synthetic {alpha}-Al{sub 2}O{sub 3} ({alpha}-alumina), a natural `ruby/sapphire` (corundum) and a series of artificial `corundum` produced for technical purposes and used as geochemical standards. The Al K-edge spectra differ despite of the identical coordination (short-range arrangement) assumed by O around Al, and vary slightly in relation to the slightly different chemistries of the materials (substitutional defects) as well as on account of the location taken by foreign atoms in the structural lattices (positional defects). A quantitative treatment of the observed changes is made in terms of short-range modification of the coordination polyhedron and of medium- to long-range modifications in the overall structure; both of them induced by substitutions. In some technical `corundums`, the impurities of admixed `{beta}-alumina`, where Al is both in four- and six-fold coordination, produce another small but detectable effect on Al K-edges. Therefore, XAFS spectroscopy proves its potentials for both measuring a light element such as Al, and detecting minor coordination changes and substitutions (ca. 1{approx}3 wt.% as oxide) of the absorber by dilute other atoms, at least under favorable conditions as those occurring in this system are.

  2. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Zanoni, R. [Dipartimento di Chimica, Universita degli Studi di Roma ' ' La Sapienza' ' , piazzale Aldo Moro 5, I-00185 Rome (Italy); Stranges, S. [Dipartimento di Chimica, Universita degli Studi di Roma ' ' La Sapienza' ' , piazzale Aldo Moro 5, I-00185 Rome (Italy); IOM-CNR, Laboratorio TASC, I-34149 Basovizza, Trieste (Italy); Alagia, M. [IOM-CNR, Laboratorio TASC, I-34149 Basovizza, Trieste (Italy); Fronzoni, G.; Decleva, P. [Dipartimento di Scienze Chimiche, Universita di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy and IOM-CNR Democritos, Trieste (Italy)

    2012-04-07

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the {sigma}/{pi} hyperconjugation in EtFC and the {pi}-conjugation in VFC and EFC.

  3. Diversity in C-Xanes Spectra Obtained from Carbonaceous Solid Inclusions from Monahans Halite

    Science.gov (United States)

    Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Kilcoyne, A. L. D.; Rahman, Z.; Cody, G. D.

    2014-01-01

    Monahans meteorite (H5) contains fluid inclusion- bearing halite (NaCl) crystals [1]. Microthermometry and Raman spectroscopy showed that the fluid in the inclusions is an aqueous brine and they were trapped near 25degC [1]. Their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism [2]. Abundant solid inclusions are also present in the halites. The solid inclusions include abundant and widely variable organics [2]. Analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction and TEM reveal that these grains include macromolecular carbon similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo99-59), high- and low-Ca pyroxene, feldspars, magnetite, sulfides, lepidocrocite, carbonates, diamond, apatite and possibly the zeolite phillipsite [3]. Here we report organic analyses of these carbonaceous residues in Monahans halite using C-, N-, and O- X-ray absorption near edge structure (XANES). Samples and Methods: Approximately 100 nm-thick sections were extracted with a focused ion beam (FIB) at JSC from solid inclusions from Monahans halite. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory for XANES spectroscopy. Results and Discussion: C-XANES spectra of the solid inclusions show micrometer-scale heterogeneity, indicating that the macromolecular carbon in the inclusions have complex chemical variations. C-XANES features include 284.7 eV assigned to aromatic C=C, 288.4-288.8 eV assigned to carboxyl, and 290.6 eV assigned to carbonate. The carbonyl features obtained by CXANES might have been caused by the FIB used in sample preparation. No specific N-XANES features are observed. The CXANES spectra obtained from several areas in the FIB sections include type 1&2 chondritic IOM like, type 3 chondritic IOM like, and none of the above

  4. Chemical Heterogeneity of a Large Cluster IDP: Clues to its Formation History Using X-ray Fluorescence Mapping and XANES Spectroscopy

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2013-01-01

    Chondritic porous IDPs may be among the most primitive objects found in our solar system [1]. They consist of many micron to submicron minerals, glasses and carbonaceous matter [2,3,4,5,6,7] with > 10(exp 4) grains in a 10 micron cluster [8]. Speculation on the environment where these fine grained, porous IDPs formed varies with possible sources being presolar dusty plasma clouds, protostellar condensation, solar asteroids or comets [4,6,9]. Also, fine grained dust forms in our solar system today [10,11]. Isotopic anomalies in some particles in IDPs suggest an interstellar source[4,7,12]. IDPs contain relic particles left from the dusty plasma that existed before the protostellar disk formed and other grains in the IDPs formed later after the cold dense nebula cloud collapsed to form our protostar and other grains formed more recently. Fe and CR XANES spectroscopy is used here to investigate the oxygen environment in a large (>50 10 micron or larger sub-units) IDP. Conclusions: Analyzing large (>50 10 micron or larger sub-units) CP IDPs gives one a view on the environments where these fine dust grains formed which is different from that found by only analyzing the small, 10 micron IDPs. As with cluster IDP L2008#5 [3], L2009R2 cluster #13 appears to be an aggregate of grains that sample a diversity of solar and perhaps presolar environments. Sub-micron, grain by grain measurement of trace element contents and elemental oxidation states determined by XANES spectroscopy offers the possibility of understanding the environments in which these grains formed when compared to standard spectra. By comparing thermodynamic modeling of condensates with analytical data an understanding of transport mechanisms operating in the early solar system may be attained.

  5. XANES studies of titanium dioxide nanoparticles synthesized by using Peltophorum pterocarpum plant extract

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, S. [Centre for Photonics and Nanotechnology, Sona College of Technology, Salem 636005, Tamilnadu (India); Balamurugan, M., E-mail: chem.muruga@gmail.com [Centre for Photonics and Nanotechnology, Sona College of Technology, Salem 636005, Tamilnadu (India); Lippitz, A. [Bundesanstalt für Materialforschung und -prüfung, 6.8 Oberflächenanalytik und Grenzflächenchemie Unter den Eichen 44 – 46, 12203, Berlin (Germany); Fonda, E.; Swaraj, S. [Synchrotron SOLEIL, L’ormes des merisiers, Saint Aubin BP-48, 91192, Gif-Sur-Yvette Cedex (France)

    2016-12-15

    The preparation and characterization of a Titanium dioxide (TiO{sub 2}) by a simple, cost effective, facile and eco-friendly green synthesis method using Peltophorum pterocarpum plant extract is presented. The green synthesized nanoparticles were characterized using X-ray diffraction (XRD), Raman spectroscopy, High-resolution transmission electron microscopy (HR-TEM) and X-ray absorption near edge spectroscopy (XANES). XRD results show that the prepared TiO{sub 2} NPs were significantly crystalline with various percentages of anatase and rutile phases. The nanoparticles were found to have different diameters ranging from 20 to 80 nm. No evidence of any intermediate or different TiO{sub 2} phases were found in XANES measurements performed at the Ti K- and L-edge. It is shown that the TiO{sub 2} NPs with high uniformity, high surface area and minimum aggregation can be prepared with relative ease and the desired anatase: rutile phase ratio can be obtained by controlling the experimental conditions.

  6. XANES studies of titanium dioxide nanoparticles synthesized by using Peltophorum pterocarpum plant extract

    Science.gov (United States)

    Saravanan, S.; Balamurugan, M.; Lippitz, A.; Fonda, E.; Swaraj, S.

    2016-12-01

    The preparation and characterization of a Titanium dioxide (TiO2) by a simple, cost effective, facile and eco-friendly green synthesis method using Peltophorum pterocarpum plant extract is presented. The green synthesized nanoparticles were characterized using X-ray diffraction (XRD), Raman spectroscopy, High-resolution transmission electron microscopy (HR-TEM) and X-ray absorption near edge spectroscopy (XANES). XRD results show that the prepared TiO2 NPs were significantly crystalline with various percentages of anatase and rutile phases. The nanoparticles were found to have different diameters ranging from 20 to 80 nm. No evidence of any intermediate or different TiO2 phases were found in XANES measurements performed at the Ti K- and L-edge. It is shown that the TiO2 NPs with high uniformity, high surface area and minimum aggregation can be prepared with relative ease and the desired anatase: rutile phase ratio can be obtained by controlling the experimental conditions.

  7. X-ray fluorescence mapping and micro-XANES spectroscopic characterization of exhaust particulates emitted from auto engines burning MMT-added gasoline.

    Science.gov (United States)

    Mölders, N; Schilling, P J; Wong, J; Roos, J W; Smith, I L

    2001-08-01

    The elemental distribution and compositional homogeneity in auto exhaust particulates emitted from methylcyclopentadienyl manganese tricarbonyl-(MMT-)added gasoline engines have been investigated using a newly installed synchrotron X-ray microprobe. Two representative groups of exhaust particulate matter, as defined in a recent bulk X-ray absorption fine structure (XAFS) spectroscopic study at the Mn K-edge, were studied. The micro-X-ray absorption near-edge structure (XANES) spectra indicate a relatively homogeneous distribution of phases within a given particulate sample, down to a spatial extent of 40 microm (the resolution of microprobe). The micro-XANES also enabled analysis of several areas which displayed compositions different from the bulk sample, supporting the general theory describing manganese species formation in the exhaust. The ability to evaluate small regions also enabled direct verification of manganese sulfate from the S XANES despite the vast excess of sulfur present in other forms. The presence of a chloride compound, introduced through the sample dilution air and engine intake air, was also revealed. The study demonstrates the value of the combined X-ray microfluorescence with excitation by polychromatic radiation for elemental mapping and micro-XANES spectroscopy for chemical speciation in the study of dilute environmental materials containing low-Z constituents such as Cl, S, and P.

  8. Sulfur species in source rock bitumen before and after hydrous pyrolysis determined by X-ray absorption near-edge structure

    Science.gov (United States)

    Bolin, Trudy B.; Birdwell, Justin E.; Lewan, Michael; Hill, Ronald J.; Grayson, Michael B.; Mitra-Kirtley, Sudipa; Bake, Kyle D.; Craddock, Paul R.; Abdallah, Wael; Pomerantz, Andrew E.

    2016-01-01

    The sulfur speciation of source rock bitumen (chloroform-extractable organic matter in sedimentary rocks) was examined using sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy for a suite of 11 source rocks from around the world. Sulfur speciation was determined for both the native bitumen in thermally immature rocks and the bitumen produced by thermal maturation of kerogen via hydrous pyrolysis (360 °C for 72 h) and retained within the rock matrix. In this study, the immature bitumens had higher sulfur concentrations than those extracted from samples after hydrous pyrolysis. In addition, dramatic and systematic evolution of the bitumen sulfur moiety distributions following artificial thermal maturation was observed consistently for all samples. Specifically, sulfoxide sulfur (sulfur double bonded to oxygen) is abundant in all immature bitumen samples but decreases substantially following hydrous pyrolysis. The loss in sulfoxide sulfur is associated with a relative increase in the fraction of thiophene sulfur (sulfur bonded to aromatic carbon) to the extent that thiophene is the dominant sulfur form in all post-pyrolysis bitumen samples. This suggests that sulfur moiety distributions might be used for estimating thermal maturity in source rocks based on the character of the extractable organic matter.

  9. Synchrotron WAXS and XANES studies of silica (SiO2) powders synthesized from Indonesian natural sands

    Science.gov (United States)

    Muchlis, Khairanissa; Aini Fauziyah, Nur; Soontaranon, Siriwat; Limpirat, Wanwisa; Pratapa, Suminar

    2017-01-01

    In this study, we have investigated polymorphic silica (SiO2) powders using, Wide Angle X-ray Scattering (WAXS) and X-Ray Absorption Near Edge Spectroscopy (XANES), laboratory X-Ray Diffraction (XRD) instruments. The WAXS and XANES spectra were collected using synchrotron radiation at Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand. The silica powders were obtained by processing silica sand from Tanah Laut, South Kalimantan, Indonesia. Purification process of silica sand was done by magnetic separation and immersion with HCl. The purification step was needed to reduce impurity or undesirable non Si elements. Three polymorphs of silica were produced, i.e. amorphous phase (A), quartz (B), and cristobalite (C). WAXS profile for each phase was presented in terms of intensity vs. 2θ prior to analyses. Both XRD (λCuKα=1.54056 Å) and WAXS (λ=1.09 Å) patttern show that (1) A sample contains no crystallites, (2) B sample is monophasic, contains only quartz, and (3) C sample contains cristobalite and trydimite. XRD quantitative analysis using Rietica gave 98,8 wt% cristobalite, while the associated WAXS data provided 98.7 wt% cristobalite. Si K-edge XANES spectra were measured at energy range 1840 to 1920 eV. Qualitatively, the pre-edge and edge features for all phases are similar, but their main peaks in the post-edge region are different.

  10. X-ray-absorption near-edge structure of 3d transition elements in tetrahedral coordination: The effect of bond-length variation

    Energy Technology Data Exchange (ETDEWEB)

    Bianconi, A.; Fritsch, E.; Calas, G.; Petiau, J.

    1985-09-15

    The x-ray-absorption near-edge structure (XANES) of transition elements in tetrahedral coordination in crystals and glasses has been studied. We have identified the XANES features in the continuum that can be assigned to multiple scattering within the first coordination shell. The energy positions E/sub r/ of the XANES peaks in the continuum follow the rule (E/sub r/-E/sub b/)d/sup 2/ = const, where E/sub b/ is the energy of the prepeak, defined as the first core excitation to the bound antibonding state of T/sub 2/ symmetry, and d is the interatomic distance. This plot allows us to determine the tetrahedral coordination of a vanadium impurity in a SiO/sub 2/ glass and to get an estimation of the vanadium-oxygen distance (1.77 +- 0.05 A).

  11. X-ray-absorption near-edge structure of 3d transition elements in tetrahedral coordination: The effect of bond-length variation

    Science.gov (United States)

    Bianconi, A.; Fritsch, E.; Calas, G.; Petiau, J.

    1985-09-01

    The x-ray-absorption near-edge structure (XANES) of transition elements in tetrahedral coordination in crystals and glasses has been studied. We have identified the XANES features in the continuum that can be assigned to multiple scattering within the first coordination shell. The energy positions Er of the XANES peaks in the continuum follow the rule (Er-Eb)d2= const, where Eb is the energy of the prepeak, defined as the first core excitation to the bound antibonding state of T2 symmetry, and d is the interatomic distance. This plot allows us to determine the tetrahedral coordination of a vanadium impurity in a SiO2 glass and to get an estimation of the vanadium-oxygen distance (1.77+/-0.05 Å).

  12. Li K-edge X-ray absorption near edge structure spectra for a library of lithium compounds applied in lithium batteries

    Science.gov (United States)

    Wang, Dongniu; Zuin, Lucia

    2017-01-01

    Lithium ion batteries (LIB) have achieved great success as energy supply systems in portable devices and in electrical vehicles. Identifying the local chemical structures of elemental lithium in lithium compounds is beneficial for improving understanding of battery components and performance. Herein, a library of Li K-edge X-ray absorption near edge structure (XANES) of lithium compounds relevant to Li-ion batteries is reported. Materials described include lithium metals (anode), Li-containing cathodes, electrolytes and solid electrolyte interphase (SEI). The results illustrate the characteristic spectral features stemming from the various electronic structures and chemical environment of lithium atoms for each and every possible battery component. XANES spectra of Sn based anode after discharging reveal the appearance of Li2CO3 on electrode surface. X-ray damage on sensitive lithium species is also assessed; the results reveal that more attention should be paid to irradiation effects to conduct XANES measurements for battery materials properly.

  13. The status of strontium in biological apatites: an XANES investigation.

    Science.gov (United States)

    Bazin, D; Daudon, M; Chappard, Ch; Rehr, J J; Thiaudière, D; Reguer, S

    2011-11-01

    Osteoporosis represents a major public health problem and increases patient morbidity through its association with fragility fractures. Among the different treatments proposed, strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk. While the localization of Sr(2+) cations in the bone matrix has been extensively studied, little is known regarding the status of Sr(2+) cations in natural biological apatite. In this investigation the local environment of Sr(2+) cations has been investigated through XANES (X-ray absorption near-edge structure) spectroscopy in a set of pathological and physiological apatites. To assess the localization of Sr(2+) cations in these biological apatites, numerical simulations using the ab initio FEFF9 X-ray spectroscopy program have been performed. The complete set of data show that the XANES part of the absorption spectra may be used as a fingerprint to determine the localization of Sr(2+) cations versus the mineral part of calcifications. More precisely, it appears that a relationship exists between some features present in the XANES part and a Sr(2+)/Ca(2+) substitution process in site (I) of crystal apatite. Regarding the data, further experiments are needed to confirm a possible link between the relationship between the preparation mode of the calcification (cellular activity for physiological calcification and precipitation for the pathological one) and the adsorption mode of Sr(2+) cations (simple adsorption or insertion). Is it possible to draw a line between life and chemistry through the localization of Sr in apatite? The question is open for discussion. A better structural description of these physiological and pathological calcifications will help to develop specific therapies targeting the demineralization process in the case of osteoporosis.

  14. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2012-01-01

    Full Text Available This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD and Germanium detector (GeD, were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP and particulate matter of less than 10 millionths of a meter (PM10 collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA and principal component analysis (PCA has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD from typical marine sediments (TMS.

  15. The blue of iron in mineral pigments: a Fe K-edge XANES study of vivianite

    Science.gov (United States)

    Figueiredo, M. O.; Silva, T. P.; Veiga, J. P.

    2010-05-01

    Iron is a powerful chromophore element whose pigmenting properties were the first to be recognized among transition metals. The interest in blue iron minerals as pigments for painting was enhanced with the use of vivianite—a natural hydrated ferrous phosphate, Fe3(PO4)2ṡ8H2O—which in medieval Europe became an alternative to the expensive lapis lazuli, (Na, Ca)4(AlSiO4)3(SO4, Cl, S), a member of the ultramarines whose appreciated blue tone is due to the presence of sulfur polyanions. Conversely, vivianite coloring is attributed to the intervalence charge transfer (IVCT) Fe2+-Fe3+ that in later decades was studied by optical techniques and Mössbauer spectroscopy. However, the aging of blue vivianite pigments in old paintings has become a serious concern for conservators, but the aging process still awaits a satisfactory explanation. As an input to this problem, an X-ray absorption near-edge structure (XANES) study at the Fe K-edge of vivianite with different colors and origins was undertaken at the European Synchrotron Radiation Facility using the instrumental facilities of beamline ID-21. The analysis of pre-edge features corroborates previous data on the origin of vivianite color and emphasizes the need for a precautious assessment of iron speciation on the exclusive basis of XANES data. Actual results are discussed and further work is outlined.

  16. Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite: II. XANES analysis and simulation

    Science.gov (United States)

    Waychunas, G.A.; Fuller, C.C.; Davis, J.A.; Rehr, J.J.

    2003-01-01

    X-ray absorption near-edge spectroscopy (XANES) analysis of sorption complexes has the advantages of high sensitivity (10- to 20-fold greater than extended X-ray absorption fine structure [EXAFS] analysis) and relative ease and speed of data collection (because of the short k-space range). It is thus a potentially powerful tool for characterization of environmentally significant surface complexes and precipitates at very low surface coverages. However, quantitative analysis has been limited largely to "fingerprint" comparison with model spectra because of the difficulty of obtaining accurate multiple-scattering amplitudes for small clusters with high confidence. In the present work, calculations of the XANES for 50- to 200-atom clusters of structure from Zn model compounds using the full multiple-scattering code Feff 8.0 accurately replicate experimental spectra and display features characteristic of specific first-neighbor anion coordination geometry and second-neighbor cation geometry and number. Analogous calculations of the XANES for small molecular clusters indicative of precipitation and sorption geometries for aqueous Zn on ferrihydrite, and suggested by EXAFS analysis, are in good agreement with observed spectral trends with sample composition, with Zn-oxygen coordination and with changes in second-neighbor cation coordination as a function of sorption coverage. Empirical analysis of experimental XANES features further verifies the validity of the calculations. The findings agree well with a complete EXAFS analysis previously reported for the same sample set, namely, that octahedrally coordinated aqueous Zn2+ species sorb as a tetrahedral complex on ferrihydrite with varying local geometry depending on sorption density. At significantly higher densities but below those at which Zn hydroxide is expected to precipitate, a mainly octahedral coordinated Zn2+ precipitate is observed. An analysis of the multiple scattering paths contributing to the XANES

  17. Comparison of Nickel XANES Spectra and Elemental Maps from a Ureilite, a LL3.8 Ordinary Chondrite, Two Carbonaceous Chondrites and Two Large Cluster IDPs

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2014-01-01

    Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.

  18. Determination of the forms of calcium present in coal chars by Ca K-edge XANES with Synchrotron Radiation

    CERN Document Server

    Liu, Lijuan; Cui, Mingqi; Hu, Yongfeng; Zheng, Lei; Zhao, Yidong; Ma, Chenyan; Xi, Shibo; Yang, Dongliang; Guo, Zhiying; Wang, Jie

    2012-01-01

    This work is concerned with the Ca transformations during the pyrolysis of Ca(OH)2 or CaCO3-added coals. Ca K-edge X-ray absorption near edge structure (XANES) spectroscopy was applied to determine the forms of Ca in chars prepared from the pyrolysis of Ca-added coal. Results showed that Ca(OH)2 and CaSO4 existed in both the Ca(OH)2-added chars and the CaCO3-added chars, while CaS and CaO only existed in the chars prepared from the Ca(OH)2-added coal. Moreover, it was found that carboxyl Ca was formed during pyrolysis for either the Ca(OH)2-added coal or the CaCO3-added coals.

  19. Total electron yield XANES of zinc-blende MnTe

    Science.gov (United States)

    Iwanowski, R. J.; Welter, E.; Janik, E.

    2008-09-01

    The electronic structure and chemical bond of zinc-blende (zb) MnTe have been studied by using total-electron-yield (TEY) X-ray absorption near-edge structure (XANES) spectroscopy. Close resemblances of the shape of Mn K-edge XANES in zb-MnTe and in Zn 1- xMn xTe [A. Titov, X. Biquard, D. Halley, S. Kuroda, E. Bellet-Amalric, H. Mariette, J. Cibert, A.E. Merad, G. Merad, M.B. Kanoun, E. Kulatov, Yu.A. Uspenskii, Phys. Rev. B 72 (2005) 115209] indicated predominant influence of the 1st coordination shell. In particular, identical single-peak pre-edge structure for both cases was mainly ascribed to the Mn 1s-3d/4p weakly allowed dipole transitions. The quantitative analysis of XANES in zb-MnTe concerned the observed chemical shift of Mn K-edge threshold energy and a magnitude of the relevant cation-anion charge transfer (or effective cation charge), q(Mn-Te) [calculated after M. Kitamura, H. Chen, J. Phys. Chem. Solids 52 (1991) 731]. It also provided a comparison with our earlier X-ray absorption studies of Zn 1- xMn xB alloys (B = S, Se). The estimated charge transfer within the chemical bond of zb-MnTe enabled us to complete the q(Mn-B) versus chalcogen ligand (B = S, Se, Te) dependence and to interpret it in terms of p-d hybridization and a contribution of Mn 3d electrons to the overall charge transfer.

  20. The pathogenesis of Randall's plaque: a papilla cartography of Ca compounds through an ex vivo investigation based on XANES spectroscopy.

    Science.gov (United States)

    Carpentier, Xavier; Bazin, Dominique; Jungers, Paul; Reguer, Solenn; Thiaudière, Dominique; Daudon, Michel

    2010-05-01

    At the surface of attached kidney stones, a particular deposit termed Randall's plaque (RP) serves as a nucleus. This structural particularity as well as other major public health problems such as diabetes type-2 may explain the dramatic increase in urolithiasis now affecting up to 20% of the population in the industrialized countries. Regarding the chemical composition, even if other phosphate phases such as whitlockite or brushite can be found as minor components (less than 5%), calcium phosphate apatite as well as amorphous carbonated calcium phosphate (ACCP) are the major components of most RPs. Through X-ray absorption spectroscopy performed at the Ca K-absorption edge, a technique specific to synchrotron radiation, the presence and crystallinity of the Ca phosphate phases present in RP were determined ex vivo. The sensitivity of the technique was used as well as the fact that the measurements can be performed directly on the papilla. The sample was stored in formol. Moreover, a first mapping of the chemical phase from the top of the papilla to the deep medulla is obtained. Direct structural evidence of the presence of ACCP as a major constituent is given for the first time. This set of data, coherent with previous studies, shows that this chemical phase can be considered as one precursor in the genesis of RP.

  1. Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications

    Science.gov (United States)

    Glazoff, Michael V.

    2016-04-01

    Transition aluminas doped with Cr find widespread application in the dehydrogenation catalysis industry, while La-stabilized transition aluminas are used extensively for high-temperature application as catalytic supports (Wefers and Misra in Oxides and hydroxides of aluminum, Alcoa Laboratories, Pittsburgh, 1987). In this work, detailed synchrotron XAFS spectroscopy studies were conducted to shed light upon the atomic mechanisms of surface and subsurface reconstructions and/or catalytic support stabilization of doped aluminas. It was demonstrated that in four transition aluminas doped with Cr, it is the atoms which are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and chi-alumina). In the transition series aluminas: "gamma- chi- theta- eta-alumina," the change of properties (in particular, the dramatic increase in dehydrogenation catalytic activity and catalyst longevity and the coloration of samples) takes place because of the reduction in the average size of Cr clusters and their appearance on the Al2O3 surface, probably responsible for change in catalytic activity. It was demonstrated that in the samples of gamma-alumina doped with La any substantial change in the local coordination of the La atoms takes place only upon heating up to 1400 °C. This makes the La-stabilized gamma-alumina a perfect catalytic support for the numerous applications, e.g., catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). Furthermore, it was demonstrated that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amount of this rare earth material is required to achieve full

  2. [Chlorine speciation and concentration in cultivated soil in the northeastern China studied by X-ray absorption near edge structure].

    Science.gov (United States)

    Li, Jing; Lang, Chun-Yan; Ma, Ling-Ling; Xu, Dian-Dou; Zheng, Lei; Lu, Yu-Nanz; Cui Li-Rui; Zhang, Xiao-Meng

    2014-10-01

    A procedure has been proposed to determine chlorine speciation and concentration in soil with X-ray absorption near edge structure (XANES), and this method was applied to study the cultivated soil (bog, dark brown and black cultivated soil) in the Northeastern China. Qualitative analysis was carried out by least-squares fitting of sample spectra with standard spectra of three model compounds (NaCl, 3-chloropropionic acid, chlorophenol red). Linear correlation between the absolute fluorescence intensity of a series of NaCl standards and the Cl concentration was used as quantification standard for measuring the total Cl concentration in samples. The detection limits,relative standard deviation (RSD), recoveries were 2 mg · kg(-1), 0%-5% and 77%-133%, respectively. The average concentration of total Cl was 19 mg · kg(-1). The average relative content was as high as 61% of organochlorine with the concentration of 1-2 times as high as the concentration of inorganic chloride. The distribution trend of the total Cl, inorganic chloride and organic chlorine in different types of soil was: bog arable soil > dark brown soil > black soil. In conclusion, XANES is a reliable method to nondestructively characterize the speciation and concentration of chlorine in soil, which would provide some basic data for the future study of the chlorine's biogeochemical transformations.

  3. First Ti-XANES analyses of refractory inclusions from Murchison

    Energy Technology Data Exchange (ETDEWEB)

    Simon, S.B.; Sutton, S.R.; Grossman, L. (UC)

    2009-03-23

    Ti valence in refractory phases is an important recorder of redox conditions in the early solar nebula. We report the valence of Ti in pyroxene, spinel and hibonite in spinel-hibonite and spinel-pyroxene inclusions and in a coarse hibonite grain. A system of solar composition is so reducing that Ti{sup 3+} and Ti{sup 4+} can coexist, making the valence of Ti a valuable indicator of f{sub O2} conditions during formation of nebular materials. The Ti{sup 3+}/Ti{sup 4+} ratios observed in the Ti-rich phases fassaite and rhoenite in coarse-grained refractory inclusions from CV3 chondrites have been shown to be quantitatively consistent with formation in a gas of solar composition (log f{sub O2} = IW-6.8), but these are the only objects in chondrites for which this is the case. Here, we report the valence of Ti in various phases in refractory inclusions from the Murchison CM2 chondrite. The second-highest temperature, major-element-bearing phase predicted to condense from a gas of solar composition, hibonite (ideally CaAl{sub 12}O{sub 19}), can contain significant amounts of Ti, but the hibonite structure can have oxygen vacancies, so calculation of Ti valence from stoichiometry of electron probe analyses is not recommended for hibonite. To date, the only reported measurement of Ti valence in meteoritic hibonite was done by electron spin resonance, on coarse crystals from a Murchison hibonite-perovskite-melilite inclusion. Spinel and most of the pyroxene in CM inclusions contain too little Ti for derivation of Ti{sup 3+}/Ti{sup 4+} ratios from electron probe analyses. X-ray absorption near edge spectroscopy (XANES), however, allows determination of Ti valence in relatively Ti-poor phases. In the present work, we apply synchrotron microXANES to a large hibonite grain from Murchison and to spinel-hibonite (sp-hib) and spinel-pyroxene (sp-pyx) inclusions from Murchison, refractory materials whose Ti{sup 3+}/Ti{sup 4+} ratios have not been previously measured. Analysis of

  4. Assessment of chemical species of lead accumulated in tidemarks of human articular cartilage by X-ray absorption near-edge structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meirer, Florian [Atominstitut, Vienna University of Technology, 1020 Wien (Austria); MiNALab, CMM-Irst, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Pemmer, Bernhard, E-mail: bpemmer@ati.ac.at [Atominstitut, Vienna University of Technology, 1020 Wien (Austria); Pepponi, Giancarlo [MiNALab, CMM-Irst, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Zoeger, Norbert; Wobrauschek, Peter [Atominstitut, Vienna University of Technology, 1020 Wien (Austria); Sprio, Simone; Tampieri, Anna [Istituto di Scienza e Tecnologia dei Materiali Ceramici CNR, Faenca (Italy); Goettlicher, Joerg; Steininger, Ralph; Mangold, Stefan [Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, Campus South, 76344 Eggenstein-Leopoldshafen (Germany); Roschger, Paul [Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 4th Medical Department, Hanusch Hospital, Vienna (Austria); Berzlanovich, Andrea [Department of Forensic Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Hofstaetter, Jochen G. [Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 4th Medical Department, Hanusch Hospital, Vienna (Austria); Department of Orthopaedics, Vienna General Hospital, Medical University of Vienna, A-1090 Vienna (Austria); Streli, Christina [Atominstitut, Vienna University of Technology, 1020 Wien (Austria)

    2011-03-01

    Lead is a toxic trace element that shows a highly specific accumulation in the transition zone between calcified and non-calcified articular cartilage, the so-called ‘tidemark’. Excellent agreement has been found between XANES spectra of synthetic Pb-doped carbonated hydroxyapatite and spectra obtained in the tidemark region and trabecular bone of normal human samples, confirming that in both tissues Pb is incorporated into the hydroxyapatite crystal structure of bone. During this study the µ-XANES set-up at the SUL-X beamline at ANKA was tested and has proven to be well suited for speciation of lead in human mineralized tissue samples. A highly specific accumulation of the toxic element lead was recently measured in the transition zone between non-calcified and calcified normal human articular cartilage. This transition zone, the so-called ‘tidemark’, is considered to be an active calcification front of great clinical importance. However, little is known about the mechanisms of accumulation and the chemical form of Pb in calcified cartilage and bone. Using spatially resolved X-ray absorption near-edge structure analysis (µ-XANES) at the Pb L{sub 3}-edge, the chemical state of Pb in the osteochondral region was investigated. The feasibility of the µ-XANES set-up at the SUL-X beamline (ANKA synchrotron light source) was tested and confirmed by comparing XANES spectra of bulk Pb-reference compounds recorded at both the XAS and the SUL-X beamline at ANKA. The µ-XANES set-up was then used to investigate the tidemark region of human bone (two patella samples and one femoral head sample). The spectra recorded at the tidemark and at the trabecular bone were found to be highly correlated with the spectra of synthetic Pb-doped carbonated hydroxyapatite, suggesting that in both of these very different tissues Pb is incorporated into the hydroxyapatite structure.

  5. X-ray absorption near-edge structure and valence state of Mn in (Ga,Mn)N

    Science.gov (United States)

    Titov, A.; Biquard, X.; Halley, D.; Kuroda, S.; Bellet-Amalric, E.; Mariette, H.; Cibert, J.; Merad, A. E.; Merad, G.; Kanoun, M. B.; Kulatov, E.; Uspenskii, Yu. A.

    2005-09-01

    The band structure of the diluted magnetic semiconductor (Ga,Mn)N, and the x-ray absorption near-edge structure (XANES) at the K edge of Mn, were calculated using the linearized augmented plane wave method. The calculated K-edge spectra fit well with experimental data obtained on samples of Ga1-xMnxN with a wide range of Mn content, from x=0.3% to 5.7%. These samples were grown by molecular beam epitaxy. X-ray diffraction measurements and extended x-ray absorption fine structure studies were used to confirm the wurtzite structure of the samples, the absence of any secondary phase, and the substitutional position of Mn in the gallium sublattice of GaN. The shape of the measured XANES spectra does not depend on the Mn content, implying the same valence state and local atomic structure around the Mn atom in all samples. The comparison between the measured spectra and the results of the ab initio calculation offers a clear interpretation of the preedge structure: It is mainly due to dipolar transitions, with a single peak in the case of Mn2+ and an additional peak for Mn3+ . Such a behavior of the XANES preedge of Mn2+ was confirmed experimentally on (Ga,Mn)As and (Zn,Mn)Te. We conclude that the valence state of Mn in wurtzite (Ga,Mn)N is 3+ , a conclusion which is also supported by infrared optical transmission and magnetization data obtained on the same samples.

  6. Oxidation of shallow conduit magma: Insight from μ-XANES analysis on volcanic ash particle

    Science.gov (United States)

    Miwa, T.; Ishibashi, H.; Iguchi, M.

    2014-12-01

    Redox state of magma is important to understand dynamics of volcanic eruptions because magma properties such as composition of degassed volatiles, stability field of minerals, and rheology of magma depend on redox state. To evaluate redox state of magma, Fe3+/ΣFe ratio [= Fe3+/( Fe3++ Fe2+)] of volcanic glass has been measured non-destructively by Fe-K edge μ-XANES (micro X-ray Absorption Near Edge Structure) spectroscopy (e.g., Cottrell and Kelly, 2011). We performed textural, compositional, and Fe-K edge μ-XANES analyses on volcanic ash to infer oxidation process of magma at shallow conduit during eruption at Bromo Volcano, Indonesia. The volcanic ash particles were collected in 24th March 2011 by real-time sampling from ongoing activity. The activity was characterized by strombolian eruption showing magma head ascended to near the ground surface. The ash sample contains two type of volcanic glasses named as Brown and Black glasses (BrG and BlG), based on their color. Textual analysis shows microlite crystallinities are same in the two type of glasses, ranging from 0 to 3 vol.%. EPMA analyses show that all of the glasses have almost identical andesitic composition with SiO2 = 60 wt.%. In contrast, Fe-K edge μ-XANES spectra with the analytical method by Ishibashi et al. (in prep) demonstrate that BrG (Fe3+/ΣFe = 0.20-0.26) is more oxidized than BlG (Fe3+/ΣFe = 0.32-0.60). From combination of the glass composition, the measured Fe3+/ΣFe ratio and 1060 degree C of temperature (Kress and Carmichael, 1991), the oxygen fugacities are estimated to be NNO and NNO+4 for BrG and BlG, respectively. The volcanic glasses preserve syn-eruptive physicochemical conditions by rapid quenching due to their small size ranging from 125 to 250 μm. Our results demonstrate that BrG and BlG magmas are textually and chemically identical but their redox conditions are different at the eruption. The oxidation of magma can be caused by following two processes; 1) diffusive transport

  7. XANES investigation of Chinese faience excavated from Peng State Cemetery site in Western Zhou Period (BC1046–BC771)

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Wentao; Yang, Yimin [Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044 (China); Department of Scientific History and Archaeometry, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Jian, E-mail: jzhu@ucas.ac.cn [Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044 (China); Department of Scientific History and Archaeometry, University of Chinese Academy of Sciences, Beijing 100049 (China); Gu, Zhou [Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044 (China); Department of Scientific History and Archaeometry, University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, Yaoting [Institute of Archaeology of Shanxi Province, Taiyuan 030001 (China); Zhang, Jing [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wang, Lihua [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2014-10-15

    Highlights: • We analyzed faience of Peng State archaeological cemetery site in Western Zhou Dynasty (BC1046–BC771). • We investigated the chemical composition and oxidation state by energy dispersive X-ray fluorescence (EDXRF) and X-ray absorption near edge spectroscopy (XANES), respectively. • The coloring element in both beads is copper in +2 valence, and the color divergence of these two beads may originate from different local chemical environments of Cu{sup 2+}. • Chinese faience in this period is the earliest glaze with copper colorant. - Abstract: As a special kind of glazed ceramic, faience has an important role to play in the technological trajectory that eventually leads to the development of ancient glass. In China, faience products first emerged in early Western Zhou Dynasty (1046BC–771BC), and their great significance as well as brilliant colors varying between blue and green attracted a lot of scholars. However, scientific researches on the color source of Chinese faience in view of microstructure characterization are quite few. In the present work, analyses by energy dispersive X-ray fluorescence (EDXRF) and X-ray absorption near edge spectroscopy (XANES) were carried out on two faience beads with relatively blue and green color, respectively, both of which were excavated from Peng State archaeological cemetery site in Western Zhou Dynasty. The results show that the coloring element in both beads is copper with +2 valence, and the color divergence of these two beads may originate from different local chemical environments of Cu{sup 2+}. It is suggested that the faience in this period is the earliest glaze with copper colorant in China.

  8. Mechanistic insights on the electronic properties and electronic/atomic structure aspects in orthorhombic SrVO3 thin films: XANES-EXAFS study.

    Science.gov (United States)

    Sharma, Aditya; Varshney, Mayora; Cheol Lim, Weon; Shin, Hyun-Joon; Pal Singh, Jitendra; Ok Won, Sung; Hwa Chae, Keun

    2017-03-01

    Correlations among the B-O6 octahedra distortions, existing polymorphous phases, band structures and electronic conductivities of ABO3 perovskites are matters for debate and require a deep understanding of their local atomic/electronic structures and diverse assets. In this study, to illustrate the distortion in V-O6 octahedra and its implication on the band structure and electronic properties, spectroscopic investigations on the RF-sputtering grown insulating SrVO3 thin films were employed using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). V K-edge and V L3,2-edge XANES, along with atomic multiplet calculations, have confirmed the 4+ oxidation state of V ions in the pristine and annealed SrVO3 thin films. Lower t2g/eg peak intensity ratio and smaller energy separation between t2g and eg peaks in the O K-edge XANES spectra, compared to the VO2 reference sample, have confirmed a larger V-O6 distortion in the orthorhombic SrVO3 thin films. Moreover, from the EXAFS data analysis, the local orthorhombic structure has been identified in the pristine and annealed SrVO3 thin films, compelling significant distortion in the V-O6 octahedra. Dimerization in the vanadium chains and V-V twisting, caused by V-O6 octahedra distortion, manifests a miscellaneous ligand field interaction between O 2p and V 3d orbitals and facilitates (i) a larger separation between the bonding and antibonding d‖ orbitals and (ii) an upward shift of the π* band in the band structure, leading to larger band gaps in the insulating SrVO3 thin films. Our spectroscopy results may open up new avenues for the mechanism of insulating/conducting character in other complicated perovskite materials using XANES-EXAFS.

  9. Identification of Second Shell Coordination in Transition Metal Species Using Theoretical XANES: Example of Ti-O-(C, Si, Ge) Complexes.

    Science.gov (United States)

    Spanjers, Charles S; Guillo, Pascal; Tilley, T Don; Janik, Michael J; Rioux, Robert M

    2017-01-12

    X-ray absorption near-edge structure (XANES) is a common technique for elucidating oxidation state and first shell coordination geometry in transition metal complexes, among many other materials. However, the structural information obtained from XANES is often limited to the first coordination sphere. In this study, we show how XANES can be used to differentiate between C, Si, and Ge in the second coordination shell of Ti-O-(C, Si, Ge) molecular complexes based on differences in their Ti K-edge XANES spectra. Experimental spectra were compared with theoretical spectra calculated using density functional theory structural optimization and ab initio XANES calculations. The unique features for second shell C, Si, and Ge present in the Ti K pre-edge XANES are attributed to the interaction between the Ti center and the O-X (X = C, Si, or Ge) antibonding orbitals.

  10. In situ XANES studies of TiO{sub 2}/Fe{sub 3}O{sub 4}-C during photocatalytic degradation of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, T.-F.; Hsiung, T.-L. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wang, James [Department of Biomedical Engineering, University of Southern California, Los Angeles 90007 (United States); Huang, C.-H. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Paul Wang, H., E-mail: wanghp@mail.ncku.edu.t [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Sustainable Environmental Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2010-07-21

    Mainly anatase and Fe{sub 3}O{sub 4} in the magnetic photocatalysts (TiO{sub 2} on Fe{sub 3}O{sub 4}-C core-shell nanoparticles (TiO{sub 2}/Fe{sub 3}O{sub 4}-C)) are observed by X-ray powder diffraction (XRD) spectroscopy. The Ti K-edge least-square fitted XANES spectra of the TiO{sub 2}/Fe{sub 3}O{sub 4}-C photocatalyst indicate that the main titanium species are nanosize TiO{sub 2} (9 nm) (77%) and bulky TiO{sub 2} (23%). Speciation of titanium in the TiO{sub 2}/Fe{sub 3}O{sub 4}-C during photocatalytic degradation of 100 ppm of trichloroethylene (TCE) has also been studied by in situ X-ray absorption near-edge structural (XANES) spectroscopy. TiO{sub 2} is not perturbed during the course of photocatalysis. However, it is worth to note that during photocatalytic degradation of TCE, about 33% of FeO and 67% of Fe{sub 3}O{sub 4} are observed in the photocatalyst. It seems that the carbon layer on the TiO{sub 2}/Fe{sub 3}O{sub 4}-C photocatalysts can reduce the possibility for photoexcited electron-hole recombination as usually found on the relatively narrow bandgap of ferric oxide during photocatalysis.

  11. 同步辐射软X射线近边吸收谱方法研究长期施肥对黑土有机碳官能团的影响%Effects of Long-Term Fertilization on Organic Carbon Functional Groups in Black Soil as Revealed by Synchrotron Radiation Soft X-Ray Near-Edge Absorption Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    王楠; 王帅; 王青贺; 董培博; 李翠兰; 张晋京; 高强; 赵屹东

    2012-01-01

    以定位20年的黑土肥料试验为平台,利用同步辐射软X射线近边吸收谱(C-1s NEXAFS)方法,研究了长期施用化肥以及化肥配施玉米秸秆对土壤有机碳官能团的影响.结果表明:与不施肥的空白处理(CK)相比,单施化肥(N,NPK)后土壤的芳香C和羧基C含量增加,脂族C和羰基C含量下降,脂族C/芳香C比值降低;与单施化肥处理相比,化肥配施玉米秸秆后芳香C含量下降而脂族C含量增加,脂族C/芳香C比值增加,并随玉米秸秆用量增加表现的更为明显;无论配施玉米秸秆与否,NPK肥混施处理的芳香C、脂族C以及脂族C/芳香C比值均高于单施N肥处理.上述结果说明,单施化肥比不施肥使土壤有机碳官能团中芳香类化合物的相对比例增加,而脂肪烃类化合物的相对比例下降;化肥配施玉米秸秆则比单施化肥增加了脂肪烃类化合物的相对比例,配施高量比低量玉米秸秆的增加趋势更为明显,同时NPK肥混施比单施N肥有利于提高脂肪烃类化合物的相对比例.C-1s NEXAFS方法能够原位表征长期定位施肥条件下土壤有机碳官能团组成的变化.%A 20 years (1984-2004) stationary field experiment was conducted to evaluate the effects of long-term application of chemical fertilizers (N or NPK) alone or in combination with low (0.125 kg o hm~z) or high dose of corn stalk (0. 25 kg · hm‐2) on organic carbon functional groups in black soil using synchrotron radiation soft X-ray near-edge absorption spectroscopy (C-ls NEXAFS). Compared with the control (CK) treatment, the aromatic C and the carboxyl C of soil increased, whereas the aliphatic C, the carbonyl C and the aliphatic C/aromatic C ratio decreased after the application of chemical fertilizer alone. After the application of chemical fertilizations in combined with corn stalk, the aromatic C decreased while the aliphatic C and the aliphatic C/aromatic C ratio increased as compared to N or NPK fertilizer

  12. In-situ reflection-XANES study of ZDDP and MoDTC lubricant films formed on steel and diamond like carbon (DLC) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Morina, Ardian, E-mail: A.Morina@leeds.ac.uk [Institute of Engineering Thermofluids, Surfaces and Interfaces, School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Zhao, Hongyuan [Institute of Engineering Thermofluids, Surfaces and Interfaces, School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Mosselmans, J. Fred W. [Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2014-04-01

    Highlights: • S, P, Zn and Mo species formed in lubricant films can be characterised in-situ and in-lubro by using the reflection mode XAS technique. • Heating the lubricated steel and DLC samples affects the chemical reaction between the adsorbed species and the surface, resulting in different chemical composition of the ZDDP + MoDTC thermal film formed on steel or DLC. • There is a greater effect of temperature on S species than P species formed on ZDDP thermal films. - Abstract: Chemical characterisation of boundary lubricated interfaces is essential for developing mechanistic models that describe lubricant additive interactions with the surface and their effect on tribological performance. In this study the potential for using the synchrotron-based reflection mode X-ray absorption spectroscopy (XAS) technique for in-situ chemical characterisation of lubricant films has been studied. Thermal films formed from zinc dialkyl dithio phosphate (ZDDP) and molybdenum dialkyl dithio carbamate (MoDTC) lubricant additives have been formed and analysed in-situ using the X-ray absorption near edge structure (XANES) spectroscopy technique. The surface sensitivity of this approach was improved by doing the analysis in reflection mode, enabling analysis of only top layer (up to around 10 nm) of the solid surface. In addition, in-lubro analysis of pre-formed tribofilms from the same additives was done using non-vacuum conditions. The results are discussed in conjunction with XANES and X-ray photoelectron spectroscopy (XPS) analysis of similar additives published in the literature. The results obtained are consistent with the existing ZDDP and MoDTC literature and provide some new insight into intermediate species not reported before. The advantages and disadvantages of the developed XANES methodology for in-situ surface chemical analysis of lubricated conditions are discussed.

  13. PREFACE: Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008) Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008)

    Science.gov (United States)

    Tanaka, Isao; Mizoguchi, Teruyasu; Yamamoto, Tomoyuki

    2009-03-01

    Both electron energy loss near edge structure (ELNES) spectroscopy and x-ray absorption near edge structure (XANES) spectroscopy provide information on the local structural and chemical environments of selected elements of interest. Recent technological progress in scanning transmission electron microscopy has enabled ELNES measurements with atomic column spatial resolution. Very dilute concentrations (nanograms per milliliter or ppb level) of dopants can be observed using third-generation synchrotron facilities when x-ray fluorescence is measured with highly efficient detectors. With such technical developments, ELNES and XANES have become established as essential tools in a large number of fields of natural science, including condensed matter physics, chemistry, mineralogy and materials science. In addition to these developments in experimental methodology, notable progress in reproducing spectra using theoretical methods has recently been made. Using first-principles methods, one can analyze and interpret spectra without reference to experiment. This is quite important since we are often interested in the analysis of exotic materials or specific atoms located at lattice discontinuities such as surfaces and interfaces, where appropriate experimental data are difficult to obtain. Using the structures predicted by reliable first-principles calculations, one can calculate theoretical ELNES and XANES spectra without too much difficulty even in such cases. Despite the fact that ELNES and XANES probe the same phenomenon—essentially the electric dipole transition from a core orbital to an unoccupied band—there have not been many opportunities for researchers in the two areas to meet and discuss. Theoretical calculations of ELNES spectra have been mainly confined to the electron microscopy community. On the other hand, the theory of XANES has been developed principally by researchers in the x-ray community. Publications describing the methods have been written more

  14. Near-edge elastic photon scattering in amorphous systems

    Energy Technology Data Exchange (ETDEWEB)

    Hugtenburg, R.P. [School of Physics and Astronomy, University of Birmingham, B15 2TT (United Kingdom); Queen Elizabeth Medical Centre, University Hospital Birmingham, B15 2TH (United Kingdom)], E-mail: r.p.hugtenburg@bham.ac.uk; England, D.W. [Queen Elizabeth Medical Centre, University Hospital Birmingham, B15 2TH (United Kingdom); Bradley, D.A. [Department of Physics, School of Electronics and Physical Sciences, University of Surrey, GU2 7XH (United Kingdom)

    2007-10-15

    The structure of valence and unoccupied electron orbitals and the neighbouring electron density distribution of atoms and ions in amorphous systems can be examined through use of resonance in the elastic photon scattering-cross-section in the vicinity of core atomic orbital energies. So-called anomalous X-ray scattering (AXS) is a mode of analysis that offers similar information to that of EXAFS but can be obtained concurrently with diffraction mode imaging. Of interest is whether the dilute-ion aqueous system provides an environment suitable for testing independent particle approximation (IPA) predictions. With the aqueous environment as the reference system for calibrating relative cross-sections, particular challenges include photons scattered by the medium being subsequently absorbed by the ion, limiting the thickness of the attenuating medium and motivating use of bright synchrotron photon sources where tunable X-rays are obtained at sub-eV resolution using a Si 111 monochromator. Measured scattering intensities and fluorescent yields were compared and shown to agree qualitatively with Monte Carlo calculations utilising amplitudes calculated from modified form-factors with anomalous scatter factors at a resolution of several eV determined from the Dirac-Slater exchange potential. Experimentally determined form-factors for pure water were used to calibrate fluorescent yield and elastic scattering intensities for measurement of the energy dependent variation of these quantities near edge and XRF imaging of the Zn concentration in wax mounted, formalin fixed, breast tumour samples. Results indicate the distribution of Zn at higher resolution than sampling dimensions used in previous studies. Shifts in the position and profile of K-edge absorption and elastic scattering features in aqeuous Zn, Zn doped sol-gel glass and Zn in tissue are shown to reflect changes in the atomic charge state and environment and offer support for the presence of non-nutrient Zn bearing

  15. Near-edge elastic photon scattering in amorphous systems

    Science.gov (United States)

    Hugtenburg, R. P.; England, D. W.; Bradley, D. A.

    2007-10-01

    The structure of valence and unoccupied electron orbitals and the neighbouring electron density distribution of atoms and ions in amorphous systems can be examined through use of resonance in the elastic photon scattering-cross-section in the vicinity of core atomic orbital energies. So-called anomalous X-ray scattering (AXS) is a mode of analysis that offers similar information to that of EXAFS but can be obtained concurrently with diffraction mode imaging. Of interest is whether the dilute-ion aqueous system provides an environment suitable for testing independent particle approximation (IPA) predictions. With the aqueous environment as the reference system for calibrating relative cross-sections, particular challenges include photons scattered by the medium being subsequently absorbed by the ion, limiting the thickness of the attenuating medium and motivating use of bright synchrotron photon sources where tunable X-rays are obtained at sub-eV resolution using a Si 111 monochromator. Measured scattering intensities and fluorescent yields were compared and shown to agree qualitatively with Monte Carlo calculations utilising amplitudes calculated from modified form-factors with anomalous scatter factors at a resolution of several eV determined from the Dirac-Slater exchange potential. Experimentally determined form-factors for pure water were used to calibrate fluorescent yield and elastic scattering intensities for measurement of the energy dependent variation of these quantities near edge and XRF imaging of the Zn concentration in wax mounted, formalin fixed, breast tumour samples. Results indicate the distribution of Zn at higher resolution than sampling dimensions used in previous studies. Shifts in the position and profile of K-edge absorption and elastic scattering features in aqeuous Zn, Zn doped sol-gel glass and Zn in tissue are shown to reflect changes in the atomic charge state and environment and offer support for the presence of non-nutrient Zn bearing

  16. XANES analysis of tribochemical and thermal films generating from some organic polysulfides

    Institute of Scientific and Technical Information of China (English)

    YI Hongling; ZENG Xiangqiong; CAO Yan; REN Tianhui; M. Kasrai; G. M. Bancroft

    2006-01-01

    X-ray absorption near edge structure (XANES) spectroscopy has been firstly used to characterize the chemical nature of tribochemical and thermal films generated from alkyl, benzyl and acylcontaining organic polysulfides. It has been found that the thermal films generated from these polysulfides are mainly composed of FeSO4, and alkyl disulfides also exist in the subsurface and bulk of thermal films generated from acyl-containing polysulfides. Under tribochemical conditions, the composition of film is dependent on the molecular structure of the additives.Namely, the tribochemical film generated from alkyl polysulfide is composed of alkyl disulfide in the out surface, a mixture of FeSO4, FeS2 and sulfoxide in the subsurface, and FeSO4 in the bulk; the composition of the tribochemical film for benzyl polysulfide consists of FeSO4 in the out surface, while the composition in subsurface and bulk is the same as the alkyl polysulfide. For acyl-containing polysulfides, the tribochemical films consist of alkyl disulfide in the out surface, and FeS2 in the subsurface and bulk.

  17. Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach.

    Science.gov (United States)

    Chaurand, Perrine; Rose, Jerome; Briois, Valérie; Olivi, Luca; Hazemann, Jean-Louis; Proux, Olivier; Domas, Jérémie; Bottero, Jean-Yves

    2007-01-31

    Basic oxygen furnace (BOF) steel slag is a residue from the basic oxygen converter in steel-making operations, and is partially reused as an aggregate for road constructions. Although BOF slag is an attractive building material, its long-term behaviour and the associated environmental impacts must be taken into account. Indeed BOF slag is mainly composed of calcium, silicon and iron but also contains trace amounts of potential toxic elements, specifically chromium and vanadium, which can be released. The present research focuses (i) on the release of Cr and V during leaching and (ii) on their speciation within the bearing phase. Indeed the mobility and toxicity of heavy metals strongly depend on their speciation. Leaching tests show that only low amounts of Cr, present at relatively high concentration in steel slag, are released while the release of V is significantly high. X-ray absorption near-edge structure (XANES) spectroscopy indicates that Cr is present in the less mobile and less toxic trivalent form and that its speciation does not evolve during leaching. On the contrary, V which is predominantly present in the 4+ oxidation state seems to become oxidized to the pentavalent form (the most toxic form) during leaching.

  18. Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach

    Energy Technology Data Exchange (ETDEWEB)

    Chaurand, Perrine [CEREGE, UMR 6635 CNRS, University Paul Cezanne, IFR 112 PMSE, Europole Mediterraneen de l' Arbois, BP 80, 13545 Aix en Provence Cedex 04 (France)]. E-mail: chaurand@cerege.fr; Rose, Jerome [CEREGE, UMR 6635 CNRS, University Paul Cezanne, IFR 112 PMSE, Europole Mediterraneen de l' Arbois, BP 80, 13545 Aix en Provence Cedex 04 (France); Briois, Valerie [LURE Laboratoire pour l' Utilisation du Rayonnement Electromagnetique, Universite Paris-Sud, Orsay (France); Olivi, Luca [Sincrotrone Trieste S.C.p.A. S.S., 14 Km 163.5, 34012 Basovizza Trieste (Italy); Hazemann, Jean-Louis [Laboratoire de Cristallographie, BP 166, 38042 Grenoble Cedex 09 (France); Proux, Olivier [Laboratoire de Geophysique Interne et de Tectonophysique, UMR CNRS Universite Joseph Fourier, 1381 rue de la piscine, Domaine Universitaire, 38400 St Martin d' Heres (France); Domas, Jeremie [INERIS, Domaine du petit Arbois, Batiment Laennec, BP 33, 13545 Aix en Provence Cedex 04 (France); Bottero, Jean-Yves [CEREGE, UMR 6635 CNRS, University Paul Cezanne, IFR 112 PMSE, Europole Mediterraneen de l' Arbois, BP 80, 13545 Aix en Provence Cedex 04 (France)

    2007-01-31

    Basic oxygen furnace (BOF) steel slag is a residue from the basic oxygen converter in steel-making operations, and is partially reused as an aggregate for road constructions. Although BOF slag is an attractive building material, its long-term behaviour and the associated environmental impacts must be taken into account. Indeed BOF slag is mainly composed of calcium, silicon and iron but also contains trace amounts of potential toxic elements, specifically chromium and vanadium, which can be released. The present research focuses (i) on the release of Cr and V during leaching and (ii) on their speciation within the bearing phase. Indeed the mobility and toxicity of heavy metals strongly depend on their speciation. Leaching tests show that only low amounts of Cr, present at relatively high concentration in steel slag, are released while the release of V is significantly high. X-ray absorption near-edge structure (XANES) spectroscopy indicates that Cr is present in the less mobile and less toxic trivalent form and that its speciation does not evolve during leaching. On the contrary, V which is predominantly present in the 4+ oxidation state seems to become oxidized to the pentavalent form (the most toxic form) during leaching.

  19. Iron speciation in human cancer cells by K-edge total reflection X-ray fluorescence-X-ray absorption near edge structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Polgari, Zs. [Eoetvoes Lorand University, Institute of Chemistry, Department of Analytical Chemistry, Laboratory of Environmental Chemistry and Bioanalytics, P.O. Box 32, H-1518, Budapest (Hungary); Meirer, F. [Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna (Austria); MiNALab, CMM-irst, Fondazione Bruno Kessler, Povo, Trento (Italy); Sasamori, S.; Ingerle, D. [Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna (Austria); Pepponi, G. [MiNALab, CMM-irst, Fondazione Bruno Kessler, Povo, Trento (Italy); Streli, C. [Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna (Austria); Rickers, K. [Hamburger Synchrotronstrahlungslabor at DESY, Hamburg (Germany); Reti, A.; Budai, B. [Department of Clinical Research, National Institute of Oncology, Budapest (Hungary); Szoboszlai, N. [Eoetvoes Lorand University, Institute of Chemistry, Department of Analytical Chemistry, Laboratory of Environmental Chemistry and Bioanalytics, P.O. Box 32, H-1518, Budapest (Hungary); Zaray, G., E-mail: zaray@ludens.elte.hu [Eoetvoes Lorand University, Institute of Chemistry, Department of Analytical Chemistry, Laboratory of Environmental Chemistry and Bioanalytics, P.O. Box 32, H-1518, Budapest (Hungary)

    2011-03-15

    X-ray absorption near edge structure (XANES) analysis in combination with synchrotron radiation induced total reflection X-ray fluorescence (SR-TXRF) acquisition was used to determine the oxidation state of Fe in human cancer cells and simultaneously their elemental composition by applying a simple sample preparation procedure consisting of pipetting the cell suspension onto the quartz reflectors. XANES spectra of several inorganic and organic iron compounds were recorded and compared to that of different cell lines. The XANES spectra of cells, independently from the phase of cell growth and cell type were very similar to that of ferritin, the main Fe store within the cell. The spectra obtained after CoCl{sub 2} or NiCl{sub 2} treatment, which could mimic a hypoxic state of cells, did not differ noticeably from that of the ferritin standard. After 5-fluorouracil administration, which could also induce an oxidative-stress in cells, the absorption edge position was shifted toward higher energies representing a higher oxidation state of Fe. Intense treatment with antimycin A, which inhibits electron transfer in the respiratory chain, resulted in minor changes in the spectrum, resembling rather the N-donor Fe-{alpha},{alpha}'-dipyridyl complex at the oxidation energy of Fe(III), than ferritin. The incorporation of Co and Ni in the cells was followed by SR-TXRF measurements.

  20. Elemental bioimaging and speciation analysis for the investigation of Wilson's disease using μXRF and XANES.

    Science.gov (United States)

    Hachmöller, Oliver; Buzanich, Ana Guilherme; Aichler, Michaela; Radtke, Martin; Dietrich, Dörthe; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2016-07-13

    A liver biopsy specimen from a Wilson's disease (WD) patient was analyzed by means of micro-X-ray fluorescence (μXRF) spectroscopy to determine the elemental distribution. First, bench-top μXRF was utilized for a coarse scan of the sample under laboratory conditions. The resulting distribution maps of copper and iron enabled the determination of a region of interest (ROI) for further analysis. In order to obtain more detailed elemental information, this ROI was analyzed by synchrotron radiation (SR)-based μXRF with a beam size of 4 μm offering a resolution at the cellular level. Distribution maps of additional elements to copper and iron like zinc and manganese were obtained due to a higher sensitivity of SR-μXRF. In addition to this, X-ray absorption near edge structure spectroscopy (XANES) was performed to identify the oxidation states of copper in WD. This speciation analysis indicated a mixture of copper(i) and copper(ii) within the WD liver tissue.

  1. Investigation of impact materials from the Barringer Meteor Crater by micro-XANES and micro-PIXE techniques

    Energy Technology Data Exchange (ETDEWEB)

    Szikszai, Z. [Institute of Nuclear Research of the Hungarian Academy of Sciences, MTA ATOMKI, H-4001 Debrecen, P.O. Box 51 (Hungary)], E-mail: szikszai@atomki.hu; Uzonyi, I.; Kiss, A.Z.; Sziki, G.A. [Institute of Nuclear Research of the Hungarian Academy of Sciences, MTA ATOMKI, H-4001 Debrecen, P.O. Box 51 (Hungary); Vantelon, D. [Synchrotron SOLEIL, L' Orme des Merisiers, St. Aubin-BP 48, F-91192 Gif sur Yvette Cedex (France); Rozsa, P. [Department of Mineralogy and Geology, University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary)

    2009-06-15

    Impact materials from the Barringer Meteor Crater were examined by combined micro-X-ray absorption near edge structure (micro-XANES) and micro-particle induced X-ray emission (micro-PIXE) methods. Efforts were focussed on the complex characterization of their iron-rich inclusions. The lateral distribution of elements as well as the oxidation state of iron was determined. The study demonstrates the capabilities of chemical speciation screening based on energy selective micro-XRF maps in geology. With the help of this method zero-valent (metallic) and three-valent iron were excluded in the studied specimens without performing XANES in every pixel.

  2. The nature of arsenic in uranium mill tailings by X-ray absorption spectroscopy

    Science.gov (United States)

    Cutler, J. N.; Chen, N.; Jiang, D. T.; Demopoulos, G. P.; Jia, Y.; Rowson, J. W.

    2003-05-01

    In order to understand the evolving world of environmental issues, the ability to characterize and predict the stability and bioavailability of heavy métal contaminants in mine waste is becoming increasingly more important. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopies were used to characterize a series of synthetic and natural samples associated with mine tailings processing. XANES was shown to be excellent as a tool to rapidly differentiate oxidation states of arsenic within the samples. The EXAFS spectra provided information on the mineralogy of the precipitated raffinate and tailings and showed that these samples are composed of a mixture of amorphous ferric arsenates, adsorbed arsenates and a mixture of other poorly ordered arsenates.

  3. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    Science.gov (United States)

    Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.

    2014-02-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.

  4. Local atomic structure investigation of AlFeCuCrMgx (0.5, 1, 1.7) high entropy alloys: X-ray absorption spectroscopy study

    Science.gov (United States)

    Maulik, Ornov; Patra, N.; Bhattacharyya, D.; Jha, S. N.; Kumar, Vinod

    2017-02-01

    The present paper reports local atomic structure investigation of novel AlFeCuCrMgx (x=0.5, 1, 1.7) high entropy alloys (HEAs) produced by mechanical alloying using Fe, Cr and Cu K-edge X-ray absorption near edge spectroscopy (XANES) and extended x-ray absorption fine structure (EXAFS) spectroscopy. XANES spectra measured at Fe and Cr K-edges resemble that of the respective pure metal foils, while the spectrum measured at Cu K-edge manifests the presence of some other phases in the as-milled alloys. The radial distribution functions (RDFs) obtained from Fourier transformation of EXAFS spectra support the formation of disordered BCC structure.

  5. X-ray absorption near edge structure study on Acutolysin-C, a zinc-metalloproteinase from Agkistrodon acutus venom: Insight into the acid-inactive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Wei [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chu Wangsheng; Li Shujun [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Liu Yiwei [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Gao Bin [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Niu Liwen [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China)], E-mail: lwniu@ustc.edu.cn; Teng Maikun [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Benfatto, Maurizio [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati (Italy); Hu Tiandou [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati (Italy)], E-mail: wuzy@ihep.ac.cn

    2007-11-15

    Acutolysin-C, a snake-venom zinc metalloproteinase, displays a distinct pH-dependent proteolytic activity, which has been tentatively assigned to a structural change of the zinc-containing catalytic center. In this work we compare X-ray absorption near-edge structure (XANES) experimental spectra at the Zn K-edge and theoretical calculations of solutions at different pH values. The experimental data show clear differences confirmed by a best fit using the MXAN procedure. The results show that, when pH decreases from pH 8.0 to pH 3.0, the zinc-coordinating catalytic water molecule moves far from the Glu143 residue that is considered to play an essential role in the proteolytic process. Data suggests that this is the possible mechanism that deactivates the metalloproteinase.

  6. PT L 3 near edge structure of halogen-bridged mixed-valence pt complexes and pd-pt mixed-metal complexes

    Science.gov (United States)

    Tanino, H.; Oyanagi, H.; Yamashita, M.; Kobayashi, K.

    1985-03-01

    X-ray absorption near edge structure (XANES) of halogen-bridged mixed-valence Pt complexes and halogen-bridged Pd-Pt mixed-metal complexes have been measured using synchrotron radiation with a high energy resolution. In Pd-Pt mixed metal complexes, we demonstrate that the degree of the valence is estimated from the intensity of the white line at the Pt L 3 edge. In the mixed-valence complexes, the electron system is proved to be the Peierls insulator with a charge density wave of renormalized d electrons of Pt, where the total valence of Pt IV- and Pt 11 is conserved without excess electrons from ligands or anions.

  7. X-ray absorption near edge structure study on Acutolysin-C, a zinc-metalloproteinase from Agkistrodon acutus venom: Insight into the acid-inactive mechanism

    Science.gov (United States)

    Zhao, Wei; Chu, Wangsheng; Li, Shujun; Liu, Yiwei; Gao, Bin; Niu, Liwen; Teng, Maikun; Benfatto, Maurizio; Hu, Tiandou; Wu, Ziyu

    2007-11-01

    Acutolysin-C, a snake-venom zinc metalloproteinase, displays a distinct pH-dependent proteolytic activity, which has been tentatively assigned to a structural change of the zinc-containing catalytic center. In this work we compare X-ray absorption near-edge structure (XANES) experimental spectra at the Zn K-edge and theoretical calculations of solutions at different pH values. The experimental data show clear differences confirmed by a best fit using the MXAN procedure. The results show that, when pH decreases from pH 8.0 to pH 3.0, the zinc-coordinating catalytic water molecule moves far from the Glu143 residue that is considered to play an essential role in the proteolytic process. Data suggests that this is the possible mechanism that deactivates the metalloproteinase.

  8. XANES measurements probing the local order and electronic structure of Pb{sub 1−x}Ba{sub x}Zr{sub 0.40}Ti{sub 0.60}O{sub 3} ferroelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, A. [Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Rio Claro, SP (Brazil); Institut de Chimie et des Materiaux Paris Est, CNRS and Université Paris-Est, 94320 Thiais (France); Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP (Brazil); Michalowicz, A. [Institut de Chimie et des Materiaux Paris Est, CNRS and Université Paris-Est, 94320 Thiais (France); Mastelaro, V.R. [Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP (Brazil)

    2015-08-15

    Highlights: • Structural characterization of Pb{sub 1−x}Ba{sub x}Zr{sub 0.40}Ti{sub 0.60}O{sub 3} (PBZT) ferroelectric ceramic. • X-ray absorption and spectroscopy was used to probe the structure of PBZT. • O K-edge XANES spectra showed hybridization between the O 2p and Pb 6sp states. • Relaxor behavior are related to weakening of the O 2p and Pb 6sp hybridization. - Abstract: In this study, the electronic and local structures of Pb{sub 1−x}Ba{sub x}Zr{sub 0.40}Ti{sub 0.60}O{sub 3} ferroelectric ceramic samples were characterized using X-ray absorption near-edge structure (XANES) measurements. The analysis of XANES spectra collected at the Ti K- and L-edges showed that the substitution of Pb by Ba leads to a decrease in the local distortion around the Ti atoms in the TiO{sub 6} octahedron. The analysis of O K-edge XANES spectra and density of states ab initio calculations showed that the hybridization between the O 2p and Pb 6sp states is related to the displacement of Ti atoms in the TiO{sub 6} octahedra. Based on these results, it is possible to determine that the degree of ferroelectricity in these samples and the manifestation of relaxor behavior are directly related to the weakening of O 2p and Pb 6sp hybridization.

  9. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    Science.gov (United States)

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-05-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.

  10. X-ray absorption spectroscopy of Mn doped ZnO thin films prepared by rf sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ashok Kumar; Jha, S. N.; Bhattacharyya, D., E-mail: dibyendu@barc.gov.in [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai – 400 085 (India); Haque, Sk Maidul [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, VIZAG Centre, Visakhapatnam-530012 (India); Shukla, Dinesh; Choudhary, Ram Janay [UGC DAE Consortium for Scientific Research, Indore-452001 (India)

    2015-11-15

    A set of r.f. sputter deposited ZnO thin films prepared with different Mn doping concentrations have been characterised by Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Spectroscopy (XANES) measurements at Zn, Mn and O K edges and at Mn L{sub 2,3} edges apart from long range structural characterisation by Grazing Incident X-ray Diffraction (GIXRD) technique. Magnetic measurements show room temperature ferromagnetism in samples with lower Mn doping which is however, gets destroyed at higher Mn doping concentration. The results of the magnetic measurements have been explained using the local structure information obtained from EXAFS and XANES measurements.

  11. Experimental and ab initio investigations of the x-ray absorption near edge structure of orthorhombic LuMnO3

    Science.gov (United States)

    Hu, Y.; Borca, C. N.; Kleymenov, E.; Nachtegaal, M.; Delley, B.; Janousch, M.; Dönni, A.; Tachibana, M.; Kitazawa, H.; Takayama-Muromachi, E.; Kenzelmann, M.; Niedermayer, C.; Lippert, T.; Wokaun, A.; Schneider, C. W.

    2012-06-01

    X-ray near edge absorption spectroscopy was used to probe the electronic structure of multiferroic orthorhombic LuMnO3 polycrystalline samples and strained, twin-free orthorhombic (1-10) LuMnO3 films grown by pulsed laser deposition on (1-10) YAlO3 substrates. For all o-LuMnO3 samples x-ray near edge absorption spectroscopy spectra reveal that the pre-edge structure is influenced by the increase in MnO6 distortion as a result of the smaller Re-ion or film strain. Furthermore there is clear evidence of anisotropic Mn-O bonding and Mn orbital ordering along the c- and [110] direction. The experimental film and bulk data are in agreement with ab initio simulations.

  12. Manganese speciation in Diplodon chilensis patagonicus shells: a XANES study

    Science.gov (United States)

    Soldati, A. L.; Vicente-Vilas, V.; Goettlicher, J.; Jacob, D. E.

    2009-04-01

    century, resolving the environmental signal annually and even seasonally (Soldati et al., 2008b). High resolution trace elemental analysis by LA-ICPMS and EPMA in the shells show that elements like Mg and Mn are related to the seasonal pattern and can be enriched along the organic-rich annual shell growth lines. Thus, these elements could possibly be bound organically instead of occupying a defined site in the crystal lattice of the calcium carbonate phase. LA-ICP-MS results show that Mn concentrations in these Diplodon shells range between 1000-300 g/g and 100-10 g/g and that the areas of enrichment are in the micrometer range. Raman and XRD measurements at high spatial resolution failed in recognizing whether the Mn is in carbonate solid solution or not. Therefore, speciation techniques like X-ray absorption fine structure (XAFS) spectroscopy with a high lateral resolution are required to address this question. Prior to XAFS spectroscopy the samples were mapped with the intensity of the Mn Kα fluorescence emission line in order to locate the Mn rich areas of interest. Because of the Mn concentrations in the sub % range the XAFS spectra at the positions of interest have been recorded in fluorescence mode using a 7 element Si(Li) detector. This study focuses on the near edge (XANES: X-ray absorption near edge structure) part of the spectra. For data evaluation, XANES spectra of reference substances were additionally measured in order to get first hints to Mn valence and bonding. As standards were used Mn and Mn rich carbonates, Mn oxides with Mn in different oxidation states, and Mn in organic compounds (Mn-porphyrin and Mn-acetate). The XAFS measurements have been carried out at the SUL-X beamline of the synchrotron radiation source ANKA of the Forschungszentrum Karlsruhe. Data evaluation is ongoing. References MEIBOM, A., CUIF, J.P., HOULBREQUE, F., MOSTEFAOUI, S., DAUPHIN, Y., MEIBOM; K.L. & DUNBAR, R. (2008). Compositional variations at ultra-structure length scales

  13. Near-edge x-ray absorption fine structure measurements using a laboratory-scale XUV source

    Science.gov (United States)

    Peth, Christian; Barkusky, Frank; Mann, Klaus

    2008-05-01

    We present a compact setup for near-edge x-ray absorption spectroscopy at the carbon K-edge based on a laser-driven plasma source. To generate the required broad-band emission in the spectral range of the 'water window' (λ = 2.2-4.4 nm) a krypton gas puff target was used. The table-top setup consisting basically of the laser-plasma source and a flat-field spectrometer can be used for near-edge x-ray absorption fine structure experiments in transmission as well as reflection under grazing incidence conditions (ReflEXAFS). The latter method offers the advantage that thin film preparation is not necessary and that the surface sensitivity is strongly enhanced. The results obtained for thin polymer films show good agreement with synchrotron data. Furthermore, we use the ReflEXAFS method to investigate changes in the chemical composition of PMMA induced by extreme ultraviolet (EUV) radiation. The spectra indicate a loss of the carbonyl functional group upon irradiation as well as crosslinking effects at high EUV radiation doses.

  14. Temperature dependent changes of the Mn 3d and 4p bands near $T_{c}$ in Colossal Magnetoresistance systems : a XANES study of $La_{1-x}Ca_{x}MnO_{3}$

    NARCIS (Netherlands)

    Bridges, F; Booth, C. H.; Kwei, G. H.; Neumeier, J. J.; Sawatzky, G. A.

    2000-01-01

    Abstract: We report high-resolution X-ray Absorption Near Edge Structure (XANES)measurements at the Mn K-edge as a function of temperature, forLa$_{1-x}$Ca$_x$MnO$_3$ samples, with a focus mainly on the pre-edge region.Small peaks labeled A$_1$-A$_3$ are observed which corresponds to

  15. A Mexican kaolin deposit: XANES characterization, mineralogical phase analysis and applications

    Directory of Open Access Journals (Sweden)

    Martínez, A.

    2009-06-01

    Full Text Available A kaolin obtained from Villa de Reyes, a region near to San Luis Potosí (México was characterized by means of X-ray powder diffraction (XRD, optical microscopy (OM, scanning electron microscopy (SEM, X-ray fluorescence (XRF, X-Ray Absorption Near Edge Spectroscopy (XANES, thermal analysis (DTA/TGA, dilatometry (DIL, and chemical analysis. Mineralogical and morphological characteristics of the mineral are presented. The kaolin sample was formed mainly by kaolinite, but other minor phases were also detected such as quartz, cristobalite, tridymite, and dolomite. The high content of volcanic glass detected, by optical microscopy, revealed an incomplete kaolinization process of the raw material. The reddish color of the kaolin was associated with the free iron content in the form of limonite [FeO(OH], which was determined by XANES. The influence of the particle size on the whiteness of kaolin was evaluated. Dilatometric analysis revealed a strong thermal expansion between 110 y 240 °C, which would difficult the use of this material in traditional ceramic applications. On the other hand the presence of glass and high temperature phases of SiO2, such as cristobalite and tridymite will favor its use in the cement industry.El caolín obtenido de Villa de Reyes, una región cercana a San Luis Potosí, México, fue caracterizado por las siguientes técnicas: difracción de rayos-X en polvos (DRX, microscopía óptica (MO, microscopía electrónica de barrido (MEB, fluorescencia de rayos-X (FRX, espectroscopía de absorción de rayos-X (XANES, análisis térmico (DTA/TGA, dilatometría (DIL y análisis químico. Los resultados del análisis mineralógico mediante DRX mostraron un mineral constituido principalmente de caolinita, con una contribución minoritaria de cuarzo, cristobalita, tridimita y dolomita. El análisis por microscopía óptica reveló un alto contenido de material amorfo volcánico, indicando una caolinización incompleta del material v

  16. A XANES and Raman investigation of sulfur speciation and structural order in Murchison and Allende meteorites

    Science.gov (United States)

    Bose, M.; Root, R. A.; Pizzarello, S.

    2017-03-01

    Insoluble organic matter (IOM) and hydrothermally treated IOM extracted from two carbonaceous chondrites, Murchison and Allende, was studied using sulfur K-edge XANES (X-ray absorption near edge structure) and μ-Raman spectroscopy, with the aim to understand their IOM's sulfur speciation and structural order, and how aqueous alteration or thermal metamorphism may have transformed these materials. We found that the sulfur-functional group chemistry of both the Murchison IOM and hydrothermally treated IOM samples have a large chemical variability ranging from oxidation states of S-2 to S+6, and exhibit a transformation in their oxidation state after the hydrothermal treatment (HT) to produce thiophenes and thiol compounds. Sulfoxide and sulfite peaks are also present in Murchison. Sulfates considered intrinsic to Murchison are most likely preaccretionary in nature, and not a result of reactions with water at high temperatures on the asteroid parent body. We argue that the reduced sulfides may have formed in the CM parent body, while the thiophenes and thiol compounds are a result of the HT. Micro-Raman spectra show the presence of aliphatic and aromatic moieties in Murchison's material as observed previously, which exhibits no change after HT. Because the Murchison IOM was modified, as seen by XANES analysis, absence of a change observed using micro-Raman indicated that although the alkyl carbons of IOM were cleaved, the aromatic network was not largely modified after HT. By contrast, Allende IOM contains primarily disulfide and elemental sulfur, no organic sulfur, and shows no transformation after HT. This nontransformation of Allende IOM after HT would indicate that parent body alteration of sulfide to sulfate is not feasible up to temperatures of 300°C. The reduced sulfur products indicate extreme secondary chemical processing from the precursor compounds in its parent body at temperatures as high as 624°C, as estimated from μ-Raman D band parameters. The

  17. HgL(3) XANES Study of Mercury Methylation in Shredded Eichhornia Crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, M.; Darrow, J.; Hua, M.; Barnett, B.; Mendoza, M.; Greenfield, B.K.; Andrews, J.C.

    2009-05-21

    Eichhornia crassipes (water hyacinth) is a non-native plant found in abundance in the Sacramento-San Joaquin River Delta (hereafter called Delta). This species has become a problem, clogging waterways and wetlands. Water hyacinth are also known to accumulate mercury. Recent attempts to curb its proliferation have included shredding with specialized boats. The purpose of this research is to better understand the ability of water hyacinth to phytoremediate mercury and to determine the effect of shredding and anoxic conditions on mercury speciation in plant tissue. In the field assessment, total mercury levels in sediment from the Dow Wetlands in the Delta were found to be 0.273 {+-} 0.070 ppm Hg, and levels in hyacinth roots and shoots from this site were 1.17 {+-} 0.08 ppm and 1.03 {+-} 0.52 ppm, respectively, indicating bioaccumulation of mercury. Plant samples collected at this site were also grown in nutrient solution with 1 ppm HgCl{sub 2} under (1) aerobic conditions, (2) anaerobic conditions, and (3) with shredded plant material only. The greatest accumulation was found in the roots of whole plants. Plants grown in these conditions were also analyzed at Stanford Synchrotron Radiation Laboratory using Hg L{sub 3} X-ray Absorption Near Edge Spectroscopy (XANES), a method to examine speciation that is element-specific and noninvasive. Least-squares fitting of the XANES data to methylated and inorganic mercury(II) model compounds revealed that in plants grown live and aerobically, 5 {+-} 3% of the mercury was in the form of methylmercury, in a form similar to methylmercury cysteine. This percentage increased to 16 {+-} 4% in live plants grown anaerobically and to 22 {+-} 6% in shredded anaerobic plants. We conclude that shredding of the hyacinth plants and, in fact, subjection of plants to anaerobic conditions (e.g., as in normal decay, or in crowded growth conditions) increases mercury methylation. Mechanical removal of the entire plant is significantly more

  18. Ti K-edge XANES study of the local environment of titanium in bioresorbable TiO2-CaO-Na2O-P2O5 glasses.

    Science.gov (United States)

    Pickup, David M; Abou Neel, Ensanya A; Moss, Robert M; Wetherall, Kate M; Guerry, Paul; Smith, Mark E; Knowles, Jonathan C; Newport, Robert J

    2008-04-01

    Ti K-edge XANES (X-ray absorption near edge structure) spectroscopy has been used to study the local coordination of titanium in biocompatible and bioresorbable TiO2-CaO-Na2O-P2O5 glasses. Both conventional melt-quenched glasses of composition (TiO2)x(CaO)0.30(Na2O)0.20-x(P2O5)0.50, where x = 0.01, 0.03 and 0.05, and sol-gel derived (TiO2)0.25(CaO)0.25(P2O5)0.50 glass have been studied. The results show that in all the materials studied, titanium is surrounded by an octahedron of oxygen atoms. Further analysis reveals that the TiO6 site in the amorphous samples is not heavily distorted relative to that in rutile, anatase or CaSiTiO5. The spectra from the (TiO2)0.25(CaO)0.25(P2O5)0.50 sol-gel samples reveal greater distortion in the TiO6 site in the dried gel compared to the heat-treated sol-gel glass. The XANES spectra from melt-quenched glass samples soaked in distilled water for various times do not shown any evidence of degradation of the titanium site over periods of up to 14 days.

  19. XANES Spectroscopic Analysis of Phosphorus Speciation in Alum-Amended Poultry Litter

    Energy Technology Data Exchange (ETDEWEB)

    Seiter,J.; Staats-Borda, K.; Ginder-Vogel, M.; Sparks, D.

    2008-01-01

    Aluminum sulfate (alum; Al2(SO4)3{center_dot}14H2O) is used as a chemical treatment of poultry litter to reduce the solubility and release of phosphate, thereby minimizing the impacts on adjacent aquatic ecosystems when poultry litter is land applied as a crop fertilizer. The objective of this study was to determine, through the use of X-ray absorption near edge structure (XANES) spectroscopy and sequential extraction, how alum amendments alter P distribution and solid-state speciation within the poultry litter system. Our results indicate that traditional sequential fractionation procedures may not account for variability in P speciation in heterogeneous animal manures. Analysis shows that NaOH-extracted P in alum amended litters is predominantly organic ({approx}80%), whereas in the control samples, >60% of NaOH-extracted P was inorganic P. Linear least squares fitting (LLSF) analysis of spectra collected of sequentially extracted litters showed that the P is present in inorganic (P sorbed on Al oxides, calcium phosphates) and organic forms (phytic acid, polyphosphates, and monoesters) in alum- and non-alum-amended poultry litter. When determining land application rates of poultry litter, all of these compounds must be considered, especially organic P. Results of the sequential extractions in conjunction with LLSF suggest that no P species is completely removed by a single extractant. Rather, there is a continuum of removal as extractant strength increases. Overall, alum-amended litters exhibited higher proportions of Al-bound P species and phytic acid, whereas untreated samples contained Ca-P minerals and organic P compounds. This study provides in situ information about P speciation in the poultry litter solid and about P availability in alum- and non-alum-treated poultry litter that will dictate P losses to ground and surface water systems.

  20. Spectral Analysis by XANES Reveals that GPNMB Influences the Chemical Composition of Intact Melanosomes

    Energy Technology Data Exchange (ETDEWEB)

    T Haraszti; C Trantow; A Hedberg-Buenz; M Grunze; M Anderson

    2011-12-31

    GPNMB is a unique melanosomal protein. Unlike many melanosomal proteins, GPNMB has not been associated with any forms of albinism, and it is unclear whether GPNMB has any direct influence on melanosomes. Here, melanosomes from congenic strains of C57BL/6J mice mutant for Gpnmb are compared to strain-matched controls using standard transmission electron microscopy and synchrotron-based X-ray absorption near-edge structure analysis (XANES). Whereas electron microscopy did not detect any ultrastructural changes in melanosomes lacking functional GPNMB, XANES uncovered multiple spectral phenotypes. These results directly demonstrate that GPNMB influences the chemical composition of melanosomes and more broadly illustrate the potential for using genetic approaches in combination with nano-imaging technologies to study organelle biology.

  1. Tomographic x-ray absorption spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, C. G.; Kuhlmann, M.; Gunzler, T. F.; Lengeler, B.; Richwin, M.; Griesebock, B.; Lutzenkirchen-Hecht, D.; Frahm, R.; Ziegler, E.; Mashayekhi, A.; Haeffner, D. R.; Grunwaldt, J. -D.; Baiker, A.; Experimental Facilities Division (APS); Aachen Univ.; HASYLAB at DESY; Bergische Univ. Wuppertal; ESRF; Inst. for Chemical and Bioengineering

    2004-01-01

    Hard x-ray absorption spectroscopy is combined with scanning microtomography to reconstruct full near edge spectra of an elemental species at each point on an arbitrary virtual section through a sample. These spectra reveal the local concentration of different chemical compounds of the absorbing element inside the sample and give insight into the oxidation state and the local projected free density of states. The method is implemented by combining a quick scanning monochromator and data acquisition system with a scanning microprobe setup based on refractive x-ray lenses. The full XANES spectra reconstructed at each point of the tomographic slice allow one to detect slight variations in concentration of the chemical compounds, such as Cu and Cu(I){sub 2}O.

  2. Progressive oxidation of pyrite in five bituminous coal samples: An As XANES and 57Fe Mössbauer spectroscopic study

    Science.gov (United States)

    Kolker, Allan; Huggins, Frank E.

    2007-01-01

    Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32–1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26–0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20–60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Mössbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Mössbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less

  3. Aqueous Cu(II)-organic complexation studied in situ using soft X-ray and vibrational spectroscopies.

    Science.gov (United States)

    Phillips, Courtney L; Regier, Tom Z; Peak, Derek

    2013-12-17

    In situ aqueous solutions containing copper-ligand mixtures were measured at the Cu L-edge using X-ray absorption near edge structure (XANES) and with attenuated total reflectance infrared (ATR-FTIR) spectroscopies. Copper complexation with environmentally relevant ligands such as EDTA, citrate, and malate provided a bridge between spectroscopic studies and general environmental behavior and will allow for future study of complex environmental samples. XANES results show that the lowest unoccupied molecular orbital (LUMO) energy is governed by the ligand field strength and is related to Lewis acid/base properties of the ligand functional groups. Complementary ATR-FTIR studies confirmed the importance of water molecules in the structure of these Cu-ligand complexes and provided in-depth structural analysis to support the XANES data. Copper-malate is shown to have a 5/6-O-ring structure, and Cu-ethylenediaminetetraacetate has pentadentate coordination. Cu L-edge XANES also revealed direct Cu-N coordination in these aqueous solutions with amide functional groups.

  4. XANES, EXAFS and photoluminescence investigations on the amorphous Eu:HfO2.

    Science.gov (United States)

    Sharma, Aditya; Varshney, Mayora; Shin, Hyun-Joon; Chae, KeunHwa; Won, Sung Ok

    2017-02-15

    We report detailed investigations on the local electronic/atomic structure and photoluminescence properties of chemically synthesized Eu:HfO2 powders. X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS) and photoluminescence (PL) measurements were performed to analyze the crystal structure, local atomic/electronic structure and luminescence properties of the samples. No crystalline phases were detected with Cu Kα (λ=1.5418Å) based XRD; however, local monoclinic structure was confirmed by the Hf L-edge XANES and EXAFS. O K-edge XANES spectral features could be deconvoluted with doublets and triplets in eg and t2g orbitals, respectively, which ascribed to the local monoclinic structure for all of the samples. Eu M5,4-edge XANES confirmed the pre-dominancy of Eu(3+) ions in the HfO2 samples with a fractional amount of Eu(2+) ions. PL spectra revealed the electric dipole allowed ((5)D0-(7)F0,2,4) emission properties of Eu:HfO2 samples. The orange-red emission is ascribed to the Eu interstitial/surface segregation induced defects. Copyright © 2016. Published by Elsevier B.V.

  5. XANES, EXAFS and photoluminescence investigations on the amorphous Eu:HfO2

    Science.gov (United States)

    Sharma, Aditya; Varshney, Mayora; Shin, Hyun-Joon; Chae, KeunHwa; Won, Sung Ok

    2017-02-01

    We report detailed investigations on the local electronic/atomic structure and photoluminescence properties of chemically synthesized Eu:HfO2 powders. X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS) and photoluminescence (PL) measurements were performed to analyze the crystal structure, local atomic/electronic structure and luminescence properties of the samples. No crystalline phases were detected with Cu Kα (λ = 1.5418 Å) based XRD; however, local monoclinic structure was confirmed by the Hf L-edge XANES and EXAFS. O K-edge XANES spectral features could be deconvoluted with doublets and triplets in eg and t2g orbitals, respectively, which ascribed to the local monoclinic structure for all of the samples. Eu M5,4-edge XANES confirmed the pre-dominancy of Eu3 + ions in the HfO2 samples with a fractional amount of Eu2 + ions. PL spectra revealed the electric dipole allowed (5D0-7F0,2,4) emission properties of Eu:HfO2 samples. The orange-red emission is ascribed to the Eu interstitial/surface segregation induced defects.

  6. Study of XANES near Ta-L edges in LiTaO{sub 3} through thermal wave, fluorescence and first principles

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S.R.; Singh, Ajit Kumar [Raja Ramanna Centre for Advanced Technology, Indus Synchrotrons Utilisation Division, Indore (India); Kumar, Shailendra; Ghosh, Haranath; Tiwari, M.K. [Raja Ramanna Centre for Advanced Technology, Indus Synchrotrons Utilisation Division, Indore (India); BARC, Homi Bhabha National Institute, Mumbai (India)

    2016-01-15

    X-ray absorption near-edge spectra (XANES) of Ta-L{sub 2} and L{sub 3} edges in LiTaO{sub 3} (LTO) crystals are measured by measuring amplitude and phase of thermal waves generated within the LTO crystal, using pyroelectric property of LTO. Thus, LTO crystal is used both as a sample as well as sensor material. XANES of Ta-L edges in LTO are also measured by fluorescence. XANES spectra from fluorescence and first-principles simulations agree excellently well. The onset of the pre-edge region of XANES, measured by both techniques, extends below the edge by about 50 eV. This pre-edge onset of absorption is explained in terms of the core-hole lifetime effect on near-edge absorption using density functional theory. However, detailed nature of XANES peaks near Ta-L{sub 3} and Ta-L{sub 2} absorption edges, measured by thermal waves and fluorescence, differ. Possible origins of these differences are discussed. (orig.)

  7. XRD and XANES study of some Cu-doped MnBi materials

    Science.gov (United States)

    Mishra, Ashutosh; Patil, Harsha

    2016-10-01

    High purity MnBi low temperature phase has been prepared and analyzed using X- ray diffraction (XRD) and X-ray absorption near edge structure (XANES) measurements. The X-ray diffraction measurements were carried out using Bruker D8 Advance X-ray diffractometer. The X-rays were produced using a sealed tube and the wavelength of X-ray was 154 nm (Cu K-alpha). and X-rays were detected using a fast counting detector based on Silicon strip technology (Bruker LynxEye detector)[1]. and the X-ray absorption spectra has emerged as a powerful technique for local structure determination, which can be applied to any type of material. The X-ray absorption measurements of two Cu-doped MnBi alloys have been performed at the recently developed BL-8 Dispersive EXAFS beam line at 2.5 GeV Indus-2 synchrotron at RRCAT, Indore, India[2]. The X-ray absorption near edge structure (XANES) data obtained has been processed using data analysis program Athena. The energies of the K absorption edge, chemical shifts, edge-widths, shifts of the principal absorption maximum in the alloys have been determined.

  8. K-edge XANES investigation of octakis(DMSO)lanthanoid(III) complexes in DMSO solution and solid iodides.

    Science.gov (United States)

    D'Angelo, Paola; Migliorati, Valentina; Spezia, Riccardo; De Panfilis, Simone; Persson, Ingmar; Zitolo, Andrea

    2013-06-14

    The potential of high energy XANES (X-ray absorption near edge structure) as a tool for the structural analysis of lanthanoid-containing systems has been explored. The K-edge XANES spectra of La(3+), Gd(3+), and Lu(3+) ions both in DMSO solution and solid octakis(DMSO)lanthanoid(III) iodides have been analysed. Although the K-edges of lanthanoids cover the energy range of 38 (La) to 65 (Lu) keV, the large widths of the core hole states do not appreciably reduce the potential structural information of the XANES data. We show that, for lanthanoid compounds, accurate structural parameters are obtained from the analysis of K-edge XANES signals if a deconvolution procedure is carried out. We found that in solid octakis(DMSO)lanthanoid(III) iodides the Ln(3+) ions are coordinated by eight DMSO ligands arranged in a quite symmetric fashion. In DMSO solution the Ln(3+) ions retain a regular eight-coordination structure and the coordination number does not change along the series. In contrast to when in water the second coordination shell has been found to provide a negligible contribution to the XANES spectra of Ln(3+) ions in DMSO solution.

  9. Transient and near-edge absorption in YVO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Millers, D.; Pankratov, V.; Grigorjeva, L. [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Yochum, H.M. [Department of Physics and Engineering, Sweet Briar College, VA (United States); Potera, P. [Mat-Phys Department, Institute of Physics, University of Rzeszow (Poland)

    2007-03-15

    The process of near-edge absorption annealing in air was studied up to 1500C in YVO{sub 4}. In this annealing process, two stages with activation energies of 0.16 eV and 0.38 eV were obtained. (Should combine to make this one paragraph)In addition to the annealing study, the transient absorption induced by pulsed electron beam excitation (270 keV, 8 ns) was completed on a set of YVO{sub 4} samples with different near-edge absorption levels in the spectral region 3.2-3.5 eV. The spectral range from {proportional_to}1.25 eV up to 3.0 eV is covered by strong transient absorption. Transient absorption spectra show at least three broad overlapping bands ({proportional_to}1.3 eV, {proportional_to}2.0 eV and {proportional_to}3.0 eV). The 3 eV peak position is close to the near-edge absorption band and correlation between transient absorption bands and absorption due to stable colour centers was studied. It is suggested that absorption bands at {proportional_to}1.3 eV and {proportional_to}2.0 eV are due to electron and hole polarons, correspondingly. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Combined sulfur K-edge XANES-EXAFS study of the effect of protonation on the sulfate tetrahedron in solids and solutions.

    Science.gov (United States)

    Pin, S; Huthwelker, T; Brown, M A; Vogel, F

    2013-09-01

    Sulfur K-edge X-ray absorption spectroscopy (XAS) has been used to distinguish between aqueous and solid sulfates and to investigate changes in their speciation. Data have been collected for tetrahedrally coordinated S in K2SO4 and KHSO4 solids and aqueous solutions. With a first qualitative analysis of the X-ray absorption near-edge structure (XANES) spectra, it has been observed that those for solids are much more structured and distinguishable from those of aqueous solutions. The protonation state has a strong effect on the white line of sulfates and has been assigned to the different charge delocalization in the samples, the effect of the solvating water molecules and multiple scattering effects. In the extended X-ray absorption fine structure (EXAFS) spectra, the backscattering from the first O shell dominated the EXAFS fine structure function, χ(k), but the nonlinear multiple scattering contributions occurring in the first coordination shell are significant and must be considered in the EXAFS analysis. The intensity of these contributions strongly depend on the symmetry of the system. For a distorted tetrahedron, the intensity of the multiple scattering contributions is less than that found in a regular tetrahedron. The FEFF code has been used to model the contributions of the multiple-scattering processes. The observed experimental evidence in the XAS data can be used to distinguish between sulfates in solids and liquids. This is applicable to many chemical, geochemical, and biological systems.

  11. Sulfur K-edge absorption spectroscopy on selected biological systems; Schwefel-K-Kanten-Absorptionsspektroskopie an ausgewaehlten biologischen Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, Henning

    2008-07-15

    Sulfur is an essential element in organisms. In this thesis investigations of sulfur compounds in selected biological systems by XANES (X-ray Absorption Near Edge Structure) spectroscopy are reported. XANES spectroscopy at the sulfur K-edge provides an excellent tool to gain information about the local environments of sulfur atoms in intact biological samples - no extraction processes are required. Spatially resolved measurements using a Kirkpatrick-Baez mirror focusing system were carried out to investigate the infection of wheat leaves by rust fungi. The results give information about changes in the sulfur metabolism of the host induced by the parasite and about the extension of the infection into visibly uninfected plant tissue. Furthermore, XANES spectra of microbial mats from sulfidic caves were measured. These mats are dominated by microbial groups involved in cycling sulfur. Additionally, the influence of sulfate deprivation and H{sub 2}S exposure on sulfur compounds in onion was investigated. To gain an insight into the thermal degradation of organic material the influence of roasting of sulfur compounds in coffee beans was studied. (orig.)

  12. X-ray absorption near-edge structure study on the configuration of Cu 2+ /histidine complexes at different pH values

    Science.gov (United States)

    Mei-Juan, Yu; Yu, Wang; Wei, Xu

    2016-04-01

    The local configurations around metal ions in metalloproteins are of great significance for understanding their biological functions. Cu2+/histidine (His) is a typical complex existing in many metalloproteins and plays an important role in lots of physiological functions. The three-dimensional (3D) structural configurations of Cu2+/His complexes at different pH values (2.5, 6.5, and 8.5) are quantitatively determined by x-ray absorption near-edge structure (XANES). Generally Cu2+/His complex keeps an octahedral configuration consisting of oxygen atoms from water molecules and oxygen or nitrogen atoms from histidine molecules coordinated around Cu2+. It is proved in this work that the oxygen atoms from water molecules, when increasing the pH value from acid to basic value, are gradually substituted by the Ocarboxyl, Nam, and Nim from hisitidine molecules. Furthermore, the symmetries of Cu2+/His complexes at pH 6.5 and pH 8.5 are found to be lower than at pH 2.5. Project supported by the National Natural Science Foundation of China (Grant No. 11205186).

  13. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Magnus; Schlifke, Annalena [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Falk, Mareike; Janek, Jürgen [Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen (Germany); Fröba, Michael, E-mail: froeba@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2013-07-01

    The cathode material LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn{sup 3+} to Mn{sup 4+} only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling. - Highlights: • The potential of confocal micro-XRF-XANES for spatial resolved species analysis in a part of a working system is shown. • The spatial resolution enables differentiation of the oxidized interface from deeper layers. • With the analytical technique confocal micro-XRF-XANES 3D in-situ analyses of working systems are feasible. • The multidimensional and nondestructive analysis of Li-ion battery cathodes is shown. • The analysis will allow for a deeper understanding of processes at interfaces in battery science and others.

  14. XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Robblee, John Henry [Univ. of California, Berkeley, CA (United States)

    2000-12-01

    A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S3 → [S4] → S0 transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn Kβ X-ray emission spectroscopy (Kb XES) to this problem for the first time. The Kβ XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electron paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S2 → S3 transition, in contrast to the S0 → S1 and S1 → S2 transitions, does not involve a Mn-centered oxidation. This is rationalized by manganese μ-oxo bridge radical formation during the S2 → S3 transition. Using extended X-ray absorption fine structure (EXAFS) spectroscopy, the local environment of the Mn atoms in the S0 state has been structurally characterized. These results show that the Mn-Mn distance in one of the di-μ-oxo-bridged Mn-Mn moieties increases from 2.7 Å in the S1} state to 2.85 Å in the S0 state. Furthermore, evidence is presented that shows three di-μ-oxo binuclear Mn2 clusters may be present in the OEC, which is contrary to the widely held theory that two such clusters are present in the OEC. The EPR properties of the S0 state have been investigated and a characteristic ''multiline'' signal in the S0 state has been discovered in the presence of methanol. This provides the first direct confirmation that the native S0 state is paramagnetic. In addition, this signal was simulated using parameters derived from three

  15. XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Robblee, John H.

    2000-12-01

    A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S{sub 3} {r_arrow} [S{sub 4}] {r_arrow} S{sub 0} transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn K{beta} X-ray emission spectroscopy (Kb XES) to this problem for the first time. The K{beta} XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electron paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S{sub 2} {r_arrow} S{sub 3} transition, in contrast to the S{sub 0} {r_arrow} S{sub 1} and S{sub 1} {r_arrow} S{sub 2} transitions, does not involve a Mn-centered oxidation. This is rationalized by manganese {mu}-oxo bridge radical formation during the S{sub 2} {r_arrow} S{sub 3} transition. Using extended X-ray absorption fine structure (EXAFS) spectroscopy, the local environment of the Mn atoms in the S{sub 0} state has been structurally characterized. These results show that the Mn-Mn distance in one of the di-{mu}-oxo-bridged Mn-Mn moieties increases from 2.7 {angstrom} in the S{sub 1} state to 2.85 {angstrom} in the S{sub 0} state. Furthermore, evidence is presented that shows three di-{mu}-oxo binuclear Mn{sub 2} clusters may be present in the OEC, which is contrary to the widely held theory that two such clusters are present in the OEC. The EPR properties of the S{sub 0} state have been investigated and a characteristic ''multiline'' signal in the S{sub 0} state has been discovered in the presence of methanol. This provides the first direct confirmation that the native S{sub 0} state is paramagnetic. In addition, this signal was simulated using parameters derived from three possible oxidation states of

  16. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    Science.gov (United States)

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  17. Diffraction anomalous near-edge structure in ordered GaInP

    Science.gov (United States)

    Alagna, L.; Prosperi, T.; Turchini, S.; Ferrari, C.; Francesio, L.; Franzosi, P.

    1998-04-01

    We report the diffraction anomalous near-edge structure (DANES) of a nominally lattice matched GaxIn1-xP/GaAs (x=0.51) heteroepitaxial layer, grown by metal organic chemical vapor deposition, which shows long range ordering in the cationic sublattice along the direction. DANES spectra, originating from the 004 reflections of the substrate and of the epi-layer and that from the "forbidden" -5/2 5/2 -5/2 reflection of the superstructure, have been recorded at the Ga K edge. A full theoretical simulation, based on the kinematic formalism, largely agrees with the experimental data.

  18. X-ray and vibrational spectroscopy of manganese complexes relevant to the oxygen-evolving complex of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Hendrik [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    Manganese model complexes, relevant to the oxygen-evolving complex (OEC) in photosynthesis, were studied with Mn K-edge X-ray absorption near-edge spectroscopy (XANES), Mn Kb X-ray emission spectroscopy (XES), and vibrational spectroscopy. A more detailed understanding was obtained of the influence of nuclearity, overall structure, oxidation state, and ligand environment of the Mn atoms on the spectra from these methods. This refined understanding is necessary for improving the interpretation of spectra of the OEC. Mn XANES and Kb XES were used to study a di-(mu)-oxo and a mono-(mu)-oxo di-nuclear Mn compound in the (III,III), (III,IV), and (IV,IV) oxidation states. XANES spectra show energy shifts of 0.8 - 2.2 eV for 1-electron oxidation-state changes and 0.4 - 1.8 eV for ligand-environment changes. The shifts observed for Mn XES spectra were approximately 0.21 eV for oxidation state-changes and only approximately 0.04 eV for ligand-environment changes. This indicates that Mn Kb XES i s more sensitive to the oxidation state and less sensitive to the ligand environment of the Mn atoms than XANES. These complimentary methods provide information about the oxidation state and the ligand environment of Mn atoms in model compounds and biological systems. A versatile spectroelectrochemical apparatus was designed to aid the interpretation of IR spectra of Mn compounds in different oxidation states. The design, based on an attenuated total reflection device, permits the study of a wide spectral range: 16,700 (600 nm) - 225

  19. X-ray and vibrational spectroscopy of manganese complexes relevant to the oxygen-evolving complex of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Hendrik

    2001-05-16

    Manganese model complexes, relevant to the oxygen-evolving complex (OEC) in photosynthesis, were studied with Mn K-edge X-ray absorption near-edge spectroscopy (XANES), Mn Kb X-ray emission spectroscopy (XES), and vibrational spectroscopy. A more detailed understanding was obtained of the influence of nuclearity, overall structure, oxidation state, and ligand environment of the Mn atoms on the spectra from these methods. This refined understanding is necessary for improving the interpretation of spectra of the OEC. Mn XANES and Kb XES were used to study a di-(mu)-oxo and a mono-(mu)-oxo di-nuclear Mn compound in the (III,III), (III,IV), and (IV,IV) oxidation states. XANES spectra show energy shifts of 0.8 - 2.2 eV for 1-electron oxidation-state changes and 0.4 - 1.8 eV for ligand-environment changes. The shifts observed for Mn XES spectra were approximately 0.21 eV for oxidation state-changes and only approximately 0.04 eV for ligand-environment changes. This indicates that Mn Kb XES i s more sensitive to the oxidation state and less sensitive to the ligand environment of the Mn atoms than XANES. These complimentary methods provide information about the oxidation state and the ligand environment of Mn atoms in model compounds and biological systems. A versatile spectroelectrochemical apparatus was designed to aid the interpretation of IR spectra of Mn compounds in different oxidation states. The design, based on an attenuated total reflection device, permits the study of a wide spectral range: 16,700 (600 nm) - 225

  20. Constraints on the oxidation state of chondrule precursors from titanium XANES analysis of Semarkona Chondrules

    Energy Technology Data Exchange (ETDEWEB)

    Simon, S.B.; Sutton, S.R.; Grossman, L. (UofC)

    2008-04-28

    The valence of Ti is not easily reset during chondrule formation. To investigate the oxidation state of chondrule precursors, we measured the valence of Ti in olivine, pyroxene and mesostasis in a type I and a type II chondrule in Semarkona. Chondrules are very important because they formed in the solar nebula and are a major component of chondrites, the most common type of meteorite. In unequilibrated chondrites, the ferromagnesian silicates in chondrules exhibit wide ranges of fe (Fe/(Mg + Fe)). On this basis, chondrules can be divided into type I (fe < 0.1) and type II (fe > 0.1). Because a metal must be oxidized to enter a silicate, mafic silicates with low fe's are inferred to have formed in environments where little oxidized iron was available, implying reducing conditions. Therefore, type I and type II chondrules record different oxidation states. A fundamental question in the study of chondrules is whether this difference was established during chondrule formation, or if it reflects differences in their precursors. Last year, we reported the presence of trivalent Ti in refractory forsterite found in the dense fraction of the Tagish Lake CM chondrite. In addition, in the corresponding oral presentation, we reported high Ti{sup 3+}/Ti{sup 4+} in refractory forsterite containing 0.4-0.7 wt% FeO, present in a type I chondrule. Even these low FeO contents reflect a much higher fO{sub 2} than that at which pyroxene with equivalent Ti{sup 3+}/Ti{sup 4+} would be stable. This suggests that either: the equilibrium Ti{sup 3+}/Ti{sup 4+} is higher in olivine than in pyroxene for a given fO{sub 2}; or the grains formed under highly reducing conditions and the valence of Ti in chondrule olivine is a robust recorder of the oxidation state of chondrule precursors, not easily reset during chondrule formation. To improve our understanding of the origin of chondrules we have used XANES (X-ray absorption near edge structure) spectroscopy to measure the valence state of

  1. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    Science.gov (United States)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  2. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    Science.gov (United States)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-01-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements. PMID:28186190

  3. STRUCTURAL DETERMINATION OF TITANIUM-OXIDE NANOPARTICLES BY X-RAY ABSORPTION SPECTROSCOPY

    Institute of Scientific and Technical Information of China (English)

    Z.Y.Wu; Y.N.Xie; Q.H.Zhang; L.Gao; Z.Z.Chen; J.Zhang; K.Ibrahim; M.I.Abbas; G.Li; Y.Tao; T.D.Hu; F.Q.Liu; H.J.Qian

    2002-01-01

    As a potential application of titanium-oxide nanoparticles, it is extremely importantto investigate a detailed picture of the surface and interior structural properties ofnanocrystalline materials, such as rutile and anatase with diameters 7.0 and 4.5nm,respectively. X-ray absorption spectroscopy has been used to identify the local Ti envi-ronment and related electronic structure. We combine the experimental results at theTi edge in both bulk and nano-crystals to determine the lattice distortion in terms ofdifferently characteristic preedge features and the variation in the multiple-scatteringregion of X-ray absorption near-edge structure (XANES) spectra. The relationshipbetween the transition peaks and the surface-to volume ratio is also discussed.

  4. Polarized X-ray absorption spectroscopy of single-crystal Mn(V) complexes relevant to the oxygen-evolving complex of photosystem II

    DEFF Research Database (Denmark)

    Yano, Junko; Robblee, John; Pushkar, Yulia

    2007-01-01

    High-valent Mn-oxo species have been suggested to have a catalytically important role in the water splitting reaction which occurs in the Photosystem II membrane protein. In this study, five- and six-coordinate mononuclear Mn(V) compounds were investigated by polarized X-ray absorption spectroscopy...... structure of the metal site was then studied by measuring the polarization dependence of X-ray absorption near-edge spectroscopy (XANES) pre-edge spectra (1s to 3d transition) and comparing with the results of density functional theory (DFT) calculations. The Mn(V)-nitrido compound, in which the manganese....... The relevance of these results to understanding the mechanism of the photosynthetic water oxidation is discussed....

  5. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jian-Xin [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Wang, Yu-Jun, E-mail: yjwang@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Liu, Cun [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang, Li-Hua; Yang, Ke [Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of sciences, Shanghai 201204 (China); Zhou, Dong-Mei, E-mail: dmzhou@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Wei; Sparks, Donald L. [Environmental Soil Chemistry Group, Delaware Environmental Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19717-1303 United States (United States)

    2014-08-30

    Graphical abstract: - Highlights: • Immobility and transformation of As on different Eh soils were investigated. • μ-XRF, XANES, and XPS were used to gain As distribution and speciation in soil. • Sorption capacity of As on anaerobic soil was much higher than that on oxic soil. • Fe oxides reductive dissolution is a key factor for As sorption and transformation. - Abstract: The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils.

  6. X-ray absorption spectroscopy in biological systems. Opportunities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Bovenkamp, Gudrun Lisa

    2013-05-15

    X-ray absorption spectroscopy has become more important for applications in the material sciences, geology, environmental science and biology, specifically in the field of molecular biology. The scope of this thesis is to add more experimental evidence in order to show how applicable X-ray absorption near edge structure (XANES) is to biology. Two biological systems were investigated, at the molecular level, lead uptake in plants and the effect of silver on bacteria. This investigation also included an analysis of the sensitivity of Pb L{sub 3}- and Ag L{sub 3}-XANES spectra with regard to their chemical environment. It was shown that Pb L{sub 3}- and Ag L{sub 3}-XANES spectra are sensitive to an environment with at least differences in the second coordination shell. The non-destructive and element specific properties of XANES are the key advantages that were very important for this investigation. However, in both projects the adequate selection of reference compounds, which required in some cases a chemical synthesis, was the critical factor to determine the chemical speciation and, finally, possible uptake and storage mechanisms for plants and antibacterial mechanisms of silver. The chemical environment of Pb in roots and leaves of plants from four different plant families and a lichen from a former lead mining site in the Eifel mountains in Germany was determined using both solid compounds and aqueous solutions of different ionic strength, which simulate the plant environment. The results can be interpreted in such a way that lead is sorbed on the surface of cell walls. Silver bonding as reaction with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli bacteria was determined using inorganic silver compounds and synthesized silver amino acids. Silver binds to sulfur, amine and carboxyl groups in amino acids.

  7. XANES evidence of arsenate removal from water with magnetic ferrite.

    Science.gov (United States)

    Tu, Yao-Jen; You, Chen-Feng; Chang, Chien-Kuei; Wang, Shan-Li

    2013-05-15

    Arsenic (As) in groundwater and surface water is a worldwide problem possessing a serious threat to public health. In this study, a magnetic ferrite, was synthesized and investigated for its As(V) removal efficiency. The adsorption of As(V) by magnetic ferrite exhibited an L-shaped nonlinear isotherm, suggesting limiting binding sites on the adsorbent surface. The As K-edge X-Ray Absorption Near-Edge Structure (XANES) revealed that the adsorbed As(V) on ferrite was not reduced to more toxic As(III) by Fe(2+) in the ferrite structure. The maximum As adsorption capacity of ferrite was 14 mg/g at pH 3 and decreased with increasing pH due to enhanced electrostatic repulsion between As(V) and the adsorbent surface. Desorption of As(V) using six different acid and salt solutions showed that the desorption rate decreased in an order of H3PO4 > Na3PO4 > H2SO4 > Na2SO4 > HCl > HNO3. These results suggest that magnetic ferrite without surface modification is an effective adsorbent for removing As(V) from water, which was confirmed by the effective removal of As(V) from contaminated groundwater using this material. The used material can then be recovered using a magnet because of its paramagnetism; the adsorbed As(V) on the material can be recovered using H3PO4 or Na3PO4 solutions.

  8. X-ray absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides

    Science.gov (United States)

    Bidoglio, G.; Gibson, P. N.; O'Gorman, M.; Roberts, K. J.

    1993-05-01

    Examination of the adsorption mechanism of Tl and Cr on selected mineral oxides was carried out by X-ray Absorption Spectroscopy (XAS) using synchrotron radiation. Information on the oxidation states of surface bound species was obtained from the low energy side of XAS spectra, the XANES (X-ray Absorption Near Edge Structure) region. Surface precipitation of Tl 2O 3(s) was found to take place on δ-MnO 2(s) as a result of T1(I) sorption and oxidation at the mineral surface. Adsorption of chromates on α-FeOOH (s) containing very small amounts of ferrous ions was observed to be followed by partial reduction to Cr(III).

  9. Particle Formation from Pulsed Laser Irradiation of SootAggregates studied with scanning mobility particle sizer, transmissionelectron microscope and near-edge x-ray absorption fine structure.

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, Hope A.; Tivanski, Alexei V.; Gilles, Mary K.; vanPoppel, Laura H.; Dansson, Mark A.; Buseck, Peter R.; Buseck, Peter R.

    2007-02-20

    We investigated the physical and chemical changes induced in soot aggregates exposed to laser radiation using a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope to perform near-edge x-ray absorption fine structure spectroscopy. Laser-induced nanoparticle production was observed at fluences above 0.12 J/cm(2) at 532 nm and 0.22 J/cm(2) at 1064 nm. Our results indicate that new particle formation proceeds via (1) vaporization of small carbon clusters by thermal or photolytic mechanisms, followed by homogeneous nucleation, (2) heterogeneous nucleation of vaporized carbon clusters onto material ablated from primary particles, or (3) both processes.

  10. Near-edge X-ray absorption fine structure study of disordering in Gd2(Ti1-yZry)2O7 pyrochlores.

    Science.gov (United States)

    Nachimuthu, Ponnusamy; Thevuthasan, Suntharampillai; Adams, Evan M; Weber, William J; Begg, Bruce D; Mun, Bongjin S; Shuh, David K; Lindle, Dennis W; Gullikson, Eric M; Perera, Rupert C C

    2005-02-01

    Disorder in Gd2(Ti(1-y)Zry)2O7 pyrochlores, for y = 0.0-1.0, is investigated by Ti 2p and O 1s near-edge X-ray absorption fine structure spectroscopy. Ti(4+) ions are found to occupy octahedral sites in Gd2Ti2O7 with a tetragonal distortion induced by vacant oxygen sites. As Zr substitutes for Ti, the tetragonal distortion decreases, and Zr coordination increases from 6 to 8. The migration of oxygen ions from 48f or 8b sites to vacant 8a sites compensate for the increased Zr coordination, thereby reducing the number of vacant 8a sites, which further reduces the tetragonal distortion and introduces more disorder around Ti. This is evidence for simultaneous cation disorder with anion migration.

  11. Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Huse, Nils; Wen, Haidan; Nordlund, Dennis; Szilagyi, Erzsi; Daranciang, Dan; Miller, Timothy A.; Nilsson, Anders; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2009-04-24

    We report time-resolved studies of hydrogen bonding in liquid H2O, in response to direct excitation of the O-H stretch mode at 3 mu m, probed via soft x-ray absorption spectroscopy at the oxygen K-edge. This approach employs a newly developed nanofluidic cell for transient soft x-ray spectroscopy in liquid phase. Distinct changes in the near-edge spectral region (XANES) are observed, and are indicative of a transient temperature rise of 10K following transient laser excitation and rapid thermalization of vibrational energy. The rapid heating occurs at constant volume and the associated increase in internal pressure, estimated to be 8MPa, is manifest by distinct spectral changes that differ from those induced by temperature alone. We conclude that the near-edge spectral shape of the oxygen K-edge is a sensitive probe of internal pressure, opening new possibilities for testing the validity of water models and providing new insight into the nature of hydrogen bonding in water.

  12. An EXAFS and XANES study of MBE grown Cu-doped ZnO

    CERN Document Server

    Fons, P; Iwata, K; Matsubara, K; Niki, S; Nakahara, K; Takasu, H

    2003-01-01

    The wide bandgap semiconductor, ZnO, is intrinsically n-type and one of the remaining hurdles to be overcome before it can be used for optoelectronic applications is achieving p-type doping. A potential candidate for a p-type dopant is Cu. Towards this end, X-ray near-edge absorption (XANES) has been used to determine changes in valency of Cu in molecular beam epitaxial grown ZnO as a function of growth parameters. Growth parameters varied include the Cu flux which was varied over roughly three orders of magnitude T sub C sub u =800-1000 deg. C and two substrate temperatures: 300 and 600 deg. C. XANES measurements confirmed that Cu was in the +1 valence state for all as-grown samples. Preliminary EXAFS measurements also demonstrated that Cu incorporated into a Zn-atom position substitutionally. X-ray diffraction also indicated significant phase separation with the presence of both metallic Cu and CuO indicated for Cu concentrations >3x10 sup 2 sup 1 cm sup - sup 3.

  13. Asymmetry and the Nucleosynthetic Signature of Nearly Edge-Lit Detonation in White Dwarf Cores

    CERN Document Server

    Chamulak, David A; Seitenzahl, Ivo R; Truran, James W

    2011-01-01

    Most of the leading explosion scenarios for Type Ia supernovae involve the nuclear incineration of a white dwarf star through a detonation wave. Several scenarios have been proposed as to how this detonation may actually occur, but the exact mechanism and environment in which it takes place remain unknown. We explore the effects of an off-center initiated detonation on the spatial distribution of the nucleosynthetic yield products in a toy model - a pre-expanded near Chandrasekhar-mass white dwarf. We find that a single near edge-lit detonation results in asymmetries in the density and thermal profiles, notably the expansion timescale, throughout the supernova. We demonstrate that this asymmetry of the thermodynamic trajectories should be common to off-center detonations where a small amount of the star is burned prior to detonation. The asymmetry stems from the fact that in one hemisphere the propagation direction of the detonation wave is largely in the direction of final (radial) expansion, whereas in the ...

  14. Engineering the Near-Edge Electronic Structure of SnSe through Strains

    Science.gov (United States)

    Wu, Yabei; Xia, Weiyi; Gao, Weiwei; Ren, Wei; Zhang, Peihong

    2017-09-01

    The discovery of the unprecedented figure of merit Z T of SnSe has sparked a large number of studies on the fundamental physics of this material and further improvement through guided materials design and optimization. Motivated by its rich chemical-bonding characters, unusual multivalley electronic structure, and the sensitivity of the band-edge states to lattice strains, we carry out accurate quasiparticle calculations for the low-temperature phase SnSe under strains. We illustrate how the band-edge states can be engineered by lattice strains, including the size and the nature of the band gap, the positions of the band extrema in the Brillouin zone, and the control of the number of electron and/or hole valleys. The distinct atomic origin and orientation of the wave functions of the different band-edge states dictates the relative shift in their band energy, enabling active control of the near-edge electronic structure of this material. Our work demonstrates that strain engineering is a promising way to manipulate the low-energy electronic structure of SnSe, which can have profound influences on the optical and transport properties of this material.

  15. Near edge X-ray absorption mass spectrometry of gas phase proteins: the influence of protein size

    NARCIS (Netherlands)

    Egorov, Dmitrii; Schwob, Lucas; Lalande, Mathieu; Hoekstra, Ronnie; Schlathölter, Thomas

    2016-01-01

    Multiply protonated peptides and proteins in the gas phase can respond to near edge X-ray absorption in three different ways: (i) non dissociative ionization and ionization accompanied by loss of small neutrals, both known to dominate for proteins with masses in the 10 kDa range. (ii) Formation of i

  16. Aqueous U(VI) interaction with magnetite nanoparticles in a mixed flow reactor system: HR-XANES study

    Science.gov (United States)

    Pidchenko, I.; Heberling, F.; Kvashnina, KO; Finck, N.; Schild, D.; Bohnert, E.; Schäfer, T.; Rothe, J.; Geckeis, H.; Vitova, T.

    2016-05-01

    The redox variations and changes in local atomic environment of uranium (U) interacted with the magnetite nanoparticles were studied in a proof of principle experiment by the U L3 and M4 edges high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We designed and applied a mixed flow reactor (MFR) set-up to maintain dynamic flow conditions during U-magnetite interactions. Formation of hydrolyzed, bi- and poly-nuclear U species were excluded by slow continuous injection of U(VI) (10-6 M) and pH control integrated in the MFR set-up. The applied U HR-XANES technique is more sensitive to minor changes in the U redox states and bonding compared to the conventional XANES method. Major U(VI) contribution in uranyl type of bonding is found in the magnetite nanoparticles after three days operation time of the MFR. Indications for shortening of the U-Oaxial bond length for the magnetite compared to the maghemite system are present too.

  17. On the origin of the differences in the Cu K-edge XANES of isostructural and isoelectronic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sipr, O [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, CZ-162 53 Prague (Czech Republic); Rocca, F [IFN-CNR, Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Sezione ' FBK-CeFSA' di Trento, Via alla Cascata 56/C, I-38123 Povo (Trento) (Italy); Fornasini, P [Dipartimento di Fisica, Universita di Trento, Via Sommarive 14, I-38123 Povo (Trento) (Italy)], E-mail: sipr@fzu.cz

    2009-06-24

    Cu K-edge x-ray absorption near-edge structure (XANES) spectra of trigonal (3R) CuScO{sub 2} and CuLaO{sub 2} and of hexagonal (2H) CuScO{sub 2} were investigated experimentally and theoretically, in order to study differences between spectra of isostructural and isoelectronic compounds. Significant differences were found in the Cu K-edge XANES of 3R CuScO{sub 2} and 3R CuLaO{sub 2}; these differences can be understood by considering the calculated polarization dependence of the XANES spectra and the differences between the phaseshifts of Sc and La. Spectra of the 3R and 2H polytypes of CuScO{sub 2} differ only weakly and the difference originates from the long-range order. The pre-edge peak around 8980 eV is generated by the same mechanism as the pre-edge peak in Cu{sub 2}O, i.e. involving scattering by the Cu atoms in the plane which is perpendicular to the O-Cu-O axis.

  18. On the origin of the differences in the Cu K-edge XANES of isostructural and isoelectronic compounds.

    Science.gov (United States)

    Sipr, O; Rocca, F; Fornasini, P

    2009-06-24

    Cu K-edge x-ray absorption near-edge structure (XANES) spectra of trigonal (3R) CuScO(2) and CuLaO(2) and of hexagonal (2H) CuScO(2) were investigated experimentally and theoretically, in order to study differences between spectra of isostructural and isoelectronic compounds. Significant differences were found in the Cu K-edge XANES of 3R CuScO(2) and 3R CuLaO(2); these differences can be understood by considering the calculated polarization dependence of the XANES spectra and the differences between the phaseshifts of Sc and La. Spectra of the 3R and 2H polytypes of CuScO(2) differ only weakly and the difference originates from the long-range order. The pre-edge peak around 8980 eV is generated by the same mechanism as the pre-edge peak in Cu(2)O, i.e. involving scattering by the Cu atoms in the plane which is perpendicular to the O-Cu-O axis.

  19. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris.

    Science.gov (United States)

    Brinza, Loredana; Schofield, Paul F; Hodson, Mark E; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D; Mosselmans, J Frederick W

    2014-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

  20. Effect of atomic vibrations in XANES: polarization-dependent damping of the fine structure at the Cu K-edge of (creat)2CuCl4.

    Science.gov (United States)

    Šipr, Ondřej; Vackář, Jiří; Kuzmin, Alexei

    2016-11-01

    Polarization-dependent damping of the fine structure in the Cu K-edge spectrum of creatinium tetrachlorocuprate [(creat)2CuCl4] in the X-ray absorption near-edge structure (XANES) region is shown to be due to atomic vibrations. These vibrations can be separated into two groups, depending on whether the respective atoms belong to the same molecular block; individual molecular blocks can be treated as semi-rigid entities while the mutual positions of these blocks are subject to large mean relative displacements. The effect of vibrations can be efficiently included in XANES calculations by using the same formula as for static systems but with a modified free-electron propagator which accounts for fluctuations in interatomic distances.

  1. Effect of gamma irradiation on X-ray absorption and photoelectron spectroscopy of Nd-doped phosphate glass.

    Science.gov (United States)

    Rai, V N; Rajput, Parasmani; Jha, S N; Bhattacharyya, D; Raja Shekhar, B N; Deshpande, U P; Shripathi, T

    2016-11-01

    X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) of Nd-doped phosphate glasses have been studied before and after gamma irradiation. The intensity and the location of the white line peak of the L3-edge XANES of Nd are found to be dependent on the ratio O/Nd in the glass matrix. Gamma irradiation changes the elemental concentration of atoms in the glass matrix, which affects the peak intensity of the white line due to changes in the covalence of the chemical bonds with Nd atoms in the glass (structural changes). Sharpening of the Nd 3d5/2 peak profile in XPS spectra indicates a deficiency of oxygen in the glasses after gamma irradiation, which is supported by energy-dispersive X-ray spectroscopy measurements. The ratio of non-bridging oxygen to total oxygen in the glass after gamma radiation has been found to be correlated to the concentration of defects in the glass samples, which are responsible for its radiation resistance as well as for its coloration.

  2. Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using L3-edge resonant X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Booth, C. H.; Medling, S. A.; Jiang, Yu; Bauer, E. D.; Tobash, P. H.; Mitchell, J. N.; Veirs, D. K.; Wall, M. A.; Allen, P. G.; Kas, J. J.; Sokaras, D.; Nordlund, D.; Weng, T. -C.

    2014-06-24

    Although actinide (An) L3 -edge X-ray absorption near-edge structure (XANES) spectroscopy has been very effective in determining An oxidation states in insulating, ionically bonded materials, such as in certain coordination compounds and mineral systems, the technique fails in systems featuring more delocalized 5f orbitals, especially in metals. Recently, actinide L3-edge resonant X-ray emission spec- troscopy (RXES) has been shown to be an effective alternative. This technique is further demonstrated here using a parameterized partial unoccupied density of states method to quantify both occupancy and delocalization of the 5f orbital in ?-Pu, ?-Pu, PuCoGa5 , PuCoIn5 , and PuSb2. These new results, supported by FEFF calculations, highlight the effects of strong correlations on RXES spectra and the technique?s ability to differentiate between f-orbital occupation and delocalization.

  3. Structural studies of advanced functional materials by synchrotron-based x-ray absorption spectroscopy: BL5.2 at SLRI, Thailand

    Science.gov (United States)

    Kidkhunthod, Pinit

    2017-09-01

    This paper highlights the use of the x-ray absorption spectroscopy (XAS) as a local structural tool unlike x-ray diffraction for selected atoms in advanced functional materials including energy storage materials, dielectric materials and thermoelectric materials. The information concerning the oxidation states and local atomic structure around probing atoms will be revealed using x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). The XAS beamline: BL5.2 at the Synchrotron Light Research Institute (SLRI) (public organization), Thailand, and its characteristic including available of measured energy ranges, examples of measured spectra of Mg, S and Ti K-edge XAS are also presented. In addition, in situ XAS set up and experiment carried out at this beamline are also outlined. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  4. X-ray absorption spectroscopy of metalloproteins.

    Science.gov (United States)

    Ward, Jesse; Ollmann, Emily; Maxey, Evan; Finney, Lydia A

    2014-01-01

    Metalloproteins are enormously important in biology. While a variety of techniques exist for studying metals in biology, X-ray absorption spectroscopy is particularly useful in that it can determine the local electronic and physical structure around the metal center, and is one of the few avenues for studying "spectroscopically silent" metal ions like Zn(II) and Cu(I) that have completely filled valence bands. While X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) are useful for studying metalloprotein structure, they suffer the limitation that the detected signal is an average of all the various metal centers in the sample, which limits its usefulness for studying metal centers in situ or in cell lysates. It would be desirable to be able to separate the various proteins in a mixture prior to performing X-ray absorption studies, so that the derived signal is from one species only. Here we describe a method for performing X-ray absorption spectroscopy on protein bands following electrophoretic separation and western blotting.

  5. Oxygen spectroscopy and polarization-dependent imaging contrast (PIC)-mapping of calcium carbonate minerals and biominerals.

    Science.gov (United States)

    DeVol, Ross T; Metzler, Rebecca A; Kabalah-Amitai, Lee; Pokroy, Boaz; Politi, Yael; Gal, Assaf; Addadi, Lia; Weiner, Steve; Fernandez-Martinez, Alejandro; Demichelis, Raffaella; Gale, Julian D; Ihli, Johannes; Meldrum, Fiona C; Blonsky, Adam Z; Killian, Christopher E; Salling, C B; Young, Anthony T; Marcus, Matthew A; Scholl, Andreas; Doran, Andrew; Jenkins, Catherine; Bechtel, Hans A; Gilbert, Pupa U P A

    2014-07-17

    X-ray absorption near-edge structure (XANES) spectroscopy and spectromicroscopy have been extensively used to characterize biominerals. Using either Ca or C spectra, unique information has been obtained regarding amorphous biominerals and nanocrystal orientations. Building on these results, we demonstrate that recording XANES spectra of calcium carbonate at the oxygen K-edge enables polarization-dependent imaging contrast (PIC) mapping with unprecedented contrast, signal-to-noise ratio, and magnification. O and Ca spectra are presented for six calcium carbonate minerals: aragonite, calcite, vaterite, monohydrocalcite, and both hydrated and anhydrous amorphous calcium carbonate. The crystalline minerals reveal excellent agreement of the extent and direction of polarization dependences in simulated and experimental XANES spectra due to X-ray linear dichroism. This effect is particularly strong for aragonite, calcite, and vaterite. In natural biominerals, oxygen PIC-mapping generated high-magnification maps of unprecedented clarity from nacre and prismatic structures and their interface in Mytilus californianus shells. These maps revealed blocky aragonite crystals at the nacre-prismatic boundary and the narrowest calcite needle-prisms. In the tunic spicules of Herdmania momus, O PIC-mapping revealed the size and arrangement of some of the largest vaterite single crystals known. O spectroscopy therefore enables the simultaneous measurement of chemical and orientational information in CaCO3 biominerals and is thus a powerful means for analyzing these and other complex materials. As described here, PIC-mapping and spectroscopy at the O K-edge are methods for gathering valuable data that can be carried out using spectromicroscopy beamlines at most synchrotrons without the expense of additional equipment.

  6. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Brinza, Loredana [Diamond Light Source, Harwell Campus, Didcot, Oxon OX11 0DE (United Kingdom); Schofield, Paul F. [Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Hodson, Mark E. [University of York, York YO10 5DD (United Kingdom); Weller, Sophie [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W., E-mail: fred.mosselmans@diamond.ac.uk [Diamond Light Source, Harwell Campus, Didcot, Oxon OX11 0DE (United Kingdom)

    2014-01-01

    A new experimental set-up enabling microfocus fluorescence XANES mapping and microfocus XRD mapping on the same sample at beamline I18 at Diamond Light Source is described. To demonstrate this set-up the heterogeneous mineralogy in calcium carbonate granules excreted by the earthworm Lumbricus terrestris has been analysed. Data analysis methods have been developed which enable µXRD and µXANES two-dimensional maps to be compared. The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

  7. XANES spectra of transition metal compounds

    NARCIS (Netherlands)

    de Groot, F.M.F.|info:eu-repo/dai/nl/08747610X

    2009-01-01

    An overview is given of the interactions that determine the XANES spectral shapes of transition metal compounds. The interactions are divided into ground state effects, final state effects and transition effects. The metal L edges, metal K edges and ligand K edges are analysed with respect to these

  8. [Distribution and speciation of Pb in Arabidopsis thaliana shoot and rhizosphere soil by in situ synchrotron radiation micro X-ray fluorescence and X-ray absorption near edge structure].

    Science.gov (United States)

    Shen, Ya-Ting

    2014-03-01

    In order to investigate plant reacting mechanism with heavy metal stress in organ and tissue level, synchrotron radiation micro X-ray fluorescence (micro-SRXRF) was used to determine element distribution characteristics of K, Ca, Mn, Fe, Cu, Zn, Pb in an Arabidopsis thaliana seedling grown in tailing dam soil taken from a lead-zinc mine exploration area. The results showed a regular distribution characters of K, Ca, Fe, Cu and Zn, while Pb appeared not only in root, but also in a leaf bud which was beyond previously understanding that Pb mainly appeared in plant root. Pb competed with Mn in the distribution of the whole seedling. Pb may cause the increase of oxidative stress in root and leaf bud, and restrict Mn absorption and utilization which explained the phenomenon of seedling death in this tailing damp soil. Speciation of Pb in Arabidopsis thaliana and tailing damp rhizosphere soil were also presented after using PbL3 micro X-ray absorption near edge structure (micro-XANES). By comparison of PbL3 XANES peak shape and peak position between standard samples and rhizosphere soil sample, it was demonstrated that the tailing damp soil was mainly formed by amorphous forms like PbO (64.2%), Pb (OH)2 (28.8%) and Pb3O4 (6.3%) rather than mineral or organic Pb speciations. The low plant bioavailability of Pb demonstrated a further research focusing on Pb absorption and speciation conversion is needed, especially the role of dissolve organic matter in soil which may enhance Pb bioavailability.

  9. First-principles calculations of the near-edge optical properties of β-Ga2O3

    Science.gov (United States)

    Mengle, Kelsey A.; Shi, Guangsha; Bayerl, Dylan; Kioupakis, Emmanouil

    2016-11-01

    We use first-principles calculations based on many-body perturbation theory to investigate the near-edge electronic and optical properties of β-Ga2O3. The fundamental band gap is indirect, but the minimum direct gap is only 29 meV higher in energy, which explains the strong near-edge absorption. Our calculations verify the anisotropy of the absorption onset and explain the range (4.4-5.0 eV) of experimentally reported band-gap values. Our results for the radiative recombination rate indicate that intrinsic light emission in the deep-ultra-violet (UV) range is possible in this indirect-gap semiconductor at high excitation. Our work demonstrates the applicability of β-Ga2O3 for deep-UV detection and emission.

  10. Electronic structure of Al-doped ZnO transparent conductive thin films studied by x-ray absorption and emission spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Huang, W. H.; Sun, S. J.; Chiou, J. W. [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Chou, H. [Department of Physics, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Chan, T. S.; Lin, H.-J. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Kumar, Krishna [Department of Electrical and Computer Engineering, University of Waterloo, Ontario N2L 3G1 (Canada); Guo, J.-H. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2011-11-15

    This study used O K-, Zn L{sub 3}-, Zn K-, and Al K-edges x-ray absorption near-edge structure (XANES) and O K-edge x-ray emission spectroscopy (XES) measurements to investigate the electronic structure of transparent Al-doped ZnO (AZO) thin film conductors. The samples were prepared on glass substrates at a low temperature near 77 K by using a standard RF sputtering method. High-purity Ne (5N) was used as the sputtering gas. The crystallography of AZO thin films gradually transformed from the ZnO wurtize structure to an amorphous structure during sample deposition, which suggests the suitability to grow on flexible substrates, eliminating the severe degradation due to fragmentation by repeated bending. The O K- and Zn L{sub 3}-edges XANES spectra of AZO thin films revealed a decrease in the number of both O 2p and Zn 3d unoccupied states when the pressure of Ne was increased from 5 to 100 mTorr. In contrast, Al K-edges XANES spectra showed that the number of unoccupied states of Al 3p increased in conjunction with the pressure of Ne, indicating an electron transfer from Al to O atoms, and suggesting that Al doping increases the negative effective charge of oxygen ions. XES and XANES spectra of O 2p states at the O K-edge also revealed that Al doping not only raised the conduction-band-minimum, but also increased the valence-band-maximum and the band-gap. The results indicate that the reduction in conductivity of AZO thin films is due to the generation of ionic characters, the increase in band-gap, and the decrease in density of unoccupied states of oxygen.

  11. [XANES study of lead speciation in duckweed].

    Science.gov (United States)

    Chu, Bin-Bin; Luo, Li-Qiang; Xu, Tao; Yuan, Jing; Sun, Jian-Ling; Zeng, Yuan; Ma, Yan-Hong; Yi, Shan

    2012-07-01

    Qixiashan lead-zinc mine of Nanjing was one of the largest lead zinc deposits in East China Its exploitation has been over 50 years, and the environmental pollution has also been increasing. The lead concentration in the local environment was high, but lead migration and toxic mechanism has not been clear. Therefore, biogeochemistry research of the lead zinc mine was carried out. Using ICP-MS and Pb-L III edge XANES, lead concentration and speciation were analyzed respectively, and duckweed which can tolerate and enriched heavy metals was found in the pollution area. The results showed that the lead concentration of duckweed was 39.4 mg x kg(-1). XANES analysis and linear combination fit indicated that lead stearate and lead sulfide accounted for 65% and 36.9% respectively in the lead speciation of duckweed, suggesting that the main lead speciation of duckweed was sulfur-containing lead-organic acid.

  12. X-ray Absorption Spectroscopy Characterization of Electrochemical Processes in Renewable Energy Storage and Conversion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Farmand, Maryam [George Washington Univ., Washington, DC (United States)

    2013-05-19

    The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopy (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.

  13. X-ray absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bidoglio, G.; Gibson, P.N.; O' Gorman, M. (Commission of the European Communities, Ispra (CEC)); Roberts, K.J. (Univ. of Strathclyde, Glasgow (United Kingdom) SERC Daresbury Lab., Warrington (United Kingdom))

    1993-05-01

    Examination of the adsorption mechanism of Tl and Cr on selected mineral oxides was carried out by X-ray Absorption Spectroscopy (XAS) using synchrotron radiation. Information on the oxidation states of surface bound species was obtained from the low energy side of XAS spectra, the XANES (X-ray Absorption Near Edge Structure) region. Surface precipitation of Tl[sub 2]O[sub 3](s) was found to take place on [delta]-MnO[sub 2](s) as a result of Tl(I) sorption and oxidation at the mineral surface. Adsorption of chromates on [alpha]-FeOOH(s) containing very small amounts of ferrous ions was observed to be followed by partial reduction to Cr(III). The experimental results confirm the potential for MnO[sub 2(s)] inclusions in soils and aquifer materials to act as a sink for Tl species. Surface oxidation of Tl(I) followed by precipitation of Tl(III) compounds may reduce the mobilization rate of the metal leading to local accumulation phenomena. Direct evidence was provided for the reduction of Cr(VI) to Cr(III) on an Fe(II)-containing goethite under oxygenated conditions. XANES appears to be a very suitable technique for the elucidation at a molecular level of surface redox reactions, which may not be easily distinguished for physi- or chemi-sorption o the basis of macroscopic measurements. 46 refs., 4 figs.

  14. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy.

    Science.gov (United States)

    Qin, Hai-Bo; Zhu, Jian-Ming; Lin, Zhi-Qing; Xu, Wen-Po; Tan, De-Can; Zheng, Li-Rong; Takahashi, Yoshio

    2017-06-01

    Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56-81% of the total Se) and lesser Se(IV) (19-44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69-73%) > upland soil (56-63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES

    Science.gov (United States)

    Helz, R. T.; Cottrell, E.; Brounce, M. N.; Kelley, K. A.

    2017-03-01

    The 1959 summit eruption of Kīlauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most Kīlauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems. The observed variations of Fe+ 3/FeT ratios in the glasses reflect two distinct processes. The main process, sulfur degassing, produces steady decrease of the Fe+ 3/FeT ratio. Melt inclusions in olivine are high in sulfur (1060-1500 ppm S), with Fe+ 3/FeT = 0.160-0.175. Matrix glasses are degassed (mostly S glasses within clumps of olivine crystals locally show intermediate levels of sulfur and Fe+ 3/FeT ratio. The correlation suggests that (1) the 1959 magma was significantly reduced by sulfur degassing during the eruption and (2) the melts originally had Fe+ 3/FeT ≥ 0.175, consistent with

  16. Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES

    Science.gov (United States)

    Helz, Rosalind L.; Cottrell, Elizabeth; Brounce, Maryjo N.; Kelley, Katherine A.

    2017-01-01

    The 1959 summit eruption of Kīlauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most Kīlauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems.The observed variations of Fe+ 3/FeT ratios in the glasses reflect two distinct processes. The main process, sulfur degassing, produces steady decrease of the Fe+ 3/FeT ratio. Melt inclusions in olivine are high in sulfur (1060–1500 ppm S), with Fe+ 3/FeT = 0.160–0.175. Matrix glasses are degassed (mostly S units above the fayalite-magnetite-quartz (FMQ) buffer at 1 atm and magmatic temperature of 1200 °C.The second process is interaction between the melts and atmospheric oxygen, which results in higher Fe+ 3/FeT ratios. Detailed μ-XANES traverses show gradients in Fe+ 3

  17. On the importance of nuclear quantum motions in near edge x-ray absorption fine structure (NEXAFS) spectroscopy of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Craig P.; Uejio, Janel S.; Saykally, Richard J.; Prendergast, David

    2009-02-26

    We report the effects of sampling nuclear quantum motion with path integral molecular dynamics (PIMD) on calculations of the nitrogen K-edge spectra of two isolated organic molecules. S-triazine, a prototypical aromatic molecule occupying primarily its vibrational ground state at room temperature, exhibits substantially improved spectral agreement when nuclear quantum effects are included via PIMD, as compared to the spectra obtained from either a single fixed-nuclei based calculation or from a series of configurations extracted from a classical molecular dynamics trajectory. Nuclear quantum dynamics can accurately explain the intrinsic broadening of certain features. Glycine, the simplest amino acid, is problematic due to large spectral variations associated with multiple energetically accessible conformations at the experimental temperature. This work highlights the sensitivity of NEXAFS to quantum nuclear motions in molecules, and the necessity of accurately sampling such quantum motion when simulating their NEXAFS spectra.

  18. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  19. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, K.S.

    2000-05-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  20. Near-Edge X-Ray Absorption Fine Structure of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Shinya Ohmagari

    2009-01-01

    Full Text Available The atomic bonding configuration of ultrananocrystalline diamond (UNCD/hydrogenated amorphous carbon (a-C:H films prepared by pulsed laser ablation of graphite in a hydrogen atmosphere was examined by near-edge X-ray absorption fine structure spectroscopy. The measured spectra were decomposed with simple component spectra, and they were analyzed in detail. As compared to the a-C:H films deposited at room substrate-temperature, the UNCD/a-C:H and nonhydrogenated amorphous carbon (a-C films deposited at a substrate-temperature of 550∘C exhibited enhanced ∗ and ∗C≡C peaks. At the elevated substrate-temperature, the ∗ and ∗C≡C bonds formation is enhanced while the ∗C–H and ∗C–C bonds formation is suppressed. The UNCD/a-C:H film showed a larger ∗C–C peak than the a-C film deposited at the same elevated substrate-temperature in vacuum. We believe that the intense ∗C–C peak is evidently responsible for UNCD crystallites existence in the film.

  1. Speciation of magnesium in monohydrocalcite: XANES, ab initio and geochemical modeling

    Science.gov (United States)

    Fukushi, Keisuke; Suzuki, Yuma; Kawano, Jun; Ohno, Takeshi; Ogawa, Masahiro; Yaji, Toyonari; Takahashi, Yoshio

    2017-09-01

    Monohydrocalcite (MHC: CaCO3·H2O), a rare carbonate mineral formed under surface conditions, is usually observed in nature as containing a variable amount of Mg, with a 0.007-0.45 Mg/Ca mole ratio. The variable Mg composition in MHC is anticipated as a promising proxy to assess paleo-hydrochemistry especially in saline lakes. Although the roles of Mg on the formation and stability of MHC have been studied intensively, the Mg speciation in MHC has remained unclear and controversial. This study examined Mg speciation in MHC using X-ray absorption near edge structure (XANES), ab initio molecular simulation, and geochemical modeling. Mg-XANES spectra of MHC with different Mg/Ca ratios prepared from mixing solutions of Na2CO3, CaCl2 and MgCl2 revealed that the Mg in MHC is a mixture of amorphous Mg carbonate (AMC) and other Mg containing phase. The contribution of AMC to total Mg is negatively correlated to the crystallinity of MHC. Results show that AMC might play a protective role in the crystallization and the transformation to stable calcium carbonates. Ab initio calculation of Mg2+ substitution into MHC showed that a limited amount of Mg2+ can be incorporated into the MHC structure. Six-fold coordination of Mg2+ is substituted for eight-fold coordination of Ca2+ in the MHC structure. The other type of Mg in MHC revealed from the XANES analyses most likely corresponds to the structural Mg in MHC. The contribution of the structural Mg is almost constant at 0.06 in Mg/Ca, representing the limit of solid solubility of Mg in MHC. The solubility products of the MHC with the limit of solid solubility of Mg and the AMC associated with MHC were estimated from the reacted solution compositions. Prediction of the Mg/Ca ratio as a function of the initial solution conditions using solubility reasonably reproduces the observed apparent Mg/Ca ratios in MHC from the present study and earlier studies. The apparent Mg/Ca ratio of MHC is useful to elucidate water chemistry

  2. FORMATION OF CHROMATE CONVERSION COATINGS ON ALUMINUM AND ITS ALLOYS: AN IN SITU XANES STUDY.

    Energy Technology Data Exchange (ETDEWEB)

    SASAKI,K.; ISAACS,H.S.; JAFFCOATE,C.S.; BUCHHAIT,R.; LEGAT,V.; LEE,H.; SRINIVASAMURTHI,V.

    2001-09-02

    We used in situ X-ray adsorption near-edge structure (XANES) to investigate the formation of chromate conversion coatings on pure Al, commercial Al alloys (AA 1100, AA2024, and AA7075), and a series of binary Al-Cu alloys. The method employed a new electrochemical cell that can determine the ratio of hexavalent chromium (Cr(VI)) to total chromium (Cr(total)) speciation in conversion coatings as a function of exposure time to a chromate solution. The spectra showed that the initial Cr(VI)/Cr(total) ratios are greater than later ones for pure Al and AA1100, but not for AA2024 and AA7075. Measurements with Al-Cu alloys demonstrated that the difference observed in AA2024 and AA7075 may not be due to Cu alloying. The proportion of Cr(VI) in the coatings becomes approximately constant after 180 s of exposure for all the specimens examined even though the coatings continue to grow.

  3. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  4. Mn K-edge XANES spectra of manganites measured by Kbeta emission.

    Science.gov (United States)

    García, J; Sánchez, M C; Subías, G; Blasco, J; Proietti, M G

    2001-03-01

    The electronic state of Mn atoms in mixed valence manganites has been studied by means of X-ray absorption spectroscopy at the Mn K-edge. Higher resolution than in conventional measurements has been achieved by measuring the Mn Kbeta fluorescence line. We have found a unique resonance at the edge in the XANES spectra of intermediate composition RE1-xCa(x)MnO3 samples. The features of these XANES spectra do not depend on small changes in the local structure around the Mn atom. However, the spectra of the intermediate composition samples can not be reproduced by a linear combination of REMnO3 and CaMnO3 spectra. Accordingly, the electronic state of Mn atoms in these compounds can not be considered as a mixture of Mn3+ and Mn4+ pure states.

  5. Multiple scattering approach to X-ray absorption spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we present the state of the art of the theoretical background needed for analyzing X-ray absorption spectra in the whole energy range. The multiple-scattering (MS) theory is presented in detail with some applications on real systems. We also describe recent progress in performing geometrical fitting of the XANES (X-ray absorption near-edge structure) energy region and beyond using a full multiple-scattering approach.

  6. X-RAY ABSORPTION SPECTROSCOPY OF YB3+-DOPED OPTICAL FIBERS

    Energy Technology Data Exchange (ETDEWEB)

    Citron, Robert; Kropf, A.J.

    2008-01-01

    Optical fibers doped with Ytterbium-3+ have become increasingly common in fiber lasers and amplifiers. Yb-doped fibers provide the capability to produce high power and short pulses at specific wavelengths, resulting in highly effective gain media. However, little is known about the local structure, distribution, and chemical coordination of Yb3+ in the fibers. This information is necessary to improve the manufacturing process and optical qualities of the fibers. Five fibers doped with Yb3+ were studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES), in addition to Yb3+ mapping. The Yb3+ distribution in each fiber core was mapped with 2D and 1D intensity scans, which measured X-ray fluorescence over the scan areas. Two of the five fibers examined showed highly irregular Yb3+ distributions in the core center. In four of the five fibers Yb3+ was detected outside of the given fiber core dimensions, suggesting possible Yb3+ diffusion from the core, manufacturing error, or both. X-ray absorption spectroscopy (XAS) analysis has so far proven inconclusive, but did show that the fibers had differing EXAFS spectra. The Yb3+ distribution mapping proved highly useful, but additional modeling and examination of fiber preforms must be conducted to improve XAS analysis, which has been shown to have great potential for the study of similar optical fi bers.

  7. Numerical simulation of residual stresses at holes near edges and corners in tempered glass: A parametric study

    DEFF Research Database (Denmark)

    Pourmoghaddam, Navid; Nielsen, Jens Henrik; Schneider, Jens

    2016-01-01

    This work presents 3D results of the thermal tempering simulation by the Finite Element Method in order to calculate the residual stresses in the area of the holes near edges and corners of a tem-pered glass plate. A viscoelastic material behavior of the glass is considered for the tempering...... the influence of the hole and edge distances on the minimal residual compressive stress-es at holes after the tempering process. The residual stresses in the area of the holes are calculat-ed varying the following parameters: the hole diameter, the plate thickness and the interaction between holes and edges...... and corners. Furthermore a comparison between the minimal residual stresses at holes and the residual stresses at other areas of the glass plate (edge, chamfer and far-field stresses) is made....

  8. Arsenate reduction and methylation in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 investigated with X-ray absorption near edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.M., E-mail: shimingsu@163.com [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing (China); Zeng, X.B., E-mail: zengxb@ieda.org.cn [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing (China); Li, L.F.; Duan, R.; Bai, L.Y. [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing (China); Li, A.G.; Wang, J.; Jiang, S. [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Three fungal strains are capable of As(V) reduction and methylation. Black-Right-Pointing-Pointer As(V) reduction might be more easily processed than the methylation in fungal cells. Black-Right-Pointing-Pointer As sequestration and speciation transformation might be the detoxification processes. - Abstract: Synchrotron radiation-based X-ray absorption near edge structure (XANES) was introduced to directly analysis chemical species of arsenic (As) in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 capable of As accumulation and volatilisation. After exposure to As(V) of 500 mg L{sup -1} for 15 days, a total of 60.5% and 65.3% of the accumulated As in the cells of T. asperellum SM-12F1 and P. janthinellum SM-12F4, respectively, was As(III), followed by 31.3% and 32.4% DMA (dimethylarsinic acid), 8.3% and 2.3% MMA (monomethylarsonic acid), respectively. However, for F. oxysporum CZ-8F1, 54.5% of the accumulated As was As(III), followed by 37.8% MMA and 7.7% As(V). The reduction and methylation of As(V) formed As(III), MMA, and DMA as the primacy products, and the reduction of As(V) might be more easily processed than the methylation. These results will help to understanding the mechanisms of As detoxification and its future application in bioremediation.

  9. Influence of near-edge processes in the elemental analysis using X-ray emission-based techniques

    Indian Academy of Sciences (India)

    Gurjeet Singh; Sunil Kumar; N Singh; J Goswamy; D Mehta

    2011-02-01

    The near-edge processes, such as X-ray absorption fine structure (XAFS) andresonant Raman scattering (RRS), are not incorporated in the available theoretical attenuation coefficients, which are known to be reliable at energies away from the shell/subshell ionization thresholds of the attenuator element. Theoretical coefficients are generally used to estimate matrix corrections in routine quantitative elemental analysis based on various X-ray emission techniques. A tabulation of characteristic X-ray energies across the periodic table is provided where those X-rays are expected to alter the attenuation coefficients due to XAFS from a particular shell/subshell of the attenuator element. The influence of XAFS to the attenuation coefficient depends upon the atomic environment and the photoelectron wave vector, i.e., difference in energies of incident X-ray and the shell/subshell ionization threshold of the attenuator element. Further, the XAFS at a shell/subshell will significantly alter the total attenuation coefficient if the jump ratio at that shell/subshell is large, e.g., the K shell, L3 subshell and M5 subshell. The tabulations can be considered as guidelines so as to know what can be expected due to XAFS in typical photon-induced X-ray emission spectrometry.

  10. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation.

    Science.gov (United States)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu

    2017-07-01

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mg K-edge XANES of sepiolite and palygorskite

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, M. [ESRF, BP 220 F-38043 Grenoble Cedex (France)]. E-mail: srio@esrf.fr; Suarez, M. [Dpto. Geologia, Universidad de Salamanca, E-37008 Salamanca (Spain); Garcia Romero, E. [Dpto. Cristalografia y Mineralogia, U. Complutense de Madrid, E-28040 Madrid (Spain); Alianelli, L. [INFM, c/o ESRF, BP 220 F-38043 Grenoble Cedex (France); Felici, R. [INFM, c/o ESRF, BP 220 F-38043 Grenoble Cedex (France); Martinetto, P. [Lab. Cristallographie, CNRS, Grenoble BP 166, F-38042 Grenoble Cedex 09 (France); Dooryhee, E. [Lab. Cristallographie, CNRS, Grenoble BP 166, F-38042 Grenoble Cedex 09 (France); Reyes-Valerio, C. [INAH, Mexico DF (Mexico); Borgatti, F. [TASC-INFM Area Science Park, I-34012 Trieste (Italy); Doyle, B. [TASC-INFM Area Science Park, I-34012 Trieste (Italy); Giglia, A. [TASC-INFM Area Science Park, I-34012 Trieste (Italy); Mahne, N. [TASC-INFM Area Science Park, I-34012 Trieste (Italy); Pedio, M. [TASC-INFM Area Science Park, I-34012 Trieste (Italy); Nannarone, S. [TASC-INFM Area Science Park, I-34012 Trieste (Italy)

    2005-08-15

    We present a study of the Mg K-edge on sepiolite and palygorskite performed at the INFM BEAR beamline at Elettra synchrotron light source (Trieste). These two clays, although having very similar structures, show some different features in their near-edge. Mg is in octahedral coordination with oxygens, hydroxyl groups or water, for both palygorskite and sepiolite. The differences found in the near-edge seem to reflect the fact that, on average, an Mg atom in palygorskite 'sees' less Mg in higher coordination shells than sepiolite.

  12. Combined application of XANES and XPS to study oxygen species adsorbed on Ag foil

    CERN Document Server

    Bukhtiyarov, V I; Kaichev, V V; Knop-Gericke, A; Mayer, R W; Schloegl, R

    2001-01-01

    Adsorbed oxygen species realized in the course of ethylene epoxidation over polycrystalline silver have been characterized by X-ray absorption near the edge structure and X-ray photoelectron spectroscopy. Namely, the combined application of XANES and XPS in similar UHV conditions using the same sample allowed us to assign an XAS feature to the nucleophilic and electrophilic oxygen. This is of great significance, since these species are suggested to be included into the active center for ethylene epoxidation. The differences in the oxygen-silver bonding of these oxygen species are discussed.

  13. Pd nanoparticles formation inside porous polymeric scaffolds followed by in situ XANES/SAXS

    Science.gov (United States)

    Longo, A.; Lamberti, C.; Agostini, G.; Borfecchia, E.; Lazzarini, A.; Liu, W.; Giannici, F.; Portale, G.; Groppo, E.

    2016-05-01

    Simultaneous time-resolved SAXS and XANES techniques were employed to follow in situ the formation of Pd nanoparticles from palladium acetate precursor in two porous polymeric supports: polystyrene (PS) and poly(4-vinyl-pyridine) (P4VP). In this study we have investigated the effect of the use of different reducing agents (H2 and CO) from the gas phase. These results, in conjunction with data obtained by diffuse reflectance IR (DRIFT) spectroscopy and TEM measurements, allowed us to unravel the different roles played by gaseous H2 and CO in the formation of the Pd nanoparticles for both PS and P4VP hosting scaffolds.

  14. Comparative Analysis of Arsenic Speciation in Sediments of the Diaojiang River Using X-Ray Absorption Near Edge Structure Spectra and Sequential Chemical Extraction%刁江底泥砷形态的化学分级法与XANES方法比较

    Institute of Scientific and Technical Information of China (English)

    蹇丽; 黄泽春; 刘永轩; 杨子良; 胡天斗

    2012-01-01

    采用XANES(X射线近边分析)方法和化学分级法,研究了刁江污染源区尾砂及刁江底泥的砷形态组成特征.XANES方法结果表明,尾砂中砷的形态主要以毒砂(FeAsS)存在,其相对百分含量为63%~99%;而刁江底泥中的砷形态主要是毒砂、砷酸盐和亚砷酸盐,其中毒砂的比例较高,表现出典型的尾砂污染特征.化学分级法结果表明,尾砂中砷形态主要是残渣态砷(Res-As),而底泥中的砷主要以铁合态、钙合态及残渣态形式存在.刁江底泥中毒砂相对百分含量和残渣态砷随着与污染源区距离的增大而减小,砷酸盐和亚砷酸盐则呈相反的趋势.化学分级法和XANES方法所反映的刁江底泥和污染源的砷形态组成和变化趋势总体上较为一致,但这2种方法所获得的定量数据存在一定的差异.%Sequential chemical extraction method and X-Ray absorption near edge structure (XANES) spectra were used to investigate arsenic speciation in sediments of the Diaojiang River and tailings from a pollution source area. XANES spectra showed that arsenic was mainly present as arsenopyrite (FeAsS) in the tailings, with range from 63% to 99%. Arsenic fractions in the sediments were mainly present as arsenite, arsenate and arsenopyrite. A high proportion of FeAsS in the sediments showed the typical character of a mining tailing contaminated river. The relative percentage contents of FeAsS and Res-As in the sediments gradually decreased with the increase of distance to the pollution sources, while arsenite and arsenate showed the opposite pattern. The results from sequential chemical extraction method and XANES spectra showed that the composition and trend of arsenic speciation in pollution sources and sediments of the Diaojiang River were generally in good agreement, although the quantitative data from the two methods showed some differences.

  15. Time-resolved X-ray absorption spectroscopy for the study of solid state reactions: synthesis of nanocrystalline barium titanate and thermal decomposition of ammonium hexachlorometallate compounds; Zeitaufgeloeste Roentgenabsorptionspektroskopie zur Untersuchung von Festkoerperreaktionen: Synthese von nanokristallinem Bariumtitanat und thermische Zersetzung von Ammoniumhexachlorometallat-Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Rumpf, H.

    2001-07-01

    This report presents investigations on the mechanism of two different types of solid-state reactions: At first, barium titanate nanopowders were prepared through a combined polymerization and pyrolysis of a metallo-organic precursor. The mean particle size d{sub m} could be adjusted by choosing appropriate reaction temperatures and tempering atmospheres. In the present in situ study of this particular solid-phase reaction, X-ray absorption near edge structure (XANES) spectroscopy at the Ti K and Ba L{sub 3}-edges was applied in the preparation route of BaTiO{sub 3} nanopowders. A pronounced distortion of the lattice symmetry was found to occur in very fine BaTiO{sub 3} nanopowders (d{sub m} < 20 nm). Secondly, in situ XANES investigations were carried out at the Cl K, Pd L{sub 3}, Rh L{sub 3}, and Pt L{sub 3}-edges to study the mechanism of the thermal decomposition of ammonium hexachlorometallates. The results exceed structural information obtained by in situ X-ray diffraction methods and thermal analysis. Feff8 multiple scattering simulations have been carried out to disclose new intermediate phases of unknown reference compounds. (orig.)

  16. Structure of reactively sputter deposited tin-nitride thin films: A combined X-ray photoelectron spectroscopy, in situ X-ray reflectivity and X-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Luetzenkirchen-Hecht, Dirk [Fachbereich C-Physik, Bergische Universitaet Wuppertal, Gaussstr. 20, D-42097 Wuppertal (Germany)]. E-mail: dirklh@uni-wuppertal.de; Frahm, Ronald [Fachbereich C-Physik, Bergische Universitaet Wuppertal, Gaussstr. 20, D-42097 Wuppertal (Germany)

    2005-12-22

    Amorphous tin-nitride thin films were prepared by reactive sputter deposition on smooth float glass substrates in a vacuum chamber with an integrated small magnetron source. The films were investigated using in situ reflection mode X-ray absorption spectroscopy and ex situ X-ray photoelectron spectroscopy (XPS). Both the X-ray absorption near edge structure (XANES) and the extended X-ray absorption fine structure (EXAFS) were analysed, yielding bond distances, coordination numbers and Debye-Waller factors. XPS yields the chemical composition and the binding state of the constituents of the films, specular X-ray reflectivity allows the determination of the sample density and of the roughness and its changes with film thickness. The results were compared to those of crystalline Sn{sub 3}N{sub 4}, indicating that the electronic and atomic structure of the amorphous films determined by EXAFS data analysis are very similar to the stoichiometric reference compound. Two different Sn-N interactions with about 2.09 and 2.19 A bond distance and 4 and 6 nearest neighbours, respectively, are present. These bond distances are slightly relaxed compared to the crystalline reference material, which is consistent with the sample density, which is reduced by about 8% in comparison to Sn{sub 3}N{sub 4}. XPS as well as XANES revealed a Sn valence of about 4+ and the presence of nitric bonds, while XPS also suggests that the nitride is slightly decomposed under X-ray irradiation in ultra-high vacuum.

  17. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [Univ. of California, Davis, CA (United States). Dept. of Applied Science

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  18. Optimized Finite Difference Method for the Full-Potential XANES Simulations: Application to Molecular Adsorption Geometries in MOFs and Metal-Ligand Intersystem Crossing Transients.

    Science.gov (United States)

    Guda, Sergey A; Guda, Alexander A; Soldatov, Mikhail A; Lomachenko, Kirill A; Bugaev, Aram L; Lamberti, Carlo; Gawelda, Wojciech; Bressler, Christian; Smolentsev, Grigory; Soldatov, Alexander V; Joly, Yves

    2015-09-08

    Accurate modeling of the X-ray absorption near-edge spectra (XANES) is required to unravel the local structure of metal sites in complex systems and their structural changes upon chemical or light stimuli. Two relevant examples are reported here concerning the following: (i) the effect of molecular adsorption on 3d metals hosted inside metal-organic frameworks and (ii) light induced dynamics of spin crossover in metal-organic complexes. In both cases, the amount of structural models for simulation can reach a hundred, depending on the number of structural parameters. Thus, the choice of an accurate but computationally demanding finite difference method for the ab initio X-ray absorption simulations severely restricts the range of molecular systems that can be analyzed by personal computers. Employing the FDMNES code [Phys. Rev. B, 2001, 63, 125120] we show that this problem can be handled if a proper diagonalization scheme is applied. Due to the use of dedicated solvers for sparse matrices, the calculation time was reduced by more than 1 order of magnitude compared to the standard Gaussian method, while the amount of required RAM was halved. Ni K-edge XANES simulations performed by the accelerated version of the code allowed analyzing the coordination geometry of CO and NO on the Ni active sites in CPO-27-Ni MOF. The Ni-CO configuration was found to be linear, while Ni-NO was bent by almost 90°. Modeling of the Fe K-edge XANES of photoexcited aqueous [Fe(bpy)3](2+) with a 100 ps delay we identified the Fe-N distance elongation and bipyridine rotation upon transition from the initial low-spin to the final high-spin state. Subsequently, the X-ray absorption spectrum for the intermediate triplet state with expected 100 fs lifetime was theoretically predicted.

  19. Correlated NanoSIMS, TEM, and XANES Studies of Presolar Grains

    Science.gov (United States)

    Groopman, Evan Edward

    The objective of this thesis is to describe the correlated study of individual presolar grains via Nano-scale Secondary Ion Mass Spectrometry (NanoSIMS), Transmission Electron Microscopy (TEM), and Scanning Transmission X-ray Microscopy (STXM) utilizing X-ray Absorption Near Edge Structure (XANES), with a focus on connecting these correlated laboratory studies to astrophysical phenomena. The correlated isotopic, chemical, and microstructural studies of individual presolar grains provide the most detailed description of their formation environments, and help to inform astrophysical models and observations of stellar objects. As a part of this thesis I have developed and improved upon laboratory techniques for micromanipulating presolar grains and embedding them in resin for ultramicrotomy after NanoSIMS analyses and prior to TEM characterization. The new methods have yielded a 100% success rate and allow for the specific correlation of microstructural and isotopic properties of individual grains. Knowing these properties allows for inferences to be made regarding the condensation sequences and the origins of the stellar material that condensed to form these grains. NanoSIMS studies of ultramicrotomed sections of presolar graphite grains have revealed complex isotopic heterogeneities that appear to be primary products of the grains' formation environments and not secondary processing during the grains' lifetimes. Correlated excesses in 15N and 18O were identified as being carried by TiC subgrains within presolar graphite grains from supernovae (SNe). These spatially-correlated isotopic anomalies pinpoint the origin of the material that formed these grains: the inner He/C zone. Complex microstructures and isotopic heterogeneities also provide evidence for mixing in globular SN ejecta, which is corroborated by models and telescopic observations. In addition to these significant isotopic discoveries, I have also observed the first reported nanocrystalline core

  20. Investigation of the Structural Stability of Ion-Implanted Gd2Ti2-xSnxO7 Pyrochlore-Type Oxides by Glancing Angle X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aluri, Esther Rani; Hayes, John R.; Walker, James D.S.; Grosvenor, Andrew P. (Saskatchewan)

    2016-03-24

    Rare-earth titanate and stannate pyrochlore-type oxides have been investigated in the past for the sequestration of nuclear waste elements because of their resistance to radiation-induced structural damage. In order to enhance this property, it is necessary to understand the effect of radioactive decay of the incorporated actinide elements on the local chemical environment. In this study, Gd2Ti2–xSnxO7 materials have been implanted with Au– ions to simulate radiation-induced structural damage. Glancing angle X-ray absorption near-edge spectroscopy (GA-XANES), glancing angle X-ray absorption fine structure (GA-EXAFS) analysis, and powder X-ray diffraction have been used to investigate changes in the local coordination environment of the metal atoms in the damaged surface layer. Examination of GA-XANES/EXAFS spectra from the implanted Gd2Ti2–xSnxO7 materials collected at various glancing angles allowed for an investigation of how the local coordination environment around the absorbing atoms changed at different depths in the damaged surface layer. This study has shown the usefulness of GA-XANES to the examination of ion-implanted materials and has suggested that Gd2Ti2–xSnxO7 becomes more susceptible to ion-beam-induced structural damage with increasing Sn concentration.

  1. STXM-XANES Analysis of Organic Matter in Dark Clasts and Halite Crystals in Zag and Monahans Meteorites

    Science.gov (United States)

    Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Nakato, A.; Kilcoyne, A. L. D.; Takeichi, Y.; Suga, H.; Miyamoto, C.; Rahman, Z.; Kobayashi, K.; Mase, K.; Takahashi, Y.

    2016-01-01

    Zag and Monahans meteorites (H5) contains xenolithic dark clasts and halite (NaCl) crystals [e.g., 1]. The proposed source of the H chondrites is asteroid 6 Hebe [2]. The modern orbits of 1 Ceres and 6 Hebe essentially cross, with aphelion/perihelion of Ceres and Hebe of 2.99/2.55 and 2.91/1.94 AU (Astronomical Units), respectively. Therefore, Ceres might be the source of the clasts and halite in Zag and Monahans meteorites. Recent results from NASA's Dawn mission shows that bright spots in Ceres's crater may be hydrated magnesium sulfate with some water ice, and an average global surface contains ammoniated phyllosilicates that is likely of outer Solar System origin. One dark clast and all halite crystals in Zag and Monahans meteorites contain carbon-rich particles. We report organic analyses of these carbon-rich particles using carbon, nitrogen, and oxygen X-ray absorption near edge structure (C-, N-, and O-XANES), in order to constrain the origin of the clast and halite crystals.

  2. Analysis of precipitation and dissolution of the microalloying elements by X-ray absorption spectroscopy (XAS

    Directory of Open Access Journals (Sweden)

    Piyada Suwanpinij

    2017-07-01

    Full Text Available The dissolution of the microalloying elements in high strength low alloy steels is a cause of longer slab reheating time before hot forming processes compared with those for carbon steels. This is to ensure that all the necessary microalloying elements are dissolved and available for the precipitation hardening during and after the hot forming processes. In order to decrease the enormous amount of the reheating energy, which is the only heat required in the hot forming process, this works selects a high strength low alloy steel containing vanadium and analyses the dissolution kinetics by means of X-ray absorption spectroscopy (XAS. The XAS scans for other elements, i.e., titanium and nitrogen have been carried out and discussed for the possibility of the technique to investigate precipitates in microalloyed steels.Vanadium shows rapid dissolution kinetics that as soon as a lower reheating temperature of 1200 °C is reached, most of it is dissolved into the solid solution. This is opposite to titanium whose most fraction is still in TiN after long reheating time at higher temperature in accordance with the application of TiN for the grain boundary pinning during reheating. X-rays absorption near edge structure (XANES analysis of nitrogen shows different form of spectra before and after the reheating process. This indicates that the change in the coordination around the central nitrogen atoms takes place during the reheating interval.

  3. X-ray absorption near-edge structure of chromium ions in {alpha}-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wongkokua, W; Pongkrapan, S; Dararutana, P; Wathanakul, P [Gemmology and Mineral Sciences Special Research Unit, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); T-Thienprasert, J, E-mail: pwathanakul@gmail.co [School of Physics, Suranaree University of Technology, Nakorn-Ratchasima 30000 (Thailand)

    2009-09-01

    Both synthetic and natural {alpha}-Al{sub 2}O{sub 3} samples with different Cr concentrations were investigated by XANES. The Cr contents were analyzed using LA-ICP-MS technique prior to this experiment. XANES spectra combined with first principle calculations showed the transformation from {alpha}-Al{sub 2}O{sub 3}:Cr{sup 3+} to {alpha}-Al{sub 2}O{sub 3}:Cr{sup 3+},Cr{sup 3+} or {alpha}-Cr{sub 2}O{sub 3} as the Cr-Cr content increased. The absorption transformation could be resulted from the change of environment around Cr{sup 3+} ions, i.e., the Al-O-Cr bonds decreased while the Cr-O-Cr bonds increased. Significant differences in XANES line shapes observed for synthetic and natural {alpha}-Al{sub 2}O{sub 3} samples suggested the differences in local environments around Cr ions in both samples. The XANES line shape of {alpha}-Al{sub 2}O{sub 3}:Cr{sup 3+},Cr{sup 3+} or Cr ion pairs corresponded to the Cr content, which was also confirmed by the intensity ratios between N{sub 2}-line and sideband S of R-lines of photoluminescence spectra.

  4. Arsenic speciation in tissues of the hyperacumulator P. calomelanos var. austroamericana using x-ray absorption spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Heald, S. M.; Kachenko, A.; Graefe, M.; Singh, B.; X-Ray Science Division; Univ. of Sydney

    2010-06-15

    The fate and chemical speciation of arsenic (As) uptake, translocation and storage by the As hyperaccumulating fern Pityogramma calomelanos var. austroamericana (Pteridaceae) were examined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and synchrotron-based {mu}-X-ray absorption near edge structure ({mu}-XANES) and {mu}-X-ray fluorescence ({mu}-XRF) spectroscopies. Chemical analysis revealed total As concentration was ca. 6.5 times greater in young fronds (5845 mg kg {sup -1} dry weight) than in old frons (903 mg kg {sup -1} DW) pinnae, As concentration decreased from the base (6822 mg kg {sup -1} DW) to the apex (4301 mg kg {sup -1}DW) of the fronds. The results from {mu}-XANES and {mu}-XRF of living tissues suggested that more than 60% of arsenate (As{sup v}) absorbed was reduced to arsenite (As{sup III}) in roots, prior to transport through vascular tissues as As{sup v} and As{sup III}. In pinnules, As{sup III} was the predominate redox species (72-90%), presumably as solvated, oxygen coordinated compounds. The presence of putative As{sup III}-sulphide (S{sup -2}) coordinationthroughout the fern tissues (4-25%) suggests that S{sup 2-} functional groups may contribute in the biochemical reduction of As{sup v} to As{sup III} during uptake and transport at a whole plant level. Organic arsenicals and thiol-rich compounds were not detected in the species and are unlikely to play a role in As hyperaccumulation in this fern. The study provides important insights into homeostatic regulation of As following As uptake in P. calomelanos var. austroamericana.

  5. Investigation of the discoloration of smalt pigment in historic paintings by micro-X-ray absorption spectroscopy at the Co K-edge.

    Science.gov (United States)

    Robinet, Laurianne; Spring, Marika; Pagès-Camagna, Sandrine; Vantelon, Delphine; Trcera, Nicolas

    2011-07-01

    Smalt was commonly used as a pigment by artists between the 16th and 18th centuries. It is a powdered blue potash glass colored by cobalt ions and often degrades causing dramatic changes in the appearance of paintings. The aim of the work presented in this paper was to investigate the changes in the structure and environment around the cobalt ion on deterioration, to further our understanding of the basis of the loss of color. Particles of well-preserved and altered smalt in microsamples from paintings in the National Gallery, London, and the Louvre, Paris, were analyzed using synchrotron micro-X-ray absorption spectroscopy at the Co K-edge. X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) measurements showed that in intense blue particles the cobalt is predominantly present as Co(2+) in tetrahedral coordination, whereas in colorless altered smalt the Co(2+) coordination number in the glass structure is increased and there is a shift from tetrahedral toward octahedral coordination. The extent of this shift correlates clearly with the alkali content, indicating that it is caused by leaching of potassium cations, which act as charge compensators and stabilize the tetrahedral coordination of the cobalt ions that is responsible for the blue color.

  6. Application of X-ray Absorption Spectroscopy to the study of nuclear structural materials

    Science.gov (United States)

    Liu, Shanshan

    One of key technologies for the next generation nuclear systems are advanced materials, including high temperature structural materials, fast neutron resistance core materials and so on. Local structure determination in these systems, which often are crystallographically intractable, is critical to gaining an understanding of their properties. In this thesis, X-ray Absorption Spectroscopy (XAS), including Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES), is used to examine the geometric and electronic structure of nuclear structural materials under varying conditions. The thesis is divided into two main sections. The first examines the structural analysis of nanostructured ferritic alloys (NFA) which are dispersion strengthened by an ultra high density of Y-Ti-O enriched nano-features, resulting in remarkable high temperature creep strength and radiation damage resistance. Titanium and Yttrium K-edge XAS shows commercial alloys MA957 and J12YWT more closely resemble the as received Fe-14Cr-3W-0.4Ti (wt. %) powders, and mechanically alloyed (MA) powders with 0.25Y2O3 (wt. %). It shows that a significant fraction of substitutional Ti remains dissolved in the (BCC) ferrite matrix. In contrast, annealed powders and hot isostatic press (HIP) consolidated alloys show high temperature heat treatments shift the Y and Ti to more oxidized states that are consistent with combinations of Y2Ti2O7 and, especially, TiO. The second section describes corrosion studies of Pb with 316L stainless steel, molybdenum and spinet (MgAl2O4) at high temperature by XAS. The corrosion of fuel cladding and structural materials by liquid lead at elevated temperatures is an issue that must be considered when designing advanced nuclear systems and high-power spallation neutron targets. The results of ex-situ studies show that a Mo substrate retained a smooth and less corroded surface than 316L stainless steel sample at elevated temperature. In

  7. Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC-ICP-MS and LC-ES-MS/ICP-MS with XANES/EXAFS in analysis of Thunbergia alata.

    Science.gov (United States)

    Bluemlein, Katharina; Raab, Andrea; Meharg, Andrew A; Charnock, John M; Feldmann, Jörg

    2008-04-01

    The weakest step in the analytical procedure for speciation analysis is extraction from a biological material into an aqueous solution which undergoes HPLC separation and then simultaneous online detection by elemental and molecular mass spectrometry (ICP-MS/ES-MS). This paper describes a study to determine the speciation of arsenic and, in particular, the arsenite phytochelatin complexes in the root from an ornamental garden plant Thunbergia alata exposed to 1 mg As L(-1) as arsenate. The approach of formic acid extraction followed by HPLC-ES-MS/ICP-MS identified different As(III)-PC complexes in the extract of this plant and made their quantification via sulfur (m/z 32) and arsenic (m/z 75) possible. Although sulfur sensitivity could be significantly increased when xenon was used as collision gas in ICP-qMS, or when HR-ICP-MS was used in medium resolution, the As:S ratio gave misleading results in the identification of As(III)-PC complexes due to the relatively low resolution of the chromatography system in relation to the variety of As-peptides in plants. Hence only the parallel use of ES-MS/ICP-MS was able to prove the occurrence of such arsenite phytochelatin complexes. Between 55 and 64% of the arsenic was bound to the sulfur of peptides mainly as As(III)(PC(2))(2), As(III)(PC(3)) and As(III)(PC(4)). XANES (X-ray absorption near-edge spectroscopy) measurement, using the freshly exposed plant root directly, confirmed that most of the arsenic is trivalent and binds to S of peptides (53% As-S) while 38% occurred as arsenite and only 9% unchanged as arsenate. EXAFS data confirmed that As-S and As-O bonds occur in the plants. This study confirms, for the first time, that As-peptides can be extracted by formic acid and chromatographically separated on a reversed-phase column without significant decomposition or de-novo synthesis during the extraction step.

  8. Coupled-cluster response theory for near-edge x-ray-absorption fine structure of atoms and molecules

    DEFF Research Database (Denmark)

    Coriani, Sonia; Christiansen, Ove; Fransson, Thomas

    2012-01-01

    triple corrected excitation energies CCSDR(3). This work is a first step toward the extension of these theoretical electronic structure methods of well-established high accuracy in UV-vis absorption spectroscopies to applications concerned with x-ray radiation. From the imaginary part of the linear...

  9. Thin film subsurface environments; Advanced X-ray spectroscopies and a novel Bayesian inference modeling algorithm

    Science.gov (United States)

    Church, Jonathan R.

    chemical distributions in our CMOS. Chemical speciation and degradation mechanisms in paint pigment materials from iconic artwork has been investigated using high energy X-rays by the techniques as X-ray absorption near-edge spectroscopy (XANES) and X-ray fluorescence (XRF). Unique features in X-ray absorption spectra using XANES help identify the chemical species present in the paint sample by comparing similar spectral features from known reference standards. By carefully choosing X-ray energies that excite a subset of the present chemical species the distribution of constituents can be determined. This work furthers the understanding of supposed photo-oxidation degradation mechanisms and potential preservation efforts to maintain the painting integrity for cadmium yellows used in Henri Matisse's Le Bonheur de vivre and arsenic sulfides from an 18th century still life painting from Adriaen Coorte.

  10. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy.

    Science.gov (United States)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-24

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  11. Gold/titania composites: An X-ray absorption spectroscopy study on the influence of the reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Meire, Mieke [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium); Tack, Pieter [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, 9000 Ghent (Belgium); De Keukeleere, Katrien [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium); Balcaen, Lieve [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, 9000 Ghent (Belgium); Pollefeyt, Glenn [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium); Vanhaecke, Frank; Vincze, Laszlo [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, 9000 Ghent (Belgium); Van Der Voort, Pascal; Van Driessche, Isabel [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium); Lommens, Petra, E-mail: Petra.Lommens@UGent.be [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium)

    2015-08-01

    The functionalization of titania based materials with noble metal cocatalysts such as gold or platinum is a well known procedure to improve the catalytic activity of these materials in for example the degradation of organic pollutants or CO conversion. Parameters such as cocatalyst load, noble metal particle size and oxidation state influence the efficiency of these materials. We have impregnated a mesoporous titania powder with a gold salt and used different synthesis routes to reduce the gold ions. A structural analysis was performed using electron microscopy and nitrogen sorption. An X-ray absorption near edge structure spectroscopy study, in both high and low resolution, was performed to investigate the influence of the different reduction methods on the oxidation state of the gold atoms. This technique can also provide information on the local environment of the gold atoms and their interaction with the titanium dioxide host. We found that varying the reduction method has a significant impact on the oxidation state of the gold cocatalysts. This lead to varying interactions with the titania support and charging of the gold nanoparticles. - Highlights: • Influence of reduction method on Au/TiO{sub 2} was studied. • Hydrogen reduction of gold salt results in the smallest particles of 2.4 nm. • XANES is used to determine the oxidation state of gold atoms. • Hydrogen and microwave synthesis produce completely reduced gold particles. • UV reduction of gold salt leads to positively charged particles.

  12. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    Science.gov (United States)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  13. Study of the electronic properties of Zn{sub 0.8–4x}Ho{sub x}O{sub y} (0.05 ≤ x ≤ 0.09) by X-ray absorption and photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ekicibil, A. [Physic Department, University of Cukurova, 01330 Adana (Turkey); Ozkendir, O.M. [Tarsus Technology Faculty, Mersin University, 33400 Tarsus (Turkey); Farha, A.H. [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566 (Egypt); Ufuktepe, Y., E-mail: ufuk@cu.edu.tr [Physic Department, University of Cukurova, 01330 Adana (Turkey)

    2015-07-15

    Highlights: • The electronic structure of Ho doped ZnO was investigated by XANES and XPS. • The electronic structure was directly influenced by the Ho concentration in the ZnO. • The crystal structure showed little/no correlation to the substitution of Ho. • The substitution of Ho causes a weaker antiferromagnetic interaction. • The blue shift in band gap is observed and discussed. - Abstract: The electronic structure of Zn{sub 0.8–4x}Ho{sub x}O{sub y} (0.05 ≤ x ≤ 0.09) was investigated using X-ray absorption near edge structure (XANES) and X-ray photoelectron spectroscopy (XPS). Samples were prepared by the solid state reaction method. Using X-ray absorption spectroscopy, the investigation of M{sub 4,5} absorption edge of Ho revealed that the electronic structure was directly influenced by the Ho concentration in the Zn{sub 0.8–4x}Ho{sub x}O{sub y} sample whereas the crystal structure properties showed little/no correlation to the substitution of Ho. The electronic structure differs substantially from those of the reference ZnO. The O K-edge spectra suggest that the combination of the Ho with ZnO enhances the effective charge of the O ions. A systematic study on the composition from lower to higher value of Ho dopant showed the blue shift in band gaps and is discussed in the view of the electronic structure of the Zn{sub 0.8–4x}Ho{sub x}O{sub y} samples. The inverse susceptibility (1/χ) against temperature curves is plotted to identify the magnetic contribution. Those curves indicate that the substitution of Ho into the ZnO compound causes a weaker antiferromagnetic (AFM) interaction.

  14. EXAFS, XANES, and DFT study of the mixed-valence compound YMn2O5 : Site-selective substitution of Fe for Mn

    Science.gov (United States)

    Wunderlich, F.; Leisegang, T.; Weißbach, T.; Zschornak, M.; Stöcker, H.; Dshemuchadse, J.; Lubk, A.; Führlich, T.; Welter, E.; Souptel, D.; Gemming, S.; Seifert, G.; Meyer, D. C.

    2010-07-01

    In YMn2O5 , the Mn atoms occupy two nonequivalent Wyckoff sites within the unit cell exhibiting different oxygen coordinations, i.e., the system can be characterized as a mixed-valence compound. For the formation of the orthorhombic crystal structure, Jahn-Teller distortions are assumed to play an important role. In this study, we aimed at the investigation of the crystal structure changes upon the substitution of Mn by the non-Jahn-Teller cation Fe3+ . Therefore, we synthesized a series of YMn2-xFexO5 powder samples with x=0 , 0.5, and 1 by a citrate technique. We utilized extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) analysis as well as density-functional theory (DFT) to investigate the two nonequivalent Wyckoff sites within the orthorhombic crystal structure (confirmed for all compositions) occupied by transition-metal atoms. For quantitative determination of structural short-range order, all plausible options of substitution of Fe for Mn are discussed. On the basis of these evaluations, the EXAFS and XANES behavior is analyzed and appropriate crystallographic weights are assigned to the subset of structural models in accordance with the experimental data. From EXAFS analysis, using multiple-scattering theory, we conclude only the 4h Wyckoff site to be occupied by Fe [occupancy refined is (100±3)% in case of x=1 ]. Furthermore, taking the XANES spectra into account, we are able to verify the EXAFS results and additionally explain the differences in the MnK XANES spectra in dependence on x to be caused by changes in the dipole transitions to 4p final states. From quantitative pre-edge analysis an oxidation number of +4 for the Mn atom for x=1 is determined whereas the Fe valence is shown to be unchanged. Since the substitution process only involves one Wyckoff site, the experimentally observed limit to a maximum amount of x=1 is explained. Additionally, a possible disorder, discussed in the literature, is not

  15. Na-induced bonding and bond-length changes for CO on Pt(111): A near-edge x-ray-absorption fine-structure study

    Energy Technology Data Exchange (ETDEWEB)

    Sette, F.; Stoehr, J.; Kollin, E.B.; Dwyer, D.J.; Gland, J.L.; Robbins, J.L.; Johnson, A.L.

    1985-03-04

    Near-edge x-ray absorption fine-structure studies above the C and O K edges for CO on Pt(111) reveal a 4-eV shift of the sigma shape resonance when Na(0.2 monolayer) is coabsorbed. This allows determination of a Na-induced (0.12 +- 0.03)-A expansion of the C-O bond. Na does not affect the vertical molecular orientation on the surface. Reduction and broadening of the 1s..-->..2..pi..( resonance and the CO bond lengthening in the presence of Na signifies substantially increased metal to CO backbonding.

  16. Influence of the surface morphology and structure on the gas-sorption properties of SiO2CuO x nanocomposite materials: X-ray spectroscopy investigations

    Science.gov (United States)

    Shmatko, V. A.; Yalovega, G. E.; Myasoedova, T. N.; Brzhezinskaya, M. M.; Shtekhin, I. E.; Petrov, V. V.

    2015-02-01

    Thin films of SiO2CuO x nanocomposite materials were synthesized by the sol-gel method upon deposition of solutions containing 1, 3, 5, and 7 wt % Cu. The scanning electron microscopy examination of the surface morphology revealed that a change in the copper concentration in the initial solution has an influence on the size and amount of crater-like pores formed in the amorphous silicon dioxide matrix and on the localization of copper crystallites on the surface of the films. X-ray absorption near-edge structure (XANES) spectroscopy and X-ray photoelectron spectroscopy (XPS) investigations showed that the structure of crystallites is predominantly formed by divalent copper oxide (CuO). However, an increase in the copper concentration in the initial solution leads to a systematic increase in the content of the Cu2O phase. At copper concentrations of 1 and 7 wt %, the surface layers are most likely characterized by the formation of several divalent copper oxides (Cu(OH)2, CuO, CuSiO3), which results in the deterioration of the gas-sensitive characteristics of the material. It was established that the optimum set of parameters (the presence of pores, localization of crystallites, copper phase composition in the crystallites) for the best gas-sensitive characteristics of SiO2CuO x composite films is observed at copper concentrations of 3 and 5 wt % in the initial solution.

  17. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  18. Indium-Carrier Minerals in Polymetallic Sulphide Ore Deposits: A Crystal Chemical Insight into an Indium Binding State Supported by X-ray Absorption Spectroscopy Data

    Directory of Open Access Journals (Sweden)

    Diogo Rosa

    2012-11-01

    Full Text Available Indium is a typical chalcophile element of the Earth’s crust, with a very low average content that seldom forms specific minerals, occurring mainly as dispersed in polymetallic sulphides. Indium recovery is based primarily on zinc extraction from sphalerite, the prototype of so-called tetrahedral sulphides, wherein metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions, leaving interstices accessible for further in-filling. Ascertaining the tendency towards the establishment of In-In interactions through an x-ray absorption spectroscopy approach would efficiently contribute to understanding the behavior of indium in the carrier mineral. The successful results of applying such a near-edge absorption (XANES study at In L3-edge to samples collected at the Lagoa Salgada polymetallic orebody in the Iberian Pyrite Belt (IPB are described and the crystal chemistry of indium is re-evaluated, disclosing a potential clue for the metal binding state in polymetallic sulphides.

  19. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  20. The local structure of Ca-Na pyroxenes. 2-Xanes studies at the Mg and A1 K edges

    Energy Technology Data Exchange (ETDEWEB)

    Mottana, A. [Rome Univ. Roma Tre, Rome (Italy). Dipt. di Scienze Geologiche; Murata, T. [Kyoto University of Education, Kyoto (Japan). Dept. of Physics; Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Wu, Z.Y. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati]|[Laboratoire Piere Suee, Gif-sur Yvette Cedex, (France); Cibin, G. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Paris, E. [Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra; Giuli, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra]|[Florence Univ., Florence (Italy). Dipt. di Scienze della Terra

    1999-07-01

    X-ray absorption spectra at the Mg and A1 K edges have been recorded on synthetic end member diopside (Di) and jadeite (Jd) and on a series of natural Fe-poor Ca-Na clinopyroxenes compositionally straddling the Jd-Di join. The spectra of C2/c members of the series (C-omphacites) are different from having P2/n symmetry (P-omphacites). Differences can be explained by theoretical spectra calculated via the multiple-scattering formalism on atomic clusters with at least 89 atoms, extending to a. 0.62 nm away from the Mg viz. A1 absorber: Xanes detects in these systems medium- rather than short-range order-disorder relationships. Near-edge features of C-omphacites reflect the single-type of octahedral arrangement of the back scattering nearest-neighbours (six O atoms) around the absorber (Mg resp. A1) at the centre of the cluster (site M1). Others arise again from medium-range order. P-omphacites show more complicated spectra than C-omphacites. Their additional features reflect the increased local disorder around the probed atom (Mg resp. A1) induced by the two alternative M1, M11 configurations of the six O atoms forming the first co-ordination spheres. Mg and A1 are confirmed to be preferentially partitioned in the M1 resp. M11 site of the P-omphacite crystal structure, however never exclusively, but in a ratio close to 85:15 (plus or minus 10%) that implies a certain degree of local disorder. Changes in the relative heights of some prominent features are more evident in the A1 than in the Mg K-edge spectra. They are diagnostic to qualitatively distinguish C-from P-omphacites.

  1. Origin of the chemical shift in X-ray absorption near-edge spectroscopy at the Mn K-Edge in manganese oxide compounds

    NARCIS (Netherlands)

    de Vries, AH; Hozoi, L; Broer, R; Broer-Braam, H.B.

    2003-01-01

    The absorption edge in Mn K-edge X-ray absorption spectra of manganese oxide compounds shows a shift of several electronvolts in going from MnO through LaMnO3 to CaMnO3. On the other hand, in X-ray photoelectron spectra much smaller shifts are observed. To identify the mechanisms that cause the obse

  2. Origin of the chemical shift in X-ray absorption near-edge spectroscopy at the Mn K-Edge in manganese oxide compounds

    NARCIS (Netherlands)

    de Vries, AH; Hozoi, L.; Broer, R.

    2003-01-01

    The absorption edge in Mn K-edge X-ray absorption spectra of manganese oxide compounds shows a shift of several electronvolts in going from MnO through LaMnO3 to CaMnO3. On the other hand, in X-ray photoelectron spectra much smaller shifts are observed. To identify the mechanisms that cause the

  3. Full multiple scattering analysis of XANES at the Cd L3 and O K edges in CdO films combined with a soft-x-ray emission investigation

    Energy Technology Data Exchange (ETDEWEB)

    Demchenko, I. N.; Denlinger, J. D.; Chernyshova, M.; Yu, K. M.; Speaks, D. T.; Olalde-Velasco, P.; Hemmers, O.; Walukiewicz, W.; Derkachova, A.; Lawniczak-Jablonska, K.

    2010-07-05

    X-ray absorption near edge structure (XANES) at the cadmium L3 and oxygen K edges for CdO thin films grown by pulsed laser deposition method, is interpreted within the real-space multiple scattering formalism, FEFF code. The features in the experimental spectra are well reproduced by calculations for a cluster of about six and ten coordination shells around the absorber for L3 edge of Cd and K edge of O, respectively. The calculated projected electronic density of states is found to be in good agreement with unoccupied electronic states in experimental data and allows to conclude that the orbital character of the lowest energy of the conductive band is Cd-5s-O-2p. The charge transfer has been quantified and not purely ionic bonding has been found. Combined XANES and resonant inelastic x-ray scattering measurements allow us to determine the direct and indirect band gap of investigated CdO films to be {approx}2.4-eV and {approx}0.9-eV, respectively.

  4. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry

    Science.gov (United States)

    Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan

    2016-08-01

    The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.

  5. Percolative superconductivity in La{sub 2}CuO{sub 4.06} by lattice granularity patterns with scanning micro x-ray absorption near edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Poccia, Nicola [MESA Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500AE Enschede (Netherlands); RICMASS Rome International Center for Materials Science Superstripes, via dei Sabelli 119A, 00185 Roma (Italy); Chorro, Matthieu [Synchrotron SOLEIL L' Orme des Merisiers, 91190 Paris S.Aubin (France); Ricci, Alessandro [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany); RICMASS Rome International Center for Materials Science Superstripes, via dei Sabelli 119A, 00185 Roma (Italy); Xu, Wei [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Marcelli, Augusto [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati, 00044 Frascati, Rome (Italy); NSRL, University of Science and Technology of China, Hefei 230026 (China); RICMASS Rome International Center for Materials Science Superstripes, via dei Sabelli 119A, 00185 Roma (Italy); Campi, Gaetano [Institute of Crystallography, CNR, via Salaria Km 29.300, Monterotondo, 00015 Rome (Italy); RICMASS Rome International Center for Materials Science Superstripes, via dei Sabelli 119A, 00185 Roma (Italy); Bianconi, Antonio [RICMASS Rome International Center for Materials Science Superstripes, via dei Sabelli 119A, 00185 Roma (Italy); Institute of Crystallography, CNR, via Salaria Km 29.300, Monterotondo, 00015 Rome (Italy)

    2014-06-02

    The simplest cuprate superconductor La{sub 2}CuO{sub 4+y} with mobile oxygen interstitials exhibits a clear phase separation. It is known that oxygen interstitials enter into the rocksalt La{sub 2}O{sub 2+y} spacer layers forming oxygen interstitials rich puddles and poor puddles but only recently a bulk multiscale structural phase separation has been observed by using scanning micro X-ray diffraction. Here we get further information on their spatial distribution, using scanning La L{sub 3}-edge micro X-ray absorption near edge structure. Percolating networks of oxygen rich puddles are observed in different micrometer size portions of the crystals. Moreover, the complex surface resistivity shows two jumps associated to the onset of intra-puddle and inter-puddles percolative superconductivity. The similarity of oxygen doped La{sub 2}CuO{sub 4+y}, with the well established phase separation in iron selenide superconductors is also discussed.

  6. Multiple-Scattering of Near-Edge x-ray Absorption Fine Structure of Sulphur-Passivated InP(100) Surface

    Institute of Scientific and Technical Information of China (English)

    曹松; 唐景昌; 沈少来; 陈更生; 马丹

    2003-01-01

    We use the multiple-scattering cluster method to calculate the sulphur 1s near-edge x-ray absorption fine structure (NEXAFS) of S-passivated InP(100) surface. The physical origins of the resonances in the NEXAFS have been unveiled. It is shown that the most important resonance is attributed to the photoelectron scattering between the central sulphur and the nearest indium atoms. The studies show that two S-S dimers with the bond lengths of 2.05 A and 3.05 A coexist in the surface, meanwhile the bridge and antibridge site adsorption of single S could not be ruled out. We support the scanning tunnelling microscopy result that the S-passivated InP(100) surface exhibits significant disorder.

  7. X-ray absorption near edge structure studies of Pb{sub 1-x}Mn{sub x}Te(In, Ga) systems

    Energy Technology Data Exchange (ETDEWEB)

    Radisavljevic, Ivana; Novakovic, Nikola; Medic, Mirjana; Paskas-Mamula, Bojana; Ivanovic, Nenad [Belgrade Univ. (Serbia). Vinca Institute of Nuclear Science; Mahnke, Heinz-Eberhard [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Romcevic, Nebojsa [Belgrade Univ. (Serbia). Inst. of Physics

    2013-03-15

    The X-ray absorption near edge structure technique was employed for studies of coordination environments and valence states of impurity atoms (Mn, In and Ga) in a series of narrow band gap PbTe-based semiconductors. Impurity atoms' absorption data were analysed with the help of the Real Space Full Multiple Scattering FEFF8.2 code. These results are complemented with band structure calculations using the full potential augmented plane waves method extended by local orbitals using WIEN2k code. Impurity atoms are found to be off-centred from the regular lattice positions each in a specific manner, which leads to formation of significantly different local structures from that expected in host PbTe. Observed structural modifications are accompanied by the change in the impurity atoms' valence states. These findings support and extend our previous results obtained with various techniques on this class of materials. (orig.)

  8. Multiple-Scattering Approaches to Near-Edge X-Ray Absorption Fine Structure of N2O/Cu(100)

    Institute of Scientific and Technical Information of China (English)

    WU Tai-Quan; TANG Jing-Chang; SHEN Shao-Lai; CAO Song; LI Hai-Yang

    2004-01-01

    @@ The nitrogen 1 s near-edge x-ray absorption fine structure (NEXAFS) spectra of the N2 O adsorbed on the Cu(100) surface have been studied by multiple-scattering cluster (MSC) and self-consistent field DV-Xα methods. It is shown that the N2O molecule is adsorbed on the hollow site with the adsorption height h = 3.0±0.1 A. The MSC calculation confirmed by a DV-Xα analysis has revealed the physical cause of the weak feature in the NEXAFS spectra mentioned above, which originates from the 1s core electrons of the centre and terminal nitrogen atoms transiting into the unoccupied σ* orbital of the N2O molecule.

  9. Study of Synchrotron Radiation Near-Edge X-Ray Absorption Fine-Structure of Amorphous Hydrogenated Carbon Films at Various Thicknesses

    Directory of Open Access Journals (Sweden)

    Sarayut Tunmee

    2015-01-01

    Full Text Available The compositions and bonding states of the amorphous hydrogenated carbon films at various thicknesses were evaluated via near-edge X-ray absorption fine-structure (NEXAFS and elastic recoil detection analysis combined with Rutherford backscattering spectrometry. The absolute carbon sp2 contents were determined to decrease to 65% from 73%, while the hydrogen contents increase from 26 to 33 at.% as the film thickness increases. In addition, as the film thickness increases, the π⁎ (C=C, σ⁎ (C–H, σ⁎ (C=C, and σ⁎ (C≡C bonding states were found to increase, whereas the π⁎ (C≡C and σ⁎ (C–C bonding states were observed to decrease in the NEXAFS spectra. Consequently, the film thickness is a key factor to evaluate the composition and bonding state of the films.

  10. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    Science.gov (United States)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  11. Use of X-ray absorption spectroscopy in the search for the best LIGO mirror coatings

    Science.gov (United States)

    McGuire, Stephen C.

    2008-03-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) seeks to improve its sensitivity for gravity-wave detection by a factor of ten during its next phase of operation, Advanced LIGO. In order to achieve this goal it is necessary to design and fabricate test mass mirrors that help minimize the noise in the interferometers and in doing so maximize gravity-wave detection capability. In this talk we will present recent results from our program of X-ray absorption spectroscopy measurements to obtain detailed chemical composition and structure of titania (TiO2)-doped tantala (Ta2O5) multilayers fabricated via ion beam sputtering on SiO2 substrates. Our investigations focus on how the microscopic features of the coatings influence their macroscopic mechanical loss properties. Our goal is to obtain correlations between chemical impurities and/or dopants and the optical absorption and mechanical loss characteristics of these multilayer coatings. To examine our samples we use synchrotron-based X-ray absorption Spectroscopy (XAS) techniques including Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES) and X-ray Fluorescence (XRF). We present chemical and structural data obtained at the titanium K-edge and tantalum LIII-edge as well as relative elemental distribution information (Ti/Ta, Fe/Ta, and Cr/Ta) obtained via XRF. Following a brief description of the LIGO experiment, our program of research in optical materials for use in advanced versions of the interferometer will be described.

  12. A first-principle calculation of the XANES spectrum of Cu{sup 2+} in water

    Energy Technology Data Exchange (ETDEWEB)

    La Penna, G. [CNR–Institute for Chemistry of Organometallic Compounds, Sesto Fiorentino 50019 (Italy); Minicozzi, V.; Morante, S.; Stellato, F., E-mail: stellato@roma2.infn.it [INFN, Rome “Tor Vergata,” Rome 00133 (Italy); Department of Physics, University of Rome “Tor Vergata,” Rome 00133 (Italy); Rossi, G. C. [INFN, Rome “Tor Vergata,” Rome 00133 (Italy); Department of Physics, University of Rome “Tor Vergata,” Rome 00133 (Italy); Centro Studi e Ricerche “Enrico Fermi,” Roma 00184 (Italy)

    2015-09-28

    The progress in high performance computing we are witnessing today offers the possibility of accurate electron density calculations of systems in realistic physico-chemical conditions. In this paper, we present a strategy aimed at performing a first-principle computation of the low energy part of the X-ray Absorption Spectroscopy (XAS) spectrum based on the density functional theory calculation of the electronic potential. To test its effectiveness, we apply the method to the computation of the X-ray absorption near edge structure part of the XAS spectrum in the paradigmatic, but simple case of Cu{sup 2+} in water. In order to keep into account the effect of the metal site structure fluctuations in determining the experimental signal, the theoretical spectrum is evaluated as the average over the computed spectra of a statistically significant number of simulated metal site configurations. The comparison of experimental data with theoretical calculations suggests that Cu{sup 2+} lives preferentially in a square-pyramidal geometry. The remarkable success of this approach in the interpretation of XAS data makes us optimistic about the possibility of extending the computational strategy we have outlined to the more interesting case of molecules of biological relevance bound to transition metal ions.

  13. MXAN Analysis of the XANES Energy Region of LiPDF%用MXAN拟合钩端螺旋体去甲酰化酶XANES谱

    Institute of Scientific and Technical Information of China (English)

    郭晓云; 储旺盛; 龚为民; 董宇辉; 谢亚宁; 杨飞飞; Maurizio; Benfatto; 吴自玉

    2007-01-01

    钩端螺旋体去甲酰化酶(Leptospira interrogans PDF)是一种重要的含锌金属蛋白酶,对钩端螺旋体这一广泛存在的致病菌的蛋白合成起着关键的催化作用,是一个很好的药物设计靶蛋白.本文测试了LiPDF在pH3.0的溶液状态下的X射线吸收近边结构(XANES:X-Ray Absorption Near-Edge Structure)谱,利用以从头计算(ab.initio)的多重散射(Multiple Scattering)为基础的MXAN方法确定金属蛋白活性中心的精细结构.研究发现结合合适的初始结构模型,可以更好地重现LiPDF蛋白的XANES曲线,从而能够得到更加准确的结构参数.活性中心的精细结构为理解LiPDF的pH依赖的催化活性提供了结构基础.

  14. Combination of first-principles molecular dynamics and XANES simulations for LiCoO2-electrolyte interfacial reactions in a lithium-ion battery

    Science.gov (United States)

    Tamura, Tomoyuki; Kohyama, Masanori; Ogata, Shuji

    2017-07-01

    We performed a first-principles molecular dynamics (FPMD) simulation of the interfacial reactions between a LiCoO2 electrode and a liquid ethylene carbonate (EC) electrolyte. For configurations during the FPMD simulation, we also performed first-principles Co K-edge x-ray absorption near-edge structure (XANES) simulations, which can properly reproduce the bulk and surface spectra of LiCoO2. We observed strong absorption of an EC molecule on the LiCoO2 {110} surface, involving ring opening of the molecule, bond formation between oxygen atoms in the molecule and surface Co ions, and emission of one surface Li ion, while all the surface Co ions remain Co3 +. The surface Co ions having the bond with an oxygen atom in the molecule showed remarkable changes in simulated K-edge spectra which are similar to those of the in situ observation under electrolyte soaking [D. Takamatsu et al., Angew. Chem., Int. Ed. 51, 11597 (2012), 10.1002/anie.201203910]. Thus, the local environmental changes of surface Co ions due to the reactions with an EC molecule can explain the experimental spectrum changes.

  15. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  16. Near edge X-ray absorption fine structure study for optimization of hard diamond-like carbon film formation with Ar cluster ion beam

    CERN Document Server

    Kitagawa, T; Kanda, K; Shimizugawa, Y; Toyoda, N; Matsui, S; Yamada, I; Tsubakino, H; Matsuo, J

    2003-01-01

    Diamond-like carbon (DLC) film deposited using C sub 6 sub 0 vapor with simultaneous irradiation of an Ar cluster ion beam was characterized by a near edge X-ray absorption fine structure (NEXAFS), in order to optimize the hard DLC film deposition conditions. Contents of sp sup 2 orbitals in the films, which were estimated from NEXAFS spectra, are 30% lower than that of a conventional DLC film deposited by a RF plasma method. Those contents were obtained under the flux ratio of the C sub 6 sub 0 molecules to the Ar cluster ions to range from 1 to 20, at 5keV of Ar cluster ion acceleration energy. Average hardness of the films was 50 GPa under these flux ratios. This hardness was three times higher than that of a conventional DLC film. Furthermore, the lowest sp sup 2 content and above-mentioned high hardness were obtained at room temperature of the substrate when the depositions were performed in the range of the substrate temperature from room temperature to 250degC. (author)

  17. Near-edge X-ray absorption fine structure studies of Cr{sub 1−x}M{sub x}N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mahbubur Rahman, M. [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Duan, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Jiang, Zhong-Tao, E-mail: Z.Jiang@murdoch.edu.au [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Xie, Zonghan [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia); School of Engineering, Edith Cowan University, WA 6027 (Australia); Wu, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Amri, Amun [Department of Chemical Engineering, Riau University, Pekanbaru (Indonesia); Cowie, Bruce [Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168 (Australia); Yin, Chun-Yang [Chemical and Analytical Sciences, Murdoch University, Murdoch, WA 6150 (Australia)

    2013-11-25

    Highlights: •Al or Si is doped on CrN and AlN coatings using magnetron sputtering system. •NEXAFS analysis is conducted to measure the Al and Si K-edges, and chromium L-edge. •Structural evolution of CrN matrix with addition of Al or Si element is investigated. -- Abstract: Cr{sub 1−x}M{sub x}N coatings, with doping concentrations (Si or Al) varying from 14.3 to 28.5 at.%, were prepared on AISI M2 tool steel substrates using a TEER UDP 650/4 closed field unbalanced magnetron sputtering system. Near-edge X-ray absorption fine structure (NEXAFS) characterization was carried out to measure the aluminum and silicon K-edges, as well as chromium L-edge, in the coatings. Two soft X-ray techniques, Auger electron yield (AEY) and total fluorescence yield (TFY), were employed to investigate the surface and inner structural properties of the materials in order to understand the structural evolution of CrN matrix with addition of Al (or Si) elements. Investigations on the local bonding states and grain boundaries of the coatings, using NEXAFS technique, provide significant information which facilitates understanding of the local electronic structure of the atoms and shed light on the origins of the high mechanical strength and oxidation resistance of these technologically important coatings.

  18. Fe K-edge XANES of Maya blue pigment

    Energy Technology Data Exchange (ETDEWEB)

    Rio, M. Sanchez del [ESRF, Experiments Division, B.P. 220, F-38043, Grenoble Cedex (France)]. E-mail: srio@esrf.fr; Sodo, A. [ESRF, Experiments Division, B.P. 220, F-38043, Grenoble Cedex (France); Eeckhout, S.G. [ESRF, Experiments Division, B.P. 220, F-38043, Grenoble Cedex (France); Neisius, T. [ESRF, Experiments Division, B.P. 220, F-38043, Grenoble Cedex (France); Martinetto, P. [Laboratoire de Cristallographie, CNRS, Grenoble B.P. 166, F-38042, Grenoble Cedex 09 (France); Dooryhee, E. [Laboratoire de Cristallographie, CNRS, Grenoble B.P. 166, F-38042, Grenoble Cedex 09 (France); Reyes-Valerio, C. [INAH, Mexico DF (Mexico)

    2005-08-15

    The utilization of techniques used in Materials Science for the characterization of artefacts of interest for cultural heritage is getting more and more attention nowadays. One of the products of the ancient Maya chemistry is the 'Maya blue' pigment, made with natural indigo and palygorskite. This pigment is different from any other pigment used in other parts of the world. It is durable and acid-resistant, and still keeps many secrets to scientists even though it has been studied for more than 50 years. Although the pigment is basically made of palygorskite Si{sub 8}(Mg{sub 2}Al{sub 2})O{sub 20}(OH){sub 2}(OH{sub 2}){sub 4}.4H{sub 2}O and an organic colourant (indigo: C{sub 16}H{sub 10}N{sub 2}O{sub 2}), a number of other compounds have been found in previous studies on archaeological samples, like other clays and minerals, iron nanoparticles, iron oxides, impurities of transition metals (Cr, Mn, Ti, V), etc. We measured at the ESRF ID26 beamline the Fe K-edge XANES spectra of the blue pigment in ancient samples. They are compared to XANES spectra of Maya blue samples synthesized under controlled conditions, and iron oxides usually employed as pigments (hematite and goethite). Our results show that the iron found in ancient Maya blue pigment is related to the Fe exchanged in the palygorskite clay. We did not find iron in metallic form or goethite in archaeological Maya blue.

  19. Short Range Order Signature in Crystalline and Amorphous GeSbTe Xanes Spectra

    Science.gov (United States)

    Raty, Jean-Yves; Otjacques, C. Éline; Pekoz, Rengin; Bichara, Christophe; Lordi, Vince

    2011-03-01

    A new implementation of XANES spectra calculations within DFT and PAW potentials is used to compute the XANES spectra of various amorphous and crystalline GeSbTe structures. A clear correlation between the local order, either tetrahedral or distorted octahedral, and the shape of the XANES signal is observed. These calculations provide a new interpretation of past XANES measurements, relating essentially the phase change mechanism to a moderate modification of the local environment of the Ge atoms. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the Belgian PAI 3/42 program and the FNRS-FRFC.

  20. Hubbard Model Approach to X-ray Spectroscopy

    Science.gov (United States)

    Ahmed, Towfiq

    We have implemented a Hubbard model based first-principles approach for real-space calculations of x-ray spectroscopy, which allows one to study excited state electronic structure of correlated systems. Theoretical understanding of many electronic features in d and f electron systems remains beyond the scope of conventional density functional theory (DFT). In this work our main effort is to go beyond the local density approximation (LDA) by incorporating the Hubbard model within the real-space multiple-scattering Green's function (RSGF) formalism. Historically, the first theoretical description of correlated systems was published by Sir Neville Mott and others in 1937. They realized that the insulating gap and antiferromagnetism in the transition metal oxides are mainly caused by the strong on-site Coulomb interaction of the localized unfilled 3d orbitals. Even with the recent progress of first principles methods (e.g. DFT) and model Hamiltonian approaches (e.g., Hubbard-Anderson model), the electronic description of many of these systems remains a non-trivial combination of both. X-ray absorption near edge spectra (XANES) and x-ray emission spectra (XES) are very powerful spectroscopic probes for many electronic features near Fermi energy (EF), which are caused by the on-site Coulomb interaction of localized electrons. In this work we focus on three different cases of many-body effects due to the interaction of localized d electrons. Here, for the first time, we have applied the Hubbard model in the real-space multiple scattering (RSGF) formalism for the calculation of x-ray spectra of Mott insulators (e.g., NiO and MnO). Secondly, we have implemented in our RSGF approach a doping dependent self-energy that was constructed from a single-band Hubbard model for the over doped high-T c cuprate La2-xSrxCuO4. Finally our RSGF calculation of XANES is calculated with the spectral function from Lee and Hedin's charge transfer satellite model. For all these cases our

  1. Monitoring a CuO gas sensor at work: an advanced in situ X-ray absorption spectroscopy study.

    Science.gov (United States)

    Volanti, D P; Felix, A A; Suman, P H; Longo, E; Varela, J A; Orlandi, M O

    2015-07-28

    X-ray absorption near edge structure (XANES) and electrical measurements were used to elucidate the local structure and electronic changes of copper(II) oxide (CuO) nanostructures under working conditions. For this purpose, a sample holder layout was developed enabling the simultaneous analysis of the spectroscopic and electrical properties of the sensor material under identical operating conditions. The influence of different carrier gases (e.g., air and N2) on the CuO nanostructures behavior under reducing conditions (H2 gas) was studied to analyze how a particular gas atmosphere can modify the oxidation state of the sensor material in real time.

  2. X-ray absorption spectroscopy on the calcium cofactor to the manganese cluster in photosynthetic oxygen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Cinco, Roehl M. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Along with Mn, calcium and chloride ions are necessary cofactors for oxygen evolution in Photosystem II (PS II). To further test and verify whether Ca is close to the Mn cluster, the authors substituted strontium for Ca and probed from the Sr point of view for any nearby Mn. The extended X-ray absorption fine structure (EXAFS) of Sr-reactivated PS II indicates major differences between the intact and NH2OH-treated samples. In intact samples, the Fourier transform of the Sr EXAFS shows a Fourier peak that is missing in inactive samples. This peak II is best simulated by two Mn neighbors at a distance of 3.5 Angstrom, confirming the proximity of Ca (Sr) cofactor to the Mn cluster. In addition, polarized Sr EXAFS on oriented Sr-reactivated samples shows this peak II is dichroic: large magnitude at 10 degrees (angle between the PS II membrane normal and the x-ray electric field vector) and small at 80 degrees. Analysis of the dichroism yields the relative angle between the Sr-Mn vector and membrane normal (23 degrees ± 4 degrees), and the isotropic coordination number for these layered samples. X-ray absorption spectroscopy has also been employed to assess the degree of similarity between the manganese cluster in PS II and a family of synthetic manganese complexes containing the distorted cubane [Mn4O3X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride or bromide). In addition, Mn4O3Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The EXAFS method detects the small changes in the core structures as X is varied in this series, and serves to exclude these distorted cubanes of C3v symmetry as a topological model for the Mn catalytic cluster. The sulfur K-edge x-ray absorption near-edge structure (XANES) spectra for the amino acids cysteine, methionine, their corresponding oxidized forms cystine and methionine sulfoxide, and

  3. X-ray absorption spectroscopy on the calcium cofactor to the manganese cluster in photosynthetic oxygen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Cinco, Roehl M.

    1999-12-16

    Along with Mn, calcium and chloride ions are necessary cofactors for oxygen evolution in Photosystem II (PS II). To further test and verify whether Ca is close to the Mn cluster, the authors substituted strontium for Ca and probed from the Sr point of view for any nearby Mn. The extended X-ray absorption fine structure (EXAFS) of Sr-reactivated PS II indicates major differences between the intact and NH{sub 2}OH-treated samples. In intact samples, the Fourier transform of the Sr EXAFS shows a Fourier peak that is missing in inactive samples. This peak II is best simulated by two Mn neighbors at a distance of 3.5 Angstrom, confirming the proximity of Ca (Sr) cofactor to the Mn cluster. In addition, polarized Sr EXAFS on oriented Sr-reactivated samples shows this peak II is dichroic: large magnitude at 10 degrees (angle between the PS II membrane normal and the x-ray electric field vector) and small at 80 degrees. Analysis of the dichroism yields the relative angle between the Sr-Mn vector and membrane normal (23 degrees {+-} 4 degrees), and the isotropic coordination number for these layered samples. X-ray absorption spectroscopy has also been employed to assess the degree of similarity between the manganese cluster in PS II and a family of synthetic manganese complexes containing the distorted cubane [Mn{sub 4}O{sub 3}X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride or bromide). In addition, Mn{sub 4}O{sub 3}Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The EXAFS method detects the small changes in the core structures as X is varied in this series, and serves to exclude these distorted cubanes of C3v symmetry as a topological model for the Mn catalytic cluster. The sulfur K-edge x-ray absorption near-edge structure (XANES) spectra for the amino acids cysteine, methionine, their corresponding oxidized forms cystine and methionine sulfoxide, and glutathione show distinct

  4. Correlation of O (1s) and Fe (2p) near edge x-ray absorption fine structure spectra and electrical conductivity of La1-xSrxFe0.75Ni0.25O3-δ

    Science.gov (United States)

    Erat, Selma; Braun, Artur; Ovalle, Alejandro; Piamonteze, Cinthia; Liu, Zhi; Graule, Thomas; Gauckler, Ludwig J.

    2009-10-01

    A-site substitution of La3+ by Sr2+ in polaron conducting ABO3-type perovskite La1-xSrxFe0.75Ni0.25O3-δ causes oxidation of Fe3+ toward Fe4+ and formation of conducting electron holes, as evidenced by Fe (2p) and O (1s) near edge x-ray absorption fine structure spectra. Hole doping is reflected by linear variation of the prepeak ratio eg(↑)/[t2g(↓)+eg(↓)] of oxygen spectra, along with increased conductivity. The significant increase in conductivity due to NiO doping in La1-xSrxFeO3-δ is caused by increased overlap between Fe (3d) and O (2p) and charge transfer from the O (2p) to the Ni (3d) states, as concluded from near edge x-ray absorption fine structure spectra and ligand field multiplet calculations.

  5. Electronic structures of ZnX (X = O and S) nanosheets from first-principles energy loss near edge structure studies

    Energy Technology Data Exchange (ETDEWEB)

    Nejatipour, Hajar, E-mail: nejatipour.h@lu.ac.ir; Dadsetani, Mehrdad, E-mail: dadsetani.m@lu.ac.ir

    2015-08-15

    Highlights: • Zn K-edges of ZnX (X = O and S) in bulk and nanosheet structures exhibit different properties. • The presence of sp{sup 2} hybridization in nanosheets results in a π{sup *} structure at the onset of K-edge and a σ{sup *} structure beyond the onset which this is the characteristic behavior of sp{sup 2} hybridized materials and it is absent in bulk structures. • The main contributions in L{sub 2,3}-edge of ZnX bulks and nanosheets can be attributed to transition to mostly d-symmetry states and the hybridized p-d orbitals. • As a result of the smaller bond lengths in the nanosheet structures, all the ELNES spectra in nanosheets, including Zn K- and L{sub 2,3}-edges, and O and S K-edges have a shift to the higher energies. • Whereas the momentum dependency, and therefore, the anisotropy features of the spectra are small for the Zn L{sub 2,3} ELNES, they are important in the K edge ELNES spectra of ZnX nanosheets. - Abstract: This paper tries to study the core energy loss spectra of zinc based nanosheets (ZnO and ZnS) in density functional theory using the FPLAPW method. We have calculated the energy loss near edge structure (ELNES) spectra of zinc K- and L{sub 2,3}-edges, and oxygen and sulfur K-edges in ZnO and ZnS nanosheet at magic angle conditions and compare to those of ZnO and ZnS wurtzite bulk structures. As a result of the smaller bond lengths in the nanosheet structures, all the ELNES spectra in nanosheets, including Zn K- and L{sub 2,3}-edges, and O and S K-edges show a shift to the higher energies. The calculations reveal that in comparison to Zn edges in ZnO structures, all the ELNES spectra of ZnS structures including the bulk and sheet show a shift to lower energy region. This is a result of larger bond lengths in ZnS structures, and that it can be used to fingerprint each structure. The comparison of ELNES spectra and unoccupied symmetry-projected density of states (local DOS) confirms that Zn K-edges of both ZnO and Zn

  6. Coordination nature of aluminum (oxy)hydroxides formed under the influence of low molecular weight organic acids and a soil humic acid studied by X-ray absorption spectroscopy

    Science.gov (United States)

    Xu, R. K.; Hu, Y. F.; Dynes, J. J.; Zhao, A. Z.; Blyth, R. I. R.; Kozak, L. M.; Huang, P. M.

    2010-11-01

    Organic ligands in the environment hinder the formation of crystalline Al precipitation products by perturbing the hydrolytic and polymeric reactions of Al resulting in the formation of short-range ordered (SRO) mineral colloids with varying degrees of crystallinity. However, the effect of these ligands on the mechanisms of their formation and nature of the transformation products of Al (oxy)hydroxides at the atomic and molecular levels is not well understood. In this study, the coordination structure of Al in Al (oxy)hydroxides formed under the influence of varying concentrations of low molecular weight (LMW) organic acids such as citric, malic, salicylic and acetic acids and a humic acid (HA) was investigated with X-ray absorption near edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis. The Al K- and L-edge XANES spectra showed that with increasing LMW organic acid concentration the coordination number of Al changed from 6-fold to a mixture of 4- and 6-fold, except for acetate as acetate was unable to perturb the formation of Al (oxy)hydroxides at the acetate/Al molar ratio (MR) = 0.1. The proportion of 4-fold to 6-fold coordinated Al in the Al precipitation products depended on the structure and functionality of the LMW organic acids. The incorporation of the LMW organic acid into the network structure of Al (oxy)hydroxides prevented the formation of sheets/inter-layer H-bonding that was required for the formation of crystalline Al (oxy)hydroxides. The HA used in this study only slightly perturbed the crystallization of the Al (oxy)hydroxides at the concentrations used. The Al K-edge data showed that Al coordination number had not been altered in the presence of HA. The findings obtained in the present study are of fundamental significance in understanding the physicochemical behavior of soils and sediments, and their relation to the accumulation and transport of nutrients and pollutants in the

  7. Interaction of NH3 with Cu-SSZ-13 Catalyst: A Complementary FTIR, XANES, and XES Study.

    Science.gov (United States)

    Giordanino, Filippo; Borfecchia, Elisa; Lomachenko, Kirill A; Lazzarini, Andrea; Agostini, Giovanni; Gallo, Erik; Soldatov, Alexander V; Beato, Pablo; Bordiga, Silvia; Lamberti, Carlo

    2014-05-01

    In the typical NH3-SCR temperature range (100-500 °C), ammonia is one of the main adsorbed species on acidic sites of Cu-SSZ-13 catalyst. Therefore, the study of adsorbed ammonia at high temperature is a key step for the understanding of its role in the NH3-SCR catalytic cycle. We employed different spectroscopic techniques to investigate the nature of the different complexes occurring upon NH3 interaction. In particular, FTIR spectroscopy revealed the formation of different NH3 species, that is, (i) NH3 bonded to copper centers, (ii) NH3 bonded to Brønsted sites, and (iii) NH4(+)·nNH3 associations. XANES and XES spectroscopy allowed us to get an insight into the geometry and electronic structure of Cu centers upon NH3 adsorption, revealing for the first time in Cu-SSZ-13 the presence of linear Cu(+) species in Ofw-Cu-NH3 or H3N-Cu-NH3 configuration.

  8. Compensation in Al-doped ZnO by Al-related acceptor complexes: synchrotron x-ray absorption spectroscopy and theory.

    Science.gov (United States)

    T-Thienprasert, J; Rujirawat, S; Klysubun, W; Duenow, J N; Coutts, T J; Zhang, S B; Look, D C; Limpijumnong, S

    2013-02-01

    The synchrotron x-ray absorption near edge structures (XANES) technique was used in conjunction with first-principles calculations to characterize Al-doped ZnO films. Standard characterizations revealed that the amount of carrier concentration and mobility depend on the growth conditions, i.e. H(2) (or O(2))/Ar gas ratio and Al concentration. First-principles calculations showed that Al energetically prefers to substitute on the Zn site, forming a donor Al(Zn), over being an interstitial (Al(i)). The measured Al K-edge XANES spectra are in good agreement with the simulated spectra of Al(Zn), indicating that the majority of Al atoms are substituting for Zn. The reduction in carrier concentration or mobility in some samples can be attributed to the Al(Zn)-V(Zn) and 2Al(Zn)-V(Zn) complex formations that have similar XANES features. In addition, XANES of some samples showed additional features that are the indication of some α-Al(2)O(3) or nAl(Zn)-O(i) formation, explaining their poorer conductivity.

  9. Amyloid-β peptide active site: theoretical Cu K-edge XANES study

    Science.gov (United States)

    Chaynikov, A. P.; Soldatov, M. A.; Streltsov, V.; Soldatov, A. V.

    2013-04-01

    This article is dedicated to the local atomic structure analysis of the copper binding site in amyloid-β peptide. Here we considered two possible structural models that were previously obtained by means of EXAFS analysis and density functional theory simulations. We present the calculations of Cu K-edge XANES spectra for both models and make comparison of these spectra with experiment.

  10. L{sub 2}L{sub 3}V Coster Kronig decay in Fe, Ni and NiO: the near edge region

    Energy Technology Data Exchange (ETDEWEB)

    Iacobucci, S.; Sacchi, M.; Sirotti, F.; Gotter, R.; Morgante, A.; Liscio, A.; Stefani, G

    2002-11-15

    In this work we deal with the relaxation of the 2p core hole in transition metals via LVV Auger decay, a specific aspect in itself, though contributing a piece of information for a more general understanding of charge redistribution in the final states of both primary photoemission and following de-excitation process. In the past, the analysis of the process was performed mainly by high energy photoemission spectroscopy (PS) experiments, either standard PS or coincidence spectroscopy . We have carried out a study of the Coster Kronig (CK) decay in Fe, Ni and NiO by PS using synchrotron radiation. In particular, we have measured the branching ratio {beta} between the direct L{sub 2}VV and L{sub 2}L{sub 3}V{yields}L'{sub 3}VVV CK transitions. {beta} has been determined as a function of the photon energy in the proximity of the L{sub 2} edges. For all samples {beta} becomes independent upon the photon energy already at few eV above threshold. Nonetheless, the asymptotic value is found to be larger in the metals than in the insulator, this reflecting the different localization of the electronic states involved in the cascade process. Capability and limitations of the method used for the quantitative evaluation of {beta} are also discussed.

  11. 100 years of X-rays, 20 years of absorption spectroscopy with the synchrotron radiation: history, principles and a few examples of applications; Un siecle de rayons X, 20 ans de spectroscopie d`absorption avec le rayonnement synchrotron: histoire, principes et quelques exemples d`applications

    Energy Technology Data Exchange (ETDEWEB)

    Michalowicz, A.; Moscovici, J.; Mimouni, A. [Paris-12 Univ., 94 - Creteil (France)

    1995-09-01

    The centenary of the discovery of X-rays is the occasion to summarize the history of X-ray absorption spectroscopy (XAS) and its development on synchrotron radiation sources, to give the underlying principles and to illustrate the possible uses of this spectroscopy by three examples: (a) the structural characterization of disordered spin transition coordination compounds by EXAFS spectroscopy; (b) the ligand binding to vitamin B{sub 12} by XANES spectroscopy; and (c) the chemical analysis of sulfur compounds included in fly-ashes by low-energy XANES spectroscopy. (authors). 23 refs., 8 figs.

  12. Sulfur speciation and bioaccumulation in camphor tree leaves as atmospheric sulfur indicator analyzed by synchrotron radiation XRF and XANES

    Institute of Scientific and Technical Information of China (English)

    Jianrong Zeng; Guilin Zhang; Liangman Bao; Shilei Long; Mingguang Tan; Yan Li; Chenyan Ma

    2013-01-01

    Analyzing and understanding the effects of ambient pollution on plants is getting more and more attention as a topic of environmentalbiology.A method based on synchrotron radiation X-ray fluorescence and X-ray absorption near edge structure spectroscopy wasestablished to analyze the sulfur concentration and speciation in mature camphor tree leaves (CTLs),which were sampled from 5 localfields in Shanghai,China.Annual SO2 concentration,SO42-concentration in atmospheric particulate,SO42-and sulfur concentrationin soil were also analyzed to explore the relationship between ambient sulfur sources and the sulfur nutrient cycling in CTLs.Totalsulfur concentration in mature camphor tree leaves was 766-1704 mg/kg.The mainly detected sulfur states and their correspondingcompounds were +6 (sulfate,include inorganic sulfate and organic sulfate),+5.2 (sulfonate),+2.2 (suloxides),+0.6 (thiols andthiothers),+0.2 (organic sulfides).Total sulfur concentration was strongly correlated with sulfate proportion with a linear correlationcoefficient up to 0.977,which suggested that sulfur accumulated in CTLs as sulfate form.Reduced sulfur compounds (organic sulfides,thiols,thioethers,sulfoxide and sulfonate) assimilation was sufficed to meet the nutrient requirement for growth at a balanced levelaround 526 mg/kg.The sulfate accumulation mainly caused by atmospheric sulfur pollution such as SO2 and airborne sulfate particulateinstead of soil contamination.From urban to suburb place,sulfate in mature CTLs decreased as the atmospheric sulfur pollution reduced,but a dramatic increase presented near the seashore,where the marine sulfate emission and maritime activity pollution were significant.The sulfur concentration and speciation in mature CTLs effectively represented the long-term biological accumulation of atmosphericsulfur pollution in local environment.

  13. HERFD-XANES and XES as complementary operando tools for monitoring the structure of Cu-based zeolite catalysts during NOx-removal by ammonia SCR

    Science.gov (United States)

    Günter, T.; Doronkin, D. E.; Carvalho, H. W. P.; Casapu, M.; Grunwaldt, J.-D.

    2016-05-01

    In this article, we demonstrate the potential of hard X-ray techniques to characterize catalysts under working conditions. Operando high energy resolution fluorescence detected (HERFD) XANES and valence to core (vtc) X-ray emission spectroscopy (XES) have been used in a spatially-resolved manner to study Cu-zeolite catalysts during the standard-SCR reaction and related model conditions. The results show a gradient in Cu oxidation state and coordination along the catalyst bed as the reactants are consumed. Vtc-XES gives complementary information on the direct adsorption of ammonia at the Cu sites. The structural information on the catalyst shows the suitability of X-ray techniques to understand catalytic reactions and to facilitate catalyst optimization.

  14. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. W. [DESY (Deutsches Elektronen-Synchrotron), FS-PEX, Notkestrasse 85, 22607 Hamburg (Germany); Yiu, Y. M., E-mail: yyiu@uwo.ca; Sham, T. K. [Department of Chemistry, University of Western Ontario, London, ON N6A5B7 (Canada); Ward, M. J. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Liu, L. [Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Center for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu, 215123 (China); Hu, Y. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N2V3 (Canada); Zapien, J. A. [Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Liu, Yingkai [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, 650500 (China)

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  15. A deep view in cultural heritage - confocal micro X-ray spectroscopy for depth resolved elemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kanngiesser, B.; Malzer, W.; Mantouvalou, I. [Technical University of Berlin, Institut fuer Optik und Atomare Physik, Berlin (Germany); Sokaras, D. [NCSR ' Demokritos' , Institute of Nuclear Physics, Athens (Greece); SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA (United States); Karydas, A.G. [NCSR ' Demokritos' , Institute of Nuclear Physics, Athens (Greece); International Atomic Energy Agency, Nuclear Spectrometry and Applications Laboratory (NSAL), Seibersdorf (Austria)

    2012-02-15

    applications of confocal X-ray microscopy including depth profiling speciation studies by means of confocal X-ray absorption near edge structure (XANES) spectroscopy. The solid mathematical formulation developed for the quantitative in-depth elemental analysis of stratified materials is exemplified and depth profile reconstruction techniques are discussed. Selected CH applications related to the characterization of painted layers from paintings and decorated artifacts (enamels, glasses and ceramics), but also from the study of corrosion and patina layers in glass and metals, respectively, are presented. The analytical capabilities, limitations and future perspectives of the two variants of the confocal micro X-ray spectroscopy, 3D micro-XRF and 3D micro-PIXE, with respect to CH applications are critically assessed and discussed. (orig.)

  16. Theoretical studies on electronic structure and x-ray spectroscopies of 2D materials

    OpenAIRE

    2016-01-01

    Extraordinary chemical and physical properties have been discovered from the studies of two-dimensional (2D) materials, ever since the successful exfoliation of graphene, the first 2D material. Theoretical investigations of electronic structure and spectroscopies of these materials play a fundamental role in deep understanding the various properties. In particular, the band structure and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy can provide critical information near the ...

  17. Probing the local environment of substitutional Al^{3+} in goethite using X-ray absorption spectroscopy and first-principles calculations

    Science.gov (United States)

    Ducher, Manoj; Blanchard, Marc; Vantelon, Delphine; Nemausat, Ruidy; Cabaret, Delphine

    2016-03-01

    We present experimental and calculated Al K-edge X-ray absorption near-edge structure (XANES) spectra of aluminous goethite with 10-33 mol% of AlOOH and diaspore. Significant changes are observed experimentally in the near- and pre-edge regions with increasing Al concentration in goethite. First-principles calculations based on density functional theory (DFT) reproduce successfully the experimental trends. This permits to identify the electronic and structural parameters controlling the spectral features and to improve our knowledge of the local environment of {Al}^{3+} in the goethite-diaspore partial solid solution. In the near-edge region, the larger peak spacing in diaspore compared to Al-bearing goethite is related to the nature (Fe or Al) of the first cation neighbours around the absorbing Al atom (Al*). The intensity ratio of the two near-edge peaks, which decreases with Al concentration, is correlated with the average distance of the first cations around Al* and the distortion of the {AlO}_6 octahedron. Finally, the decrease in intensity of the pre-edge features with increasing Al concentration is due to the smaller number of Fe atoms in the local environment of Al since Al atoms tend to cluster. In addition, it is found that the pre-edge features of the Al K-edge XANES spectra enable to probe indirectly empty 3 d states of Fe. Energetic, structural and spectroscopic results suggest that for Al concentrations around 10 mol%, Al atoms can be considered as isolated, whereas above 25 mol%, Al clusters are more likely to occur.

  18. Evolution of Surface Morphology and Chemistry in ZnO Thin Films and Steel Surfaces studied by Synchrotron X-ray Spectroscopy and Imaging

    Science.gov (United States)

    Jiang, Hua

    Thin film and surface treatment play an important role in developing materials with unique properties. They have been widely used in energy generation and storage, optical devices, LEDS, electrical semiconductor devices, etc. The stability and functionality of them under operational environment are important, especially the surface morphology and chemical evolution at micro-scale. This information is critical to understand the behaviors of the materials under various environments for a wide range of applications. Synchrotron x-ray fluorescence (XRF) and x-ray absorption near edge structure (XANES) are suitable techniques on investigating surface morphology and chemical evolution. Here, we use both techniques to investigate chemical and morphological heterogeneity of zinc oxide thin films after environmental humidity exposure, as well as surface and chemical evolution of iron oxidation states during iron redox process for samples with/without surface anti-corrosion treatment. Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, leading to failure of electronics due to environmental factors, such as heat and humidity. While degradation appears to be linked to water and oxygen penetration in the ZnO film, a direct observation in ZnO film morphological evolution, in conjunction with structural and chemical changes is lacking. Here, we systematically investigated the chemical and morphological heterogeneity of ZnO thin films caused by steam treatment. X-ray fluorescence microscopy, absorption spectroscopy, grazing incident small angle and wide angle scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM and optical microscopy were carried out to examine ZnO, Al-doped ZnO and Ga-doped ZnO thin films, on two different substrates - silicon wafer and PET film. The environmental aging introduced pin-holes in the un-doped ZnO thin film. More significant morphological features formed in the Al-doped ZnO thin

  19. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with self-

  20. Synchrotron applications in wood preservation and deterioration

    Science.gov (United States)

    Barbara L. Illman

    2003-01-01

    Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...

  1. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with

  2. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with self-

  3. Structural studies of the phase separation of amorphous FexGe100-x alloys

    Science.gov (United States)

    Lorentz, Robert D.; Bienenstock, Arthur; Morrison, Timothy I.

    1994-02-01

    Small-angle x-ray scattering and x-ray-absorption near-edge spectroscopy (XANES) experiments have been performed on amorphous FexGe100-x alloys over the composition range 0Janot for the related FexSn100-x system. This phase separation explains the Mossbauer observation of ``magnetic'' and ``nonmagnetic'' Fe atoms in these alloys.

  4. Solvation structure of the halides from x-ray absorption spectroscopy

    Science.gov (United States)

    Antalek, Matthew; Pace, Elisabetta; Hedman, Britt; Hodgson, Keith O.; Chillemi, Giovanni; Benfatto, Maurizio; Sarangi, Ritimukta; Frank, Patrick

    2016-07-01

    Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, and a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (-0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.

  5. Chromium in urban sediment particulates: an integrated micro-chemical and XANES study

    Science.gov (United States)

    Taylor, Kevin; Byrne, Patrick; Hudson-Edwards, Karen

    2015-04-01

    Chromium is generally common within the urban sediment cascade as a result of abundant industrial and transport-related sources. The risks that Cr-bearing particles pose to ecosystems and humans depend on the solid phase chemical speciation of Cr in the particles. In this study, we use bulk chemical digests, sequential chemical extraction analysis, electron microscopy, electron microprobe and microfocus XANES analysis to describe the solid-phase speciation of Cr in urban particulate matter from both aquatic sediment and road dust sediment (RDS) in Manchester, UK. Cr-bearing grains within RDS are predominantly iron oxide grains, commonly of goethite or haematite mineralogy, but Cr-bearing silicate glass grains are also present. Iron oxide glass grains most likely have sorbed Cr, and derive from the rusting of Cr-steel particles from vehicles. Electron microprobe analysis indicates concentrations of Cr up to 3200 μg/g in these grains, and XANES analysis indicates that Cr(III) is the dominant oxidation state, with some trace amounts of Cr(VI). Cr-bearing grains within aquatic sediments are dominated by alumino-silicate glass grains derived from industrial waste. These grains contain Cr-rich areas with up to 19% Cr2O3 and XANES analysis indicates that Cr is present as Cr(III). The dominance of Cr(III) in these urban particulate grains suggests limited bioavailability or toxicity. However, the presence within two markedly different grain types (iron oxides and silicate glasses) indicates that the long-term geochemical behaviour and environmental risk of RDS and the aquatic sediments studied are likely to be quite different. These findings highlight the importance of understanding sources of metal contaminants in urban environments and the geochemical processes that affect their transfer through the urban sediment cascade and the wider river basin.

  6. Sulfur K-edge XANES study of S sorbed onto volcanic ashes

    Energy Technology Data Exchange (ETDEWEB)

    Farges, F; Keppler, H [Bayerische Geoinsitut, Universitaet Bayreuth, Bayreuth (Germany); Flank, A-M; Lagarde, P, E-mail: farges@mnhn.f [CNRS UR1 Synchrotron Soleil, BP 48, 91192 Gif sur Yvette (France)

    2009-11-15

    Powders of four synthetic glasses of volcanic composition, a silica glass and crystalline quartz were equilibrated with SO{sub 2} to study the speciation of S sorbed onto their surface. These samples mimic the aerosols injected into the atmosphere during volcanic eruptions. Volcanic sulfur is known to globally affect the Earth's climate with an opposite effect to CO{sub 2}. However, absorption on ashes may reduce the amount of sulfur entering the stratosphere. S K-edge micro-XANES ({mu}XANES) spectra and {mu}XRF maps were collected at the LUCIA beamline (SOLEIL) at the SLS (Switzerland). When photoreduction is minimized, SO{sub 2} is sorbed mostly as sulfates moieties. The sorption of S is controlled by the surface structure of the powders probed. Presence of defects, non-bridging oxygens and network-modifiers (alkali and alkali-earths) enhance S-sorption as sulfate moieties onto the powders surface. Therefore, the quantity of S released to the atmosphere is highly dependant on the type of ash produced during eruptions that help to better model the climatic impact of volcanic S.

  7. Near-edge x-ray absorption fine-structure study of ion-beam-induced phase transformation in Gd2(Ti1-yZry)2O7

    Science.gov (United States)

    Nachimuthu, P.; Thevuthasan, S.; Shutthanandan, V.; Adams, E. M.; Weber, W. J.; Begg, B. D.; Shuh, D. K.; Lindle, D. W.; Gullikson, E. M.; Perera, R. C. C.

    2005-02-01

    The structural and electronic properties of Gd2(Ti1-yZry)2O7 (y =0-1) pyrochlores following a 2.0-MeV Au2+ ion-beam irradiation (˜5.0×1014Au2+/cm2) have been investigated by Ti2p and O1s near-edge x-ray absorption fine structure (NEXAFS). The irradiation of Gd2(Ti1-yZry)2O7 leads to the phase transformation from the ordered pyrochlore structure (Fd3m) to the defect fluorite structure (Fm3m) regardless of Zr concentration. Irradiated Gd2(Ti1-yZry)2O7 with y ⩽0.5 are amorphous, although significant short-range order is present. Contrasting to this behavior, compositions with y ⩾0.75 retain crystallinity in the defect fluorite structure following irradiation. The local structures of Zr4+ in the irradiated Gd2(Ti1-yZry)2O7 with y ⩾0.75 determined by NEXAFS are the same as in the cubic fluorite-structured yttria-stabilized zirconia (Y -ZrO2), thereby providing conclusive evidence for the phase transformation. The TiO6 octahedra present in Gd2(Ti1-yZry)2O7 are completely modified by ion-beam irradiation to TiOx polyhedra, and the Ti coordination is increased to eight with longer Ti -O bond distances. The similarity between cation sites and the degree of disorder in Gd2Zr2O7 facilitate the rearrangement and relaxation of Gd, Zr, and O ions/defects. This inhibits amorphization during the ion-beam-induced phase transition to the radiation-resistant defect fluorite structure, which is in contrast to the ordered Gd2Ti2O7.

  8. Following the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption: a combined in situ TP-XRD, XANES/DRIFTS study

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ja Hun; Varga, Tamas; Peden, Charles HF; Gao, Feng; Hanson, Jonathan C.; Szanyi, Janos

    2014-05-05

    Cu-SSZ-13 has been shown to possess high activity and superior N2 formation selectivity in the selective catalytic reduction of NOx under oxygen rich conditions. Here, a combination of synchrotron-based (XRD and XANES) and vibrational (DRIFTS) spectroscopy tools have been used to follow the changes in the location and coordination environment of copper ions in a Cu-SSZ-13 zeolite during calcinations, reduction with CO, and adsorption of CO and H2O. XANES spectra collected during these procedures provides critical information not only on the variation in the oxidation state of the copper species in the zeolite structure, but also on the changes in the coordination environment around these ions as they interact with the framework, and with different adsorbates (H2O and CO). Time-resolved XRD data indicate the movement of copper ions and the consequent variation of the unit cell parameters during dehydration. DRIFT spectra provide information about the adsorbed species present in the zeolite, as well as the oxidation states of and coordination environment around the copper ions. A careful analysis of the asymmetric T-O-T vibrations of the CHA framework perturbed by copper ions in different coordination environments proved to be especially informative. The results of this study will aid the identification of the location, coordination and oxidation states of copper ions obtained during in operando catalytic studies. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Part of this work (sample preparation) was performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle. All of the spectroscopy work reported here was

  9. X-Ray Absorption Spectroscopy Studies of the Atomic Structure of Zirconium-Doped Lithium Silicate Glasses and Glass-Ceramics, Zirconium-Doped Lithium Borate Glasses, and Vitreous Rare-Earth Phosphates

    Science.gov (United States)

    Yoo, Changhyeon

    In the first part of this work, the atomic-scale structure around rare-earth (RE = Pr, Nd, Eu, Dy, and Er) cations (RE3+) in rare-earth sodium ultraphosphate (REUP) glasses were investigated using RE LIII -edge (RE = Nd, Er, Dy, and Eu) and K-edge (RE = Pr and Dy) Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. (RE2O 3)x(Na2O)y(P2O5) 1-x-y glasses in the compositional range 0 ≤ x ≤ 0.14 and 0.3 ≤ x + y ≤ 0.4 were studied. For the nearest oxygen shell, the RE-oxygen (RE-O) coordination number decreases from 10.8 to 6.5 with increasing RE content for Pr-, Nd-, Dy-, and Er-doped sodium ultraphosphate glasses. For Eu-doped samples, the Eu-O coordination number was between 7.5 and 8.8. Also, the RE-O mean distance ranges were between 2.43-2.45 A, 2.40-2.43 A, 2.36-2.38 A, 2.30-2.35 A, and 2.28-2.30 A for Pr-, Nd-, Eu-, Dy-, and Er-doped samples, respectively. In the second part, a series of Zr-doped (3-10 mol%) lithium silicate (ZRLS) glass-ceramics and their parent glasses and a series of Zr-doped (2-6 mol% ZrO2) lithium borate (ZRLB) glasses were investigated using Zr K-edge EXAFS and X-ray Absorption Near Edge Structure (XANES) spectroscopy. Immediate coordination environments of all ZRLS glasses are remarkably similar for different compositions. For the nearest oxygen shell, the Zr-O coordination number ranges were between 6.1 and 6.3 for nucleated and crystallized samples, respectively. Also, the Zr-O mean distance remains similar around 2.10 A. For these glasses, the composition dependence of structural parameters was small. Small changes in the coordination environment were observed for ZRLS glass-ceramics after thermal treatments. In contrast, Zr coordination environment in ZRLB glasses appear to depend appreciably on the Zr concentration. For the nearest oxygen shell, the Zr-O coordination number increased from 6.1 to 6.8 and the Zr-O distance decreased from 2.18 A to 2.14 A with decreasing ZrO2 content.

  10. Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS: verification using XANES.

    Science.gov (United States)

    Maher, W; Foster, S; Krikowa, F; Donner, E; Lombi, E

    2013-06-04

    The measurement of As species in rice is normally accomplished by extraction followed by HPLC-ICPMS analysis. This method, however, has not been comprehensively validated by comparing these speciation results with XANES, which does not require sample extraction, due to the challenge of conducting XANES analysis at very low As concentrations. In this study As speciation data using nitric acid extraction/HPLC-ICPMS and XANES are compared to verify the efficacy of using 2% v/v nitric acid extraction and HPLC-ICPMS to measure inorganic As, DMA, and MA in reference rice materials and common rice varieties obtainable in Australia. Total As and As species (As(III), As(V), DMA, and MA) concentrations measured in 8 reference materials were in agreement with published values. XANES analysis was performed on 5 samples having total As concentrations ranging from 0.198 to 0.335 μg g(-1). XANES results gave similar proportions of total As(III), As(V), and DMA to HPLC-ICPMS. XANES was able to distinguish two forms of As(III): As(III) and As(III)GSH. Total As concentrations in rice samples varied from 0.006 to 0.45 μg g(-1) As (n = 47) with a mean ± std of 0.127 ± 0.112 μg g(-1) As with most As present as inorganic species (63 ± 26%). DMA was found in nearly all the rice samples with the majority of samples containing concentrations below 0.05 μg g(-1) As while MA concentrations were negligible (<0.003 μg g(-1) As). Six rice varieties produced in Australia, China, and Spain all had elevated DMA concentrations (0.170-0.399 μg g(-1) As) that were correlated with total As concentrations (r(2) = 0.7518). In conclusion, comparison of As speciation by HPLC-ICPMS and XANES showed that similar As species were detected indicating the appropriateness of using 2% v/v nitric acid for extraction of rice prior to speciation. Common rice varieties obtainable in Australia generally have low As concentrations with most As present as inorganic As.

  11. Time resolved XANES illustrates a substrate-mediated redox process in Prussian blue cultural heritage materials

    Science.gov (United States)

    Gervais, Claire; Lanquille, Marie-Angélique; Moretti, Giulia; Réguer, Solenn

    2016-05-01

    The pigment Prussian blue is studied in heritage science because of its capricious fading behavior under light exposure. We show here that XANES can be used to study the photosensitivity of Prussian blue heritage materials despite X-ray radiation damage. We used an original approach based on X-ray photochemistry to investigate in depth the redox process of Prussian blue when it is associated with a cellulosic substrate, as in cyanotypes and watercolors. By modifying cation and proton contents of the paper substrate, we could tune both rate and extent of Prussian blue reduction. These results demonstrate that the photoreduction and fading of Prussian blue is principally mediated by the substrate and its interaction with the oxygen of the environment.

  12. XANES evidence for sulphur speciation in Mn-, Ni- and W-bearing silicate melts

    Science.gov (United States)

    Evans, K. A.; O'Neill, H. St. C.; Mavrogenes, J. A.; Keller, N. S.; Jang, L.-Y.; Lee, J.-F.

    2009-11-01

    S K-edge XANES and Mn-, W- and Ni-XANES and EXAFS spectra of silicate glasses synthesised at 1400 °C and 1 bar with compositions in the CaO-MgO-Al 2O 3-SiO 2-S plus MnO, NiO, or WO 3 systems were used to investigate sulphur speciation in silicate glasses. S K-edge spectra comprised a composite peak with an edge between 2470 and 2471.4 eV, which was attributed to S 2-, and a peak of variable height with an edge at 2480.2-2480.8 eV, which is consistent with the presence of S 6+. The latter peak was attributed to sample oxidation during sample storage. W-rich samples produced an additional lower energy peak at 2469.8 eV that is tentatively attributed to the existence of S 3p orbitals hybridised with the W 5d states. Deconvolution of the composite peak reveals that the composite peak for Mn-bearing samples fits well to a model that combines three Lorentzians at 2473.1, 2474.9 and 2476.2 eV with an arctan edge step. The composite peak for W-bearing samples fits well to the same combination plus an additional Lorentzian at 2469.8 eV. The ratio of the proportions of the signal accounted for by peaks at 2473.1 and 2476.2 eV correlates with Mn:Ca molar ratios, but not with W:Ca ratios. Spectra from Ni-bearing samples were qualitatively similar but S levels were too low to allow robust quantification of peak components. Some part of the signal accounted for by the 2473.1 eV peak was therefore taken to record the formation of Mn-S melt species, while the 2469.8 peak is interpreted to record the formation of W-S melt species. The 2474.9 and 2476.2 eV peaks were taken to be dominated by Ca-S and Mg-S interactions. However, a 1:1 relationship between peak components and specific energy transitions is not proposed. This interpretation is consistent with known features of the lower parts of the conduction band in monosulphide minerals and indicates a similarity between sulphur species in the melts and the monosulphides. S-XANES spectra cannot be reproduced by a combination of the

  13. NanoSIMS, TEM, and XANES studies of a unique presolar supernova graphite grain

    Energy Technology Data Exchange (ETDEWEB)

    Groopman, Evan; Bernatowicz, Thomas; Zinner, Ernst [Laboratory for Space Sciences, Physics Department, Washington University, One Brookings Drive, Campus Box 1105, Saint Louis, MO 63130 (United States); Nittler, Larry R., E-mail: eegroopm@physics.wustl.edu [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)

    2014-07-20

    We report on isotopic and microstructural investigations of a unique presolar supernova (SN) graphite grain, referred to as G6, isolated from the Orgueil CI chondrite. G6 contains complex heterogeneities in its isotopic composition and in its microstructure. Nano-scale secondary ion mass spectrometer isotope images of ultramicrotome sections reveal heterogeneities in its C, N, and O isotopic compositions, including anomalous shell-like structures. Transmission electron microscope studies reveal a nanocrystalline core surrounded by a turbostratic graphite mantle, the first reported nanocrystalline core from a low-density SN graphite grain. Electron diffraction analysis shows that the nanocrystalline core consists of randomly oriented 2-4 nm graphene particles, similar to those in cores of high-density (HD) presolar graphite grains from asymptotic giant branch stars. G6's core also exhibits evidence for planar stacking of these graphene nano-sheets with a domain size up to 4.5 nm, which was unobserved in the nanocrystalline cores of HD graphite grains. We also report on X-ray absorption near-edge structure measurements of G6. The complex isotopic- and micro-structure of G6 provides evidence for mixing and/or granular transport in SN ejecta.

  14. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO₂ nanoparticles in cucumber (Cucumis sativus) plants.

    Science.gov (United States)

    Servin, Alia D; Castillo-Michel, Hiram; Hernandez-Viezcas, Jose A; Diaz, Baltazar Corral; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2012-07-17

    Advances in nanotechnology have raised concerns about possible effects of engineered nanomaterials (ENMs) in the environment, especially in terrestrial plants. In this research, the impacts of TiO(2) nanoparticles (NPs) were evaluated in hydroponically grown cucumber (Cucumis sativus) plants. Seven day old seedlings were treated with TiO(2) NPs at concentrations varying from 0 to 4000 mg L(-1). At harvest, the size of roots and shoots were measured. In addition, micro X- ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS), respectively, were used to track the presence and chemical speciation of Ti within plant tissues. Results showed that at all concentrations, TiO(2) significantly increased root length (average >300%). By using micro-XRF it was found that Ti was transported from the roots to the leaf trichomes, suggesting that trichomes are possible sink or excretory system for the Ti. The micro-XANES spectra showed that the absorbed Ti was present as TiO(2) within the cucumber tissues, demonstrating that the TiO(2) NPs were not biotransformed.

  15. Quasi-in-situ reflection mode XANES at the Ti K-edge of lithium intercalated TiO{sub 2} rutile and anatase

    Energy Technology Data Exchange (ETDEWEB)

    Wagemaker, M.; Luetzenkirchen-Hecht, D.; Keil, P.; Well, A.A. van; Frahm, R

    2003-08-01

    The near surface structure of Li-intercalated rutile and anatase TiO{sub 2} electrodes was investigated with grazing incidence reflection mode XANES spectroscopy. Though real in situ experiments are not feasible due to the extremely strong parasitic absorption of the electrolyte, a new cell was constructed. It enables the electrochemical processing of samples which are sensitive to oxidation as well as it permits reflection mode X-ray experiments after the controlled emersion of the electrodes from the electrolyte. Our results show that even Li containing electrolytes and Li intercalated electrodes can be processed inside the cell. During the electrochemical Li intercalation in rutile, only a thin surface layer of some few nm thickness was changed by the lithiation. The structure of this layer seems to have a similar structure compared to the Li titanate Li{sub 0.6}TiO{sub 2} (space group imma). The anatase layer could be fully intercalated showing the characteristic Li-titanate structure. In the surface region the Li intercalation results in an edge shift that corresponds to Ti{sup 3+} states in contrast to the Ti{sup 3.4+} states in the bulk.

  16. Copper, nickel and zinc speciation in a biosolid-amended soil: pH adsorption edge, μ-XRF and μ-XANES investigations.

    Science.gov (United States)

    Mamindy-Pajany, Yannick; Sayen, Stéphanie; Mosselmans, J Frederick W; Guillon, Emmanuel

    2014-07-01

    Metal solid phase speciation plays an important role in the control of the long-term stability of metals in biosolid-amended soils. The present work used pH-adsorption edge experiments and synchrotron-based spectroscopy techniques to understand the solid phase speciation of copper, nickel and zinc in a biosolid-amended soil. Comparison of metal adsorption edges on the biosolid-amended soil and the soil sample showed that Cu, Ni, and Zn can be retained by both soil and biosolid components such as amorphous iron phases, organic matter and clay minerals. These data are combined with microscopic results to obtain structural information about the surface complexes formed. Linear combination fitting of K-edge XANES spectra of metal hot-spots indicated consistent differences in metal speciation between metals. While organic matter plays a dominant role in Ni binding in the biosolid-amended soil, it was of lesser importance for Cu and Zn. This study suggests that even if the metals can be associated with soil components (clay minerals and organic matter), biosolid application will increase metals retention in the biosolid-amended soil by providing reactive organic matter and iron oxide fractions. Among the studied metals, the long-term mobility of Ni could be affected by organic matter degradation while Cu and Zn are strongly associated with iron oxides.

  17. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Demirkiran, Hande [Graduate Student, Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States); Hu Yongfeng; Zuin, Lucia [Beamline Scientist, Canadian Light Source, Saskatoon, SK (Canada); Appathurai, Narayana [Beamline Scientist, Synchrotron Radiation Center, Madison, WI (United States); Aswath, Pranesh B., E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States)

    2011-03-12

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts (< 5 wt.%) of Bioglass (registered) 45S5 was added it behaved as a sintering aid and also enhanced the decomposition of hydroxyapatite to {beta}-tricalcium phosphate. However when 10 wt.% and 25 wt.% Bioglass (registered) 45S5 was used it resulted in the formation of Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4} and Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L{sub 2,3}-edge and calcium (Ca) K-edge XANES. Si L{sub 2,3}-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L{sub 2,3}-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and {beta}-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in a silicate matrix indicating that it is more soluble compared to the other compositions.

  18. Simulating Cl K-edge X-ray absorption spectroscopy in MCl62- (M= U, Np, Pu) complexes and UOCl5- using time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Govind, Niranjan; De Jong, Wibe A.

    2014-02-21

    We report simulations of the X-ray absorption near edge structure (XANES) at the Cl K-edge of actinide hexahalides MCl62- (M = U, Np, Pu) and the UOCl5- complex using linear-response time-dependent density functional theory (LR-TDDFT) extended for core excitations. To the best of our knowledge, these are the first calculations of the Cl K-edge spectra of NpCl62- and PuCl62-. In addition, the spectra are simulated with and without the environmental effects of the host crystal as well as ab initio molecular dynamics (AIMD) to capture the dynamical effects due to atomic motion. The calculated spectra are compared with experimental results, where available and the observed trends are discussed.

  19. Synchrotron Micro-XANES Measurements of Vanadium Oxidation State in Glasses as a Function of Oxygen Fugacity: Experimental Calibration of Data Relevant to Partition Coefficient Determination

    Science.gov (United States)

    Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.

    2000-01-01

    Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.

  20. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1 (Canada); Ptacek, Carol J., E-mail: ptacek@uwaterloo.ca [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1 (Canada); Blowes, David W. [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1 (Canada); Landis, Richard C. [E I. du Pont de Nemours and Company, 974 Centre Road, Wilmington, DE 19805 (United States)

    2016-05-05

    Highlights: • Dissolved Hg decreases by >90% with high-T biochars (600 and 700 °C). • Elevated SO{sub 4}{sup 2−} (up to 1000 mg L{sup −1}) is released from manure-derived biochar. • XRF results indicate Hg is distributed heterogeneously throughout biochar particles. • S XANES indicates presence of reduced and oxidized S species in biochar. • Hg EXAFS indicate Hg is bound to S atoms in biochar particle when S content is high. - Abstract: Thirty-six biochars produced from distinct feedstocks at different temperatures were evaluated for their potential to remove mercury (Hg) from aqueous solution at environmentally relevant concentrations. Concentrations of total Hg (THg) decreased by >90% in batch systems containing biochars produced at 600 and 700 °C and by 40–90% for biochars produced at 300 °C. Elevated concentrations of SO{sub 4}{sup 2−} (up to 1000 mg L{sup −1}) were observed in solutions mixed with manure-based biochars. Sulfur X-ray absorption near edge structure (XANES) analyses indicate the presence of both reduced and oxidized S species in both unwashed and washed biochars. Sulfur XANES spectra obtained from biochars with adsorbed Hg were similar to those of washed biochars. Micro-X-ray fluorescence mapping results indicate that Hg was heterogeneously distributed across biochar particles. Extended X-ray absorption fine structure modeling indicates Hg was bound to S in biochars with high S content and to O and Cl in biochars with low S content. The predominant mechanisms of Hg removal are likely the formation of chemical bonds between Hg and various functional groups on the biochar. This investigation provides information on the effectiveness and mechanisms of Hg removal that is critical for evaluating biochar applications for stabilization of Hg in surface water, groundwater, soils, and sediments.

  1. Sulfur K-edge XANES for methylene blue in photocatalytic reaction over WO{sub 3} nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Komori, K. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Yoshida, T. [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Nomoto, T. [Aichi Synchrotron Radiation Center, 250-3, Minamiyamaguchi-cho, Seto 489-0965 (Japan); Yamamoto, M.; Tsukada, C. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Yagi, S. [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Yajima, M. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kajita, S. [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2015-12-15

    We investigated the photocatalysis of dendritic nanostructured WO{sub 3}/W composite materials fabricated by He plasma irradiation to tungsten plates, followed by the surface oxidation. The samples promoted the decolorization reaction of methylene blue (MB) aqueous solution under near infrared (NIR) light irradiation. To verify the MB molecule is actually decomposed by the photocatalysis of the samples, reaction products were analyzed by S K-edge XANES measurements for the MB solution kept with the samples under the light irradiation or in the dark. By the light irradiation, the σ{sup *}(S–C) peak in the XANES spectra reduced and a new peak originated from SO{sub 4}{sup 2−} species was clearly observed, suggesting that S–C bonds in a MB molecule are broken by the NIR light irradiation and finally the sulfur species exists in the solution in the state of SO{sub 4}{sup 2−} ion. After the adsorption reaction in the dark, the XANES spectra of the sample surfaces showed a sharp π{sup *}(S–C) peaks, indicating that MB molecules are adsorbed on the sample surfaces and stacked each other by the π–π interaction. These results demonstrate that the photocatalytic decomposition of MB molecules really proceeds over WO{sub 3}/W composite materials even under NIR light irradiation.

  2. Surface structure of alpha-Fe sub 2 O sub 3 nanocrystal observed by O K-edge X-ray absorption spectroscopy

    CERN Document Server

    Zhang, J; Ibrahim, K; Abbas, M I; Ju, X

    2003-01-01

    X-ray absorption near edge structure (XANES) spectra is used as a probe of surface structure of alpha-Fe sub 2 O sub 3 nanocrystal, prepared by sol-gel method. We present O K-edge XANES of alpha-Fe sub 2 O sub 3 in nanocrystal and bulk by total electron yield at the photoemission station of Beijing Synchrotron Radiation Facility. The spectrum of alpha-Fe sub 2 O sub 3 shows a splitting of the pre-edge structure, which is interpreted as two subsets of Fe 3d t sub 2 sub g and e sub g orbitals in oxygen octahedral (O sub h) crystal field, and is also sensitive to long-range order effects. However, no distinguishable splitting of the pre-edge peak of nanocrystal alpha-Fe sub 2 O sub 3 is observed. This suggests that there exists the distorted octahedral coordination around Fe sites and also the long-range disorder due to the surface as compared with bulk alpha-Fe sub 2 O sub 3.

  3. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    Energy Technology Data Exchange (ETDEWEB)

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey; Zhang, Guanghui; Gallagher, James R.; Hu, Bo; Cheah, Singfoong; Schaidle, Joshua A.; Ruddy, Daniel A.; Hensley, Jesse E.; Krause, Theodore R.; Curtiss, Larry A.; Miller, Jeffrey T.; Hock, Adam S.

    2016-01-01

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order to better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.

  4. Identification of Martian Regolith Sulfur Components in Shergottites Using Sulfur K Xanes and Fe/S Ratios

    Science.gov (United States)

    Sutton, S. R.; Ross, D. K.; Rao, M. N.; Nyquist, L. E.

    2014-01-01

    Based on isotopic anomalies in Kr and Sm, Sr-isotopes, S-isotopes, XANES results on S-speciation, Fe/S ratios in sulfide immiscible melts [5], and major element correlations with S determined in impact glasses in EET79001 Lith A & Lith B and Tissint, we have provided very strong evidence for the occurrence of a Martian regolith component in some impact melt glasses in shergottites. Using REE measurements by LA-ICP-MS in shergottite impact glasses, Barrat and co-workers have recently reported conflicting conclusions about the occurrence of Martian regolith components: (a) Positive evidence was reported for a Tissint impact melt, but (b) Negative evidence for impact melt in EET79001 and another impact melt in Tissint. Here, we address some specific issues related to sulfur speciation and their relevance to identifying Martian regolith components in impact glasses in EET79001 and Tissint using sulfur K XANES and Fe/S ratios in sulfide immiscible melts. XANES and FE-SEM measurements in approx. 5 micron size individual sulfur blebs in EET79001 and Tissint glasses are carried out by us using sub-micron size beams, whereas Barrat and coworkers used approx. 90 micron size laser spots for LA- ICP-MS to determine REE abundances in bulk samples of the impact melt glasses. We contend that Martian regolith components in some shergottite impact glasses are present locally, and that studying impact melts in various shergottites can give evidence both for and against regolith components because of sample heterogeneity.

  5. Ti K-edge EXAFS and XANES study on tektites from different strewnfields

    Science.gov (United States)

    Wang, L.; Furuta, T.; Okube, M.; Yoshiasa, A.

    2011-12-01

    The concentration and local structure of each element may have various kinds of information about the asteroid impact and mass extinction. Farges and Brown have discussed about the Ti local structure by XANES, and concluded that Ti in tektite occupies 4-coordinated site. EXAFS can be analyzed to give precise information about the distance from Ti to near neighbors. The XAFS measurement of Ti local structure was preformed at the beamline 9C of the Photon Factory in KEK, Tsukuba, Japan. The specimens of tektites are from different strewnfields, they are: indochinite, bediasite, hainanite, philippinite, australite and moldavite. Sample for comparison are Libya desert glass and suevite. The k3χ(k) function was transformed into the radial structure function (RSF) for Ti K-edge of six tektites. The RSF for the Ti atom in indochinite and bediasite are similar; hainanite, australite and philippinite are similar; and moldavite is discriminated from others. It indicates that they have the same local atomic environmental around the Ti atoms and extended structure respectively. Coordination numbers and radial structure function are determined by EXAFS analyses (Table 1). We classified the tektites in three types: in indochinite and bediasite, Ti occupies 4-coordinated tetrahedral site and Ti-O distances are 1.84-1.81 Å; in hainanite, australite and philippinite, Ti occupies 5-coordinated trigonal bi-pyramidal or tetragonal pyramidal site and Ti-O distances are 1.92-1.87 Å; in moldavite, Ti occupies the 6-coordinated octahedral site and Ti-O distance is 2.00-1.96 Å. Formation of tektites is related to the impact process. It is generally recognized that tektites were formed under higher temperature and high pressure. But through this study, local structures of Ti are differing in three strewnfields and even different locations of the same strewnfield. What caused the various local structures will be another topic of tektite studies. Local structure of Ti may be changed in

  6. Shape resonances and EXAFS scattering in the $Pt L_{2,3}$ XANES from a Pt electrode

    CERN Document Server

    O'Grady, W E

    1999-01-01

    Atomic hydrogen and oxygen adsorption on a platinum electrode in H /sub 2/SO/sub 4/ and HClO/sub 4/ electrolytes were studied by Pt L /sub 23/ XANES. The Pt electrode was formed of highly dispersed 1.5-3.0 nm particles supported on $9 carbon. A difference procedure utilizing the L/sub 2/ and L/sub 3/ spectra at various applied voltages was used to isolate the electronic and geometric effects in the XANES spectra. At 0.54 V (relative to RHE) the Pt electrode in $9 HClO/sub 4/ is assumed to be "clean". By taking the difference between the spectra at 0.0 and 0.54 V, the Pt-H antibonding state (electronic effect) is isolated and found to have a Fano-resonance line shape. In addition, a $9 significant Pt-H EXAFS scattering (geometric effect) was found for photon energies 0 to 20 eV above the edge. The difference between the spectra at 1.14 and 0.54 V allows isolation of the Pt-O antibonding state and the Pt-O EXAFS $9 scattering. (7 refs).

  7. Electronic and lattice structures in SmFeAsO1-xFx probed by x-ray absorption spectroscopy

    Science.gov (United States)

    Zhang, C. J.; Oyanagi, H.; Sun, Z. H.; Kamihara, Y.; Hosono, H.

    2010-03-01

    Local lattice and electronic structures in the Fe-As layer of SmFeAsO1-xFx superconductors were studied by x-ray absorption spectroscopy, the FeK -edge and the AsK -edge extended x-ray absorption fine-structure, and x-ray absorption near-edge-structure experiments, respectively. Temperature-dependent local lattice distortions were observed in the Fe-As bond mean-square relative displacement of the superconducting samples. A strong coupling of the carrier-induced local lattice distortion (polaron) to the superconducting transition temperature in the oxypnictide superconductors is indicated. The near-edge spectra showed systematic temperature-dependent energy shifts, which indicate an intralayer electron redistribution from Fed states to Asp states due to orbital-selective band filling at low temperatures.

  8. Influence of Steam Activation on Pore Structure and Acidity of Zeolite Beta: An Al K Edge XANES Study of Aluminum Coordination

    NARCIS (Netherlands)

    Koningsberger, D.C.; Bokhoven, J.A. van; Kunkeler, P.J.; Bekkum, H. van

    2002-01-01

    The effect of steam activation on the aluminum coordination in zeolite NH{4}-beta was investigated by means of quantitative analysis of Al K edge XANES spectra. Framework tetrahedral aluminum is converted to octahedral aluminum after calcination and steaming, a process that, at the same time,

  9. Combined XRD and XANES studies of a Re-promoted Co/γ-Al2O3 catalyst at Fischer–Tropsch synthesis conditions

    DEFF Research Database (Denmark)

    Rønning, Magnus; Tsakoumis, Nikolaos E.; Voronov, Alexey

    2010-01-01

    structure (XANES) were used to reveal information on the particle and crystallite size and the oxidation states of the active component. Conditions giving high selectivity towards light hydrocarbons (methanation, 673K, 10bar and high GHSV) were compared to conditions were higher hydrocarbons are the main...

  10. Fe K-edge XANES and pre-edge polarization dependance for the determination of the oxidation state of iron in antigorite and other phyllosilicates

    Science.gov (United States)

    Munoz, M.; Vidal, O.; Marcaillou, C.; Pascarelli, S.; Mathon, O.; Farges, F.

    2012-04-01

    Iron oxidation state in minerals is often a crucial indicator for the understanding of mineralogical reactions related to hydrothermalism, or various natural processes. We investigated here the influence of the linear polarization of the synchrotron X-ray beam on the determination of the iron oxidation state in phyllosilicates. Fe K-edge XANES spectra and pre-peaks of biotite (Bt), chlorite (Chl), talc (Tlc) and antigorite (Atg) crystals have been recorded at different crystal orientations. As a function of the crystal orientation, the experimental results show, 1) important changes both for XANES and pre-peaks, 2) typical changes of spectral signatures for all mineral species, 3) uncorrelated changes between XANES and pre-peaks, 4) important changes of the pre-peak energies, but no significant change of the integrated areas. Ab initio XANES calculations, performed for 6 orientations of the Bt structure are consistent with the experimental measurements. The energy position of the pre-peak centroids changes with crystal orientation by 0.4 eV for Bt and Tlc crystals, and by 0.2 eV for Chl and Atg, which correspond to XFe(apparent)3+ variations (2δ) of 0.22 and 0.15, respectively. Measurements on powdered crystals show that - (2/3)2δ

  11. Hard X-ray micro-spectroscopy at Berliner Elektronenspeicherring für Synchrotronstrahlung II

    Science.gov (United States)

    Erko, A.; Zizak, I.

    2009-09-01

    The capabilities of the X-ray beamlines at Berliner Elektronenspeicherring für Synchrotronstrahlung II (BESSY II) for hard X-ray measurements with micro- and nanometer spatial resolution are reviewed. The micro-X-ray fluorescence analysis (micro-XRF), micro-extended X-ray absorption fine structure (micro-EXAFS), micro-X-ray absorption near-edge structure (micro-XANES) as well as X-ray standing wave technique (XSW), X-ray beam induced current (XBIC) in combination with micro-XRF and micro-diffraction as powerful methods for organic and inorganic sample characterization with synchrotron radiation are discussed. Mono and polycapillary optical systems were used for fine X-ray focusing down to 1 µm spot size with monochromatic and white synchrotron radiation. Polycapillary based confocal detection was applied for depth-resolved micro-XRF analysis with a volume resolution down to 3.4 · 10 - 6 mm 3. Standing wave excitation in waveguides was also applied to nano-EXAFS measurements with depth resolution on the order of 1 nm. Several examples of the methods and its applications in material research, biological investigations and metal-semiconductor interfaces analysis are given.

  12. Reinvestigation of the EXAFS and xanes spectra of ferrocene and nickelocene in the framework of the multiple scattering theory

    Science.gov (United States)

    Ruiz-Lopez, M. F.; Loos, M.; Goulon, J.; Benfatto, M.; Natoli, C. R.

    1988-04-01

    This paper produces direct evidences that even non-collinear scattering paths can give rise to well-detectable and interpretable signatures in EXAFS spectra. Ferrocene or nickelocene are most favourable examples to study these rather small signals because the shortest intermolecular distances are too large to interfer with them and add no significant contribution to the EXAFS spectrum. For the first time, we have been able to resolve in the R-space individual contributions of specific double and triple scattering paths and also to reproduce their relative amplitudes and phases using full ab initio simulations carried out in the general regime of spherical wave propagation of the ejected/scattered photoelectron. Due to considerable rotational disorder of the cyclopentadienyl (C p) rings, especially at room temperature, all multiple scattering paths involving carbon atoms located on different rings were found to vanish. Full multiple scattering XANES calculations have also been performed on the same systems and were shown to be identical in the staggered (D 5d) or eclipsed (D 5h) conformations of the C p rings. The experimental XANES spectra exhibit a shoulder which is better resolved in the case of ferrocene: our simulations have established the origin of this shoulder and that its resolution was sensitive to small variations of the metal…C bond lengths. The weak pre-edge structure can be explained either by a quadrupolar allowed transition to an antibonding (3d-like) excited state of symmetry 5e 1g if the rings have D 5d group symmetry, or by a disorder-allowed dipolar transition to the corresponding state if the group symmetry is reduced to D 5. In the case of ferrocene, there is also an additional "bump" at ≈ 12 eV past the main absorption peak, which is not reproduced by our single-electron calculations: a possible interpretation which, however, is not yet firmly established, is to assign this feature to a multielectron shakeup satellite.

  13. STXMPy: a new software package for automated region of interest selection and statistical analysis of XANES data

    Directory of Open Access Journals (Sweden)

    Grunze Michael

    2010-06-01

    Full Text Available Abstract Background Soft X-ray spectromicroscopy based absorption near-edge structure analysis, is a spectroscopic technique useful for investigating sample composition at a nanoscale of resolution. While the technique holds great promise for analysis of biological samples, current methodologies are challenged by a lack of automatic analysis software e. g. for selection of regions of interest and statistical comparisons of sample variability. Results We have implemented a set of functions and scripts in Python to provide a semiautomatic treatment of data obtained using scanning transmission X-ray microscopy. The toolkit includes a novel line-by-line absorption conversion and data filtering automatically identifying image components with significant absorption. Results are provided to the user by direct graphical output to the screen and by output images and data files, including the average and standard deviation of the X-ray absorption spectrum. Using isolated mouse melanosomes as a sample biological tissue, application of STXMPy in analysis of biological tissues is illustrated. Conclusion The STXMPy package allows both interactive and automated batch processing of scanning transmission X-ray microscopic data. It is open source, cross platform, and offers rapid script development using the interpreted Python language.

  14. Probing Selenium-Ion Distributions and Changes in Redox-State at Biofilm/Mineral Interfaces by Coupling Long-period X-ray Standing Wave and XANES Measurements

    Science.gov (United States)

    Templeton, A. S.; Trainor, T. P.; Spormann, A. M.; Brown, G. E.

    2002-12-01

    Metal sorption and precipitation reactions at biological as well as mineral surfaces are important controls on metal speciation and bioavailability in natural environments. When highly hydrated biofilms form on mineral surfaces, numerous competitive and synergistic effects are predicted to occur. Experimentally, it is challenging to determine where the sorbed metal ions are localized, the relative affinity of the biological vs. mineral surface sites, or to monitor biomineralization reactions or changes in metal speciation that may also occur. A large part of the difficulty is due to the low concentrations of sorbed ions, the small length-scale of the biofilm-mineral interface, and the complex interplay between microbially-catalayzed redox transformations vs. sorption and/or transport processes. Long-period x-ray standing wave (XSW) techniques are well-suited to determining the vertical distribution of metal(oid) species within biofilms overlying mineral surfaces. We will discuss experiments where Se fluorescence yield profiles are used to compare the affinity of Burkholderia cepacia biofilms for binding Se(IV) and Se(VI) species relative to underlying alpha-Al2O3 substrates over three orders of magnitude in [Se]. In addition, we will discuss how coupling the XSW experiments to grazing-incidence, spatially-resolved Se K-edge XANES spectroscopy can be used to differentiate between the oxidation state of the Se complexes localized within the biofilm vs. the mineral surface. This approach is used to monitor changes in the relative distributions of Se(VI), Se(IV) and Se(0) species as a function of time and proximity to the mineral surface. The long-period XSW data show that selenite preferentially binds to the oxide surfaces, particularly at low [Se]. When B. cepacia is metabolically active, B. cepacia rapidly reduces a fraction of the Se(IV) to the red elemental Se form. In contrast, selenate is preferentially partitioned into the B. cepacia biofilms at all [Se] tested

  15. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.A. (National Institute of Standards and Technology, Gaithersburg, MD (United States)); Mitchell, G.E.; Dekoven, B.M. (Dow Chemical Co., Midland, MI (United States)); Yeh, A.T.; Gland, J.L. (Michigan Univ., Ann Arbor, MI (United States)); Moodenbaugh, A.R. (Brookhaven National Lab., Upton, NY (United States))

    1993-01-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  16. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Mitchell, G.E.; Dekoven, B.M. [Dow Chemical Co., Midland, MI (United States); Yeh, A.T.; Gland, J.L. [Michigan Univ., Ann Arbor, MI (United States); Moodenbaugh, A.R. [Brookhaven National Lab., Upton, NY (United States)

    1993-06-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  17. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Mitchell, G.E.; Dekoven, B.M. [Dow Chemical Co., Midland, MI (United States); Yeh, A.T.; Gland, J.L. [Michigan Univ., Ann Arbor, MI (United States); Moodenbaugh, A.R. [Brookhaven National Lab., Upton, NY (United States)

    1993-06-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  18. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.A. (National Institute of Standards and Technology, Gaithersburg, MD (United States)); Mitchell, G.E.; Dekoven, B.M. (Dow Chemical Co., Midland, MI (United States)); Yeh, A.T.; Gland, J.L. (Michigan Univ., Ann Arbor, MI (United States)); Moodenbaugh, A.R. (Brookhaven National Lab., Upton, NY (United States))

    1993-01-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  19. Studies of valence of selected rare earth silicides determined using Si K and Pd/Rh L{sub 2,3} XANES and LAPW numerical studies

    Energy Technology Data Exchange (ETDEWEB)

    Zajdel, P., E-mail: pawel.zajdel@us.edu.pl [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Kisiel, A., E-mail: andrzej.kisiel@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Kraków (Poland); Szytuła, A., E-mail: andrzej.szytula@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Kraków (Poland); Goraus, J., E-mail: jerzy.goraus@us.edu.pl [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Balerna, A., E-mail: antonella.balerna@lnf.infn.it [Laboratori Nazionali di Frascati, INFN, Lab DAPHINE-Light, Via E. Fermi 40, I-00044 Frascati (Italy); Banaś, A., E-mail: slsba@nus.edu.sg [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Starowicz, P., E-mail: pawel.starowicz@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Kraków (Poland); Konior, J., E-mail: jerzy.konior@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Kraków (Poland); Cinque, G., E-mail: gianfelice.cinque@diamond.ac.uk [Diamond Light Source, Harwell Campus, OX11 0DE Chilton-Didcot (United Kingdom); Grilli, A., E-mail: antonio.grilli@lnf.infn.it [Laboratori Nazionali di Frascati, INFN, Lab DAPHINE-Light, Via E. Fermi 40, I-00044 Frascati (Italy)

    2015-12-01

    Highlights: • The Si K and Pd L{sub 3} edges of R{sub 2}PdSi{sub 3} (R = Ce, Nd, Tb, Dy, Ho, Er) and HoRh{sub 2−x}Pd{sub x}Si{sub 2} are reported. • The R–Si bonds possess polar and 4d5s bands of Pd and Rh metallic characters. • There is no indication of Ce having a different valence than the other rare earths. • The positions and features of the calculated edges exhibit a fair agreement up to ≈10 eV. • The supercell used for Ho{sub 2}PdSi{sub 3} is good enough to reproduce the Si K edge. - Abstract: We report on the investigation of Si and Pd/Rh chemical environments using X-ray Absorption Near Edge Spectroscopy in two different families of rare earth silicides R{sub 2}PdSi{sub 3} (R = Ce, Nd, Tb, Dy, Ho, Er) and HoRh{sub 2−x}Pd{sub x}Si{sub 2} (x = 0, 0.5, 0.75, 1.0, 1.5, 1.8, 2.0). The Si K, Pd L{sub 3} and Rh L{sub 3} absorption edges were recorded in order to follow their changes upon the variation of 4f and 4d5s electron numbers. In both cases it was found that the Si K edge was shifted ≈0.5 eV toward lower energies, relative to pure silicon. In the first family, the shift decreases with increasing number of f-electrons, while the Si K edge remains constant upon rhodium–palladium substitution. In all cases the Pd L{sub 3} edge was shifted to higher energies relative to metallic Pd. No visible change in the Pd L{sub 3} position was observed either with a varying 4f electron count or upon Pd/Rh substitution. Also, the Rh L{sub 3} edge did not change. For two selected members, Ho{sub 2}PdSi{sub 3} and HoPd{sub 2}Si{sub 2}, the Wien2K’09 (LDA + U) package was used to calculate the electronic structure and the absorption edges. Si K edges were reproduced well for both compounds, while Pd L{sub 3} only exhibited a fair agreement for the second compound. This discrepancy between the Pd L{sub 3} theory and experiment for the Ho{sub 2}PdSi{sub 3} sample can be attributed to the specific ordered superstructure used in the numerical calculations

  20. Investigation of arsenic species in tailings and windblown dust from a gold mining area.

    Science.gov (United States)

    Ono, F B; Tappero, R; Sparks, D; Guilherme, L R G

    2016-01-01

    Research has shown the presence of high levels of arsenic (up to 2666 mg As kg(-1)) in tailings from a gold mining area of Brazil. This is an important point of attention, generating concerns about impacts on human health. Yet, a recent study showed that As bioaccessibility in the same area was very low (mine tailings and windblown dust is needed to explain this low bioaccessibility. Mine samples were collected from four subareas and windblown dust from eight sites. Synchrotron-based bulk-X-ray absorption near-edge structure (bulk-XANES) spectroscopy, micro-X-ray absorption near-edge structure (μ-XANES), and μ-X-ray fluorescence (μ-SXRF) spectroscopy were applied to determine As speciation. Bulk-XANES spectra indicated that As occurs as the As(V) oxidation state. Micro-XANES and μ-SXRF analyses revealed that As was also present as arsenopyrite (FeAsS) and its weathering products, but mostly it was As(V) as poorly crystalline ferric arsenate. This supports the findings of low bioaccessible As and highlights the importance of Fe oxides in immobilizing As in the terrestrial environment. All air particulate samples exhibited As-rich particles (up to 313 mg As kg(-1)). The air particulates exhibited solid-phase As species very similar to those found in the mine samples, which indicates that As in the windblown dust is not easily available.

  1. Change in Localizations of Arsenic in Rice Grains After Cooking with High Arsenic Waters - µXRF and XANES studies

    Science.gov (United States)

    Datta, S.; Ryan, B.; Kumar, N.; Bortz, T.; Bolen, Z. T.

    2016-12-01

    Threats of Arsenic (As) through food uptake, via consumption of rice, is a potential pathway that presents a concern not only for the millions of inhabitants who reside in river valleys and irrigate their soil with contaminated water, but the global rice market as well. This study focuses on high As rice from India and Bangladesh grown in such soils, and the effect of boiling rice with As-contaminated water in preparation for dietary intake. Husked and unhusked rice grains were boiled with >500 µg/L As-bearing water from the field to simulate local cooking methods. The resulting cooked water was analyzed using iCAP low limit detection via ICP-MS to understand the changes in dissolved elemental concentrations before and after cooking, and HPLC was introduced to measure for changes in As speciation in the waters. Using spectroscopic methods such as µXRF mapping associated with µXANES, distribution/localization and speciation changes of As in rice grains were identified. Further, with Linear Combination Fitting (LCF) of XANES spectra utilizing relevant reference compounds (As-S, AsIII, AsV, MMA and DMA), organic and inorganic As species were able to be mapped within rice grains. The results for uncooked/raw grains showed that predominantly As-S combined with AsIII and AsV accounted for 90% of speciation in most samples, localized in areas such as the outer aleurone layer. When analyzing cooked rice grains, the speciation appears to be an unidentified As species while the best LCF shows between 63-93% of As as MMA. Arsenic was found less localized throughout the cooked grains but rather heterogeneously distributed when compared to the uncooked/raw samples. The analyses of boiled/cooked water resulted in a significant decrease in dissolved As post-cooking (90%), but a subsequent increase in elements such as K, La, Li, Mo, Na, Ni, and Zr was observed; As-V was shown to be the main in-As species in the cooked water. The impact that this study portrays is consuming rice

  2. Mapping the chemical states of an element inside a sample using tomographic x-ray absorption spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, C G; Kuhlmann, M; Gunzler, T F; Lengeler, B; Richwin, M; Griesebock, B; Lutzenkirchen-Hect, D; Frahm, R; Ziegler, E; Mashayekhi, A; Haeffner, D R; Grunwaldt, J -D; Baiker, A; XFD,

    2003-05-12

    Hard x-ray absorption spectroscopy is combined with scanning microtomography to reconstruct full near-edge spectra of an elemental species at each location on an arbitrary virtual section through a sample. These spectra reveal the local concentrations of different chemical compounds of the absorbing element inside the sample and give insight into the oxidation state, the local atomic structure, and the local projected free density of states. The method is implemented by combining a quick scanning monochromator and data acquisition system with a scanning microprobe setup based on refractive x-ray lenses.

  3. XANES and EXAFS study of the TiN Thin films grown by the pulsed DC sputtering technique assisted by balanced magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Duarte M, A.; Esparza P, H.; Gonzalez V, C. [Centro de Investigacion en Materiales Avanzados, S. C., Miguel de Cervantes 120, Complejo Industrial Chihuahua Chihuahua, Chih. 31109 (Mexico); Yocupicio, I. [Universidad de Sonora, Unidad Regional Sur Lazaro Cardenas No. 100 Col. Fco. Villa, Navojoa, Sonora (Mexico)

    2007-07-01

    A series of different Ti{sub x}N{sub y} thin films were grown by the DC-sputtering technique. The purpose for this work was to study through XAS interpretation, how the different amounts of N{sub 2} during growing thin TiN thin films, affects the stoichiometry of the TiN deposited. Also the results obtained determinate how to interpret the spectra to see the different valences of Ti in TiN, are working. The results were supported with the EXAFS and XANES analysis. This work concludes the adequate conditions for this experiment to obtain TiN as thin film by the DC sputtering assisted by pulsed balanced magnetron at room temperature and concludes which XANES spectra are the finger print for valences of Ti. (Author)

  4. THEORETICAL DESCRIPTION OF NEAR EDGE EELS AND XAS SPECTRA

    NARCIS (Netherlands)

    SAWATZKY, GA

    1991-01-01

    In this communication I want to briefly describe the contents of the talk I presented at the lake Tahoe EELS conference. Since most of what I talked about has or will appear in print in another form, I will restrict myself to very brief descriptions of in my view relevant basic ideas and supply a

  5. THEORETICAL DESCRIPTION OF NEAR EDGE EELS AND XAS SPECTRA

    NARCIS (Netherlands)

    SAWATZKY, GA

    1991-01-01

    In this communication I want to briefly describe the contents of the talk I presented at the lake Tahoe EELS conference. Since most of what I talked about has or will appear in print in another form, I will restrict myself to very brief descriptions of in my view relevant basic ideas and supply a li

  6. CHEMISTRY OF SO{sub 2} ON MODEL METAL AND OXIDE CATALYSTS: PHOTOEMISSION AND XANES STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ,J.A.; JIRSAK,T.; CHATURVEDI,S.; HRBEK,J.; FREITAG,A.; LARESE,J.Z.

    2000-07-09

    High-resolution synchrotron based photoemission and x-ray absorption spectroscopy have been used to study the interaction of SO{sub 2} with a series of metals and oxides. The chemistry of SO{sub 2} on metal surfaces is rich. At low coverages, the molecule fully decomposes into atomic S and O. At large coverages, the formation of SO{sub 3} and SO{sub 4} takes place. The following sequence was found for the reactivity of the metals towards SO{sub 2}: Pt {approx} Rh < Ru < Mo << Zn, Sn, Cs. Alloying can be useful for reducing the chemical affinity of a metal for SO{sub 2} and controlling S poisoning. Pd atoms bonded to Rh and Pt atoms bonded to Sn interact weakly with SO{sub 2}. In general, SO{sub 2} mainly reacts with the O centers of metal oxides. SO{sub 4} is formed on CeO{sub 2} and SO{sub 3} on ZnO. On these systems there is no decomposition of SO{sub 2}. Dissociation of the molecule is observed after introducing a large amount of Ce{sup 3+} sites in ceria, or after depositing Cu or alkali metals on the oxide surfaces. These promote the catalytic activity of the oxides during the destruction of SO{sub 2}.

  7. Iodate in calcite and vaterite: Insights from synchrotron X-ray absorption spectroscopy and first-principles calculations

    Science.gov (United States)

    Podder, J.; Lin, J.; Sun, W.; Botis, S. M.; Tse, J.; Chen, N.; Hu, Y.; Li, D.; Seaman, J.; Pan, Y.

    2017-02-01

    Calcium carbonates such as calcite are the dominant hosts of inorganic iodine in nature and are potentially important for the retention and removal of radioactive iodine isotopes (129I and 131I) in contaminated water. However, little is known about the structural environment of iodine in carbonates. In this study, iodate (IO3-) doped calcite and vaterite have been synthesized using the gel-diffusion method at three NaIO3 concentrations (0.002; 0.004; 0.008 M) and a pH value of 9.0, under ambient temperature and pressure. Inductively coupled plasma mass spectrometry (ICP-MS) analyses show that iodine is preferentially incorporated into calcite over vaterite. Synchrotron iodine K-edge X-ray absorption near-edge structure (XANES) spectra confirm that IO3- is the dominant iodine species in synthetic calcite and vaterite. Analyses of iodine K-edge extended X-ray absorption fine structure (EXAFS) data, complemented by periodic first-principles calculations at the density functional theory (DFT) levels, demonstrate that the I5+ ion of the IO3- group in calcite and vaterite is bonded by three and two additional O atoms (i.e., coordination numbers = 6 and 5), respectively, and is incorporated via the charged coupled substitution I5+ + Na+ ↔ C4+ + Ca2+, with the Na+ cation at a nearest Ca2+ site being the most energetically favorable configuration.

  8. Evidence for Al/Si tetrahedral network in aluminosilicate glasses from Al K-edge x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. [Laboratoire Pierre Sue, CEA-CNRS CE Saclay, Gif-sur Yvette (France)]|[INFN, Laboratori Nazionali di Frascati, Rome (Italy); Romano, C. [Rome, Univ. `Roma Tre` (Italy). Dip di Scienze Geologiche]|[Univ. Bayreuth (Germany). Bayerishes Geoinstitut; Marcelli, A.; Cibin, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Mottana, A.; Della Ventura, G. [Rome, Univ. `Roma Tre` (Italy). Dip di Scienze Geologiche]|[INFN, Laboratori Nazionali di Frascati, Rome (Italy); Giuli, G. [Florence Univ. (Italy). Dip. Scienze Mineralogiche; Courtial, P.; Dinwell, D.B. [Univ. Bayreuth (Germany). Bayerishes Geoinstitut

    1998-11-01

    The structure of aluminosilicate melts/glasses plays a key role in Earth Sciences for the understanding of rock-forming igneous processes, as well as in the Materials Sciences for their technical applications. In particular, the alkaline earth aluminosilicate glasses are an extremely important group of materials, with a wide range of commercial application, as well as serving as analogue for natural basaltic melts. However, definition of their structure and properties is still controversial, and in particular the role and effect of Al has long been a subject of debate. The paper reports a series of experimental x-ray absorption near-edge structure (XANES) spectra at the Al K edge on a series of synthetic glasses of peralkaline composition in the CaO-Al{sub 2}O{sub 3}-SiO{sub 2} system, together with a general theoretical framework for data analysis based on an ab initio full multiple scattering (MS) theory. It`s proposed an Al/Si tetrahedral network model for aluminosilicate glasses based on distorted polyhedra, with varying both the T-O (T=Al or Si) bond lengths and the T-O-T angles, and with different Al/Si composition. This model achieves a significant agreement between experiments and simulations. in these glasses, experimental data and theoretical results concur to support a model in which Al is network-former with a comparatively well ordered local medium-range order (up to 5 A).

  9. The darkening of zinc yellow: XANES speciation of chromium in artist;s paints after light and chemical exposures

    Energy Technology Data Exchange (ETDEWEB)

    Zanella, Luciana; Casadio, Francesca; Gray, Kimberly A.; Warta, Richard; Ma, Qing; Gaillard, Jean-François

    2012-03-14

    The color darkening of selected brushstrokes of the masterpiece A Sunday on La Grande Jatte - 1884 (by Georges Seurat) has been attributed to the alteration of the chromate pigment zinc yellow. The pigment originally displays a bright greenish-yellow color but may undergo, after aging, darkening to a dull, ocher tone. We used XANES to probe the oxidation state of Cr on paint reconstructions, and show that color changes are associated with the reduction of Cr(VI) to Cr(III). Paint mixtures containing the pigment and linseed oil to mimic mixtures used in La Grande Jatte were subjected to artificial aging in the presence of light, SO{sub 2}, and variable air humidity - 50 and 90% relative humidity. High relative humidity led to the largest degree of Cr(VI) reduction whereas low relative humidity promoted light-induced alterations. These results are corroborated by visible reflectance measurements on the same laboratory samples and contribute to a better understanding of the chemical reactivity of chromate pigments, which are present in many historical works of art.

  10. Determination of localized Fe 2+/Fe 3+ ratios in inks of historic documents by means of μ-XANES

    Science.gov (United States)

    Proost, K.; Janssens, K.; Wagner, B.; Bulska, E.; Schreiner, M.

    2004-01-01

    An important part of the European cultural heritage is composed of hand-written documents. Many of these documents were drawn up with iron-gall ink. This type of ink present a serious conservation problem, as it slowly oxidizes ('burns') the paper it is written on, thereby gradually disintegrating the historic document. Acid hydrolysis of the cellulose and/or the oxidation of organic compounds promoted by radical intermediates that are formed due to the presence of Fe 2+ ions are considered to be the cause of the disintegration. μ-XANES measurements were performed with a lateral resolution of 30-50 μm in order to determine the local Fe 2+/Fe 3+ ratio in 19th C. documents from the Austrian National Archives and fragments of 16th C documents from the Polish National Library. In the 19th C documents, no significant amount of Fe 2+ was detected. On the other hand, in the 16th C fragments, significant amounts of Fe 2+ and appreciable differences in distribution of Fe 2+ and Fe 3+ within individual letters/ink stains were observed.

  11. The status of strontium in biological apatites: an XANES/EXAFS investigation.

    Science.gov (United States)

    Bazin, Dominique; Dessombz, Arnaud; Nguyen, Christelle; Ea, Hang Korng; Lioté, Frédéric; Rehr, John; Chappard, Christine; Rouzière, Stephan; Thiaudière, Dominique; Reguer, Solen; Daudon, Michel

    2014-01-01

    Osteoporosis represents a major public health problem through its association with fragility fractures. The public health burden of osteoporotic fractures will rise in future generations, due in part to an increase in life expectancy. Strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk but the molecular mechanisms of the action of these Sr-based drugs are not totally elucidated. The local environment of Sr(2+) cations in biological apatites present in pathological and physiological calcifications in patients without such Sr-based drugs has been assessed. In this investigation, X-ray absorption spectra have been collected for 17 pathological and physiological calcifications. These experimental data have been combined with a set of numerical simulations using the ab initio FEFF9 X-ray spectroscopy program which takes into account possible distortion and Ca/Sr substitution in the environment of the Sr(2+) cations. For selected samples, Fourier transforms of the EXAFS modulations have been performed. The complete set of experimental data collected on 17 samples indicates that there is no relationship between the nature of the calcification (physiological and pathological) and the adsorption mode of Sr(2+) cations (simple adsorption or insertion). Such structural considerations have medical implications. Pathological and physiological calcifications correspond to two very different preparation procedures but are associated with the same localization of Sr(2+) versus apatite crystals. Based on this study, it seems that for supplementation of Sr at low concentration, Sr(2+) cations will be localized into the apatite network.

  12. RE L{sub 3} x-ray absorption study of REO{sub 1-x}F{sub x}FeAs (RE = La, Pr, Nd, Sm) oxypnictides

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, B; Iadecola, A; Bianconi, A; Saini, N L [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazza le Aldo Moro 2, 00185 Roma (Italy); Fratini, M [Istituto di Fotonica e Nanotecnologie, CNR Roma (Italy); Marcelli, A [Laboratori Nazionali di Frascati, INFN, 00044 Frascati (Italy)

    2009-10-28

    Rare earth L{sub 3}-edge x-ray absorption near-edge structure (XANES) spectroscopy has been used to study REOFeAs (RE = La, Pr, Nd, Sm) oxypnictides. The Nd L{sub 3} XANES due to the 2p{sub 3/2}->5epsilond transition shows a substantial change in both white line (WL) spectral weight and the higher energy multiple scattering resonances with the partial substitution of O by F. A systematic change in the XANES features is seen due to varying lattice parameters with ionic radius of the rare earth. On the other hand, we hardly see any change across the structural phase transition. The results provide timely information on the local atomic correlations showing the importance of the local structural chemistry of the REO spacer layer and interlayer coupling in the competing superconductivity and itinerant striped magnetic phase of the oxypnictides. (fast track communication)

  13. RE L(3) x-ray absorption study of REO(1-x)F(x)FeAs (RE = La, Pr, Nd, Sm) oxypnictides.

    Science.gov (United States)

    Joseph, B; Iadecola, A; Fratini, M; Bianconi, A; Marcelli, A; Saini, N L

    2009-10-28

    Rare earth L(3)-edge x-ray absorption near-edge structure (XANES) spectroscopy has been used to study REOFeAs (RE = La, Pr, Nd, Sm) oxypnictides. The Nd L(3) XANES due to the [Formula: see text] transition shows a substantial change in both white line (WL) spectral weight and the higher energy multiple scattering resonances with the partial substitution of O by F. A systematic change in the XANES features is seen due to varying lattice parameters with ionic radius of the rare earth. On the other hand, we hardly see any change across the structural phase transition. The results provide timely information on the local atomic correlations showing the importance of the local structural chemistry of the REO spacer layer and interlayer coupling in the competing superconductivity and itinerant striped magnetic phase of the oxypnictides.

  14. Ca and S K-edge XANES studies of calcite-acid mine water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Myneni, S.C.B.; Perera, R.C.C. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Heavy metal-rich acidic waters (SO{sub 4}{sup 2{minus}}, AsO{sub 4}{sup 3{minus}}, SeO{sub 4}{sup 2{minus}}, Fe{sup 2+}, Fe{sup 3+}, Al{sup 3+}, Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}) and related ochreous coatings are common around abandoned sulfide and coal mine sites. This is mainly caused by the natural weathering of pyrite (FeS{sub 2}), arsenopyrite (FeAsS), and other metal sulfide containing shales. Acid generation in the case of pyrite can be explained by a general reaction: FeS{sub 2} + 3.5 O{sub 2} + H{sub 2}O {leftrightarrow} Fe{sup 2+} + SO{sub 4}{sup 2{minus}} + 2H{sup +}. Also, these low pH waters interact with the soils, and mobilize their soluble elements. One of the common remediation strategies is to allow these acid waters to react with limestone (CaCO{sub 3}-rich rock) and neutralize the pH and precipitate out soluble metals. Yet, the associated problem is the precipitation of Fe and Al oxides and hydroxy sulfate coatings on limestone surfaces, which block calcite reactive sites, and make them ineffective a few hours after initiation of treatment. The main objectives of this research are to examine: (1) the chemistry of limestone surface coatings, and (2) their toxic metal uptake and the conditions that inhibit their formation. Previous molecular studies using X-ray diffraction, and vibrational spectroscopy on limestone surface coatings (sampled from Athens, OH) indicate that the surface-most layer (the layer in contact with water) is composed of schwertmannite (Fe(III)-hydroxy sulfate) like phases. However, white, X-ray amorphous; Al-, sulfate- and carbonate-rich; and Ca-poor phases appeared at the interface between the limestone and the iron oxide coatings. The structure, morphology, and coordination chemistry of component major and trace elements of these white precipitate phases have not previously been examined.

  15. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  16. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  17. X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers--potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis.

    Science.gov (United States)

    Dau, Holger; Liebisch, Peter; Haumann, Michael

    2003-07-01

    X-ray absorption spectroscopy (XAS) has become a prominent tool for the element-specific analysis of transition metals at the catalytic center of metalloenzymes. In the present study the information content of X-ray spectra with respect to the nuclear geometry and, in particular, to the electronic structure of the protein-bound metal ions is explored using the manganese complex of photosystem II (PSIII) as a model system. The EXAFS range carries direct information on the number and distances of ligands as well as on the chemical type of the ligand donor function. For first-sphere ligands and second-sphere metals (in multinuclear complexes), the determination of precise distances is mostly straightforward, whereas the determination of coordination numbers clearly requires more effort. The EXAFS section starts with an exemplifying discussion of a PSII spectrum data set with focus on the coordination number problem. Subsequently, the method of linear dichroism EXAFS spectroscopy is introduced and it is shown how the EXAFS data leads to an atomic resolution model for the tetra-manganese complex of PSII. In the XANES section the following aspects are considered: (1) Alternative approaches are evaluated for determination of the metal-oxidation state by comparison with a series of model compounds. (2) The interpretation of XANES spectra in terms of molecular orbitals (MOs) is approached by comparative multiple-scattering calculations and MO calculations. (3) The underlying reasons for the oxidation-state dependence of the XANES spectra are explored. Furthermore, the potential of modern XANES theory is demonstrated by presenting first simulations of the dichroism in the XANES spectra of the PSII manganese complex.

  18. 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy

    OpenAIRE

    Tan, H.; Turner, S.; Yücelen, E.; Verbeeck, J.; Van Tendeloo, G.

    2011-01-01

    Abstract: Using a combination of high-angle annular dark-field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy in an aberration-corrected transmission electron microscope we demonstrate the possibility of 2D atom by atom valence mapping in the mixed valence compound Mn3O4. The Mn L2,3 energy-loss near-edge structures from Mn2+ and Mn3+ cation sites are similar to those of MnO and Mn2O3 references. Comparison with simulations shows that even ...

  19. XANES at Eu-L3 edge and valence of europium in SrB4O7: Eu and BaB8O13: Eu

    Institute of Scientific and Technical Information of China (English)

    LIANG, Hong- Bin(梁宏斌); HU, Tian-Dou(胡天斗); WANG, Shu-Bin(王淑彬); ZENG, Qing-Hua(曾庆华); PEI, Zhi-Wu(裴治武); SU, Qiang(苏锵)

    2000-01-01

    The luminescent materials SrB4O7: Eu and BaB8O13: Eu were synthesized, and the valence states of europium in the materials were measured by means of XANES at Eu-L3 edge. It is found that the Eu3+ and Eu2+ ions are all present in the materials, and more Eu3+ ions can be reduced in SrB4O7:Eu than in BaB8O13:Eu. The excitation and emission spectra of Eu3+in SrB4O7:Eu and BaB8O13:Eu were determined.

  20. Absorption spectroscopy with sub-angstrom beams: ELS in STEM

    Science.gov (United States)

    Spence, John C. H.

    2006-03-01

    Electron-energy loss spectroscopy (EELS) performed using a modern transmission scanning electron microscope (STEM) now offers sub-nanometre spatial resolution and an energy resolution down to 200 meV or less, in favourable cases. The absorption spectra, which probe empty states, cover the soft x-ray region and may be obtained under conditions of well-defined momentum transfer (angle-resolved), providing a double projection onto crystallographic site and symmetry within the density of states. By combining the very high brightness of field-emission electron sources (brighter than a synchrotron) with the high cross-section of electron scattering, together with parallel detection (not possible with scanning x-ray absorption spectroscopy), a form of spectroscopy ideally suited to the study of nanostructures, interfacial states and defects in materials is obtained with uniquely high spatial resolution. We review the basic theory, the relationship of EELS to optical properties and the dielectric response function, the removal of multiple scattering artefacts and channelling effects. We consider applications in the light of recent developments in aberration corrector and electron monochromator design. Examples are cited of inner-shell spectra obtained from individual atoms within thin crystals, of the detection of interfacial electronic states in semiconductors, of inner-shell near edge structure mapped with sub-nanometre spatial resolution in glasses and of spectra obtained from individual carbon nanotubes, amongst many others.

  1. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hormes, J. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Louisiana State University, CAMD, Baton Rouge, LA (United States); Roy, A.; Bovenkamp, G.L. [Louisiana State University, CAMD, Baton Rouge, LA (United States); Simon, K. [University of Goettingen, Geochemistry, Centre for Geosciences, Goettingen (Germany); Kim, C.Y. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Boerste, N. [Faculty for Theology Paderborn, Paderborn (Germany); Gai, S. [LWL - Archaeologie fuer Westfalen, Muenster (Germany)

    2013-04-15

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile - the most stable form of TiO{sub 2} - but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds. (orig.)

  2. Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-edge X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang; Cui, Shengsheng; Sun, Zijun; Ren, Yang; Zhang, Xiaoyi; Du, Pingwu

    2016-01-21

    Developing efficient water oxidation catalysts made of earth-abundant elements is a demanding challenge that should be met to fulfill the promise of water splitting for clean energy. Herein we report an annealing approach to synthesize binder-free, self-supported heterogeneous copper oxide (CuO) on conductive electrodes for oxygen evolution reaction (OER), producing electrodes with excellent electrocatalytic properties such as high efficiency, low overpotential, and good stability. The catalysts were grown in situ on fluorine-doped tin oxide (FTO) by electrodeposition from a simple Cu(II) salt solution, followed by annealing at a high temperature. Under optimal conditions, the CuO-based OER catalyst shows an onset potential of <0.58 V (vs Ag/AgCl) in 1.0 M KOH at pH 13.6. From the Tafel plot, the required overpotentials for current densities of 0.1 and 1.0 mA/cm2 are only 360 and 430 mV, respectively. The structure and the presence of a CuO motif in the catalyst have been identified by high-energy X-ray diffraction (HE-XRD), Cu K-edge X-ray absorption (XAS) spectra including X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS). To the best of our knowledge, this represents the best catalytic activity for CuO-based OER catalysts to date.

  3. Multivariate curve resolution analysis for interpretation of dynamic Cu K-edge X-ray absorption spectroscopy spectra for a Cu doped V(2)O(5) lithium battery.

    Science.gov (United States)

    Conti, Paolo; Zamponi, Silvia; Giorgetti, Marco; Berrettoni, Mario; Smyrl, William H

    2010-05-01

    Vanadium pentoxide materials prepared through sol-gel processes act as excellent intercalation hosts for lithium as well as polyvalent cations. A chemometric approach has been applied to study the X-ray absorption near-edge structure (XANES) evolution during in situ scanning of the Cu(0.1)V(2)O(5) xerogel/Li ions battery. Among the more common techniques, the fixed size windows evolving factor analysis (FSWEFA) permits the number of species involved in the experiment to be determined and the range of existence of each of them. This result, combined with the constraints of the invariance of the total concentration and non-negativity of both concentrations and spectra, enabled us to obtain the spectra of the pure components using a multivariate curve resolution refined by an alternate least squares fitting procedure. This allowed the normalized concentration profile to be understood. This data treatment evidenced the occurrence, for the first time, of three species during the battery charging. This fact finds confirmation by comparison of the pure spectra with the experimental ones. Extended X-ray absorption fine structure (EXAFS) analysis confirms the occurrence of three different chemical environments of Cu during battery charging.

  4. Characterization of Mo additions in iron-based Fischer-Tropsch catalysts using X-ray absorption spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Campos, A. [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)], E-mail: acampo2@lsu.edu; Spivey, J.J. [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Roy, A. [J. Bennett Johnson, Sr., Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806 (United States); Lohitharn, N.; Goodwin, J.; Lotero, E. [Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634 0909 (United States); Lamb, H. [Department of Chemical and Biomolecular Engineering, Engineering Building I, Box 7905, 911 Partners Way, Raleigh, NC 27695 (United States)

    2007-11-11

    An iron-based Fischer-Tropsch catalyst with a low concentration of molybdenum (90Fe/10Mo/5Cu/17Si) used as a promoter was characterized by X-ray absorption spectroscopy (XAS) and X-ray diffractometry (XRD). The catalyst was prepared using coprecipitation, pretreated in CO, then one sample passivated and one calcined. The XRD data show that after CO pretreatment the calcined and passivated catalysts are almost amorphous with respect to Fe{sub 2}O{sub 3} with nanoparticle size of 10 and 100 A for Fe{sub 3}C (only present in the passivated sample). Least squares fitting of the XANES region show that the calcined and passivated samples were similar in the bulk and surface structures, with the calcined samples completely oxidized. As expected, K and L{sub III} edges Mo-XANES shows only small molybdenum carbide formation compared to iron carbide.

  5. Investigation of nanoparticulate silicon as printed layers using scanning electron microscopy, transmission electron microscopy, X-ray absorption spectroscopy and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.; Britton, David T.; Nordlund, Dennis

    2017-08-21

    The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milled for different times. XANES results reveal the presence of the +4 (SiO2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si2O), +2 (SiO) and +3 (Si2O3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.

  6. Electronic spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Diffuse reflectance spectroscopy (DRS) in the ultraviolet, visible and near-infrared region is a versatile spectroscopic technique, as both d-d and charge transfer transitions of supported TMI can be probed. One of the advantages of electronic spectroscopy is that the obtained information is

  7. Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Mikhlin, Yuri, E-mail: yumikh@icct.ru [Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Tomashevich, Yevgeny [Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Vorobyev, Sergey [Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Siberian Federal University, Svobodny pr. 79, Krasnoyarsk, 660041 (Russian Federation); Saikova, Svetlana [Siberian Federal University, Svobodny pr. 79, Krasnoyarsk, 660041 (Russian Federation); Romanchenko, Alexander [Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Félix, Roberto [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2016-11-30

    Highlights: • Pyrite and pyrrhotite in-air abraded and etched in aqueous Fe{sup 3+} solution were studied. • HAXPES (2 keV-6 keV) and Fe K-, S K-edge XANES (TEY and PFY mode) were measured. • Outer “polysulfide”, strongly S-excessive layers are no more than 1–4 nm thick. • “Metal-depleted” layers depend on the treatment and differ for pyrite and pyrrhotite. • Extended nearly-stoichiometric “defective” underlayers were detected using TEY XANES. - Abstract: Hard X-ray photoelectron spectroscopy (HAXPES) using an excitation energy range of 2 keV to 6 keV in combination with Fe K- and S K-edge XANES, measured simultaneously in total electron (TEY) and partial fluorescence yield (PFY) modes, have been applied to study near-surface regions of natural polycrystalline pyrite FeS{sub 2} and pyrrhotite Fe{sub 1−x}S before and after etching treatments in an acidic ferric chloride solution. It was found that the following near-surface regions are formed owing to the preferential release of iron from oxidized metal sulfide lattices: (i) a thin, no more than 1–4 nm in depth, outer layer containing polysulfide species, (ii) a layer exhibiting less pronounced stoichiometry deviations and low, if any, concentrations of polysulfide, the composition and dimensions of which vary for pyrite and pyrrhotite and depend on the chemical treatment, and (iii) an extended almost stoichiometric underlayer yielding modified TEY XANES spectra, probably, due to a higher content of defects. We suggest that the extended layered structure should heavily affect the near-surface electronic properties, and processes involving the surface and interfacial charge transfer.

  8. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... containing systems and are characterized using techniques in optical spectroscopy. Of the standard techniques in optical spectroscopy, particular attention has been paid to those based on time-resolved measurements and polarization, which is reflected in the experiment design in the projects. Not all...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  9. Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and micro-XANES.

    Science.gov (United States)

    Terzano, Roberto; Al Chami, Ziad; Vekemans, Bart; Janssens, Koen; Miano, Teodoro; Ruggiero, Pacifico

    2008-05-14

    Zinc distribution and speciation within different organs (root, petiole, and leaf) of the edible plant Eruca vesicaria L. Cavalieri were determined using synchrotron microbeam X-ray techniques (XRF microtomography and mu-XANES) for plants grown in polluted soil with or without compost amendment. Data on soil derived from different extraction procedures and using mu-XANES analyses on rhizospheric soil indicated that compost amendment did not significantly influence the Zn speciation and availability in soil. However, major differences were observed within the plants. Plants grown in the presence of compost were able to partly block zinc immediately outside the root endodermis in the form of zinc-phytate, while a smaller Zn fraction was allowed to xylem transport as zinc-citrate. In the leaves, zinc was largely excluded from leaf cells, and about approximately 50% was in the form of phosphate precipitates, and the other 50% was complexed by cysteine and histidine residues. The reported data provide new information concerning the mechanisms of zinc tolerance in E. vesicaria L. Cavalieri, a very common edible plant in Mediterranean regions, and on the role of compost in influencing the molecular strategies involved in zinc uptake and detoxification.

  10. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  11. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  12. Tailoring the crystal structure of TiO{sub 2} thin films from the anatase to rutile phase

    Energy Technology Data Exchange (ETDEWEB)

    Kotake, Haruka; Jia, Junjun; Nakamura, Shin-ichi; Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara 252-5258 (Japan); Okajima, Toshihiro [Kyushu Synchrotron Light Research Center, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan)

    2015-07-15

    TiO{sub 2} films with various Sn concentrations were deposited on quartz substrates using rf reactive magnetron sputtering. The crystal structure was investigated by using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, and the chemical states of Ti and Sn were analyzed by x-ray absorption near edge structure (XANES) spectroscopy. Without Sn doping, TiO{sub 2} films change the crystal structure from rutile to anatase as the total gas pressure increases in the sputtering deposition. On the other hand, Sn doping induces the transformation of TiO{sub 2} crystalline structure from anatase to rutile phase, where the XANES spectra implied that Sn substitutes into Ti site of rutile TiO{sub 2}. Atomic force microscope analyses revealed that the Sn-doped TiO{sub 2} films exhibited a flat surface with the roughness of approximately 2 nm.

  13. Electronic and chemical state of aluminum from the single- (K) and double-electron excitation (KLII&III, KLI) x-ray absorption near-edge spectra of α-alumina, sodium aluminate, aqueous Al³⁺•(H₂O)₆, and aqueous Al(OH)₄⁻

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, John L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Govind, Niranjan [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Huthwelker, Thomas [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Bylaska, Eric J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Vjunov, Aleksei [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pin, Sonia [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Smurthwaite, Tricia D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-07-02

    We probe, at high energy resolution, the double electron excitation (KLII&II) x-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral) are compared to aqueous species that have the same Al coordination symmetries, Al³⁺•6H₂O (octahedral) and Al(OH)₄⁻ (tetrahedral). For the octahedral species, the edge height of the KLII&III-edge is approximately 10% of the main K-edge however the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al³⁺•6H₂O the KLII&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KLII&III-edge feature interferes with an important region of the extended-XAFS region of the spectra for the K-edge of the crystalline and aqueous standards. The K-edge spectra and K-edge positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge XANES spectra reproduce the observed transitions in the experimental spectra of the four Al species. The KLII&III and KLI onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method. Research by JLF, NG, EJB, AV, TDS was supported by U.S. Department of Energy’s (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NG thanks Amity Andersen for help with the α-Al₂O₃ and tetrahedral sodium aluminate (NaAlO₂) clusters. All the calculations were performed using the Molecular Science Computing Capability at EMSL, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at

  14. Electronic topological transition in zinc under pressure: An x-ray absorption spectroscopy study

    Science.gov (United States)

    Aquilanti, G.; Trapananti, A.; Minicucci, M.; Liscio, F.; Twaróg, A.; Principi, E.; Pascarelli, S.

    2007-10-01

    Zinc metal has been studied at high pressure using x-ray absorption spectroscopy. In order to investigate the role of the different degrees of hydrostaticity on the occurrence of structural anomalies following the electronic topological transition, two pressure transmitting media have been used. Results show that the electronic topological transition, if it exists, does not induce an anomaly in the local environment of compressed Zn as a function of hydrostatic pressure and any anomaly must be related to a loss of hydrostaticity of the pressure transmitting medium. The near-edge structures of the spectra, sensitive to variations in the electronic density of states above the Fermi level, do not show any evidence of electronic transition whatever pressure transmitting medium is used.

  15. A feasibility study on oxidation state of arsenic in cut tobacco, mainstream cigarette smoke and cigarette ash by X-ray absorption spectroscopy

    Science.gov (United States)

    Liu, C.; Hu, J.; McAdam, K. G.

    2009-11-01

    This work describes the application of synchrotron-based X-ray Absorption Near-Edge Structure spectroscopy to study the oxidation state of arsenic in cigarette mainstream smoke, cut tobacco and cigarette ash. The level of arsenic in the total particulate matter of the smoke is approximately 1 ppm for the standard research reference cigarette 2R4F and its replacement 3R4F. Smoke particulate samples collected by a conventional glass-fiber membrane (commercially known as Cambridge filter pad) and a jet-impaction method were analyzed and compared. In addition smoke particulate samples were aged either at ambient temperature or at 195 K. X-ray Absorption Near-Edge Structure spectroscopy results revealed that the cut tobacco powder and cigarette ash contained almost exclusively As V. The smoke particulate samples however contained a mixture of As III and As V. The As V in the smoke particulate was reduced to As III upon aging. Stabilizing the smoke particulate matter at 195 K by solid CO 2 slowed down this aging reaction and revealed a higher percentage of As V. This behavior is consistent with the redox properties of the arsenic species and the smoke particulate matrix.

  16. Application of XANES profiles to X-ray spectromicroscopy for biomedical specimens: part II. Mapping oxidation state of cysteine in human hair.

    Science.gov (United States)

    Inoue, Takafumi; Takehara, Kouji; Shimizu, Norio; Kitajima, Yoshinori; Shinohara, Kunio; Ito, Atsushi

    2011-01-01

    Human hair fibers are primarily composed of keratin protein, characterized by a very high content of cysteine, a sulfur-containing amino acid, which ordinarily forms cystine via a disulfide bond. It is known that some cystine residues are converted to cysteic acid during permanent waving or hair coloring, although details of their distribution and extent are still unclear. In this study, by using difference in XANES profiles of cystine and cysteic acid at the S-K absorption edge, the formation of cysteic acid was confirmed for homogenized samples of permed or bleached hair. Furthermore chemical mapping of cysteic acid was performed on hair-section samples with X-ray contact microscopy. The peripheral region, cuticle, in bleached hair showed the highest content of cysteic acid compared with the other parts, while permed hair showed relatively uniform distribution. This finding suggests that perming and bleaching damage hair by different mechanisms.

  17. Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques.

    Science.gov (United States)

    Yang, Jianjun; Liu, Jin; Dynes, James J; Peak, Derek; Regier, Tom; Wang, Jian; Zhu, Shenhai; Shi, Jiyan; Tse, John S

    2014-02-01

    Molecular-level understanding of soil Cu speciation and distribution assists in management of Cu contamination in mining sites. In this study, one soil sample, collected from a mining site contaminated since 1950s, was characterized complementarily by multiple synchrotron-based bulk and spatially resolved techniques for the speciation and distribution of Cu as well as other related elements (Fe, Ca, Mn, K, Al, and Si). Bulk X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that soil Cu was predominantly associated with Fe oxides instead of soil organic matter. This agreed with the closest association of Cu to Fe by microscopic X-ray fluorescence (U-XRF) and scanning transmission X-ray microscopy (STXM) nanoanalysis, along with the non-occurrence of photoreduction of soil Cu(II) by quick Cu L3,2-edge XANES spectroscopy (Q-XANES) which often occurs when Cu organic complexes are present. Furthermore, bulk-EXAFS and STXM-coupled Fe L3,2-edge nano-XANES analysis revealed soil Cu adsorbed primarily to Fe(III) oxides by inner-sphere complexation. Additionally, Cu K-edge μ-XANES, L3,2-edge bulk-XANES, and successive Q-XANES results identified the presence of Cu2S rather than radiation-damage artifacts dominant in certain microsites of the mining soil. This study demonstrates the great benefits in use of multiple combined synchrotron-based techniques for comprehensive understanding of Cu speciation in heterogeneous soil matrix, which facilitates our prediction of Cu reactivity and environmental fate in the mining site.

  18. Electron Spectroscopy

    Science.gov (United States)

    Siegbahn, Kai

    Wilhelm Conrad Röntgen's discovery of X radiation in 1895 in Wörzburg resulted in an immediate break-through not only in physics but also in Society, the latter mainly because of its sensational radiological applications. Within a short time it furthermore indirectly led to the discovery of radioactivity by Henri Becquerel. The discovery of X radiation opened the gate to modern atomic physics, and radioactivity to nuclear physics. Later on, the discovery of X-ray diffraction by Laue, Friedrich and Knipping in 1912 initiated the field of X-ray spectroscopy with its fundamental contributions to atomic and crystal structures. Secondary electrons were early observed in the scattered radiation when X-rays were hitting a sample. The development of the corresponding electron spectroscopy had to wait a much longer time for its maturity. A survey of electron spectroscopy is presented.

  19. Developing V-Xanes Oxybarometry for Probing Materials Formed in Reducing Environments in the Early Solar Disk

    Science.gov (United States)

    Butterworth, A. L.; Gainsforth, Z.; Jilly-Rehak, C. E.; Righter, K.; Westphal, A. J.

    2017-01-01

    Vanadium exhibits four oxidation states (V(sup 2+), V(sup 3+), V(sup 4+) and V(sup 5+)) that have been shown to preferentially partition between melt phases dependent on redox conditions, spanning oxygen fugacity across more than 10 log units. We are developing synchrotron-based x-ray absorption spectroscopy of low-fugacity standards for the determination of V oxidation state in highly reducing conditions relevant to the early solar nebula.

  20. X-ray chemical imaging and the electronic structure of a single nanoplatelet Ni/graphene composite.

    Science.gov (United States)

    Zhou, Chunyu; Wang, Jian; Szpunar, Jerzy A

    2014-03-01

    Chemical imaging and quantitative analysis of a single graphene nanoplatelet grown with Ni nanoparticles (Ni/graphene) has been performed by scanning transmission X-ray microscopy (STXM). Local electronic and chemical structure of Ni/graphene has been investigated by spatially resolved C, O K-edges and Ni L-edge X-ray absorption near edge structure (XANES) spectroscopy, revealing the covalent anchoring of Ni(0) on graphene. This study facilitates the understanding of the structure modification of host materials for hydrogen storage and offers a better understanding of interaction between Ni particles and graphene.

  1. High pressure induced charge transfer in 3d-4f bimetallic photomagnetic materials.

    Science.gov (United States)

    Wu, Lai-Chin; Nielsen, Morten Bormann; Bremholm, Martin; Madsen, Solveig Røgild; Overgaard, Jacob; Newville, Matt; Chen, Yu-Sheng; Iversen, Bo Brummerstedt

    2015-05-25

    Pressure-induced crystal color change of photo-magnetic materials [Ln(DMF)4(H2O)3(μ-CN)M(CN)5]·H2O, Ln = Y, M = Fe (1), Ln = Y, M = Co (2), Ln = Nd, M = Fe (3) (DMF = N,N-dimethyl formamide) are investigated using variable pressure X-ray Absorption Near-Edge Structure (XANES) spectroscopy and X-ray diffraction. For 1 the effect is caused by ligand-to-metal charge transfer (LMCT) on the iron site.

  2. An alternative preparation method for ion exchanged catalysts: Solid state redox reaction

    DEFF Research Database (Denmark)

    Schneider, E.; Hagen, A.; Grunwaldt, J.-D.

    2004-01-01

    A new method for modifying zeolites with zinc is proposed. The solid state redox reaction between metallic zinc and ZSM-5 zeolites with different Si/Al ratios was investigated by temperature programmed hydrogen evolution (TPHE), X-ray absorption near edge structure (XANES) and diffuse reflectance...... infrared Fourier transform spectroscopy (DRIFTS). The evolution of hydrogen was detected at temperatures above 620 K. The source of hydrogen was the solid state redox reaction of the metal with protons of the support. The samples exhibit catalytic activity in ethane aromatization indicating that zinc...

  3. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  4. Modern Spectroscopy

    Science.gov (United States)

    Barrow, Gordon M.

    1970-01-01

    Presents the basic ideas of modern spectroscopy. Both the angular momenta and wave-nature approaches to the determination of energy level patterns for atomic and molecular systems are discussed. The interpretation of spectra, based on atomic and molecular models, is considered. (LC)

  5. Astronomical Spectroscopy

    CERN Document Server

    Massey, Philip

    2010-01-01

    Spectroscopy is one of the most important tools that an astronomer has for studying the universe. This chapter begins by discussing the basics, including the different types of optical spectrographs, with extension to the ultraviolet and the near-infrared. Emphasis is given to the fundamentals of how spectrographs are used, and the trade-offs involved in designing an observational experiment. It then covers observing and reduction techniques, noting that some of the standard practices of flat-fielding often actually degrade the quality of the data rather than improve it. Although the focus is on point sources, spatially resolved spectroscopy of extended sources is also briefly discussed. Discussion of differential extinction, the impact of crowding, multi-object techniques, optimal extractions, flat-fielding considerations, and determining radial velocities and velocity dispersions provide the spectroscopist with the fundamentals needed to obtain the best data. Finally the chapter combines the previous materi...

  6. Grain Spectroscopy

    Science.gov (United States)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  7. A direct Fe-O coordination at the FePc/MoO(x) interface investigated by XPS and NEXAFS spectroscopies.

    Science.gov (United States)

    Liu, Lingyun; Zhang, Wenhua; Guo, Panpan; Wang, Kai; Wang, Jiaou; Qian, Haijie; Kurash, Ibrahim; Wang, Chia-Hsin; Yang, Yaw-Wen; Xu, Faqiang

    2015-02-01

    Molecule-substrate interaction plays a vital role in determining the electronic structures and charge transfer properties in organic-transition metal oxides (TMOs) hybridized devices. In this work, the interactions at the FePc/MoO3 interface has been investigated in detail by using synchrotron radiation photoemission spectroscopy (SRPES) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Compared with the annealing of the bare MoO3 film, the FePc adsorption is found to promote the thermal reduction of the underlying MoO3 film. XPS and NEXAFS experimental results unanimously demonstrate a strong electronic coupling between FePc molecules and the MoOx (x surfaces with potential applications in nanoscience, molecular electronics and photonics.

  8. Recent advances and applications in the analysis of organic C and N using soft X-ray XANES

    Science.gov (United States)

    Gillespie, A. W.; Dynes, J.; Regier, T. Z.; Boyko, T.; Chevrier, D. K.; Peak, D.

    2014-12-01

    Determining the chemical speciation of carbon and nitrogen in environmental samples is important for understanding the role of organic matter in contamination mobility and nutrient cycling. Despite these important applications, bulk soft X-ray absorption spectroscopy, particularly at the carbon K-edge has not been extensively applied to environmental samples until recently. The primary reasons for this gap is the lack of beamline endstations that are suitable for 'dirty' samples and the technical challenges related to acquiring and normalizing spectra from dilute samples. X-ray absorption spectroscopy (XAS) at the C K-edge probes the local bonding environment of C and N. Bulk XAS techniques permit for high throughput, the study of whole soils and high sampling density. These analyses are complementary to X-ray transmission microscopy (STXM) techniques which are limited by low throughput, thin particles (<100 nm) and low sampling density. In many projects, these bulk XAS measurements may be essential to understanding large scale processes in soils such as the global C cycle. Technical challenges have been largely overcome through the use of customized energy selective silicon drift detectors which enable the carbon signal to be detected separately from the signals from higher order light such as oxygen (i.e., partial fluorescence yield). Accurate normalization is now possible using the X-ray scattering signal from Au coated Si wafers as the Io. The radiation dose was minimized using a monochromator slew scanning mode in conjunction with the development of software tools to automatically sample of multiple pristine spots on a sample. Technical developments and recent applications will be presented, showing how bulk C and N XAS is now positioned to contribute significantly to advancing the characterization of organic matter in soils and environmental samples.

  9. Identification of lead chemical form in mine waste materials by X-ray absorption spectroscopy

    Science.gov (United States)

    Taga, Raijeli L.; Zheng, Jiajia; Huynh, Trang; Ng, Jack; Harris, Hugh H.; Noller, Barry

    2010-06-01

    X-ray absorption spectroscopy (XAS) provides a direct means for measuring lead chemical forms in complex samples. In this study, XAS was used to identify the presence of plumbojarosite (PbFe6(SO4)4(OH)12) by lead L3-edge XANES spectra in mine waste from a small gold mining operation in Fiji. The presence of plumbojarosite in tailings was confirmed by XRD but XANES gave better resolution. The potential for human uptake of Pb from tailings was measured using a physiologically based extract test (PBET), an in-vitro bioaccessibility (BAc) method. The BAc of Pb was 55%. Particle size distribution of tailings indicated that 40% of PM10 particulates exist which could be a potential risk for respiratory effects via the inhalation route. Food items collected in the proximity of the mine site had lead concentrations which exceed food standard guidelines. Lead within the mining lease exceeded sediment guidelines. The results from this study are used to investigate exposure pathways via ingestion and inhalation for potential risk exposure pathways of Pb in that locality. The highest Pb concentration in soil and tailings was 25,839 mg/kg, exceeding the Australian National Environment Protection Measure (NEPM) soil health investigation levels.

  10. Tribological performance and chemistry of films for di-n-butyl dithiocarbamate derivatives in rapeseed oil

    Institute of Scientific and Technical Information of China (English)

    WU Hua; ZENG XiangQiong; LU LingBo; REN TianHui

    2007-01-01

    Two di-n-butyl dithiocarbamate derivatives were easily synthesized. Their tribological performances as lubricating oil additives in rapeseed oil were evaluated using a four-ball machine, and their chemistry of films was analyzed with X-ray absorption near-edge spectroscopy (XANES). The results indicate that the two compounds possess excellent anti-wear property and good load-carrying capacity. According to the XANES results, for the thermal films, the outer surfaces are mainly composed of N, S-containing polymer and ferric sulfate, and the near-surface and the bulk are composed of ferrous sulfate, while for the anti-wear films, the outer surfaces are only composed of ferric sulfate, but the near-surface and the bulk are mainly composed of ferrous sulfate.

  11. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M. [Univ. of Western Ontario, London, Ontario (Canada)

    1998-12-31

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L{sub 2,3}- and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi{sub 2} sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi{sub 2}. Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed.

  12. An alternative preparation method for ion exchanged catalysts: Solid state redox reaction

    DEFF Research Database (Denmark)

    Schneider, E.; Hagen, A.; Grunwaldt, J.-D.

    2004-01-01

    A new method for modifying zeolites with zinc is proposed. The solid state redox reaction between metallic zinc and ZSM-5 zeolites with different Si/Al ratios was investigated by temperature programmed hydrogen evolution (TPHE), X-ray absorption near edge structure (XANES) and diffuse reflectance...... infrared Fourier transform spectroscopy (DRIFTS). The evolution of hydrogen was detected at temperatures above 620 K. The source of hydrogen was the solid state redox reaction of the metal with protons of the support. The samples exhibit catalytic activity in ethane aromatization indicating that zinc...... should be located at the same sites as in catalysts prepared by conventional methods. Combination of XANES and catalytic activity point to zinc being mainly present in tetrahedral geometry under reaction conditions....

  13. Transformation of chlorine in NaCl-loaded Victorian brown coal during the gasification in steam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu; Mohammad Asadullah; Rosalie Hocking; LIN Jian-ying; LI Chun-zhu

    2012-01-01

    This study is to examine the changes in Cl volatilizations and chemical forms in NaCl-loaded Victorian brown coal during gasification in steam at 800 ℃ using Cl K-edge X-ray absorption near-edge structure (XANES) spectroscopy.The char samples were prepared in a novel one-stage fluidised-bed/fixed-bed quartz reactor at a fast heating rate.The samples were then collected and sealed in an argon-filled bag in order to minimise possible oxidation of char and Cl by air prior to analysis by XANES.Char-steam reactions were found to significantly affect the transformation of Cl,including the possible formation of chlorine-containing organic structures.On the other hand,volatile-char interactions during the gasificauon appeared to enhance the Cl retention and prevent the formation of organic chlorine compounds in chars.

  14. Modification of SrTiO3 single-crystalline surface after plasma flow treatment

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Alexandr A.; Weissbach, Torsten; Leisegang, Tilmann; Meyer, Dirk C. [Institut fuer Strukturphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Kulagin, Nikolay A. [Kharkiv National University for Radioelectronics, av. Shakespeare 6-48, 61045 Kharkiv (Ukraine); Langer, Enrico [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-07-01

    Surface of pure and transition metal-doped SrTiO3(STO) single crystals before and after hydrogen plasma-flow treatment (energy of 5..20 J/cm2) is investigated by wide-angle X-ray diffraction (WAXRD), fluorescence X-ray absorption near edge structure (XANES) and scanning electron microscopy (SEM) techniques. Plasma treatment results in the formation of a textured polycrystalline layer at the surface of the single-crystalline samples with different orientation. The formation of the quasi-ordered structures consisting of nanoscale-sized pyramids is observed by SEM. XANES evidences the change of the valency of the part of Ti4+ to Ti3+ due to the plasma treatment. The data obtained together with results of X-ray spectroscopy measurements gives evidences of the change of stoichiometry of the STO samples resulting in a change of their physical properties after plasma treatment.

  15. Soft X-ray induced chemical modification of polysaccharides in vascular plant cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Cody, George D. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015 (United States)], E-mail: cody@gl.ciw.edu; Brandes, Jay [Skidaway Institute of Oceangraphy, Savannah, GA (United States); Jacobsen, Chris; Wirick, Susan [Department of Physics, State University of New York, Stony Brook, NY (United States)

    2009-03-15

    Scanning transmission X-ray microscopy and micro carbon X-ray Absorption Near Edge Spectroscopy (C-XANES) can provide quantitative information regarding the distribution of the biopolymers cellulose, hemicellulose, and lignin in vascular plant cell walls. In the case of angiosperms, flowering plants, C-XANES may also be able to distinguish variations in lignin monomer distributions throughout the cell wall. Polysaccharides are susceptible to soft X-ray irradiation induced chemical transformations that may complicate spectral analysis. The stability of a model polysaccharide, cellulose acetate, to variable doses of soft X-rays under conditions optimized for high quality C-XANES spectroscopy was investigated. The primary chemical effect of soft X-ray irradiation on cellulose acetate involves mass loss coincident with de-acetylation. A lesser amount of vinyl ketone formation also occurs. Reduction in irradiation dose via defocusing does enable high quality pristine spectra to be obtained. Radiation induced chemical modification studies of oak cell wall reveals that cellulose and hemicellulose are less labile to chemical modification than cellulose acetate. Strategies for obtaining pristine C-XANES spectra of polysaccharides are presented.

  16. XANES Study of Lead Speciation in Duckweed%铅锌矿区浮萍中铅的XANES形态分析

    Institute of Scientific and Technical Information of China (English)

    储彬彬; 罗立强; 许涛; 袁静; 孙建伶; 曾远; 马艳红; 易杉

    2012-01-01

    南京栖霞山铅锌矿是华东地区最大的铅锌矿床之一,已开采50多年,由此引发的环境问题日益突出.当地环境中铅含量较高,但铅的迁移和毒性机理不明.为此在该地区开展了铅锌矿生物地球化学研究,借助ICP-MS铅含量分析和Pb-LⅢ边XANES形态分析技术,在该污染区发现了耐受并富集重金属的浮萍样品,浮萍中铅的含量为39.4 mg·kg 1.XANES分析和形态拟合结果显示其含硬脂酸铅65%和硫化铅36.9%,从而揭示浮萍样品中铅以含硫的有机酸铅形式存在.%Qixiashan lead-zinc mine of Nanjing was one of the largest lead zinc deposits in East China Its exploitation has been over 50 years, and the environmental pollution has also been increasing. The lead concentration in the local environment was high, but lead migration and toxic mechanism has not been clear. Therefore, biogeochemistry research of the lead zinc mine was carried out Using ICP-MS and Pb-LⅢ edge XANES, lead concentration and speciation were analyzed respectively, and duckweed which can tolerate and enriched heavy metals was found in the pollution area. The results showed that the lead concentration of duckweed was 39. 4 mg·kg-1. XANES analysis and linear combination fit indicated that lead stearate and lead sulfide accounted for 65% and 36. 9% respectively in the lead speciation of duckweed, suggesting that the main lead speciation of duckweed was sulfur-containing lead-organic acid.

  17. Nuclear spectroscopy

    CERN Document Server

    Ajzenberg-Selove, Fay

    1960-01-01

    Nuclear Spectroscopy, Part B focuses on the ways in which experimental data may be analyzed to furnish information about nuclear parameters and nuclear models in terms of which the data are interpreted.This book discusses the elastic and inelastic potential scattering amplitudes, role of beta decay in nuclear physics, and general selection rules for electromagnetic transitions. The nuclear shell model, fundamental coupling procedure, vibrational spectra, and empirical determination of the complex potential are also covered. This publication is suitable for graduate students preparing for exper

  18. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  19. K-edge EXAFS and XANES studies of Cu in CdTe thin-film solar cells

    Science.gov (United States)

    Liu, Xiangxin; Gupta, Akhlesh; Compaan, Alvin D.; Leyarovska, Nadia; Terry, Jeff

    2002-03-01

    Copper has been identified as a very important dopant element in CdTe thin-film solar cells. Cu is a deep acceptor in CdTe and is commonly used to obtain a heavily doped, low resistance back contact to polycrystalline CdTe. Cu also helps to increase the open circuit voltage of the cell. However, Cu is also a fast diffuser in CdTe, especially along grain boundaries, and can accumulate at the CdS/CdTe junction. It is suspected of leading to cell performance degradation in some cases. The present study is designed to help identify the lattice location of the Cu in CdTe. Cu K-edge, x-ray absorption (XAS) measurements were conducted on Cu in thin films of CdTe. Experiments were performed at the MR-CAT beamline at the Advanced Photon Source. The 3 mm CdTe layers were magnetron sputtered onto fused silica substrates. Some films were diffused with Cu from a 200 Å layer of evaporated Cu. XAS spectra were collected in fluorescence geometry with a 13 elements Ge detector. Quantitative fluorescence spectroscopy measurements were also performed. Details of the Cu environment and possible changes with time will be reported.

  20. Reduction and re-oxidation of Cu/Al{sub 2}O{sub 3} catalysts investigated with quick-scanning XANES and EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Stoetzel, J; Luetzenkirchen-Hecht, D; Frahm, R [Department of Physics, University of Wuppertal, Gaussstr. 20, D-42097 Wuppertal (Germany); Kimmerle, B; Baiker, A [Department of Chemistry and Applied Biosciences, ETH Zuerich, CH-8093 Zuerich (Switzerland); Nachtegaal, M [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Beier, M J; Grunwaldt, J-D, E-mail: j.stoetzel@uni-wuppertal.d, E-mail: jdg@kt.dtu.d [Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs. Lyngby (Denmark)

    2009-11-15

    In the present study the structure of copper catalysts on alumina support were investigated in situ and time resolved during reduction and re-oxidation at different temperatures with the quick-scanning EXAFS (QEXAFS) technique. Different impregnation times (2 min and 90 min) were chosen for the preparation which resulted in different copper species that show a strong variation in the reduction/re-oxidation behaviour. These dynamic changes as well as possible intermediate phases during the gas atmospheres changes were followed with up to 20 EXAFS spectra per second at the copper K-edge covering an energy range of 450 eV. The high time resolution provided new insights into the dynamics of the catalysts e.g. revealing Cu(I) as intermediate state during re-oxidation. Latest advances in the data acquisition hardware are leading to an improved data quality of spectra collected at the SuperXAS beamline. Thus, not only accurate analysis of the catalysts via XANES but also by EXAFS was possible. This is also due to the recent upgrade to monitor the Bragg angle directly with an encoder during the experiments.

  1. Stability of mineral fibres in contact with human cell cultures. An in situ μXANES, μXRD and XRF iron mapping study.

    Science.gov (United States)

    Pollastri, Simone; Gualtieri, Alessandro F; Vigliaturo, Ruggero; Ignatyev, Konstantin; Strafella, Elisabetta; Pugnaloni, Armanda; Croce, Alessandro

    2016-12-01

    Relevant mineral fibres of social and economic importance (chrysotile UICC, crocidolite UICC and a fibrous erionite from Jersey, Nevada, USA) were put in contact with cultured diploid human non-tumorigenic bronchial epithelial (Beas2B) and pleural transformed mesothelial (MeT5A) cells to test their cytotoxicity. Slides of each sample at different contact times up to 96 h were studied in situ using synchrotron XRF, μ-XRD and μ-XAS (I18 beamline, Diamond Light Source, UK) and TEM investigations. XRF maps of samples treated for 96 h evidenced that iron is still present within the chrysotile and crocidolite fibres and retained at the surface of the erionite fibres, indicating its null to minor mobilization in contact with cell media; this picture was confirmed by the results of XANES pre-edge analyses. μ-XRD and TEM data indicate greater morphological and crystallinity modifications occurring in chrysotile, whereas crocidolite and erionite show to be resistant in the biological environment. The contact of chrysotile with the cell cultures seems to lead to earlier amorphization, interpreted as the first dissolution step of these fibres. The formation of such silica-rich fibre skeleton may prompt the production of HO in synergy with surface iron species and could indicate that chrysotile may be much more reactive and cytotoxic in vitro in the (very) short term whereas the activity of crocidolite and erionite would be much more sluggish but persistent in the long term.

  2. Determination of localized Fe{sup 2+}/Fe{sup 3+} ratios in inks of historic documents by means of {mu}-XANES

    Energy Technology Data Exchange (ETDEWEB)

    Proost, K.; Janssens, K. E-mail: koen.janssens@ua.ac.be; Wagner, B.; Bulska, E.; Schreiner, M

    2004-01-01

    An important part of the European cultural heritage is composed of hand-written documents. Many of these documents were drawn up with iron-gall ink. This type of ink present a serious conservation problem, as it slowly oxidizes ('burns') the paper it is written on, thereby gradually disintegrating the historic document. Acid hydrolysis of the cellulose and/or the oxidation of organic compounds promoted by radical intermediates that are formed due to the presence of Fe{sup 2+} ions are considered to be the cause of the disintegration. {mu}-XANES measurements were performed with a lateral resolution of 30-50 {mu}m in order to determine the local Fe{sup 2+}/Fe{sup 3+} ratio in 19th C. documents from the Austrian National Archives and fragments of 16th C documents from the Polish National Library. In the 19th C documents, no significant amount of Fe{sup 2+} was detected. On the other hand, in the 16th C fragments, significant amounts of Fe{sup 2+} and appreciable differences in distribution of Fe{sup 2+} and Fe{sup 3+} within individual letters/ink stains were observed.

  3. Imaging of drug loading distributions in individual microspheres of calcium silicate hydrate - an X-ray spectromicroscopy study

    Science.gov (United States)

    Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Wang, Jian; Zhu, Ying-Jie; Sham, Tsun-Kong

    2015-04-01

    Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere.Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07471h

  4. SIMP spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, Yonit [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kuflik, Eric [Department of Physics, LEPP, Cornell University,Ithaca NY 14853 (United States); Murayama, Hitoshi [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),University of Tokyo Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan); Center for Japanese Studies, University of California,Berkeley, CA 94720 (United States)

    2016-05-16

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e{sup +}e{sup −} colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  5. Hg $L_{3}$ edge absorption study of the $HgBa_{2}CuO_{4}\\delta$ superconductor

    CERN Document Server

    Ziyu, Wu; Bianconi, A

    2001-01-01

    The HgBa/sub 2/CuO/sub 4+ delta / superconductor has been studied by high resolution Hg L/sub 3/ X-ray absorption near-edge structure (XANES) spectroscopy. The XANES spectrum has been simulated by full multiple-scattering calculations in order to explore the origin of different features in the experimental spectrum. The experimental Hg L/sub 3/-edge spectrum could be well reproduced by considering a cluster of 85 atoms, containing 10 shells, within a radius of about 7 AA from the central Hg atom. The low energy spectral feature in the XANES spectrum is found to be due to a transition from the Hg p states to the electronic states hybridized with higher shell Ba atoms. This implies that the transition features in the Hg L/sub 3/- edge XANES are strongly influenced by medium range order effects unlike the case of L/sub 3/ edge of 3d transition metals where short- range order is enough to describe the main transition features. (25 refs).

  6. Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides

    Science.gov (United States)

    Mikhlin, Yuri; Tomashevich, Yevgeny; Vorobyev, Sergey; Saikova, Svetlana; Romanchenko, Alexander; Félix, Roberto

    2016-11-01

    Hard X-ray photoelectron spectroscopy (HAXPES) using an excitation energy range of 2 keV to 6 keV in combination with Fe K- and S K-edge XANES, measured simultaneously in total electron (TEY) and partial fluorescence yield (PFY) modes, have been applied to study near-surface regions of natural polycrystalline pyrite FeS2 and pyrrhotite Fe1-xS before and after etching treatments in an acidic ferric chloride solution. It was found that the following near-surface regions are formed owing to the preferential release of iron from oxidized metal sulfide lattices: (i) a thin, no more than 1-4 nm in depth, outer layer containing polysulfide species, (ii) a layer exhibiting less pronounced stoichiometry deviations and low, if any, concentrations of polysulfide, the composition and dimensions of which vary for pyrite and pyrrhotite and depend on the chemical treatment, and (iii) an extended almost stoichiometric underlayer yielding modified TEY XANES spectra, probably, due to a higher content of defects. We suggest that the extended layered structure should heavily affect the near-surface electronic properties, and processes involving the surface and interfacial charge transfer.

  7. The coordination of sulfur in synthetic and biogenic Mg calcites: The red coral case

    Science.gov (United States)

    Perrin, J.; Rivard, C.; Vielzeuf, D.; Laporte, D.; Fonquernie, C.; Ricolleau, A.; Cotte, M.; Floquet, N.

    2017-01-01

    Sulfur has been recognized in biogenic calcites for a long time. However, its structural position is matter of debate. For some authors, sulfur is a marker of the organic matrix while it is part of the calcite structure itself for others. To better understand the place of sulfur in calcite, sulfated magnesian calcites (S-MgCalcite) have been synthetized at high pressure and temperature and studied by μ-XANES spectroscopy. S-MgCalcite XANES spectra show two different types of sulfur: sulfate (SO42-) as a predominant species and a small contribution of sulfite (SO32-), both substituting for carbonate ions in the calcite structure. To address the question of the position of sulfur in biogenic calcites, the oxidation states of sulfur in the skeleton and organic tissues of Corallium rubrum have been investigated by micro X-ray fluorescence (μ-XRF) and sulfur K-edge micro X-ray absorption near edge structure (μ-XANES) spectroscopy at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) on beamline ID21. In the skeleton, sulfur is mainly present as oxidized sulfur SO42- (+VI), plus a weak sulfite contribution. XANES spectra indicate that sulfur is inorganically incorporated as sulfur structurally substituted to carbonate ions (SSS). Although an organic matrix is present in the red coral skeleton, reduced organic sulfur could not be detected by μ-XANES spectroscopy in the skeleton probably due to low organic/inorganic sulfur ratio. In the organic tissues surrounding the skeleton, several sulfur oxidation states have been detected including disulfide (S-S), thioether (R-S-CH3), sulfoxide (SO2), sulfonate (SO2O-) and sulfate (SO42-). The unexpected occurrence of inorganic sulfate within the organic tissues suggests the presence of pre-organized organic/inorganic complexes in the circulatory system of the red coral, precursors to biomineralization ahead of the growth front.

  8. Surface functional group characterization using chemical derivatization X-ray photoelectron spectroscopy (CD-XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Jagst, Eda

    2011-03-18

    Chemical derivatization - X-ray photolectron spectroscopy (CD-XPS) was applied successfully in order to determine different functional groups on thin film surfaces. Different amino group carrying surfaces, prepared by spin coating, self-assembly and plasma polymerization, were successfully investigated by (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Amino groups were derivatized with the widely used primary amino group tags, pentafluorobenzaldehyde (PFB) and 4-(trifluoromethyl)-benzaldehyde (TFBA), prior to analysis. Primary amino group quantification was then carried out according to the spectroscopical data. Self-assembled monolayers (SAMs) of different terminal groups were prepared and investigated with XPS and spectra were compared with reference surfaces. An angle resolved NEXAFS measurement was applied to determine the orientation of SAMs. Plasma polymerized allylamine samples with different duty cycle, power and pressure values were prepared in order to study the effects of external plasma parameters on the primary amino group retention. CD-XPS was used to quantify the amino groups and experiments show, that the milder plasma conditions promote the retention of amino groups originating from the allylamine monomer. An interlaboratory comparison of OH group determination on plasma surfaces of polypropylene treated with oxygen plasma, was studied. The surfaces were investigated with XPS and the [OH] amount on the surfaces was calculated. (orig.)

  9. Soft X-ray spectroscopy of nanoparticles by velocity map imaging

    Science.gov (United States)

    Kostko, O.; Xu, B.; Jacobs, M. I.; Ahmed, M.

    2017-07-01

    Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied here to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. By scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.

  10. X-ray absorption near the edge structure and x-ray photoelectron spectroscopy studies on pyrite prepared by thermally sulfurizing iron films

    Institute of Scientific and Technical Information of China (English)

    Zhang Hui; Liu Ying-Shu; Wang Bao-Yi; Wei Long; Kui Re-Xi; Qian Hai-Jie

    2009-01-01

    This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by x-ray absorption near edge structure spectra and x-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.

  11. Growth and structure of water on SiO2 films on Si investigated byKelvin probe microscopy and in situ X-ray Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Verdaguer, A.; Weis, C.; Oncins, G.; Ketteler, G.; Bluhm, H.; Salmeron, M.

    2007-06-14

    The growth of water on thin SiO{sub 2} films on Si wafers at vapor pressures between 1.5 and 4 torr and temperatures between -10 and 21 C has been studied in situ using Kelvin Probe Microscopy and X-ray photoemission and absorption spectroscopies. From 0 to 75% relative humidity (RH) water adsorbs forming a uniform film 4-5 layers thick. The surface potential increases in that RH range by about 400 mV and remains constant upon further increase of the RH. Above 75% RH the water film grows rapidly, reaching 6-7 monolayers at around 90% RH and forming a macroscopic drop near 100%. The O K-edge near-edge X-ray absorption spectrum around 75% RH is similar to that of liquid water (imperfect H-bonding coordination) at temperatures above 0 C and ice-like below 0 C.

  12. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order.

  13. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments.

    Science.gov (United States)

    Gaudin, J; Fourment, C; Cho, B I; Engelhorn, K; Galtier, E; Harmand, M; Leguay, P M; Lee, H J; Nagler, B; Nakatsutsumi, M; Ozkan, C; Störmer, M; Toleikis, S; Tschentscher, Th; Heimann, P A; Dorchies, F

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called "molecular movie" within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  14. Soft X-ray induced damage in PVA-based membranes in water environment monitored by X-ray absorption spectroscopy

    Science.gov (United States)

    Tzvetkov, George; Späth, Andreas; Fink, Rainer H.

    2014-10-01

    The effect of synchrotron X-ray flux in a soft X-ray scanning-transmission microspectroscope (STXM) instrument on the chemical structure of air-filled poly(vinyl alcohol) (PVA) based microbubbles and their stabilizing shell has been examined. Prolonged soft X-ray illumination of the particles in aqueous suspension leads to the breaking of the microbubbles' protective polymer shell and substantial chemical changes. The latter were clarified via a micro-spot C K-edge near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with further respect to the absorbed X-ray doses. Our results revealed a continuous degradation of the PVA network associated with formation of carbonyl- and carboxyl-containing species as well as an increased content of unsaturated bonds. The observed effects must be taken into account in studies of micro- and nanostructured polymer materials utilizing X-rays.

  15. Chiroptical Spectroscopy

    Science.gov (United States)

    Gurst, Jerome E.

    1995-09-01

    A brief review of the literature, and Chemical and Engineering News in particular, reveals that the determination and use of optical activity is of increasing importance in today's commercial and research laboratories. The classical technique is to measure [alpha]D using a manual or recording polarimeter to provide a single value, the specific rotation at 589 nm. A spectropolarimeter can be used to determine optical activity through the UV-Visible spectrum (Optical Rotatory Dispersion [ORD]). At wavelengths far removed from electronic absorption bands, optical activity arises from circular birefringence, or the difference in the refractive index for left- and right-circularly polarized light; i.e., nL - nR does not equal zero for chiral materials. If the optical activity is measured through an absorption band, complex behavior is observed (a Cotton Effect curve). At an absorption band, chiral materials exhibit circular dichroism (CD), or a difference in the absorption of left- and right-circularly polarized light; epsilon L minus epsilon R does not equal zero. If the spectropolarimeter is set for the measurement of CD spectra, one observes what appears to be a UV-Vis spectrum except that some absorption bands are positive while others may be negative. Just as enantiomers have specific rotations that are equal and opposite at 589 nm (sodium D line), rotations are equal and opposite at all wavelengths, and CD measurements are equal and opposite at all wavelengths. Figure 1 shows the ORD curves for the enantiomeric carvones while Figure 2 contains the CD curves. The enantiomer of carvone that has the positive [alpha]D is obtained from caraway seeds and is known to have the S-configuration while the R-enantiomer is found in spearmint oil. Figure 1. ORD of S-(+)- and R-(-)-carvones Figure 2. CD of S-(+)- and R-(-)-carvones While little can be done to correlate stereochemistry with [alpha]D values, chiroptical spectroscopy (ORD and/or CD) often can be used to assign

  16. Moessbauer Spectroscopy of Mineral Separates from SNC Meteorites

    Science.gov (United States)

    Dyar, M. D.

    2003-01-01

    Numerous workers have recently focused attention on the issue of the oxygen fugacity (f(sub O2)) of martian samples. Estimates of fO2 based on Fe-Ti oxides and D(sub Eu)/D(sub Gd) and D(sub Eu)/D(sub Sm) ratios suggest a range of fO2 values for SNC meteorites from IW+2.5 - IW+3.5 for Shergotty to IW- 2.0 - IW+0.2 for QUE94201. Fe(3+)/Fe(2+) is also a function of f(sub O2), and synchrotron micro-XANES values for olivine, pyroxene, and feldspar Fe(3+) have been reported. However, the relationship between the reported Fe(3+) values and the other methods for estimating f(sub O2) is not clear, and further measurements of Fe(3+)/Fe(2+) by a more conventional technique have been needed. Accordingly, in this project, new Mossbauer spectroscopy data on mineral separates handpicked from 10 SNC meteorites are reported.

  17. XANES study of the valence of Pb in $(Tl_{0.5} Pb_{0.5} Sr_{2} Ca_{1-x} Y_{x} Cu_{2} O_{7-\\delta}$

    CERN Document Server

    Liang, G; Wang, L V

    1999-01-01

    Near edge X-ray-absorption spectra at Pb L/sub 3/-edges have been measured for (Tl/sub 0.5/Pb/sub 0.5/)Sr/sub 2/Ca/sub 1-x/Y/sub x/Cu /sub 2/O/sub 7- delta / compound series. It is found that the intensity of the 2p to 6s transition feature decreases with the substitution of Ca/sup +2/ by Y/sup +3/. This result indicates that some electronic charges have been transferred into the Pb(Tl)-O layers by this substitution. Detailed analysis suggests that the valence value of Pb in this compound series is close to +4 and it decreases with the increase of the Y-doping level x. (8 refs).

  18. The unoccupied electronic structure characterization of hydrothermally grown ThO{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, T.D.; Petrosky, J.C.; McClory, J.W. [Department of Engineering Physics, Air Force Institute of Technology, WPAFB, OH (United States); Turner, D. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States); Mann, J.M. [Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH (United States); Kolis, J.W. [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC (United States); Zhang, Xin; Dowben, P.A. [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE (United States)

    2014-03-15

    Single crystals of thorium dioxide ThO{sub 2}, grown by the hydrothermal growth technique, have been investigated by ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IPES), and L{sub 3}, M{sub 3}, M{sub 4}, and M{sub 5} X-ray absorption near edge spectroscopy (XANES). The experimental band gap for large single crystals has been determined to be 6 eV to 7 eV, from UPS and IPES, in line with expectations. The combined UPS and IPES, place the Fermi level near the conduction band minimum, making these crystals n-type, with extensive band tailing, suggesting an optical gap in the region of 4.8 eV for excitations from occupied to unoccupied edge states. Hybridization between the Th 6d/5f bands with O 2p is strongly implicated. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Microscopically focused synchrotron X-ray investigation of selenium speciation in soils developing on reclaimed mine lands.

    Science.gov (United States)

    Ryser, Amy L; Strawn, Daniel G; Marcus, Matthew A; Fakra, Sirine; Johnson-Maynard, Jodi L; Möller, Gregory

    2006-01-15

    Chemical speciation determines Se solubility and therefore its bioavailability and potential for transport in the environment. In this study we investigated the speciation of Se in soil developed on reclaimed mine sites in the U.S. Western Phosphate Resource Area (WPRA) using micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy and micro-X-ray fluorescence (micro-XRF) mapping. Selenium was nonuniformly distributed in the soils and positively correlated with Fe, Mn, Cu, Zn, and Ni. Sixteen points of interest (POI) from three soil samples were analyzed with micro-XANES spectroscopy. The XANES data indicated that Se is present in the soils in at least three oxidation states, Se(-II, 0), Se(IV), and Se(VI). Selenides or elemental Se dominated 7 of the 16 POI. Selenate was the dominant species at only one of the POI. The remaining eight POI were composed of both Se(IV) and Se(VI), with minor Se(-II, 0) contributions. The results of this research suggest that the reduced Se species in the soil parent material are oxidizing to Se(VI), one of the more mobile species of Se in the environment. This information can be used to better predict and manage Se availability in soils.

  20. Iron, nitrogen and silicon doped diamond like carbon (DLC) thin films: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Sekhar C., E-mail: Raysc@unisa.ac.za [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, Science Campus, Christiaan de Wet and Pioneer Avenue, Florida Park, Johannesburg (South Africa); Pong, W.F. [Department of Physics, Tamkang University, Tamsui 251, New Taipei City, Taiwan (China); Papakonstantinou, P. [Nanotechnology and Integrated Bio-Engineering Centre, University of Ulster, Shore Road, Newtownabbey BT37 0QB (United Kingdom)

    2016-07-01

    The X-ray absorption near edge structure (XANES), X-ray photoelectron spectroscopy (XPS), valence band photoemission (VB-PES) and Raman spectroscopy results show that the incorporation of nitrogen in pulsed laser deposited diamond like carbon (DLC) thin films, reverts the sp{sup 3} network to sp{sup 2} as evidenced by an increase of the sp{sup 2} cluster and I{sub D}/I{sub G} ratio in C K-edge XANES and Raman spectra respectively which reduces the hardness/Young's modulus into the film network. Si-doped DLC film deposited in a plasma enhanced chemical vapour deposition process reduces the sp{sup 2} cluster and I{sub D}/I{sub G} ratio that causes the decrease of hardness/Young's modulus of the film structure. The Fe-doped DLC films deposited by dip coating technique increase the hardness/Young's modulus with an increase of sp{sup 3}-content in DLC film structure. - Highlights: • Fe, N and Si doped DLC films deposited by dip, PLD and PECVD methods respectively • DLC:Fe thin films have higher hardness/Young's modulus than DLC:N(:Si) thin films. • sp{sup 3} and sp{sup 2} contents are estimated from C K-edge XANES and VB-PES measurements.

  1. New insights into the sorption mechanism of cadmium on red mud.

    Science.gov (United States)

    Luo, Lei; Ma, Chenyan; Ma, Yibing; Zhang, Shuzhen; Lv, Jitao; Cui, Mingqi

    2011-05-01

    Effectiveness and mechanism of cadmium (Cd) sorption on original, acidified and ball milling nano-particle red muds were investigated using batch sorption experiments, sequential extraction analysis and X-ray absorption near edge structure (XANES) spectroscopy. The maximum sorption capacity of Cd was 0.16, 0.19, and 0.21 mol/kg for the original, acidified, and nano-particle red muds at pH 6.5, respectively. Both acidification and ball-milling treatments significantly enhanced Cd sorption and facilitated transformation of Cd into less extractable fractions. The Cd LIII-edge XANES analysis indicated the formation of inner-sphere complexes of Cd similar to XCdOH (X represents surface groups on red mud) on the red mud surfaces although outer-sphere complexes of Cd were the primary species. This work shed light on the potential application of red mud to remediate Cd-contaminated soils and illustrated the promising tool of XANES spectroscopy for speciation of multicomponent systems of environmental relevance.

  2. Exploring silicon surface chemistry with spectroscopy and microscopy

    Science.gov (United States)

    Zheng, Fan

    Recent technology advances have pushed the development of silicon devices to their physical performance limits. An alternative way to keep Moore's law valid and avoid the physical limits of today's magnetic memory is to combine molecules with the silicon. Molecules possess degrees of freedom that traditional silicon devices lack, such as rotation, conformation, oxidation states, spontaneous dipole moment, and discrete energy levels. Cleverly taking advantage of these properties may lead to next generation devices that are more powerful and efficient than today's silicon devices. To realize such an ambitious goal, it is necessary to understand the surface chemistry of silicon, i.e., the adsorption, reaction, and disorder phenomena of molecules at the surface. Spectroscopy and microscopy are two complementary methods to study surface chemistry and provide insight into mechanisms for next generation silicon devices. In this thesis, the major spectroscopy method used is Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. To make full use of this technique, a new model is introduced in order to disentangle the concepts of disorder and orientation, both of which are provided by a NEXAFS measurement. The disorder information is obtained by introducing a disorder parameter sigma, whose magnitude directly measures the spread of the orientation angle around its average. This model clarifies some long existing controversial interpretations of NEXAFS measurements and provides insights into disorder-related physical properties. The second emphasis of this thesis is the development of molecular nanostructures where one-dimensional molecular arrays with strong dipole moments are formed on the Si(111) 5x2-Au surface. Scanning Tunneling Microscopy (STM) is used to characterize these nanostructures. The study shows that upward versus downward orientations of the dipole moment of the molecules can be distinguished by STM barrier height imaging. Such structures could be a

  3. X-Ray Spectroscopy of the Liquid Water Surface

    Science.gov (United States)

    Saykally, Richard

    2004-03-01

    using near-edge x-ray absorption fine-structure spectroscopy and density functional theory," J. Phys.: Condens. Matter 14, L221-L226 (2002).

  4. Fe-heme structure in Cu, Zn superoxide dismutase from Haemophilus ducreyi by X-ray absorption spectroscopy.

    Science.gov (United States)

    D'Angelo, Paola; Zitolo, Andrea; Pacello, Francesca; Mancini, Giordano; Proux, Olivier; Hazemann, Jean Louis; Desideri, Alessandro; Battistoni, Andrea

    2010-06-01

    We have carried out an X-ray Absorption Spectroscopy (XAS) study of ferric, ferrous, CO- and NO-bound Haemophilus ducreyi Cu,ZnSOD (HdSOD) in solution to investigate the structural modifications induced by the binding of small gaseous ligands to heme in this enzyme. The combined analysis of EXAFS and XANES data has allowed us to characterize the local structure around the Fe-heme with 0.02A accuracy, revealing a heterogeneity in the distances between iron and the two histidine ligands which was not evident in the X-ray crystal structure. In addition, we have shown that the metal oxidation state does not influence the Fe-heme coordination environment, whereas the presence of the CO and NO ligands induces local structural rearrangements in the enzyme which are very similar to those already observed in other hexa-coordinated heme proteins, such as neuroglobin.

  5. Operando characterization of batteries using x-ray absorption spectroscopy: advances at the beamline XAFS at synchrotron Elettra

    Science.gov (United States)

    Aquilanti, Giuliana; Giorgetti, Marco; Dominko, Robert; Stievano, Lorenzo; Arčon, Iztok; Novello, Nicola; Olivi, Luca

    2017-02-01

    X-ray absorption spectroscopy is a synchrotron radiation based technique that is able to provide information on both local structure and electronic properties in a chemically selective manner. It can be used to characterize the dynamic processes that govern the electrochemical energy storage in batteries, and to shed light on the redox chemistry and changes in structure during galvanostatic cycling to design cathode materials with improved properties. Operando XAS studies have been performed at beamline XAFS at Elettra on different systems. For Li-ion batteries, a multiedge approach revealed the role of the different cathode components during the charge and discharge of the battery. In addition, Li-S batteries for automotive applications were studied. Operando sulfur K-edge XANES and EXAFS analysis was used to characterize the redox chemistry of sulfur, and to relate the electrochemical mechanism to its local structure.

  6. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  7. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  8. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1995-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is promarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  9. Symposium on atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented. (GHT)

  10. Coherent Raman spectroscopy

    CERN Document Server

    Eesley, G L

    1981-01-01

    Coherent Raman Spectroscopy provides a unified and general account of the fundamental aspects of nonlinear Raman spectroscopy, also known as coherent Raman spectroscopy. The theoretical basis from which coherent Raman spectroscopy developed is described, along with its applications, utility, and implementation as well as advantages and disadvantages. Experimental data which typifies each technique is presented. This book is comprised of four chapters and opens with an overview of nonlinear optics and coherent Raman spectroscopy, followed by a discussion on nonlinear transfer function of matter

  11. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  12. Direct observation of pentacene-thiol interaction using x-ray spectroscopy

    Science.gov (United States)

    Jia, Zhang; Lee, Vincent; Floreano, Luca; Verdini, Alberto; Cossaro, Albano; Morgante, Alberto; Kymissis, Ioannis

    2010-03-01

    There has been an intense interest in the surface modification of the source-drain electrodes for organic field effect transistors (OFETs) to improve their performance. A number of thiol based self assembled monolayers demonstrated improvements to the contact resistance and channel performance. Morphological improvements at the contacts, a change in the effective work function, and charge transfer between the thiols and the semiconductor have all been credited with the observed performance improvements. Using in-situ semiconductor deposition together with x-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure, we are able to directly probe two technologically relevant OFET stacks. This work directly measures the interaction between pentacene and two thiols which have been associated to contact improvement: an electroneutral thiol (1-hexadecanethiol) and an electronegative thiol (pentafluorobenzenethiol). Based on our results we observe no chemical interaction between pentacene and the thiol. The electrical improvements to transistor performance, based on these systems, can be attributed to work function shifts of the contacts and morphological improvements of the organic semiconductor.

  13. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  14. Speciation of selenium in stream insects using X-ray absorption spectroscopy.

    Science.gov (United States)

    Andrahennadi, Ruwandi; Wayland, Mark; Pickering, Ingrid J

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  15. The Structure of the Inner HH 34 Jet from Optical Integral Field Spectroscopy

    CERN Document Server

    Beck, T L; Raga, A C; Reipurth, B; Beck, Tracy L.; Reipurth, Bo

    2006-01-01

    We present high spatial resolution optical integral field spectroscopy of a collimated Herbig-Haro jet viewed nearly edge-on. Maps of the line emission, velocity centroid, and velocity dispersion were generated for the H$\\alpha$ and [S II] emission features from the inner collimated jet and exciting source region of the HH 34 outflow. The kinematic structure of the jet shows several maxima and minima in both velocity centroid value and velocity dispersion along the jet axis. Perpendicular to the flow direction the velocity decreases outward from the axis to the limb of the jet, but the velocity dispersion increases. Maps of the electron density structure were derived from the line ratio of [S II] 6731/6716 emission. We have found that the jet exhibits a pronounced ``striped'' pattern in electron density; the high $n_e$ regions are at the leading side of each of the emission knots in the collimated jet, and low $n_e$ regions in the down-flow direction. On average, the measured electron density decreases outwar...

  16. Evaluation of the fluorinated antisticking layer by using photoemission and NEXAFS spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Haruyama, Yuichi; Nakai, Yasuki; Matsui, Shinji [University of Hyogo, Graduate School of Science, Laboratory of Advanced Science and Technology for Industry, Ako, Hyogo (Japan)

    2015-11-15

    The electronic structures of four kinds of fluorinated self-assembled monolayers (F-SAMs) with different chain length, which were used for an antisticking layer, were investigated by the photoemission and the near-edge X-ray absorption fine structure (NEXAFS) spectroscopies. From the photoemission spectra in the wide and in the C 1s core-level regions, chemical compositions and components of the F-SAMs with different chain length were evaluated. By using the curve fitting analysis of the photoemission spectra in C 1s core-level region, it was found that the CF{sub 3} site is located at the top of the surface in the C sites of the F-SAM. From the C K-edge NEXAFS spectra of the F-SAMs as a function of the incidence angle of the excitation photon, it was shown that the σ*(C-F) and σ*(C-C) orbitals in the F-SAMs are parallel and perpendicular to the surface, respectively. This indicates that the C-C chain in (CF{sub 2}){sub n} part of the F-SAMs is perpendicular to the surface. Based on these results, the electronic structures of the F-SAMs are discussed. (orig.)

  17. The amorphous Zn biomineralization at Naracauli stream, Sardinia: electron microscopy and X-ray absorption spectroscopy.

    Science.gov (United States)

    Medas, D; Lattanzi, P; Podda, F; Meneghini, C; Trapananti, A; Sprocati, A; Casu, M A; Musu, E; De Giudici, G

    2014-01-01

    An amorphous Zn biomineralization ("white mud"), occurring at Naracauli stream, Sardinia, in association with cyanobacteria Leptolyngbya frigida and diatoms, was investigated by electron microscopy and X-ray absorption spectroscopy. Preliminary diffraction analysis shows that the precipitate sampled on Naracauli stream bed is mainly amorphous, with some peaks ascribable to quartz and phyllosilicates, plus few minor unattributed peaks. Scanning electron microscopy analysis shows that the white mud, precipitated in association with a seasonal biofilm, is made of sheaths rich in Zn, Si, and O, plus filaments likely made of organic matter. Transmission electron microscopy analysis shows that the sheaths are made of smaller units having a size in the range between 100 and 200 nm. X-ray absorption near-edge structure and extended X-ray absorption fine structure data collected at the Zn K-edge indicate that the biomineral has a local structure similar to hemimorphite, a zinc sorosilicate. The differences of this biomineral with respect to the hydrozincite biomineralization documented about 3 km upstream in the same Naracauli stream may be related to either variations in the physicochemical parameters and/or different metabolic behavior of the involved biota.

  18. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering [University of Saskatchewan, Saskatoon, SK (Canada). Department of Geological Sciences

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  19. CALIFA: a diameter-selected sample for an integral field spectroscopy galaxy survey

    CERN Document Server

    Walcher, C J; Bekeraité, S; Husemann, B; Iglesias-Páramo, J; Backsmann, N; Ballesteros, J Barrera; Catalán-Torrecilla, C; Cortijo, C; del Olmo, A; Lorenzo, B Garcia; Falcón-Barroso, J; Jilkova, L; Kalinova, V; Mast, D; Marino, R A; Méndez-Abreu, J; Pasquali, A; Sánchez, S F; Trager, S; Zibetti, S; Aguerri, J A L; Alves, J; Bland-Hawthorn, J; Boselli, A; Morales, A Castillo; Fernandes, R Cid; Flores, H; Galbany, L; Gallazzi, A; García-Benito, R; de Paz, A Gil; González-Delgado, R M; Jahnke, K; Jungwiert, B; Kehrig, C; Lyubenova, M; Perez, I Márquez; Masegosa, J; Ibero, A Monreal; Pérez, E; Quirrenbach, A; Rosales-Ortega, F F; Roth, M M; Sanchez-Blazquez, P; Spekkens, K; Tundo, E; van de Ven, G; Verheijen, M A W; Vilchez, J V; Ziegler, B

    2014-01-01

    We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area Survey (CALIFA), a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45" and 79.2" and with a redshift 0.005 Mr > -23.1 and over a stellar mass range between 10^9.7 and 10^11.4Msun. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of Mr = -19 (or stellar masses < 10^9.7Msun) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form < 10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these ...

  20. X-ray scattering and spectroscopy studies on diesel soot from oxygenated fuel under various engine load conditions

    Science.gov (United States)

    Braun, Andreas; Shah, N.; Huggins, Frank E.; Kelly, K.E.; Sarofim, A.; Jacobsen, C.; Wirick, S.; Francis, H.; Ilavsky, J.; Thomas, G.E.; Huffman, G.P.

    2005-01-01

    Diesel soot from reference diesel fuel and oxygenated fuel under idle and load engine conditions was investigated with X-ray scattering and X-ray carbon K-edge absorption spectroscopy. Up to five characteristic size ranges were found. Idle soot was generally found to have larger primary particles and aggregates but smaller crystallites, than load soot. Load soot has a higher degree of crystallinity than idle soot. Adding oxygenates to diesel fuel enhanced differences in the characteristics of diesel soot, or even reversed them. Aromaticity of idle soot from oxygenated diesel fuel was significantly larger than from the corresponding load soot. Carbon near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was applied to gather information about the presence of relative amounts of carbon double bonds (CC, CO) and carbon single bonds (C-H, C-OH, COOH). Using scanning X-ray transmission microspectroscopy (STXM), the relative amounts of these carbon bond states were shown to vary spatially over distances approximately 50 to 100 nm. The results from the X-ray techniques are supported by thermo-gravimetry analysis and high-resolution transmission electron microscopy. ?? 2005 Elsevier Ltd. All rights reserved.

  1. Casimir-Polder repulsion near edges: wedge apex and a screen with an aperture

    CERN Document Server

    Milton, Kimball A; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen A

    2011-01-01

    Although repulsive effects have been predicted for quantum vacuum forces between bodies with nontrivial electromagnetic properties, such as between a perfect electric conductor and a perfect magnetic conductor, realistic repulsion seems difficult to achieve. Repulsion is possible if the medium between the bodies has a permittivity in value intermediate to those of the two bodies, but this may not be a useful configuration. Here, inspired by recent numerical work, we initiate analytic calculations of the Casimir-Polder interaction between an atom with anisotropic polarizability and a plate with an aperture. In particular, for a semi-infinite plate, and, more generally, for a wedge, the problem is exactly solvable, and for sufficiently large anisotropy, Casimir-Polder repulsion is indeed possible, in agreement with the previous numerical studies. In order to achieve repulsion, what is needed is a sufficiently sharp edge (not so very sharp, in fact) so that the directions of polarizability of the conductor and t...

  2. 黑漆古铜镜表面层的X射线近边吸收谱分析%Sn-L3 EDGE and Fe K edge XANES spectra of the surface layer of ancient Chinese black mirror Heiqigu

    Institute of Scientific and Technical Information of China (English)

    高魏梦佳; 刘渝珍; 储旺盛; 吴自玉; 王昌燧

    2009-01-01

    利用同步辐射X射线吸收(XANES)近边分析,探讨了黑漆古铜镜表面层某些原子周边的信息.Sn原子L3边XANES谱的分析,进一步证明黑漆古铜镜表面SnO2晶格中存在以肖托基缺陷的形式存在掺杂的Fe原子,Sn原子的外层轨道空态少于标样SnO2,被部分填充.Sn原子与O原子的结合程度较标样SnO2低,黑漆古铜镜表面是由Sn(IV)与Sn(II)的氧化态共同组成的稳定结构.

  3. Chemical Structure of TiO2 Nanotube Photocatalysts Promoted by Copper and Iron

    Directory of Open Access Journals (Sweden)

    Chang-Yu Liao

    2013-01-01

    Full Text Available TiO2 nanotubes (TNTs promoted by copper (5% (Cu-TNT and iron (5% (Fe-TNT were prepared for visible-light photocatalysis. By X-ray absorption near edge structure (XANES spectroscopy, it is found that the enhanced photocatalytic degradation of methylene blue (MB on Cu-TNT and Fe-TNT is associated with the predominant surface photoactive sites A2 ((Ti=OO4. By extended X-ray absorption fine structure (EXAFS spectroscopy, the dispersed copper and iron also cause increases in the Ti–O and Ti–(O–Ti bond distances by 0.01-0.02 and 0.04-0.05 Å, respectively. The decreased Ti–O bonding energy may lead to an increase of photoexcited electron transport. The copper- or-iron promoted TNT can thus enhance photocatalytic degradation of MB under the visible-light radiation.

  4. On the state of iron in a clinoptilolite

    Science.gov (United States)

    Marco, J. F.; Gracia, M.; Gancedo, J. R.; González-Carreño, T.; Arcoya, A.; Seoane, X. L.

    1995-12-01

    The characterization of an iron-containing natural zeolitic sample from the deposit of Tasajeras (Cuba) has been carried out by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS),57Fe Mössbauer spectroscopy and Fe K-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). The results show that iron is mainly located (ca. 96%) as Fe3+ in an octahedral site of the clinoptilolite framework. No evidence of tetrahedrally coordinated Fe3+ was found. The remaining 4% Fe is located as Fe2+ in an extraframework octahedral site, probably as a solvated ion, within the clinoptilolite structure.

  5. On the state of iron in a clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Marco, J.F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Inst. de Quimica Fisica `Rocasolano`; Gracia, M. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Inst. de Quimica Fisica `Rocasolano`; Gancedo, J.R. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Inst. de Quimica Fisica `Rocasolano`; Gonzalez-Carreno, T. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Instituto de Ciencia de Materiales; Arcoya, A. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Instituto de Ciencia de Materiales; Seoane, X.L. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Instituto de Ciencia de Materiales

    1995-03-01

    The characterization of an iron-containing natural zeolitic sample from the deposit of Tasajeras (Cuba) has been carried out by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), {sup 57}Fe Moessbauer spectroscopy and Fe K-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). The results show that iron is mainly located (ca. 96%) as Fe{sup 3+} in an octahedral site of the clinoptilolite framework. No evidence of tetrahedrally coordinated Fe{sup 3+} was found. The remaining 4% Fe is located as Fe{sup 2+} in an extraframework octahedral site, probably as a solvated ion, within the clinoptilolite structure. (orig.)

  6. Watching coherent molecular structural dynamics during photoreaction: beyond kinetic description

    CERN Document Server

    Lemke, Henrik T; Hartsock, Robert; van Driel, Tim Brandt; Chollet, Matthieu; Glownia, J M; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Nielsen, Martin M; Benfatto, Maurizio; Gaffney, Kelly J; Collet, Eric; Cammarata, Marco

    2015-01-01

    A deep understanding of molecular photo-transformations occurring is challenging because of the complex interaction between electronic and nuclear structure. The initially excited electronic energy dissipates into electronic and structural reconfigurations often in less than a billionth of a second. Molecular dynamics induced by photoexcitation have been very successfully studied with femtosecond optical spectroscopies, but electronic and nuclear dynamics are often very difficult to disentangle. X-ray based spectroscopies can reduce the ambiguity between theoretical models and experimental data, but it is only with the recent development of bright ultrafast X-ray sources, that key information during transient molecular processes can be obtained on their intrinsic timescale. We use Free Electron Laser (FEL) based time-resolved X-ray Absorption Near Edge Structure (XANES) measurements around the Iron K-edge of a spin crossover prototypical compound. We reveal its transformation from the ligand-located electroni...

  7. Changes in local surface structure and Sr depletion in Fe-implanted SrTiO3 (001)

    Science.gov (United States)

    Lobacheva, O.; Yiu, Y. M.; Chen, N.; Sham, T. K.; Goncharova, L. V.

    2017-01-01

    Local surface structure of single crystal strontium titanate SrTiO3 (001) samples implanted with Fe in the range of concentrations between 2 × 1014 to 2 × 1016 Fe/cm2 at 30 keV has been investigated. In order to facilitate Fe substitution (doping), implanted samples were annealed in oxygen at 350 °C. Sr depletion was observed from the near-surface layers impacted by the ion-implantation process, as revealed by Rutherford Backscattering Spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray Absorption Near Edge Spectroscopy (XANES), and Atomic Force Microscopy (AFM). Hydrocarbon contaminations on the surface may contribute to the mechanisms of Sr depletion, which have important implications for Sr(Ti1-xFex)O3-δ materials in gas sensing applications.

  8. Traces of Defects in the Electronic Structure of Porous Ni-Ti Alloys

    Institute of Scientific and Technical Information of China (English)

    O.M.Ozkendir; E.Cengiz; E.T(i)rasoglu; Mehmet Kaya; I.H.Karahan; N.Orhan

    2013-01-01

    The electronic structures of Ni-Ti shape-memory alloy samples were investigated by X-ray absorption fine structure (XAFS) spectroscopy both experimentally and theoretically.In the experimental section,the samples were measured at low temperature to determine the persistent traces of both preheating process and atomic concentration effects on the crystal and electronic structure by X-ray absorption near-edge structure (XANES)spectroscopy.As a second step,the extended-X-ray absorption fine structure (EXAFS) calculations,which are based on different choices of one electron potentials according to Ti coordinations by using the real space multiple scattering method FEFF 8.2 code,were performed.The crystallographic and electronic structures of the porous Ni-Ti alloys were tested at various temperatures ranging from 5 to 1323 K.

  9. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    Science.gov (United States)

    Amoroso, Jake W.; Marra, James; Dandeneau, Christopher S.; Brinkman, Kyle; Xu, Yun; Tang, Ming; Maio, Vince; Webb, Samuel M.; Chiu, Wilson K. S.

    2017-04-01

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. Primary hollandite, pyrochlore/zirconolite, and perovskite phases were identified in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.

  10. Crystal and electronic structure study of Mn doped wurtzite ZnO nanoparticles

    Institute of Scientific and Technical Information of China (English)

    O.M. Ozkendir; S. Yildirimcan; A. Yuzer; K. Ocakoglu

    2016-01-01

    The change in the crystal and electronic structure properties of wurtzite ZnO nanoparticles was studied according to Mn doping in the powder samples. The investigations were conducted by X-ray Absorption Fine Structure Spectroscopy (XAFS) technique for the samples prepared with different heating and doping processes. Electronic analysis was carried out by the collected data from the X-ray Absorption Near-Edge Structure Spectroscopy (XANES) measurements. Additional crystal structure properties were studied by Extended-XAFS (EXAFS) analysis. Longer heating periods for the undoped wurtzite ZnO samples were determined to own stable crystal geometries. However, for some doped samples, the distortions in the crystal were observed as a result of the low doping amounts of Mn which was treated as an impurity. Besides, the changes in oxygen locations were determined to create defects and distor-tions in the samples.

  11. Crystal and electronic structure study of Mn doped wurtzite ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    O.M. Ozkendir

    2016-08-01

    Full Text Available The change in the crystal and electronic structure properties of wurtzite ZnO nanoparticles was studied according to Mn doping in the powder samples. The investigations were conducted by X-ray Absorption Fine Structure Spectroscopy (XAFS technique for the samples prepared with different heating and doping processes. Electronic analysis was carried out by the collected data from the X-ray Absorption Near-Edge Structure Spectroscopy (XANES measurements. Additional crystal structure properties were studied by Extended-XAFS (EXAFS analysis. Longer heating periods for the undoped wurtzite ZnO samples were determined to own stable crystal geometries. However, for some doped samples, the distortions in the crystal were observed as a result of the low doping amounts of Mn which was treated as an impurity. Besides, the changes in oxygen locations were determined to create defects and distortions in the samples.

  12. Ultrahigh spatiotemporal resolved spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI; Zhi

    2007-01-01

    We review the technique and research of the ultrahigh spatiotemporal resolved spectroscopy and its applications in the field of the ultrafast dynamics of mesoscopic systems and nanomaterials. Combining femtosecond time-resolved spectroscopy and scanning near-field optical microscopy (SNOM), we can obtain the spectra with ultrahigh temporal and spatial resolutions simultaneously. Some problems in doing so are discussed. Then we show the important applications of the ultrahigh spatiotemporal resolved spectroscopy with a few typical examples.……

  13. Ultrahigh spatiotemporal resolved spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ We review the technique and research of the ultrahigh spatiotemporal resolved spectroscopy and its applications in the field of the ultrafast dynamics of mesoscopic systems and nanomaterials. Combining femtosecond time-resolved spectroscopy and scanning near-field optical microscopy (SNOM), we can obtain the spectra with ultrahigh temporal and spatial resolutions simultaneously. Some problems in doing so are discussed. Then we show the important applications of the ultrahigh spatiotemporal resolved spectroscopy with a few typical examples.

  14. An Efficient CuxO Photocathode for Hydrogen Production at Neutral pH: New Insights from Combined Spectroscopy and Electrochemistry.

    Science.gov (United States)

    Baran, Tomasz; Wojtyła, Szymon; Lenardi, Cristina; Vertova, Alberto; Ghigna, Paolo; Achilli, Elisabetta; Fracchia, Martina; Rondinini, Sandra; Minguzzi, Alessandro

    2016-08-24

    Light-driven water splitting is one of the most promising approaches for using solar energy in light of more sustainable development. In this paper, a highly efficient p-type copper(II) oxide photocathode is studied. The material, prepared by thermal treatment of CuI nanoparticles, is initially partially reduced upon working conditions and soon reaches a stable form. Upon visible-light illumination, the material yields a photocurrent of 1.3 mA cm(-2) at a potential of 0.2 V vs a reversible hydrogen electrode at mild pH under illumination by AM 1.5 G and retains 30% of its photoactivity after 6 h. This represents an unprecedented result for a nonprotected Cu oxide photocathode at neutral pH. The photocurrent efficiency as a function of the applied potential was determined using scanning electrochemical microscopy. The material was characterized in terms of photoelectrochemical features; X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, fixed-energy X-ray absorption voltammetry, and extended X-ray absorption fine structure analyses were carried out on pristine and used samples, which were used to explain the photoelectrochemical behavior. The optical features of the oxide are evidenced by direct reflectance spectroscopy and fluorescence spectroscopy, and Mott-Schottky analysis at different pH values explains the exceptional activity at neutral pH.

  15. Spectroscopy for Dummies

    DEFF Research Database (Denmark)

    Lindvold, Lars René

    This presentation will give short introduction to the most pertinent topics of optical spectroscopy. The following topics will be discussed: • The origin of spectra in UV, VIS and IR spectral range • Spectroscopic methods like absorption, luminescence and Raman • Wavelength dispersive optical...... components • Materials for use optical spectroscopy • Spectrometer geometries • Detectors for use in spectrometer • Practical examples of optical spectroscopy The objective of this presentation is to give the audience a good feel for the range of possibilities that optical spectroscopy can provide....

  16. Advances in DUV spectroscopy

    DEFF Research Database (Denmark)

    Buchhave, Preben; Tidemand-Lichtenberg, Peter; Mogensen, Claus Tilsted

    The would-be advantages of deep UV (DUV) spectroscopy are well known, but the potential applications have so far not been fully realized due to technological limitations and, perhaps, lack of bright ideas. However, new components and new knowledge about DUV spectra and spectroscopic methods...... combined with increasing needs for solutions to practical problems in environmental protection, medicine and pollution monitoring promise a new era in DUV spectroscopy. Here we shall review the basis for DUV spectroscopy, both DUV fluorescence and DUV Raman spectroscopy, and describe recent advances...

  17. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses

    Science.gov (United States)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.

    2017-05-01

    Mo-containing high-level nuclear waste borosilicate glasses were investigated as part of an effort to improve Mo loading while avoiding yellow phase crystallization. Previous work showed that additions of vanadium decrease yellow phase formation and increases Mo solubility. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to characterize Mo environments in HLW borosilicate glasses and to investigate possible structural relationships between Mo and V. Mo XAS spectra for the glasses indicate isolated tetrahedral Mo6+O4 with Mo-O distances near 1.75 Å. V XANES indicate tetrahedral V5+O4 as the dominant species. Raman spectra show composition dependent trends, where Mo-O symmetrical stretch mode frequencies (ν1) are sensitive to the mix of alkali and alkaline earth cations, decreasing by up to 10 cm-1 for glasses that change from Li+ to Na+ as the dominant network-modifying species. This indicates that MoO4 tetrahedra are isolated from the borosilicate network and are surrounded, at least partly, by Na+ and Li+. Secondary ν1 frequency effects, with changes up to 7 cm-1, were also observed with increasing V2O5 and MoO3 content. These secondary trends may indicate MoO4-MoO4 and MoO4-VO4 clustering, suggesting that V additions may stabilize Mo in the matrix with respect to yellow phase formation.

  18. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  19. Dependence of the Ce(iii)/Ce(iv) ratio on intracellular localization in ceria nanoparticles internalized by human cells.

    Science.gov (United States)

    Ferraro, Daniela; Tredici, Ilenia G; Ghigna, Paolo; Castillio-Michel, Hiram; Falqui, Andrea; Di Benedetto, Cristiano; Alberti, Giancarla; Ricci, Vittorio; Anselmi-Tamburini, Umberto; Sommi, Patrizia

    2017-01-26

    CeO2 nanoparticles (CNPs) have been investigated as promising antioxidant agents with significant activity in the therapy of diseases involving free radicals or oxidative stress. However, the exact mechanism responsible for CNP activity has not been completely elucidated. In particular, in situ evidence of modification of the oxidative state of CNPs in human cells and their evolution during cell internalization and subsequent intracellular distribution has never been presented. In this study we investigated modification of the Ce(iii)/Ce(iv) ratio following internalization in human cells by X-ray absorption near edge spectroscopy (XANES). From this analysis on cell pellets, we observed that CNPs incubated for 24 h showed a significant increase in Ce(iii). By coupling on individual cells synchrotron micro-X-ray fluorescence (μXRF) with micro-XANESXANES) we demonstrated that the Ce(iii)/Ce(iv) ratio is also dependent on CNP intracellular localization. The regions with the highest CNP concentrations, suggested to be endolysosomes by transmission electron microscopy, were characterized by Ce atoms in the Ce(iv) oxidation state, while a higher Ce(iii) content was observed in regions surrounding these areas. These observations suggest that the interaction of CNPs with cells involves a complex mechanism in which different cellular areas play different roles.

  20. Dependence of the Ce(iii)/Ce(iv) ratio on intracellular localization in ceria nanoparticles internalized by human cells

    KAUST Repository

    Ferraro, Daniela

    2017-01-09

    CeO2 nanoparticles (CNPs) have been investigated as promising antioxidant agents with significant activity in the therapy of diseases involving free radicals or oxidative stress. However, the exact mechanism responsible for CNP activity has not been completely elucidated. In particular, in situ evidence of modification of the oxidative state of CNPs in human cells and their evolution during cell internalization and subsequent intracellular distribution has never been presented. In this study we investigated modification of the Ce(iii)/Ce(iv) ratio following internalization in human cells by X-ray absorption near edge spectroscopy (XANES). From this analysis on cell pellets, we observed that CNPs incubated for 24 h showed a significant increase in Ce(iii). By coupling on individual cells synchrotron micro-X-ray fluorescence (μXRF) with micro-XANESXANES) we demonstrated that the Ce(iii)/Ce(iv) ratio is also dependent on CNP intracellular localization. The regions with the highest CNP concentrations, suggested to be endolysosomes by transmission electron microscopy, were characterized by Ce atoms in the Ce(iv) oxidation state, while a higher Ce(iii) content was observed in regions surrounding these areas. These observations suggest that the interaction of CNPs with cells involves a complex mechanism in which different cellular areas play different roles.

  1. Micro-spectroscopic investigation of selenium-bearing minerals from the Western US Phosphate Resource Area

    Directory of Open Access Journals (Sweden)

    Gunter Mickey E

    2005-01-01

    Full Text Available Mining activities in the US Western Phosphate Resource Area (WPRA have released Se into the environment. Selenium has several different oxidation states and species, each having varying degrees of solubility, reactivity, and bioavailability. In this study we are investigating the speciation of Se in mine-waste rocks. Selenium speciation was determined using bulk and micro-x-ray absorption spectroscopy (XAS, as well as micro-x-ray fluorescence mapping. Rocks used for bulk-XAS were ground into fine powders. Shale used for micro-XAS was broken along depositional planes to expose unweathered surfaces. The near edge region of the XAS spectra (XANES for the bulk rock samples revealed multiple oxidation states, with peaks indicative of Se(-II, Se(IV, and Se(+VI species. Micro-XANES analysis of the shale indicated that three unique Se-bearing species were present. Using the XANES data together with ab initio fitting of the extended x-ray absorption fine structure region of the micro-XAS data (micro-EXAFS the three Se-bearing species were identified as dzharkenite, a di-selenide carbon compound, and Se-substituted pyrite. Results from this research will allow for a better understanding of the biogeochemical cycling of Se in the WPRA.

  2. Electronic structure and local atomic arrangement of transition metal ions in nanoporous iron-substituted nickel phosphates, VSB-1 and VSB-5.

    Science.gov (United States)

    Kim, Tae Woo; Oh, Eun-Jin; Jhung, Sung Hwa; Chang, Jong-San; Hwang, Seong-Ju

    2010-01-01

    The electronic structure and local atomic arrangement of transition metal ions in nanoporous iron-substituted nickel phosphates VSB-1 and VSB-5 have been investigated using X-ray absorption near-edge structure (XANES) spectroscopy at Fe K- and Ni K-edges. The Fe K-edge XANES study clearly demonstrated that substituted iron ions were stabilized in octahedral nickel sites of nanoporous nickel phosphate lattice. A comparison with several Fe-references revealed that the substituted irons have mixed Fe2+/Fe3+ oxidation state with the average valence of +2.8-3.0. According to the Ni K-edge XANES analysis, the aliovalent substitution of Ni2+ with Fe2+/Fe3+ induced a slight reduction of divalent nickel ions in VSB-5 to meet a charge balance. On the contrary, Fe substitution for the VSB-1 phase did not cause notable decrease in the oxidation state of nickel ions, which would be related either to the accompanying decrease of pentavalent phosphorus cations or to the increase of oxygen anions. In conclusion, the present findings clearly demonstrated that the nanoporous lattice of nickel phosphate can accommodate effectively iron ions in its octahedral nickel sites.

  3. Metallomic EPR spectroscopy.

    Science.gov (United States)

    Hagen, Wilfred R

    2009-09-01

    Based on explicit definitions of biomolecular EPR spectroscopy and of the metallome, this tutorial review positions EPR in the field of metallomics as a unique method to study native, integrated systems of metallobiomolecular coordination complexes subject to external stimuli. The specific techniques of whole-system bioEPR spectroscopy are described and their historic, recent, and anticipated applications are discussed.

  4. Heterodyned holographic spectroscopy

    NARCIS (Netherlands)

    Douglas, NG

    1997-01-01

    In holographic spectroscopy an image of an interference pattern is projected onto a detector and transformed back to the input spectrum. The general characteristics are similar to those of Fourier transform spectroscopy, but the spectrum is obtained without scanning. In the heterodyned arrangement o

  5. Progress in field spectroscopy

    NARCIS (Netherlands)

    Milton, E.J.; Schaepman, M.E.; Anderson, K.; Kneubühler, M.; Fox, N.

    2009-01-01

    This paper reviews developments in the science of field spectroscopy, focusing on the last twenty years in particular. During this period field spectroscopy has become established as an important technique for characterising the reflectance of natural surfaces in situ, for supporting the vicarious c

  6. Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Meng, W. J.; Tittsworth, R. C.; Rehn, L. E.; Materials Science Division; Louisana State Univ.

    2000-12-01

    Using the techniques of reactive magnetron sputter deposition and inductively coupled plasma (ICP) assisted hybrid physical vapor deposition (PVD)/chemical vapor deposition (CVD), we have synthesized a wide variety of metal-free amorphous hydrocarbon (a-C:H) and Ti-containing hydrocarbon (Ti-C:H) coatings. Coating elastic modulus and hardness have been measured by the technique of instrumented nanoindentation and related to Ti and hydrogen compositions. We show that both metal and hydrogen compositions significantly influence the mechanical properties of Ti-C:H coatings. The microstructure of Ti-C:H coatings is further characterized by transmission electron microscopy (TEM), X-ray absorption near edge structure (XANES) spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. XANES spectroscopy and high-resolution TEM examination of Ti-C:H specimens shows that the dissolution limit of Ti atoms in an a-C:H matrix is between 0.9 and 2.5 at.%. Beyond the Ti dissolution limit, precipitation of nanocrystalline B1-TiC cluster occurs and Ti-C:H coatings are in fact TiC/a-C:H thin film nanocomposites. Measurements of the average Ti bonding environment in TiC/a-C:H nanocomposites by EXAFS spectroscopy are consistent with a microstructure in which bulk-like B1-TiC clusters are embedded in an a-C:H matrix.

  7. Insight into growth of Au-Pt bimetallic nanoparticles: an in situ XAS study.

    Science.gov (United States)

    Nayak, Chandrani; Bhattacharyya, D; Bhattacharyya, K; Tripathi, A K; Bapat, R D; Jha, S N; Sahoo, N K

    2017-07-01

    Au-Pt bimetallic nanoparticles have been synthesized through a one-pot synthesis route from their respective chloride precursors using block copolymer as a stabilizer. Growth of the nanoparticles has been studied by simultaneous in situ measurement of X-ray absorption spectroscopy (XAS) and UV-Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at Indus-2 SRS at RRCAT, Indore, India. In situ XAS spectra, comprising both X-ray near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) parts, have been measured simultaneously at the Au and Pt L3-edges. While the XANES spectra of the precursors provide real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed in the intermediate stages of growth. This insight into the formation process throws light on how the difference in the reduction potential of the two precursors could be used to obtain the core-shell-type configuration of a bimetallic alloy in a one-pot synthesis method. The core-shell-type structure of the nanoparticles has also been confirmed by ex situ energy-dispersive spectroscopy line-scan and X-ray photoelectron spectroscopy measurements with in situ ion etching on fully formed nanoparticles.

  8. Quantum-limit spectroscopy

    CERN Document Server

    Ficek, Zbigniew

    2017-01-01

    This book covers the main ideas, methods, and recent developments of quantum-limit optical spectroscopy and applications to quantum information, resolution spectroscopy, measurements beyond quantum limits, measurement of decoherence, and entanglement. Quantum-limit spectroscopy lies at the frontier of current experimental and theoretical techniques, and is one of the areas of atomic spectroscopy where the quantization of the field is essential to predict and interpret the existing experimental results. Currently, there is an increasing interest in quantum and precision spectroscopy both theoretically and experimentally, due to significant progress in trapping and cooling of single atoms and ions. This progress allows one to explore in the most intimate detail the ways in which light interacts with atoms and to measure spectral properties and quantum effects with high precision. Moreover, it allows one to perform subtle tests of quantum mechanics on the single atom and single photon scale which were hardly eve...

  9. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    Science.gov (United States)

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-09-01

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C60). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan(3) 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Electronic structure of aromatic amino acids studied by soft x-ray spectroscopy

    Science.gov (United States)

    Zhang, Wenhua; Carravetta, Vincenzo; Plekan, Oksana; Feyer, Vitaliy; Richter, Robert; Coreno, Marcello; Prince, Kevin C.

    2009-07-01

    The electronic structure of phenylalanine, tyrosine, tryptophan, and 3-methylindole in the gas phase was investigated by x-ray photoemission spectroscopy (XPS) and near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the C, N, and O K-edges. The XPS spectra have been calculated for the four principal conformers of each amino acid, and the spectra weighted by the Boltzmann population ratios calculated from published free energies. Instead of the single peaks expected from the stoichiometry of the compounds, the N 1s core level spectra of phenylalanine and tryptophan show features indicating that more than one conformer is present. The calculations reproduce the experimental features. The C and O 1s spectra do not show evident effects due to conformational isomerism. The calculations predict that such effects are small for carbon, and for oxygen it appears that only broadening occurs. The carbon K-edge NEXAFS spectra of these aromatic amino acids are similar to the published data of the corresponding molecules in the solid state, but show more structure due to the higher resolution in the present study. The N K-edge spectra of tryptophan and 3-methylindole differ from phenylalanine and tyrosine, as the first two both contain a nitrogen atom located in a pyrrole ring. The nitrogen K-edge NEXAFS spectra of aromatic amino acids do not show any measurable effects due to conformational isomerism, in contrast to the photoemission results. Calculations support this result and show that variations of the vertical excitation energies of different conformers are small, and cannot be resolved in the present experiment. The O NEXAFS spectra of these three aromatic compounds are very similar to other, simpler amino acids, which have been studied previously.

  11. Light, Molecules, Action: Using Ultrafast Uv-Visible and X-Ray Spectroscopy to Probe Excited State Dynamics in Photoactive Molecules

    Science.gov (United States)

    Sension, R. J.

    2017-06-01

    Light provides a versatile energy source capable of precise manipulation of material systems on size scales ranging from molecular to macroscopic. Photochemistry provides the means for transforming light energy from photon to process via movement of charge, a change in shape, a change in size, or the cleavage of a bond. Photochemistry produces action. In the work to be presented here ultrafast UV-Visible pump-probe, and pump-repump-probe methods have been used to probe the excited state dynamics of stilbene-based molecular motors, cyclohexadiene-based switches, and polyene-based photoacids. Both ultrafast UV-Visible and X-ray absorption spectroscopies have been applied to the study of cobalamin (vitamin B_{12}) based compounds. Optical measurements provide precise characterization of spectroscopic signatures of the intermediate species on the S_{1} surface, while time-resolved XANES spectra at the Co K-edge probe the structural changes that accompany these transformations.

  12. The structures of T6, T3R3 and R6 bovine insulin: combining X-ray diffraction and absorption spectroscopy

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl; Knudsen, Marianne Vad; Noren, Katarina;

    2012-01-01

    B1 were observed in the R6 insulin structure, resulting in an eightfold doubling of the unit-cell volume upon cooling. The zinc coordination in each conformation was studied by X-ray absorption spectroscopy (XAS), including both EXAFS and XANES. Zinc adopts a tetrahedral coordination in all R3 sites......The crystal structures of three conformations, T6, T3R3 and R6, of bovine insulin were solved at 1.40, 1.30 and 1.80 Å resolution, respectively. All conformations crystallized in space group R3. In contrast to the T6 and T3R3 structures, different conformations of the N-terminal B-chain residue Phe...... and an octahedral coordination in T3 sites. The coordination distances were refined from XAS with a standard deviation of

  13. Cation distribution in Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} using X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, A. K., E-mail: akyadav@barc.gov.in; Jha, S. N.; Bhattacharyya, D.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai - 400094 (India); Jadhav, J.; Biswas, S. [Department of Physics, The LNM Institute of Information Technology, Jaipur-302031 (India)

    2014-04-24

    Spinel ferrite samples of Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (for x=0.2, 0.4, 0.5, 0.6 and 0.8) nanoparticles prepared by a novel chemical synthesis method have been characterized by X-ray Absorption Spectroscopy (XAS) technique to investigate the distribution of cations in the unit cell. XANES region clearly shows that as Ni concentration increases, the pre-edge feature, which is a characteristic of tetrahedral coordination of Fe, is enhanced. A quantitative determination of the relative occupancy of iron cation in the octahedral and tetrahedral sites of the spinel structure was obtained from EXAFS data analysis. It has been found that as atomic fraction of Ni is increased from 0.2 to 0.8, Fe occupancy at tetrahedral to octahedral sites is increased from 13:87 and to 39:61.

  14. The structures of T6, T3R3 and R6 bovine insulin: combining X-ray diffraction and absorption spectroscopy

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl; Knudsen, Marianne Vad; Noren, Katarina

    2012-01-01

    and an octahedral coordination in T3 sites. The coordination distances were refined from XAS with a standard deviation of structures, the XAS results were in good agreement with similar coordination geometries found in small......The crystal structures of three conformations, T6, T3R3 and R6, of bovine insulin were solved at 1.40, 1.30 and 1.80 Å resolution, respectively. All conformations crystallized in space group R3. In contrast to the T6 and T3R3 structures, different conformations of the N-terminal B-chain residue Phe......B1 were observed in the R6 insulin structure, resulting in an eightfold doubling of the unit-cell volume upon cooling. The zinc coordination in each conformation was studied by X-ray absorption spectroscopy (XAS), including both EXAFS and XANES. Zinc adopts a tetrahedral coordination in all R3 sites...

  15. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  16. Effect of Particle Size Upon Pt/SiO2 Catalytic Cracking of n-Dodecane Under Supercritical Conditions: in situ SAXS and XANES Studies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungwon; Lee, Sungsik; Kumbhalkar, Mrunmayi; Wiaderek, Kamila M.; Dumesic, James A; Winans, Randall E.

    2017-01-01

    The endothermic cracking and dehydrogenation of n-dodecane is investigated over well-defined nanometer size platinum catalysts supported on SiO2 to study the particle size effects in the catalytic cracking reaction, with simultaneous in situ monitoring of the particle size and oxidation state of the working catalysts by in situ SAXS (small angle X-ray scattering) and XAS (X-ray absorption spectroscopy). The selectivity toward olefins products was found dominant in the 1 nm size platinum catalysts, whereas paraffins are dominant in the 2 nm catalysts. This reveals a strong correlation between catalytic performance and catalyst size as well as the stability of the nanoparticles in supercritical condition of n-dodecane. The presented results suggest that controlling the size and geometric structure of platinum nanocatalysts could lead to a fundamentally new level of understanding of nanoscale materials by monitoring the catalysts in realistic reaction conditions.

  17. Foundations of laser spectroscopy

    CERN Document Server

    Stenholm, Stig

    2005-01-01

    A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.

  18. Hadron Spectroscopy -- Theory

    CERN Document Server

    Swanson, E S

    2009-01-01

    A brief review of theoretical progress in hadron spectroscopy and nonperturbative QCD is presented. Attention is focussed on recent lattice gauge theory, the Dyson-Schwinger formalism, unquenching constituent models, and some beyond the Standard Model physics.

  19. Fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Hink, M.A.; Verveer, P.J.

    2015-01-01

    Fluorescence fluctuation spectroscopy techniques allow the quantification of fluorescent molecules present at the nanomolar concentration level. After a brief introduction to the technique, this chapter presents a protocol including background information in order to measure and quantify the molecul

  20. Ultrafast infrared vibrational spectroscopy

    CERN Document Server

    Fayer, Michael D

    2013-01-01

    The past ten years or so have seen the introduction of multidimensional methods into infrared and optical spectroscopy. The technology of multidimensional spectroscopy is developing rapidly and its applications are spreading to biology and materials science. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results and will serve as an excellent resource for other researchers.

  1. Use of synchrotron XANES and Cr-doped coal to further confirm the vaporization of organically bound Cr and the formation of chromium(VI) during coal oxy-fuel combustion.

    Science.gov (United States)

    Chen, Juan; Jiao, Facun; Zhang, Lian; Yao, Hong; Ninomiya, Yoshihiko

    2012-03-20

    Through the use of synchrotron XANES and Cr-doped brown coal, extensive efforts have been made to clarify the volatility of organically bound Cr during oxy-fuel combustion and the mode of occurrence and leachability of Cr in resulting fly ashes. As the continuation of our previous study using raw coal, the Cr-doped coal has been tested in this study to improve the signal-to-noise ratio for Cr K-edge XANES spectra, and hence the accuracy for Cr(VI) quantification. As has been confirmed, the abundant CO(2) as a balance gas for oxy-firing has the potential to inhibit the decomposition of organically bound Cr, thereby favoring its retention in solid ash. It also has the potential to promote the oxidation of Cr(III) to Cr(VI) to a minor extent. Increasing the oxygen partial pressure, particularly in the coexistence of HCl in flue gas, favored the oxidation of Cr(III) into gaseous Cr(VI)-bearing species such as CrO(2)Cl(2). Regarding the solid impurities including Na(2)SO(4) and CaO, Na(2)SO(4) has proven to preferentially capture the Cr(III)-bearing species at a low furnace temperature such as 600 °C. Its promoting effect on the oxidation of Cr(III) to Cr(VI), although thermodynamically available at the temperatures examined here, is negligible in a lab-scale drop tube furnace (DTF), where the particle residence time is extremely short. In contrast, CaO has proven facilitating the capture of Cr(VI)-bearing species particularly oxychloride vapors at 1000 °C, forming Ca chromate with the formulas of CaCrO(4) and Ca(3)(CrO(4))(2) via a direction stabilization of Cr(VI) oxychloride vapor by CaO particle or an indirect oxidation of Cr(III) via the initial formation of Ca chromite. The fly ash collected from the combustion of Cr-doped coal alone has a lower water solubility (i.e., 58.7%) for its Cr(VI) species, due to the formation of Ba/Pb chromate and/or the incorporation of Cr(VI) vapor into a slagging phase which is water-insoluble. Adding CaO to coal increased the

  2. Electronic Spectroscopy & Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mark Maroncelli, Nancy Ryan Gray

    2010-06-08

    The Gordon Research Conference (GRC) on Electronic Spectroscopy and Dynamics was held at Colby College, Waterville, NH from 07/19/2009 thru 07/24/2009. The Conference was well-attended with participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The GRC on Electronic Spectroscopy & Dynamics showcases some of the most recent experimental and theoretical developments in electronic spectroscopy that probes the structure and dynamics of isolated molecules, molecules embedded in clusters and condensed phases, and bulk materials. Electronic spectroscopy is an important tool in many fields of research, and this GRC brings together experts having diverse backgrounds in physics, chemistry, biophysics, and materials science, making the meeting an excellent opportunity for the interdisciplinary exchange of ideas and techniques. Topics covered in this GRC include high-resolution spectroscopy, biological molecules in the gas phase, electronic structure theory for excited states, multi-chromophore and single-molecule spectroscopies, and excited state dynamics in chemical and biological systems.

  3. Coincidence Auger spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Penent, F. [LCPMR, Universite Pierre et Marie Curie, 75231 Paris 5 (France) and DIAM, Universite Pierre et Marie Curie, 75252 Paris 5 (France)]. E-mail: penent@ccr.jussieu.fr; Lablanquie, P. [LURE, Universite Paris Sud, 91898 Orsay (France); Hall, R.I. [DIAM, Universite Pierre et Marie Curie, 75252 Paris 5 (France); Palaudoux, J. [LCPMR, Universite Pierre et Marie Curie, 75231 Paris 5 (France); Ito, K. [Photon Factory, IMSS, KEK, Tsukuba 305-0801 (Japan); Hikosaka, Y. [Photon Factory, IMSS, KEK, Tsukuba 305-0801 (Japan); IMS, Okazaki 444-8585 (Japan); Aoto, T. [Photon Factory, IMSS, KEK, Tsukuba 305-0801 (Japan); Eland, J.H.D. [Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3DW (United Kingdom)

    2005-06-15

    Auger electron spectroscopy (AES) and photoelectron spectroscopy (PES) are (with X-ray emission spectroscopy, XES) powerful analytical tools for material science and gas phase studies. However, the interpretation of Auger spectra can be very difficult due to the number and complexity of the involved processes. A deeper analysis, that allows a better understanding of relaxation processes following inner shell ionization, is possible with coincidence Auger spectroscopy. This method gives a new insight into electron correlation and allows disentangling of complex Auger electron spectra. In this paper, we present some examples related to gas phase coincidence Auger electron spectroscopy using synchrotron radiation. The detection in coincidence of an Auger electron with a threshold photoelectron presents two main advantages which are good energy resolution and high coincidence count rates. This technique has also provided new results on double Auger decay processes. A further qualitative breakthrough has been made with the development of a new experimental set-up based on a magnetic bottle time-of-flight electron spectrometer. This opens up the field of multi-electron coincidence spectroscopy and allows a most detailed analysis with characterization of all possible decay pathways following inner shell ionization.

  4. Study on the coordination structure of pt sorbed on bacterial cells using x-ray absorption fine structure spectroscopy.

    Directory of Open Access Journals (Sweden)

    Kazuya Tanaka

    Full Text Available Biosorption has been intensively investigated as a promising technology for the recovery of precious metals from solution. However, the detailed mechanism responsible for the biosorption of Pt on a biomass is not fully understood because of a lack of spectroscopic studies. We applied X-ray absorption fine structure spectroscopy to elucidate the coordination structure of Pt sorbed on bacterial cells. We examined the sorption of Pt(II and Pt(IV species on bacterial cells of Bacillus subtilis and Shewanella putrefaciens in NaCl solutions. X-ray absorption near-edge structure and extended X-ray absorption fine structure (EXAFS of Pt-sorbed bacteria suggested that Pt(IV was reduced to Pt(II on the cell's surface, even in the absence of an organic material as an exogenous electron donor. EXAFS spectra demonstrated that Pt sorbed on bacterial cells has a fourfold coordination of chlorine ions, similar to PtCl42-, which indicated that sorption on the protonated amine groups of the bacterial cells. This work clearly demonstrated the coordination structure of Pt sorbed on bacterial cells. The findings of this study will contribute to the understanding of Pt biosorption on biomass, and facilitate the development of recovery methods for rare metals using biosorbent materials.

  5. Gold/titania composites: An X-ray absorption spectroscopy study on the influence of the reduction method

    Science.gov (United States)

    Meire, Mieke; Tack, Pieter; De Keukeleere, Katrien; Balcaen, Lieve; Pollefeyt, Glenn; Vanhaecke, Frank; Vincze, Laszlo; Van Der Voort, Pascal; Van Driessche, Isabel; Lommens, Petra

    2015-08-01

    The functionalization of titania based materials with noble metal cocatalysts such as gold or platinum is a well known procedure to improve the catalytic activity of these materials in for example the degradation of organic pollutants or CO conversion. Parameters such as cocatalyst load, noble metal particle size and oxidation state influence