WorldWideScience

Sample records for ncar community climate

  1. Comparison of cloud forcing derived from the Earth Radiation Budget Experiment with that simulated by the NCAR Community Climate Model

    Science.gov (United States)

    Kiehl, J. T.; Ramanathan, V.

    1990-01-01

    The cloud radiative forcing derived from the Earth Radiation Budget Experiment (ERBE) data was compared with cloud forcing simulated by a T42 version of the NCAR Community Climate Model (CCM). The comparison indicates a number of deficiencies in the CCM. Namely, it is shown that the model emits substantially more long-wave radiation than is observed by ERBE. This overestimation is attributed to two model characteristics: (1) the model is too dry and thus reduces the greenhouse longwave radiation effect of the atmosphere (permitting more longwave radiation to escape into space); and (2) the effective high cloud amount is quite small in the model.

  2. An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community Earth System Model.

    Science.gov (United States)

    Kang, Xianbiao; Zhang, Rong-Hua; Gao, Chuan; Zhu, Jieshun

    2017-12-07

    The El Niño-Southern oscillation (ENSO) simulated in the Community Earth System Model of the National Center for Atmospheric Research (NCAR CESM) is much stronger than in reality. Here, satellite data are used to derive a statistical relationship between interannual variations in oceanic chlorophyll (CHL) and sea surface temperature (SST), which is then incorporated into the CESM to represent oceanic chlorophyll -induced climate feedback in the tropical Pacific. Numerical runs with and without the feedback (referred to as feedback and non-feedback runs) are performed and compared with each other. The ENSO amplitude simulated in the feedback run is more accurate than that in the non-feedback run; quantitatively, the Niño3 SST index is reduced by 35% when the feedback is included. The underlying processes are analyzed and the results show that interannual CHL anomalies exert a systematic modulating effect on the solar radiation penetrating into the subsurface layers, which induces differential heating in the upper ocean that affects vertical mixing and thus SST. The statistical modeling approach proposed in this work offers an effective and economical way for improving climate simulations.

  3. Climate Discovery Online Courses for Educators from NCAR

    Science.gov (United States)

    Henderson, S.; Ward, D. L.; Meymaris, K. K.; Johnson, R. M.; Gardiner, L.; Russell, R.

    2008-12-01

    The National Center for Atmospheric Research (NCAR) has responded to the pressing need for professional development in climate and global change sciences by creating the Climate Discovery online course series. This series was designed with the secondary geoscience educator in mind. The online courses are based on current and credible climate change science. Interactive learning techniques are built into the online course designs with assignments that encourage active participation. A key element of the online courses is the creation of a virtual community of geoscience educators who exchange ideas related to classroom implementation, student assessment, and lessons plans. Geoscience educators from around the country have participated in the online courses. The ongoing interest from geoscience educators strongly suggests that the NCAR Climate Discovery online courses are a timely and needed professional development opportunity. The intent of NCAR Climate Discovery is to positively impact teachers' professional development scientifically authentic information, (2) experiencing guided practice in conducting activities and using ancillary resources in workshop venues, (3) gaining access to standards-aligned lesson plans, kits that promote hands-on learning, and scientific content that are easily implemented in their classrooms, and (4) becoming a part of a community of educators with whom they may continue to discuss the challenges of pedagogy and content comprehension in teaching climate change in the Earth system context. Three courses make up the Climate Discovery series: Introduction to Climate Change; Earth System Science - A Climate Change Perspective; and Understanding Climate Change Today. Each course, instructed by science education specialists, combines geoscience content, information about current climate research, hands-on activities, and group discussion. The online courses use the web-based Moodle courseware system (open- source software similar to

  4. Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3

    Science.gov (United States)

    Iacono, Michael J.; Mlawer, Eli J.; Clough, Shepard A.; Morcrette, Jean-Jacques

    2000-06-01

    The effect of introducing a new longwave radiation parameterization, RRTM, on the energy budget and thermodynamic properties of the National Center for Atmospheric Research (NCAR) community climate model (CCM3) is described. RRTM is a rapid and accurate, correlated k, radiative transfer model that has been developed for the Atmospheric Radiation Measurement (ARM) program to address the ARM objective of improving radiation models in GCMs. Among the important features of RRTM are its connection to radiation measurements through comparison to the extensively validated line-by-line radiative transfer model (LBLRTM) and its use of an improved and validated water vapor continuum model. Comparisons between RRTM and the CCM3 longwave (LW) parameterization have been performed for single atmospheric profiles using the CCM3 column radiation model and for two 5-year simulations using the full CCM3 climate model. RRTM produces a significant enhancement of LW absorption largely due to its more physical and spectrally extensive water vapor continuum model relative to the current CCM3 water continuum treatment. This reduces the clear sky, outgoing longwave radiation over the tropics by 6-9 W m-2. Downward LW surface fluxes are increased by 8-15 W m-2 at high latitudes and other dry regions. These changes considerably improve known flux biases in CCM3 and other GCMs. At low and midlatitudes, RRTM enhances LW radiative cooling in the upper troposphere by 0.2-0.4 K d-1 and reduces cooling in the lower troposphere by 0.2-0.5 K d-1. The enhancement of downward surface flux contributes to increasing lower tropospheric and surface temperatures by 1-4 K, especially at high latitudes, which partly compensates documented, CCM3 cold temperature biases in these regions. Experiments were performed with the weather prediction model of the European Center for Medium Range Weather Forecasts (ECMWF), which show that RRTM also impacts temperature on timescales relevant to forecasting applications

  5. Supporting National User Communities at NERSC and NCAR

    Energy Technology Data Exchange (ETDEWEB)

    Killeen, Timothy L.; Simon, Horst D.

    2006-05-16

    The National Energy Research Scientific Computing Center(NERSC) and the National Center for Atmospheric Research (NCAR) are twocomputing centers that have traditionally supported large national usercommunities. Both centers have developed responsive approaches to supportthese user communities and their changing needs, providing end-to-endcomputing solutions. In this report we provide a short overview of thestrategies used at our centers in supporting our scientific users, withan emphasis on some examples of effective programs and futureneeds.

  6. Final Report. Evaluating the Climate Sensitivity of Dissipative Subgrid-Scale Mixing Processes and Variable Resolution in NCAR's Community Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, Christiane [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-12-14

    The goals of this project were to (1) assess and quantify the sensitivity and scale-dependency of unresolved subgrid-scale mixing processes in NCAR’s Community Earth System Model (CESM), and (2) to improve the accuracy and skill of forthcoming CESM configurations on modern cubed-sphere and variable-resolution computational grids. The research thereby contributed to the description and quantification of uncertainties in CESM’s dynamical cores and their physics-dynamics interactions.

  7. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States); Troch, Peter [Univ. of Arizona, Tucson, AZ (United States); Pelletier, Jon [Univ. of Arizona, Tucson, AZ (United States); Niu, Guo-Yue [Univ. of Arizona, Tucson, AZ (United States); Gochis, David [NCAR Research Applications Lab., Boulder, CO (United States)

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  8. Simulation of the modern arctic climate by the NCAR CCM1

    Science.gov (United States)

    Bromwich, David H.; Tzeng, Ren-Yow; Parish, Thomas, R.

    1994-01-01

    The National Center of Atmospheric Research (NCAR) Community Climate Model Version 1 (CCM1's) simulation of the modern arctic climate is evaluated by comparing a five-year seasonal cycle simulation with the European Center for Medium-Range Weather Forecasts (ECMWF) global analyses. The sea level pressure (SLP), storm tracks, vertical cross section of height, 500-hPa height, total energy budget, and moisture budget are analyzed to investigate the biases in the simulated arctic climate. The results show that the model simulates anomalously low SLP, too much storm activity, and anomalously strong baroclinicity to the west of Greenland and vice versa to the east of Greenland. This bias is mainly attributed to the model's topographic representation of Greenland. First, the broadened Greenland topography in the model distorts the path of cyclone waves over the North Atlantic Ocean. Second, the model oversimulates the ridge over Greenland, which intensifies its blocking effect and steers the cyclone waves clockwise around it and hence produces an artificial circum-Greenland trough. These biases are significantly alleviated when the horizontal resolution increases to T42. Over the Arctic basin, the model simulates large amounts of low-level (stratus) clouds in winter and almost no stratus in summer, which is opposite to the observations. This bias is mainly due to the location of the simulated SLP features and the negative anomaly of storm activity, which prevent the transport of moisture into this region during summer but favor this transport in winter. The moisture budget analysis shows that the model's net annual precipitation (P-E) between 70 deg N and the North Pole is 6.6 times larger than the observations and the model transports six times more moisture into this region. The bias in the advection term is attributed to the positive moisture fixer scheme and the distorted flow pattern. However, the excessive moisture transport into the Arctic basin does not solely

  9. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States); Troch, Peter [Univ. of Arizona, Tucson, AZ (United States); Pelletier, Jon [Univ. of Arizona, Tucson, AZ (United States); Niu, Guo-Yue [Univ. of Arizona, Tucson, AZ (United States); Gochis, David [NCAR Research Applications (RAL), Boulder, CO (United States)

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discusses the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels

  10. Improving Convection and Cloud Parameterization Using ARM Observations and NCAR Community Atmosphere Model CAM5

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guang J. [Univ. of California, San Diego, CA (United States)

    2016-11-07

    The fundamental scientific objectives of our research are to use ARM observations and the NCAR CAM5 to understand the large-scale control on convection, and to develop improved convection and cloud parameterizations for use in GCMs.

  11. An Extensible Global Land Data Assimilation System Based on NCAR's Community Land Model (CLM) and Data Assimilation Research Testbed

    Science.gov (United States)

    Yang, Z. L.; Zhang, Y.; Kwon, Y.; Lin, P.; Zhao, L.; Hoar, T. J.; Anderson, J. L.; Toure, A. M.; Rodell, M.

    2015-12-01

    Land plays an important role in shaping regional and global climate and the water cycle. However, many of these processes are not well understood, which is largely due to the lack of high quality datasets. Over the past 5 years, we have developed a global-scale multi-sensor snow data assimilation system based on NCAR's Data Assimilation Research Testbed (DART) coupled to the Community Land Model version 4 (CLM4); CLM4 can be replaced by CLM4.5 or the latest versions as they become available. This data assimilation system can be applied to all land areas to take advantage of high-resolution regional-specific observations. The DART data assimilation system has an unprecedented large ensemble (80-member) atmospheric forcing (temperature, precipitation, winds, humidity, radiation) with a quality of typical reanalysis products, which not only facilitates ensemble land data assimilation, but also allows a comprehensive study of many feedback processes (e.g. the snow albedo feedback and soil moisture-precipitation feedback). While initial findings were reported in the past AGU, AMS and GEWEX meetings, this paper will present comprehensive results from the CLM/DART with assimilating MODIS (Moderate Resolution Imaging Spectroradiometer) snow cover fraction and GRACE (Gravity Recovery and Climate Experiment) terrestrial water storage. Besides our prototype snow data assimilation, the coupled CLM4/DART framework is useful for data assimilation involving other variables, such as soil moisture, skin temperature, and leaf area index from various satellite sources and ground observations. Such a truly multi-mission, multi-platform, multi-sensor, and multi-scale data assimilation system with DART will, ultimately, help constrain earth system models using all kinds of observations to improve their prediction skills from intraseasonal to interannual. Some preliminary results from using our snow data assimilation output in seasonal climate prediction will be presented as well.

  12. Historical simulations and climate change projections over India by NCAR CCSM4: CMIP5 vs. NEX-GDDP

    Science.gov (United States)

    Sahany, Sandeep; Mishra, Saroj Kanta; Salunke, Popat

    2018-03-01

    A new bias-corrected statistically downscaled product, namely, the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), has recently been developed by NASA to help the scientific community in climate change impact studies at local to regional scale. In this work, the product is validated over India and its added value as compared to its CMIP5 counterpart for the NCAR CCSM4 model is analyzed, followed by climate change projections under the RCP8.5 global warming scenario using the two datasets for the variables daily maximum 2-m air temperature (Tmax), daily minimum 2-m air temperature (Tmin), and rainfall. It is found that, overall, the CCSM4-NEX-GDDP significantly reduces many of the biases in CCSM4-CMIP5 for the historical simulations; however, some biases such as the significant overestimation in the frequency of occurrence in the lower tail of the Tmax and Tmin still remain. In regard to rainfall, an important value addition in CCSM4-NEX-GDDP is the alleviation of the significant underestimation of rainfall extremes found in CCSM4-CMIP5. The projected Tmax from CCSM4-NEX-GDDP are in general higher than that projected by CCSM4-CMIP5, suggesting that the risks of heat waves and very hot days could be higher than that projected by the latter. CCSM4-NEX-GDDP projects the frequency of occurrence of the upper extreme values of historical Tmax to increase by a factor of 100 towards the end of century (as opposed to a factor of 10 increase projected by CCSM4-CMIP5). In regard to rainfall, both CCSM4-CMIP5 and CCSM4-NEX-GDDP project an increase in annual rainfall over India under the RCP8.5 global warming scenario progressively from the near term through the far term. However, CCSM4-NEX-GDDP consistently projects a higher magnitude of increase and over a larger area as compared to that projected by CCSM4-CMIP5. Projected daily rainfall distributions from CCSM4-CMIP5 and CCSM4-NEX-GDDP suggest the occurrence of events that have no historical precedents

  13. Assessing the Uncertainty of Tropical Cyclone Simulations in NCAR's Community Atmosphere Model

    Directory of Open Access Journals (Sweden)

    Kevin A Reed

    2011-08-01

    Full Text Available The paper explores the impact of the initial-data, parameter and structural model uncertainty on the simulation of a tropical cyclone-like vortex in the National Center for Atmospheric Research's (NCAR Community Atmosphere Model (CAM. An analytic technique is used to initialize the model with an idealized weak vortex that develops into a tropical cyclone over ten simulation days. A total of 78 ensemble simulations are performed at horizontal grid spacings of 1.0°, 0.5° and 0.25° using two recently released versions of the model, CAM 4 and CAM 5. The ensemble members represent simulations with random small-amplitude perturbations of the initial conditions, small shifts in the longitudinal position of the initial vortex and runs with slightly altered model parameters. The main distinction between CAM 4 and CAM 5 lies within the physical parameterization suite, and the simulations with both CAM versions at the varying resolutions assess the structural model uncertainty. At all resolutions storms are produced with many tropical cyclone-like characteristics. The CAM 5 simulations exhibit more intense storms than CAM 4 by day 10 at the 0.5° and 0.25° grid spacings, while the CAM 4 storm at 1.0° is stronger. There are also distinct differences in the shapes and vertical profiles of the storms in the two variants of CAM. The ensemble members show no distinction between the initial-data and parameter uncertainty simulations. At day 10 they produce ensemble root-mean-square deviations from an unperturbed control simulation on the order of 1--5 m s-1 for the maximum low-level wind speed and 2--10 hPa for the minimum surface pressure. However, there are large differences between the two CAM versions at identical horizontal resolutions. It suggests that the structural uncertainty is more dominant than the initial-data and parameter uncertainties in this study. The uncertainty among the ensemble members is assessed and quantified.

  14. Climatic variability of the mean flow and stationary planetary waves in the NCEP/NCAR reanalysis data

    Directory of Open Access Journals (Sweden)

    A. Yu. Kanukhina

    2008-05-01

    Full Text Available NCEP/NCAR (National Center for Environmental Prediction – National Center for Atmospheric Research data have been used to estimate the long-term variability of the mean flow, temperature, and Stationary Planetary Waves (SPW in the troposphere and lower stratosphere. The results obtained show noticeable climatic variabilities in the intensity and position of the tropospheric jets that are caused by temperature changes in the lower atmosphere. As a result, we can expect that this variability of the mean flow will cause the changes in the SPW propagation conditions. The simulation of the SPW with zonal wave number m=1 (SPW1, performed with a linearized model using the mean flow distributions typical for the 1960s and for the beginning of 21st century, supports this assumption and shows that during the last 40 years the amplitude of the SPW1 in the stratosphere and mesosphere increased substantially. The analysis of the SPW amplitudes extracted from the geopotential height and zonal wind NCEP/NCAR data supports the results of simulation and shows that during the last years there exists an increase in the SPW1 activity in the lower stratosphere. These changes in the amplitudes are accompanied by increased interannual variability of the SPW1, as well. Analysis of the SPW2 activity shows that changes in its amplitude have a different sign in the northern winter hemisphere and at low latitudes in the southern summer hemisphere. The value of the SPW2 variability differs latitudinally and can be explained by nonlinear interference of the primary wave propagation from below and from secondary SPW2.

  15. Collaborative Research: Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1

    Energy Technology Data Exchange (ETDEWEB)

    Nenes, Athanasios [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-06-23

    The goal of this proposed project is to assess the climatic importance and sensitivity of aerosol indirect effect (AIE) to cloud and aerosol processes and feedbacks, which include organic aerosol hygroscopicity, cloud condensation nuclei (CCN) activation kinetics, Giant CCN, cloud-scale entrainment, ice nucleation in mixed-phase and cirrus clouds, and treatment of subgrid variability of vertical velocity. A key objective was to link aerosol, cloud microphysics and dynamics feedbacks in CAM5 with a suite of internally consistent and integrated parameterizations that provide the appropriate degrees of freedom to capture the various aspects of the aerosol indirect effect. The proposal integrated new parameterization elements into the cloud microphysics, moist turbulence and aerosol modules used by the NCAR Community Atmospheric Model version 5 (CAM5). The CAM5 model was then used to systematically quantify the uncertainties of aerosol indirect effects through a series of sensitivity tests with present-day and preindustrial aerosol emissions. New parameterization elements were developed as a result of these efforts, and new diagnostic tools & methodologies were also developed to quantify the impacts of aerosols on clouds and climate within fully coupled models. Observations were used to constrain key uncertainties in the aerosol-cloud links. Advanced sensitivity tools were developed and implements to probe the drivers of cloud microphysical variability with unprecedented temporal and spatial scale. All these results have been published in top and high impact journals (or are in the final stages of publication). This proposal has also supported a number of outstanding graduate students.

  16. NCAR activities related to translating climate and weather information into infectious-disease and other public-health early warnings

    Science.gov (United States)

    Warner, T.; Monaghan, A.; Hopson, T.

    2010-09-01

    in Mexico, and 4) development of new knowledge about how extreme heat events across the United States and parts of Canada result from changing climate, land use and the interactions between them. In addition, NCAR has an arrangement with the US Centers for Disease Control wherein postdoctoral students are shared between the two organizations in order to provide experiences that will foster research at the interface between climate science and the study of infectious diseases.

  17. Comparison of the seasonal climate simulated by the pattern CCM3 and the data of the reanalysis NCEP/NCAR with the observed data of the temperature of the air and the precipitation in Colombia

    International Nuclear Information System (INIS)

    Leon Aristizabal, Gloria Esperanza; Zea Mazo, Jorge Anibal

    2001-01-01

    In this work we carry out a comparison of the simulations of the climatic model CCM3, the data of the NCEP/NCAR Reanalysis and real data, by the practical significance of the model based on the observed differences

  18. Responses of Mixed-Phase Cloud Condensates and Cloud Radiative Effects to Ice Nucleating Particle Concentrations in NCAR CAM5 and DOE ACME Climate Models

    Science.gov (United States)

    Liu, X.; Shi, Y.; Wu, M.; Zhang, K.

    2017-12-01

    Mixed-phase clouds frequently observed in the Arctic and mid-latitude storm tracks have the substantial impacts on the surface energy budget, precipitation and climate. In this study, we first implement the two empirical parameterizations (Niemand et al. 2012 and DeMott et al. 2015) of heterogeneous ice nucleation for mixed-phase clouds in the NCAR Community Atmosphere Model Version 5 (CAM5) and DOE Accelerated Climate Model for Energy Version 1 (ACME1). Model simulated ice nucleating particle (INP) concentrations based on Niemand et al. and DeMott et al. are compared with those from the default ice nucleation parameterization based on the classical nucleation theory (CNT) in CAM5 and ACME, and with in situ observations. Significantly higher INP concentrations (by up to a factor of 5) are simulated from Niemand et al. than DeMott et al. and CNT especially over the dust source regions in both CAM5 and ACME. Interestingly the ACME model simulates higher INP concentrations than CAM5, especially in the Polar regions. This is also the case when we nudge the two models' winds and temperature towards the same reanalysis, indicating more efficient transport of aerosols (dust) to the Polar regions in ACME. Next, we examine the responses of model simulated cloud liquid water and ice water contents to different INP concentrations from three ice nucleation parameterizations (Niemand et al., DeMott et al., and CNT) in CAM5 and ACME. Changes in liquid water path (LWP) reach as much as 20% in the Arctic regions in ACME between the three parameterizations while the LWP changes are smaller and limited in the Northern Hemispheric mid-latitudes in CAM5. Finally, the impacts on cloud radiative forcing and dust indirect effects on mixed-phase clouds are quantified with the three ice nucleation parameterizations in CAM5 and ACME.

  19. Quantifying the Impact of Mountain Pine Beetle Disturbances on Forest Carbon Pools and Fluxes in the Western US using the NCAR Community Land Model

    Science.gov (United States)

    Edburg, S. L.; Hicke, J. A.; Lawrence, D. M.; Thornton, P. E.

    2009-12-01

    Forest disturbances, such as fire, insects, and land-use change, significantly alter carbon budgets by changing carbon pools and fluxes. The mountain pine beetle (MPB) kills millions of hectares of trees in the western US, similar to the area killed by fire. Mountain pine beetles kill host trees by consuming the inner bark tissue, and require host tree death for reproduction. Despite being a significant disturbance to forested ecosystems, insects such as MPB are typically not represented in biogeochemical models, thus little is known about their impact on the carbon cycle. We investigate the role of past MPB outbreaks on carbon cycling in the western US using the NCAR Community Land Model with Carbon and Nitrogen cycles (CLM-CN). CLM-CN serves as the land model to the Community Climate System Model (CCSM), providing exchanges of energy, momentum, water, carbon, and nitrogen between the land and atmosphere. We run CLM-CN over the western US extending to eastern Colorado with a spatial resolution of 0.5° and a half hour time step. The model is first spun-up with repeated NCEP forcing (1948-1972) until carbon stocks and fluxes reach equilibrium (~ 3000 years), and then run from 1850 to 2004 with NCEP forcing and a dynamic plant functional type (PFT) database. Carbon stocks from this simulation are compared with stocks from the Forest Inventory Analysis (FIA) program. We prescribe MPB mortality area, once per year, in CLM-CN using USFS Aerial Detection Surveys (ADS) from the last few decades. We simulate carbon impacts of tree mortality by MPB within a model grid cell by moving carbon from live vegetative pools (leaf, stem, and roots) to dead pools (woody debris, litter, and dead roots). We compare carbon pools and fluxes for two simulations, one without MPB outbreaks and one with MPB outbreaks.

  20. A Collaborative Proposal: Simulating and Understanding Abrupt Climate-Ecosystem Changes During Holocene with NCAR-CCSM3.

    Energy Technology Data Exchange (ETDEWEB)

    Zhengyu Liu, Bette Otto-Bliesner

    2013-02-01

    We have made significant progress in our proposed work in the last 4 years (3 years plus 1 year of no cost extension). In anticipation of the next phase of study, we have spent time on the abrupt changes since the last glacial maximum. First, we have performed further model-data comparison based on our baseline TRACE-21 simulation and made important progress towards the understanding of several major climate transitions. Second, we have made a significant effort in processing the model output of TRACE-21 and have put this output on a website for access by the community. Third, we have completed many additional sensitivity experiments. In addition, we have organized synthesis workshops to facilitate and promote transient model-data comparison for the international community. Finally, we have identified new areas of interest for Holocene climate changes.

  1. Coral Reef Habitat Suitability in Future Climate Scenarios from NCAR CESM1 considering a Suite of Biogeochemical Variables

    Science.gov (United States)

    Freeman, L. A.; Kleypas, J. A.; Miller, A. J.

    2013-12-01

    A maximum entropy species distribution model (Maxent) is used to describe coral reef habitat in current climate conditions and to predict changes to that habitat during the 21st century. Two climate change scenarios (RCP4.5 and RCP8.5) from the National Center for Atmospheric Research's Community Earth System Model version 1 (CESM1) were used with Maxent to determine environmental suitability for the family of corals Scleractina in 1° by 1° cells. Input environmental variables most suitable for representing coral habitat limitation are isolated using a principal component analysis and include cumulative thermal stress, salinity, light availability, current speed, phosphate levels and aragonite saturation state. Considering a suite of environmental variables allows for a more synergistic view of future habitat suitability, although individual variables are found to be limiting in certain areas- for example, aragonite saturation state is limiting at higher latitudes. Climate-driven coral reef habitat changes depend strongly on the oceanic region of interest and the region of corals used to train the niche model. Increased global coral habitat loss occurred in both RCP4.5 and RCP8.5 climate projections as time progressed through the 21th century. Maximum suitable habitat loss was 82% by 2100 for RCP8.5. When only Caribbean/Atlantic coral reef environmental data is applied globally, 88% of global habitat was lost by 2100 for RCP8.5. The global runs utilizing only Pacific Ocean reefs' ability to survive showed the most significant worldwide loss, 90% by 2100 for RCP8.5. When Maxent was trained with Indian Ocean reefs, an increase in suitable habitat worldwide was estimated. Habitat suitability was found to increase by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. This suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future worldwide climate projections. Indian Ocean reefs may be ideal candidate

  2. Response of the East Asian climate system to water and heat changes of global frozen soil using NCAR CAM model

    Science.gov (United States)

    Xin, Y.

    2017-12-01

    Under the condition of land-atmosphere heat and water conservation, a set of sensitive numerical experiments are set up to investigate the response of the East Asian climate system to global frozen soil change. This is done by introducing the supercooled soil water process into the Community Land Model (CLM3.0), which has been coupled to the National Center of Atmospheric Research Community Atmosphere Model (CAM3.1). Results show that: 1) The ratio between soil ice and soil water in CLM3.0 is clearly changed by the supercooled soil water process. Ground surface temperature and soil temperature are also affected. 2) The Eurasian (including East Asian) climate system is sensitive to changes of heat and water in frozen soil regions. In January, the Aleutian low sea level pressure circulation is strengthened, Ural blocking high at 500 hPa weakened, and East Asian trough weakened. In July, sea level pressure over the Aleutian Islands region is significantly reduced; there are negative anomalies of 500 hPa geopotential height over the East Asian mainland, and positive anomalies over the East Asian ocean. 3) In January, the southerly component of the 850 hPa wind field over East Asia increases, indicating a weakened winter monsoon. In July, cyclonic anomalies appear on the East Asian mainland while there are anticyclonic anomalies over the ocean, reflective of a strengthened east coast summer monsoon. 4) Summer rainfall in East Asia changed significantly, including substantial precipitation increase on the southern Qinghai-Tibet Plateau, central Yangtze River Basin, and northeast China. Summer rainfall significantly decreased in south China and Hainan Island, but slightly decreased in central and north China. Further analysis showed considerable upper air motion along 30°N latitude, with substantial descent of air at its north and south sides. Warm and humid air from the Northeast Pacific converged with cold air from northern land areas, representing the main cause of

  3. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  4. Urban Climate Risk Communities

    DEFF Research Database (Denmark)

    Blok, Anders

    2016-01-01

    Ulrich Beck’s cosmopolitan sociology affords a much-needed rethinking of the transnational politics of climate change, not least in pointing to an emerging inter-urban geography of world cities as a potential new source of community, change and solidarity. This short essay, written in honour...... of Beck’s forward-looking agenda for a post-Euro-centric social science, outlines the contours of such an urban-cosmopolitan ‘realpolitik’ of climate risks, as this is presently unfolding across East Asian world cities. Much more than a theory-building endeavour, the essay suggests, Beck’s sociology...

  5. Application of the system of assimilation of climatic data (CDAS) of the Project NCEP/NCAR - Reanalysis Dates Set For climatological and synoptic ends

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez, Jesus Antonio

    2001-01-01

    In response to an increasing demand of meteorological information on a synoptic scale and the need for a better and more precise knowledge of the different atmospheric fields on a local, regional and global scale, the program known as GRADS, developed by COLA in the US, has been implemented. to show graphically meteorological patterns at the surface and at different levels in the troposphere and lower stratosphere based on high-quality grid data prepared by NCEP/NCAR (NOAA)

  6. Climate change, science and community.

    Science.gov (United States)

    Kim, Hak-Soo

    2012-04-01

    Climate change offers serious challenges to the effectiveness of science, communication, and community. It demands us to look back upon what we have done in regard to science and technology. In addition, it leads us to examine human efforts invested to solve collective, shared problems by communication and community. The process of behavior per se is found to be greatly overlooked in the establishment sciences, both natural and social, and in both theory and practice. A theory of behavior is introduced and explicated as a platform to solve such commons' problems as climate change. Finally, we find principled ways to improve effectiveness of communication and community by developing human capabilities so that we can win our battle against climate change and other potential tragedies of the commons.

  7. Climate, Carbon, Conservation and Communities

    Energy Technology Data Exchange (ETDEWEB)

    Vaugn, Kit; Brickell, Emily [WWF-UK (United Kingdom); Roe, Dilys; Reid, Hannah; Elliot, Jo

    2007-07-01

    The growing market for carbon offers great opportunities for linking greenhouse gas mitigation with conservation of forests and biodiversity, and the generation of local livelihoods. For these combined objectives to be achieved, strong governance is needed along with institutions that ensure poor people win, rather than lose out, from the new challenges posed by climate change. This briefing paper explores the opportunities from and limitations to carbon-based funds for conservation and development. It highlights mechanisms that may help secure benefits for climate, conservation and communities.

  8. The NCEP/NCAR 40-Year Reanalysis Project.

    Science.gov (United States)

    Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; Zhu, Y.; Leetmaa, A.; Reynolds, B.; Chelliah, M.; Ebisuzaki, W.; Higgins, W.; Janowiak, J.; Mo, K. C.; Ropelewski, C.; Wang, J.; Jenne, Roy; Joseph, Dennis

    1996-03-01

    The NCEP and NCAR are cooperating in a project (denoted "reanalysis") to produce a 40-year record of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involves the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data; quality controlling and assimilating these data with a data assimilation system that is kept unchanged over the reanalysis period 1957-96. This eliminates perceived climate jumps associated with changes in the data assimilation system.The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible. The data assimilation and the model used are identical to the global system implemented operationally at the NCEP on 11 January 1995, except that the horizontal resolution is T62 (about 210 km). The database has been enhanced with many sources of observations not available in real time for operations, provided by different countries and organizations. The system has been designed with advanced quality control and monitoring components, and can produce 1 mon of reanalysis per day on a Cray YMP/8 supercomputer. Different types of output archives are being created to satisfy different user needs, including a "quick look" CD-ROM (one per year) with six tropospheric and stratospheric fields available twice daily, as well as surface, top-of-the-atmosphere, and isentropic fields. Reanalysis information and selected output is also available on-line via the Internet (http//:nic.fb4.noaa.gov:8000). A special CD-ROM, containing 13 years of selected observed, daily, monthly, and climatological data from the NCEP/NCAR Re-analysis, is included with this issue. Output variables are classified into four classes, depending on the degree to which they are influenced by the observations and/or the model. For example, "C" variables (such as precipitation and surface fluxes) are completely determined

  9. Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Froelicher, Thomas L.; Joos, Fortunat [University of Bern, Climate and Environmental Physics, Physics Institute, Bern (Switzerland); University of Bern, Oeschger Centre for Climate Change Research, Bern (Switzerland)

    2010-12-15

    The legacy of historical and the long-term impacts of 21st century greenhouse gas emissions on climate, ocean acidification, and carbon-climate feedbacks are investigated with a coupled carbon cycle-climate model. Emission commitment scenarios with zero emissions after year 2100 and 21st century emissions of 1,800, 900, and 0 gigatons of carbon are run up to year 2500. The reversibility and irreversibility of impacts is quantified by comparing anthropogenically-forced regional changes with internal, unforced climate variability. We show that the influence of historical emissions and of non-CO{sub 2} agents is largely reversible on the regional scale. Forced changes in surface temperature and precipitation become smaller than internal variability for most land and ocean grid cells in the absence of future carbon emissions. In contrast, continued carbon emissions over the 21st century cause irreversible climate change on centennial to millennial timescales in most regions and impacts related to ocean acidification and sea level rise continue to aggravate for centuries even if emissions are stopped in year 2100. Undersaturation of the Arctic surface ocean with respect to aragonite, a mineral form of calcium carbonate secreted by marine organisms, is imminent and remains widespread. The volume of supersaturated water providing habitat to calcifying organisms is reduced from preindustrial 40 to 25% in 2100 and to 10% in 2300 for the high emission case. We conclude that emission trading schemes, related to the Kyoto Process, should not permit trading between emissions of relatively short-lived agents and CO{sub 2} given the irreversible impacts of anthropogenic carbon emissions. (orig.)

  10. Climate Change in Urban Communities | Urban ...

    Science.gov (United States)

    2017-04-10

    Climate Change in Urban Communities is a PowerPoint presentation designed to inform urban residents about the impact of climate change, why it's a problem for their communities, and how individual actions can help make a difference as well as save people money.

  11. Earth System Grid II (ESG): Turning Climate Model Datasets Into Community Resources

    Science.gov (United States)

    Williams, D.; Middleton, D.; Foster, I.; Nevedova, V.; Kesselman, C.; Chervenak, A.; Bharathi, S.; Drach, B.; Cinquni, L.; Brown, D.; Strand, G.; Fox, P.; Garcia, J.; Bernholdte, D.; Chanchio, K.; Pouchard, L.; Chen, M.; Shoshani, A.; Sim, A.

    2003-12-01

    High-resolution, long-duration simulations performed with advanced DOE SciDAC/NCAR climate models will produce tens of petabytes of output. To be useful, this output must be made available to global change impacts researchers nationwide, both at national laboratories and at universities, other research laboratories, and other institutions. To this end, we propose to create a new Earth System Grid, ESG-II - a virtual collaborative environment that links distributed centers, users, models, and data. ESG-II will provide scientists with virtual proximity to the distributed data and resources that they require to perform their research. The creation of this environment will significantly increase the scientific productivity of U.S. climate researchers by turning climate datasets into community resources. In creating ESG-II, we will integrate and extend a range of Grid and collaboratory technologies, including the DODS remote access protocols for environmental data, Globus Toolkit technologies for authentication, resource discovery, and resource access, and Data Grid technologies developed in other projects. We will develop new technologies for (1) creating and operating "filtering servers" capable of performing sophisticated analyses, and (2) delivering results to users. In so doing, we will simultaneously contribute to climate science and advance the state of the art in collaboratory technology. We expect our results to be useful to numerous other DOE projects. The three-year R&D program will be undertaken by a talented and experienced team of computer scientists at five laboratories (ANL, LBNL, LLNL, NCAR, ORNL) and one university (ISI), working in close collaboration with climate scientists at several sites.

  12. Investigation of rotated PCA from the perspective of network communities applied to climate data

    Science.gov (United States)

    Hartman, David; Hlinka, Jaroslav; Vejmelka, Martin; Palus, Milan

    2013-04-01

    Applications of the rotated principal component analysis (RPCA) have a long history in climatology usually due to efforts of finding specific circulation patterns (Barnston and Livezey 1987). Using this approach several well known patterns like the North Atlantic Oscillation (NAO) or the Pacific/North American Pattern (PNA) can be identified (Barnston and Livezey 1987; Feldstein 2000). Applied to the whole globe this method gives several weakly related components that can be suspected of being important modes of climate variability. On the other hand, a relatively new topic in climate research is that of community detection and analysis (Tsonis et al. 2011), although the detection of communities in complex networks is a well established scientific field itself (Fortunato 2010; Girvan and Newman 2002). To analyze community structure one has to consider the climate system as a complex network (Tsonis and Swanson 2012), i.e. as a set of nodes represented by a climate-related variable on specific globe positions and a set of edges mutually connecting these nodes according to chosen measure of coherence (Hlinka et al. preprint). Determination of optimal community structure is well known to be a hard problem and there are several methods excelling in specific situations (Fortunato 2010) and several ways of measuring quality of resulting community structure such as modularity (Newman and Girvan 2004). Following the fact that RPCA gives us a set of components that can be represented as a community structure we investigate the potential of RPCA in community-detection context. For this purpose we use data from global National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis (Kistler et al. 2001), more specifically surface air temperature (SAT) and surface pressure level (SPL). Acknowledgement: This study is supported by the Czech Science Foundation, Project No. P103/11/J068. Barnston, AG; Livezey RE (1987) Classification

  13. Community Capitals as Community Resilience to Climate Change: Conceptual Connections

    Directory of Open Access Journals (Sweden)

    Shaikh Mohammad Kais

    2016-12-01

    Full Text Available In the last few decades, disaster risk reduction programs and climate initiatives across the globe have focused largely on the intimate connections between vulnerability, recovery, adaptation, and coping mechanisms. Recent focus, however, is increasingly paid to community resilience. Community, placed at the intersection between the household and national levels of social organization, is crucial in addressing economic, social, or environmental disturbances disrupting human security. Resilience measures a community’s capability of bouncing back—restoring the original pre-disaster state, as well as bouncing forward—the capacity to cope with emerging post-disaster situations and changes. Both the ‘bouncing back’ and ‘moving forward’ properties of a community are shaped and reshaped by internal and external shocks such as climate threats, the community’s resilience dimensions, and the intensity of economic, social, and other community capitals. This article reviews (1 the concept of resilience in relation to climate change and vulnerability; and (2 emerging perspectives on community-level impacts of climate change, resilience dimensions, and community capitals. It argues that overall resilience of a place-based community is located at the intersection of the community’s resilience dimensions, community capitals, and the level of climate disruptions.

  14. How Well Are We Measuring Snow? The NOAA/FAA/NCAR Winter Precipitation Test Bed

    Science.gov (United States)

    Baker, B.; Rasmussen, R.; Kochendorfer, J.; Meyers, T.; Nitu, R.; Paul, J.; Smith, C.; Yang, D.

    2012-04-01

    Precipitation is one of the most important atmospheric variables for ecosystems, hydrologic systems, climate, and weather forecasting. Despite its importance, accurate measurement remains challenging, and the lack of recent and complete inter-comparisons leads researchers to discount the importance and severity of measurement errors. These errors are exacerbated for the automated measurement of solid precipitation and underestimates of 20-50% are common. While solid precipitation measurements have been the subject of many studies, there have been only a limited number of coordinated assessments on the accuracy, reliability, and repeatability of automatic precipitation measurements. The most recent comprehensive study, the "WMO Solid Precipitation Measurement Inter-comparison" focused on manual techniques of solid precipitation measurement. Precipitation gauge technology has changed considerably in the last 12 years and the focus has shifted to automated techniques. Given the strong need for automated solid precipitation data from both the climate and weather communities, and the widely varying catch efficiencies of the various instruments, inter-comparison studies are needed. The World Meteorological Organization Committee on Meteorological Instruments and Observations (WMO-CIMO) is organizing a Solid Precipitation Inter-comparison Experiment (WMO-SPICE) focused on automatic precipitation gauges and their configurations, in various climate conditions, building on the significant efforts currently underway in many countries. The inter-comparison will aim at understanding and improving our ability to reliably measure solid precipitation using automatic gauges. The study will take place starting in 2012 at sites around the world including the US, Norway, China, Canada, Japan, Switzerland, Russia, Finland and New Zealand. The NOAA /FAA/NCAR precipitation test bed in Marshall, CO. in partnership with Environment Canada will collect data during the winter of 2011/2012 to

  15. Parallel community climate model: Description and user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Drake, J.B.; Flanery, R.E.; Semeraro, B.D.; Worley, P.H. [and others

    1996-07-15

    This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain into geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.

  16. NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise

    Science.gov (United States)

    Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.

    2017-12-01

    Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the

  17. Community responses to extreme climatic conditions

    Directory of Open Access Journals (Sweden)

    Frédéric JIGUET, Lluis BROTONS, Vincent DEVICTOR

    2011-06-01

    Full Text Available Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate [Current Zoology 57 (3: 406–413, 2011].

  18. Doing Climate Science in Indigenous Communities

    Science.gov (United States)

    Pandya, R. E.; Bennett, B.

    2009-12-01

    Historically, the goal of broadening participation in the geosciences has been expressed and approached from the viewpoint of the majority-dominated geoscience community. The need for more students who are American Indian, Native Hawaiian, or Alaska Native is expressed in terms of the need to diversify the research community, and strategies to engage more students are often posed around the question “what can we do to get more indigenous students interested in coming to our institutions to do geosciences?” This approach can lead to neglecting indigenous ways of knowing, inadvertently prioritizes western values over traditional ones, and doesn’t necessarily honor tribal community’s desire to hold on to their talented youth. Further, while this approach has resulted in some modest success, the overall participation in geoscience by students from indigenous backgrounds remains low. Many successful programs, however, have tried an alternate approach; they begin by approaching the geosciences from the viewpoint of indigenous communities. The questions they ask center around how geosciences can advance the priorities of indigenous communities, and their approaches focus on building capacity for the geosciences within indigenous communities. Most importantly, perhaps, these efforts originate in Tribal communities themselves, and invite the geoscience research community to partner in projects that are rooted in indigenous culture and values. Finally, these programs recognize that scientific expertise is only one among many skills indigenous peoples employ in their relation with their homelands. Climate change, like all things related to the landscape, is intimately connected to the core of indigenous cultures. Thus, emerging concerns about climate change provide a venue for developing new, indigenous-centered, approaches to the persistent problem of broadening participation in the geoscience. This presentation will highlight three indigenous-led efforts in to

  19. Taking a Multi-pronged Approach to Expand the Reach of Climate Research Results

    Science.gov (United States)

    Hauser, R.; Unger, M.; Eastburn, T.; Rockwell, A.; Laursen, K. K.; National CenterAtmospheric Research

    2011-12-01

    Recognizing the importance of tailoring content to a variety of audiences, the National Center for Atmospheric Research (NCAR) takes a multi-pronged approach to expand the reach of climate research results. The center's communications and education and outreach teams leverage Web 1.0 and 2.0 functionality - Google searches, Twitter, Facebook, YouTube - as well as face-to-face interactions and traditional media outlets to ensure climate change messages effectively connect with multiple audiences. Key to these efforts, NCAR seeks to frame messages that emphasize cultural cognition, that is, in a manner that recognizes and resonates with different audiences' values and thus their identities. Among the basic communications approaches NCAR uses to engage the public are one-on-one interactions with the visiting public, which ranges from school children and tourists, to dignitaries and journalists. As an example, the NCAR Journalism Fellowship brings a competitively selected group of internatoinal journalists to NCAR. During a week-long visit and ongoing contact, journalists are provided with a close-up, nuanced view of the science and individuals working on the bigger-picture research that drives climate-related sound bites reported by the press. NCAR provides media training for its scientists, giving them tools and practice in effectively handling interviews for print, Web and radio outlets. The institution hosts public events like "Super Science Saturday," and NCAR staff participate in external activities such as school science fairs, community events and continuing education sessions. In addition to interactive displays that allow the public to "experience" science directly and informally, NCAR develops educational programs and curricula targeted to specific age groups and levels of expertise. We will explore the importance of analogies, images and anecdotes in explaining complicated subjects to such a varied set of audiences, and identify key concepts in simplifying

  20. The Whole Atmosphere Community Climate Model

    Science.gov (United States)

    Boville, B. A.; Garcia, R. R.; Sassi, F.; Kinnison, D.; Roble, R. G.

    The Whole Atmosphere Community Climate Model (WACCM) is an upward exten- sion of the National Center for Atmospheric Research Community Climate System Model. WACCM simulates the atmosphere from the surface to the lower thermosphere (140 km) and includes both dynamical and chemical components. The salient points of the model formulation will be summarized and several aspects of its performance will be discussed. Comparison with observations indicates that WACCM produces re- alistic temperature and zonal wind distributions. Both the mean state and interannual variability will be summarized. Temperature inversions in the midlatitude mesosphere have been reported by several authors and are also found in WACCM. These inver- sions are formed primarily by planetary wave forcing, but the background state on which they form also requires gravity wave forcing. The response to sea surface temperature (SST) anomalies will be examined by com- paring simulations with observed SSTs for 1950-1998 to a simulation with clima- tological annual cycle of SSTs. The response to ENSO events is found to extend though the winter stratosphere and mesosphere and a signal is also found at the sum- mer mesopause. The experimental framework allows the ENSO signal to be isolated, because no other forcings are included (e.g. solar variability and volcanic eruptions) which complicate the observational record. The temperature and wind variations asso- ciated with ENSO are large enough to generate significant perturbations in the chem- ical composition of the middle atmosphere, which will also be discussed.

  1. Evaluation of Forecasted Southeast Pacific Stratocumulus in the NCAR, GFDL and ECMWF Models

    Energy Technology Data Exchange (ETDEWEB)

    Hannay, C; Williamson, D L; Hack, J J; Kiehl, J T; Olson, J G; Klein, S A; Bretherton, C S; K?hler, M

    2008-01-24

    We examine forecasts of Southeast Pacific stratocumulus at 20S and 85W during the East Pacific Investigation of Climate (EPIC) cruise of October 2001 with the ECMWF model, the Atmospheric Model (AM) from GFDL, the Community Atmosphere Model (CAM) from NCAR, and the CAM with a revised atmospheric boundary layer formulation from the University of Washington (CAM-UW). The forecasts are initialized from ECMWF analyses and each model is run for 3 days to determine the differences with the EPIC field data. Observations during the EPIC cruise show a stable and well-mixed boundary layer under a sharp inversion. The inversion height and the cloud layer have a strong and regular diurnal cycle. A key problem common to the four models is that the forecasted planetary boundary layer (PBL) height is too low when compared to EPIC observations. All the models produce a strong diurnal cycle in the Liquid Water Path (LWP) but there are large differences in the amplitude and the phase compared to the EPIC observations. This, in turn, affects the radiative fluxes at the surface. There is a large spread in the surface energy budget terms amongst the models and large discrepancies with observational estimates. Single Column Model (SCM) experiments with the CAM show that the vertical pressure velocity has a large impact on the PBL height and LWP. Both the amplitude of the vertical pressure velocity field and its vertical structure play a significant role in the collapse or the maintenance of the PBL.

  2. Community perception on climate change and usage patterns of non ...

    African Journals Online (AJOL)

    Communities living around NDUFR are increasingly relying on NTFPs for food, health and income security among the strategy to cope with change in climate compared to the situation 30 years ago. In conclusion, climate has been varying around forest communities in Kilolo affecting their livelihood. At the same time, NTFPs ...

  3. 507 community perception on climate change and usage patterns

    African Journals Online (AJOL)

    Osondu

    Communities living around NDUFR are increasingly relying on NTFPs for food, health and income security among the strategy to cope with change in climate compared to the situation 30 years ago. In conclusion, climate has been varying around forest communities in Kilolo affecting their livelihood. At the same time, NTFPs ...

  4. Using Education to Bring Climate Change Adaptation to Pacific Communities

    Science.gov (United States)

    Vize, Sue

    2012-01-01

    Traditional communities remain a dominant feature in the Pacific and are key players in land and sea management. Fostering improved climate literacy is therefore essential to equip communities to respond to the current and future challenges posed by climate change in the region. Increased understanding and development of skills to respond to the…

  5. Community College Organizational Climate for Minorities and Women

    Science.gov (United States)

    Townsend, Barbara K.

    2009-01-01

    This paper explores the issues of what would constitute a positive organizational climate for women and minorities within the community college setting and ways in which such a climate might be achieved. It first describes some traditional or standard measures of a positive organizational climate for women and minorities and then evaluates how…

  6. Old-field Community, Climate and Atmospheric Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Aimee Classen

    2009-11-01

    We are in the process of finishing a number of laboratory, growth chamber and greenhouse projects, analyzing data, and writing papers. The projects reported addressed these subjects: How do climate and atmospheric changes alter aboveground plant biomass and community structure; Effects of multiple climate changes factors on plant community composition and diversity: what did we learn from a 5-year open-top chamber experiment using constructed old-field communities; Do atmospheric and climatic change factors interact to alter woody seedling emergence, establishment and productivity; Soil moisture surpasses elevated CO{sub 2} and temperature in importance as a control on soil carbon dynamics; How do climate and atmospheric changes alter belowground root and fungal biomass; How do climate and atmospheric changes alter soil microarthropod and microbial communities; How do climate and atmospheric changes alter belowground microbial function; Linking root litter diversity and microbial functioning at a micro scale under current and projected CO{sub 2} concentrations; Multifactor climate change effects on soil ecosystem functioning depend on concurrent changes in plant community composition; How do climate and atmospheric changes alter aboveground insect populations; How do climate and atmospheric changes alter festuca endophyte infection; How do climate and atmospheric changes soil carbon stabilization.

  7. GPM Ground Validation NCAR Particle Probes IPHEx V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NCAR Particle Probes IPHEx dataset consists of Ice Water Content (IWC), particle concentration normalized by bin width, and total particle...

  8. GPM Ground Validation NCAR Particle Probes OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NCAR Particle Probes OLYMPEX dataset consists of ice water content, particle concentration normalized by bin width, and total particle...

  9. Linking Extreme Weather to Climate Variability and Change

    Science.gov (United States)

    Stott, Peter; Trenberth, Kevin

    2009-05-01

    International Group on Attribution of Climate-Related Events (ACE); Boulder, Colorado, 26 January 2009; Climate change is likely to be manifested on societies around the world mainly through changes in extremes. As a result, the scientific community faces an increasing demand for regularly updated appraisals of evolving climate conditions and extreme weather. Such information would be immensely beneficial for adaptation planning. A group of climate scientists representing the United Kingdom, the United States, Australia, Canada, and South Africa assembled on 26 January 2009 at the National Center for Atmospheric Research (NCAR), in Colorado, to discuss how to meet this challenge. This first meeting of the International Group on Attribution of Climate-Related Events (ACE) was sponsored by the Science and Innovation Network of the U.K. Foreign and Commonwealth Office (FCO) and NCAR and was organized in collaboration with the U.S. National Oceanic and Atmospheric Administration (NOAA), the Met Office Hadley Centre, and the University of Oxford.

  10. Management and Stewardship of Airborne Observational Data for the NSF/NCAR HIAPER (GV) and NSF/NCAR C-130 at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL)

    Science.gov (United States)

    Aquino, J.

    2014-12-01

    The National Science Foundation (NSF) provides the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) funding for the operation, maintenance and upgrade of two research aircraft: the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V and the NSF/NCAR Hercules C-130. A suite of in-situ and remote sensing airborne instruments housed at the EOL Research Aviation Facility (RAF) provide a basic set of measurements that are typically deployed on most airborne field campaigns. In addition, instruments to address more specific research requirements are provided by collaborating participants from universities, industry, NASA, NOAA or other agencies. The data collected are an important legacy of these field campaigns. A comprehensive metadata database and integrated cyber-infrastructure, along with a robust data workflow that begins during the field phase and extends to long-term archival (current aircraft data holdings go back to 1967), assures that: all data and associated software are safeguarded throughout the data handling process; community standards of practice for data stewardship and software version control are followed; simple and timely community access to collected data and associated software tools are provided; and the quality of the collected data is preserved, with the ultimate goal of supporting research and the reproducibility of published results. The components of this data system to be presented include: robust, searchable web access to data holdings; reliable, redundant data storage; web-based tools and scripts for efficient creation, maintenance and update of data holdings; access to supplemental data and documentation; storage of data in standardized data formats; comprehensive metadata collection; mature version control; human-discernable storage practices; and procedures to inform users of changes. In addition, lessons learned, shortcomings, and desired upgrades

  11. Building community resilience to climate change through public health planning.

    Science.gov (United States)

    Bajayo, Rachael

    2012-04-01

    Nillumbik Shire Council, in partnership with La Trobe University, used the Municipal Public Health Planning process to develop an approach for building the resilience of local communities to climate-related stressors. The objective was to define an approach for building community resilience to climate change and to integrate this approach with the 'Environments for Health' framework. Key published papers and reports by leading experts the field were reviewed. Literature was selected based on its relevance to the subjects of community resilience and climate change and was derived from local and international publications, the vast majority published within the past two decades. Review of literature on community resilience revealed that four principal resource sets contribute to the capacity of communities to adapt in times of stress, these being: economic development; social capital; information and communication; and community competence. On the strength of findings, a framework for building each resilience resource set within each of the Environments for Health was constructed. This paper introduces the newly constructed 'Community Resilience Framework', which describes how each one of the four resilience resource sets can be developed within social, built, natural and economic environments. The Community Resilience Framework defines an approach for simultaneously creating supportive environments for health and increasing community capacity for adaptation to climate-related stressors. As such, it can be used by Municipal Public Health Planners as a guide in building community resilience to climate change.

  12. Community resilience to climate change: an evidence review

    OpenAIRE

    Twigger-Ross, Clare; Brooks, Katya; Papadopoulou, Liza; Orr, Paula; Sadauskis, Rolands; Coke, Alexia; Simcock, Neil; Stirling, Andrew; Walker, Gordon

    2015-01-01

    The concept of community resilience to climate change in the UK has a diverse range of meanings and associated activities. This review of evidence and practice explores this varied and contested field to build the evidence base and help support the development of community resilience to climate change.\\ud \\ud The report shows:\\ud \\ud •the variety of actions being carried out across the UK that can be classed as improving resilience of communities to climate change;\\ud \\ud •the barriers and fa...

  13. Local support for community action on climate change: lessons from the Communities Cutting Carbon project.

    OpenAIRE

    Reeves, Andrew; Lemon, Mark; Cook, Diana

    2011-01-01

    Action by local communities on climate change has been recognised by researchers and policymakers as having great potential to support a transition towards a low-carbon UK economy. Support for such action from community development workers can assist projects and groups to develop, act, and achieve positive results. This paper explores the work of the Communities Cutting Carbon project to provide support to community groups acting on climate change in the Leicester, Leicestershire and Rut...

  14. Gender and climate change-induced conflict in pastoral communities

    International Development Research Centre (IDRC) Digital Library (Canada)

    30 juin 2011 ... Climate change poses serious challenges to the already precarious livelihoods of pastoral communities in East Africa. Now, climate-related resource scarcities are increasing the likelihood of violent conflict. Women are often most vulnerable to such violence. Understanding the drivers of this environmental ...

  15. Climate Watch and Spoonbill Watch: Engaging Communities in Climate Science and Bird Conservation

    Science.gov (United States)

    Michel, N. L.; Baker, R.; Bergstrom, E.; Cox, D.; Cox, G.; Dale, K.; Jensen, C.; Langham, G.; LeBaron, G.; Loftus, W.; Rowden, J.; Slavin, Z.; Smithson-Stanley, L.; Wilsey, C.

    2016-12-01

    Climate change poses serious challenges for conservation scientists and policymakers. Yet with these challenges come equally great opportunities to engage communities of concerned citizens in climate science and conservation. National Audubon Society's 2014 Birds and Climate Change report found that 314 North American bird species could lose over half their breeding or wintering ranges by 2080 due to climate change. Consequently, in 2016 Audubon developed two new crowd-sourced science programs that mobilized existing birding communities (i.e., Audubon Society chapters) in partnership with scientists to evaluate climate change effects on birds, and take action to protect vulnerable populations. Climate Watch expands upon traditional monitoring programs by involving citizen scientists in hypothesis-driven science, testing predictions of climate-driven range expansion in bluebirds developed by National Audubon Society scientists. Spoonbill Watch is a partnership between an Audubon research scientist and the Pelican Island Audubon Society community, in which citizen scientists monitor a Roseate Spoonbill colony recently established in response to changing habitat and climatic conditions. Additionally, Spoonbill Watch participants and leaders have moved beyond monitoring to take action to protect the colony, by working with the Florida Fish and Wildlife Conservation Commission towards getting the site declared as a Critical Wildlife Area and by conducting local outreach and education efforts. We will present overviews, lessons learned, and conservation goals and opportunities achieved during the pilot year of Climate Watch and Spoonbill Watch. Scientific - community partnerships such as these are essential to confront the threats posed by climate change.

  16. Community based adaptations to climate change: experiences of the Mijikenda Community in Coastal Kenya

    OpenAIRE

    Groh, Maxie Elizabeth

    2016-01-01

    Small-scale farmers in Africa are among the most vulnerable to the impacts of climate change. Macro level climate change policies are having little positive impacts on their livelihoods. However, at the local level, communities are innovating and adapting to climate change. While these innovations are not enough to guarantee extensive adaptation to climate change, they are an important element for the survival of agrarian societies and botanical diversity. It is therefore importan...

  17. Indigenous knowledge of Rural Communities for Combating Climate ...

    African Journals Online (AJOL)

    HP

    by the local community in adopting the changing environmental conditions was discussed. Rural communities have local knowledge in areas such as weather and seasonal forecasting (44%), drought forecasting (20.9%), crop pest & disease (47%), and weed (99.7%) control methods to adapt to some of the climate change ...

  18. Assessment of awareness regarding climate change in an urban community.

    Science.gov (United States)

    Pandve, Harshal T; Chawla, P S; Fernandez, Kevin; Singru, Samir A; Khismatrao, Deepak; Pawar, Sangita

    2011-09-01

    Climate change has emerged as one of the most devastating environmental threats. It is essential to assess the awareness regarding climate change in the general population for framing the mitigation activities. To assess the awareness regarding climate change in an urban community. Urban field practice area of a medical college in the Pune city. Observational study. The cross-sectional survey was conducted in the urban adult population who had given the written consent. A pre-tested questionnaire was used for a face to face interview. Responses were evaluated. Proportions, percentage. Total 733 respondents above 18 years of age were included in the present survey. 672 (91.68%) respondents commented that global climate is changing. 547 (81.40%) respondents opined that human activities are contributing to climate change. 576 (85.71%) respondents commented that climate changing based on their personal experiences. Commonest source of information about climate change was television (59.78%). Poor awareness about UNFCC, Kyoto Protocol and IPCC was found. 549 (74.90%) respondents commented that deforestation contribute most significantly towards climate change. As per 530 (72.31%) respondents water related issues are due to changing climate change. According to 529 (72.17%) respondents, direct physical hazards of extreme climatic events are most important health related impact of climate change. According to 478 (65.21%) respondents, life style changes (63.3%) would be most effective in tackling climate change and for preventing further climate change. The urban general population is aware about changing global climate. Personal efforts are more important in mitigating climate change as per the urban general population. The awareness campaigns regarding mitigation activities are recommended.

  19. School Climate Improvement Action Guide for Community Partners. School Climate Improvement Resource Package

    Science.gov (United States)

    National Center on Safe Supportive Learning Environments, 2017

    2017-01-01

    Improving school climate takes time and commitment from a variety of people in a variety of roles. This document outlines how community partners can support school climate improvements. Organizations and individuals can partner with schools in many different ways--from delivering or coordinating direct services to students and families inside or…

  20. Progress Report 2008: A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Drake, John B [ORNL; Worley, Patrick H [ORNL; Hoffman, Forrest M [ORNL; Jones, Phil [Los Alamos National Laboratory (LANL)

    2009-01-01

    This project employs multi-disciplinary teams to accelerate development of the Community Climate System Model (CCSM), based at the National Center for Atmospheric Research (NCAR). A consortium of eight Department of Energy (DOE) National Laboratories collaborate with NCAR and the NASA Global Modeling and Assimilation Office (GMAO). The laboratories are Argonne (ANL), Brookhaven (BNL) Los Alamos (LANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL), Oak Ridge (ORNL), Pacific Northwest (PNNL) and Sandia (SNL). The work plan focuses on scalablity for petascale computation and extensibility to a more comprehensive earth system model. Our stated goal is to support the DOE mission in climate change research by helping ... To determine the range of possible climate changes over the 21st century and beyond through simulations using a more accurate climate system model that includes the full range of human and natural climate feedbacks with increased realism and spatial resolution.

  1. climate change and variability: smallholder farming communities

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Increasing awareness of risks associated with climate change and variability among smallholder farmers is critical in building their capacity to develop the necessary adaptive measures. Using farmer participatory research approaches and formal questionnaire surveys, interaction has been made with >800 farmers in two ...

  2. Community-based adaptation to climate change: an update

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Jessica; Huq, Saleemul

    2009-06-15

    Over a billion people - the world's poorest and most bulnerable communities – will bear the brunt of climate change. For them, building local capacity to cope is a vital step towards resilience. Community-based adaptation (CBA) is emerging as a key response to this challenge. Tailored to local cultures and conditions, CBA supports and builds on autonomous adaptations to climate variability, such as the traditional baira or floating gardens of Bangladesh, which help small farmers' crops survive climate-driven floods. Above all, CBA is participatory – a process involving both local stakeholders, and development and disaster risk reduction practitioners. As such, it builds on existing cultural norms while addressing local development issues that contribute to climate vulnerability. CBA is now gaining ground in many regions, and is ripe for the reassessment offered here.

  3. Engaging Youth on Climate & Health to Cultivate Community Resilience

    Science.gov (United States)

    Haine, D. B.; Gray, K. M.; Chang, D.; Morton, T.; Steele, B.; Backus, A.; Hauptman, M.

    2017-12-01

    Cultivating climate literacy among youth positions them to develop solutions and advocate for actions that prepare communities to adapt to climate change, mitigate emissions and ultimately protect human health and well-being, with an eye towards protecting the most vulnerable populations. This presentation will describe an innovative partnership among three university environmental health programs—based at the University of North Carolina at Chapel Hill, Columbia University and Harvard University—and their community collaborators: the Alliance for Climate Education, Boston Children's Hospital Pediatric Environmental Health Center and WE ACT for Environmental Justice. This project engages youth through non-formal educational programming that promotes climate literacy while also building the capacity of today's youth to promote community resilience. This partnership led to the development and implementation of two, long-duration extracurricular youth science enrichment programs in 2017, one in North Carolina (NC) and one in New York, with joint activities conducted virtually and in person to connect students with each other and with leading public health professionals and others working to promote community resilience and climate justice. Forty high school students, 20 from central NC and 20 from West Harlem in New York City, are enrolled in each program. In July 2017, students came together for a 3-day summer institute in NC. This session will feature the strategies, STEM-based activities and resources used in this project to engage students in the examination of their communities, identification and evaluation of climate adaptation and mitigation strategies and promotion of community resilience. Programming entailed having students interact with public health professionals, scientists and others to learn about climate impacts to public health and its infrastructure, vulnerable populations and planning for resilient communities. Ultimately, we sought to promote

  4. Multiple climate drivers accelerate Arctic plant community senescence

    Science.gov (United States)

    Livensperger, C.; Steltzer, H.; Wallenstein, M. D.; Weintraub, M. N.

    2015-12-01

    Alteration of seasonal phenology cues due to climate change has led to changes in the onset and duration of the growing season. While photoperiod often acts as an ultimate control on phenological events, recent studies have shown that environmental cues such as temperature and soil water content can modify the direction and rate of senescence processes. Warmer temperatures have resulted in an observed trend towards delayed senescence across temperate latitudes. However, Arctic regions are characterized by extreme seasonality and rapidly decreasing photoperiod, and consequently senescence may not shift as climate warms. We monitored the timing of Arctic plant community senescence for three years under the framework of an experimental manipulation that altered seasonal phenological cues through warming and earlier snowmelt. Alternative models of senescence were tested to determine if microclimate (air temperature, soil temperature, and soil moisture) or start of season phenology affect the timing and rate of community senescence. We found that all three microclimate predictors contributed to explaining variation in timing of senescence, suggesting that photoperiod is not the sole control on timing of senescence in Arctic plant communities. Rather, increased air and soil temperatures along with drier soil conditions, led to acceleration in the onset of senescence at a community level. Our data suggest that (1) multiple climate drivers predict timing of plant community senescence, and (2) climate change could result in a shorter peak season due to earlier onset of senescence, which would decrease the potential carbon uptake in moist acidic tundra.

  5. COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction

    Science.gov (United States)

    Lai-Chen, C.

    Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate

  6. Climate impacts on fungal community and trait dynamics

    Czech Academy of Sciences Publication Activity Database

    Andrew, C.; Heegaard, E.; Halvorsen, R.; Martinez-Pena, F.; Egli, S.; Kirk, P.M.; Baessler, C.; Büntgen, Ulf; Aldea, J.; Hoiland, K.; Boddy, L.; Kauserud, H.

    2016-01-01

    Roč. 22, aug (2016), s. 17-25 ISSN 1754-5048 Institutional support: RVO:67179843 Keywords : nonlinear dimensionality reduction * root-tip communities * ectomycorrhizal fungi * environmental drivers * resource availability * mycorrhizal fungi * fruit bodies * soil * forest * patterns * Community structure * Fungi-forest-climate interactions * Life-history traits * Long-term data * Successional models Subject RIV: EH - Ecology, Behaviour Impact factor: 3.219, year: 2016

  7. Community perception on climate change and climate-related disaster preparedness in Kathmandu Valley, Nepal

    Directory of Open Access Journals (Sweden)

    Simone Sandholz

    2013-04-01

    Full Text Available Within the last decades, Kathmandu Valley in Nepal has been characterized by rapid population growth and related urbanization processes, leading to environmental degradation, pollution and supply bottlenecks in the metropolitan area. Effects of climate change are now putting additional stress on the urban system. In our research in Kathmandu, we carried out community and household surveys to analyze community perception on climate change and climate-related disaster preparedness. For this purpose, three categories of communities, 12 in all, were surveyed and interviewed: Squatter settlements, agricultural villages, and traditional villages. All settlements are located close to main rivers and therefore especially exposed to floods and droughts, and in slope position also to landslides. As a main result, we can conclude that people are generally aware of climate change and its potential consequences, such as climate change-related disasters. However, in their daily lives, climate change does not play a significant role and most communities have not taken any adaptation measures so far.

  8. Climate change and health research: has it served rural communities?

    Science.gov (United States)

    Bell, Erica J

    2013-01-01

    If climate change is the 21st Century's biggest public health threat, research faces the major challenge of providing adequate evidence for vulnerable communities to adapt to the health effects of climate change. Available information about best practice in climate adaptation suggests it is inclusive of socio-economic disadvantage and local community factors such as access to health services. Since 1995, at least 19 164 papers have been published on climate change in the health sciences and social sciences. This body of literature has not yet been systematically examined for how well it serves rural communities. The ultimate aim of the study was to contribute to better understandings about what climate adaptation research has been done and is needed for rural communities. The two research questions were: 'What kinds of content define climate change research in disciplines that could potentially contribute to adaptation for health?' and 'How is content about rural and Aboriginal communities and best practice in adaptation related to this content?' A quantitative content analysis was performed using 'computational linguistics' Leximancer software. The analysis included 19 164 health and social sciences abstracts, batched by years, from 1 January 1995 to 31 July 2012. The relative frequency and co-occurrence of 52 concepts in these abstracts were mapped, as well as associations with positive or negative sentiment for selected concepts. Aboriginal' concepts tend to be relatively infrequent (3% and 5% overall likelihood of occurrence, respectively) and are more associated with socio-economic concepts in the social sciences than the health sciences. Multiple concepts in the health sciences literature are typically connected with 'disease' and ultimately 'science' storylines, with a 38% likelihood of paired co-occurrence of 'health' and 'disease' concepts alone. The social sciences appear more focused on the local and particular issues of community in climate change than

  9. CLIMATE CHANGE AND COMMUNITY ENVIRONMENTAL CONFLICTS: ARE THEY CORRELATED?

    Directory of Open Access Journals (Sweden)

    Achmad Romsan

    2017-01-01

    Full Text Available Climate change and global warming affect major change in freshwater availability and season uncertainty which hamper all part of the globe. Although the phenomenon is not new but it needs concerns from all the government of States around the world to  address the problem. If notthe drought and water shortages will directly and indirectly be the world problem and finally will ignite conflict over resources.Pollution and environmental degradation will also affect the sustainability of community’s economic activities. In Indonesia, since the enforcement of the first Environmental Management Act of 1982 up to the third Environmental Management Act of 2019, there have been forty one conflicts involving community and industries and palm plantation companies. All the conflicts are brought before the courts. Herein, industries and plantations are blamed for responsible for river water pollution and environmental degradation. Unfortunately, there is very little information in Indonesia obtained from the research reports, journals, news papers, magazines whether climate change and global warming also responsible for the occurrence of community environmental conflict. From the second data sources obtained from outsite Indonesia it is found that there is a link between climate change and community environmental disputes. The objectives of this paper tryto examine whether the cases submitted and solved by the District Courtsalso have some connection with the climate change phenomenon. Other objectives are to recommend to the Government of Indonesia to strengthen the existing regulations dealing with the climate change

  10. Adaptation to Climate Change in two Rural Communities on the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Adaptation to Climate Change in two Rural Communities on the Plains and in the Mountains of Morocco ... Five world-class research teams are working to develop vaccines for neglected livestock diseases in the Global South ... IDRC partner the World Economic Forum is building a hub for inclusive growth solutions.

  11. Local Communities and Schools Tackling Sustainability and Climate Change

    Science.gov (United States)

    Flowers, Rick; Chodkiewicz, Andrew

    2009-01-01

    Local communities and their schools remain key sites for actions tackling issues of sustainability and climate change. A government-funded environmental education initiative, the Australian Sustainable Schools Initiative (AuSSI), working together with state based Sustainable Schools Programs (SSP), has the ability to support the development of…

  12. An Examination of Campus Climate for LGBTQ Community College Students

    Science.gov (United States)

    Garvey, Jason C.; Taylor, Jason L.; Rankin, Susan

    2015-01-01

    This study examines campus climate for lesbian, gay, bisexual, transgender, and queer (LGBTQ) undergraduate students at community colleges. Data for the study originates from Rankin, Blumenfeld, Weber, and Frazer's (2010) "State of Higher Education for LGBT People." We analyzed both quantitative data generated from closed-ended…

  13. Impacts of climatic changes on small mammal communities in the ...

    African Journals Online (AJOL)

    To evaluate the impact of climatic change on rodent sahelian communities, we analysed the contents of over 2500 barn owl (Tyto alba) pellets collected along the Senegal river between 1989 and 2003, and from the Ferlo sahelian area in 2003. These results are compared with data from the 1970s and 1980s in the same ...

  14. Common Belief. Australia's Faith Communities on Climate Change

    International Nuclear Information System (INIS)

    2006-12-01

    Sixteen Australian faith communities representing the world's great religious traditions have united to speak out on climate change: Aboriginal people, the Australian Christian lobby, Baha'i believers, Baptists, Buddhists, Catholics, Evangelical Christians, Greek Orthodox, Hindus, Jewish people, Lutherans, Muslims, The Salvation Army, Sikhs, The United Church

  15. Indigenous knowledge of rural communities for combating climate ...

    African Journals Online (AJOL)

    Rural communities have local knowledge in areas such as weather and seasonal forecasting (44%), drought forecasting (20.9%), crop pest & disease (47%), and weed (99.7%) control methods to adapt to some of the climate change impacts. Not all households have the same levels and types of indigenous knowledge.

  16. Peformance Tuning and Evaluation of a Parallel Community Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Drake, J.B.; Worley, P.H.; Hammond, S.

    1999-11-13

    The Parallel Community Climate Model (PCCM) is a message-passing parallelization of version 2.1 of the Community Climate Model (CCM) developed by researchers at Argonne and Oak Ridge National Laboratories and at the National Center for Atmospheric Research in the early to mid 1990s. In preparation for use in the Department of Energy's Parallel Climate Model (PCM), PCCM has recently been updated with new physics routines from version 3.2 of the CCM, improvements to the parallel implementation, and ports to the SGIKray Research T3E and Origin 2000. We describe our experience in porting and tuning PCCM on these new platforms, evaluating the performance of different parallel algorithm options and comparing performance between the T3E and Origin 2000.

  17. Engineering and Technical Configuration Aspects of HIAPER, the new NSF/NCAR Research Aircraft

    Science.gov (United States)

    Friesen, R.; Laursen, K.

    2002-12-01

    The High-performance Instrumented Airborne Platform for Environmental Research, or HIAPER, is the new research aircraft presently being developed at the National Center for Atmospheric Research (NCAR) to serve the environmental research needs of the National Science Foundation (NSF) for the next several decades. The basic aircraft -- a Gulfstream V (G-V) business jet -- has been completed and will shortly undergo extensive modification to prepare it for future deployments in support of a variety of geosciences research missions. This presentation will focus on the many design and engineering considerations that have been made and are yet to come in converting a "green" business jet into a versatile research aircraft to serve the environmental research community. The project teams composed of engineers and scientists from NCAR and the scientific community at large are faced with trade offs involving costs of modifications, airframe structural integrity, aircraft performance (e.g. weight, drag), cabin environment, locations of inlet and sampling ports and FAA certification requirements. Many of the specific engineering specifications and modifications that have been made to date will be presented by way of engineering drawings, graphical depictions and actual photographs of the aircraft structure. Additionally, projected performance data of the modified-for-research aircraft will be presented along with some of the analyses performed to arrive at critical decisions (e.g. CFD airflow analysis). Finally, some of the details of the aircraft "infrastructure" such as signal and power wiring, generic cabin layout and data acquisition will be discussed.

  18. Climate change effects on soil microarthropod abundance and community structure

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Reynolds, W. Nicholas [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL; Classen, Aimee T [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Long-term ecosystem responses to climate change strongly depend on how the soil subsystem and its inhabitants respond to these perturbations. Using open-top chambers, we studied the response of soil microarthropods to single and combined effects of ambient and elevated atmospheric [CO{sub 2}], ambient and elevated temperatures and changes in precipitation in constructed old-fields in Tennessee, USA. Microarthropods were assessed five years after treatments were initiated and samples were collected in both November and June. Across treatments, mites and collembola were the most dominant microarthropod groups collected. We did not detect any treatment effects on microarthropod abundance. In November, but not in June, microarthropod richness, however, was affected by the climate change treatments. In November, total microarthropod richness was lower in dry than in wet treatments, and in ambient temperature treatments, richness was higher under elevated [CO{sub 2}] than under ambient [CO{sub 2}]. Differential responses of individual taxa to the climate change treatments resulted in shifts in community composition. In general, the precipitation and warming treatments explained most of the variation in community composition. Across treatments, we found that collembola abundance and richness were positively related to soil moisture content, and that negative relationships between collembola abundance and richness and soil temperature could be explained by temperature-related shifts in soil moisture content. Our data demonstrate how simultaneously acting climate change factors can affect the structure of soil microarthropod communities in old-field ecosystems. Overall, changes in soil moisture content, either as direct effect of changes in precipitation or as indirect effect of warming or elevated [CO{sub 2}], had a larger impact on microarthropod communities than did the direct effects of the warming and elevated [CO{sub 2}] treatments. Moisture-induced shifts in soil

  19. Performance of the HOMME dynamical core in the aqua-planet configuration of NCAR CAM4: equatorial waves

    Directory of Open Access Journals (Sweden)

    S. K. Mishra

    2011-02-01

    Full Text Available A new atmospheric dynamical core, named the High Order Method Modeling Environment (HOMME, has been recently included in the NCAR-Community Climate System Model version 4 (CCSM4. It is a petascale capable high-order element-based conservative dynamical core developed on a cubed-sphere grid. We have examined the model simulations with HOMME using the aqua-planet mode of CAM4 (atmospheric component of CCSM4 and evaluated its performance in simulating the equatorial waves, considered a crucial element of climate variability. For this we compared the results with two other established models in CAM4 framework, which are the finite-volume (FV and Eulerian spectral (EUL dynamical cores. Although the gross features seem to be comparable, important differences have been found among the three dynamical cores. The phase speed of Kelvin waves in HOMME is faster and more satisfactory than those in FV and EUL. The higher phase speed is attributed to an increased large-scale precipitation in the upper troposphere and a more top-heavy heating structure. The variance of the n=1 equatorial Rossby waves is underestimated by all three of them, but comparatively HOMME simulations are more reasonable. For the n=0 eastward inertio-gravity waves, the variances are weak and phase speeds are too slow, scaled to shallow equivalent depths. However, the variance in HOMME is relatively more compared to the two other dynamical cores. The mixed Rossby-gravity waves are feeble in all the three cases. In summary, model simulations using HOMME are reasonably good, with some improvement relative to FV and EUL in capturing some of the important characteristics associated with equatorial waves.

  20. Expanding Access to NCAR's Digital Assets: Towards a Unified Scientific Data Management System

    Science.gov (United States)

    Stott, D.

    2016-12-01

    In 2014 the National Center for Atmospheric Research (NCAR) Directorate created the Data Stewardship Engineering Team (DSET) to plan and implement the strategic vision of an integrated front door for data discovery and access across the organization, including all laboratories, the library, and UCAR Community Programs. The DSET is focused on improving the quality of users' experiences in finding and using NCAR's digital assets. This effort also supports new policies included in federal mandates, NSF requirements, and journal publication rules. An initial survey with 97 respondents identified 68 persons responsible for more than 3 petabytes of data. An inventory, using the Data Asset Framework produced by the UK Digital Curation Centre as a starting point, identified asset types that included files and metadata, publications, images, and software (visualization, analysis, model codes). User story sessions with representatives from each lab identified and ranked desired features for a unified Scientific Data Management System (SDMS). A process beginning with an organization-wide assessment of metadata by the HDF Group and followed by meetings with labs to identify key documentation concepts, culminated in the development of an NCAR metadata dialect that leverages the DataCite and ISO 19115 standards. The tasks ahead are to build out an SDMS and populate it with rich standardized metadata. Software packages have been prototyped and currently are being tested and reviewed by DSET members. Key challenges for the DSET include technical and non-technical issues. First, the status quo with regard to how assets are managed varies widely across the organization. There are differences in file format standards, technologies, and discipline-specific vocabularies. Metadata diversity is another real challenge. The types of metadata, the standards used, and the capacity to create new metadata varies across the organization. Significant effort is required to develop tools to create

  1. Earth System Grid II, Turning Climate Datasets into Community Resources

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects, we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.

  2. ClimatePipes: User-Friendly Data Access, Manipulation, Analysis & Visualization of Community Climate Models

    Science.gov (United States)

    Chaudhary, A.; DeMarle, D.; Burnett, B.; Harris, C.; Silva, W.; Osmari, D.; Geveci, B.; Silva, C.; Doutriaux, C.; Williams, D. N.

    2013-12-01

    The impact of climate change will resonate through a broad range of fields including public health, infrastructure, water resources, and many others. Long-term coordinated planning, funding, and action are required for climate change adaptation and mitigation. Unfortunately, widespread use of climate data (simulated and observed) in non-climate science communities is impeded by factors such as large data size, lack of adequate metadata, poor documentation, and lack of sufficient computational and visualization resources. We present ClimatePipes to address many of these challenges by creating an open source platform that provides state-of-the-art, user-friendly data access, analysis, and visualization for climate and other relevant geospatial datasets, making the climate data available to non-researchers, decision-makers, and other stakeholders. The overarching goals of ClimatePipes are: - Enable users to explore real-world questions related to climate change. - Provide tools for data access, analysis, and visualization. - Facilitate collaboration by enabling users to share datasets, workflows, and visualization. ClimatePipes uses a web-based application platform for its widespread support on mainstream operating systems, ease-of-use, and inherent collaboration support. The front-end of ClimatePipes uses HTML5 (WebGL, Canvas2D, CSS3) to deliver state-of-the-art visualization and to provide a best-in-class user experience. The back-end of the ClimatePipes is built around Python using the Visualization Toolkit (VTK, http://vtk.org), Climate Data Analysis Tools (CDAT, http://uv-cdat.llnl.gov), and other climate and geospatial data processing tools such as GDAL and PROJ4. ClimatePipes web-interface to query and access data from remote sources (such as ESGF). Shown in the figure is climate data layer from ESGF on top of map data layer from OpenStreetMap. The ClimatePipes workflow editor provides flexibility and fine grained control, and uses the VisTrails (http

  3. Creating a Learning Community for Solutions to Climate Change

    Science.gov (United States)

    Bloom, A. J.; Benedict, B. A.; Blockstein, D. E.; Hassenzahl, D. M.; Hunter, A.; Jorgensen, A. D.; Pfirman, S. L.

    2011-12-01

    The rapidly evolving and interdisciplinary nature of climate change presents a challenge to colleges and universities as they seek to educate undergraduate students. To address this challenge, the National Council for Science and the Environment (NCSE) with NSF funding is creating a nationwide cyber-enabled learning community called CAMEL (Climate, Adaptation, and Mitigation e-Learning). CAMEL engages experts in science, policy and decision-making, education, and assessment in the production of a virtual toolbox of curricular resources designed for teaching climate change causes, consequences, and solutions. CAMEL is: ? Developing cyberinfrastructure that supports and promotes the creation of materials and community; ? Generating materials for the Encyclopedia of Earth, a site averaging 50,000 views per day; ? Ensuring that materials developed and shared are founded on the best available scientific information and follow the most appropriate educational practices; ? Assisting faculty at institutions of higher education across the United States as they create, improve, test, and share resources for teaching students not only how to diagnose climate change problems, but also to identify and effect solutions; ? Evaluating the determinants of successful community building using cybermedia. The community and resultant content range from general education to upper division courses for students in a variety of majors. At the center of the community are the 160 colleges and universities represented in NCSE's Council of Environmental Deans and Directors. Members of this group represent recognized expertise in virtually all areas of this project. A team with substantial experience with evaluating innovative initiatives in STEM education is administering the evaluation component.

  4. Coastal community resilience in climate adaptation and risk reduction

    DEFF Research Database (Denmark)

    Thomsen, Mie; Sørensen, Carlo Sass

    are combined with community resilience studies to provide the corresponding municipalities with a more elaborate knowledge platform for climate adaptation and disaster risk reduction. Community resilience is investigated in four dimensions (information & communication, community competence, social capital......, and institutional capacity) from +25 semi-structured interviews conducted with local citizens, municipal level employees as well as national government officials. Despite facing the same flood hazards, the two communities have different h istories, social structures, and previous flood experiences and, accordingly......Storm surge impacts on the Limfjord coasts of Denmark are exacerbated by the expansion of the Thyborøn Channel that causes increased water transport into the fjord from the North Sea. This, in combination with sea level rise, jeopardizes the strength of existing flood protection and challenges...

  5. The NCAR Research Data Archive's Hybrid Approach for Data Discovery and Access

    Science.gov (United States)

    Schuster, D.; Worley, S. J.

    2013-12-01

    The NCAR Research Data Archive (RDA http://rda.ucar.edu) maintains a variety of data discovery and access capabilities for it's 600+ dataset collections to support the varying needs of a diverse user community. In-house developed and standards-based community tools offer services to more than 10,000 users annually. By number of users the largest group is external and access the RDA through web based protocols; the internal NCAR HPC users are fewer in number, but typically access more data volume. This paper will detail the data discovery and access services maintained by the RDA to support both user groups, and show metrics that illustrate how the community is using the services. The distributed search capability enabled by standards-based community tools, such as Geoportal and an OAI-PMH access point that serves multiple metadata standards, provide pathways for external users to initially discover RDA holdings. From here, in-house developed web interfaces leverage primary discovery level metadata databases that support keyword and faceted searches. Internal NCAR HPC users, or those familiar with the RDA, may go directly to the dataset collection of interest and refine their search based on rich file collection metadata. Multiple levels of metadata have proven to be invaluable for discovery within terabyte-sized archives composed of many atmospheric or oceanic levels, hundreds of parameters, and often numerous grid and time resolutions. Once users find the data they want, their access needs may vary as well. A THREDDS data server running on targeted dataset collections enables remote file access through OPENDAP and other web based protocols primarily for external users. In-house developed tools give all users the capability to submit data subset extraction and format conversion requests through scalable, HPC based delayed mode batch processing. Users can monitor their RDA-based data processing progress and receive instructions on how to access the data when it is

  6. Impact of an extreme climatic event on community assembly

    OpenAIRE

    Thibault, Katherine M.; Brown, James H.

    2008-01-01

    Extreme climatic events are predicted to increase in frequency and magnitude, but their ecological impacts are poorly understood. Such events are large, infrequent, stochastic perturbations that can change the outcome of entrained ecological processes. Here we show how an extreme flood event affected a desert rodent community that has been monitored for 30 years. The flood (i) caused catastrophic, species-specific mortality; (ii) eliminated the incumbency advantage of previously dominant spec...

  7. Improving Climate Change Communication Skills through Community Outreach

    Science.gov (United States)

    Hanrahan, J.

    2015-12-01

    While many undergraduate Atmospheric Science departments are expanding their curriculums to focus on the science of climate change, often overlooked is the need to educate students about how this topic can be effectively communicated to others. It has become increasingly difficult for young scientists to comfortably discuss this polarizing topic with people outside of the classroom. To address this, Atmospheric Science faculty at Lyndon State College are providing undergraduate students the opportunity to practice this important skill by reaching out to the local community. Over the past year, students have been meeting regularly to discuss climate change and its impacts, and to present this information to the general public at local schools and organizations. The group was organized with the primary goal of teaching undergraduate students about effective ways to communicate basic climate science to nonscientists, but to also improve public understanding of anthropogenic climate change while starting a conversation among young people in the community. We will identify lessons learned after one year, discuss effective strategies, and summarize student feedback.

  8. Drivers of climate change impacts on bird communities.

    Science.gov (United States)

    Pearce-Higgins, James W; Eglington, Sarah M; Martay, Blaise; Chamberlain, Dan E

    2015-07-01

    Climate change is reported to have caused widespread changes to species' populations and ecological communities. Warming has been associated with population declines in long-distance migrants and habitat specialists, and increases in southerly distributed species. However, the specific climatic drivers behind these changes remain undescribed. We analysed annual fluctuations in the abundance of 59 breeding bird species in England over 45 years to test the effect of monthly temperature and precipitation means upon population trends. Strong positive correlations between population growth and both winter and breeding season temperature were identified for resident and short-distance migrants. Lagged correlations between population growth and summer temperature and precipitation identified for the first time a widespread negative impact of hot, dry summer weather. Resident populations appeared to increase following wet autumns. Populations of long-distance migrants were negatively affected by May temperature, consistent with a potential negative effect of phenological mismatch upon breeding success. There was evidence for some nonlinear relationships between monthly weather variables and population growth. Habitat specialists and cold-associated species showed consistently more negative effects of higher temperatures than habitat generalists and southerly distributed species associated with warm temperatures. Results suggest that previously reported changes in community composition represent the accumulated effects of spring and summer warming. Long-term population trends were more significantly correlated with species' sensitivity to temperature than precipitation, suggesting that warming has had a greater impact on population trends than changes in precipitation. Months where there had been the greatest warming were the most influential drivers of long-term change. There was also evidence that species with the greatest sensitivity to extremes of precipitation have

  9. EFFECTS OF CLIMATE CHANGE ON GLOBAL SEAWEED COMMUNITIES.

    Science.gov (United States)

    Harley, Christopher D G; Anderson, Kathryn M; Demes, Kyle W; Jorve, Jennifer P; Kordas, Rebecca L; Coyle, Theraesa A; Graham, Michael H

    2012-10-01

    Seaweeds are ecologically important primary producers, competitors, and ecosystem engineers that play a central role in coastal habitats ranging from kelp forests to coral reefs. Although seaweeds are known to be vulnerable to physical and chemical changes in the marine environment, the impacts of ongoing and future anthropogenic climate change in seaweed-dominated ecosystems remain poorly understood. In this review, we describe the ways in which changes in the environment directly affect seaweeds in terms of their physiology, growth, reproduction, and survival. We consider the extent to which seaweed species may be able to respond to these changes via adaptation or migration. We also examine the extensive reshuffling of communities that is occurring as the ecological balance between competing species changes, and as top-down control by herbivores becomes stronger or weaker. Finally, we delve into some of the ecosystem-level responses to these changes, including changes in primary productivity, diversity, and resilience. Although there are several key areas in which ecological insight is lacking, we suggest that reasonable climate-related hypotheses can be developed and tested based on current information. By strategically prioritizing research in the areas of complex environmental variation, multiple stressor effects, evolutionary adaptation, and population, community, and ecosystem-level responses, we can rapidly build upon our current understanding of seaweed biology and climate change ecology to more effectively conserve and manage coastal ecosystems. © 2012 Phycological Society of America.

  10. Decoding the Digital Campus Climate for Prospective LGBTQ+ Community Colleges Students

    Science.gov (United States)

    Taylor, Jason L.; Dockendorff, Kari J.; Inselman, Kyle

    2018-01-01

    LGBTQ+ students are increasingly visible on community college campuses, and a safe and welcoming campus climate is critical to LGBTQ+ students' academic success and well-being. Campus climate is difficult to assess for prospective LGBTQ+ community college students, and institutional websites may be a source of information about campus climate.…

  11. Lichen communities and species indicate climate thresholds in southeast and south-central Alaska, USA

    Science.gov (United States)

    Heather T. Root; Bruce. McCune; Sarah. Jovan

    2014-01-01

    Because of their unique physiology, lichen communities are highly sensitive to climatic conditions,making them ideal bioindicators for climate change. Southeast and south-central Alaska host diverse and abundant lichen communities and are faced with a more rapidly changing climate than many more southerly latitudes. We develop sensitive lichen-based indicators for...

  12. Trends in solar radiation in NCEP/NCAR database and measurements in northeastern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Vicente de Paulo Rodrigues da; Silva, Roberta Araujo e; Cavalcanti, Enilson Palmeira; Braga, Celia Campos; Azevedo, Pedro Vieira de; Pereira, Emerson Ricardo Rodrigues [Federal University of Campina Grande/Center of Technology and Natural Resources/Academic Unity of Atmospheric Sciences, Av. Aprigio Veloso, 882, Bodocongo, 58109 970, Campina Grande, PB (Brazil); Singh, Vijay P. [Dept. of Biological and Agricultural Engineering, Texas A and M Univ., TX 77843-2117 (United States)

    2010-10-15

    The database from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis project available for the period from 1948 to 2009 was used for obtaining long-term solar radiation for northeastern Brazil. Measurements of global solar radiation (R{sub s}) from data collection platform (DCP) for four climatic zones of northeastern Brazil were compared to the re-analysis data. Applying cluster analysis to R{sub s} from database, homogeneous sub-regions in northeastern Brazil were determined. Long times series of R{sub s} and sunshine duration measurements data for two sites, Petrolina (09 09'S, 40 22'W) and Juazeiro (09 24'S, 40 26'W), exceeding 30 years, were analyzed. In order to exclude the decadal variations which are linked to the Pacific Decadal Oscillation, high-frequency cycles in the solar radiation and sunshine duration time series were eliminated by using a 14-year moving average, and the Mann-Kendall test was employed to assess the long-term variability of re-analysis and measured solar radiation. This study provides an overview of the decrease in solar radiation in a large area, which can be attributed to the global dimming effect. The global solar radiation obtained from the NCEP/NCAR re-analysis data overestimate that obtained from DCP measurements by 1.6% to 18.6%. Results show that there is a notable symmetry between R{sub s} from the re-analysis data and sunshine duration measurements. (author)

  13. Impacts of different climate change regimes and extreme climatic events on an alpine meadow community.

    Science.gov (United States)

    Alatalo, Juha M; Jägerbrand, Annika K; Molau, Ulf

    2016-02-18

    Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 °C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 °C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 °C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity.

  14. Local governments and climate change: sustainable energy planning and implementation in small and medium sized communities

    National Research Council Canada - National Science Library

    Van Staden, Maryke; Musco, Francesco

    2010-01-01

    The focus of 'Local governments and climate change' is on how small and medium-sized communities in Europe are effectively responding to climate change, with a particular focus on different approaches...

  15. The Informed Guide to Climate Data Sets, a web-based community resource to facilitate the discussion and selection of appropriate datasets for Earth System Model Evaluation

    Science.gov (United States)

    Schneider, D. P.; Deser, C.; Shea, D.

    2011-12-01

    When comparing CMIP5 model output to observations, researchers will be faced with a bewildering array of choices. Considering just a few of the different products available for commonly analyzed climate variables, for reanalysis there are at least half a dozen different products, for sea ice concentrations there are NASA Team or Bootstrap versions, for sea surface temperatures there are HadISST or NOAA ERSST data, and for precipitation there are CMAP and GPCP data sets. While many data centers exist to host data, there is little centralized guidance on discovering and choosing appropriate climate data sets for the task at hand. Common strategies like googling "sea ice data" yield results that at best are substantially incomplete. Anecdotal evidence suggests that individual researchers often base their selections on non-scientific criteria-either the data are in a convenient format that the user is comfortable with, a co-worker has the data handy on her local server, or a mentor discourages or recommends the use of particular products for legacy or other non-objective reasons. Sometimes these casual recommendations are sound, but they are not accessible to the broader community or adequately captured in the peer-reviewed literature. These issues are addressed by the establishment of a web-based Informed Guide with the specific goals to (1) Evaluate and assess selected climate datasets and (2) Provide expert user guidance on the strengths and limitations of selected climate datasets. The Informed Guide is based at NCAR's Climate and Global Dynamics Division, Climate Analysis Section and is funded by NSF. The Informed Guide is an interactive website that welcomes participation from the broad scientific community and is scalable to grow as participation increases. In this presentation, we will present the website, discuss how you can participate, and address the broader issues about its role in the evaluation of CMIP5 and other climate model simulations. A link to the

  16. Research on the climatic effects of nuclear winter: Final report

    International Nuclear Information System (INIS)

    Dickinson, R.E.

    1986-01-01

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project

  17. Research on the climatic effects of nuclear winter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R.E.

    1986-12-03

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project.

  18. Using Regional Climate Projections to Guide Grassland Community Restoration in the Face of Climate Change.

    Science.gov (United States)

    Kane, Kristin; Debinski, Diane M; Anderson, Chris; Scasta, John D; Engle, David M; Miller, James R

    2017-01-01

    Grassland loss has been extensive worldwide, endangering the associated biodiversity and human well-being that are both dependent on these ecosystems. Ecologists have developed approaches to restore grassland communities and many have been successful, particularly where soils are rich, precipitation is abundant, and seeds of native plant species can be obtained. However, climate change adds a new filter needed in planning grassland restoration efforts. Potential responses of species to future climate conditions must also be considered in planning for long-term resilience. We demonstrate this methodology using a site-specific model and a maximum entropy approach to predict changes in habitat suitability for 33 grassland plant species in the tallgrass prairie region of the U.S. using the Intergovernmental Panel on Climate Change scenarios A1B and A2. The A1B scenario predicts an increase in temperature from 1.4 to 6.4°C, whereas the A2 scenario predicts temperature increases from 2 to 5.4°C and much greater CO 2 emissions than the A1B scenario. Both scenarios predict these changes to occur by the year 2100. Model projections for 2040 under the A1B scenario predict that all but three modeled species will lose ~90% of their suitable habitat. Then by 2080, all species except for one will lose ~90% of their suitable habitat. Models run using the A2 scenario predict declines in habitat for just four species by 2040, but models predict that by 2080, habitat suitability will decline for all species. The A2 scenario appears based on our results to be the less severe climate change scenario for our species. Our results demonstrate that many common species, including grasses, forbs, and shrubs, are sensitive to climate change. Thus, grassland restoration alternatives should be evaluated based upon the long-term viability in the context of climate change projections and risk of plant species loss.

  19. Using Regional Climate Projections to Guide Grassland Community Restoration in the Face of Climate Change

    Directory of Open Access Journals (Sweden)

    Kristin Kane

    2017-05-01

    Full Text Available Grassland loss has been extensive worldwide, endangering the associated biodiversity and human well-being that are both dependent on these ecosystems. Ecologists have developed approaches to restore grassland communities and many have been successful, particularly where soils are rich, precipitation is abundant, and seeds of native plant species can be obtained. However, climate change adds a new filter needed in planning grassland restoration efforts. Potential responses of species to future climate conditions must also be considered in planning for long-term resilience. We demonstrate this methodology using a site-specific model and a maximum entropy approach to predict changes in habitat suitability for 33 grassland plant species in the tallgrass prairie region of the U.S. using the Intergovernmental Panel on Climate Change scenarios A1B and A2. The A1B scenario predicts an increase in temperature from 1.4 to 6.4°C, whereas the A2 scenario predicts temperature increases from 2 to 5.4°C and much greater CO2 emissions than the A1B scenario. Both scenarios predict these changes to occur by the year 2100. Model projections for 2040 under the A1B scenario predict that all but three modeled species will lose ~90% of their suitable habitat. Then by 2080, all species except for one will lose ~90% of their suitable habitat. Models run using the A2 scenario predict declines in habitat for just four species by 2040, but models predict that by 2080, habitat suitability will decline for all species. The A2 scenario appears based on our results to be the less severe climate change scenario for our species. Our results demonstrate that many common species, including grasses, forbs, and shrubs, are sensitive to climate change. Thus, grassland restoration alternatives should be evaluated based upon the long-term viability in the context of climate change projections and risk of plant species loss.

  20. Distinct Contributions of Ice Nucleation, Large-Scale Environment, and Shallow Cumulus Detrainment to Cloud Phase Partitioning With NCAR CAM5

    Science.gov (United States)

    Wang, Yong; Zhang, Damao; Liu, Xiaohong; Wang, Zhien

    2018-01-01

    Mixed-phase clouds containing both liquid droplets and ice particles occur frequently at high latitudes and in the midlatitude storm track regions. Simulations of the cloud phase partitioning between liquid and ice hydrometeors in state-of-the-art global climate models are still associated with large biases. In this study, the phase partitioning in terms of liquid mass phase ratio (MPRliq, defined as the ratio of liquid mass to total condensed water mass) simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against the observational data from A-Train satellite remote sensors. Modeled MPRliq is significantly lower than observations on the global scale, especially in the Southern Hemisphere (e.g., Southern Ocean and the Antarctic). Sensitivity tests with CAM5 are conducted to investigate the distinct contributions of heterogeneous ice nucleation, shallow cumulus detrainment, and large-scale environment (e.g., winds, temperature, and water vapor) to the low MPRliq biases. Our results show that an aerosol-aware ice nucleation parameterization increases the MPRliq especially at temperatures colder than -20°C and significantly improves the model agreements with observations in the Polar regions in summer. The decrease of threshold temperature over which all detrained cloud water is liquid from 268 to 253 K enhances the MPRliq and improves the MPRliq mostly over the Southern Ocean. By constraining water vapor in CAM5 toward reanalysis, modeled low biases in many geographical regions are largely reduced through a significant decrease of cloud ice mass mixing ratio.

  1. Evaluation of the Australian Community Climate and Earth-System Simulator Chemistry-Climate Model

    Science.gov (United States)

    Stone, K. A.; Morgenstern, O.; Karoly, D. J.; Klekociuk, A. R.; French, W. J. R.; Abraham, N. L.; Schofield, R.

    2015-07-01

    Chemistry climate models are important tools for addressing interactions of composition and climate in the Earth System. In particular, they are used for assessing the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator-Chemistry Climate Model, focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry-Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO) distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October averaged Antarctic TCO from 1960 to 2010 show a similar amount of depletion compared to observations. A significant innovation is the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (up to 26.4 % at Davis during winter) and stratospheric cold biases (up to 10.1 K at the South Pole) outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centered around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux) are artificially enhancing polar stratospheric cloud formation at high altitudes. The models inability to explicitly simulated supercooled ternary solution may also explain the lack of depletion at lower altitudes. The simulated Southern Annular Mode (SAM) index compares well with ERA-Interim data. Accompanying these

  2. Understanding the interaction between wild fire and vegetation distribution within the NCAR CESM framework

    Science.gov (United States)

    Seo, H.; Kim, Y.; Kim, H. J.

    2017-12-01

    Every year wild fire brings about 400Mha of land burned therefore 2Pg of carbon emissions from the surface occur. In this way fire not only affects the carbon circulation but also has an effect on the terrestrial ecosystems. This study aims to understand role of fire on the geographic vegetation distribution and the terrestrial carbon balances within the NCAR CESM framework, specifically with the CLM-BGC and CLM-BGC-DV. Global climate data from Climate Research Unit (CRU)-National Centers for Environmental Prediction (NCEP) data ranging from 1901 to 2010 are used to drive the land models. First, by comparing fire-on and fire-off simulations with the CLM-BGC-DV, the fire impacts in dynamic vegetation are quantified by the fractional land areas of the different plant functional types. In addition, we examine how changes in vegetation distribution affect the total sum of the burned areas and the carbon balances. This study would provide the limits of and suggestions for the fire and dynamic vegetation modules of the CLM-BGC. AcknowledgementsThis work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800) and by the Korea Meteorological Administration R&D Program under Grant KMIPA 2015-6180. This work was also supported by the Yonsei University Future-leading Research Initiative of 2015(2016-22-0061).

  3. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Rousk, Johannes; Yergeau, Etienne

    2009-01-01

    the leucine incorporation technique, in order to predict future changes in temperature sensitivity of resident soil bacterial communities. Soil samples were collected along a climate gradient consisting of locations on the Antarctic Peninsula (Anchorage Island, 67 °34'S, 68 °08'W), Signy Island (60 °43'S, 45...... °38'W) and the Falkland Islands (51 °76'S 59 °03'W). At each location, experimental plots were subjected to warming by open top chambers (OTCs) and paired with control plots on vegetated and fell-field habitats. The bacterial communities were adapted to the mean annual temperature of their environment...

  4. Predicting the effects of climate change on marine communities and the consequences for fisheries

    DEFF Research Database (Denmark)

    Jennings, Simon; Brander, Keith

    2010-01-01

    for the community under the same climate scenario. The main weakness of the community approach is that the methods predict abundance and production by size-class rather than taxonomic group, and society would be particularly concerned if climate driven changes had a strong effect on the relative production...... of fishable and non-fishable species in the community. The main strength of the community approach is that it provides widely applicable ‘null’ models for assessing the biological effects of climate change and a baseline for model comparisons.......Climate effects on the structure and function of marine communities have received scant attention. The few existing approaches for predicting climate effects suggest that community responses might be predicted from the responses of component populations. These approaches require a very complex...

  5. Staff Turnover in Assertive Community Treatment (Act) Teams: The Role of Team Climate.

    Science.gov (United States)

    Zhu, Xi; Wholey, Douglas R; Cain, Cindy; Natafgi, Nabil

    2017-03-01

    Staff turnover in Assertive Community Treatment (ACT) teams can result in interrupted services and diminished support for clients. This paper examines the effect of team climate, defined as team members' shared perceptions of their work environment, on turnover and individual outcomes that mediate the climate-turnover relationship. We focus on two climate dimensions: safety and quality climate and constructive conflict climate. Using survey data collected from 26 ACT teams, our analyses highlight the importance of safety and quality climate in reducing turnover, and job satisfaction as the main mediator linking team climate to turnover. The findings offer practical implications for team management.

  6. Soil ecosystem functioning under climate change: plant species and community effects.

    Science.gov (United States)

    Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T

    2010-03-01

    Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the

  7. Controlled comparison of species- and community-level models across novel climates and communities.

    Science.gov (United States)

    Maguire, Kaitlin C; Nieto-Lugilde, Diego; Blois, Jessica L; Fitzpatrick, Matthew C; Williams, John W; Ferrier, Simon; Lorenz, David J

    2016-03-16

    Species distribution models (SDMs) assume species exist in isolation and do not influence one another's distributions, thus potentially limiting their ability to predict biodiversity patterns. Community-level models (CLMs) capitalize on species co-occurrences to fit shared environmental responses of species and communities, and therefore may result in more robust and transferable models. Here, we conduct a controlled comparison of five paired SDMs and CLMs across changing climates, using palaeoclimatic simulations and fossil-pollen records of eastern North America for the past 21 000 years. Both SDMs and CLMs performed poorly when projected to time periods that are temporally distant and climatically dissimilar from those in which they were fit; however, CLMs generally outperformed SDMs in these instances, especially when models were fit with sparse calibration datasets. Additionally, CLMs did not over-fit training data, unlike SDMs. The expected emergence of novel climates presents a major forecasting challenge for all models, but CLMs may better rise to this challenge by borrowing information from co-occurring taxa. © 2016 The Author(s).

  8. Shifts in the potential distribution of Sky Island plant communities in response to climate change

    Science.gov (United States)

    John A. Kupfer; Jeff Balmat; Jacqueline L. Smith

    2005-01-01

    To examine potential responses of sky island ecosystem pattern to projected climate changes, we used topographic and climatic data to develop a predictive model of plant community distribution in Saguaro National Park East, AZ. Increasing temperatures led to an upslope movement of communities and increased the area of desert scrub at the expense of montane conifer...

  9. Community gardens as a strategy for coping with climate shocks in ...

    African Journals Online (AJOL)

    Drought is the most important climate shock affecting rural farmers this century. In a bid to reduce the effects of climate shocks, coping strategies are being investigated. Community gardens is one such strategy. The purpose of the study was to objectively look at the dynamics involved in community gardens, that is, the ...

  10. GLOBAL CLIMATE CHANGE AND ITS IMPACT ON DISEASE IMBEDDED IN ECOLOGICAL COMMUNITIES

    Science.gov (United States)

    We present the techniques of qualitative analysis of complex communities and discuss the impact of climate change as a press perturbation. In particular, we focus on the difficult problem of disease and parasites embedded in animal communities, notably zoonotic diseases. Climate ...

  11. Climate Resilience: Outreach and Engagement with Hard to Reach Communities

    Science.gov (United States)

    Baja, K.

    2017-12-01

    Baltimore faces a unique combination of shocks and stresses that cut across social, economic, and environmental sectors. Like many postindustrial cities, Baltimore has experienced a decline in its population - resulting in a lower tax base. These trends have had deleterious effects on the city's ability to attend to much needed infrastructure improvements and human services. Furthermore, Baltimore has an unfortunate history of deliberate racial segregation that is directly responsible for many of the economic and social challenges the City faces today. In addition to considerable social and economic issues, the city is already experiencing negative impacts from climate change. Baltimore is vulnerable to many natural hazards including heavy precipitation, sea level rise, storm surge, and extreme heat. Impacts from hazards and the capacity to adapt to them is not equal across all populations. Low-income residents and communities of color are most vulnerable and lack access to the resources to effectively plan, react and recover. They are also less likely to engage in government processes or input sessions, either due to distrust or ineffective outreach efforts by government employees and partners. This session is focused on sharing best practices and lessons learned from Baltimore's approach to community outreach and engagement as well as its focus on power shifting and relationship building with hard-to-reach communities. Reducing neighborhood vulnerability and strengthening the fabric that holds systems together requires a large number of diverse stakeholders coordinated around resiliency efforts. With the history of deliberate segregation and current disparities it remains critical to build trust, shift power from government to residents, and focus on relationship building. Baltimore City utilized this approach in planning, implementation and evaluation of resiliency work. This session will highlight two plan development processes, several projects, and innovative

  12. Weathercasters' views on climate change: A state-of-the-community review

    Science.gov (United States)

    Timm, K.; Perkins, D. R., IV; Myers, T.; Maibach, E.

    2017-12-01

    As a community of practice, TV weathercasters are positioned at a crucial intersection between climate scientists and the general public. Weathercasters have the opportunity to use their scientific training and public communication skills to educate viewers about climate change. Though early research found high rates of skepticism about climate change among TV weathercasters, the most current and comprehensive analysis to date of TV weathercasters' views on climate change suggests that their views have evolved in several important ways. Surveys of all working TV weathercasters in the United States conducted in 2015, 2016 and 2017 show that the weathercaster community now holds views of climate change that are similar to that of climate scientists—in particular, that human-caused climate change is happening today and it is impacting American communities in many harmful ways. Ninety-five percent of TV weathercasters now believe that climate change (as defined by the American Meteorological Society) is occurring, and certainty in that belief has grown. Nearly 50% of TV weathercasters believe the climate change that has occurred over the past 50 years has been caused mostly (34%), or largely to entirely (15%), by human activity. Additionally, surveys suggest that weathercasters tend to underestimate the scientific consensus on climate change. Weathercasters, on average, estimate 75% of climate scientists believe humans have caused the majority of recent climate change as compared to the actual value of 97%. Despite convergence in weathercasters' climate change beliefs, this analysis suggests that opportunities remain for building climate literacy among America's TV weathercasters. Increasing this personal knowledge of climate change is one of several factors that empower weathercasters to become public climate educators to increase understanding of climate change causes in communities around the country.

  13. Fire and climate suitability for woody vegetation communities in the south central United States

    Science.gov (United States)

    Stroh, Esther; Struckhoff, Matthew; Stambaugh, Michael C.; Guyette, Richard P.

    2018-01-01

    Climate and fire are primary drivers of plant species distributions. Long-term management of south central United States woody vegetation communities can benefit from information on potential changes in climate and fire frequencies, and how these changes might affect plant communities. We used historical (1900 to 1929) and future (2040 to 2069 and 2070 to 2099) projected climate data for the conterminous US to estimate reference and future fire probabilities

  14. Extreme winds over Denmark from the NCEP/NCAR reanalysis

    DEFF Research Database (Denmark)

    Frank, H.P.

    2001-01-01

    An extreme wind analysis of wind speed calculated in the NCEP/NCAR reanalysis is done for grid points over and near Denmark. Winds at 10 m, 850 hPa, and geostrophic winds at 850 hPa, 1000 hPa, and at the sea level are analyzed. At 10 m height the expectedextreme wind with a return period of 50...... at 850 hPa and the geostrophic wind at 850 hPa or 1000 hPa yield very similar extreme winds of approximately 42ms-1. The geostrophic wind calculated from the surface pressure is approximately 45 ms-1 in central Denmark. The geostrophic winds at 1000 hPa are slightly stronger than at 850 hPa, which...... are somewhat greater than the actual wind at 850 hPa.Transformations to a wind at 10 m over a surface with roughness 5 cm with the help of the drag law yield extreme winds, which are approximately 10-12 % less than from surface measurements. The 850 hPa winds and the geostrophic wind calculated from thesurface...

  15. Impacts of Subgrid Heterogeneous Mixing between Cloud Liquid and Ice on the Wegner-Bergeron-Findeisen Process and Mixed-phase Clouds in NCAR CAM5

    Science.gov (United States)

    Liu, X.; Zhang, M.; Zhang, D.; Wang, Z.; Wang, Y.

    2017-12-01

    Mixed-phase clouds are persistently observed over the Arctic and the phase partitioning between cloud liquid and ice hydrometeors in mixed-phase clouds has important impacts on the surface energy budget and Arctic climate. In this study, we test the NCAR Community Atmosphere Model Version 5 (CAM5) with the single-column and weather forecast configurations and evaluate the model performance against observation data from the DOE Atmospheric Radiation Measurement (ARM) Program's M-PACE field campaign in October 2004 and long-term ground-based multi-sensor remote sensing measurements. Like most global climate models, we find that CAM5 also poorly simulates the phase partitioning in mixed-phase clouds by significantly underestimating the cloud liquid water content. Assuming pocket structures in the distribution of cloud liquid and ice in mixed-phase clouds as suggested by in situ observations provides a plausible solution to improve the model performance by reducing the Wegner-Bergeron-Findeisen (WBF) process rate. In this study, the modification of the WBF process in the CAM5 model has been achieved with applying a stochastic perturbation to the time scale of the WBF process relevant to both ice and snow to account for the heterogeneous mixture of cloud liquid and ice. Our results show that this modification of WBF process improves the modeled phase partitioning in the mixed-phase clouds. The seasonal variation of mixed-phase cloud properties is also better reproduced in the model in comparison with the long-term ground-based remote sensing observations. Furthermore, the phase partitioning is insensitive to the reassignment time step of perturbations.

  16. The coherent large-scale circulation change between dry/wet years over central eastern China simulated by NCAR CAM5

    Science.gov (United States)

    Zhao, Siyao; Chen, Haoming; Yu, Rucong; Li, Jian; Zhang, Yi

    2018-01-01

    This study evaluates the simulation of the coherent circulation structure correspond to the changes of mid-summer (July-August) rainfall over eastern China (30°-40° N, 110°-120° E) in high-resolution NCAR CAM5. Forced by historical sea surface temperatures (SSTs), the NCAR CAM5 reasonably reproduces coherent changes of temperature and large-scale circulations, corresponding to the changes in rainfall. Results show that when the rainfall decreases over eastern China, the model reproduces a remarkable warm center in the upper troposphere with an anomalous anticyclone appears above and an increase in anomalous westerlies to its north. An anomalous anticyclone also occurs in the lower troposphere, along with anomalous southerlies to its east which indicates strengthening of the East Asian summer monsoon. Both the circulation changes in the upper and lower troposphere favor a decrease in precipitation over central eastern China. There were also good correlations between the simulated upper-tropospheric temperature and other large-scale circulation changes. There are some deficiencies in the NCAR CAM5 simulations in terms of the changes in magnitude and location of the rainfall centers. However, in general, the model reasonably reproduced the coherent configuration of the large-scale circulation patterns and surface rainfall. This study further confirms that the climate variations across East Asia most likely arise from a regional response to global climate change. The well-simulated configuration by NCAR CAM5 also indicates the reliability of the model and its potential to reveal the mechanisms driving the coherent changes of the East Asian summer monsoon system.

  17. Large extents of intensive land use limit community reorganization during climate warming.

    Science.gov (United States)

    Oliver, Tom H; Gillings, Simon; Pearce-Higgins, James W; Brereton, Tom; Crick, Humphrey Q P; Duffield, Simon J; Morecroft, Michael D; Roy, David B

    2017-06-01

    Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high-intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully 'tracking' climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm- and cold-associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold-associated species, whilst for butterflies, warm-associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting 'adaptive' community reorganization in response to climate change. Specifically, high-intensity land use appears to exacerbate declines in cold-adapted bird and butterfly species, and prevent increases in warm-associated birds. This has broad implications for managing landscapes to promote climate change adaptation. © 2017 John Wiley & Sons Ltd.

  18. Effects of Climate Change on Plant Population Growth Rate and Community Composition Change

    OpenAIRE

    Chang, Xiao-Yu; Chen, Bao-Ming; Liu, Gang; Zhou, Ting; Jia, Xiao-Rong; Peng, Shao-Lin

    2015-01-01

    The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of ...

  19. Lags in the response of mountain plant communities to climate change

    DEFF Research Database (Denmark)

    Alexander, Jake M; Chalmandrier, Loïc; Lenoir, Jonathan

    2018-01-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind...... turnover in future communities might lag behind simple expectations based on species' range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our...

  20. Rapid adjustment of bird community compositions to local climatic variations and its functional consequences.

    Science.gov (United States)

    Gaüzère, Pierre; Jiguet, Frédéric; Devictor, Vincent

    2015-09-01

    The local spatial congruence between climate changes and community changes has rarely been studied over large areas. We proposed one of the first comprehensive frameworks tracking local changes in community composition related to climate changes. First, we investigated whether and how 12 years of changes in the local composition of bird communities were related to local climate variations. Then, we tested the consequences of this climate-induced adjustment of communities on Grinnellian (habitat-related) and Eltonian (function-related) homogenization. A standardized protocol monitoring spatial and temporal trends of birds over France from 2001 to 2012 was used. For each plot and each year, we used the spring temperature and the spring precipitations and calculated three indices reflecting the thermal niche, the habitat specialization, and the functional originality of the species within a community. We then used a moving-window approach to estimate the spatial distribution of the temporal trends in each of these indices and their congruency with local climatic variations. Temperature fluctuations and community dynamics were found to be highly variable in space, but their variations were finely congruent. More interestingly, the community adjustment to temperature variations was nonmonotonous. Instead, unexplained fluctuations in community composition were observed up to a certain threshold of climate change intensity, above which a change in community composition was observed. This shift corresponded to a significant decrease in the relative abundance of habitat specialists and functionally original species within communities, regardless of the direction of temperature change. The investigation of variations in climate and community responses appears to be a central step toward a better understanding of climate change effects on biodiversity. Our results suggest a fine-scale and short-term adjustment of community composition to temperature changes. Moreover

  1. GIS-Mapping and Statistical Analyses to Identify Climate-Vulnerable Communities and Populations Exposed to Superfund Sites

    Science.gov (United States)

    Climate change-related cumulative health risks are expected to be disproportionately greater for overburdened communities, due to differential proximity and exposures to chemical sources and flood zones. Communities and populations vulnerable to climate change-associated impacts ...

  2. The National Center for Atmospheric Research (NCAR) Research Data Archive: a Data Education Center

    Science.gov (United States)

    Peng, G. S.; Schuster, D.

    2015-12-01

    The National Center for Atmospheric Research (NCAR) Research Data Archive (RDA), rda.ucar.edu, is not just another data center or data archive. It is a data education center. We not only serve data, we TEACH data. Weather and climate data is the original "Big Data" dataset and lessons learned while playing with weather data are applicable to a wide range of data investigations. Erroneous data assumptions are the Achilles heel of Big Data. It doesn't matter how much data you crunch if the data is not what you think it is. Each dataset archived at the RDA is assigned to a data specialist (DS) who curates the data. If a user has a question not answered in the dataset information web pages, they can call or email a skilled DS for further clarification. The RDA's diverse staff—with academic training in meteorology, oceanography, engineering (electrical, civil, ocean and database), mathematics, physics, chemistry and information science—means we likely have someone who "speaks your language." Data discovery is another difficult Big Data problem; one can only solve problems with data if one can find the right data. Metadata, both machine and human-generated, underpin the RDA data search tools. Users can quickly find datasets by name or dataset ID number. They can also perform a faceted search that successively narrows the options by user requirements or simply kick off an indexed search with a few words. Weather data formats can be difficult to read for non-expert users; it's usually packed in binary formats requiring specialized software and parameter names use specialized vocabularies. DSs create detailed information pages for each dataset and maintain lists of helpful software, documentation and links of information around the web. We further grow the level of sophistication of the users with tips, tutorials and data stories on the RDA Blog, http://ncarrda.blogspot.com/. How-to video tutorials are also posted on the NCAR Computational and Information Systems

  3. Noah’s Ark Conservation Will Not Preserve Threatened Ecological Communities under Climate Change

    Science.gov (United States)

    Harris, Rebecca Mary Bernadette; Carter, Oberon; Gilfedder, Louise; Porfirio, Luciana Laura; Lee, Greg; Bindoff, Nathaniel Lee

    2015-01-01

    Background Effective conservation of threatened ecological communities requires knowledge of where climatically suitable habitat is likely to persist into the future. We use the critically endangered Lowland Grassland community of Tasmania, Australia as a case study to identify options for management in cases where future climatic conditions become unsuitable for the current threatened community. Methods We model current and future climatic suitability for the Lowland Themeda and the Lowland Poa Grassland communities, which make up the listed ecological community. We also model climatic suitability for the structurally dominant grass species of these communities, and for closely related grassland and woodland communities. We use a dynamically downscaled regional climate model derived from six CMIP3 global climate models, under the A2 SRES emissions scenario. Results All model projections showed a large reduction in climatically suitable area by mid-century. Outcomes are slightly better if closely related grassy communities are considered, but the extent of suitable area is still substantially reduced. Only small areas within the current distribution are projected to remain climatically suitable by the end of the century, and very little of that area is currently in good condition. Conclusions As the climate becomes less suitable, a gradual change in the species composition, structure and habitat quality of the grassland communities is likely. Conservation management will need to focus on maintaining diversity, structure and function, rather than attempting to preserve current species composition. Options for achieving this include managing related grassland types to maintain grassland species at the landscape-scale, and maximising the resilience of grasslands by reducing further fragmentation, weed invasion and stress from other land uses, while accepting that change is inevitable. Attempting to maintain the status quo by conserving the current structure and

  4. Noah's Ark conservation will not preserve threatened ecological communities under climate change.

    Directory of Open Access Journals (Sweden)

    Rebecca Mary Bernadette Harris

    Full Text Available Effective conservation of threatened ecological communities requires knowledge of where climatically suitable habitat is likely to persist into the future. We use the critically endangered Lowland Grassland community of Tasmania, Australia as a case study to identify options for management in cases where future climatic conditions become unsuitable for the current threatened community.We model current and future climatic suitability for the Lowland Themeda and the Lowland Poa Grassland communities, which make up the listed ecological community. We also model climatic suitability for the structurally dominant grass species of these communities, and for closely related grassland and woodland communities. We use a dynamically downscaled regional climate model derived from six CMIP3 global climate models, under the A2 SRES emissions scenario.All model projections showed a large reduction in climatically suitable area by mid-century. Outcomes are slightly better if closely related grassy communities are considered, but the extent of suitable area is still substantially reduced. Only small areas within the current distribution are projected to remain climatically suitable by the end of the century, and very little of that area is currently in good condition.As the climate becomes less suitable, a gradual change in the species composition, structure and habitat quality of the grassland communities is likely. Conservation management will need to focus on maintaining diversity, structure and function, rather than attempting to preserve current species composition. Options for achieving this include managing related grassland types to maintain grassland species at the landscape-scale, and maximising the resilience of grasslands by reducing further fragmentation, weed invasion and stress from other land uses, while accepting that change is inevitable. Attempting to maintain the status quo by conserving the current structure and composition of Lowland

  5. GPM GROUND VALIDATION NCAR CLOUD MICROPHYSICS PARTICLE PROBES GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NCAR Cloud Microphysics Particle Probes GCPEx data was collected during the GPM Cold-season Precipitation Experiment (GCPEx), which...

  6. GPM GROUND VALIDATION NCAR CLOUD MICROPHYSICS PARTICLE PROBES MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NCAR Cloud Microphysics Particle Probes MC3E dataset was collected during the Midlatitude Continental Convective Clouds Experiment (MC3E),...

  7. Executive summary: Climate change in the northwest: Implications for our landscapes, waters, and communities

    Science.gov (United States)

    Dalton, Meghan M.; Bethel, Jeffrey; Capalbo, Susan M.; Cuhaciyan, J.E.; Eigenbrode, Sanford D.; Glick, Patty; Houston, Laurie L.; Littell, Jeremy S.; Lynn, Kathy; Mote, Philip W.; Raymondi, Rick R.; Reeder, W. Spencer; Shafer, Sarah L.; Snover, Amy K.

    2013-01-01

    Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities is aimed at assessing the state of knowledge about key climate impacts and consequences to various sectors and communities in the northwest United States. It draws on a wealth of peer-reviewed literature, earlier state-level assessment reports conducted for Washington (2009) and Oregon (2010), as well as a risk-framing workshop. As an assessment, it aims to be representative (though not exhaustive) of the key climate change issues as reflected in the growing body of Northwest climate change science, impacts, and adaptation literature now available. This report will serve as an updated resource for scientists, stakeholders, decision makers, students, and community members interested in understanding and preparing for climate change impacts on Oregon, Washington, and Idaho. This more detailed, foundational report is intended to support the key findings presented in the Northwest chapter of the Third National Climate Assessment.

  8. Recognizing Community Voice and a Youth-Led School-Community Partnership in the School Climate Improvement Process

    Science.gov (United States)

    Ice, Megan; Thapa, Amrit; Cohen, Jonathan

    2015-01-01

    A growing body of school improvement research suggests that engaging all members of the school community, including community members and leaders, provides an essential foundation to successful school improvement efforts. School climate surveys to date tend to recognize student, parent/guardian, and school personnel voice but not the voice of…

  9. Interoperable Access to NCAR Research Data Archive Collections

    Science.gov (United States)

    Schuster, D.; Ji, Z.; Worley, S. J.; Manross, K.

    2014-12-01

    The National Center for Atmospheric Research (NCAR) Research Data Archive (RDA) provides free access to 600+ observational and gridded dataset collections. The RDA is designed to support atmospheric and related sciences research, updated frequently where datasets have ongoing production, and serves data to 10,000 unique users annually. The traditional data access options include web-based direct archive file downloads, user selected data subsets and format conversions produced by server-side computations, and client and cURL-based APIs for routine scripted data retrieval. To enhance user experience and utility, the RDA now also offers THREDDS Data Server (TDS) access for many highly valued dataset collections. TDS offered datasets are presented as aggregations, enabling users to access an entire dataset collection, that can be comprised of 1000's of files, through a single virtual file. The OPeNDAP protocol, supported by the TDS, allows compatible tools to open and access these virtual files remotely, and make the native data file format transparent to the end user. The combined functionality (TDS/OPeNDAP) gives users the ability to browse, select, visualize, and download data from a complete dataset collection without having to transfer archive files to a local host. This presentation will review the TDS basics and describe the specific TDS implementation on the RDA's diverse archive of GRIB-1, GRIB-2, and gridded NetCDF formatted dataset collections. Potential future TDS implementation on in-situ observational dataset collections will be discussed. Illustrative sample cases will be used to highlight the end users benefits from this interoperable data access to the RDA.

  10. Life on thin ice: Insights from Uummannaq, Greenland for connecting climate science with Arctic communities

    Science.gov (United States)

    Baztan, Juan; Cordier, Mateo; Huctin, Jean-Michel; Zhu, Zhiwei; Vanderlinden, Jean-Paul

    2017-09-01

    What are the links between mainstream climate science and local community knowledge? This study takes the example of Greenland, considered one of the regions most impacted by climate change, and Inuit people, characterized as being highly adaptive to environmental change, to explore this question. The study is based on 10 years of anthropological participatory research in Uummannaq, Northwest Greenland, along with two fieldwork periods in October 2014 and April 2015, and a quantitative bibliometric analysis of the international literature on sea ice - a central subject of concern identified by Uummannaq community members during the fieldwork periods. Community members' perceptions of currently available scientific climate knowledge were also collected during the fieldwork. This was done to determine if community members consider available scientific knowledge salient and if it covers issues they consider relevant. The bibliometric analysis of the sea ice literature provided additional insight into the degree to which scientific knowledge about climate change provides information relevant for the community. Our results contribute to the ongoing debate on the missing connections between community worldviews, cultural values, livelihood needs, interests and climate science. Our results show that more scientific research efforts should consider local-level needs in order to produce local-scale knowledge that is more salient, credible and legitimate for communities experiencing climate change. In Uummannaq, as in many Inuit communities with similar conditions, more research should be done on sea ice thickness in winter and in areas through which local populations travel. This paper supports the growing evidence that whenever possible, climate change research should focus on environmental features that matter to communities, at temporal and spatial scales relevant to them, in order to foster community adaptations to change. We recommend such research be connected to and

  11. The Community Land Model and Its Climate Statistics as a Component of the Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, Robert E. [Georgia Institute of Technology; Oleson, Keith [National Center for Atmospheric Research (NCAR); Bonan, Gordon [National Center for Atmospheric Research (NCAR); Hoffman, Forrest M [ORNL; Thornton, Peter [National Center for Atmospheric Research (NCAR); Vertenstein, Mariana [National Center for Atmospheric Research (NCAR); Yang, Zong-Liang [University of Texas, Austin; Zeng, Xubin [University of Arizona

    2006-01-01

    Several multidecadal simulations have been carried out with the new version of the Community Climate System Model (CCSM). This paper reports an analysis of the land component of these simulations. Global annual averages over land appear to be within the uncertainty of observational datasets, but the seasonal cycle over land of temperature and precipitation appears to be too weak. These departures from observations appear to be primarily a consequence of deficiencies in the simulation of the atmospheric model rather than of the land processes. High latitudes of northern winter are biased sufficiently warm to have a significant impact on the simulated value of global land temperature. The precipitation is approximately doubled from what it should be at some locations, and the snowpack and spring runoff are also excessive. The winter precipitation over Tibet is larger than observed. About two-thirds of this precipitation is sublimated during the winter, but what remains still produces a snowpack that is very large compared to that observed with correspondingly excessive spring runoff. A large cold anomaly over the Sahara Desert and Sahel also appears to be a consequence of a large anomaly in downward longwave radiation; low column water vapor appears to be most responsible. The modeled precipitation over the Amazon basin is low compared to that observed, the soil becomes too dry, and the temperature is too warm during the dry season.

  12. Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets

    Directory of Open Access Journals (Sweden)

    T. Raziei

    2010-10-01

    Full Text Available Space-time variability of hydrological drought and wetness over Iran is investigated using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR reanalysis and the Global Precipitation Climatology Centre (GPCC dataset for the common period 1948–2007. The aim is to complement previous studies on the detection of long-term trends in drought/wetness time series and on the applicability of reanalysis data for drought monitoring in Iran. Climate conditions of the area are assessed through the Standardized Precipitation Index (SPI on 24-month time scale, while Principal Component Analysis (PCA and Varimax rotation are used for investigating drought/wetness variability, and drought regionalization, respectively. Singular Spectrum Analysis (SSA is applied to the time series of interest to extract the leading nonlinear components and compare them with linear fittings.

    Differences in drought and wetness area coverage resulting from the two datasets are discussed also in relation to the change occurred in recent years. NCEP/NCAR and GPCC are in good agreement in identifying four sub-regions as principal spatial modes of drought variability. However, the climate variability in each area is not univocally represented by the two datasets: a good agreement is found for south-eastern and north-western regions, while noticeable discrepancies occur for central and Caspian sea regions. A comparison with NCEP Reanalysis II for the period 1979–2007, seems to exclude that the discrepancies are merely due to the introduction of satellite data into the reanalysis assimilation scheme.

  13. Connecting Alaskan Youth, Elders, and Scientists in Climate Change Research and Community Resilience

    Science.gov (United States)

    Spellman, K.; Sparrow, E.

    2017-12-01

    Integrated science, technology, engineering and math (STEM) solutions and effective, relevant learning processes are required to address the challenges that a changing climate presents to many Arctic communities. Learning that can both enhance a community's understanding and generate new knowledge about climate change impacts at both local and continental scales are needed to efficiently build the capacity to navigate these changes. The Arctic and Earth STEM Integrating GLOBE and NASA (SIGNs) program is developing a learning model to engage Alaskan rural and indigenous communities in climate change learning, research and action. Youth, elders, educators, community leaders and scientists collaborate to address a pressing local climate change concern. The program trains teams of educators and long-time community members on climate change concepts and environmental observing protocols in face-to-face or online workshops together with Arctic and NASA subject matter experts. Community teams return to their community to identify local data or information needs that align with their student's interests and the observations of local elders. They deepen their understanding of the subject through culturally responsive curriculum materials, and collaborate with a scientist to develop an investigation with their students to address the identified need. Youth make observations using GLOBE (Global Learning and Observations to Benefit the Environment) protocols that best fit the issue, analyze the data they have collected, and utilize indigenous or knowledge, and NASA data to address the issue. The use of GLOBE protocols allow for communities to engage in climate change research at both local and global scales, as over 110 nations worldwide are using these standardized protocols. Teams work to communicate their investigation results back to their community and other scientists, and apply their results to local stewardship action or climate adaptation projects. In this

  14. The Climate Literacy Network: Leveraging a Diverse Community to Broaden the Reach of Your Climate Literacy Efforts

    Science.gov (United States)

    Ledley, T. S.; Carley, S.; Niepold, F.; Duggan-Haas, D. A.; Hollweg, K.; McCaffrey, M. S.

    2012-12-01

    There are a wide range of programs, activities, and projects focused on improving the understanding of climate science by citizens in a multitude of contexts. While most of these are necessarily customized for the particular audiences, communities, or regions they address, they can learn a lot from each other by sharing their experiences, expertise, and materials. The Climate Literacy Network (CLN, http://cleanet.org/cln), established in 2008 to facilitate the implementation of the Climate Literacy Essential Principles of Climate Science, is a diverse group of over 370 stakeholders with a wide range of expertise in, for example, science, policy, media, arts, economics, psychology, education, and social sciences. The CLN meets virtually weekly to share information about ongoing activities and new resources, discuss controversial public issues and ways to address them, get input from this diverse community on directions individual efforts might take, organize climate literacy sessions at professional meetings, provide input on documents relevant to climate literacy, and address common needs of the individual members. The weekly CLN teleconferences are also a venue for presentations from climate change education efforts to extend their reach and potential impact. The teleconferences are supported by an active listserv that is archived on the CLN website along with recordings of past teleconference and the schedule of upcoming teleconferences (http://cleanet.org/clean/community/cln/telecon_schedule.html). In this presentation we will describe the details of these various activities, give examples of how discussions within the CLN has led to funded efforts and expanded partnerships, and identify ways you can participate in and leverage this very active community.

  15. Extreme winds over Denmark from the NCEP/NCAR reanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H.P.

    2001-05-01

    An extreme wind analysis of wind speed calculated in the NCEP/NCAR reanalysis is done for grid points over and near Denmark. Winds at 10 m, 850 hPa, and geostrophic winds at 850 hPa, 1000 hPa, and at the sea level are analyzed. At 10 m height the expected extreme wind with a return period of 50 years at the North Sea west of Denmark is 27 ms{sup -1}. It is approximately 11 % less than estimates from observations. However, values at grid points over land in Denmark cannot be compared with observations because the roughness length of these land surfaces is far to big in the model. A transformation to a common roughness length of 5 cm using the geostrophic drag law yields too high values. At points in northern Germany, where the surface roughness of the model is less, the transformed 50-years wind speed is 22-23 ms{sup -1}, which agrees well with estimates obtained from measurements. The analyses of the wind at 850 hPa and the geostrophic wind at 850 hPa or 1000 hPa yield very similar extreme winds of approximately 42 ms{sup -1}. The geostrophic wind calculated from the surface pressure is approximately 45 ms{sup -1} in central Denmark. The geostrophic winds at 1000 hPa are slightly stronger than at 850 hPa, which are somewhat greater than the actual wind at 850 hPa. Transformations to a wind at 10 m over a surface with roughness 5 cm with the help of the drag law yield extreme winds, which are approximately 10-12 % less than from surface measurements. The 850 hPa winds and the geostrophic wind calculated from the surface pressure indicate a weak decrease from west to east, whereas the geostrophic wind data at constant pressure levels show almost constant extreme winds across Denmark. All upper-air and geostrophic wind data show higher extreme winds in northern Germany than in Denmark. Further investigations are necessary to find out if the underestimation of the extreme wind by approximately 10-12 % is valid in most mid-latitudes. (au)

  16. How extreme is a extreme climatic event to a subarctic peatland springtail community?

    NARCIS (Netherlands)

    Krab, E.J.; van Schrojenstein Lantman, I.M.; Cornelissen, J.H.C.; Berg, M.P.

    2013-01-01

    Extreme climate events are increasing in frequency and duration and may directly impact belowground foodwebs and the activities of component soil organisms. The soil invertebrate community, which includes keystone decomposers, might respond to these newly induced soil microclimate conditions by

  17. Barriers to Incorporating Climate Change Science into High School and Community College Energy Course Offerings

    Science.gov (United States)

    Howell, C.

    2013-05-01

    In reviewing studies evaluating trends in greenhouse gasses, weather, climate and/or ecosystems, it becomes apparent that climate change is a reality. It has also become evident that the energy sector accounts for most of the greenhouse gas emissions with worldwide emissions of carbon dioxide increasing by 31 percent from 1990 to 2005, higher than in the previous thousands of years. While energy courses and topics are presented in high school and community college classes the topic of Climate Change Science is not always a part of the conversation. During the summer of 2011 and 2012, research undergraduates conducted interviews with a total of 39 national community college and 8 high school instructors who participated in a two week Sustainable Energy Education Training (SEET) workshop. Interview questions addressed the barriers and opportunities to the incorporation of climate change as a dimension of an energy/renewable energy curriculum. Barriers found included: there is not enough instruction time to include it; some school administrators including community members do not recognize climate change issues; quality information about climate change geared to students is difficult to find; and, most climate change information is too scientific for most audiences. A Solution to some barriers included dialogue on sustainability as a common ground in recognizing environmental changes/concerns among educators, administrators and community members. Sustainability discussions are already supported in school business courses as well as in technical education. In conclusion, we cannot expect climate change to dissipate without humans making more informed energy and environmental choices. With global population growth producing greater emissions resulting in increased climate change, we must include the topic of climate change to students in high school and community college classrooms, preparing our next generation of leaders and workforce to be equipped to find solutions

  18. Assessing the impacts of local knowledge and technology on climate change vulnerability in remote communities.

    Science.gov (United States)

    Bone, Christopher; Alessa, Lilian; Altaweel, Mark; Kliskey, Andrew; Lammers, Richard

    2011-03-01

    The introduction of new technologies into small remote communities can alter how individuals acquire knowledge about their surrounding environment. This is especially true when technologies that satisfy basic needs, such as freshwater use, create a distance (i.e., diminishing exposure) between individuals and their environment. However, such distancing can potentially be countered by the transfer of local knowledge between community members and from one generation to the next. The objective of this study is to simulate by way of agent-based modeling the tensions between technology-induced distancing and local knowledge that are exerted on community vulnerability to climate change. A model is developed that simulates how a collection of individual perceptions about changes to climatic-related variables manifest into community perceptions, how perceptions are influenced by the movement away from traditional resource use, and how the transmission of knowledge mitigates the potentially adverse effects of technology-induced distancing. The model is implemented utilizing climate and social data for two remote communities located on the Seward Peninsula in western Alaska. The agent-based model simulates a set of scenarios that depict different ways in which these communities may potentially engage with their natural resources, utilize knowledge transfer, and develop perceptions of how the local climate is different from previous years. A loosely-coupled pan-arctic climate model simulates changes monthly changes to climatic variables. The discrepancy between the perceptions derived from the agent-based model and the projections simulated by the climate model represent community vulnerability. The results demonstrate how demographics, the communication of knowledge and the types of 'knowledge-providers' influence community perception about changes to their local climate.

  19. Climate change on Twitter: topics, communities and conversations about the 2013 IPCC report

    OpenAIRE

    Pearce, Warren; Holmberg, Kim; Hellsten, Iina; Nerlich, Brigitte

    2013-01-01

    In September 2013 the Intergovernmental Panel on Climate Change published its first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate in one public forum: Twitter. Using webometric methods, tweets were analyzed to discover the hashtags used when people tweeted about the IPCC report, and how Twitter users formed communities around their conversational connec...

  20. An Investigation of Students' Perceptions about Democratic School Climate and Sense of Community in School

    Science.gov (United States)

    Karakus, Memet

    2017-01-01

    This study aims to investigate students' perceptions about democratic school climate and sense of community in school. In line with this purpose, it aims to find answers to the following questions: How democratic do students find the school climate? What is students' sense of belonging level at school? What is the academic success level of…

  1. Climate and Disaster Resilience : The Role for Community-Driven Development

    OpenAIRE

    Arnold, Margaret; Oshima, Kaori; Mearns, Robin; Prasad, Vivek

    2014-01-01

    This paper is part of a larger effort to document, assess, and promote scalable models and approaches to empower poor communities to manage a climate and disaster risk agenda in support of their development goals and to identify practical ways of getting climate and disaster risk financing directly to the ground level where impacts are felt. Social funds, social protection systems and safety ...

  2. Lichen communities as climate indicators in the U.S. Pacific States.

    Science.gov (United States)

    Robert J. Smith; Sarah Jovan; Bruce. McCune

    2017-01-01

    Epiphytic lichens are bioindicators of climate, air quality, and other forest conditions and may reveal how forests will respond to global changes in the U.S. Pacific States of Alaska, Washington, Oregon, and California. We explored climate indication with lichen communities surveyed by using both the USDA Forest Service Forest Inventory and Analysis (FIA) and Alaska...

  3. Australian community members' attitudes toward climate change impacts at the Great Barrier Reef

    Science.gov (United States)

    Carena J. vanRiper; Gerard Kyle; Jee In Yoon; Stephen G. Sutton

    2012-01-01

    This research identified homogenous groups of Australian community members that share similar attitudes toward climate change impacts within the Great Barrier Reef World Heritage Area (GBRWHA). A questionnaire was administered to a random sample of adult residents living near the GBRWHA (n = 1,623) in order to assess public awareness of climate change, concern about...

  4. Toward an ultra-high resolution community climate system model for the BlueGene platform

    International Nuclear Information System (INIS)

    Dennis, John M; Jacob, Robert; Vertenstein, Mariana; Craig, Tony; Loy, Raymond

    2007-01-01

    Global climate models need to simulate several small, regional-scale processes which affect the global circulation in order to accurately simulate the climate. This is particularly important in the ocean where small scale features such as oceanic eddies are currently represented with adhoc parameterizations. There is also a need for higher resolution to provide climate predictions at small, regional scales. New high-performance computing platforms such as the IBM BlueGene can provide the necessary computational power to perform ultra-high resolution climate model integrations. We have begun to investigate the scaling of the individual components of the Community Climate System Model to prepare it for integrations on BlueGene and similar platforms. Our investigations show that it is possible to successfully utilize O(32K) processors. We describe the scalability of five models: the Parallel Ocean Program (POP), the Community Ice CodE (CICE), the Community Land Model (CLM), and the new CCSM sequential coupler (CPL7) which are components of the next generation Community Climate System Model (CCSM); as well as the High-Order Method Modeling Environment (HOMME) which is a dynamical core currently being evaluated within the Community Atmospheric Model. For our studies we concentrate on 1/10 0 resolution for CICE, POP, and CLM models and 1/4 0 resolution for HOMME. The ability to simulate high resolutions on the massively parallel petascale systems that will dominate high-performance computing for the foreseeable future is essential to the advancement of climate science

  5. Agriculture erases climate-driven β-diversity in Neotropical bird communities.

    Science.gov (United States)

    Karp, Daniel S; Frishkoff, Luke O; Echeverri, Alejandra; Zook, Jim; Juárez, Pedro; Chan, Kai M A

    2018-01-01

    Earth is experiencing multiple global changes that will, together, determine the fate of many species. Yet, how biological communities respond to concurrent stressors at local-to-regional scales remains largely unknown. In particular, understanding how local habitat conversion interacts with regional climate change to shape patterns in β-diversity-differences among sites in their species compositions-is critical to forecast communities in the Anthropocene. Here, we study patterns in bird β-diversity across land-use and precipitation gradients in Costa Rica. We mapped forest cover, modeled regional precipitation, and collected data on bird community composition, vegetation structure, and tree diversity across 120 sites on 20 farms to answer three questions. First, do bird communities respond more strongly to changes in land use or climate in northwest Costa Rica? Second, does habitat conversion eliminate β-diversity across climate gradients? Third, does regional climate control how communities respond to habitat conversion and, if so, how? After correcting for imperfect detection, we found that local land-use determined community shifts along the climate gradient. In forests, bird communities were distinct between sites that differed in vegetation structure or precipitation. In agriculture, however, vegetation structure was more uniform, contributing to 7%-11% less bird turnover than in forests. In addition, bird responses to agriculture and climate were linked: agricultural communities across the precipitation gradient shared more species with dry than wet forest communities. These findings suggest that habitat conversion and anticipated climate drying will act together to exacerbate biotic homogenization. © 2017 John Wiley & Sons Ltd.

  6. Climate Change Adaptation Tools at the Community Level: An Integrated Literature Review

    Directory of Open Access Journals (Sweden)

    Elvis Modikela Nkoana

    2018-03-01

    Full Text Available The negative impacts of climate change are experienced at the global, regional and local levels. However, rural communities in sub-Saharan Africa face additional socio-political, cultural and economic challenges in addition to climate change. Decision support tools have been developed and applied to assist rural communities to cope with and adapt to climate change. However, poorly planned participatory processes and the lack of context-specific approaches in these tools are obstacles when aiming at strengthening the resilience of these rural communities. This paper uses an integrated literature review to identify best practices for involving rural communities in climate change adaptation efforts through the application of context-specific and culturally-sensitive climate change adaptation tools. These best practices include the use of a livelihoods approach to engage communities; the explicit acknowledgement of the local cultural do’s and don’ts; the recognition of local champions appointed from within the local community; the identification and prioritisation of vulnerable stakeholders; and the implementation of a two-way climate change risk communication instead of a one-sided information sharing approach.

  7. Community Based Adaptation to Climate Change in Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    First General Meeting : the Adaptation Network; We're Up to the Climate Challenge!, Kirstenbosch Botanical Gardens, Cape Town, 4 November 2009. Download PDF. Reports. South African National Networking Meeting on Climate Change Adaptation, the Airport Grand Hotel, Johannesburg, 18 June 2009. Download PDF ...

  8. Gender and climate change-induced conflict in pastoral communities

    African Journals Online (AJOL)

    , the future of pastoralism in relation to changing climate is discussed. The focus will be on scenarios of the past and future projections of rainfall patterns in Turkana, the future of pastoralism and the possibility of climate-induced conflicts in the ...

  9. Climate Change and Societal Response: Livelihoods, Communities, and the Environment

    Science.gov (United States)

    Molnar, Joseph J.

    2010-01-01

    Climate change may be considered a natural disaster evolving in slow motion on a global scale. Increasing storm intensities, shifting rainfall patterns, melting glaciers, rising sea levels, and other manifold alterations are being experienced around the world. Climate has never been constant in any location, but human-induced changes associated…

  10. Microclimates buffer the responses of plant communities to climate change

    NARCIS (Netherlands)

    Maclean, Ilya M. D.; Hopkins, John J.; Bennie, Jonathan; Lawson, Callum R.; Wilson, Robert J.

    2015-01-01

    Aim Despite predictions of high extinction risk resulting from climate change, range expansions have been documented more frequently than range retractions, prompting suggestions that species can endure climatic changes by persisting in cool or damp microclimates. We test whether such ‘microrefugia’

  11. Climate Change and the Health of Indigenous Communities | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Indigenous people are among the most directly affected by climate change. Yet, there is limited understanding of the health dimensions of climate change and opportunities for adaptation among indigenous populations. Researchers have tended to focus on other vulnerable regions or on populations as a whole.

  12. Gender and climate change-induced conflict in pastoral communities

    African Journals Online (AJOL)

    Clitmate change-induced conflict is a major global threat to human security and the environment. It has been projected that there is going to be an increase in climate changes resulting in increased droughts and floods in northern Kenya. Climate change impacts will be differently distributed among different regions, ages, ...

  13. Climate Change and the Health of Indigenous Communities | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Indigenous people are among the most directly affected by climate change. Yet, there is limited understanding of the health dimensions of climate change and opportunities for adaptation among indigenous populations. Researchers have tended to focus on other vulnerable regions or on populations as a whole.

  14. House-dust community (Fungi, mites) in different climatic regions.

    Science.gov (United States)

    Rijckaert, G; van Bronswijk, J E M H; Linskens, H F

    1981-03-01

    House-dust flora and fauna were compared in the maritime cool temperate climate (in three degrees of continentality), the mediterranean warm temperate climate, the arctic climate and the tropical climate.An inverse relationship exists between continentality of the temperate climate and the numbers of arthropods and fungi (mesophilic as well as xerophilic) in the dust of the houses.The numbers of arthropods and fungi were lowest in mediterranean and arctic climates, most likely because of the limiting effect of the drier indoor climate. Fungi are more tolerant of dry conditions than house-dust inhabiting mites. Generally the highest numbers of fungal diaspores and arthropods were found in the tropics, where, however, the lowest number of positive samples was also found, especially for the species of the Aspergillus glaucus group and for Wallemia sebi. Maritime cool temperate climate showed the highest numbers of positive samples for fungi and mites.In general, a relationship exists between relative humidity and the density of fungal diaspores and arthropods.

  15. Regional decadal predictions of coupled climate-human systems

    Science.gov (United States)

    Curchitser, E. N.; Lawrence, P.; Felder, F.; Large, W.; Bacmeister, J. T.; Andrews, C.; Kopp, R. E.

    2016-12-01

    We present results from a project to develop a framework for investigating the interactions between human activity and the climate system using state-of-the-art multi-scale, climate and economic models. The model is applied to the highly industrialized and urbanized coastal region of the northeast US with an emphasis on New Jersey. The framework is developed around the NCAR Community Earth System Model (CESM). The CESM model capabilities are augmented with enhanced resolution of the atmosphere (25 km), land surface (I km) and ocean models (7 km) in our region of interest. To the climate model, we couple human activity models for the utility sector and a 300-equation econometric model with sectorial details of an input-output model for the New Jersey economy. We will present results to date showing the potential impact of climate change on electricity markets on its consequences on economic activity in the region.

  16. The European Community and climate protection. What's behind the ''empty rhetoric''?

    International Nuclear Information System (INIS)

    Ringius, Lasse

    1999-10-01

    The EC has been hoping to play an environmental leadership role in the global climate negotiations and has been proposing comparatively stringent climate targets for the OECD countries. But especially the United States and to some extent the international environmental community have criticized the EC for being unable to develop effective climate policies that will achieve its ambitious targets. This publication shows that the EC in general expects that it is relatively inexpensive to implement climate policy within the EC and that its climate policy strategy from the beginning has been heavily influenced by the notion of environmental leadership. The defensive positions taken by the United States and Japan in the global climate negotiations have made EC environmental leadership seem simultaneously economically, environmentally and politically beneficial, and political and environmental interests have pushed EC climate policy to go further than what it otherwise would have been. (author)

  17. Climate change effects on lowland stream flood regimes and riparian rich fen vegetation communities in Denmark

    DEFF Research Database (Denmark)

    Thodsen, Hans; Baattrup-Pedersen, Annette; Andersen, Hans Estrup

    2016-01-01

    to a hydrological model with the aim to predict climate driven changes in flooding regimes in lowland riparian areas. Our specific aims were to 1) predict effects of climate change on flood frequencies and magnitudes in riparian areas by using an ensemble of six climate models and 2) combine the obtained......There is growing awareness that an intensification of the hydrological cycle associated with climate change in many parts of the world will have profound implications for river ecosystem structure and functions. In the present study we link an ensemble of regional climate model projections...... predictions with the distribution of rich fen communities to explore whether these are likely to be subjected to increased flooding by a climate change induced increase in river runoff. We found that all regional climate models in the ensemble showed increases in mean annual runoff and that the increase...

  18. CLIMATE CHANGE, VARIABILITY AND SUSTAINABLE AGRICULTURE IN ZIMBABWE'S RURAL COMMUNITIES

    Directory of Open Access Journals (Sweden)

    Gukurume Simbarashe

    2013-02-01

    Full Text Available This article explores the impact of climate change and variability on agricultural productivity in the communal area of Bikita. The article further examines the adaptation and mitigation strategies devised by farmers to deal with the vagaries of climate change and variability. The sustainability of these is also interrogated in this article. This study juxtaposed qualitative and quantitative methodologies albeit with more bias on the former. A total of 40 farmers were sampled for unstructured interviews and focus group discussions. This article argues that the adverse impacts of climate change and variability are felt heavily by the poor communal farmers who are directly dependent on agriculture for livelihood. From the study, some of the widely reported signs of climate variability in Bikita included late and unpredictable rains, high temperatures (heat waves, successive drought, shortening rainfall seasons and seasonal changes in the timing of rainfall. The paper argues that climate change has compounded the vulnerability of peasant farmers in the drought - prone district of Bikita plunging them into food insecurity and abject poverty. It emerged in the study that some of effects of climate variability felt by communal farmers in Bikita included failure of crops, death of livestock and low crop yields, all of which have led to declining agricultural productivity. Findings in this study however established that communal farmers have not been passive victims of the vagaries of climate change and variability. They have rationally responded to it through various adaptation and mitigation strategies both individually and collectively.

  19. Building climate change adaptation on community experiences: Lessons from community-based natural resource management in southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Chishakwe, Nyasha; Murray, Laurel; Chambwera, Muyeye

    2012-05-15

    This publication, produced in collaboration with WWF Southern Africa, looks at how community-based natural resource management (CBNRM) can inform and contribute to climate change adaptation at the community level, specifically to community-based adaptation (CBA) to climate change. It provides a framework for analysing the two approaches at conceptual and practical levels. Using case studies from southern Africa, the publication demonstrates the synergies between CBA and CBNRM, most important of which are the adaptation co-benefits between the two. While local incentives have driven community action in CBNRM, it is the evolution of an enabling environment in the region, in the form of institutions, policies, capacity and collaboration which characterises the scaling up of CBNRM to national and regional levels.

  20. Developing rural community health risk assessments for climate change: a Tasmanian pilot study.

    Science.gov (United States)

    Bell, Erica J; Turner, Paul; Meinke, Holger; Holbrook, Neil J

    2015-01-01

    This article examines the development and pilot implementation of an approach to support local community decision-makers to plan health adaptation responses to climate change. The approach involves health and wellbeing risk assessment supported through the use of an electronic tool. While climate change is a major foreseeable public health threat, the extent to which health services are prepared for, or able to adequately respond to, climate change impact-related risks remains unclear. Building health decision-support mechanisms in order to involve and empower local stakeholders to help create the basis for agreement on these adaptive actions is an important first step. The primary research question was 'What can be learned from pilot implementation of a community health and well-being risk assessment (CHWRA) information technology-based tool designed to support understanding of, and decision-making on, local community challenges and opportunities associated with health risks posed by climate change? The article examines the complexity of climate change science to adaptation translational processes, with reference to existing research literature on community development. This is done in the context of addressing human health risks for rural and remote communities in Tasmania, Australia. This process is further examined through the pilot implementation of an electronic tool designed to support the translation of physically based climate change impact information into community-level assessments of health risks and adaptation priorities. The procedural and technical nature of the CHWRA tool is described, and the implications of the data gathered from stakeholder workshops held at three rural Tasmanian local government sites are considered and discussed. Bushfire, depression and waterborne diseases were identified by community stakeholders as being potentially 'catastrophic' health effects 'likely' to 'almost certain' to occur at one or more Tasmanian rural sites

  1. Climate change in our backyards: the reshuffling of North America's winter bird communities.

    Science.gov (United States)

    Princé, Karine; Zuckerberg, Benjamin

    2015-02-01

    Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species-specific responses are resulting in community-wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm-adapted species. To do this, we quantified changes in community composition using a functional index--the Community Temperature Index (CTI)--which measures the balance between low- and high-temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (n = 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22-year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm-adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America. © 2014 John Wiley & Sons Ltd.

  2. Large-scale changes in community composition: determining land use and climate change signals.

    Science.gov (United States)

    Kampichler, Christian; van Turnhout, Chris A M; Devictor, Vincent; van der Jeugd, Henk P

    2012-01-01

    Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate both forms of impact--land use and climate change--are uncommon. Here, we quantify community change of Dutch breeding bird communities over the past 25 years using time lag analysis. We evaluate the chronological sequence of the community temperature index (CTI) which reflects community response to temperature increase (increasing CTI indicates an increase in relative abundance of more southerly species), and the temporal trend of the community specialisation index (CSI) which reflects community response to land use change (declining CSI indicates an increase of generalist species). We show that the breeding bird fauna underwent distinct directional change accompanied by significant changes both in CTI and CSI which suggests a causal connection between climate and land use change and bird community change. The assemblages of particular breeding habitats neither changed at the same speed and nor were they equally affected by climate versus land use changes. In the rapidly changing farmland community, CTI and CSI both declined slightly. In contrast, CTI increased in the more slowly changing forest and heath communities, while CSI remained stable. Coastal assemblages experienced both an increase in CTI and a decline in CSI. Wetland birds experienced the fastest community change of all breeding habitat assemblages but neither CTI nor CSI showed a significant trend. Overall, our results suggest that the interaction between climate and land use changes differs between habitats, and that comparing trends in CSI and CTI may be useful in tracking the impact of each determinant.

  3. Are human values and community participation key to climate adaptation? The case of community forest organisations in British Columbia

    OpenAIRE

    Furness, Ella; Nelson, Harry

    2016-01-01

    This study develops a multidisciplinary framework composed of a range of determinants of adaptive capacity to climate change found in economic, sociological, political, geographical and psychological literature. The framework is then used to carry out a survey of community managed forest organisations to measure their adaptive capacity and establish the characteristics that enable their adaptation. The research finds that adaptive organisations spend a substantial amount of time on community ...

  4. Change Orientations: The Effects of Organizational Climate on Principal, Teacher, and Community Transformation

    Science.gov (United States)

    Smith, Page A.; Maika, Sean A.

    2008-01-01

    This research investigates the openness that teachers and principals have to change--specifically, the openness of the faculty to community pressure for change. Three dimensions of change are examined (teacher, principal, and community), as well as four aspects of organizational climate (institutional vulnerability, collegial leadership,…

  5. Perceptions of Campus Climate, Academic Efficacy and Academic Success among Community College Students: An Ethnic Comparison

    Science.gov (United States)

    Edman, Jeanne L.; Brazil, Brad

    2009-01-01

    The present study examined whether there are ethnic differences in perceptions of campus climate, social support, and academic efficacy among community college students, and whether student perceptions were associated with academic success. A total of 475 community college students completed a questionnaire that measured students' perceptions of…

  6. Adaptation to Climate Change in two Rural Communities on the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    -arid areas, and are largely dependent on agriculture for their livelihood and food security. Already subject to episodic drought, increased climate variability is expected to exacerbate poverty and undermine socioeconomic gains made in ...

  7. Indigenous community health and climate change: integrating biophysical and social science indicators

    Science.gov (United States)

    Donatuto, Jamie; Grossman, Eric E.; Konovsky, John; Grossman, Sarah; Campbell, Larry W.

    2014-01-01

    This article describes a pilot study evaluating the sensitivity of Indigenous community health to climate change impacts on Salish Sea shorelines (Washington State, United States and British Columbia, Canada). Current climate change assessments omit key community health concerns, which are vital to successful adaptation plans, particularly for Indigenous communities. Descriptive scaling techniques, employed in facilitated workshops with two Indigenous communities, tested the efficacy of ranking six key indicators of community health in relation to projected impacts to shellfish habitat and shoreline archaeological sites stemming from changes in the biophysical environment. Findings demonstrate that: when shellfish habitat and archaeological resources are impacted, so is Indigenous community health; not all community health indicators are equally impacted; and, the community health indicators of highest concern are not necessarily the same indicators most likely to be impacted. Based on the findings and feedback from community participants, exploratory trials were successful; Indigenous-specific health indicators may be useful to Indigenous communities who are assessing climate change sensitivities and creating adaptation plans.

  8. Observations of climate change among subsistence-oriented communities around the world

    Science.gov (United States)

    Savo, V.; Lepofsky, D.; Benner, J. P.; Kohfeld, K. E.; Bailey, J.; Lertzman, K.

    2016-05-01

    The study of climate change has been based strongly on data collected from instruments, but how local people perceive such changes remains poorly quantified. We conducted a meta-analysis of climatic changes observed by subsistence-oriented communities. Our review of 10,660 observations from 2,230 localities in 137 countries shows that increases in temperature and changes in seasonality and rainfall patterns are widespread (~70% of localities across 122 countries). Observations of increased temperature show patterns consistent with simulated trends in surface air temperature taken from the ensemble average of CMIP5 models, for the period 1955-2005. Secondary impacts of climatic changes on both wild and domesticated plants and animals are extensive and threaten the food security of subsistence-oriented communities. Collectively, our results suggest that climate change is having profound disruptive effects at local levels and that local observations can make an important contribution to understanding the pervasiveness of climate change on ecosystems and societies.

  9. Late Quaternary climate-change velocity: Implications for modern distributions and communities

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dalsgaard, Bo; Arge, Lars Allan

    conditions are wet, productive and aseasonal. In general, climate-change velocity since the LGM appears to explain a wide variety of phenomena in the modern distributions of species and structure of communities, and we propose that its applications could be quite wide. Understanding the role of historical...... a global map of climate-change velocity since the Last Glacial Maximum and used this measure of climate instability to address a number of classic hypotheses. Results/Conclusions We show that historical climate-change velocity is related to a wide range of characteristics of modern distributions...

  10. Climate legacy and lag effects on dryland plant communities in the southwestern U.S.

    Science.gov (United States)

    Bunting, Erin; Munson, Seth M.; Villarreal, Miguel

    2017-01-01

    Climate change effects on vegetation will likely be strong in the southwestern U.S., which is projected to experience large increases in temperature and changes in precipitation. Plant communities in the southwestern U.S. may be particularly vulnerable to climate change as the productivity of many plant species is strongly water-limited. This study examines the relationship between climate and vegetation condition using a time-series of Landsat imagery across grassland, shrubland, and woodland communities on the Colorado Plateau, USA. We improve on poorly understood inter-annual climate-vegetation relationships by exploring how the responses of different plant communities depend on climate legacies (>12 months) and lag behind shorter-term (3–12 month) changes in water availability. Our results show a prolonged drying trend on the Colorado Plateau since the early 1990s that was punctuated in several years by intense droughts. In areas that experienced sustained dry conditions or a drying trend, vegetation greenness (a proxy for production) increased linearly when conditions were interrupted by wetting events. In contrast, in areas that experienced sustained wet conditions or a wetting trend, vegetation greenness was weakly or not related to wetting events, indicating that production may saturate if vegetation experiences sufficient water availability. Shrubland and woodland communities had stronger relationships with climate at long lags (6–12 months) and many maintained greenness under sustained water deficit, whereas grassland communities had stronger relationships at short lags (3–6 months) and lost greenness even in periods of short-term drought. The results of our study show the importance of identifying climate legacies and lags when assessing indicators of ecological drought, which can be used to improve forecasts of which plant communities will be vulnerable under future climate change.

  11. Climate change and physical disturbance cause similar community shifts in biological soil crusts

    Science.gov (United States)

    Ferrenberg, Scott; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. While there has been long-standing concern over impacts of 5 physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is also increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, USA, we examined the effects of 10 years of experimental warming and altered precipitation (in full-factorial design) on biocrust communities, and compared the effects of altered climate with those of long-term physical 10 disturbance (>10 years of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increased cyanobacteria cover, with more variable effects 15 on lichens. While the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed by the climate treatments used in our study.

  12. Plant communities on infertile soils are less sensitive to climate change.

    Science.gov (United States)

    Harrison, Susan; Damschen, Ellen; Fernandez-Going, Barbara; Eskelinen, Anu; Copeland, Stella

    2015-11-01

    Much evidence suggests that plant communities on infertile soils are relatively insensitive to increased water deficit caused by increasing temperature and/or decreasing precipitation. However, a multi-decadal study of community change in the western USA does not support this conclusion. This paper tests explanations related to macroclimatic differences, overstorey effects on microclimate, variation in soil texture and plant functional traits. A re-analysis was undertaken of the changes in the multi-decadal study, which concerned forest understorey communities on infertile (serpentine) and fertile soils in an aridifying climate (southern Oregan) from 1949-1951 to 2007-2008. Macroclimatic variables, overstorey cover and soil texture were used as new covariates. As an alternative measure of climate-related change, the community mean value of specific leaf area was used, a functional trait measuring drought tolerance. We investigated whether these revised analyses supported the prediction of lesser sensitivity to climate change in understorey communities on infertile serpentine soils. Overstorey cover, but not macroclimate or soil texture, was a significant covariate of community change over time. It strongly buffered understorey temperatures, was correlated with less change and averaged >50 % lower on serpentine soils, thereby counteracting the lower climate sensitivity of understorey herbs on these soils. Community mean specific leaf area showed the predicted pattern of less change over time in serpentine than non-serpentine communities. Based on the current balance of evidence, plant communities on infertile serpentine soils are less sensitive to changes in the climatic water balance than communities on more fertile soils. However, this advantage may in some cases be lessened by their sparser overstorey cover. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email

  13. Uncertainties in Future Regional Sea Level Trends: How to Deal with the Internal Climate Variability?

    Science.gov (United States)

    Becker, M.; Karpytchev, M.; Hu, A.; Deser, C.; Lennartz-Sassinek, S.

    2017-12-01

    Today, the Climate models (CM) are the main tools for forecasting sea level rise (SLR) at global and regional scales. The CM forecasts are accompanied by inherent uncertainties. Understanding and reducing these uncertainties is becoming a matter of increasing urgency in order to provide robust estimates of SLR impact on coastal societies, which need sustainable choices of climate adaptation strategy. These CM uncertainties are linked to structural model formulation, initial conditions, emission scenario and internal variability. The internal variability is due to complex non-linear interactions within the Earth Climate System and can induce diverse quasi-periodic oscillatory modes and long-term persistences. To quantify the effects of internal variability, most studies used multi-model ensembles or sea level projections from a single model ran with perturbed initial conditions. However, large ensembles are not generally available, or too small, and computationally expensive. In this study, we use a power-law scaling of sea level fluctuations, as observed in many other geophysical signals and natural systems, which can be used to characterize the internal climate variability. From this specific statistical framework, we (1) use the pre-industrial control run of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM) to test the robustness of the power-law scaling hypothesis; (2) employ the power-law statistics as a tool for assessing the spread of regional sea level projections due to the internal climate variability for the 21st century NCAR-CCSM; (3) compare the uncertainties in predicted sea level changes obtained from a NCAR-CCSM multi-member ensemble simulations with estimates derived for power-law processes, and (4) explore the sensitivity of spatial patterns of the internal variability and its effects on regional sea level projections.

  14. Graptolite community responses to global climate change and the Late Ordovician mass extinction.

    Science.gov (United States)

    Sheets, H David; Mitchell, Charles E; Melchin, Michael J; Loxton, Jason; Štorch, Petr; Carlucci, Kristi L; Hawkins, Andrew D

    2016-07-26

    Mass extinctions disrupt ecological communities. Although climate changes produce stress in ecological communities, few paleobiological studies have systematically addressed the impact of global climate changes on the fine details of community structure with a view to understanding how changes in community structure presage, or even cause, biodiversity decline during mass extinctions. Based on a novel Bayesian approach to biotope assessment, we present a study of changes in species abundance distribution patterns of macroplanktonic graptolite faunas (∼447-444 Ma) leading into the Late Ordovician mass extinction. Communities at two contrasting sites exhibit significant decreases in complexity and evenness as a consequence of the preferential decline in abundance of dysaerobic zone specialist species. The observed changes in community complexity and evenness commenced well before the dramatic population depletions that mark the tipping point of the extinction event. Initially, community changes tracked changes in the oceanic water masses, but these relations broke down during the onset of mass extinction. Environmental isotope and biomarker data suggest that sea surface temperature and nutrient cycling in the paleotropical oceans changed sharply during the latest Katian time, with consequent changes in the extent of the oxygen minimum zone and phytoplankton community composition. Although many impacted species persisted in ephemeral populations, increased extinction risk selectively depleted the diversity of paleotropical graptolite species during the latest Katian and early Hirnantian. The effects of long-term climate change on habitats can thus degrade populations in ways that cascade through communities, with effects that culminate in mass extinction.

  15. Integrating community based disaster risk reduction and climate change adaptation: examples from the Pacific

    Directory of Open Access Journals (Sweden)

    A. Gero

    2011-01-01

    Full Text Available It is acknowledged by academics and development practitioners alike that many common strategies addressing community based disaster risk reduction and climate change adaptation duplicate each other. Thus, there is a strong push to integrate the two fields to enhance aid effectiveness and reduce confusion for communities. Examples of community based disaster risk reduction (DRR and climate change adaptation (CCA projects are presented to highlight some of the ways these issues are tackled in the Pacific. Various approaches are employed but all aim to reduce the vulnerability and enhance the resilience of local communities to the impacts of climate change and disasters. By focusing on three case studies, elements of best practice are drawn out to illustrate how DRR and CCA can be integrated for enhanced aid effectiveness, and also look at ways in which these two often overlapping fields can be better coordinated in ongoing and future projects. Projects that address vulnerability holistically, and target the overall needs and capacity of the community are found to be effective in enhancing the resilience of communities. By strategically developing a multi-stakeholder and multi-sector approach, community projects are likely to encapsulate a range of experience and skills that will benefit the community. Furthermore, by incorporating local knowledge, communities are far more likely to be engaged and actively participate in the project. From selected case studies, commonly occurring best practice methods to integrate DRR and CCA are identified and discussed and recommendations on how to overcome the common challenges also presented.

  16. The NCAR Digital Asset Services Hub (DASH): Implementing Unified Data Discovery and Access

    Science.gov (United States)

    Stott, D.; Worley, S. J.; Hou, C. Y.; Nienhouse, E.

    2017-12-01

    The National Center for Atmospheric Research (NCAR) Directorate created the Data Stewardship Engineering Team (DSET) to plan and implement an integrated single entry point for uniform digital asset discovery and access across the organization in order to improve the efficiency of access, reduce the costs, and establish the foundation for interoperability with other federated systems. This effort supports new policies included in federal funding mandates, NSF data management requirements, and journal citation recommendations. An inventory during the early planning stage identified diverse asset types across the organization that included publications, datasets, metadata, models, images, and software tools and code. The NCAR Digital Asset Services Hub (DASH) is being developed and phased in this year to improve the quality of users' experiences in finding and using these assets. DASH serves to provide engagement, training, search, and support through the following four nodes (see figure). DASH MetadataDASH provides resources for creating and cataloging metadata to the NCAR Dialect, a subset of ISO 19115. NMDEdit, an editor based on a European open source application, has been configured for manual entry of NCAR metadata. CKAN, an open source data portal platform, harvests these XML records (along with records output directly from databases) from a Web Accessible Folder (WAF) on GitHub for validation. DASH SearchThe NCAR Dialect metadata drives cross-organization search and discovery through CKAN, which provides the display interface of search results. DASH search will establish interoperability by facilitating metadata sharing with other federated systems. DASH ConsultingThe DASH Data Curation & Stewardship Coordinator assists with Data Management (DM) Plan preparation and advises on Digital Object Identifiers. The coordinator arranges training sessions on the DASH metadata tools and DM planning, and provides one-on-one assistance as requested. DASH Repository

  17. Effects of climate change on plant population growth rate and community composition change.

    Science.gov (United States)

    Chang, Xiao-Yu; Chen, Bao-Ming; Liu, Gang; Zhou, Ting; Jia, Xiao-Rong; Peng, Shao-Lin

    2015-01-01

    The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of climate change on community composition change within a relatively short period (several decades) based on long-term monitoring data from two plots-Dinghushan Biosphere Reserve, China (DBR) and Barro Colorado Island, Panama (BCI)-that are located in tropical and subtropical regions. We proposed a relatively more concise index, Slnλ, which refers to an overall population growth rate based on the dominant species in a community. The results indicated that the population growth rate of a majority of populations has decreased over the past few decades. This decrease was mainly caused by population development. The increasing temperature had a positive effect on population growth rates and community change rates. Our results promote understanding and explaining variations in population growth rates and community composition rates, and are helpful to predict population dynamics and population responses to climate change.

  18. NOAA's Coral Reef Conservation Program: 2016 projects to assess coral resilence and the resilence of communities to climate change

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2016 the following projects will take place to assess coral resilence and the resilence of communities to climate change: Climate and resilience-based...

  19. Increasing Communities Capacity to Effectively Address Climate Change Through Education, Civic Engagement and Workforce Development

    Science.gov (United States)

    Niepold, F., III; Ledley, T. S.; Stanton, C.; Fraser, J.; Scowcroft, G. A.

    2017-12-01

    Understanding the causes, effects, risks, and developing the social will and skills for responses to global change is a major challenge of the 21st century that requires coordinated contributions from the sciences, social sciences, humanities, arts, and beyond. There have been many effective efforts to implement climate change education, civic engagement and related workforce development programs focused on a multitude of audiences, topics and in multiple regions. This talk will focus on how comprehensive educational efforts across our communities are needed to support cities and their primary industries as they prepare for, and embrace, a low-carbon economy and develop the related workforce.While challenges still exist in identifying and coordinating all stakeholders, managing and leveraging resources, and resourcing and scaling effective programs to increase impact and reach, climate and energy literacy leaders have developed initiatives with broad input to identify the understandings and structures for climate literacy collective impact and to develop regional/metropolitan strategy that focuses its collective impact efforts on local climate issues, impacts and opportunities. This Climate Literacy initiative envisions education as a central strategy for community's civic actions in the coming decades by key leaders who have the potential to foster the effective and innovative strategies that will enable their communities to seize opportunity and prosperity in a post-carbon and resilient future. This talk discusses the advances and collaborations in the Climate Change Education community over the last decade by U.S. federal and non-profit organization that have been made possible through the partnerships of the Climate Literacy & Energy Awareness Network (CLEAN), U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, and the Tri-Agency Climate Change Education Collaborative.

  20. Traditional climate knowledge: a case study in a peasant community of Tlaxcala, Mexico.

    Science.gov (United States)

    Rivero-Romero, Alexis D; Moreno-Calles, Ana I; Casas, Alejandro; Castillo, Alicia; Camou-Guerrero, Andrés

    2016-08-18

    Traditional climate knowledge is a comprehensive system of insights, experiences and practices used by peasant communities to deal with the uncertainties of climate conditions affecting their livelihood. This knowledge is today as relevant in the Mesoamerican and Andean regions as it is in Europe and Asia. Our research sought to analyze the traditional knowledge about the weather and climate in a rural village of the state of Tlaxcala, Mexico, and its importance in decision-making in agriculture. Through 30 interviews and participant observation in the community during 2013, information was gathered about traditional climate and weather indicators and prediction tools, as well as rituals and agronomic and agroforestry strategies. This information allowed for the reconstruction of the community's agro-festive calendar. Data analysis was carried out with the help of the qualitative analysis software Atlas.ti (version 7). The socio-ecological importance of traditional knowledge about the climate lies in its ability to forecast local weather conditions and recognize climate variations, so vital to the food security of rural families. Knowledge about climate predictors is exchanged and passed on from generation to generation, contributing to the preservation and promotion of biodiversity. By observing the behavior of 16 animals and 12 plant species (both domestic and wild) as well as seven astronomical indicators, villagers are able to predict rain, dry weather and frosts. However, the continuity of this traditional knowledge in the community under study is now compromised by the little interest in agriculture characteristic of the younger generations, the ensuing abandonment of the countryside, the widespread economic crisis and the disappearance of animal and plant species. Traditional climate knowledge includes the understanding of weather events and weather changes at different time scales (hours, days, weeks, and seasons). The ability to interpret weather events

  1. Beyond Quarterly Earnings: Preparing the Business Community for Long-term Climate Risks

    Science.gov (United States)

    Carlson, C.; Goldman, G. T.

    2014-12-01

    The business community stands to be highly impacted by climate change. In both short and long-term timescales, climate change presents material and financial risks to companies in diverse economic sectors. How the private sector accounts for long-term risks while making short-term decisions about operations is a complex challenge. Companies are accountable to shareholders and must report performance to them on a quarterly basis. At the same time, company investors are exposed to long-term climate-related risks and face losses if companies fail to prepare for climate impacts. The US Securities and Exchange Commission (SEC) obligates publicly traded companies to discuss risks that might materially affect their business and since 2010, the agency recommends that companies consider and discuss any significant risks to their business from climate change. Some companies have complied with this guidance and comprehensively analyze potential climate change impacts, yet others fail to consider climate change at all. Such omissions leave companies without plans for addressing future risks and expose investors and the public to potential catastrophic events from climate change impacts. Climate risk projections can inform companies about the vulnerability of their facilities, supply chains, transportation pathways, and other assets. Such projections can help put climate-related risks in terms of material costs for companies and their investors. Focusing on the vulnerability of coastal facilities, we will use climate change impact projections to demonstrate the economic impacts of climate change faced by the private sector. These risks are then compared to company disclosures to the SEC to assess the degree to which companies have considered their vulnerability to climate change. Finally, we will discuss ways that companies can better assess and manage long-term climate risks.

  2. An Improved Dynamical Downscaling Method with GCM Bias Corrections and Its Validation with 30 Years of Climate Simulations

    KAUST Repository

    Xu, Zhongfeng

    2012-09-01

    An improved dynamical downscaling method (IDD) with general circulation model (GCM) bias corrections is developed and assessed over North America. A set of regional climate simulations is performed with the Weather Research and Forecasting Model (WRF) version 3.3 embedded in the National Center for Atmospheric Research\\'s (NCAR\\'s) Community Atmosphere Model (CAM). The GCM climatological means and the amplitudes of interannual variations are adjusted based on the National Centers for Environmental Prediction (NCEP)-NCAR global reanalysis products (NNRP) before using them to drive WRF. In this study, the WRF downscaling experiments are identical except the initial and lateral boundary conditions derived from the NNRP, original GCM output, and bias-corrected GCM output, respectively. The analysis finds that the IDD greatly improves the downscaled climate in both climatological means and extreme events relative to the traditional dynamical downscaling approach (TDD). The errors of downscaled climatological mean air temperature, geopotential height, wind vector, moisture, and precipitation are greatly reduced when the GCM bias corrections are applied. In the meantime, IDD also improves the downscaled extreme events characterized by the reduced errors in 2-yr return levels of surface air temperature and precipitation. In comparison with TDD, IDD is also able to produce a more realistic probability distribution in summer daily maximum temperature over the central U.S.-Canada region as well as in summer and winter daily precipitation over the middle and eastern United States. © 2012 American Meteorological Society.

  3. Global climate change: A U.S. business community's perspective

    International Nuclear Information System (INIS)

    Shales, J.

    1994-01-01

    Scientists from all over the world are currently attempting to evaluate the impact of both manmade and natural phenomena on climate change, including such issues as the role of oceans as sinks in absorbing CO 2 , the role of sunspots, the absorptive capacity of different tree species, the impact of nitrous oxide and non- CO 2 greenhouse gases, the length of time carbon remains in the atmosphere, the impact of ocean currents and innumerable other issues. Understanding these phenomena, and their interaction will be critical to properly addressing the issue which has tremendous importance for both the US and the world economic future development. The climate change issue has the potential to become the vehicle which will link developing countries to the rest of the world, since, embodies in the global climate debate are several of the social issues that the U.N. has attempted to address over the last two decades: hunger, overpopulation, environment, technology, and development. The climate change issue has the potential to test new international institutions, relationships between developed and developing counties and between traditional trading partners

  4. Climate change and variability: Smallholder farming communities in ...

    African Journals Online (AJOL)

    Increasing awareness of risks associated with climate change and variability among smallholder farmers is critical in building their capacity to develop the necessary adaptive measures. Using farmer participatory research approaches and formal questionnaire surveys, interaction has been made with >800 farmers in two ...

  5. Climate Change Threatens Coexistence within Communities of Mediterranean Forested Wetlands

    Science.gov (United States)

    Di Paola, Arianna; Valentini, Riccardo; Paparella, Francesco

    2012-01-01

    The Mediterranean region is one of the hot spots of climate change. This study aims at understanding what are the conditions sustaining tree diversity in Mediterranean wet forests under future scenarios of altered hydrological regimes. The core of the work is a quantitative, dynamic model describing the coexistence of different Mediterranean tree species, typical of arid or semi-arid wetlands. Two kind of species, i.e. Hygrophilous (drought sensitive, flood resistant) and Non-hygrophilous (drought resistant, flood sensitive), are broadly defined according to the distinct adaptive strategies of trees against water stress of summer drought and winter flooding. We argue that at intermediate levels of water supply the dual role of water (resource and stress) results in the coexistence of the two kind of species. A bifurcation analysis allows us to assess the effects of climate change on the coexistence of the two species in order to highlight the impacts of predicted climate scenarios on tree diversity. Specifically, the model has been applied to Mediterranean coastal swamp forests of Central Italy located at Castelporziano Estate and Circeo National Park. Our results show that there are distinct rainfall thresholds beyond which stable coexistence becomes impossible. Regional climatic projections show that the lower rainfall threshold may be approached or crossed during the XXI century, calling for an urgent adaptation and mitigation response to prevent biodiversity losses. PMID:23077484

  6. Cpl6: The New Extensible, High-Performance Parallel Coupler forthe Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Anthony P.; Jacob, Robert L.; Kauffman, Brain; Bettge,Tom; Larson, Jay; Ong, Everest; Ding, Chris; He, Yun

    2005-03-24

    Coupled climate models are large, multiphysics applications designed to simulate the Earth's climate and predict the response of the climate to any changes in the forcing or boundary conditions. The Community Climate System Model (CCSM) is a widely used state-of-art climate model that has released several versions to the climate community over the past ten years. Like many climate models, CCSM employs a coupler, a functional unit that coordinates the exchange of data between parts of climate system such as the atmosphere and ocean. This paper describes the new coupler, cpl6, contained in the latest version of CCSM,CCSM3. Cpl6 introduces distributed-memory parallelism to the coupler, a class library for important coupler functions, and a standardized interface for component models. Cpl6 is implemented entirely in Fortran90 and uses Model Coupling Toolkit as the base for most of its classes. Cpl6 gives improved performance over previous versions and scales well on multiple platforms.

  7. Aquatic-macroinvertebrate communities of Prairie-Pothole wetlands and lakes under a changed climate

    Science.gov (United States)

    McLean, Kyle I.; Mushet, David M.; Renton, David A.; Stockwell, Craig A.

    2016-01-01

    Understanding how aquatic-macroinvertebrate communities respond to changes in climate is important for biodiversity conservation in the Prairie Pothole Region and other wetland-rich landscapes. We sampled macroinvertebrate communities of 162 wetlands and lakes previously sampled from 1966 to 1976, a much drier period compared to our 2012–2013 sampling timeframe. To identify possible influences of a changed climate and predation pressures on macroinvertebrates, we compared two predictors of aquatic-macroinvertebrate communities: ponded-water dissolved-ion concentration and vertebrate-predator presence/abundance. Further, we make inferences of how macroinvertebrate communities were structured during the drier period when the range of dissolved-ion concentrations was much greater and fish occurrence in aquatic habitats was rare. We found that aquatic-macroinvertebrate community structure was influenced by dissolved-ion concentrations through a complex combination of direct and indirect relationships. Ion concentrations also influenced predator occurrence and abundance, which indirectly affected macroinvertebrate communities. It is important to consider both abiotic and biotic gradients when predicting how invertebrate communities will respond to climate change. Generally, in the wetlands and lakes we studied, freshening of ponded water resulted in more homogenous communities than occurred during a much drier period when salinity range among sites was greater.

  8. Potentials and limitations of epistemic communities. An analysis of the World Climate Council and the Framework Convention on Climate Change

    International Nuclear Information System (INIS)

    Otto, Daniel

    2015-01-01

    In times of increasing global uncertainties, science takes a central position for policy decisions. According to Peter M. Haas, epistemic communities are able to influence the cooperative behavior of states through their consensual knowledge. This book critically examines this statement. As the case of the Framework Convention on Climate Change shows, the World Climate Council (IPCC) was not in a position to enforce its solution options in the intergovernmental negotiations, as these affected the individual convictions of the decision-makers. While Angela Merkel advocated an agreement, the US government under George W. Bush denied the existence of climate change. Decision-makers and their individual convictions must therefore have a greater significance in international politics. [de

  9. Using Local Climate Science to Educate "Key Influentials" and their Communities in the San Diego Region

    Science.gov (United States)

    Boudrias, M. A.; Estrada, M.; Anders, S.; Silva-Send, N. J.; Yin, Z.; Schultz, P.; Young, E.

    2012-12-01

    The San Diego Regional Climate Education Partnership has formed an innovative and collaborative team whose mission is to implement a research-based climate science education and communications program to increase knowledge about climate science among highly-influential leaders and their communities and foster informed decision making based on climate science and impacts. The team includes climate scientists, behavioral psychologists, formal and informal educators and communication specialists. The Partnership's strategic plan has three major goals: (1) raise public understanding of the causes and consequences of climate change; (2) identify the most effective educational methods to educate non-traditional audiences (Key Influentials) about the causes and consequences of climate change; and (3) develop and implement a replicable model for regional climate change education. To implement this strategic plan, we have anchored our project on three major pillars: (1) Local climate science (causes, impacts and long-term consequences); (2) theoretical, research-based evaluation framework (TIMSI); and (3) Key! Influentials (KI) as primary audience for messages (working w! ith and through them). During CCEP-I, the Partnership formed and convened an advisory board of Key Influentials, completed interviews with a sample of Key Influentials, conducted a public opinion survey, developed a website (www.sandiego.edu/climate) , compiled inventories on literature of climate science education resources and climate change community groups and local activities, hosted stakeholder forums, and completed the first phase of on an experiment to test the effects of different messengers delivering the same local climate change message via video. Results of 38 KI Interviews provided evidence of local climate knowledge, strong concern about climate change, and deeply held values related to climate change education and regional leadership. The most intriguing result was that while 90% of Key

  10. A systematic approach to community resilience that reduces the federal fiscal exposure to climate change

    Science.gov (United States)

    Stwertka, C.; Albert, M. R.; White, K. D.

    2016-12-01

    Despite widely available information about the adverse impacts of climate change to the public, including both private sector and federal fiscal exposure, there remain opportunities to effectively translate this knowledge into action. Further delay of climate preparedness and resilience actions imposes a growing toll on American communities and the United States fiscal budget. We hypothesize that a set of four criteria must be met before a community can translate climate disturbances into preparedness action. We examine four case studies to review these proposed criteria, we discuss the critical success factors that can build community resilience, and we define an operational strategy that could support community resilience while reducing the federal fiscal exposure to climate change. This operational strategy defines a community response system that integrates social science research, builds on the strengths of different sectors, values existing resources, and reduces the planning-to-action time. Our next steps are to apply this solution in the field, and to study the dynamics of community engagement and the circular economy.

  11. At what scale and extent environmental gradients and climatic changes influence stream invertebrate communities?

    Science.gov (United States)

    Van Looy, Kris; Piffady, Jérémy; Floury, Mathieu

    2017-02-15

    In a context of increasing landscape modifications and climatic changes, scale hierarchy becomes an ever more crucial issue to integrate in the analysis of drivers and stressors of biological communities, especially in river networks. To cope with this issue, we developed (i) spatial hierarchical models of functional diversity of stream invertebrate communities to assess the relative influence of local- vs. regional-scale factors in structuring community assembly, and (ii) analysis of metacommunity elements to determine the ecological processes behind the structuring. The spatial structuring of benthic invertebrate communities was investigated over 568 sites in South-eastern France. Community structure was mainly driven by the altitudinal gradient and spring flow variation at broad scales, with functional diversity gradually decreasing with elevation and being maximized at intermediate levels of flow variability. According to the 'elements of metacommunity structure' analysis, the prevailing influence of the altitudinal gradient was also supported by a Clementsian structuration of invertebrate communities. Conversely, the influence of observed climatic changes in temperature and rainfall was weak and observed only at fine scales. As a result, natural environmental filters were stronger drivers of the functional diversity of communities than human-induced stressors (e.g. water pollution and hydromorphological alterations). More broadly, our results suggest that management needs to embrace the possibilities of gathering high spatial and taxonomical resolution data when analysing and predicting flow variation and climate change effects in order to preserve and restore functionally diverse communities. Moreover, to develop environmental flow schemes or restoration and climate change adaptation strategies for freshwater communities, local and regional processes need to be addressed simultaneously; equally responsible as drivers of community diversity. Copyright © 2016

  12. Engaging Key Stakeholders in Climate Change: A Community-Based Project for Youth-Led Participatory Climate Action

    Science.gov (United States)

    Trott, Carlie D.

    Few studies have examined how youth think about, and take action on climate change and far fewer have sought to facilitate their engagement using participatory methods. This dissertation evaluated the impacts of Science, Camera, Action! (SCA), a novel after-school program that combined climate change education with participatory action through photovoice. The specific aims of this study were to: (1) Evaluate the impacts of SCA on youth participants' climate change knowledge, attitudes, and behaviors; (2) Examine how SCA participation served to empower youth agency; and (3) Explore SCA's influence on youths' science engagement. Participants were 55 youths (ages 10 to 12) across three Boys and Girls Club sites in Northern Colorado. SCA's Science component used interactive activities to demonstrate the interrelationships between Earth's changing climate, ecosystems, and sustainable actions within communities. Photovoice, SCA's Camera component, was used to explore youths' climate change perspectives and to identify opportunities for their active engagement. Finally, SCA's Action component aimed to cultivate youth potential as agents of change in their families and communities through the development and implementation of youth-led action projects. Action projects included local policy advocacy, a tree-planting campaign, a photo gallery opening, development of a website, and the establishment of a Boys and Girls Club community garden. To evaluate SCA impacts, a combination of survey and focus group methods were used. Following the program, youth demonstrated increased knowledge of the scientific and social dimensions of the causes and consequences of climate change, as well as its solutions through human action. Though participants expressed a mix of positive (e.g., hope) and negative (e.g., sadness) emotions about climate change, they left the program with an increased sense of respect for nature, an enhanced sense of environmental responsibility, and a greater sense

  13. Phenological Characterization of Desert Sky Island Vegetation Communities with Remotely Sensed and Climate Time Series Data

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2010-01-01

    Full Text Available Climate change and variability are expected to impact the synchronicity and interactions between the Sonoran Desert and the forested sky islands which represent steep biological and environmental gradients. The main objectives were to examine how well satellite greenness time series data and derived phenological metrics (e.g., season start, peak greenness can characterize specific vegetation communities across an elevation gradient, and to examine the interactions between climate and phenological metrics for each vegetation community. We found that representative vegetation types (11, varying between desert scrub, mesquite, grassland, mixed oak, juniper and pine, often had unique seasonal and interannual phenological trajectories and spatial patterns. Satellite derived land surface phenometrics (11 for each of the vegetation communities along the cline showed numerous distinct significant relationships in response to temperature (4 and precipitation (7 metrics. Satellite-derived sky island vegetation phenology can help assess and monitor vegetation dynamics and provide unique indicators of climate variability and patterns of change.

  14. Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.

    Science.gov (United States)

    Asemaninejad, Asma; Thorn, R Greg; Lindo, Zoë

    2017-04-01

    Peatlands play an important role in global climate change through sequestration of atmospheric CO 2 . Climate-driven changes in the structure of fungal communities in boreal peatlands that favor saprotrophic fungi can substantially impact carbon dynamics and nutrient cycling in these crucial ecosystems. In a mesocosm study using a full factorial design, 100 intact peat monoliths, complete with living Sphagnum and above-ground vascular vegetation, were subjected to three climate change variables (increased temperature, reduced water table, and elevated CO 2 concentrations). Peat litterbags were placed in mesocosms, and fungal communities in litterbags were monitored over 12 months to assess the impacts of climate change variables on peat-inhabiting fungi. Changes in fungal richness, diversity, and community composition were assessed using Illumina MiSeq sequencing of ribosomal DNA (rDNA). While general fungal richness reduced under warming conditions, Ascomycota exhibited higher diversity under increased temperature treatments over the course of the experiment. Both increased temperature and lowered water table position drove shifts in fungal community composition with a strong positive effect on endophytic and mycorrhizal fungi (including one operational taxonomic unit (OTU) tentatively identified as Barrenia panicia) and different groups of saprotrophs identified as Mortierella, Galerina, and Mycena. These shifts were observed during a predicted degradative succession in the decomposer community as different carbon substrates became available. Since fungi play a central role in peatland communities, increased abundances of saprotrophic fungi under warming conditions, at the expense of reduced fungal richness overall, may increase decomposition rates under future climate scenarios and could potentially aggravate the impacts of climate change.

  15. Estuarine fish communities respond to climate variability over both river and ocean basins.

    Science.gov (United States)

    Feyrer, Frederick; Cloern, James E; Brown, Larry R; Fish, Maxfield A; Hieb, Kathryn A; Baxter, Randall D

    2015-10-01

    Estuaries are dynamic environments at the land-sea interface that are strongly affected by interannual climate variability. Ocean-atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980-2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0-1), oligohaline (salinity = 1-12), mesohaline (salinity = 6-19), polyhaline (salinity = 19-28), and euhaline (salinity = 29-32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  16. Science, Practitioners and Faith Communities: using TEK and Faith Knowledge to address climate issues.

    Science.gov (United States)

    Peterson, K.

    2017-12-01

    Worldview, Lifeway and Science - Communities that are tied to the land or water for their livelihood, and for whom subsistence guides their cultural lifeway, have knowledges that inform their interactions with the environment. These frameworks, sometimes called Traditional Ecological Knowledges (TEK), are based on generations of observations made and shared within lived life-environmental systems, and are tied to practitioners' broader worldviews. Subsistence communities, including Native American tribes, are well aware of the crises caused by climate change impacts. These communities are working on ways to integrate knowledge from their ancient ways with current observations and methods from Western science to implement appropriate adaptation and resilience measures. In the delta region of south Louisiana, the communities hold worldviews that blend TEK, climate science and faith-derived concepts. It is not incongruent for the communities to intertwine conversations from complex and diverse sources, including the academy, to inform their adaptation measures and their imagined solutions. Drawing on over twenty years of work with local communities, science organizations and faith institutions of the lower bayou region of Louisiana, the presenter will address the complexity of traditional communities' work with diverse sources of knowledge to guide local decision-making and to assist outside partners to more effectively address challenges associated with climate change.

  17. The acceptability of climate change in agricultural communities: comparing responses across variability and change.

    Science.gov (United States)

    Raymond, Christopher M; Spoehr, John

    2013-01-30

    This study examined how the terms used to describe climate change influence landholder acceptability judgements and attitudes toward climate change at the local scale. Telephone surveys were conducted with landholders from viticultural (n = 97) or cereal growing (n = 195) backgrounds in rural South Australia. A variety of descriptive and inferential statistics were used to examine the influence of human-induced climate change and winter/spring drying trend terms on adaptation responses and uncertainties surrounding climate change science. We found that the terms used to describe climate change leads to significant differences in adaptation response and levels of scepticism surrounding climate change in rural populations. For example, those respondents who accepted human induced climate change as a reality were significantly more likely to invest in technologies to sow crops earlier or increase the amount of water stored or harvested on their properties than respondents who accepted the winter/spring drying trend as a reality. The results have implications for the targeting of climate change science messages to both rural landholders and communities of practice involved in climate change adaptation planning and implementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Global change and marine communities: Alien species and climate change

    International Nuclear Information System (INIS)

    Occhipinti-Ambrogi, Anna

    2007-01-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  19. New frontiers: Exploring climate and health research opportunities for the geoscience community

    Science.gov (United States)

    Colwell, R. R.; Lipschultz, F.; Deangelo, B.

    2016-12-01

    The United States Global Change Research Program's report, "The Impacts of Climate Change on Human Health: A Scientific Assessment" captures the state of the science on impacts, and provides insights into future research opportunities. In particular, the report highlighted a compelling need to improve integrated climate modeling for health impacts, which is often impeded by the complex relationship between climate variability and adverse health outcomes. Closing these gaps is critical to responding to current and future health threats. This presentation will conclude the session by highlighting ways in which the geoscience community can increase its engagement with health sciences to overcome data limitations and further research.

  20. Climate Data Analysis Tools - (CDAT)

    Science.gov (United States)

    Doutriaux, C.; Jennifer, A.; Drach, R.; Dubois, P.; Williams, D.

    2003-12-01

    Climate Data Analysis Tools (CDAT) is a software infrastructure that uses an object-oriented scripting language to link together separate software subsystems and packages thus forming an integrated environment for solving model diagnosis problems. The power of the system comes from Python and its ability to seamlessly interconnect software. Python provides a general purpose and full-featured scripting language with a variety of user interfaces including command-line interaction, stand-alone scripts (applications) and graphical user interfaces (GUI). The CDAT subsystems, implemented as modules, provide access to and management of gridded data (Climate Data Management System or CDMS); large-array numerical operations (Numerical Python); and visualization (Visualization and Control System or VCS). One of the most difficult challenges facing climate researchers today is the cataloging and analysis of massive amounts of multi-dimensional global atmospheric and oceanic model data. To reduce the labor intensive and time-consuming process of data management, retrieval, and analysis, PCMDI and other DOE sites have come together to develop intelligent filing system and data management software for the linking of storage devices located throughout the United States and the international climate research community. This effort, headed by PCMDI, NCAR, and ANL will allow users anywhere to remotely access this distributed multi-petabyte archive and perform analysis. PCMDI's CDAT is an innovative system that supports exploration and visualization of climate scientific datasets. As an "open system", the software sub-systems (i.e., modules) are independent and freely available to the global climate community. CDAT is easily extended to include new modules and as a result of its flexibility, PCMDI has integrated other popular software components, such as: the popular Live Access Server (LAS) and the Distributed Oceanographic Data System (DODS). Together with ANL's Globus middleware

  1. Perception, Mitigation and Adaptation Strategies of Irrigated Paddy Farmer Community to Face Climate Change

    Directory of Open Access Journals (Sweden)

    Siska Rasiska Suantapura

    2016-06-01

    Full Text Available Climate change has a real impact on the condition of agriculture in developing countries, including Indonesia. Irrigated paddy farmers are the ones really feeling the impact of climate change. Therefore, we need to understand the perceptions, mitigation and adaptation strategies of irrigated paddy farmer community to face climate change. The study is conducted in Indramayu and Tasikmalaya Regency in West Java by using descriptive survey method, regression analysis and path analysis through Structural Equation Modelling approach with Lisrel TM 8.5. The results showes that: (1 changes to climate variability affects the productivity of rice; (2 perception of irrigated paddy farmer community on climate change and its affects are influenced by internal and external factors; and (3 adaptation strategy are influenced by internal and external factors, whereas no mitigation strategy. Therefore, mitigation and adaptation strategies with site specific location are very necessary improving climate information services, increasing empowerment of farmers through field schools, and providing the provision of facilities that are practical and adaptive to climate.

  2. Lags in the response of mountain plant communities to climate change.

    Science.gov (United States)

    Alexander, Jake M; Chalmandrier, Loïc; Lenoir, Jonathan; Burgess, Treena I; Essl, Franz; Haider, Sylvia; Kueffer, Christoph; McDougall, Keith; Milbau, Ann; Nuñez, Martin A; Pauchard, Aníbal; Rabitsch, Wolfgang; Rew, Lisa J; Sanders, Nathan J; Pellissier, Loïc

    2018-02-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: "dispersal lags" affecting plant species' spread along elevational gradients, "establishment lags" following their arrival in recipient communities, and "extinction lags" of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species' range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide. © 2017 John Wiley & Sons Ltd.

  3. Lags in the response of mountain plant communities to climate change

    Science.gov (United States)

    Alexander, Jake M.; Chalmandrier, Loïc; Lenoir, Jonathan; Burgess, Treena I.; Essl, Franz; Haider, Sylvia; Kueffer, Christoph; McDougall, Keith; Milbau, Ann; Nuñez, Martin A.; Pauchard, Aníbal; Rabitsch, Wolfgang; Rew, Lisa J.; Sanders, Nathan J.; Pellissier, Loïc

    2018-01-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: “dispersal lags” affecting plant species’ spread along elevational gradients, “establishment lags” following their arrival in recipient communities, and “extinction lags” of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species’ range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide. PMID:29112781

  4. Performance Evaluation of a Hot-Humid Climate Community

    Energy Technology Data Exchange (ETDEWEB)

    Osser, R. [Building Science Corporation, Somerville, MA (United States); Kerrigan, P. [Building Science Corporation, Somerville, MA (United States)

    2012-02-01

    This report describes the Project Home Again community in New Orleans, a new development for high-performance, affordable homes for residents who lost their homes to Hurricane Katrina. Building Science Corporation acted as a consultant for the project, advocating design strategies for durability, flood resistance, occupant comfort, and low energy use while maintaining cost effectiveness.

  5. A CLIMATE OF CHANGE, COMMUNITY ACTION IN NEW HAVEN.

    Science.gov (United States)

    FARRELL, GREGORY R.

    COMMUNITY PROGRESS, INC. A NONPROFIT COMMUITY ACTION CORPORATION WAS ESTABLISHED IN NEW HAVEN CONNECTICUT, IN 1962, WITH A THREE YEAR FORD FOUNDATION GRANT. IT HAS UNDERTAKEN PROGRAMS OF EMPLOYMENT, EDUCATION, AND SOCIAL SERVICES, EMPHASIZING INVOLVEMENT WITH THE POOR ON A CLOSE, INFORMAL, NEIGHBORHOOD BASIS. SOCIAL, VOCATIONAL, HEALTH,…

  6. Building adaptive capacity to climate change in tropical coastal communities

    Science.gov (United States)

    Cinner, Joshua E.; Adger, W. Neil; Allison, Edward H.; Barnes, Michele L.; Brown, Katrina; Cohen, Philippa J.; Gelcich, Stefan; Hicks, Christina C.; Hughes, Terry P.; Lau, Jacqueline; Marshall, Nadine A.; Morrison, Tiffany H.

    2018-02-01

    To minimize the impacts of climate change on human wellbeing, governments, development agencies, and civil society organizations have made substantial investments in improving people's capacity to adapt to change. Yet to date, these investments have tended to focus on a very narrow understanding of adaptive capacity. Here, we propose an approach to build adaptive capacity across five domains: the assets that people can draw upon in times of need; the flexibility to change strategies; the ability to organize and act collectively; learning to recognize and respond to change; and the agency to determine whether to change or not.

  7. Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change

    KAUST Repository

    Villarino, E

    2015-07-02

    Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).

  8. Perceived impacts of climate change and disaster risk management by rural communities in Ethiopia

    Directory of Open Access Journals (Sweden)

    Zerihun Yohannes Amare

    2018-04-01

    Full Text Available In developing countries including Ethiopia changing pattern of rainfall, increasing temperature, recurrent drought, massive land degradation, and poor performance of agricultural sector contribute for failure to meet the growing demands for food for the rural communities and left dependent on foreign food aid and seasonal migration. This study aims at examining the perceived impacts of climate change and disaster risk management by rural communities in Ethiopia. Cross-sectional socio-economic data were used. Dejen district was purposively selected as it is highly susceptible to climate related problems. Stratified and snowball sampling techniques were employed to select a sample of 398 households. Household survey was employed to collect data on climate change impacts perceived by local communities. Focus group discussions were carried out using guiding questions and seasonal calendar. Key informant interviews were used to triangulate households’ perceived climate change impacts. Field observations were used to observe biophysical, economic, social, and institutional features of the district. The results indicate that crop pests, soil erosion, crop disease, frost, drought, flood, hailstorm, and erratic rainfall were the major contributing factor for the loss of 50,555 quintals of agricultural cops over the period 2009-2016. The community seasonal calendar indicate that erratic rainfall, hailstorm, dry period, flood, landslide, livestock disease, crop disease and pests, and human diseases were the major climatic events in the study areas of rural communities. The lowland households were more susceptible to climate change impacts. Policy priority should be given based on the agro-ecology and households livelihood assets vulnerability levels

  9. Ecosystemic, climatic and temporal differences in oribatid communities (Acari: Oribatida) from forest soils.

    Science.gov (United States)

    Corral-Hernández, E; Balanzategui, I; Iturrondobeitia, J C

    2016-08-01

    Oribatid mite communities from 18 natural autochthonous forest soils in the Basque Country, belonging to five forest types, distributed along an ombrothermic gradient of five climatic regions were broadly studied. Forest type and climatic region together (45 % of the total variability) were important factors influencing the oribatid community. The local scale variable (forest type, 28 %) was about as determinant a factor as the regional scale (climatic region, 26 %), though together they accounted for just 9 %. By contrast, the influence of spatial distribution (geography) was not significant by itself but played an important role as a co-variable. Differences in community indices were detected only for species abundances, with holm oak showing the highest oribatid density and beech the lowest. The effect of the passage of time on oribatid communities was also analyzed by comparing recent communities to those of 19-26 years ago in the same forests. The community indices are influenced by the course of time when separate periods of time are compared. Although the recently studied forests apparently show the same conservational conditions as those studied in the past, they are less diverse.

  10. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability.

    Science.gov (United States)

    Dieleman, Catherine M; Branfireun, Brian A; McLaughlin, James W; Lindo, Zoë

    2015-01-01

    The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. © 2014 John Wiley & Sons Ltd.

  11. Mapping climatic mechanisms likely to favour the emergence of novel communities

    Science.gov (United States)

    Ordonez, Alejandro; Williams, John W.; Svenning, Jens-Christian

    2016-12-01

    Climatic conditions are changing at different rates and in different directions, potentially causing the emergence of novel species assemblages. Here we identify areas where recent (1901-2013) changes in temperature and precipitation are likely to be producing novel species assemblages through three distinct mechanisms: emergence of novel climatic combinations, rapid displacement of climatic isoclines and local divergences between temperature and precipitation vectors. Novel climates appear in the tropics, while displacement is faster at higher latitudes and divergence is high in the subtropics and mountainous regions. Globally, novel climate combinations so far are rare (3.4% of evaluated cells), mean displacement is 3.7 km decade-1 and divergence is high (>60°) for 67% of evaluated cells. Via at least one of the proposed mechanisms, novel species assemblages are likely to be forming in the North American Great Plains and temperate forests, Amazon, South American grasslands, Australia, boreal Asia and Africa. In these areas, temperature- and moisture-sensitive species may be affected by new climates emerging, differential biotic lags to rapidly changing climates or by being pulled in opposite directions along local spatial gradients. These results provide spatially explicit hypotheses about where and why novel communities are likely to emerge due to recent climate change.

  12. Climate change on Twitter: topics, communities and conversations about the 2013 IPCC Working Group 1 report.

    Science.gov (United States)

    Pearce, Warren; Holmberg, Kim; Hellsten, Iina; Nerlich, Brigitte

    2014-01-01

    In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate in one public forum: Twitter. Using statistical methods, tweets were analyzed to discover the hashtags used when people tweeted about the IPCC report, and how Twitter users formed communities around their conversational connections. In short, the paper presents the topics and tweeters at this particular moment in the climate debate. The most used hashtags related to themes of science, geographical location and social issues connected to climate change. Particularly noteworthy were tweets connected to Australian politics, US politics, geoengineering and fracking. Three communities of Twitter users were identified. Researcher coding of Twitter users showed how these varied according to geographical location and whether users were supportive, unsupportive or neutral in their tweets about the IPCC. Overall, users were most likely to converse with users holding similar views. However, qualitative analysis suggested the emergence of a community of Twitter users, predominantly based in the UK, where greater interaction between contrasting views took place. This analysis also illustrated the presence of a campaign by the non-governmental organization Avaaz, aimed at increasing media coverage of the IPCC report.

  13. Climate change on Twitter: topics, communities and conversations about the 2013 IPCC Working Group 1 report.

    Directory of Open Access Journals (Sweden)

    Warren Pearce

    Full Text Available In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate in one public forum: Twitter. Using statistical methods, tweets were analyzed to discover the hashtags used when people tweeted about the IPCC report, and how Twitter users formed communities around their conversational connections. In short, the paper presents the topics and tweeters at this particular moment in the climate debate. The most used hashtags related to themes of science, geographical location and social issues connected to climate change. Particularly noteworthy were tweets connected to Australian politics, US politics, geoengineering and fracking. Three communities of Twitter users were identified. Researcher coding of Twitter users showed how these varied according to geographical location and whether users were supportive, unsupportive or neutral in their tweets about the IPCC. Overall, users were most likely to converse with users holding similar views. However, qualitative analysis suggested the emergence of a community of Twitter users, predominantly based in the UK, where greater interaction between contrasting views took place. This analysis also illustrated the presence of a campaign by the non-governmental organization Avaaz, aimed at increasing media coverage of the IPCC report.

  14. Simulating Climate Change in Ireland

    Science.gov (United States)

    Nolan, P.; Lynch, P.

    2012-04-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.

  15. Climate change through an intersectional lens: gendered vulnerability and resilience in indigenous communities in the United States

    Science.gov (United States)

    Kirsten Vinyeta; Kyle Powys Whyte; Kathy Lynn

    2015-01-01

    The scientific and policy literature on climate change increasingly recognizes the vulnerabilities of indigenous communities and their capacities for resilience. The role of gender in defining how indigenous peoples experience climate change in the United States is a research area that deserves more attention. Advancing climate change threatens the continuance of many...

  16. Responses of redwood soil microbial community structure and N transformations to climate change

    Science.gov (United States)

    Damon C. Bradbury; Mary K. Firestone

    2012-01-01

    Soil microorganisms perform critical ecosystem functions, including decomposition, nitrogen (N) mineralization and nitrification. Soil temperature and water availability can be critical determinants of the rates of these processes as well as microbial community composition and structure. This research examined how changes in climate affect bacterial and fungal...

  17. Projecting the Local Impacts of Climate Change on a Central American Montane Avian Community

    Science.gov (United States)

    Gasner, Matthew R.; Jankowski, Jill E.; Ciecka, Anna L.; Kyle, Keiller O.; Rabenold, Kerry N.

    2010-01-01

    Significant changes in the climates of Central America are expected over the next century. Lowland rainforests harbor high alpha diversity on local scales (support higher beta diversity on 10-100 km2 scales. Climate change will likely disrupt the altitudinal zonation of montane communities that produces such landscape diversity. Projections of biotic response to climate change have often used broad-scale modelling of geographical ranges, but understanding likely impacts on population viability is also necessary for anticipating local and global extinctions. We model species abundances and estimate range shifts for birds in the Tilaran Mountains of Costa Rica, asking whether projected changes in temperature and rainfall could be sufficient to imperil high-elevation endemics and whether these variables will likely impact communities similarly. We find that nearly half of 77 forest bird species can be expected to decline in the next century. Almost half of species projected to decline are endemic to Central America, and seven of eight species projected to become locally extinct are endemic to the highlands of Costa Rica and Panam . Logistic-regression modelling of distributions and similarity in projections produced by temperature and rainfall models suggest that changes in both variables will be important. Although these projections are probably conservative because they do not explicitly incorporate biological or climate variable interactions, they provide a starting point for incorporating more realistic biological complexity into community-change models. Prudent conservation planning for tropical mountains should focus on regions with room for altitudinal reorganization of communities comprised of ecological specialists.

  18. Common Belief. Australia's Faith Communities on Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    Sixteen Australian faith communities representing the world's great religious traditions have united to speak out on climate change: Aboriginal people, the Australian Christian lobby, Baha'i believers, Baptists, Buddhists, Catholics, Evangelical Christians, Greek Orthodox, Hindus, Jewish people, Lutherans, Muslims, The Salvation Army, Sikhs, The United Church.

  19. Large-scale changes in community composition: Determining land use and climate change signals

    NARCIS (Netherlands)

    Kampichler, C.; Van Turnhout, C.A.M.; Devictor, V.; Van der Jeugd, H.P.

    2012-01-01

    Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate

  20. Profiling climate change vulnerability of forest indigenous communities in the Congo Basin

    NARCIS (Netherlands)

    Nkem, J.N.; Somorin, O.A.; Jum, C.; Idinoba, M.E.; Bele, Y.M.; Sonwa, D.J.

    2013-01-01

    The livelihood strategies of indigenous communities in the Congo Basin are inseparable from the forests, following their use of forest ecosystem goods and services (FEGS). Climate change is expected to exert impacts on the forest and its ability to provide FEGS. Thus, human livelihoods that depend

  1. Perceptions of climate change by highland communities in the Nepal Himalaya

    Czech Academy of Sciences Publication Activity Database

    Uprety, Y.; Shrestha, U. B.; Rokaya, Maan Bahadur; Shrestha, S.; Chaudhary, R. P.; Thakali, A.; Cockfield, G.; Asselin, H.

    2017-01-01

    Roč. 9, č. 7 (2017), s. 649-661 ISSN 1756-5529 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : climate change * local communities * Himalaya * Nepal * traditional knowledge Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.051, year: 2016

  2. Perceptions of climate change by highland communities in the Nepal Himalaya

    Czech Academy of Sciences Publication Activity Database

    Uprety, Y.; Shrestha, U. B.; Rokaya, Maan Bahadur; Shrestha, S.; Chaudhary, R. P.; Thakali, A.; Cockfield, G.; Asselin, H.

    2017-01-01

    Roč. 9, č. 7 (2017), s. 649-661 ISSN 1756-5529 R&D Projects: GA ČR(CZ) GA17-10280S Institutional support: RVO:67985939 Keywords : climate change * local communities * traditional knowledge Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.051, year: 2016

  3. Traits explain the responses of a sub-arctic Collembola community to climate manipulation.

    NARCIS (Netherlands)

    Makkonen, M.A.; Berg, M.P.; van Hal, J.R.; Callaghan, T.V.; Press, M.C.; Aerts, R.

    2011-01-01

    Ecosystems at high northern latitudes are subject to strong climate change. Soil processes, such as carbon and nutrient cycles, which determine the functioning of these ecosystems, are controlled by soil fauna. Thus assessing the responses of soil fauna communities to environmental change will

  4. River Plate communities build resilience in the face of climate change

    International Development Research Centre (IDRC) Digital Library (Canada)

    2014-06-18

    Jun 18, 2014 ... Almansi spoke with writer José Alberto Gonçalves Pereira about the project and how to best achieve effective climate change adaptation policies. JAGP: You've said that from the start, your team has been working with authorities, scientists, and communities. Why is this so important for the Riberas project?

  5. Engagement Between Decision Makers and the Research Community in Califonria'a Climate Assessments

    Science.gov (United States)

    Bedsworth, L. W.; Franco, G.; Wilhelm, S.; DeLaRosa, J.

    2016-12-01

    The State of California has been supporting the development of regional climate change science for more than two decades. The engagement between the scientific community in California and State agencies has been strong, and supported by multiple formalized relationships. For example, research results have informed state climate policy formulation such as the passage of AB32, a law that requires the State to bring GHG emissions to 1990 levels by 2020, and three Bills on climate adaptation that became law late in 2015. Scientific research has also been used for long-term planning of state resources such as the Forestry Plan, the Water Plan, and the Integrated Energy Policy Report. The Climate Action Team Research Working Group meets monthly to coordinate climate-related research activities supported by more than 20 state agencies and is the steering committee for the next California Climate Assessment that will be released in 2018. The State is co-producing the research commissioned for the 2018 Assessment in various ways, including the identification of research projects, the integration of more than 50 research studies, and active participation during execution of the research. The presentation will discuss the State's successes in linking decision-makers and the scientific community as well as challenges and potential ways to enhance these linkages.

  6. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming.

    NARCIS (Netherlands)

    Rinnan, R.; Rousk, J.; Yergeau, E.; Kowalchuk, G.A.; Baath, E.

    2009-01-01

    Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short-term temperature dependencies of Antarctic soil bacterial community growth rates, using

  7. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming

    NARCIS (Netherlands)

    Rinnan, R.; Rousk, J.; Yergeau, E.; Kowalchuk, G.A.; Baath, E.

    2009-01-01

    Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short-term temperature dependencies of Antarctic soil bacterial community growth rates, using

  8. The Brazilian freshwater wetscape: Changes in tree community diversity and composition on climatic and geographic gradients.

    Directory of Open Access Journals (Sweden)

    Florian Wittmann

    Full Text Available Wetlands harbor an important compliment of regional plant diversity, but in many regions data on wetland diversity and composition is still lacking, thus hindering our understanding of the processes that control it. While patterns of broad-scale terrestrial diversity and composition typically correlate with contemporary climate it is not clear to what extent patterns in wetlands are complimentary, or conflicting. To elucidate this, we consolidate data from wetland forest inventories in Brazil and examine patterns of diversity and composition along temperature and rainfall gradients spanning five biomes. We collated 196 floristic inventories covering an area >220 ha and including >260,000 woody individuals. We detected a total of 2,453 tree species, with the Amazon alone accounting for nearly half. Compositional patterns indicated differences in freshwater wetland floras among Brazilian biomes, although biomes with drier, more seasonal climates tended to have a larger proportion of more widely distributed species. Maximal alpha diversity increased with annual temperature, rainfall, and decreasing seasonality, patterns broadly consistent with upland vegetation communities. However, alpha diversity-climate relationships were only revealed at higher diversity values associated with the uppermost quantiles, and in most sites diversity varied irrespective of climate. Likewise, mean biome-level differences in alpha-diversity were unexpectedly modest, even in comparisons of savanna-area wetlands to those of nearby forested regions. We describe attenuated wetland climate-diversity relationships as a shifting balance of local and regional effects on species recruitment. Locally, excessive waterlogging strongly filters species able to colonize from regional pools. On the other hand, increased water availability can accommodate a rich community of drought-sensitive immigrant species that are able to track buffered wetland microclimates. We argue that

  9. The Brazilian freshwater wetscape: Changes in tree community diversity and composition on climatic and geographic gradients.

    Science.gov (United States)

    Wittmann, Florian; Marques, Márcia C M; Damasceno Júnior, Geraldo; Budke, Jean Carlos; Piedade, Maria T F; de Oliveira Wittmann, Astrid; Montero, Juan Carlos; de Assis, Rafael L; Targhetta, Natália; Parolin, Pia; Junk, Wolfgang J; Householder, J Ethan

    2017-01-01

    Wetlands harbor an important compliment of regional plant diversity, but in many regions data on wetland diversity and composition is still lacking, thus hindering our understanding of the processes that control it. While patterns of broad-scale terrestrial diversity and composition typically correlate with contemporary climate it is not clear to what extent patterns in wetlands are complimentary, or conflicting. To elucidate this, we consolidate data from wetland forest inventories in Brazil and examine patterns of diversity and composition along temperature and rainfall gradients spanning five biomes. We collated 196 floristic inventories covering an area >220 ha and including >260,000 woody individuals. We detected a total of 2,453 tree species, with the Amazon alone accounting for nearly half. Compositional patterns indicated differences in freshwater wetland floras among Brazilian biomes, although biomes with drier, more seasonal climates tended to have a larger proportion of more widely distributed species. Maximal alpha diversity increased with annual temperature, rainfall, and decreasing seasonality, patterns broadly consistent with upland vegetation communities. However, alpha diversity-climate relationships were only revealed at higher diversity values associated with the uppermost quantiles, and in most sites diversity varied irrespective of climate. Likewise, mean biome-level differences in alpha-diversity were unexpectedly modest, even in comparisons of savanna-area wetlands to those of nearby forested regions. We describe attenuated wetland climate-diversity relationships as a shifting balance of local and regional effects on species recruitment. Locally, excessive waterlogging strongly filters species able to colonize from regional pools. On the other hand, increased water availability can accommodate a rich community of drought-sensitive immigrant species that are able to track buffered wetland microclimates. We argue that environmental conditions

  10. Challenges of Climate Change: Resilience Efforts in Rural Communities of Kaliwlingi Village based on Pengembangan Kawasan Pesisir Tangguh (PKPT) Program

    OpenAIRE

    Mustovia Azahro; Angga Dwisapta Ardi

    2017-01-01

    Kaliwlingi Village in Brebes City has experienced climate change impacts such as tidal flood and land abrasion. The climate change causes the dynamics of the coast and sea levels dramatically and fosters the coastal communities to have adaptation strategies. This paper aims to identify how the community of Kaliwlingi Village adapts to the climate change that affects to a social economic condition of the inhabitants. The study used qualitative method by interpreting data taken from Pengembanga...

  11. A call to insect scientists: Challenges and opportunities of managing insect communities under climate change

    Science.gov (United States)

    Hellmann, Jessica J.; Grundel, Ralph; Hoving, Chris; Schuurman, Gregor W.

    2016-01-01

    As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change.

  12. A call to insect scientists: challenges and opportunities of managing insect communities under climate change.

    Science.gov (United States)

    Hellmann, Jessica J; Grundel, Ralph; Hoving, Chris; Schuurman, Gregor W

    2016-10-01

    As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us to revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Influence of Sea Ice on Arctic Marine Sulfur Biogeochemistry in the Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Deal, Clara [Univ. of Alaska, Fairbanks, AL (United States); Jin, Meibing [Univ. of Alaska, Fairbanks, AL (United States)

    2013-06-30

    Global climate models (GCMs) have not effectively considered how responses of arctic marine ecosystems to a warming climate will influence the global climate system. A key response of arctic marine ecosystems that may substantially influence energy exchange in the Arctic is a change in dimethylsulfide (DMS) emissions, because DMS emissions influence cloud albedo. This response is closely tied to sea ice through its impacts on marine ecosystem carbon and sulfur cycling, and the ice-albedo feedback implicated in accelerated arctic warming. To reduce the uncertainty in predictions from coupled climate simulations, important model components of the climate system, such as feedbacks between arctic marine biogeochemistry and climate, need to be reasonably and realistically modeled. This research first involved model development to improve the representation of marine sulfur biogeochemistry simulations to understand/diagnose the control of sea-ice-related processes on the variability of DMS dynamics. This study will help build GCM predictions that quantify the relative current and possible future influences of arctic marine ecosystems on the global climate system. Our overall research objective was to improve arctic marine biogeochemistry in the Community Climate System Model (CCSM, now CESM). Working closely with the Climate Ocean Sea Ice Model (COSIM) team at Los Alamos National Laboratory (LANL), we added 1 sea-ice algae and arctic DMS production and related biogeochemistry to the global Parallel Ocean Program model (POP) coupled to the LANL sea ice model (CICE). Both CICE and POP are core components of CESM. Our specific research objectives were: 1) Develop a state-of-the-art ice-ocean DMS model for application in climate models, using observations to constrain the most crucial parameters; 2) Improve the global marine sulfur model used in CESM by including DMS biogeochemistry in the Arctic; and 3) Assess how sea ice influences DMS dynamics in the arctic marine

  14. Signals of climate change in butterfly communities in a Mediterranean protected area.

    Science.gov (United States)

    Zografou, Konstantina; Kati, Vassiliki; Grill, Andrea; Wilson, Robert J; Tzirkalli, Elli; Pamperis, Lazaros N; Halley, John M

    2014-01-01

    The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998-2011/2012) and short-term (2011-2012) changes in the butterfly fauna of Dadia National Park (Greece) by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990-2012) in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a) species' elevational distributions in Greece and (b) Community Temperature Index (calculated from the average temperature of species' geographical ranges in Europe, weighted by species' abundance per transect and year). Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011-2012) variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species' resilience may have to be devised.

  15. Building a foundation for continued dialogue between climate science and water resource communities

    Science.gov (United States)

    Vano, J. A.; Arnold, J.; Clark, M. P.; Gutmann, E. D.; Hamman, J.; Nijssen, B.; Wood, A.

    2017-12-01

    Research into climate change has led to the development of many global climate models, downscaling techniques, and impacts models. This proliferation of information has resulted in insights into how climate change will impact hydrology that are more robust than any single approach, which is helpful for advancing the science. However, the variety of approaches makes navigating what information to use in water resource planning and management challenging. Each technique has strengths and weaknesses and associated uncertainties, and approaches are always being updated. Here we provide a user-focused, modularly framed guidance that is designed to be expandable and where updates can be targeted. This includes describing dos and don'ts for how to use climate change information in water resource planning and management that can be read at multiple levels. It can provide context for those seeking to understand the general need, opportunities, and challenges of including climate change information. It also provides details (frequently asked questions and examples) and direction to further guidance and resources for those engaged in the technical work. This guidance is intended to provide a foundation for continued dialogue within and between the climate science and application communities, to increase the utility and appropriate use of climate change information.

  16. Building partnerships with Indigenous communities around climate change: A new UCAR initiative.

    Science.gov (United States)

    Pandya, R. E.

    2008-12-01

    The atmospheric and related sciences have one of the lowest rates of participation by American Indians of any physical science. This not only disadvantages the atmospheric sciences by isolating them from a rich and relevant intellectual heritage, it disadvantages tribal communities who seek to apply the insights from atmospheric sciences to planning their own future. In a time of rapid environmental change and its impact on tribal lands and all lands, the need for connection between these two communities is especially urgent. In 2007, the University Corporation for Atmospheric Research launched a new Community Building Program, in order to catalyze and coordinate activities that contribute to UCAR's strategic goal of developing a diverse atmospheric science workforce. A key goal of this program has been to look for partnerships with the American Indian community around climate change issues. The goal of these partnerships is to support North American tribal efforts to enhance their own scientific and adaptive capacity around climate change. In the early stages of this partnership, we have listened to some important messages from Indigenous communities: •Climate change, like all things related to the landscape, is intimately connected to identity and sovereignty • Scientific expertise is one among many skills indigenous people employ in their relation with their homelands • Climate change research and education are embedded in decision-making about economic development, energy, public health as well as cultural preservation, language, and tribal sovereignty This presentation will be an opportunity to check and extend these insights discuss and use them as a basis for a long-term partnership between UCAR and tribal communities.

  17. Coupling the Community Atmospheric Model (CAM) with the Statistical Spectral Interpolation (SSI) System under ESMF

    Science.gov (United States)

    daSilva, Arlindo

    2004-01-01

    The first set of interoperability experiments illustrates the role ESMF can play in integrating the national Earth science resources. Using existing data assimilation technology from NCEP and the National Weather Service, the Community Atmosphere Model (CAM) was able to ingest conventional and remotely sensed observations, a capability that could open the door to using CAM for weather as well as climate prediction. CAM, which includes land surface capabilities, was developed by NCAR, with key components from GSFC. In this talk we will describe the steps necessary for achieving the coupling of these two systems.

  18. Simulating Climate Change in Ireland using a Regional Climate Model Approach

    Science.gov (United States)

    Nolan, Paul; Lynch, Peter

    2010-05-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at 7km resolution. The RCM models were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven at the lateral boundaries by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCM models exhibit reasonable and realistic features as documented in the historical data record. Validation results will be presented for wind, temperature and precipitation. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 global climate model data using the COSMO-CLM RCM. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B & B1 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in wind speeds for the future winter months and a decrease during the summer months. The projected changes for summer and winter were found to be statistically significant over most of Ireland. Future projections for temperature and precipitation will also be presented.

  19. Climatic projections and socio economic impacts of the climatic change in Colombia

    International Nuclear Information System (INIS)

    Eslava R, Jesus Antonio; Pabon Caicedo, Jose Daniel

    2001-01-01

    For the task of working out climate change projections, different methodologies have been in use, from simple extrapolations to sophisticated statistical and mathematical tools. Today, the tools most used are the models of the general circulation of the atmosphere and ocean, which include many processes of other climate components (biosphere, cryosphere, continental surface models, etc.). Different global and regional scenarios have been generated with those models. They may be of great utility in calculating projections and future scenarios for Colombia, but the representation of the country's climate in those models has to be improved in order to get projections with a higher level of certainty. The application of climate models and of the techniques of down scaling in studies of climate change is new both in Colombia and tropical America, and was introduced through the National University of Colombia's project on local and national climate change. In the first phase of the project, version 3 of the CCM (Climate Community Model) of NCAR was implemented. Parallel to that, and based on national (grid) data, maps have been prepared of the monthly temperature and precipitation of Colombia, which were used to validate the model

  20. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    International Nuclear Information System (INIS)

    Sejas, Sergio A; Albert, Oriene S; Cai, Ming; Deng, Yi

    2014-01-01

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heat flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Therefore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea. (letter)

  1. Forecasting climate change impacts to plant community composition in the Sonoran Desert region

    Science.gov (United States)

    Munson, Seth M.; Webb, Robert H.; Belnap, Jayne; Hubbard, J. Andrew; Swann, Don E.; Rutman, Sue

    2012-01-01

    Hotter and drier conditions projected for the southwestern United States can have a large impact on the abundance and composition of long-lived desert plant species. We used long-term vegetation monitoring results from 39 large plots across four protected sites in the Sonoran Desert region to determine how plant species have responded to past climate variability. This cross-site analysis identified the plant species and functional types susceptible to climate change, the magnitude of their responses, and potential climate thresholds. In the relatively mesic mesquite savanna communities, perennial grasses declined with a decrease in annual precipitation, cacti increased, and there was a reversal of the Prosopis velutina expansion experienced in the 20th century in response to increasing mean annual temperature (MAT). In the more xeric Arizona Upland communities, the dominant leguminous tree, Cercidium microphyllum, declined on hillslopes, and the shrub Fouquieria splendens decreased, especially on south- and west-facing slopes in response to increasing MAT. In the most xeric shrublands, the codominant species Larrea tridentata and its hemiparasite Krameria grayi decreased with a decrease in cool season precipitation and increased aridity, respectively. This regional-scale assessment of plant species response to recent climate variability is critical for forecasting future shifts in plant community composition, structure, and productivity.

  2. Community exposure to potential climate-driven changes to coastal-inundation hazards for six communities in Essex County, Massachusetts

    Science.gov (United States)

    Abdollahian, Nina; Ratliff, Jamie L.; Wood, Nathan J.

    2016-11-09

    IntroductionUnderstanding if and how community exposure to coastal hazards may change over time is crucial information for coastal managers tasked with developing climate adaptation plans. This report summarizes estimates of population and asset exposure to coastal-inundation hazards associated with sea-level-rise and storm scenarios in six coastal communities of the Great Marsh region of Essex County, Massachusetts. This U.S. Geological Survey (USGS) analysis was conducted in collaboration with National Wildlife Federation (NWF) representatives, who are working with local stakeholders to develop local climate adaptation plans for the Towns of Salisbury, Newbury, Rowley, Ipswich, and Essex and the City of Newburyport (hereafter referred to as communities). Community exposure was characterized by integrating various community indicators (land cover and land use, population, economic assets, critical facilities, and infrastructure) with coastal-hazard zones that estimate inundation extents and water depth for three time periods.Estimates of community exposure are based on the presence of people, businesses, and assets in hazard zones that are calculated from geospatial datasets using geographic-information-system (GIS) tools. Results are based on current distributions of people and assets in hazard zones and do not take into account projections of human population, asset, or land-use changes over time. Results are not loss estimates based on engineering analysis or field surveys for any particular facility and do not take into account aspects of individual and household preparedness before an extreme event, adaptive capacity of a community during an event, or long-term resilience of individuals and communities after an event. Potential losses would match reported inventories only if all residents, business owners, public managers, and elected officials were unaware of what to do if warned of an imminent threat, failed to take protective measures during an extreme

  3. Implementation challenges of climate change adaptation initiatives in coastal lagoon communities in the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Luz María Vázquez

    2017-10-01

    Full Text Available Abstract This paper explores some key challenges the Mexican government may face when implementing climate change adaptation initiatives in coastal lagoon communities in the Mexican state of Tabasco, in the Gulf of Mexico. I discuss some challenges state initiatives of this type may encounter considering the existence of local contentious political issues among various actors – fishers and the state-owned oil industry – that are at the core of the emergence of coastal environmental changes in the study site. A close analysis of local political, economic and environmental processes in coastal lagoon communities illustrates the existence of contentious issues among powerful actors over territory and its resources. It is in the context of these local, on the ground, issues that I argue that climate change adaptation interventions become highly political. I also argue that climate change policy analysis must be done in light of past and failed state interventions in Tabasco that have had a negative impact on ecosystems and fishers’ livelihoods. My analysis of climate change adaptation initiatives and fishers’ views on their local environmental problems is based on political ecology approaches to environmental narratives and critical literature on climate change.

  4. Contributions of Heterogeneous Ice Nucleation, Large-Scale Circulation, and Shallow Cumulus Detrainment to Cloud Phase Transition in Mixed-Phase Clouds with NCAR CAM5

    Science.gov (United States)

    Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.

    2016-12-01

    Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of

  5. Decision-Makers As Messengers Of Climate Change Impacts And Ambassadors For Their Communities.

    Science.gov (United States)

    Boudrias, M. A.; DeBenedict, C.; Bruce, L.; Estrada, M.; Hedge, N.; Silva-Send, N. J.

    2016-12-01

    Over the past several years there have been many coordinated efforts to improve climate change literacy of diverse audiences. The challenge has been to balance science content with audience-specific messaging with a goal to reach solutions and build community resilience. In the San Diego Region, Climate Education Partners (CEP) has been working with business leaders, elected officials, tribal leaders, and other community leaders to develop a suite of programs and activities to enhance the channels of communication outside traditional settings. CEP has employed a multidisciplinary approach that integrates climate science, social and learning sciences and effective communication strategies to create innovative resources and new approaches to climate change communication in order to engage audiences more effectively. We have interviewed over 140 key San Diego leaders and invited them to serve as ambassadors to the project by engaging them directly in the creation of a variety of innovative educational resources as well as serving as spokespersons for outreach activities. Our program has evolved from having only scientists, educators and community practitioners serve as presenters to strategically and deliberately engaging a mix of scientists, educators and decision makers as the conveyers of key messages. Our protocol for events includes preparing all speakers in advance, researching our audience, creating a script, immediate debriefs of each activity and a qualitative and quantitative assessment of each event. Two examples of this integrated approach will show how to engage decision-makers more deeply: (1) coastal flooding tour as a place-based activity and (2) impact videos that blend climate science, local personal stories and key messages from decision makers themselves. For climate change communication to be successful in the future, we will need creative and coordinated approaches.

  6. Effects of high latitude protected areas on bird communities under rapid climate change.

    Science.gov (United States)

    Santangeli, Andrea; Rajasärkkä, Ari; Lehikoinen, Aleksi

    2017-06-01

    Anthropogenic climate change is rapidly becoming one of the main threats to biodiversity, along with other threats triggered by human-driven land-use change. Species are already responding to climate change by shifting their distributions polewards. This shift may create a spatial mismatch between dynamic species distributions and static protected areas (PAs). As protected areas represent one of the main pillars for preserving biodiversity today and in the future, it is important to assess their contribution in sheltering the biodiversity communities, they were designated to protect. A recent development to investigate climate-driven impacts on biological communities is represented by the community temperature index (CTI). CTI provides a measure of the relative temperature average of a community in a specific assemblage. CTI value will be higher for assemblages dominated by warm species compared with those dominated by cold-dwelling species. We here model changes in the CTI of Finnish bird assemblages, as well as changes in species densities, within and outside of PAs during the past four decades in a large boreal landscape under rapid change. We show that CTI has markedly increased over time across Finland, with this change being similar within and outside PAs and five to seven times slower than the temperature increase. Moreover, CTI has been constantly lower within than outside of PAs, and PAs still support communities, which show colder thermal index than those outside of PAs in the 1970s and 1980s. This result can be explained by the higher relative density of northern species within PAs than outside. Overall, our results provide some, albeit inconclusive, evidence that PAs may play a role in supporting the community of northern species. Results also suggest that communities are, however, shifting rapidly, both inside and outside of PAs, highlighting the need for adjusting conservation measures before it is too late. © 2016 John Wiley & Sons Ltd.

  7. Differences in Certification and the Effect on Team Climate Among Community Health Workers in Texas.

    Science.gov (United States)

    Siemon, Mark; Kreglo, Brenna; Boursaw, Blake

    The purpose of this study was to compare team climate among Texas community health workers (CHWs)/promotoras who were certified by the 2 different methods: (a) completing a state-approved training program, and (b) providing evidence of work experience (grandfathering). Analysis of survey results found no significant differences in Team Climate Inventory scores between CHWs who were certified either through state-approved training or through work experience. This research provides some preliminary evidence in support of experience-based certification, but there continues to be a need for more research evaluating CHW certification requirements and the impact of state certification of CHWs on population health outcomes.

  8. Climate change and physical disturbance manipulations result in distinct biological soil crust communities

    Science.gov (United States)

    Steven, Blaire; Kuske, Cheryl R.; Gallegos-Graves, La Verne; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remain poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2 °C soil warming, altered summer precipitation (wetting), and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional change. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities and the community functional profile can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands.

  9. Innovative Strategies for Building Community Resilience: Lessons from the Frontlines of Climate Change Capacity-Building

    Science.gov (United States)

    Abrash Walton, A.

    2017-12-01

    There is broad scientific consensus that climate change is occurring; however, there is limited implementation of measures to create resilient local communities (Abrash Walton, Simpson, Rhoades, & Daniels, 2016; Adger, Arnell, & Tompkins, 2005; Glavovic & Smith, 2014; Moser & Ekstrom, 2010; Picketts, Déry, & Curry, 2014). Communities that are considered climate leaders in the United States may have adopted climate change plans, yet few have actually implemented the policies, projects and recommendations in those plans. A range of innovative, education strategies have proven effective in building the capacity of local decision makers to strengthen community resilience. This presentation draws on the results of two years of original research regarding the information and support local decision makers require for effective action. Findings are based on information from four datasets, with more than 600 respondents from 48 U.S. states and 19 other countries working on local adaptation in a range of capacities. These research results can inform priority setting for public policy, budget setting, and action as well as private sector funding and investment. The presentation will focus, in particular, on methods and results of a pioneering Facilitated Community of Practice model (FCoP) for building climate preparedness and community resilience capacity, among local-level decision makers. The FCoP process includes group formation and shared capacity building experience. The process can also support collective objective setting and creation of structures and processes for ongoing sustainable collaboration. Results from two FCoPs - one fully online and the other hybrid - suggest that participants viewed the interpersonal and technical assistance elements of the FCoP as highly valuable. These findings suggest that there is an important need for facilitated networking and other relational aspects of building capacity among those advancing resilience at the local level.

  10. Grasshopper community response to climatic change: variation along an elevational gradient.

    Science.gov (United States)

    Nufio, César R; McGuire, Chris R; Bowers, M Deane; Guralnick, Robert P

    2010-09-23

    The impacts of climate change on phenological responses of species and communities are well-documented; however, many such studies are correlational and so less effective at assessing the causal links between changes in climate and changes in phenology. Using grasshopper communities found along an elevational gradient, we present an ideal system along the Front Range of Colorado USA that provides a mechanistic link between climate and phenology. This study utilizes past (1959-1960) and present (2006-2008) surveys of grasshopper communities and daily temperature records to quantify the relationship between amount and timing of warming across years and elevations, and grasshopper timing to adulthood. Grasshopper communities were surveyed at four sites, Chautauqua Mesa (1752 m), A1 (2195 m), B1 (2591 m), and C1 (3048 m), located in prairie, lower montane, upper montane, and subalpine life zones, respectively. Changes to earlier first appearance of adults depended on the degree to which a site warmed. The lowest site showed little warming and little phenological advancement. The next highest site (A1) warmed a small, but significant, amount and grasshopper species there showed inconsistent phenological advancements. The two highest sites warmed the most, and at these sites grasshoppers showed significant phenological advancements. At these sites, late-developing species showed the greatest advancements, a pattern that correlated with an increase in rate of late-season warming. The number of growing degree days (GDDs) associated with the time to adulthood for a species was unchanged across the past and present surveys, suggesting that phenological advancement depended on when a set number of GDDs is reached during a season. Our analyses provide clear evidence that variation in amount and timing of warming over the growing season explains the vast majority of phenological variation in this system. Our results move past simple correlation and provide a stronger process

  11. Grasshopper community response to climatic change: variation along an elevational gradient.

    Directory of Open Access Journals (Sweden)

    César R Nufio

    2010-09-01

    Full Text Available The impacts of climate change on phenological responses of species and communities are well-documented; however, many such studies are correlational and so less effective at assessing the causal links between changes in climate and changes in phenology. Using grasshopper communities found along an elevational gradient, we present an ideal system along the Front Range of Colorado USA that provides a mechanistic link between climate and phenology.This study utilizes past (1959-1960 and present (2006-2008 surveys of grasshopper communities and daily temperature records to quantify the relationship between amount and timing of warming across years and elevations, and grasshopper timing to adulthood. Grasshopper communities were surveyed at four sites, Chautauqua Mesa (1752 m, A1 (2195 m, B1 (2591 m, and C1 (3048 m, located in prairie, lower montane, upper montane, and subalpine life zones, respectively. Changes to earlier first appearance of adults depended on the degree to which a site warmed. The lowest site showed little warming and little phenological advancement. The next highest site (A1 warmed a small, but significant, amount and grasshopper species there showed inconsistent phenological advancements. The two highest sites warmed the most, and at these sites grasshoppers showed significant phenological advancements. At these sites, late-developing species showed the greatest advancements, a pattern that correlated with an increase in rate of late-season warming. The number of growing degree days (GDDs associated with the time to adulthood for a species was unchanged across the past and present surveys, suggesting that phenological advancement depended on when a set number of GDDs is reached during a season.Our analyses provide clear evidence that variation in amount and timing of warming over the growing season explains the vast majority of phenological variation in this system. Our results move past simple correlation and provide a stronger

  12. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, John [Principal Investigator

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  13. Fire severity mediates climate-driven shifts in understorey community composition of black spruce stands of interior Alaska

    Science.gov (United States)

    Emily L. Bernhardt; Teresa N. Hollingsworth; F. Stuart Chapin

    2011-01-01

    Question: How do pre-fire conditions (community composition and environmental characteristics) and climate-driven disturbance characteristics (fire severity) affect post-fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14...

  14. Climate Feedback: Bringing the Scientific Community to Provide Direct Feedback on the Credibility of Climate Media Coverage

    Science.gov (United States)

    Vincent, E. M.; Matlock, T.; Westerling, A. L.

    2015-12-01

    While most scientists recognize climate change as a major societal and environmental issue, social and political will to tackle the problem is still lacking. One of the biggest obstacles is inaccurate reporting or even outright misinformation in climate change coverage that result in the confusion of the general public on the issue.In today's era of instant access to information, what we read online usually falls outside our field of expertise and it is a real challenge to evaluate what is credible. The emerging technology of web annotation could be a game changer as it allows knowledgeable individuals to attach notes to any piece of text of a webpage and to share them with readers who will be able to see the annotations in-context -like comments on a pdf.Here we present the Climate Feedback initiative that is bringing together a community of climate scientists who collectively evaluate the scientific accuracy of influential climate change media coverage. Scientists annotate articles sentence by sentence and assess whether they are consistent with scientific knowledge allowing readers to see where and why the coverage is -or is not- based on science. Scientists also summarize the essence of their critical commentary in the form of a simple article-level overall credibility rating that quickly informs readers about the credibility of the entire piece.Web-annotation allows readers to 'hear' directly from the experts and to sense the consensus in a personal way as one can literaly see how many scientists agree with a given statement. It also allows a broad population of scientists to interact with the media, notably early career scientists.In this talk, we will present results on the impacts annotations have on readers -regarding their evaluation of the trustworthiness of the information they read- and on journalists -regarding their reception of scientists comments.Several dozen scientists have contributed to this effort to date and the system offers potential to

  15. Creating a Partnering Community Aimed to Foster Climate Literacy in the Southeastern United States

    Science.gov (United States)

    Rutherford, D.; McNeal, K. S.; Smith, R.; Hare, D.; Nair, U. S.

    2011-12-01

    The Climate Literacy Partnership in the Southeast (CLiPSE) is a part of the Climate Change Education Program supported by the National Science Foundation (http://CLiPSE-project.org). The established CLiPSE partnership is dedicated to improving climate literacy in the southeast through crafting a shared vision and strategic plan among stakeholders that promotes scientific formal and informal educational resources, materials and programs; a diverse network of key partnering organizations throughout the Southeastern United States (SE US); and effective public dialogues that address diverse learners and audiences and supports learning of climate, climate change, and its relevance upon human and environmental systems. The CLiPSE project has been successful in creating partnerships with more than fifty key stakeholders that stem from a few key publics such as agriculture, education, leisure, religious organizations, and culturally diverse communities. These key publics in the SE US frequently consist of individuals that place great trust in local, private efforts, and CLiPSE has realized the importance of the role of the partnering organizations in providing information through a trusted source. A second unique characteristic of the SE US is the predominately conservative and Protestant citizenry in the region. Working with and through these communities enhances climate change education outreach to this citizenry. The CLiPSE project rests on solid climate science and learning science research in order to formulate an effective plan with desired learning outcomes of critical thinking and civil conversation through effective communication strategies. This paper will present the CLiPSE model in reaching the key publics that traditionally hold ideologies that are traditionally perceived as incompatible with climate change science. We will present the strategies utilized to bring together experts and researchers in climate science, learning science, and social science with

  16. Spatial and body-size dependent response of marine pelagic communities to projected global climate change.

    Science.gov (United States)

    Lefort, Stelly; Aumont, Olivier; Bopp, Laurent; Arsouze, Thomas; Gehlen, Marion; Maury, Olivier

    2015-01-01

    Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de-oxygenation of the ocean's interior (~-3%) and a decrease in total marine net primary production (~-8%) under the 'business as usual' climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES)--ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL-CM Earth System Model. The APECOSM model is a size-structured bio-energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES-APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body-size of the simulated pelagic communities. Biomass and maximum body-size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low- and midlatitude, biomass and maximum body-size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body-size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body-size organisms might be

  17. A Model for Teaching a Climate Change Elective Science Course at the Community College Level

    Science.gov (United States)

    Mandia, S. A.

    2012-12-01

    The impact of global climate change is far-reaching, both for humanity and for the environment. It is essential that our students be provided a strong scientific background for the role of natural and human caused climate change so that they are better prepared to become involved in the discussion. Here the author reveals a successful model designed for use with a diverse student body at the community college level. Teaching strategies beyond the traditional lecture and exam style include: web-based resources such as static websites along with dynamic blogging tools, post-lecture cooperative learning review sessions, weekly current event research projects, use of rubrics to assist students in their own project evaluation before submission, and a research paper utilizing the Skeptical Science website to examine the validity of the most common climate change myths.

  18. Impact of 21st century climate change on the Baltic Sea fish community and fisheries

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Gislason, Henrik; Möllmann, C.

    2007-01-01

    reviewed. We then use recent regional - scale climate - ocean modelling results to consider how climate change during this century will affect the fish community of the Baltic and fisheries management. Expected climate changes in northern Europe will likely affect both the temperature and salinity...... of the Baltic, causing it to become warmer and fresher. As an estuarine ecosystem with large horizontal and vertical salinity gradients, biodiversity will be particularly sensitive to changes in salinity which can be expected as a consequence of altered precipitation patterns. Marine-tolerant species...... the Baltic because of its low salinity. Fishing fleets which presently target marine species (e.g. cod, herring, sprat, plaice, sole) in the Baltic will likely have to relocate to more marine areas or switch to other species which tolerate decreasing salinities. Fishery management thresholds that trigger...

  19. Climate-induced community relocations: using integrated social-ecological assessments to foster adaptation and resilience

    Directory of Open Access Journals (Sweden)

    Robin Bronen

    2015-09-01

    Full Text Available Extreme weather events coupled with sea level rise and erosion will cause coastal and riverine areas where people live and maintain livelihoods to disappear permanently. Adaptation to these environmental changes, including the permanent relocation of millions of people, requires new governance tools. In the USA, local governments, often with state-level and national-level support, will be primarily responsible for protecting residents from climate-change impacts and implementing policies needed to protect their welfare. Government agencies have a variety of tools to facilitate protection in place and managed coastal retreat but have very limited tools to facilitate community relocation. In addition, no institutional mechanism currently exists to determine whether and when preventive relocation needs to occur to protect people from climate change impacts. Based on research involving four Alaska Native communities threatened by climate-induced environmental impacts, I propose the design and implementation of an adaptive governance framework to respond to the need to relocate populations. In this context, adaptive governance means the ability of institutions to dynamically respond to climate change impacts. A component of this adaptive governance framework is a social-ecological monitoring and assessment tool that can facilitate collaborative knowledge production by community residents and governance institutions to guide sustainable adaptation strategies and determine whether and when relocation needs to occur. The framework, including the monitoring and assessment tool, has not been systematically tested. However, the potential use of this tool is discussed by drawing on empirical examples of Alaskan communities faced with accelerating rates of erosion.

  20. Habitat Heterogeneity Determines Climate Impact on Zooplankton Community Structure and Dynamics

    OpenAIRE

    Otto, Saskia A.; Diekmann, Rabea; Flinkman, Juha; Kornilovs, Georgs; Möllmann, Christian

    2014-01-01

    Understanding and predicting species distribution in space and time and consequently community structure and dynamics is an important issue in ecology, and particularly in climate change research. A crucial factor determining the composition and dynamics of animal populations is habitat heterogeneity, i.e., the number of structural elements in a given locality. In the marine pelagic environment habitat heterogeneity is represented by the distribution of physical oceanographic parameters such ...

  1. Soil bacterial communities respond to climate changes in a temperate steppe.

    Directory of Open Access Journals (Sweden)

    Ximei Zhang

    Full Text Available Climate warming and shifting precipitation regimes are affecting biodiversity and ecosystem functioning. Most studies have focused on the influence of warming and altered precipitation on macro-organisms, whereas the responses of soil microbial communities have been neglected. We studied the changes in the abundance, richness, and composition of the entire bacterial kingdom and 16 dominant bacterial phyla/classes in response to increased precipitation, warming, and their combination, by conducting a 5-year experiment in a steppe ecosystem in Inner Mongolia, China. Watering had a greater effect than warming on almost all the bacterial groups as indicated by changes in all the three attributes (abundance, richness, and composition. The 16 phyla/classes responded differentially to the experimental treatments, with Acidobacteria and Gamma-proteobacteria being the most sensitive. Stepwise regression analyses further revealed that climate changes altered the abundance and richness of bacterial groups primarily through direct routes (e.g., increasing soil water content, and changed the community composition through both direct and indirect routes (e.g., reducing soil total nitrogen content and increasing soil pH. The diverse responses of various bacterial groups could imply some potential shift in their ecosystem functions under climate changes; meanwhile, the indirect routes that are important in altering bacterial composition suggest that specific strategies (e.g., adding NH4NO3 to maintain soil nitrogen content and pH could be adopted to maintain soil microbial composition under climate changes.

  2. Perceptions of Climate Change and the Potential for Adaptation in a Rural Community in Limpopo Province, South Africa

    Directory of Open Access Journals (Sweden)

    Sejabaledi A. Rankoana

    2016-08-01

    Full Text Available Perceptions of climate change by rural communities are centered on observations of variations in temperature and rainfall patterns supported by observations and projections on climate alterations in the form of increased temperatures and scarce rainfall by scientists worldwide. The present study documented perceptions of climate variation and the community’s ability to adapt to climate change hazards threatening the production of subsistence crops. Data were collected through interactions with 100 participants. In the study, climate change is explained as variations in temperature and rainfall patterns which resulted in excessive heat, erratic rainfall patterns and drought negatively impacting on subsistence crop production. Community members have the potential to limit the impacts of climate hazards on subsistence crop production. The negative impacts of climate hazards are limited by community members’ indigenous knowledge of rainfall prediction, the seasons, crop diversification and mixed cropping. Mulching and the application of kraal manure improve the soil structure and fertility to reduce crop failure. These adaptation measures are resilient to the negative impact of climate hazards and may be helpful in the development of adaptation policies to assist rural communities vulnerable to climate change hazards.

  3. Climate adaptation, institutional change, and sustainable livelihoods of herder communities in northern Tibet

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2016-03-01

    Full Text Available The Tibetan grassland social-ecological systems are widely held to be highly vulnerable to climate change. We aim to investigate livelihood adaptation strategies of herder households and the types of local institutions that shaped those adaptation strategies. We examined the barriers and opportunities for strengthening adaptive capacity of local herder communities. We designed and implemented a household survey in the herder communities of northern Tibet. The survey results showed that migratory grazing has become less feasible. Storage, diversification, and market exchange have become the dominant adaptation strategies. The adaptation strategies of local herders have been reshaped by local institutional change. Local governmental and market institutions played the dominant roles in reshaping climate adaptation strategies. Although the present livelihood adaption strategies related to sedentary grazing have improved productivity and profitability of the herding livelihood, they have led to continuous deterioration of pastures. The local grazing system has become more and more dependent on artificial feeding and inputs from outside the grazing system. Purchasing forage has become one of the dominant adaptation strategies of local herder households. Multilevel regression modeling of this adaptation behavior showed that explanatory variables related to climate variability, household capital, and local institutional arrangements had statistically significant relationships with the adoption of this adaptation strategy. The results implies that building household capital and promoting the coordination among local governmental, market, and communal institutions are critical for strengthening adaptive capacity of the Tibetan herder communities.

  4. Climate Change Community Outreach Initiative (CCCOI)--A Gulf of Mexico Education Partnership

    Science.gov (United States)

    Walker, S. H.; Stone, D.; Schultz, T.; LeBlanc, T.; Miller-Way, T.; Estrada, P.

    2012-12-01

    This five-year, Gulf of Mexico regional collaborative is funded by the National Oceanic and Atmospheric Administration (NOAA)-Office of Education and represents a successful grant submitted by the FL Aquarium as a member of the Association of Zoos and Aquariums (AZA). This climate change effort focuses on enhanced content knowledge and the manner in which personal actions and behaviors contribute to sustainability and stewardship. Diverse audiences—represented by visitors at the informal centers listed above—have been and are involved in the following activities: social networking via responses to climate change surveys; an "ocean and climate change defender" computer game, specifically designed for this project; an average of 10 annual outreach events implemented by these facilities at community festivals; climate change lectures provided to family audiences; and professional development workshops for informal and formal educators. This presentation will provide opportunities and challenges encountered during the first two years of implementation. This regional effort is also aligned with both the Ocean Literacy: Essential Principles and the Climate Literacy: Essential Principles. Additional partners include: Normandeau Associates, Conservation Enterprises, Unlimited, and Mindclay Creative.

  5. Climate perceptions of local communities validated through scientific signals in Sikkim Himalaya, India.

    Science.gov (United States)

    Sharma, R K; Shrestha, D G

    2016-10-01

    Sikkim, a tiny Himalayan state situated in the north-eastern region of India, records limited research on the climate change. Understanding the changes in climate based on the perceptions of local communities can provide important insights for the preparedness against the unprecedented consequences of climate change. A total of 228 households in 12 different villages of Sikkim, India, were interviewed using eight climate change indicators. The results from the public opinions showed a significant increase in temperature compared to a decade earlier, winters are getting warmer, water springs are drying up, change in concept of spring-water recharge (locally known as Mul Phutnu), changes in spring season, low crop yields, incidences of mosquitoes during winter, and decrease in rainfall in last 10 years. In addition, study also showed significant positive correlations of increase in temperature with other climate change indicators viz. spring-water recharge concept (R (2) = 0.893), warmer winter (R (2) = 0.839), drying up of water springs (R (2) = 0.76), changes in spring season (R (2) = 0.68), low crop yields (R (2) = 0.68), decrease in rainfall (R (2) = 0.63), and incidences of mosquitoes in winter (R (2) = 0.50). The air temperature for two meteorological stations of Sikkim indicated statistically significant increasing trend in mean minimum temperature and mean minimum winter temperature (DJF). The observed climate change is consistent with the people perceptions. This information can help in planning specific adaptation strategies to cope with the impacts of climate change by framing village-level action plan.

  6. Climate change and maize agriculture among Chepang communities of Nepal: A review

    Directory of Open Access Journals (Sweden)

    Pratiksha Sharma

    2017-12-01

    Full Text Available This paper reviews recent literature concerning effects of climate change on agriculture and its agricultural adaptation strategies, climate change impacts on Chepang communities and their maize farming. Climate change is perhaps the most serious environmental threat to agricultural productivity. Change in temperature and precipitation specially has greater influence on crop growth and productivity and most of these effect are found to be adverse. Climate change has been great global threat with global temperature rise by 0.83 °C and global sea level rise by 0.19 m. Poor countries of the world are more vulnerable to changing climate due to different technological, institutional and resource constraints. In context of Nepal, practices like tree plantation, lowering numbers of livestock, shifting to off farm activities, sloping agricultural land technology (SALT and shifting cultivation are most common coping strategies. Chepang, one of the most backward indigenous ethnic groups of Nepal are also found to perceive change in the climate. Perception and adaptation strategies followed by different farmers of world including Chepang is mainly found to be effected by household head’s age, size of farm, family size, assessment to credit, information and extension service, training received and transportation. Maize is second most important crop in Nepal in which increase in temperature is favorable in Mountain and its yield is negatively influenced by increase in summer rain and maximum temperature. Local knowledge of indigenous people provides new insights into the phenomenon that has not yet been scientifically researched. So, government should combine this perceptive with scientific climate scenario and should conduct activities in term of adoption strategies and policies to insist targeted and marginalized farmers.

  7. Maryland Delaware Climate Change Education Assessment and Research (MADE-CLEAR): Assessing the needs and engaging the community

    Science.gov (United States)

    Griswold, M.; Stylinski, C.; McGinnis, J.; Mouza, C.; Veron, D. E.; Wolfson, J.; Benson, S.; Shapiro, N.

    2012-12-01

    MADE-CLEAR is a regional collaborative partnership building sustainable capacity for effective and relevant education across multiple aspects of climate change within Maryland and Delaware. Our approach is a collaborative one informed by formal and informal education contexts; relevant systemic education policies and practices; and curricular, instructional, and technological capacities. Our project team includes climate scientists, learning scientists and education practitioners, and the project leverages partnerships with state departments of education, government agencies, informal education organizations and other stakeholders. Over the past year, the MADE-CLEAR team has reviewed regional and national climate educational materials and policies, as well as barriers and effective practices to teaching controversial topics such as climate change. We have formally and informally engaged stakeholders through our Maryland-Delaware Climate Change Education Summit along with smaller meetings and workshops. We also conducted needs assessments with regional education leaders including K-12 science supervisors, university faculty, and staff at informal education organizations. We identified four shared needs among these groups: 1) professional development focused on climate change for K-12 teachers, informal educators, and university faculty; 2) regionally-specific and interdisciplinary climate change education resources; 3) a focus on critical thinking and inquiry skills; and 4) support for networking and communities of practice focused on climate change education. Building directly from this community input, we have developed an implementation plan that seeks to catalyze climate education in Maryland and Delaware by 1) embedding climate science into formal and informal education; 2) building and sustaining the capacity of educators to deepen student understanding of climate change; 3) utilizing learning principles and the sociocultural diversity of our region to develop

  8. Climate Effects on Plant Range Distributions and Community Structure of Pacific Northwest Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Bridgham, Scott D. [Univ. of Oregon, Eugene, OR (United States); Johnson, Bart [Univ. of Oregon, Eugene, OR (United States)

    2013-09-26

    was negatively impacted by increased temperatures, but for species planted north of their current range, increased temperature was neutral. However, for surviving plants climate treatments and site-specific factors (e.g., nutrient availability) were the strongest predictors of plant growth and seed set. When recruitment and plant growth are considered together, increased temperatures are negative within a species current range but beyond this range they become positive. Germination was the most critical stage for plant response across all sites and climate treatments. Our results underscore the importance of including plant vital rates into models that are examining climate change effects on plant ranges. Warming altered plant community composition, decreased diversity, and increased total cover, with warmed northern communities over time becoming more like ambient communities further south. In particular, warming increased the cover of annual introduced species, suggesting that the observed biogeographic pattern of increasing invasion by this plant functional group in US West Coast prairies as one moves further south is at least in part due to climate. Our results suggest that with the projected increase in drought severity with climate change, Pacific Northwest prairies may face an increase of invasion by annuals, similar to what has been observed in California, resulting in novel species assemblages and shifts in functional composition, which in turn may alter ecosystem function. Warming generally increased nutrient availability and plant productivity across all sites. The seasonality of soil respiration responses to heating were strongly dependent on the Mediterranean climate gradient in the PNW, with heating responses being generally positive during periods of adequate soil moisture and becoming neutral to negative during periods of low soil moisture. The asynchrony between temperature and precipitation may make soils less sensitive to warming. Precipitation

  9. Approaches to 30% Energy Savings at the Community Scale in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Thomas-Rees, S.; Beal, D.; Martin, E.; Fonorow, K.

    2013-03-01

    BA-PIRC has worked with several community-scale builders within the hot humid climate zone to improve performance of production, or community scale, housing. Tommy Williams Homes (Gainesville, FL), Lifestyle Homes (Melbourne, FL), and Habitat for Humanity (various locations, FL) have all been continuous partners of the BA Program and are the subjects of this report to document achievement of the Building America goal of 30% whole house energy savings packages adopted at the community scale. The scope of this report is to demonstrate achievement of these goals though the documentation of production-scale homes built cost-effectively at the community scale, and modeled to reduce whole-house energy use by 30% in the Hot Humid climate region. Key aspects of this research include determining how to evolve existing energy efficiency packages to produce replicable target savings, identifying what builders' technical assistance needs are for implementation and working with them to create sustainable quality assurance mechanisms, and documenting the commercial viability through neutral cost analysis and market acceptance. This report documents certain barriers builders overcame and the approaches they implemented in order to accomplish Building America (BA) Program goals that have not already been documented in previous reports.

  10. An Empirical Typology of Tree Species Assemblages across the U.S. for Assessing Climate Change Threats to Forest Communities

    Science.gov (United States)

    Costanza, J. K.; Coulston, J.; Wear, D. N.

    2016-12-01

    An understanding of how the composition of forest tree communities will change in the future is critical for assessing the effects of climate change on forests. Recent research suggests that simply knowing the responses of individual species to changing climate does not adequately capture likely community-level response. In part, this is because some tree species in a community play a larger role than others, and thus, any climate change effects on those species will have greater effects on the associated forest tree community. As the basis of an assessment of climate change impacts to forest communities, we used hierarchical cluster analysis of over 120,000 recent forest inventory plots to empirically define forest tree communities across the U.S. We then used indicator species analysis to define the important tree species in each community. The result was a U.S.-wide typology of 29 clusters representing empirical forest communities. Clusters contained between six and 30,000 inventory plots each, and were associated with between one and twelve indicator species. We show how these clusters can be used to assess forest community-level climate change impacts. For a subset of clusters in the eastern U.S., we overlaid projected habitat suitability maps from USDA Forest Service Climate Change Tree Atlas for the indicator species under two climate change scenarios for the end of the century. Climate change threat results ranged widely for both scenarios, showing an average loss of habitat across all indicator species in some communities, and an average gain for others. For example, the balsam fir-quaking aspen community in the northeastern U.S. was projected to see the most loss of habitat for indicator species, with a change of 47.0% and 73.4% in importance value under the low and high climate change scenarios, respectively. Conversely, the indicator species in the green ash-American elm community were projected to see gains of 32.7% and 117.4% in importance value in

  11. Quantifying loss and damage from anthropogenic climate change - Bridging the gap between two research communities

    Science.gov (United States)

    Otto, F. E. L.

    2015-12-01

    The science of attribution of meteorological events to anthropogenic causes has for the first time been included in the latest assessment of the Physical Science Basis of the Climate, (WGI), of the Fifth IPCC Assessment Report AR5 (Stocker et al., 2013). At the same time there is a very rapidly growing body of literature on climate change and its impact on economy, society and environment but apart from very few exemptions no link is made to the causes of these changes. Observed changes in hydrological variables, agriculture, biodiversity and the built environment have been attributed to a changing climate, whether these changes are the result of natural variability or external forcings (Cramer et al., 2014). While the research community represented in WGI assesses whether, and to what extent, recent extreme weather events can be attributed to anthropogenic emissions of greenhouse gases and aerosols, the research community of impact specialists asks how climatic changes lead to different impacts largely independent of the causes of such changes. This distinction becomes potentially very relevant with respect to the 2013 established the Warsaw International Mechanism (WIM) to address loss and damage from the impacts of climate change in developing countries under the UNFCCC climate change negotiations. Currently there is no discussion what consists of loss and damage and the reasons for this inexistence of a definition are not primarily scientific but political however, the absence of a definition could potentially lead to absurd consequences if funds in the context of loss and damage would be redistributed, as e.g. suggested, for all low risk high impact events. Here we present the implications of discussed definitions of loss and damage (Huggel et al. 2015) and how scientific evidence could be included. Cramer et al. (2014) Detection and Attribution of Observed Impacts. In: Climate Change 2014: Impacts, Adaptation and Vulnerability Contribution of WG 2 to AR5 of

  12. Climate responsive and safe earthquake construction: a community building a school

    Directory of Open Access Journals (Sweden)

    Hari Darshan

    2011-10-01

    Full Text Available This article outlines environment friendly features, climate responsive features and construction features of a prototype school building constructed using green building technology. The school building has other additional features such as earthquake resistant construction, use of local materials and local technology. The construction process not only establishes community ownership, but also facilitates dissemination of the technology to the communities. Schools are effective media for raising awareness, disseminating technology and up-scaling the innovative approach. The approach is cost effective and sustainable for long-term application of green building technology. Furthermore, this paper emphasizes that such construction technology will be instrumental to build culture of safety in communities and reduce disaster risk.

  13. Approaches to 30 Percent Energy Savings at the Community Scale in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Thomas-Rees, S. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Beal, D. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, E. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2013-03-01

    BA-PIRC has worked with several community-scale builders within the hot humid climate zone to improve performance of production, or community scale, housing. Tommy Williams Homes (Gainesville, FL), Lifestyle Homes (Melbourne, FL), and Habitat for Humanity (various locations, FL) have all been continuous partners of the Building America program and are the subjects of this report to document achievement of the Building America goal of 30% whole house energy savings packages adopted at the community scale. Key aspects of this research include determining how to evolve existing energy efficiency packages to produce replicable target savings, identifying what builders' technical assistance needs are for implementation and working with them to create sustainable quality assurance mechanisms, and documenting the commercial viability through neutral cost analysis and market acceptance. This report documents certain barriers builders overcame and the approaches they implemented in order to accomplish Building America (BA) Program goals that have not already been documented in previous reports.

  14. An Analysis of the Relationship between Select Organizational Climate Factors and Job Satisfaction Factors as Reported by Community College Personnel

    Science.gov (United States)

    San Giacomo, Rose-Marie Carla

    2011-01-01

    The purpose of this study was to investigate the overall satisfaction with organizational climate factors across seven studies of various levels of community college personnel. A secondary purpose was to determine if there was a significant relationship between satisfaction with organizational climate factors and the importance of job satisfaction…

  15. A community based approach to improving resilience of forests and water resources: A local and regional climate adaptation methodology

    Science.gov (United States)

    Toby Thaler; Gwen Griffith; Nancy Gilliam

    2014-01-01

    Forest-based ecosystem services are at risk from human-caused stressors, including climate change. Improving governance and management of forests to reduce impacts and increase community resilience to all stressors is the objective of forest-related climate change adaptation. The Model Forest Policy Program (MFPP) has applied one method designed to meet this objective...

  16. Making sense of climate change risks and responses at the community level: A cultural-political lens

    Directory of Open Access Journals (Sweden)

    Ainka A. Granderson

    2014-01-01

    Full Text Available How to better assess, communicate and respond to risks from climate change at the community level have emerged as key questions within climate risk management. Recent research to address these questions centres largely on psychological factors, exploring how cognition and emotion lead to biases in risk assessment. Yet, making sense of climate change and its responses at the community level demands attention to the cultural and political processes that shape how risk is conceived, prioritized and managed. I review the emergent literature on risk perceptions and responses to climate change using a cultural-political lens. This lens highlights how knowledge, meaning and power are produced and negotiated across multiple stakeholders at the community level. It draws attention to the different ways of constructing climate change risks and suggests an array of responses at the community level. It further illustrates how different constructions of risk intersect with agency and power to shape the capacity for response and collective action. What matters are whose constructions of risk, and whose responses, count in decision-making. I argue for greater engagement with the interpretive social sciences in research, practice and policy. The interpretive social sciences offer theories and tools for capturing and problematising the ways of knowing, sense-making and mobilising around risks from climate change. I also highlight the importance of participatory approaches in incorporating the multiplicity of interests at the community level into climate risk management in fair, transparent and culturally appropriate ways.

  17. Facing Climate Change: Connecting Coastal Communities with Place-Based Ocean Science

    Science.gov (United States)

    Pelz, M.; Dewey, R. K.; Hoeberechts, M.; McLean, M. A.; Brown, J. C.; Ewing, N.; Riddell, D. J.

    2016-12-01

    As coastal communities face a wide range of environmental changes, including threats from climate change, real-time data from cabled observatories can be used to support community members in making informed decisions about their coast and marine resources. Ocean Networks Canada (ONC) deploys and operates an expanding network of community observatories in the Arctic and coastal British Columbia, which enable communities to monitor real-time and historical data from the local marine environment. Community observatories comprise an underwater cabled seafloor platform and shore station equipped with a variety of sensors that collect environmental data 24/7. It is essential that data being collected by ONC instruments are relevant to community members and can contribute to priorities identified within the community. Using a community-based science approach, ONC is engaging local parties at all stages of each project from location planning, to instrument deployment, to data analysis. Alongside the science objectives, place-based educational programming is being developed with local educators and students. As coastal populations continue to grow and our use of and impacts on the ocean increase, it is vital that global citizens develop an understanding that the health of the ocean reflects the health of the planet. This presentation will focus on programs developed by ONC emphasizing the connection to place and local relevance with an emphasis on Indigenous knowledge. Building programs which embrace multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking place-based knowledge to ocean science. The inclusion of Indigenous Knowledge into science-based monitoring programs also helps develop a more complete understanding of local conditions. We present a case study from the Canadian Arctic, in which ONC is working with Inuit community members to develop a snow and ice monitoring program to assist with predictions and

  18. Revista Espinhaço entrevistaDra. Bette Otto Bliesner(NCAR Boulder

    Directory of Open Access Journals (Sweden)

    Kourosh Behzadian

    2016-12-01

    Full Text Available Dra. Bette Otto Bliesner foi entrevistada pela Revista Espinhaço durante o BIARI 2016, que ocorreu em Providence (EUA na Brown University. Para este volume especial da Revista Espihaço, a Dra. Bette, pesquisadora do National Center for Atmospheric Research (NCAR e especialista em modelagem climática e paleo-climatologia, traz reflexões sobre seu recente trabalho no IPCC.Esta entrevista foi conduzida por Kourosh Behzadian (University of West London, Douglas Sathler (FIH/Cegeo/UFVJM and Lorena Fleury (UFRGS.

  19. Whole Community Resilience: Engaging Multiple Sectors with the Coastal Community Resilience Index and the Climate and Resilience Community of Practice in the Gulf of Mexico

    Science.gov (United States)

    Sempier, T.

    2017-12-01

    Communicating risk due to flooding, sea level rise, storm surge, and other natural hazards is a complex task when attempting to build resilience in coastal communities. There are a number of challenges related to preparing for, responding to, and recovering from coastal storms. Successful resilience planning must include a wide range of sectors including, but not limited to local government, business, non-profit, religious, academia, and healthcare. Years of experience working with communities in the Gulf of Mexico has helped create a process that is both inclusive and effective at bringing the right people to the table and gaining momentum towards resilience efforts. The Coastal Community Resilience Index (CRI), a self-assessment for community leaders, has been implemented in 54 Gulf communities with funding that provides small grant awards to help communities take action to address gaps and vulnerabilities identified in the assessment process. To maintain momentum with resilience actions, the Gulf Climate and Resilience Community of Practice (CoP) encourages local municipality participants to share lessons learned and best practices from their implementation projects in an annual symposium. Recently, both graduate and undergraduate students have been exposed to the CRI and CoP as avenues to work through solutions to complex problems at the local level. In addition, a new generation of high school students has been introduced to the CRI. Their engagement in the process is building a more informed citizenry that will take on the leadership and decision-making roles in the future. Investing in multiple age groups and sectors through the CRI and CoP is building capacity for whole community resilience in the Gulf of Mexico. This presentation will focus on methods that have been successful in the Gulf of Mexico for creating effective change in local municipalities towards resilience actions. Discussion will include decision support tools for engaging local

  20. Top-down regulation, climate and multi-decadal changes in coastal zoobenthos communities in two Baltic Sea areas.

    Science.gov (United States)

    Olsson, Jens; Bergström, Lena; Gårdmark, Anna

    2013-01-01

    The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities.

  1. Collaboration in Action: Working with Indigenous peoples and Tribal communities to navigate climate decision support organizations and programs to assist Tribal communities in addressing climate resilience and sustainability efforts

    Science.gov (United States)

    Caldwell, C. M.

    2017-12-01

    Creating opportunities and appropriate spaces with Tribal communities to engage with western scientists on climate resiliency is a complex endeavor. The shifting of seasons predicted by climate models and the resulting impacts that climate scientists investigate often verify what Traditional knowledge has already revealed to Indigenous peoples as they continue to live on, manage, and care for the environment they have been a part of for thousands of years. However, this convergence of two ways of knowing about our human environmental relationships is often difficult to navigate because of the ongoing impacts of colonialism and the disadvantage that Tribes operate from as a result. Day to day priorities of the Tribe are therefore reflective of more immediate issues rather than specifically considering the uncertainties of climate change. The College of Menominee Nation Sustainable Development Institute has developed a climate resilience program aimed at combining western science methodologies with indigenous ways of knowing as a means to assist Tribes in building capacity to address climate and community resiliency through culturally appropriate activities led by the Tribes. The efforts of the Institute, as guided by the SDI theoretical model of sustainability, have resulted in a variety of research, education and outreach projects that have provided not only the Menominee community, but other Tribal communities with opportunities to address climate resiliency as they see fit.

  2. Grassland communities in the USA and expected trends associated with climate change

    Directory of Open Access Journals (Sweden)

    David Paul Belesky

    2016-06-01

    Full Text Available Grasslands, including managed grazinglands, represent one of the largest ecosystems on the planet. Managed grazinglands in particular tend to occupy marginal climatic and edaphic resource zones, thus exacerbating responses in net primary productivity relative to changes in system resources, including anthropogenic factors. Climate dynamism, as evident from the fossil record, appears to be a putative feature of our planet. Recent global trends in temperature and precipitation patterns seem to differ from long-term patterns and have been associated with human activities linked with increased greenhouse gas emissions; specifically CO2. Thus grasslands, with their diverse floristic components, and interaction with and dependence upon herbivores, have a remarkable ability to persist and sustain productivity in response to changing resource conditions. This resistance and resilience to change, including uncertain long-term weather conditions, establishes managed grasslands as an important means of protecting food security. We review responses of grassland communities across regions of the USA and consider the responses in productivity and system function with respect to climatic variation. Research is needed to identify plant resources and management technologies that strengthen our ability to capitalize upon physiological and anatomical features prevalent in grassland communities associated with varying growing conditions.

  3. Energy and climate protection management, the key to higher energy efficiency in communities; Energie- und Klimaschutzmanagement. Der Schluessel zu mehr Energieeffizienz in Kommunen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    The brochure explains the dena energy and climate protection management concepts and presents tools for long-term reduction of energy consumption in communities. It presents valuable information for better organization of internal processes in community administrations and for the management of energy efficiency measures. The dena energy and climate protection management concept is developed in cooperation with model communities of different sizes since 2010. All interested communities can use this brochure as a guide for initiating effective climate protection measures.

  4. Best Practices in Weathering Climate Risks: Advancing Corporate and Community Resilience

    Science.gov (United States)

    Klima, K.; Winkelman, S.

    2012-12-01

    As the annual costs of severe weather events in the US grow into the billions of dollars, companies and communities are examining how best to plan ahead to protect their assets and bolster their bottom line. The Center for Clean Air Policy's Weathering Climate Risks program aims to help cities and companies enhance resilience to the economic impacts of severe weather and a changing climate. This presentation will highlight three communication techniques aimed at different types of audiences such as businesses, policymakers, the media, and society. First, we find that although planning for natural hazards now saves money later, stakeholders must fi¬nd their own self-interest if they are going to engage in a solution. Thus we research best practices and hold informational, off-the-record interviews to better understand the different stakeholders' perspectives, key concerns, and issues surrounding adaptation, resilience, and/or hazard mitigation. Diverse stakeholders find it attractive when a solution has multiple co-benefits such as climate resilience, greenhouse gas reduction, reduced costs, and social benefits. Second, we use off-the-record dialogues emphasizing candid public-private discussion to promote collaborative problem solving. Our high-level workshops typically consist of 30-40 scientists, companies, communities, and policymakers. We begin with presenting background material, such as geographic information systems (GIS) maps. Then we move to informal conservation. Topics include ideas such as "Ask the Climate Question": How will infrastructure, land development, and investment decisions affect GHG emissions and resilience to climate change impacts? We find these dialogues help stakeholders share their perspectives and advance public-private collaboration on climate resilience to protect critical urban infrastructure, ensure business continuity, and increase extreme weather resilience. Third, we find that communication to the general public must capture

  5. Insect community responses to climate and weather across elevation gradients in the Sagebrush Steppe, eastern Oregon

    Science.gov (United States)

    Pilliod, David S.; Rohde, Ashley T.

    2016-11-17

    Executive SummaryIn this study, the U.S. Geological Survey investigated the use of insects as bioindicators of climate change in sagebrush steppe shrublands and grasslands in the Upper Columbia Basin. The research was conducted in the Stinkingwater and Pueblo mountain ranges in eastern Oregon on lands administered by the Bureau of Land Management.We used a “space-for-time” sampling design that related insect communities to climate and weather along elevation gradients. We analyzed our insect dataset at three levels of organization: (1) whole-community, (2) feeding guilds (detritivores, herbivores, nectarivores, parasites, and predators), and (3) orders within nectarivores (i.e., pollinators). We captured 59,517 insects from 176 families and 10 orders at the Pueblo Mountains study area and 112,305 insects from 185 families and 11 orders at the Stinkingwater Mountains study area in 2012 and 2013. Of all the individuals captured at the Stinkingwater Mountains study area, 77,688 were from the family Cecidomyiidae (Diptera, gall gnats).We found that the composition of insect communities was associated with variability in long-term (30-yr) temperature and interannual fluctuations in temperature. We found that captures of certain fly, bee, moth, and butterfly pollinators were more strongly associated with some climate and vegetation variables than others. We found that timing of emergence, as measured by first detection of families, was associated with elevation. When analyzed by feeding guilds, we found that all guilds emerged later at high elevations except for detritivores, which emerged earlier at high elevations. The abundance of most taxa varied through time, mostly in response to temperature and precipitation. Of the pollinators, bees (particularly, Halictidae and Megachilidae) peaked in abundance in late June and early July, whereas butterflies and moths peaked in August. Flies peaked in abundance in July.Overall, our interpretation of these patterns is that

  6. Climate impacts on bird and plant communities from altered animal-plant interactions

    Science.gov (United States)

    Martin, Thomas E.; Maron, John L.

    2012-01-01

    The contribution of climate change to declining populations of organisms remains a question of outstanding concern. Much attention to declining populations has focused on how changing climate drives phenological mismatches between animals and their food. Effects of climate on plant communities may provide an alternative, but particularly powerful, influence on animal populations because plants provide their habitats. Here, we show that abundances of deciduous trees and associated songbirds have declined with decreasing snowfall over 22 years of study in montane Arizona, USA. We experimentally tested the hypothesis that declining snowfall indirectly influences plants and associated birds by allowing greater over-winter herbivory by elk (Cervus canadensis). We excluded elk from one of two paired snowmelt drainages (10 ha per drainage), and replicated this paired experiment across three distant canyons. Over six years, we reversed multi-decade declines in plant and bird populations by experimentally inhibiting heavy winter herbivory associated with declining snowfall. Moreover, predation rates on songbird nests decreased in exclosures, despite higher abundances of nest predators, demonstrating the over-riding importance of habitat quality to avian recruitment. Thus, our results suggest that climate impacts on plant–animal interactions can have forceful ramifying effects on plants, birds, and ecological interactions.

  7. Comparison of three ice cloud optical schemes in climate simulations with community atmospheric model version 5

    Science.gov (United States)

    Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan

    2018-05-01

    A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.

  8. Validation of the space fields and the median zonal of the temperature of the air in surface and of the precipitation in Colombia, simulated by the pattern CCM3 and the data of the NCEP/NCAR Reanalysis

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez, Jesus Antonio

    2001-01-01

    This work presents an analysis of the basic fields of the surface temperature and the precipitation for the national territory, from two sources of information: the data originated by the national meteorological network and the generated ones at world-wide level by means of the NCEP/NCAR Reanalysis project for the assimilation of data coming from diverse world-wide networks. With them reference scenes are constructed to validate the CCM3 model which is used like tool for the projection of the climatic change in Colombia

  9. Chitinolytic and pectinolytic community of soils and terrestrial ecosystems of different climatic zones

    Science.gov (United States)

    Lukacheva, Evgeniya; Manucharova, Natalia

    2014-05-01

    Structural and functional features of the complex microbial degradation of biopolymers one of the most important direction in microbial ecology. But there is no a lot of data concerns degradation in vertical structure of terrestrial ecosystems. Microbial complexes of natural areas were analyzed only as humus horizons (A1) of the soil profile. Only small part of microbial community could be studied with this approach. The breakdown of chitin and pectin was studied. The aim was to provide a characterization of microorganisms involved in chitin and pectin degradation in the soils and terrestrial ecosystems in different climatic zones: steppe zone, deciduous forests and taiga. Samples of leaves, soils and litter were studied and compared. Quantity of eukaryote and procaryote organisms increased in samples with chitin and pectin comparing with control samples. Increasing of eukaryote in samples with pectin was more then in samples with chitin. Also should be noted the significant increasing of actinomycet's quantity in the samples with chitin in comparison with samples with pectin. Further prokaryote community was investigated by method FISH (fluorescence in situ hybridization). FISH is a cytogenetic technique developed that is used to detect and localize the presence or absence of specific DNA sequences on chromosomes. Quantity of Actinomycets and Firmicures was the largest among identified cells with metabolic activity in both types of the samples. Should be noted significant increasing of the quantity of Acidobateria and Bacteroidetes in pectinolytic community and Alphaproteobacteria in chitinolytic community soils. The difference between climatic zones was studied and the mathematical model was created. The mathematic model could be use in different aims, such as prognosis of microbial community composition and their classification.

  10. Community-based Participatory Process – Climate Change and Health Adaptation Program for Northern First Nations and Inuit in Canada

    Directory of Open Access Journals (Sweden)

    Diane McClymont Peace

    2012-05-01

    Full Text Available Objectives: Health Canada's Program for Climate Change and Health Adaptation in Northern First Nation and Inuit Communities is unique among Canadian federal programs in that it enables community-based participatory research by northern communities. Study design: The program was designed to build capacity by funding communities to conduct their own research in cooperation with Aboriginal associations, academics, and governments; that way, communities could develop health-related adaptation plans and communication materials that would help in adaptation decision-making at the community, regional, national and circumpolar levels with respect to human health and a changing environment. Methods: Community visits and workshops were held to familiarize northerners with the impacts of climate change on their health, as well as methods to develop research proposals and budgets to meet program requirements. Results: Since the launch of the Climate Change and Health Adaptation Program in 2008, Health Canada has funded 36 community projects across Canada's North that focus on relevant health issues caused by climate change. In addition, the program supported capacity-building workshops for northerners, as well as a Pan-Arctic Results Workshop to bring communities together to showcase the results of their research. Results include: numerous films and photo-voice products that engage youth and elders and are available on the web; community-based ice monitoring, surveillance and communication networks; and information products on land, water and ice safety, drinking water, food security and safety, and traditional medicine. Conclusions: Through these efforts, communities have increased their knowledge and understanding of the health effects related to climate change and have begun to develop local adaptation strategies.

  11. Philosophy of sufficiency economy for community-based adaptation to climate change: Lessons learned from Thai case studies

    Directory of Open Access Journals (Sweden)

    Kulvadee Kansuntisukmongkol

    2017-01-01

    Full Text Available Major components within the philosophy of a sufficiency economy include moderation, prudence, and self-immunity together with knowledge and morality. These components were proposed to safeguard local communities from adverse changes and crises. Climatic crises due to global warming can impact upon local agricultural production and consumption systems. Yet, it is still questionable whether communities following the sufficiency economy philosophy can cope with climate change. The objective of this research was to study the coping and adaptive capacity to climate change of local agricultural communities following the sufficiency economy philosophy and to analyze the success factors of adaptation to climate change. The research found five adaptive strategies leading to a resilient livelihood: (1 self-evaluation, (2 diversity dependency, (3 storage and reserve, (4 cooperation, and (5 mobility over space and time. These strategies help to reduce exposure and sensitivity, while increasing adaptive capacity to climate change with the aims of sustainability and adaptation for survival, and protecting natural resource bases for food and settlement security. Moderation, prudence, and self-immunity are critical success factors of adaptation measures, whereas local ecological knowledge with morality is a core enabling factor for adapting to climate change. These factors can be applied in community-based climate change adaptation in the National Adaptation Plan.

  12. Combined effects of climatic gradient and domestic livestock grazing on reptile community structure in a heterogeneous agroecosystem.

    Science.gov (United States)

    Rotem, Guy; Gavish, Yoni; Shacham, Boaz; Giladi, Itamar; Bouskila, Amos; Ziv, Yaron

    2016-01-01

    Grazing plays an important role in shaping ecological communities in human-related ecosystems. Although myriad studies have explored the joint effect of grazing and climate on plant communities, this interactive effect has rarely been studied in animals. We hypothesized that the effect of grazing on the reptile community varies along a climatic gradient in relation to the effect of grazing on habitat characteristics, and that grazing differentially affects reptiles of different biogeographic regions. We tested our hypotheses by collecting data on environmental characteristics and by trapping reptiles in four heterogeneous landscapes experiencing differing grazing intensities and distributed along a sharp climatic gradient. We found that while reptile diversity increased with grazing intensity at the mesic end of the gradient, it decreased with grazing intensity at the arid end. Moreover, the proportion of reptile species of differing biogeographic origins varied with the interactive effect of climate and grazing. The representation of species originating in arid biogeographic zones was highest at the arid end of the climatic gradient, and representation increased with grazing intensity within this area. Regardless of the climatic context, increased grazing pressure results in a reduction in vegetation cover and thus in changes in habitat characteristics. By reducing vegetation cover, grazing increased habitat heterogeneity in the dense mesic sites and decreased habitat heterogeneity in the arid sites. Thus, our results suggest that the same direction of habitat alteration caused by grazing may have opposite effects on biodiversity and community composition in different climatic contexts.

  13. Climate forcing of an emerging pathogenic fungus across a montane multi-host community.

    Science.gov (United States)

    Clare, Frances C; Halder, Julia B; Daniel, Olivia; Bielby, Jon; Semenov, Mikhail A; Jombart, Thibaut; Loyau, Adeline; Schmeller, Dirk S; Cunningham, Andrew A; Rowcliffe, Marcus; Garner, Trenton W J; Bosch, Jaime; Fisher, Matthew C

    2016-12-05

    Changes in the timings of seasonality as a result of anthropogenic climate change are predicted to occur over the coming decades. While this is expected to have widespread impacts on the dynamics of infectious disease through environmental forcing, empirical data are lacking. Here, we investigated whether seasonality, specifically the timing of spring ice-thaw, affected susceptibility to infection by the emerging pathogenic fungus Batrachochytrium dendrobatidis (Bd) across a montane community of amphibians that are suffering declines and extirpations as a consequence of this infection. We found a robust temporal association between the timing of the spring thaw and Bd infection in two host species, where we show that an early onset of spring forced high prevalences of infection. A third highly susceptible species (the midwife toad, Alytes obstetricans) maintained a high prevalence of infection independent of time of spring thaw. Our data show that perennially overwintering midwife toad larvae may act as a year-round reservoir of infection with variation in time of spring thaw determining the extent to which infection spills over into sympatric species. We used future temperature projections based on global climate models to demonstrate that the timing of spring thaw in this region will advance markedly by the 2050s, indicating that climate change will further force the severity of infection. Our findings on the effect of annual variability on multi-host infection dynamics show that the community-level impact of fungal infectious disease on biodiversity will need to be re-evaluated in the face of climate change.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Authors.

  14. Development and psychometric testing of an instrument to measure safety climate perceptions in community pharmacy.

    Science.gov (United States)

    Newham, Rosemary; Bennie, Marion; Maxwell, David; Watson, Anne; de Wet, Carl; Bowie, Paul

    2014-12-01

    A positive and strong safety culture underpins effective learning from patient safety incidents in health care, including the community pharmacy (CP) setting. To build this culture, perceptions of safety climate must be measured with context-specific and reliable instruments. No pre-existing instruments were specifically designed or suitable for CP within Scotland. We therefore aimed to develop a psychometrically sound instrument to measure perceptions of safety climate within Scottish CPs. The first stage, development of a preliminary instrument, comprised three steps: (i) a literature review; (ii) focus group feedback; and (iii) content validation. The second stage, psychometric testing, consisted of three further steps: (iv) a pilot survey; (v) a survey of all CP staff within a single health board in NHS Scotland; and (vi) application of statistical methods, including principal components analysis and calculation of Cronbach's reliability coefficients, to derive the final instrument. The preliminary questionnaire was developed through a process of literature review and feedback. This questionnaire was completed by staff in 50 CPs from the 131 (38%) sampled. 250 completed questionnaires were suitable for analysis. Psychometric evaluation resulted in a 30-item instrument with five positively correlated safety climate factors: leadership, teamwork, safety systems, communication and working conditions. Reliability coefficients were satisfactory for the safety climate factors (α > 0.7) and overall (α = 0.93). The robust nature of the technical design and testing process has resulted in the development of an instrument with sufficient psychometric properties, which can be implemented in the community pharmacy setting in NHS Scotland. © 2014 John Wiley & Sons, Ltd.

  15. Towards Better Simulation of US Maize Yield Responses to Climate in the Community Earth System Model

    Science.gov (United States)

    Peng, B.; Guan, K.; Chen, M.; Lawrence, D. M.; Jin, Z.; Bernacchi, C.; Ainsworth, E. A.; DeLucia, E. H.; Lombardozzi, D. L.; Lu, Y.

    2017-12-01

    Global food security is undergoing continuing pressure from increased population and climate change despites the potential advancement in breeding and management technologies. Earth system models (ESMs) are essential tools to study the impacts of historical and future climate on regional and global food production, as well as to assess the effectiveness of possible adaptations and their potential feedback to climate. Here we developed an improved maize representation within the Community Earth System Model (CESM) by combining the strengths of both the Community Land Model version 4.5 (CLM4.5) and the Agricultural Production Systems sIMulator (APSIM) models. Specifically, we modified the maize planting scheme, incorporated the phenology scheme adopted from the APSIM model, added a new carbon allocation scheme into CLM4.5, and improved the estimation of canopy structure parameters including leaf area index (LAI) and canopy height. Unique features of the new model (CLM-APSIM) include more detailed phenology stages, an explicit implementation of the impacts of various abiotic environmental stresses (including nitrogen, water, temperature and heat stresses) on maize phenology and carbon allocation, as well as an explicit simulation of grain number and grain size. We conducted a regional simulation of this new model over the US Corn Belt during 1990 to 2010. The simulated maize yield as well as its responses to climate (growing season mean temperature and precipitation) are benchmarked with data from UADA NASS statistics. Our results show that the CLM-APSIM model outperforms the CLM4.5 in simulating county-level maize yield production and reproduces more realistic yield responses to climate variations than CLM4.5. However, some critical processes (such as crop failure due to frost and inundation and suboptimal growth condition due to biotic stresses) are still missing in both CLM-APSIM and CLM4.5, making the simulated yield responses to climate slightly deviate from the

  16. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Campany, Courtney E [University of Tennessee, Knoxville (UTK); Souza, Lara [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL; Weltzin, Jake [University of Tennessee, Knoxville (UTK); Classen, Aimee T [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Atmospheric and climatic change can alter plant biomass production and plant community composition. However, we know little about how climate change-induced alterations in biomass production affect plant community composition. To better understand how climate change will alter both individual plant species and community biomass we manipulated atmospheric [CO2], air temperature and precipitation in a constructed old-field ecosystem. Specifically, we compared the responses of dominant and subdominant species to our treatments, and explored how changes in plant dominance patterns alter community evenness over two years. Our study resulted in four major findings: 1) All treatments, elevated [CO2], warming and increased precipitation, increased plant biomass and the effects were additive rather than interactive, 2) Plant species differed in their response to the treatments, resulting in shifts in the proportional biomass of individual species, which altered the plant community composition; however, the plant community response was largely driven by the responses of the dominant species, 3) Precipitation explained most of the variation in plant community composition among treatments, and 4) Changes in precipitation caused a shift in the dominant species proportional biomass that resulted in higher community evenness in the dry relative to wet treatments. Interestingly, compositional and evenness responses of the subdominant community to the treatments did not always follow the responses of the whole plant community. Our data suggest that changes in plant dominance patterns and community evenness are an important part of community responses to climate change, and generally, that compositional shifts can have important consequences for the functioning of terrestrial ecosystems.

  17. How Are Fishing Patterns and Fishing Communities Responding to Climate Change? A Test Case from the Northwest Atlantic

    Science.gov (United States)

    Young, T.; Fuller, E.; Coleman, K.; Provost, M.; Pinsky, M. L.; St Martin, K.

    2016-02-01

    We know climate is changing and fish are moving in response to those changes. But we understand less about how harvesters are responding to these changes in fish distribution and the ramifications of those changes for fishing communities. Ecological and evolutionary theory suggests that organisms must move, adapt, or die in response to environmental changes, and a related frame may be relevant for human harvesters in the face of climate change. Furthermore, research suggests that there may be a portfolio effect: a wider diversity of catch may buffer harvesters from some effects of climate change. To get at these questions, we explored changes in fishing patterns among commercial fishing communities in the northeast US from 1997-2014 using NOAA-collected logbook data. We found that communities using more mobile gear (large trawl vessels) demonstrated a greater range of latitudinal shift than communities using any other gear. Latitudinal shift was also inversely related to species diversity of catch and port latitude in those communities: southern communities that caught few species shifted dramatically northward, and northern communities that caught many species did not demonstrate marked latitudinal shifts. Those communities that demonstrated larger latitudinal shifts also demonstrated smaller changes in catch composition than their more stationary counterparts. We also found that vessels are indeed leaving many, but not all, fisheries in this region. These results suggest that harvesters are moving, adapting, and leaving fisheries, and that there does appear to be a portfolio effect, with catch diversity mediating some of these responses. While these changes in fishing patterns cannot all be directly attributed to climate change per se, marine fishes in this region are shifting north rapidly, as is expected under climate change. This study provides a valuable test case for exploring the potential ramifications of climate change on coastal socio-ecological systems.

  18. The Tribal Lands Collaboratory: Building partnerships and developing tools to support local Tribal community response to climate change.

    Science.gov (United States)

    Jones, K. D.; Wee, B.; Kuslikis, A.

    2015-12-01

    Response of Tribal nations and Tribal communities to current and emerging climate change challenges requires active participation of stakeholders who have effective access to relevant data, information and analytical tools. The Tribal Lands Collaboratory (TLC), currently under development, is a joint effort between the American Indian Higher Education Consortium (AIHEC), the Environmental Systems Research Institute (Esri), and the National Ecological Observatory Network (NEON). The vision of the TLC is to create an integrative platform that enables coordination between multiple stakeholders (e.g. Tribal resource managers, Tribal College faculty and students, farmers, ranchers, and other local community members) to collaborate on locally relevant climate change issues. The TLC is intended to facilitate the transformation of data into actionable information that can inform local climate response planning. The TLC will provide the technical mechanisms to access, collect and analyze data from both internal and external sources (e.g. NASA's Giovanni climate data portal, Ameriflux or USA National Phenology Network) while also providing the social scaffolds to enable collaboration across Tribal communities and with members of the national climate change research community. The prototype project focuses on phenology, a branch of science focused on relationships between climate and the seasonal timing of biological phenomena. Monitoring changes in the timing and duration of phenological stages in plant and animal co­­­­mmunities on Tribal lands can provide insight to the direct impacts of climate change on culturally and economically significant Tribal resources . The project will leverage existing phenological observation protocols created by the USA-National Phenology Network and NEON to direct data collection efforts and will be tailored to the specific needs and concerns of the community. Phenology observations will be captured and managed within the Collaboratory

  19. Threats and climate risks into vulnerable populations. The role of education in the community resilience

    Directory of Open Access Journals (Sweden)

    Edgar Javier GONZÁLEZ-GAUDIANO

    2017-06-01

    Full Text Available Nowadays, challenges in the contemporary world lead to the education to propose its current themes. Environmental education is not an exception. The magnitude and complexity of global environmental problems such as the climate change, the ocean acidification and the loss of the biodiversity have generated issues that had attracted pedagogical attention for decades. This article presents the early results of a study aimed at assessing the perception of risk and vulnerability of communities that frequently are affected by extreme hydrometeorological phenomena. These findings could be a starting point for the design of educational programs aimed at strengthening community resilience. We start from the assumption based on socio-cognitive factors that determine the dispositions in order to the populations can act under similar circumstances, we can find key elements that allow us to infer their reactions to difficult situations. This considering their previous experience and their singularities in the adaptation to climate change, in the social learning in extreme situations and in the identification of their strengths and weaknesses.

  20. Can Perceptions of Environmental and Climate Change in Island Communities Assist in Adaptation Planning Locally?

    Science.gov (United States)

    Aswani, Shankar; Vaccaro, Ismael; Abernethy, Kirsten; Albert, Simon; de Pablo, Javier Fernández-López

    2015-12-01

    Local perceptions of environmental and climate change, as well as associated adaptations made by local populations, are fundamental for designing comprehensive and inclusive mitigation and adaptation plans both locally and nationally. In this paper, we analyze people's perceptions of environmental and climate-related transformations in communities across the Western Solomon Islands through ethnographic and geospatial methods. Specifically, we documented people's observed changes over the past decades across various environmental domains, and for each change, we asked respondents to identify the causes, timing, and people's adaptive responses. We also incorporated this information into a geographical information system database to produce broad-scale base maps of local perceptions of environmental change. Results suggest that people detected changes that tended to be acute (e.g., water clarity, logging intensity, and agricultural diseases). We inferred from these results that most local observations of and adaptations to change were related to parts of environment/ecosystem that are most directly or indirectly related to harvesting strategies. On the other hand, people were less aware of slower insidious/chronic changes identified by scientific studies. For the Solomon Islands and similar contexts in the insular tropics, a broader anticipatory adaptation planning strategy to climate change should include a mix of local scientific studies and local observations of ongoing ecological changes.

  1. Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change.

    Science.gov (United States)

    Galaktionov, K V

    2017-07-01

    This review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal 'transmission window' may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths' circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.

  2. Community Climate Change Adaptation based on Past Trends and Future Projections

    Science.gov (United States)

    Rodenhuis, D. R.; Werner, A. T.; Picketts, I. M.; Murdock, T. Q.

    2009-12-01

    In anticipation of climate change, the community of Prince George, BC has taken steps towards adaptation of community infrastructure. An introductory summary of impacts on temperature, precipitation and streamflow was prepared by the Pacific Climate Impacts Consortium (PCIC) and presented at several workshops. From the workshops the implications of these changes were identified with feedback from senior city staff and planners and documented in a report, Climate Change in Prince George: Summary of Past Trends and Future Projections and will form the basis of the report Adapting to Climate Change in Prince George. Prince George is a city of roughly 77,000 inhabitants, built on a flood plain at the confluence of the Nechako and Upper Fraser rivers. During the winter of 2007-2008, Prince George experienced severe ice-related flooding when lands along the lower Nechako River were inundated causing extensive damage. The watersheds surrounding Prince George encompass the headwaters of the largest river in BC (the Fraser) and have been heavily impacted by mountain pine beetle. These factors make this region susceptible to climate change impacts, and maintaining water security in this region is a concern to both the residents of Prince George and the Province. Over the last century the city experienced an average warming trend of 1.3°C. In recent decades, Prince George has become warmer in the winter season and a greater percentage of precipitation has fallen as rain rather than snow. Future climate projections were used with an evaluation of uncertainty to allow planners, managers and engineers to better integrate this information and make informed decisions as they prepare to adapt. Annual temperatures in the region are projected to increase by an average of 1.6°C to 2.5°C over the next 50 years. Precipitation during this time is projected to increase by 3% to 10%, with increases occurring primarily in winter and decreases possibly occurring in summer. These

  3. Intercomparison of IPCC AR4 models with ERA-40 and NCEP/NCAR reanalysis within the AFRICA-CORDEX domain

    Science.gov (United States)

    León, M.; González, Y.; Díaz, J. P.; Expósito, F. J.; Pérez, J. C.; González, A.

    2012-04-01

    One of the most useful techniques to obtain regional climate projections along the XXI century is to run a mesoscale model driven by coarse input data (initial and boundaries conditions) obtained from Atmosphere-Ocean coupled Global Circulation Models (AOGCM). This is the dynamical downscaling approach. To correctly configure the dynamical downscaling approach it is necessary to choose the correct input dataset that project the climatic situation in a more accurate way and to establish a boundary to the errors in the results associated to these input data. In this study, we consider that the agreement of models with present observations is a way to assign confidence to the quality of a model. With this aim we intercompare the surface temperature of 21 IPCC AR4 runs models with the results from the reanalysis databases ERA40 and NCEP/NCAR in the CORDEX-AFRICA domain in the period 1961-2000. Thus, we have studied the seasonal cycles of the four decades of this period in addition to the probability density functions (PDFs) of the IPCC models. The statistical study allows us to classify the IPCC AR4 models according to their discrepancies with reanalysis data for the CORDEX domain. In general, the MRI CGCM 2.3.2 IPCC AR4 model presents the best fits compared with the reanalysis databases regarding to the correlation factor, root mean square (rms) and PDF skill score. For the intercomparison with ERA-40, the percentage of points with rms lower than 2°C is over 80%, for the four decades; with 89% of the points showing correlations coefficients larger than 0.80 and a 76 % of the data presents skill-scores values, based on the common areas of the PDFs, above a threshold of 0.7. Acknowledgements The authors acknowledge to the MEC (Ministry of Education and Science, Spain) for the next supports: projects CGL2007-66477-C02-02/CLI, CGL2008-04740/CLI, CGL2010-21366-C04-01 and UNLL08-3E-007.

  4. Role of community based local institution for climate change adaptation in the Teesta riverine area of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Rezaul Karim

    2017-01-01

    Full Text Available Climate change adaptation is one of the most crucial issues in developing countries like Bangladesh. The main objective was to understand the linkage of participation with Community Based Adaptation (CBA to climate change. Institutional framework following different types of conceptual theories (collective action, group, game and social learning theory was utilized to analyze the participatory process in local community level Village Disaster Mangement Committee (VDMC that works in collaboration with local government. Field level data was collected through interview and group discussion during 25 April to 30 May 2015 in the Teesta riverine area of northern Bangladesh. Results showed that flood and drought were the major climate change impacts in the study area, and various participatory tools were used for risk assessment and undertaking action plans to overcome the climate change challenges by the group VDMC. Participation in VDMC generated both relational and technical outcomes. The relational outcomes are the informal institutional changes through which local community adopt technological adaptation measures. Although, limitations like bargaining problem, free riding or conflict were found in collective decision making, but the initiation of local governance like VDMC has brought various institutional change in the communities in terms of adaptation practices. More than 80% VDMC and around 40–55% non-VDMC household respondents agreed that overall community based adaptation process was successful in the previous year. They believed that some innovative practices had been brought in the community through VDMC action for climate change adaptation. No doubt that the CBA has achieved good progress to achieve the government Comprehensive Disaster Management (CDM strategy of climate change adaptation. But, there is still lack of coordination among local government, NGOs and civil partners in working together. Research related to socio

  5. The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale

    Science.gov (United States)

    Waldrop, Mark P.; Holloway, JoAnn M.; Smith, David; Goldhaber, Martin B.; Drenovsky, R.E.; Scow, K.M.; Dick, R.; Howard, Daniel M.; Wylie, Bruce K.; Grace, James B.

    2017-01-01

    Soil microbial communities control critical ecosystem processes such as decomposition, nutrient cycling, and soil organic matter formation. Continental scale patterns in the composition and functioning of microbial communities are related to climatic, biotic, and edaphic factors such as temperature and precipitation, plant community composition, and soil carbon, nitrogen, and pH. Although these relationships have been well explored individually, the examination of the factors that may act directly on microbial communities vs. those that may act indirectly through other ecosystem properties has not been well developed. To further such understanding, we utilized structural equation modeling (SEM) to evaluate a set of hypotheses about the direct and indirect effects of climatic, biotic, and edaphic variables on microbial communities across the continental United States. The primary goals of this work were to test our current understanding of the interactions among climate, soils, and plants in affecting microbial community composition, and to examine whether variation in the composition of the microbial community affects potential rates of soil enzymatic activities. A model of interacting factors created through SEM shows several expected patterns. Distal factors such as climate had indirect effects on microbial communities by influencing plant productivity, soil mineralogy, and soil pH, but factors related to soil organic matter chemistry had the most direct influence on community composition. We observed that both plant productivity and soil mineral composition were important indirect influences on community composition at the continental scale, both interacting to affect organic matter content and microbial biomass and ultimately community composition. Although soil hydrolytic enzymes were related to the moisture regime and soil carbon, oxidative enzymes were also affected by community composition, reflected in the abundance of soil fungi. These results highlight

  6. Artisticc: An Art and Science Integration Project to Enquire into Community Level Adaptation to Climate Change

    Science.gov (United States)

    Vanderlinden, J. P.; Baztan, J.

    2014-12-01

    The prupose of this paper is to present the "Adaptation Research a Transdisciplinary community and policy centered appoach" (ARTisticc) project. ARTisticc's goal is to apply innovative standardized transdisciplinary art and science integrative approaches to foster robust, socially, culturally and scientifically, community centred adaptation to climate change. The approach used in the project is based on the strong understanding that adaptation is: (a) still "a concept of uncertain form"; (b) a concept dealing with uncertainty; (c) a concept that calls for an analysis that goes beyond the traditional disciplinary organization of science, and; (d) an unconventional process in the realm of science and policy integration. The project is centered on case studies in France, Greenland, Russia, India, Canada, Alaska, and Senegal. In every site we jointly develop artwork while we analyzing how natural science, essentially geosciences can be used in order to better adapt in the future, how society adapt to current changes and how memories of past adaptations frames current and future processes. Artforms are mobilized in order to share scientific results with local communities and policy makers, this in a way that respects cultural specificities while empowering stakeholders, ARTISTICC translates these "real life experiments" into stories and artwork that are meaningful to those affected by climate change. The scientific results and the culturally mediated productions will thereafter be used in order to co-construct, with NGOs and policy makers, policy briefs, i.e. robust and scientifically legitimate policy recommendations regarding coastal adaptation. This co-construction process will be in itself analysed with the goal of increasing arts and science's performative functions in the universe of evidence-based policy making. The project involves scientists from natural sciences, the social sciences and the humanities, as well as artitis from the performing arts (playwriters

  7. Challenges of Climate Change: Resilience Efforts in Rural Communities of Kaliwlingi Village based on Pengembangan Kawasan Pesisir Tangguh (PKPT Program

    Directory of Open Access Journals (Sweden)

    Mustovia Azahro

    2017-03-01

    Full Text Available Kaliwlingi Village in Brebes City has experienced climate change impacts such as tidal flood and land abrasion. The climate change causes the dynamics of the coast and sea levels dramatically and fosters the coastal communities to have adaptation strategies. This paper aims to identify how the community of Kaliwlingi Village adapts to the climate change that affects to a social economic condition of the inhabitants. The study used qualitative method by interpreting data taken from PengembanganKawasanPesisirTangguh (PKPT program, interviews, and observations.The study highlights that PKPT program has a significant impact, especially regarding disaster mitigation. PKPT program is successful in collecting the common rules of the community to become social capital accommodated in the local institution. Furthermore, the PKPT Program is also fostering the local economy.

  8. The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning

    Science.gov (United States)

    C. Wiedinmyer; S. K. Akagi; R. J. Yokelson; L. K. Emmons; J. A. Al-Saadi; J. J. Orlando; A. J. Soja

    2010-01-01

    The Fire INventory from NCAR version 1.0 (FINNv1) provides daily, 1 km resolution, global estimates of the trace gas and particle emissions from open burning of biomass, which includes wildfire, agricultural fires, and prescribed burning and does not include 5 biofuel use and trash burning. Emission factors used in the calculations have been updated with recent data,...

  9. Linking Climate Change Science and Adaptation Policy at the Community Scale through Anticipatory Governance: A Review of Concepts with Application to Arizona Communities (Invited)

    Science.gov (United States)

    White, D. D.; Quay, R.; Ferguson, D. B.; Buizer, J. L.; Guido, Z.; Chhetri, N.

    2013-12-01

    Scientific consensus and certainty varies regarding the link between climate change, specific natural hazards and extreme events, and local and regional impacts. Despite these uncertainties, it is necessary to apply the best available scientific knowledge to anticipate a range of possible futures, develop mitigation and adaptation strategies, and monitor changes to build resilience. While there is widespread recognition of the need to improve the linkages between climate science information and public policy for adaptation at the community scale, there are significant challenges to this goal. Many community outreach and engagement efforts, for instance, operate using a one-size-fits-all approach. Recent research has shown this to be problematic for local governments. Public policy occurs in a cycle that includes problem understanding, planning and policy approval, and implementation, with ongoing policy refinement through multiple such cycles. One promising approach to incorporating scientific knowledge with uncertainty into public policy is an anticipatory governance approach. Anticipatory governance employs a continual cycle of anticipation (understanding), planning, monitoring, and adaptation (policy choice and implementation). The types of information needed in each of these phases will be different given the nature of each activity and the unique needs of each community. It is highly unlikely that all local governments will be in the same phase of climate adaptation with the same unique needs at the same time and thus a uniform approach to providing scientific information will only be effective for a discrete group of communities at any given point in time. A key concept for the effective integration of scientific information into public discourse is that such information must be salient, credible, and legitimate. Assuming a scientific institution has established credibility with engaged communities, maximizing the effectiveness of climate science requires

  10. Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude.

    Science.gov (United States)

    Roth, Tobias; Plattner, Matthias; Amrhein, Valentin

    2014-01-01

    As a consequence of climate warming, species usually shift their distribution towards higher latitudes or altitudes. Yet, it is unclear how different taxonomic groups may respond to climate warming over larger altitudinal ranges. Here, we used data from the national biodiversity monitoring program of Switzerland, collected over an altitudinal range of 2500 m. Within the short period of eight years (2003-2010), we found significant shifts in communities of vascular plants, butterflies and birds. At low altitudes, communities of all species groups changed towards warm-dwelling species, corresponding to an average uphill shift of 8 m, 38 m and 42 m in plant, butterfly and bird communities, respectively. However, rates of community changes decreased with altitude in plants and butterflies, while bird communities changed towards warm-dwelling species at all altitudes. We found no decrease in community variation with respect to temperature niches of species, suggesting that climate warming has not led to more homogenous communities. The different community changes depending on altitude could not be explained by different changes of air temperatures, since during the 16 years between 1995 and 2010, summer temperatures in Switzerland rose by about 0.07°C per year at all altitudes. We discuss that land-use changes or increased disturbances may have prevented alpine plant and butterfly communities from changing towards warm-dwelling species. However, the findings are also consistent with the hypothesis that unlike birds, many alpine plant species in a warming climate could find suitable habitats within just a few metres, due to the highly varied surface of alpine landscapes. Our results may thus support the idea that for plants and butterflies and on a short temporal scale, alpine landscapes are safer places than lowlands in a warming world.

  11. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    International Nuclear Information System (INIS)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin

    2014-01-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  12. Effects of the Bering Strait closure on AMOC and global climate under different background climates

    Science.gov (United States)

    Hu, Aixue; Meehl, Gerald A.; Han, Weiqing; Otto-Bliestner, Bette; Abe-Ouchi, Ayako; Rosenbloom, Nan

    2015-03-01

    Previous studies have suggested that the status of the Bering Strait may have a significant influence on global climate variability on centennial, millennial, and even longer time scales. Here we use multiple versions of the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM, versions 2 and 3) to investigate the influence of the Bering Strait closure/opening on the Atlantic Meridional Overturning Circulation (AMOC) and global mean climate under present-day, 15 thousand-year before present (kyr BP), and 112 kyr BP climate boundary conditions. Our results show that regardless of the version of the model used or the widely different background climates, the Bering Strait's closure produces a robust result of a strengthening of the AMOC, and an increase in the northward meridional heat transport in the Atlantic. As a consequence, the climate becomes warmer in the North Atlantic and the surrounding regions, but cooler in the North Pacific, leading to a seesaw-like climate change between these two basins. For the first time it is noted that the absence of the Bering Strait throughflow causes a slower motion of Arctic sea ice, a reduced upper ocean water exchange between the Arctic and North Atlantic, reduced sea ice export and less fresh water in the North Atlantic. These changes contribute positively to the increased upper ocean density there, thus strengthening the AMOC. Potentially these changes in the North Atlantic could have a significant effect on the ice sheets both upstream and downstream in ice age climate, and further influence global sea level changes.

  13. Community Earth System Model (CESM) Tutorial 2016 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lamarque, Jean-Francois [Univ. Corporation for Atmospheric Research (UCAR) and National Center for Atmospheric Research (NCAR) and Climate and Global Dynamics Laboratory (CGD), Boulder, CO (United States)

    2017-05-09

    For the 2016 tutorial, NCAR/CGD requested a total budget of $70,000 split equally between DOE and NSF. The funds were used to support student participation (travel, lodging, per diem, etc.). Lectures and practical session support was primarily provided by local participants at no additional cost (see list below). The seventh annual Community Earth System Model (CESM) tutorial (2016) for students and early career scientists was held 8 – 12 August 2016. As has been the case over the last few years, this event was extremely successful and there was greater demand than could be met. There was continued interest in support of the NSF’s EaSM Infrastructure awards, to train these awardees in the application of the CESM. Based on suggestions from previous tutorial participants, the 2016 tutorial experience again provided direct connection to Yellowstone for each individual participant (rather than pairs), and used the NCAR Mesa Library. The 2016 tutorial included lectures on simulating the climate system and practical sessions on running CESM, modifying components, and analyzing data. These were targeted to the graduate student level. In addition, specific talks (“Application” talks) were introduced this year to provide participants with some in-depth knowledge of some specific aspects of CESM.

  14. Globalization and climate change challenges the Arctic communities adaptability and increases vulnerability

    DEFF Research Database (Denmark)

    Hendriksen, Kåre

    2011-01-01

    pressure from multinational companies to exploit the Arctic mineral and oil resources as well as hydro-power in large scale industries appears to (local) governments as a potential for economic growth and thus reduced economic dependence on subsidies from the nation states the Arctic are dependent of......Globalization and climate change challenges the Arctic communities adaptability and increases vulnerability Kåre Hendriksen, PhD student, Aalborg University, Denmark The previous isolation of the Arctic will change as a wide range of areas increasingly are integrated into the globalized world....... Parts of the Arctic are characterized by a relatively high material standard of living that is partially based on economic subsidies from the South, and for a number of Arctic consumers globalization appears primarily as a potential for improved supplies of consumer goods. The massive and growing...

  15. Building a Web-Based Knowledge Repository on Climate Change to Support Environmental Communities

    Science.gov (United States)

    Scharl, Arno; Weichselbraun, Albert

    This paper presents the technology base and roadmap of the Climate Change Collaboratory, a Web-based platform that aims to strengthen the relations between scientists, educators, environmental NGOs, policy makers, news media and corporations - stakeholders who recognize the need for adaptation and mitigation, but differ in world-views, goals and agendas. The collaboratory manages expert knowledge and provides a platform for effective communication and collaboration. It aims to assist networking with leading international organizations, bridges the science-policy gap and promotes rich, self-sustaining community interaction to translate knowledge into coordinated action. Innovative survey instruments in the tradition of "games with a purpose" will create shared meaning through collaborative ontology building and leverage social networking platforms to capture indicators of environmental attitudes, lifestyles and behaviors.

  16. Modeling dynamics of tundra plant communities on the Yamal Peninsula, Russia, in response to climate change and grazing pressure

    International Nuclear Information System (INIS)

    Yu, Q; Epstein, H E; Frost, G V; Walker, D A; Forbes, B C

    2011-01-01

    Understanding the responses of the arctic tundra biome to a changing climate requires knowledge of the complex interactions among the climate, soils and biological system. This study investigates the individual and interaction effects of climate change and reindeer grazing across a variety of climate zones and soil texture types on tundra vegetation community dynamics using an arctic vegetation model that incorporates the reindeer diet, where grazing is a function of both foliar nitrogen concentration and reindeer forage preference. We found that grazing is important, in addition to the latitudinal climate gradient, in controlling tundra plant community composition, explaining about 13% of the total variance in model simulations for all arctic tundra subzones. The decrease in biomass of lichen, deciduous shrub and graminoid plant functional types caused by grazing is potentially dampened by climate warming. Moss biomass had a nonlinear response to increased grazing intensity, and such responses were stronger when warming was present. Our results suggest that evergreen shrubs may benefit from increased grazing intensity due to their low palatability, yet a growth rate sensitivity analysis suggests that changes in nutrient uptake rates may result in different shrub responses to grazing pressure. Heavy grazing caused plant communities to shift from shrub tundra toward moss, graminoid-dominated tundra in subzones C and D when evergreen shrub growth rates were decreased in the model. The response of moss, lichen and forbs to warming varied across the different subzones. Initial vegetation responses to climate change during transient warming are different from the long term equilibrium responses due to shifts in the controlling mechanisms (nutrient limitation versus competition) within tundra plant communities.

  17. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    Directory of Open Access Journals (Sweden)

    N. Mahowald

    2011-02-01

    Full Text Available Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  18. The capacity to adapt?: communities in a changing climate, environment, and economy on the northern Andaman coast of Thailand

    Directory of Open Access Journals (Sweden)

    Nathan J. Bennett

    2014-06-01

    Full Text Available The health and productivity of marine ecosystems, habitats, and fisheries are deteriorating on the Andaman coast of Thailand. Because of their high dependence on natural resources and proximity to the ocean, coastal communities are particularly vulnerable to climate-induced changes in the marine environment. These communities must also adapt to the impacts of management interventions and conservation initiatives, including marine protected areas, which have livelihood implications. Further, communities on the Andaman coast are also experiencing a range of new economic opportunities associated in particular with tourism and agriculture. These complex and ongoing changes require integrated assessment of, and deliberate planning to increase, the adaptive capacity of communities so that they may respond to: (1 environmental degradation and fisheries declines through effective management interventions or conservation initiatives, (2 new economic opportunities to reduce dependence on fisheries, and (3 the increasing impacts of climate change. Our results are from a mixed methods study, which used surveys and interviews to examine multiple dimensions of the adaptive capacity of seven island communities near marine protected areas on the Andaman coast of Thailand. Results show that communities had low adaptive capacity with respect to environmental degradation and fisheries declines, and to management and conservation interventions, as well as uneven levels of adaptive capacity to economic opportunities. Though communities and households were experiencing the impacts of climate change, especially storm events, changing seasons and weather patterns, and erosion, they were reacting to these changes with limited knowledge of climate change per se. We recommend interventions, in the form of policies, programs, and actions, at multiple scales for increasing the adaptive capacity of Thailand's coastal communities to change. The analytical and methodological

  19. Changing times, changing stories: Generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska

    Science.gov (United States)

    Herman-Mercer, Nicole M.; Matkin, Elli; Laituri, Melinda J.; Toohey, Ryan C; Massey, Maggie; Elder, Kelly; Schuster, Paul F.; Mutter, Edda A.

    2016-01-01

    Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1) intergenerational observations of change were common among interview participants in all four communities, (2) older generations observed more overall change than younger generations interviewed by us, and (3) how change was perceived varied between generations. We defined “observations” as the specific examples of environmental and weather change that were described, whereas “perceptions” referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.

  20. Temperature Anomalies from the AIRS Product in Giovanni for the Climate Community

    Science.gov (United States)

    Ding, Feng; Hearty, Thomas J.; Wei, Jennifer; Theobald, Michael; Vollmer, Bruce; Seiler, Edward; Meyer, David

    2018-01-01

    The Atmospheric Infrared Sounder (AIRS) mission began with the launch of Aqua in 2002. Over 15 years of AIRS products have been used by the climate research and application communities. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at JPL, provides processing, archiving, and distribution services for NASA sounders: the present Aqua AIRS mission and the succeeding Suomi National Polar-Orbiting Partnership (SNPP) Cross-track Infrared Sounder (CrIS) mission. We generated a Multi-year Monthly Mean and Anomaly product using 14 years of AIRS standard monthly product. The product includes Air Temperature at the Surface and Surface Skin Temperature, both in Ascending/Daytime and Descending/Nighttime mode. The temperature variables and their anomalies are deployed to Giovanni, a Web-based application developed by the GES DISC. Giovanni provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. It is also a powerful tool that stakeholders can use for decision support in planning and preparing for increased climate variability. In this presentation, we demonstrate the functions in Giovanni with use cases employing AIRS Multi-year Monthly Mean and Anomaly variables.

  1. Formal education as an avenue for community action on climate change

    Science.gov (United States)

    Cordero, E.

    2017-12-01

    Green Ninja started at San Jose State University as an educational initiative to inspire youth action on climate change. We created educational videos, games and lesson plans that promoted climate science literacy and pro-environmental behavior. Although some teachers found our content valuable, we came to learn that the overriding decisions about course curriculum come from the school district level. Should we want to scale in a manner that might really provide an environmental benefit, we needed to learn about school district needs and to develop a product that solves their problems. This presentation will discuss our journey from value propositions to empathy for our clients, and how we came to realize that the best approach for achieving our common goals was through the commercial marketplace. We will share data from some of our early adopters that suggests that formal education can both achieve district goals while also delivering environmental benefits. We will also describe the value of partnerships and how leveraging support from communities with aligning interests are improving our chances of success.

  2. Psychosocial safety climate: a multilevel theory of work stress in the health and community service sector.

    Science.gov (United States)

    Dollard, M F; McTernan, W

    2011-12-01

    Work stress is widely thought to be a significant problem in the health and community services sector. We reviewed evidence from a range of different data sources that confirms this belief. High levels of psychosocial risk factors, psychological health problems and workers compensation claims for stress are found in the sector. We propose a multilevel theoretical model of work stress to account for the results. Psychosocial safety climate (PSC) refers to a climate for psychological health and safety. It reflects the balance of concern by management about psychological health v. productivity. By extending the health erosion and motivational paths of the Job Demands-Resources model we propose that PSC within work organisations predicts work conditions and in turn psychological health and engagement. Over and above this, however, we expect that the external environment of the sector particularly government policies, driven by economic rationalist ideology, is increasing work pressure and exhaustion. These conditions are likely to lead to a reduced quality of service, errors and mistakes.

  3. Forest vegetation in western Romania in relation to climate variables: Does community composition reflect modelled tree species distribution?

    Directory of Open Access Journals (Sweden)

    S. Heinrichs

    2016-12-01

    Full Text Available European beech (Fagus sylvatica L. is the prevailing tree species of mesic forests in Central Europe. Increasing summer temperatures and decreasing precipitation, as climate change scenarios predict, may, however, negatively influence beech growth and induce a shift to more thermophilous forest communities. Temperatures as expected in the future for western Central Europe are currently found in parts of western Romania. In light of this climate analogy we investigated forest vegetation as an indicator for future vegetation changes in five regions of western Romania representing a climatic gradient. We related species composition to climate variables and examined if tree and understorey species composition respond similarly to the climatic gradient. We further analysed if tree species occurrences correspond with their modelled distance to the rear niche edge. We found evidence for climatic effects on vegetation composition among regions as well as within deciduous and pine forests, respectively. This underlines that vegetation composition is a useful indicator for environmental change. Tree and understorey species compositions were closely linked showing that community-based characterization of forest stands can provide additional information on tree species suitability along environmental gradients. Both, vegetation composition and a climatic marginality index demonstrate the rear niche edge occurrence of beech in the studied sites of Romania and can predict the site suitability for different tree species. While vegetation surveys indicate Quercus petraea to be associated to moderately mesic forests, the marginality index suggested an inner niche position of sessile oak along the climatic gradient. Phytosociological relevés that differentiate between subspecies (or microspecies of sessile oak with differing habitat requirements should be considered to complement national forest inventories and species distribution maps when modelling rear

  4. Phenology and climate relationships in aspen (Populus tremuloides Michx.) forest and woodland communities of southwestern Colorado

    Science.gov (United States)

    Meier, Gretchen A.; Brown, Jesslyn F.; Evelsizer, Ross J.; Vogelmann, James E.

    2014-01-01

    Trembling aspen (Populus tremuloides Michx.) occurs over wide geographical, latitudinal, elevational, and environmental gradients, making it a favorable candidate for a study of phenology and climate relationships. Aspen forests and woodlands provide numerous ecosystem services, such as high primary productivity and biodiversity, retention and storage of environmental variables (precipitation, temperature, snow–water equivalent) that affect the spring and fall phenology of the aspen woodland communities of southwestern Colorado. We assessed the land surface phenology of aspen woodlands using two phenology indices, start of season time (SOST) and end of season time (EOST), from the U.S. Geological Survey (USGS) database of conterminous U.S. phenological indicators over an 11-year time period (2001–2011). These indicators were developed with 250 m resolution remotely sensed data from the Moderate Resolution Imaging Spectroradiometer processed to highlight vegetation response. We compiled data on SOST, EOST, elevation, precipitation, air temperature, and snow water equivalent (SWE) for selected sites having more than 80% cover by aspen woodland communities. In the 11-year time frame of our study, EOST had significant positive correlation with minimum fall temperature and significant negative correlation with fall precipitation. SOST had a significant positive correlation with spring SWE and spring maximum temperature.

  5. Safety climate in the federal fire management community: Influences of organizational, environmental, group, and individual characteristics (Abstract)

    Science.gov (United States)

    Brooke Baldauf McBride; Anne E. Black

    2012-01-01

    This study examined the effects of organizational, environmental, group and individual characteristics on five components of safety climate in the US federal fire management community (HRO Practices, Leadership, Group Culture, Learning Orientation and Mission Clarity). Multiple analyses of variance revealed that all types of characteristics had a significant effect on...

  6. Safety climate in the US federal wildland fire management community: influences of organizational, environmental, group, and individual characteristics

    Science.gov (United States)

    Anne E. Black; Brooke Baldauf. McBride

    2013-01-01

    This study examined the effects of organisational, environmental, group and individual characteristics on five components of safety climate (High Reliability Organising Practices, Leadership, Group Culture, Learning Orientation and Mission Clarity) in the US federal wildland fire management community. Of particular interest were differences between perceptions based on...

  7. The vulnerability of Australian rural communities to climate variability and change: Part I—Conceptualising and measuring vulnerability

    NARCIS (Netherlands)

    Nelson, R.; Kokic, P.; Crimp, S.; Meinke, H.B.; Howden, S.M.

    2010-01-01

    Vulnerability is a term frequently used to describe the potential threat to rural communities posed by climate variability and change. Despite growing use of the term, analytical measures of vulnerability that are useful for prioritising and evaluating policy responses are yet to evolve. Demand for

  8. A modelling framework to assess climate change and adaptation impact on heterogeneous crop-livestock farming communities

    NARCIS (Netherlands)

    Descheemaeker, K.K.E.; Masikati, P.; Homann-Kee Tui, S.; Chibwana, G.A.; Crespo, O.

    2015-01-01

    Climate change will impact the productivity of maize-based crop-livestock systems and the livelihoods of smallholders depending on them in semi-arid Zimbabwe. The large diversity in resource endowment and production objectives in rural communities differentially influences this impact and the

  9. Perceptions of Obvious and Disruptive Climate Change: Community-Based Risk Assessment for Two Native Villages in Alaska

    Directory of Open Access Journals (Sweden)

    Jon Rosales

    2015-10-01

    Full Text Available This work operationalizes the determinants of climate change risk, exposure and vulnerability, through the perceptions held by Native hunters, fishers, and gatherers in Savoonga and Shaktoolik, Alaska. Informed by their skill, experience, and the traditional knowledge of their elders, hunters, fishers, and gatherers in these communities are astute observers of their environment and environmental change. A questionnaire is used to sort and rank their perceptions of the most obvious and disruptive elements of climate change as representations of exposure and vulnerability, respectively. Results represent the relative strength and significance of those perceptions of environmental change. In addition to other changes, storms are among the most obvious and disruptive impacts of climate change to respondents in both communities, while changes to sea ice tend to be more disruptive in Savoonga, a more ice-obligate culture, than Shaktoolik. Changes on the tundra are more obvious in Shaktoolik, but is the least disruptive category of change in both villages. Changes along the coast were both obvious and disruptive, albeit more so in Shaktoolik than Savoonga. The findings suggest that traditional ecological knowledge is a valuable source of information to access perceptions of risk, and develop climate risk management and adaptation plans. The questionnaire design and statistical methodology may be of interest to those working on community-based adaptation and risk assessment projects in high-risk, poor, and marginalized Native communities with small populations.

  10. Engaging communities and climate change futures with Multi-Scale, Iterative Scenario Building (MISB) in the western United States

    Science.gov (United States)

    Daniel Murphy; Carina Wyborn; Laurie Yung; Daniel R. Williams; Cory Cleveland; Lisa Eby; Solomon Dobrowski; Erin Towler

    2016-01-01

    Current projections of future climate change foretell potentially transformative ecological changes that threaten communities globally. Using two case studies from the United States Intermountain West, this article highlights the ways in which a better articulation between theory and methods in research design can generate proactive applied tools that enable...

  11. Communities of practice in support of collaborative multi-disciplinary learning and action in response to climate change

    Science.gov (United States)

    Heimlich, J. E.; Stylinski, C.; Palmquist, S.; Wasserman, D.

    2017-12-01

    Collaborative efforts reaching across interdisciplinary boundaries to address controversial issues such as climate change present significant complexities, including developing shared language, agreeing on common outcomes, and even establishing habits of regular dialogue. Such collaborative efforts should include museums, aquariums, zoos, parks, and youth groups as each of these informal education institutions provides a critical avenue for supporting learning about and responding to climate change. The community of practice framework offers a potential effective approach to support learning and action of diverse groups with a shared interest. Our study applied this framework to the NSF-funded Maryland and Delaware Climate Change Assessment and Education (MADE-CLEAR) project, facilitating informal educators across these two states to advance their climate change education practices, and could provide insight for a building a citywide multi-sector collaborative effort. We found strategies that center on the process of group evolution; support different perspectives, levels of participation, and community spaces; focus on value as defined by members; and balance familiarity and fun produced a dynamic and functional community with a shared practice where none had existed before. Also important was expanding the community-of-practice focus on relationship building to include structured professional development and spin-off opportunities for small-group team-based endeavors. Our findings suggest that this collaborative professional learning approach is well suited to diverse groups seeking creative solutions to complex and even divisive challenges.

  12. Exploring the role of forest resources in reducing community vulnerability to the heat effects of climate change

    Science.gov (United States)

    Z.L. Walton; N.C. Poudyal; J. Hepinstall; C. Johnson Gaither; B.B. Boley

    2015-01-01

    While the growing literature on forest ecosystem services has examined the value and significance of a range ofservices, our understanding of the health-related benefits of ecosystem services from forests is still limited. Tocharacterize the role of forest resources in reducing community vulnerability to the heat effects of climate...

  13. Effects of re-oligotrophication and climate warming on plankton richness and community stability in a deep mesotrophic lake

    NARCIS (Netherlands)

    Pomati, F.; Matthews, B.; Jokela, J.; Schildknecht, A.; Ibelings, B.W.

    2012-01-01

    We studied the effects of re-oligotrophication and climate warming on plankton richness and community stability over a period of 30 years in the deep mesotrophic Lake Zurich (Switzerland). We assembled monthly time-series of phytoplankton and zooplankton taxonomic richness, phytoplankton functional

  14. Changing times, changing stories: Generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska

    Science.gov (United States)

    Nicole M. Herman-Mercer; Elli Matkin; Melinda J. Laituri; Ryan C. Toohey; Maggie Massey; Kelly Elder; Paul F. Schuster; Edda A. Mutter

    2016-01-01

    Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation...

  15. Educational and Scientific Applications of Climate Model Diagnostic Analyzer

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Zhang, J.; Bao, Q.

    2016-12-01

    Climate Model Diagnostic Analyzer (CMDA) is a web-based information system designed for the climate modeling and model analysis community to analyze climate data from models and observations. CMDA provides tools to diagnostically analyze climate data for model validation and improvement, and to systematically manage analysis provenance for sharing results with other investigators. CMDA utilizes cloud computing resources, multi-threading computing, machine-learning algorithms, web service technologies, and provenance-supporting technologies to address technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. As CMDA infrastructure and technology have matured, we have developed the educational and scientific applications of CMDA. Educationally, CMDA supported the summer school of the JPL Center for Climate Sciences for three years since 2014. In the summer school, the students work on group research projects where CMDA provide datasets and analysis tools. Each student is assigned to a virtual machine with CMDA installed in Amazon Web Services. A provenance management system for CMDA is developed to keep track of students' usages of CMDA, and to recommend datasets and analysis tools for their research topic. The provenance system also allows students to revisit their analysis results and share them with their group. Scientifically, we have developed several science use cases of CMDA covering various topics, datasets, and analysis types. Each use case developed is described and listed in terms of a scientific goal, datasets used, the analysis tools used, scientific results discovered from the use case, an analysis result such as output plots and data files, and a link to the exact analysis service call with all the input arguments filled. For example, one science use case is the evaluation of NCAR CAM5 model with MODIS total cloud fraction. The analysis service used is Difference Plot Service of

  16. Protecting food security when facing uncertain climate: Opportunities for Afghan communities

    Science.gov (United States)

    Salman, Dina; Amer, Saud A.; Ward, Frank A.

    2017-11-01

    Climate change, population growth, and weakly developed water management institutions in many of the world's dry communities have raised the importance of designing innovative water allocation methods that adapt to water supply fluctuations while respecting cultural sensitivities. For example, Afghanistan faces an ancient history of water supply fluctuations that have contributed to periodic food shortage and famine. Poorly designed and weakly enforced water allocation methods continue to result in agriculture sector underperformance and periodic food shortages when water shortfalls occur. To date, little research has examined alternative water sharing rules on a multi-basin scale to protect food security for a subsistence irrigation society when the community faces water shortage. This paper's contribution examines the economic performance of three water-sharing mechanisms for three basins in Afghanistan with the goal of protecting food security for crop irrigation under ongoing threats of drought, while meeting growing demands for food in the face of anticipated population growth. We achieved this by formulating an integrated empirical optimization model to identify water-sharing measures that minimize economic losses while protecting food security when water shortages occur. Findings show that implementation of either a water trading policy or a proportional shortage policy that respects cultural sensitivities has the potential to raise economic welfare in each basin. Such a policy can reduce food insecurity risks for all trading provinces within each basin, thus being a productive institution for adapting to water shortage when it occurs. Total economic welfare gains are highest when drought is the most severe for which suffering would otherwise be greatest. Gains would be considerably higher if water storage reservoirs were built to store wet year flows for use in dry years. Our results light a path for policy makers, donors, water administrators, and farm

  17. Investigating the Influence of Climate Changes on Rodent Communities at a Regional-Scale (MIS 1-3, Southwestern France.

    Directory of Open Access Journals (Sweden)

    Aurélien Royer

    Full Text Available Terrestrial ecosystems have continuously evolved throughout the Late Pleistocene and the Holocene, deeply affected by both progressive environmental and climatic modifications, as well as by abrupt and large climatic changes such as the Heinrich or Dansgaard-Oeschger events. Yet, the impacts of these different events on terrestrial mammalian communities are poorly known, as is the role played by potential refugia on geographical species distributions. This study examines community changes in rodents of southwestern France between 50 and 10 ky BP by integrating 94 dated faunal assemblages coming from 37 archaeological sites. This work reveals that faunal distributions were modified in response to abrupt and brief climatic events, such as Heinrich events, without actually modifying the rodent community on a regional scale. However, the succession of events which operated between the Late Pleistocene and the Holocene gradually led to establishing a new rodent community at the regional scale, with intermediate communities occurring between the Bølling and the Allerød.

  18. Investigating the Influence of Climate Changes on Rodent Communities at a Regional-Scale (MIS 1-3, Southwestern France)

    Science.gov (United States)

    Royer, Aurélien; Montuire, Sophie; Legendre, Serge; Discamps, Emmanuel; Jeannet, Marcel; Lécuyer, Christophe

    2016-01-01

    Terrestrial ecosystems have continuously evolved throughout the Late Pleistocene and the Holocene, deeply affected by both progressive environmental and climatic modifications, as well as by abrupt and large climatic changes such as the Heinrich or Dansgaard-Oeschger events. Yet, the impacts of these different events on terrestrial mammalian communities are poorly known, as is the role played by potential refugia on geographical species distributions. This study examines community changes in rodents of southwestern France between 50 and 10 ky BP by integrating 94 dated faunal assemblages coming from 37 archaeological sites. This work reveals that faunal distributions were modified in response to abrupt and brief climatic events, such as Heinrich events, without actually modifying the rodent community on a regional scale. However, the succession of events which operated between the Late Pleistocene and the Holocene gradually led to establishing a new rodent community at the regional scale, with intermediate communities occurring between the Bølling and the Allerød. PMID:26789523

  19. Climate Change Decision Making in the Water User Community: Assessment Needs for Projections from Interannual to Multi-Decadal Scales

    Science.gov (United States)

    Behar, D.; Adams, A.; Schneiderman, E.; Kaatz, L.

    2012-12-01

    Water managers are increasingly using climate science tools, including model output, in assessing the potential effects of climate change on their operations, infrastructure, and levels of service. The Water Utility Climate Alliance (WUCA), ten large metropolitan utilities providing drinking water to 43 million Americans, has developed relationships individually and collectively across the scientific, agency, and boundary organization communities in pursuit of an understanding of what the current science tells us about the threat of climate change and how to incorporate that understanding into planning. Many WUCA agencies, including those of the authors, have completed or are in the process of completing state-of-the-art assessments using climate model output, expert elicitation, and their own internal modeling tools. A WUCA initiative, Piloting Utility Modeling Applications for Climate Change (PUMA), is facilitating collaboration between five water utilities, four climate science consortiums, and a Modeling Advisory Committee in the preparation of climate change assessments. For WUCA members, and likely others in the adaptation community, the need is for "actionable science," a term WUCA began using in 2008 that was included as an objective in the recently released strategic plan for U.S. Global Change Research Program. Ultimately, assessments feed into existing utility planning processes that look into a future that ranges in scope from years to decades in order to provide guidance on adaptation measures that may be needed. This talk will use WUCA member experiences as case studies to zero in on utility needs for information at these scales, the form of data that best fits with our downstream models (hydrologic, planning), and on the challenges of planning in an atmosphere of uncertainty.

  20. Community based ecological restoration of peatland in Central Mongolia for climate change mitigation and adaptation

    Science.gov (United States)

    Minayeva, Tatiana; Chultem, Dugarjav; Grootjans, Ab; Yamkhin, Jambaljav; Sirin, Andrey; Suvorov, Gennady; Batdorj, Oyunbileg; Tsamba, Batdorj

    2017-04-01

    Peatlands cover almost 2 % of Mongolia. They play crucial role in regulation of key natural processes in ecosystems and provide unique resources to maintain traditional way of life and livelihoods of herders. During the last decades, Mongolian peatlands severely degraded both due to the climate related events and due to overgrazing. The peat degradation causes significant losses of carbon store, GHG emissions and is followed by changes in water balance and water composition. The issue arises if such a type of ecosystems as peatlands could be a subject for ecosystem restoration in this arid and subhumid climate. Could it be considered as measure for climate change mitigation and adaptation? With funding opportunities from the Asian Development Bank a pilot project for peatland restoration had been launched in 2016 in Khashaat soum, Arkhangai aimag in Central Mongolia. The pilot aimed to merge local interests of herders with global targets of climate change mitigation. The following questions are addressed: what are the losses of natural functions and ecosystem services of peatland; what are expectations and demands of local communities and incentives for their involvement; how should and could look the target ecosystem; what are the technical solutions in order to achieve the target ecosystem characteristics; and what are the parameters for monitoring to assess the success of the project? The comprehensive baseline study addressed both natural and social aspects. The conclusions are: most of peat in the study area had been mineralised and has turned to organic rich soil with carbon content between 20 to 40 %, the key sources of water - small springs - are partly destroyed by cattle; the permafrost disappeared in this area and could not be the subject for restoration; local herders understand the value of peatland as water source and had carried out some voluntary activities for water storage and regulation such as dam construction; nevertheless there is no

  1. Long-term trends in the avifauna of the Sierra Nevada: community dynamics and species occupancy over a century of climate change

    OpenAIRE

    Tingley, Morgan Winn

    2011-01-01

    Climate change is widely considered to be one of the most important and omnipresent threats to global environmental health and biodiversity. Responding to changing climates, species are expected to shift their geographic distributions in order to remain in physiologically and ecologically favorable climates. These shifts may be species-specific, and different responses of species to a rapidly changing climate have unknown consequences for biotic communities. Despite recent evidence of shifts ...

  2. Linking Hydro-Meteorological Hazards, Climate and Food Security: an Initiative of International Scientific Community

    Science.gov (United States)

    Ismail-Zadeh, A.; Beer, T.

    2013-05-01

    Humans face climatic and hydro-meteorological hazards on different scales in time and space. In particular natural hazards can have disastrous impact in the short term (flood) and in the long term (drought) as they affect human life and health as well as impacting dramatically on the sustainable development of society. They represent a pending danger for vulnerable lifelines, infrastructure and the agricultural systems that depend on the water supply, reservoirs, pipelines, and power plants. Developed countries are affected, but the impact is disproportionate within the developing world. Extreme natural events such as extreme floods or prolonged drought can change the life and economic development of developing nations and stifle their development for decades. The beginning of the XX1st century has been marked by a significant number of natural disasters, such as floods, severe storms, wildfires, hurricanes, and tsunamis. Extreme natural events cause devastation resulting in loss of human life, large environmental damage, and partial or total loss of infrastructure that, in the longer time, will affect the potential for agricultural recovery. Recent catastrophic events of the early 21st century (e.g. floods in Pakistan and Thailand, the 2011 Tohoku earthquake and tsunami) remind us once again that there is a strong coupling between complex solid Earth, oceanic, and atmospheric processes and that even developed countries such as Japan are subject to agricultural declines as a result of disastrous hydro-meteorological events. Scientific community recognizes that communication between the groups of experts of various international organizations dealing with natural hazards and their activity in disaster risk reduction and food security needs to be strengthened. Several international scientific unions and intergovernmental institutions set up a consortium of experts to promote studies of weather, climate and their interaction with agriculture, food and their socio

  3. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    Science.gov (United States)

    Yates, K. K.; Rogers, C. S.; Herlan, J. J.; Brooks, G. R.; Smiley, N. A.; Larson, R. A.

    2014-08-01

    Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business-as-usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality, and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove-shaded and exposed (unshaded) areas. Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic

  4. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA

    International Nuclear Information System (INIS)

    McDonnell, T.C.; Belyazid, S.; Sullivan, T.J.; Sverdrup, H.; Bowman, W.D.; Porter, E.M.

    2014-01-01

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010–2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha −1  yr −1 . Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone. - Highlights: • A novel calibration step was introduced for modeling biodiversity with ForSAFE-Veg. • Modeled increases in tree cover are consistent with empirical studies. • Reductions in N deposition decreased future graminoid percent cover. • Critical loads of N to protect biodiversity should consider climate change effects. - Subalpine plant biodiversity in Rocky Mountain National Park has already been impacted by N deposition and climate change and is expected to experience significant future effects

  5. Improving Timeliness of Winter Wheat Production Forecast in United States of America, Ukraine and China Using MODIS Data and NCAR Growing Degree Day

    Science.gov (United States)

    Vermote, E.; Franch, B.; Becker-Reshef, I.; Claverie, M.; Huang, J.; Zhang, J.; Sobrino, J. A.

    2014-12-01

    Wheat is the most important cereal crop traded on international markets and winter wheat constitutes approximately 80% of global wheat production. Thus, accurate and timely forecasts of its production are critical for informing agricultural policies and investments, as well as increasing market efficiency and stability. Becker-Reshef et al. (2010) used an empirical generalized model for forecasting winter wheat production. Their approach combined BRDF-corrected daily surface reflectance from Moderate resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) with detailed official crop statistics and crop type masks. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season, percent wheat within the CMG pixel, and the final yields. This method predicts the yield approximately one month to six weeks prior to harvest. In this study, we include the Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data in order to improve the winter wheat production forecast by increasing the timeliness of the forecasts while conserving the accuracy of the original model. We apply this modified model to three major wheat-producing countries: United States of America, Ukraine and China from 2001 to 2012. We show that a reliable forecast can be made between one month to a month and a half prior to the peak NDVI (meaning two months to two and a half months prior to harvest) while conserving an accuracy of 10% in the production forecast.

  6. #ClimateEdCommunity : Field Workshops Bring Together Teachers and Researchers to Make Meaning of Science and Classroom Integration

    Science.gov (United States)

    Bartholow, S.; Warburton, J.; Wood, J. H.; Steiner, S. M.

    2015-12-01

    Seeing Understanding and Teaching: Climate Change in Denali is a four-day immersive teacher professional development course held in Denali National Park. Developed through three partner organizations, the course aims to develop teachers' skills for integrating climate change content into their classrooms. This presentation aims to share tangible best practices for linking researchers and teachers in the field, through four years of experience in program delivery and reported through a published external evaluation. This presentation will examine the key aspects of a successful connection between teachers, researchers, science, and classrooms: (1) Inclusion of teacher leaders, (2) dedicated program staff, (3) workshop community culture, and will expose barriers to this type of collaboration including (1) differences in learning style, (2) prior teaching experience, (3) existing/scaffolding understanding of climate change science, and (4) accessibility of enrollment and accommodations for the extended learning experience. Presentation Content Examples:Participants overwhelmingly value the deep commitment this course has to linking their field experience to the classroom attributing to the role of a teacher-leader; an expert science teacher with first-hand field research experience in the polar regions. The goal of including a teacher-leader is to enhance translatability between fieldwork and the classroom. Additionally, qualitative aspects of the report touches on the intangible successes of the workshop such as: (1) the creation of a non-judgmental learning atmosphere, (2) addressing accessibility to science learning tools in rural and under-served communities, (3) defining successful collaboration as making meaning together through exploratory questioning while in the field (4) discussed the social and cultural implications of climate change, and the difficulty of navigating these topics in educational and/or multicultural spaces. Next Steps? Create a #ClimateEdCommunity

  7. Plant epiphytism in semiarid conditions revealed the influence of habitat and climate variables on AM fungi communities distribution

    Science.gov (United States)

    Torrecillas, Emma; Torres, Pilar; Díaz, Gisela; del Mar Alguacil, Maria; Querejeta, Jose Ignacio; García, Fuensanta; Roldán, Antonio

    2014-05-01

    In semiarid Mediterranean ecosystems epiphytic plant species are practically absent and only some species of palm-trees can support epiphytes growing in their lower crown area, such as Phoenix dactylifera L. (date palm). In this study we focused in Sonchus tenerrimus L. plants growing as facultative epiphytes in P. dactylifera and its terrestrial forms growing in adjacent soils, Our aim was to determine the possible presence of AMF in these peculiar habitats and to relate AMF communities with climatic variations. We investigated the AMF community composition of epiphytic and terrestrial S. tenerrimus plants along a temperature and precipitation gradient across 12 localities. Epiphytic roots were colonized by AM fungi as determined by microscopic observation, all epiphytic and terrestrial samples analysed showed AMF sequences from taxa belonging to the phylum Glomeromycota, which were grouped in 30 AMF OTUs. The AMF community composition was clearly different between epiphytic and terrestrial root samples and this could be attributable to dispersal constraints and/or the contrasting environmental and ecophysiological conditions prevailing in each habitat. Across sites, the richness and diversity of terrestrial AMF communities was positively correlated with rainfall amount during the most recent growing season. In contrast, there was no significant correlation between climate variables and AMF richness and diversity for epiphytic AMF communities, which suggests that the composition of AMF communities in epiphytic habitats appears to be largely determined by the availability and dispersion of fungal propagules from adjacent terrestrial habitats.

  8. Regional scale gradients of climate and nitrogen deposition drive variation in ectomycorrhizal fungal communities associated with native Scots pine.

    Science.gov (United States)

    Jarvis, S; Woodward, S; Alexander, I J; Taylor, A F S

    2013-06-01

    Ectomycorrhizal fungi commonly associate with the roots of forest trees where they enhance nutrient and water uptake, promote seedling establishment and have an important role in forest nutrient cycling. Predicting the response of ectomycorrhizal fungi to environmental change is an important step to maintaining forest productivity in the future. These predictions are currently limited by an incomplete understanding of the relative significance of environmental drivers in determining the community composition of ectomycorrhizal (ECM) fungi at large spatial scales. To identify patterns of community composition in ECM fungi along regional scale gradients of climate and nitrogen deposition in Scotland, fungal communities were analysed from 15 seminatural Scots pine (Pinus sylvestris L.) forests. Fungal taxa were identified by sequencing of the ITS rDNA region using fungal-specific primers. Nonmetric multidimensional scaling was used to assess the significance of 16 climatic, pollutant and edaphic variables on community composition. Vector fitting showed that there was a strong influence of rainfall and soil moisture on community composition at the species level, and a smaller impact of temperature on the abundance of ectomycorrhizal exploration types. Nitrogen deposition was also found to be important in determining community composition, but only when the forest experiencing the highest deposition (9.8 kg N ha(-1)  yr(-1) ) was included in the analysis. This finding supports previously published critical load estimates for ectomycorrhizal fungi of 5-10 kg N ha(-1)  yr(-1) . This work demonstrates that both climate and nitrogen deposition can drive gradients of fungal community composition at a regional scale. © 2013 Blackwell Publishing Ltd.

  9. Climate change and Australian agriculture: a review of the threats facing rural communities and the health policy landscape.

    Science.gov (United States)

    Hanna, Elizabeth G; Bell, Erica; King, Debra; Woodruff, Rosalie

    2011-03-01

    Population health is a function of social and environmental health determinants. Climate change is predicted to bring significant alterations to ecological systems on which human health and livelihoods depend; the air, water, plant, and animal health. Agricultural systems are intrinsically linked with environmental conditions, which are already under threat in much of southern Australian because of rising heat and protracted drying. The direct impact of increasing heat waves on human physiology and survival has recently been well studied. More diffusely, increasing drought periods may challenge the viability of agriculture in some regions, and hence those communities that depend on primary production. A worst case scenario may herald the collapse of some communities. Human health impacts arising from such transition would be profound. This article summarizes existing rural health challenges and presents the current evidence plus future predictions of climate change impacts on Australian agriculture to argue the need for significant augmentation of public health and existing health policy frameworks. The article concludes by suggesting that adaptation to climate change requires planning for worst case scenario outcomes to avert catastrophic impacts on rural communities. This will involve national policy planning as much as regional-level leadership for rapid development of adaptive strategies in agriculture and other key areas of rural communities.

  10. Prototype Mcs Parameterization for Global Climate Models

    Science.gov (United States)

    Moncrieff, M. W.

    2017-12-01

    Excellent progress has been made with observational, numerical and theoretical studies of MCS processes but the parameterization of those processes remain in a dire state and are missing from GCMs. The perceived complexity of the distribution, type, and intensity of organized precipitation systems has arguably daunted attention and stifled the development of adequate parameterizations. TRMM observations imply links between convective organization and large-scale meteorological features in the tropics and subtropics that are inadequately treated by GCMs. This calls for improved physical-dynamical treatment of organized convection to enable the next-generation of GCMs to reliably address a slew of challenges. The multiscale coherent structure parameterization (MCSP) paradigm is based on the fluid-dynamical concept of coherent structures in turbulent environments. The effects of vertical shear on MCS dynamics implemented as 2nd baroclinic convective heating and convective momentum transport is based on Lagrangian conservation principles, nonlinear dynamical models, and self-similarity. The prototype MCS parameterization, a minimalist proof-of-concept, is applied in the NCAR Community Climate Model, Version 5.5 (CAM 5.5). The MCSP generates convectively coupled tropical waves and large-scale precipitation features notably in the Indo-Pacific warm-pool and Maritime Continent region, a center-of-action for weather and climate variability around the globe.

  11. Empowering America's Communities to Prepare for the Effects of Climate Change: Developing Actionable Climate Science Under the President's Climate Action Plan

    Science.gov (United States)

    Duffy, P. B.; Colohan, P.; Driggers, R.; Herring, D.; Laurier, F.; Petes, L.; Ruffo, S.; Tilmes, C.; Venkataraman, B.; Weaver, C. P.

    2014-12-01

    Effective adaptation to impacts of climate change requires best-available information. To be most useful, this information should be easily found, well-documented, and translated into tools that decision-makers use and trust. To meet these needs, the President's Climate Action Plan includes efforts to develop "actionable climate science". The Climate Data Initiative (CDI) leverages the Federal Government's extensive, open data resources to stimulate innovation and private-sector entrepreneurship in support of actions to prepare for climate change. The Initiative forges commitments and partnerships from the private, NGO, academic, and public sectors to create data-driven tools. Open data from Federal agencies to support this innovation is available on Climate.Data.gov, initially focusing on coastal flooding but soon to expand to topics including food, energy, water, energy, transportation, and health. The Climate Resilience Toolkit (CRT) will facilitate access to data-driven resilience tools, services, and best practices, including those accessible through the CDI. The CRT will also include access to training and tutorials, case studies, engagement forums, and other information sources. The Climate Action Plan also calls for a public-private partnership on extreme weather risk, with the goal of generating improved assessments of risk from different types of extreme weather events, using methods and data that are transparent and accessible. Finally, the U.S. Global Change Research Program and associated agencies work to advance the science necessary to inform decisions and sustain assessments. Collectively, these efforts represent increased emphasis across the Federal Government on the importance of information to support climate resilience.

  12. A Climate Change Adaptation Planning Process for Low-Lying, Communities Vulnerable to Sea Level Rise

    Directory of Open Access Journals (Sweden)

    Kristi Tatebe

    2012-09-01

    Full Text Available While the province of British Columbia (BC, Canada, provides guidelines for flood risk management, it is local governments’ responsibility to delineate their own flood vulnerability, assess their risk, and integrate these with planning policies to implement adaptive action. However, barriers such as the lack of locally specific data and public perceptions about adaptation options mean that local governments must address the need for adaptation planning within a context of scientific uncertainty, while building public support for difficult choices on flood-related climate policy and action. This research demonstrates a process to model, visualize and evaluate potential flood impacts and adaptation options for the community of Delta, in Metro Vancouver, across economic, social and environmental perspectives. Visualizations in 2D and 3D, based on hydrological modeling of breach events for existing dike infrastructure, future sea level rise and storm surges, are generated collaboratively, together with future adaptation scenarios assessed against quantitative and qualitative indicators. This ‘visioning package’ is being used with staff and a citizens’ Working Group to assess the performance, policy implications and social acceptability of the adaptation strategies. Recommendations based on the experience of the initiative are provided that can facilitate sustainable future adaptation actions and decision-making in Delta and other jurisdictions.

  13. British container breeding mosquitoes: the impact of urbanisation and climate change on community composition and phenology.

    Directory of Open Access Journals (Sweden)

    Susannah Townroe

    Full Text Available The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3 per container than those in rural containers (77.7±15.1. Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV] and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector. Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK.

  14. British Container Breeding Mosquitoes: The Impact of Urbanisation and Climate Change on Community Composition and Phenology

    Science.gov (United States)

    Townroe, Susannah; Callaghan, Amanda

    2014-01-01

    The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK. PMID:24759617

  15. Climate Change and Global Warming : The Role of the International Community

    OpenAIRE

    Warner, Koko

    2013-01-01

    This paper takes stock of current knowledge about the risks climate change poses to sustainable development and discusses issues associated with managing those risks. The author argues that a central driver of climate change risk is mainstream economic (development) models which aspire to carbon-intensive industrialization. Transformation to low-carbon, climate resilient, sustainable development is an imperative to manage the risks associated with climate change. The paper examines efforts to...

  16. Socioeconomic impacts of climate change on rural communities in the United States

    Science.gov (United States)

    Pankaj Lal; Janaki Alavalapati; D Evan Mercer

    2011-01-01

    Climate change refers to any distinct change in measures of climate such as temperature, rainfall, snow, or wind patterns lasting for decades or longer (USEPA 2009). In the last decade, there has been a clear consensus among scientists that the world is experiencing a rapid global climate change, much of it attributable to anthropogenic activities. The extent of...

  17. Climate change on Twitter: topics, communities and conversations about the 2013 IPCC Working Group 1 report

    NARCIS (Netherlands)

    Pearce, W; Holmberg, K; Hellsten, I.; Nerlich, B.

    2014-01-01

    In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate

  18. Climate change, human communities, and forests in rural, urban, and wildland-urban interface environments

    Science.gov (United States)

    David N. Wear; Linda A. Joyce

    2012-01-01

    Human concerns about the effects of climate change on forests are related to the values that forests provide to human populations, that is, to the effects on ecosystem services derived from forests. Service values include the consumption of timber products, the regulation of climate and water quality, and aesthetic and spiritual values. Effects of climate change on...

  19. Climate Discovery: Integrating Research With Exhibit, Public Tours, K-12, and Web-based EPO Resources

    Science.gov (United States)

    Foster, S. Q.; Carbone, L.; Gardiner, L.; Johnson, R.; Russell, R.; Advisory Committee, S.; Ammann, C.; Lu, G.; Richmond, A.; Maute, A.; Haller, D.; Conery, C.; Bintner, G.

    2005-12-01

    The Climate Discovery Exhibit at the National Center for Atmospheric Research (NCAR) Mesa Lab provides an exciting conceptual outline for the integration of several EPO activities with other well-established NCAR educational resources and programs. The exhibit is organized into four topic areas intended to build understanding among NCAR's 80,000 annual visitors, including 10,000 school children, about Earth system processes and scientific methods contributing to a growing body of knowledge about climate and global change. These topics include: 'Sun-Earth Connections,' 'Climate Now,' 'Climate Past,' and 'Climate Future.' Exhibit text, graphics, film and electronic media, and interactives are developed and updated through collaborations between NCAR's climate research scientists and staff in the Office of Education and Outreach (EO) at the University Corporation for Atmospheric Research (UCAR). With funding from NCAR, paleoclimatologists have contributed data and ideas for a new exhibit Teachers' Guide unit about 'Climate Past.' This collection of middle-school level, standards-aligned lessons are intended to help students gain understanding about how scientists use proxy data and direct observations to describe past climates. Two NASA EPO's have funded the development of 'Sun-Earth Connection' lessons, visual media, and tips for scientists and teachers. Integrated with related content and activities from the NASA-funded Windows to the Universe web site, these products have been adapted to form a second unit in the Climate Discovery Teachers' Guide about the Sun's influence on Earth's climate. Other lesson plans, previously developed by on-going efforts of EO staff and NSF's previously-funded Project Learn program are providing content for a third Teachers' Guide unit on 'Climate Now' - the dynamic atmospheric and geological processes that regulate Earth's climate. EO has plans to collaborate with NCAR climatologists and computer modelers in the next year to develop

  20. A boreal invasion in response to climate change? Range shifts and community effects in the borderland between forest and tundra.

    Science.gov (United States)

    Elmhagen, Bodil; Kindberg, Jonas; Hellström, Peter; Angerbjörn, Anders

    2015-01-01

    It has been hypothesized that climate warming will allow southern species to advance north and invade northern ecosystems. We review the changes in the Swedish mammal and bird community in boreal forest and alpine tundra since the nineteenth century, as well as suggested drivers of change. Observed changes include (1) range expansion and increased abundance in southern birds, ungulates, and carnivores; (2) range contraction and decline in northern birds and carnivores; and (3) abundance decline or periodically disrupted dynamics in cyclic populations of small and medium-sized mammals and birds. The first warm spell, 1930-1960, stands out as a period of substantial faunal change. However, in addition to climate warming, suggested drivers of change include land use and other anthropogenic factors. We hypothesize all these drivers interacted, primarily favoring southern generalists. Future research should aim to distinguish between effects of climate and land-use change in boreal and tundra ecosystems.

  1. Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment.

    Science.gov (United States)

    Tielbörger, Katja; Bilton, Mark C; Metz, Johannes; Kigel, Jaime; Holzapfel, Claus; Lebrija-Trejos, Edwin; Konsens, Irit; Parag, Hadas A; Sternberg, Marcelo

    2014-10-06

    For evaluating climate change impacts on biodiversity, extensive experiments are urgently needed to complement popular non-mechanistic models which map future ecosystem properties onto their current climatic niche. Here, we experimentally test the main prediction of these models by means of a novel multi-site approach. We implement rainfall manipulations--irrigation and drought--to dryland plant communities situated along a steep climatic gradient in a global biodiversity hotspot containing many wild progenitors of crops. Despite the large extent of our study, spanning nine plant generations and many species, very few differences between treatments were observed in the vegetation response variables: biomass, species composition, species richness and density. The lack of a clear drought effect challenges studies classifying dryland ecosystems as most vulnerable to global change. We attribute this resistance to the tremendous temporal and spatial heterogeneity under which the plants have evolved, concluding that this should be accounted for when predicting future biodiversity change.

  2. Global land cover products tailored to the needs of the climate modeling community - Land Cover project of the ESA Climate Change Initiative

    Science.gov (United States)

    Bontemps, S.; Defourny, P.; Radoux, J.; Kalogirou, V.; Arino, O.

    2012-04-01

    Improving the systematic observation of land cover, as an Essential Climate Variable, will support the United Framework Convention on Climate Change effort to reduce the uncertainties in our understanding of the climate system and to better cope with climate change. The Land Cover project of the ESA Climate Change Initiative aims at contributing to this effort by providing new global land cover products tailored to the expectations of the climate modeling community. During the first three months of the project, consultation mechanisms were established with this community to identify its specific requirements in terms of satellite-based global land cover products. This assessment highlighted specific needs in terms of land cover characterization, accuracy of products, as well as stability and consistency, needs that are currently not met or even addressed. Based on this outcome, the project revisits the current land cover representation and mapping approaches. First, the stable and dynamic components of land cover are distinguished. The stable component refers to the set of land surface features that remains stable over time and thus defines the land cover independently of any sources of temporary or natural variability. Conversely, the dynamic component is directly related to this temporary or natural variability that can induce some variation in land observation over time but without changing the land cover state in its essence (e.g. flood, snow on forest, etc.). Second, the project focuses on the possibility to generate such stable global land cover maps. Previous projects, like GlobCover and MODIS Land Cover, have indeed shown that products' stability is a key issue. In delivering successive global products derived from the same sensor, they highlighted the existence of spurious year-to-year variability in land cover labels, which were not associated with land cover change but with phenology, disturbances or landscape heterogeneity. An innovative land cover

  3. Does the stress tolerance of mixed grassland communities change in a future climate? A test with heavy metal stress (zinc pollution)

    International Nuclear Information System (INIS)

    Van den Berge, Joke; Naudts, Kim; Janssens, Ivan A.; Ceulemans, Reinhart; Nijs, Ivan

    2011-01-01

    Will species that are sensitive/tolerant to Zn pollution still have the same sensitivity/tolerance in a future climate? To answer this question we analysed the response of constructed grassland communities to five levels of zinc (Zn) supply, ranging from 0 to 354 mg Zn kg -1 dry soil, under a current climate and a future climate (elevated CO 2 and warming). Zn concentrations increased in roots and shoots with Zn addition but this increase did not differ between climates. Light-saturated net CO 2 assimilation rate (A sat ) of the species, on the other hand, responded differently to Zn addition depending on climate. Still, current and future climate communities have comparable biomass responses to Zn, i.e., no change in root biomass and a 13% decrease of above-ground biomass. Provided that the different response of A sat in a future climate will not compromise productivity and survival on the long term, sensitivity is not altered by climate change. - Highlights: → We exposed constructed grassland communities to Zn addition in a current and a future climate. → Zn uptake did not differ between the climates. → Although A sat was more responsive to Zn in future climate, climate did not alter biomass responses. → If this response remains on the long term, climate change will not alter sensitivity. - This study is the first to examine plant responses to a heavy metal (Zn) in a changing climate, and shows that the tolerance of plants to Zn stress will not be altered in a future climate.

  4. Determining the vulnerability of women to the effects of climate change: A study on the economic, social, and political implications of climate change on the women of three rural communities in the Valles Cruceños region of Bolivia

    OpenAIRE

    Bodrogi, Isabel

    2011-01-01

    The few climate change studies that have been done in the Valles Cruceños region of Bolivia have mainly focused on investigations of climate change impacts on the natural system. Adaptation and mitigation measures, therefore, addressed only the biophysical vulnerability of the system. This preliminary research on three rural communities in the Valles Cruceños region explores the social construction of women‘s vulnerability to the effects of climate change. Formal and informal institutions det...

  5. Climate Change Adaptation in Dutch Local Communities. Risk Perception, Institutional Capacity and the Role of Local Government

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, M.M.

    2010-06-15

    This report explains the outcomes of the research project 'Analysing local climate vulnerability and local adaptation strategies' which was carried out from 2005 up till 2009. The role of local government is crucial for preparing society for climate change impacts. Yet there are relatively few systemic studies of local community initiatives to improve adaptation capacities. The current study presents an analytic scheme for assessing Dutch municipalities in the context of multilevel governance. The scheme focuses on: (1) historical experience with flooding impacts, and (2) the probability/risk of new climate change impacts. Controlling for size and type of community (rural/urban), the study presents interview-based data for nine case studies. We can conclude that adaptation to climate change at the local level is a complex policy issue, depending on many external and internal factors. We have tried to gain insights into these factors by investigating the role and the institutional capacity of municipalities in the Netherlands. We have distinguished local 'firebrands' of significant importance. The presence of a local administrator (alderman) on environmental affairs from the national Green Party is related crucial to the promotion of climate-related initiatives. We also found that the more 'willing' cases were active in all sorts of networks. This varied from EU projects to urban networks and inter-municipal cooperation. Interviewees actively confirmed that these networks played a key role, as they enable the local actors to exchange knowledge and best practices, and to share the costs of research and trial projects. Within such stimulating networks, local actors are more motivated to explore climate-adaptation efforts that would otherwise be too ambitious (resource-demanding) for a single municipality. The urban cases proved almost all (3 out of 4) to be active climate mitigation frontrunners. They generally consider climate change

  6. Flexible Environments for Grand-Challenge Simulation in Climate Science

    Science.gov (United States)

    Pierrehumbert, R.; Tobis, M.; Lin, J.; Dieterich, C.; Caballero, R.

    2004-12-01

    Current climate models are monolithic codes, generally in Fortran, aimed at high-performance simulation of the modern climate. Though they adequately serve their designated purpose, they present major barriers to application in other problems. Tailoring them to paleoclimate of planetary simulations, for instance, takes months of work. Theoretical studies, where one may want to remove selected processes or break feedback loops, are similarly hindered. Further, current climate models are of little value in education, since the implementation of textbook concepts and equations in the code is obscured by technical detail. The Climate Systems Center at the University of Chicago seeks to overcome these limitations by bringing modern object-oriented design into the business of climate modeling. Our ultimate goal is to produce an end-to-end modeling environment capable of configuring anything from a simple single-column radiative-convective model to a full 3-D coupled climate model using a uniform, flexible interface. Technically, the modeling environment is implemented as a Python-based software component toolkit: key number-crunching procedures are implemented as discrete, compiled-language components 'glued' together and co-ordinated by Python, combining the high performance of compiled languages and the flexibility and extensibility of Python. We are incrementally working towards this final objective following a series of distinct, complementary lines. We will present an overview of these activities, including PyOM, a Python-based finite-difference ocean model allowing run-time selection of different Arakawa grids and physical parameterizations; CliMT, an atmospheric modeling toolkit providing a library of 'legacy' radiative, convective and dynamical modules which can be knitted into dynamical models, and PyCCSM, a version of NCAR's Community Climate System Model in which the coupler and run-control architecture are re-implemented in Python, augmenting its flexibility

  7. Southern Hemisphere atmospheric blocking diagnostic by ECMWF and NCEP/NCAR data Diagnóstico de bloqueios atmosféricos no Hemisférico Sul com reanálises do ECWMF e NCEP/NCAR

    Directory of Open Access Journals (Sweden)

    Monica Cristina Damião Mendes

    2012-09-01

    Full Text Available An assessment of blocking episodes over the Southern Hemisphere, selected from the Era-40 and NCEP/NCAR reanalysis are presented in this study. Blocking can be defined by an objective index based on two 500 hPa geopotential height meridional gradients. The seasonal cycle and preferential areas of occurrence are well reproduced by the two data sets. In both reanalysis used in this study, South Pacific and Oceania were the preferred regions for blocking occurrence, followed by the Atlantic Ocean. However the results revealed differences in frequencies of occurrences, which may be related to the choice of assimilation scheme employed to produce the reanalysis data sets. It is important to note that the ERA 40 and NCEP/NCAR reanalysis were produced using consistent models and assimilation schemes throughout the whole reanalyzed period, which are different for each set.Neste artigo é apresentada uma comparação de episódios de bloqueio no Hemisfério Sul, obtidos das reanálises do ERA 40 e NCEP/NCAR. A definição de bloqueio foi obtida a partir de um índice que se baseia em dois gradientes meridionais da altura geopotencial em 500 hPa. O ciclo sazonal e as áreas preferenciais de ocorrência são bem reproduzidos pelos dois conjuntos de dados. Em ambas as reanálises foi possível notar que o Pacífico Sul e Oceania são as regiões preferenciais de ocorrência de bloqueio, seguido pelo Oceano Atlântico. No entanto, os resultados revelaram diferenças nas frequências de ocorrências, que pode estar relacionada com a assimilação adotada para a produção de conjuntos de dados. É importante notar que os dados do ERA-40 e NCEP/NCAR são produzidos através de modelos consistentes e esquemas de assimilação ao longo do período, que são diferentes para cada conjunto.

  8. Impact of Antarctic mixed-phase clouds on climate.

    Science.gov (United States)

    Lawson, R Paul; Gettelman, Andrew

    2014-12-23

    Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm(-2), and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than -20 °C.

  9. Characterization of climate indices in models and observations using Hurst Exponent and Reyni Entropy Techniques

    Science.gov (United States)

    Newman, D.; Bhatt, U. S.; Wackerbauer, R.; Sanchez, R.; Polyakov, I.

    2009-12-01

    Because models are intrinsically incomplete and evolving, multiple methods are needed to characterize how well models match observations and were their weaknesses lie. For the study of climate, global climate models (GCM) are the primary tool. Therefore, in order to improve our climate modeling confidence and our understanding of the models weakness we need to apply more and more measures of various types until one finds differences. Then we can decide if these differences have important impacts on ones results and what they mean in terms of the weaknesses and missing physics in the models. In this work, we investigate a suite of National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM3) simulations of varied complexity, from fixed sea surface temperature simulations to fully coupled T85 simulations. Climate indices (e.g. NAO), constructed from the GCM simulations and observed data, are analyzed using Hurst Exponent (R/S) and Reyni Entropy methods to explore long-term and short-term dynamics (i.e. temporal evolution of the time series). These methods identify clear differences between the models and observations as well as between the models. One preliminary finding suggests that fixing midlatitude SSTs to observed values increases the differences between the model and observation dynamics at long time scales.

  10. Potentials and limitations of epistemic communities. An analysis of the World Climate Council and the Framework Convention on Climate Change; Potenziale und Grenzen von epistemic communities. Eine Analyse des Weltklimarates und der Klimarahmenkonvention

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Daniel

    2015-07-01

    In times of increasing global uncertainties, science takes a central position for policy decisions. According to Peter M. Haas, epistemic communities are able to influence the cooperative behavior of states through their consensual knowledge. This book critically examines this statement. As the case of the Framework Convention on Climate Change shows, the World Climate Council (IPCC) was not in a position to enforce its solution options in the intergovernmental negotiations, as these affected the individual convictions of the decision-makers. While Angela Merkel advocated an agreement, the US government under George W. Bush denied the existence of climate change. Decision-makers and their individual convictions must therefore have a greater significance in international politics. [German] In Zeiten zunehmender globaler Unsicherheiten nimmt die Wissenschaft fuer die Entscheidungen der Politik eine zentrale Stellung ein. Epistemic communities sind nach Peter M. Haas durch ihr konsensuales Wissen in der Lage, das Kooperationsverhalten von Staaten zu beeinflussen. Das vorliegende Buch prueft diese Aussage kritisch. Wie der Fall der Klimarahmenkonvention zeigt, war der Weltklimarat (IPCC) nicht in der Lage, seine Loesungsoptionen in den zwischenstaatlichen Verhandlungen durchzusetzen, da diesen die individuellen Ueberzeugungen der Entscheidungstraeger entgegenstanden. Waehrend Angela Merkel ein Abkommen befuerwortete, bestritt die US-Regierung unter George W. Bush die Existenz des Klimawandels. Entscheidungstraegern und ihren individuellen Ueberzeugungen muss daher in der internationalen Politik eine staerkere Bedeutung zukommen.

  11. Community violence exposure and post-traumatic stress reactions among Gambian youth: the moderating role of positive school climate.

    Science.gov (United States)

    O'Donnell, Deborah A; Roberts, William C; Schwab-Stone, Mary E

    2011-01-01

    Community violence exposure among youth can lead to various negative outcomes, including post-traumatic stress symptoms. Research in the Western world indicates that a number of social support factors may moderate the relation between violence exposure and internalizing symptoms. Little research has been carried out in non-Western countries. This study aimed to fill this gap by exploring the relations among violence exposure, parental warmth, positive school climate, and post-traumatic stress reactions among youth in The Republic of The Gambia, Africa. A school-based survey of youth behaviors, feelings, attitudes, and perceptions was administered to 653 students at senior secondary schools in four Gambian communities. Students reported high levels of exposure to violence. Over half of students reported witnessing someone threatened with serious physical harm, beaten up or mugged, attacked or stabbed with a knife/piece of glass, or seriously wounded in an incident of violence. Nearly half of students reported being beaten up or mugged during the past year, and nearly a quarter reported being threatened with serious physical harm. There were no sex differences in levels of exposure. Traumatic stress symptoms were common, especially among females. Both violence witnessing and violent victimization significantly predicted post-traumatic stress symptoms, and positive school climate moderated the relationship. Among youth victimized by violence, positive school climate was most strongly correlated with lower levels of post-traumatic stress at low levels of exposure. Among youth who had witnessed violence, positive school climate was most strongly correlated with lower levels of post-traumatic stress at high levels of exposure. Community-based programs that bring together parents, schools, and youth may play an important role in combating the negative effects of some types of violence exposure among Gambian youth. Youth experiencing high levels of violent victimization

  12. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    Science.gov (United States)

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Regional Approach for Linking Ecosystem Services and Livelihood Strategies Under Climate Change of Pastoral Communities in the Mongolian Steppe Ecosystem

    Science.gov (United States)

    Ojima, D. S.; Galvin, K.; Togtohyn, C.

    2012-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau affecting ecosystem services and agro-pastoral systems in Mongolia. Recently, market forces and development strategies are affecting land and water resources of the pastoral communities which are being further stressed due to climatic changes. Evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the social-economic forces. The analysis incorporates information about the social-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia. Our research indicate that sustainability of pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate integrated analysis of landscape management and livelihood strategies provides a framework which links ecosystem services to critical resource assets. Analysis of the available livelihood assets provides insights to the adaptive capacity of various agents in a region or in a community. Sustainable development pathways which enable the development of these adaptive capacity elements will lead to more effective adaptive management strategies for pastoral land use and herder's living standards. Pastoralists will have the

  14. Framing Climate Change Communication to Prompt Individual and Collective Action among Adolescents from Agricultural Communities

    Science.gov (United States)

    Stevenson, Kathryn T.; King, Tasha L.; Selm, Kathryn R.; Peterson, M. Nils; Monroe, Martha C.

    2018-01-01

    Climate communication research suggests strategic message framing may help build public consensus on climate change causes, risks and solutions. However, few have investigated how framing applies to adolescents. Similarly, little research has focused on agricultural audiences, who are among the most vulnerable to and least accepting of climate…

  15. Effects of climate change on natural resources and communities: a compendium of briefing papers

    Science.gov (United States)

    Ralph J. Alig; Evan Mercer

    2011-01-01

    This report is a compilation of four briefing papers based on literature reviews and syntheses, prepared for USDA Forest Service policy analysts and decisionmakers about specific questions pertaining to climate change. The main topics addressed here are effects of climate change on wildlife habitat, other ecosystem services, and land values; socioeconomic impacts of...

  16. Community ecology, climate change and ecohydrology in desert grassland and shrubland

    Science.gov (United States)

    Mathew Daniel Petrie

    2014-01-01

    This dissertation explores the climate, ecology and hydrology of Chihuahuan Desert ecosystems in the context of global climate change. In coming decades, the southwestern United States is projected to experience greater temperature-driven aridity, possible small decreases in annual precipitation, and a later onset of summer monsoon rainfall. These changes may have...

  17. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Graae, Bente; Aarrestad, Per

    2013-01-01

    Recent studies from mountainous areas of small spatial extent (<2500 km(2) ) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-ch...

  18. Evaluating a European knowledge hub on climate change in agriculture: Are we building a better connected community?

    Science.gov (United States)

    Saetnan, Eli Rudinow; Kipling, Richard Philip

    2016-01-01

    In order to maintain food security and sustainability of production under climate change, interdisciplinary and international collaboration in research is essential. In the EU, knowledge hubs are important funding instruments for the development of an interconnected European Research Area. Here, network analysis was used to assess whether the pilot knowledge hub MACSUR has affected interdisciplinary collaboration, using co-authorship of peer reviewed articles as a measure of collaboration. The broad community of all authors identified as active in the field of agriculture and climate change was increasingly well connected over the period studied. Between knowledge hub members, changes in network parameters suggest an increase in collaborative interaction beyond that expected due to network growth, and greater than that found in the broader community. Given that interdisciplinary networks often take several years to have an impact on research outputs, these changes within the relatively new MACSUR community provide evidence that the knowledge hub structure has been effective in stimulating collaboration. However, analysis showed that knowledge hub partners were initially well-connected, suggesting that the initiative may have gathered together researchers with particular resources or inclinations towards collaborative working. Long term, consistent funding and ongoing reflection to improve networking structures may be necessary to sustain the early positive signs from MACSUR, to extend its success to a wider community of researchers, or to repeat it in less connected fields of science. Tackling complex challenges such as climate change will require research structures that can effectively support and utilise the diversity of talents beyond the already well-connected core of scientists at major research institutes. But network research shows that this core, well-connected group are vital brokers in achieving wider integration.

  19. Climate change effects on lowland stream flood regimes and riparian rich fen vegetation communities in Denmark

    DEFF Research Database (Denmark)

    Thodsen, Hans; Baattrup-Pedersen, Annette; Andersen, Hans Estrup

    2016-01-01

    There is growing awareness that an intensification of the hydrological cycle associated with climate change in many parts of the world will have profound implications for river ecosystem structure and functions. In the present study we link an ensemble of regional climate model projections...... to a hydrological model with the aim to predict climate driven changes in flooding regimes in lowland riparian areas. Our specific aims were to 1) predict effects of climate change on flood frequencies and magnitudes in riparian areas by using an ensemble of six climate models and 2) combine the obtained...... flow roughness (weed cover). We did not find evidence that the present flooding regime was an overall key factor determining the distribution of fen vegetation. However, with the predicted changes in flooding frequencies in the investigated areas we expect to see changes in species compositional...

  20. Divergence of dominant factors in soil microbial communities and functions in forest ecosystems along a climatic gradient

    Science.gov (United States)

    Xu, Zhiwei; Yu, Guirui; Zhang, Xinyu; He, Nianpeng; Wang, Qiufeng; Wang, Shengzhong; Xu, Xiaofeng; Wang, Ruili; Zhao, Ning

    2018-03-01

    Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north-south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi-bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results

  1. Network Connectedness, Sense of Community, and Risk Perception of Climate Change Professionals in the Pacific Islands Region

    Science.gov (United States)

    Corlew, L. K.; Keener, V. W.; Finucane, M.

    2013-12-01

    The Pacific Regional Integrated Sciences and Assessments (Pacific RISA) Program conducted social network analysis research of climate change professionals (broadly defined) who are from or work in Hawaii and the U.S.-Affiliated Pacific Islands (USAPI) region. This study is supported by the National Oceanic and Atmospheric Administration (NOAA) and the Pacific Islands Climate Science Center (PICSC) to address an identified need for a resource that quantifies the region's collaborative network of climate change professionals, and that supports the further development of cross-regional and inter-sectoral collaborations for future research and adaptation activities. A survey was distributed to nearly 1,200 people who are from and/or work in climate change related fields in the region. The Part One Survey questions (not confidential) created a preferential attachment network by listing major players in Hawaii and the USAPI, with additional open fields to identify important contacts in the greater professional network. Participants (n=340) identified 975 network contacts and frequency of communications (weekly, monthly, seasonally, yearly, at least once ever). Part Two Survey questions (confidential, n=302) explored climate change risk perceptions, Psychological Sense of Community (PSOC), sense of control over climate change impacts, sense of responsibility to act, policy beliefs and preferences regarding climate change actions, concern and optimism scales about specific impacts, and demographic information. Graphical representations of the professional network are being developed for release in September 2013 as a free online tool to promote and assist collaboration building among climate professionals in the region. The graphs are partitioned according to network 'hubs' (high centrality), participant location, and profession to clearly identify network strengths and opportunities for future collaborations across spatial and professional boundaries. For additional

  2. Using Virtualization to Integrate Weather, Climate, and Coastal Science Education

    Science.gov (United States)

    Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.

    2012-12-01

    To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a

  3. Knowledge and perception about climate change and human health: findings from a baseline survey among vulnerable communities in Bangladesh.

    Science.gov (United States)

    Kabir, Md Iqbal; Rahman, Md Bayzidur; Smith, Wayne; Lusha, Mirza Afreen Fatima; Azim, Syed; Milton, Abul Hasnat

    2016-03-15

    Bangladesh is one of the countries most vulnerable to climate change (CC). A basic understanding of public perception on vulnerability, attitude and the risk in relation to CC and health will provide strategic directions for government policy, adaptation strategies and development of community-based guidelines. The objective of this study was to collect community-based data on peoples' knowledge and perception about CC and its impact on health. In 2012, a cross-sectional survey was undertaken among 6720 households of 224 enumeration areas of rural villages geographically distributed in seven vulnerable districts of Bangladesh, with total population of 19,228,598. Thirty households were selected randomly from each enumeration area using the household listing provided by the Bangladesh Bureau of Statistics (BBS). Information was collected from all the 6720 research participants using a structured questionnaire. An observation checklist was used by the interviewers to collect household- and community-related information. In addition, we selected the head of each household as the eligible participant for an interview. Evidence of association between sociodemographic variables and knowledge of CC was explored by cross-tabulation and measured using chi-square tests. Logistic regression models were used to further explore the predictors of knowledge. The study revealed that the residents of the rural communities selected for this study largely come from a low socioeconomic background: only 9.6% had postsecondary education or higher, the majority worked as day labourer or farmer (60%), and only 10% earned a monthly income above BDT 12000 (equivalent to US $150 approx.). The majority of the participants (54.2%) had some knowledge about CC but 45.8% did not (p change of climate (83.2%). Among all the respondents (n = 6720), 94.5% perceived change in climate and extreme weather events. Most of them (91.9%) observed change in rainfall patterns in the last 10 years, and 97

  4. Detection of 10B distributions in histological samples by NCAR using thermal and cold neutrons and photoluminiscent imaging plates. New results

    International Nuclear Information System (INIS)

    Rant, J.; Skvarc, J.; Ilic, R.; Gabel, D.; Bayon, G.; Yanagie, H.; Kobayashi, H.; Lehmann, E.; Kuehne, G.

    1999-01-01

    The Neutron Capture Autoradiography (NCAR) using various Solid State Nuclear Track Detectors (SSNTDs) is a well established and accurate method to detect and measure the distributions of 10 B in the ppm range on macroscopic and microscopic level in biological samples, such as histological sections of tumours loaded with 10 B compounds used for BNCT (e.g. 1,2). recently a new technique of NCAR using sensitive photoluminescent Imaging Plates (IP) has been proposed to detect 10 B distributions in histological sections (3), exploiting excellent detection properties of IP systems such as very high detection sensitivity and quantum detection efficiency, broad linear response and dynamic range, very small image distortion, reusability of IP and possibilities of digital autoradiography. The advantage of IP-NCAR vs. NCAR with SSNTDs should be the much lower neutron fluence (10 7 10 9 vs. 10 10 10 13 n/cm 2 with SSNTDs), no intermediate chemical treatment (track etching) and direct and fast compuitational handling and evaluation of the digitized autoradiographic image. However, the spatial resolution of the present available IP detection systems is somewhat lower (∼ 0,04 mm) than with SSNTDs (∼ 0,01 mm). Another problem with IP NCAR is rather high sensitivity of IP to all types of ionizing radiations. Therefore the background of direct and induced gamma-rays as well as of epithermal and fast neutrons has to be filtered out of thermal neutron beam to be used for IP-NCAR. To improve the signal/background ratio and to increase the detectibility of 10 B we propose to use clean cold neutron beams for the IP-NCAR of 10 B distributions in histological samples in BNCT experiments (4,5). In the present work the recent results of experiments in IP-NCAR with cold neutrons from the neutron radiographic channel of the ORPHEE reactor in Saclay and with the rather clean thermal neutron beam of the NEUTRA neutron radiography facility of the PSI (Villingen) will be presented. For the

  5. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations.

    Science.gov (United States)

    Adam, Thomas C; Brooks, Andrew J; Holbrook, Sally J; Schmitt, Russell J; Washburn, Libe; Bernardi, Giacomo

    2014-09-01

    Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.

  6. Projection of wave conditions in response to climate change: A community approach to global and regional wave downscaling

    Science.gov (United States)

    Erikson, Li H.; Hemer, M.; Lionello, Piero; Mendez, Fernando J.; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan; Wolf, Judith

    2015-01-01

    Future changes in wind-wave climate have broad implications for coastal geomorphology and management. General circulation models (GCM) are now routinely used for assessing climatological parameters, but generally do not provide parameterizations of ocean wind-waves. To fill this information gap, a growing number of studies use GCM outputs to independently downscale wave conditions to global and regional levels. To consolidate these efforts and provide a robust picture of projected changes, we present strategies from the community-derived multi-model ensemble of wave climate projections (COWCLIP) and an overview of regional contributions. Results and strategies from one contributing regional study concerning changes along the eastern North Pacific coast are presented.

  7. Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses

    Science.gov (United States)

    Trenberth, K. E.; Guillemot, C. J.

    An evaluation is carried out of the moisture fields, the precipitation P and evaporation E, and the moisture transport and divergence in the atmosphere from the global atmospheric National Centers for Environmental Prediction (NCEP)-NCAR reanalyses produced with four-dimensional-data assimilation. The moisture fields are summarized by the precipitable water which is compared with analyzed fields from NVAP based primarily on Special Sensor Microwave Imager (SSM/I) over the oceans and rawinsonde measurements over land, plus TIROS Operational Vertical Sounder (TOVS). The moisture budgets are evaluated through computation of the freshwater flux at the surface E-P from the divergence of the total moisture transport, and this is compared with the reanalysis E-P that is based upon a 6-hour integration of the assimilating model and thus depends on the model parametrizations. The P field is evaluated using Xie- Arkin global precipitation estimates which, although containing considerable uncertainties, are believed to be reliable and good enough to show that there are substantial biases in the NCEP P. There are many fields of interest and which are improved over previous information available. On an annual mean basis the largest evaporation of over 6 mm/day is in the subtropical Indian Ocean. However, the NCEP moisture fields are shown to contain large and significant biases in the tropics. The tropical structures are less well defined and values are generally smaller where they should be high and higher where they should be low. In addition, the NCEP moisture fields contain less variability from year to year. The NCEP model P generally reveals a double intertropical convergence zone in the central Pacific and the location of the South Pacific Convergence Zone is not well captured. Rainfall amounts are lower than observed in the oceanic tropical convergence zones. The variability in the central tropical Pacific of P associated with El Niño-Southern Oscillation (ENSO) is

  8. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    Science.gov (United States)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  9. Understanding smallholder farmers’ capacity to respond to climate change in a coastal community in Central Vietnam

    NARCIS (Netherlands)

    Phuong, Le Thi Hong; Biesbroek, G.R.; Sen, Le Thi Hoa; Wals, Arjen E.J.

    2017-01-01

    Climate change as expressed by erratic rainfall, increased flooding, extended droughts, frequency tropical cyclones or saline water intrusion, poses severe threats to smallholder farmers in Vietnam. Adaptation of the agricultural sector is vital to increase the resilience of smallholder farmers’

  10. Climate Change, Demographics, Technology, and Globalization: Their Impact on the Acquisition Community

    Science.gov (United States)

    2008-04-01

    changes in climate, demographics, technology , and globalization . History is replete with examples of unexpected events that startled and surprised...sensitive, and advanced technology will become more difficult to keep secure and shared only as intended by the United States. Globalization Local...located in low-lying coastal and other water-stressed areas will pose greater T R A N S F O R M A T I O N Climate Change, Demographics, Technology

  11. Ocean climate data for user community in West and Central Africa: Needs, opportunities, and challenges

    Science.gov (United States)

    Ojo, S. O.

    1992-01-01

    The urgent need to improve data delivery systems needed by scientists studying ocean role in climate and climate characteristics has been manifested in recent years because of the unprecedented climatic events experienced in many parts of the world. Indeed, there has been a striking and growing realization by governments and the general public indicating that national economies and human welfare depend on climate and its variability. In West and Central Africa, for instance climatic events, which have resulted in floods and droughts, have caused a lot of concern to both governments and people of the region. In particular, the droughts have been so widespread that greater awareness and concern have become generated for the need to find solutions to the problems created by the consequences of the climatic events. Particularly in the southern border regions of the Sahara Desert as well as in the Sahel region, the drought episodes considerably reduced food production and led to series of socioeconomic problems, not only in the areas affected by the droughts, but also in the other parts of West Africa. The various climatic variabilities which have caused the climatic events are no doubt related to the ocean-atmosphere interactions. Unfortunately, not much has been done on the understanding of these interactions, particularly as they affect developing countries. Indeed, not much has been done to develop programs which will reflect the general concerns and needs for researching into the ocean-atmosphere systems and their implications on man-environmental systems in many developing countries. This is for example, true of West and Central Africa, where compared with the middle latitude countries, much less is known about the characteristics of the ocean-atmosphere systems and their significance on man-environmental systems of the area.

  12. Carbon finance and pro-poor co-benefits: The Gold Standard and Climate, Community and Biodiversity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Rachel

    2011-04-15

    This paper assesses the practical contribution of the Gold Standard (GS) and Climate Community and Biodiversity (CCB) Standards to local development through the identification of high quality carbon offset projects and ensuring high standards of consultation with local communities during project development and implementation. It is based on desk research, involving analysis of the GS and CCB Standards' project databases, project design documents, and secondary literature. In addition, over 20 representatives of the two standards systems, project developers, NGO representatives, and researchers were interviewed. The paper concludes that both standard systems successfully reward high quality projects which have a demonstrated commitment to local consultations and sustainable development benefits. Moreover, they serve to give well-meaning project developers frameworks with which to ensure that a wide range of criteria are considered in planning and implementing projects. As voluntary standards, it is unrealistic to expect either the GS or CCB Standards to improve poor-quality or unsustainable projects.

  13. Nutrient-cycling microbes in coastal Douglas-fir forests: regional-scale correlation between communities, in situ climate, and other factors.

    Science.gov (United States)

    Shay, Philip-Edouard; Winder, Richard S; Trofymow, J A

    2015-01-01

    Microbes such as fungi and bacteria play fundamental roles in litter-decay and nutrient-cycling; however, their communities may respond differently than plants to climate change. The structure (diversity, richness, and evenness) and composition of microbial communities in climate transects of mature Douglas-fir stands of coastal British Columbia rainshadow forests was analyzed, in order to assess in situ variability due to different temperature and moisture regimes. We compared denaturing gradient gel electrophoresis profiles of fungi (18S-FF390/FR1), nitrogen-fixing bacteria (NifH-universal) and ammonia-oxidizing bacteria (AmoA) polymerase chain reaction amplicons in forest floor and mineral soil samples from three transects located at different latitudes, each transect spanning the Coastal Western Hemlock and Douglas-fir biogeoclimatic zones. Composition of microbial communities in both soil layers was related to degree days above 0°C (2725-3489), while pH (3.8-5.5) best explained shifts in community structure. At this spatial scale, climatic conditions were likely to directly or indirectly select for different microbial species while local site heterogeneity influenced community structure. Significant changes in microbial community composition and structure were related to differences as small as 2.47% and 2.55°C in mean annual moisture and temperature variables, respectively. The climatic variables best describing microbial composition changed from one functional group to the next; in general they did not alter community structure. Spatial distance, especially associated with latitude, was also important in accounting for community variability (4-23%); but to a lesser extent than the combined influence of climate and soil characteristics (14-25%). Results suggest that in situ climate can independently account for some patterns of microbial biogeography in coastal Douglas-fir forests. The distribution of up to 43% of nutrient-cycling microorganisms detected in

  14. MICROCLIMATIC RESPONSES OF PLANT COMMUNITIES TO CLIMATIC CHANGES: A STUDY CASE IN THE MEDITERRANEAN COASTAL VEGETATION NEAR ROME

    Directory of Open Access Journals (Sweden)

    S. GUIDOTTI

    2010-04-01

    Full Text Available The aim of this study is to investigate the microclimates of the different plant communities in the Castelporziano Estate to identify changes at short and medium time, caused by interacting factors at local scale like anthropic disturbance, climatic change and territory management. Air temperature and humidity, soil temperature and PAR (Photosynthetic Active Radiation were monthly monitored. Measurements were taken in 21 stations, 6 of which along a transect in the vegetation of the dunes and the other 15 stations in forest associations. The dataset have been processed using different statistical treatments: (1 analysis of variance to evaluate the homeostatic capacity of the different communities; (2 analysis of microclimatic deviations values from mesoclimatic data, represented by Castelporziano Estate meteo-climatic stations, to detect microclimatic differences; (3 Multivariate Cluster Analysis to classify the different microclimates. Three main results were obtained: (1 comparison between microclimatic parameters measured during 2007-2008 and previous ones (2003 showed a general tendency of all forest types to shift towards xerophile conditions: air humidity decreased in a large percentage (20%. The woodland with major risk is the Lauro-Carpinetum that looses the 18% of air humidity in a very short period (5 years; (2 vegetation of the dunes displays homeostatic capacity in relationship with structural complexity increasing from pioneer communities of Cakiletum maritimae to mature stands of Viburno- Quercetum ilicis; (3 Cluster Analysis, performed on microclimatic data, allowed to classify vegetation in three different groups, confirming the same patterns obtained by floristic composition. Microclimate resulted a valid and robust tool to detect the ecological status of species and communities, and to follow their temporal changes.

  15. MICROCLIMATIC RESPONSES OF PLANT COMMUNITIES TO CLIMATIC CHANGES: A STUDY CASE IN THE MEDITERRANEAN COASTAL VEGETATION NEAR ROME

    Directory of Open Access Journals (Sweden)

    S. PIGNATTI

    2010-01-01

    Full Text Available The aim of this study is to investigate the microclimates of the different plant communities in the Castelporziano Estate to identify changes at short and medium time, caused by interacting factors at local scale like anthropic disturbance, climatic change and territory management. Air temperature and humidity, soil temperature and PAR (Photosynthetic Active Radiation were monthly monitored. Measurements were taken in 21 stations, 6 of which along a transect in the vegetation of the dunes and the other 15 stations in forest associations. The dataset have been processed using different statistical treatments: (1 analysis of variance to evaluate the homeostatic capacity of the different communities; (2 analysis of microclimatic deviations values from mesoclimatic data, represented by Castelporziano Estate meteo-climatic stations, to detect microclimatic differences; (3 Multivariate Cluster Analysis to classify the different microclimates. Three main results were obtained: (1 comparison between microclimatic parameters measured during 2007-2008 and previous ones (2003 showed a general tendency of all forest types to shift towards xerophile conditions: air humidity decreased in a large percentage (20%. The woodland with major risk is the Lauro-Carpinetum that looses the 18% of air humidity in a very short period (5 years; (2 vegetation of the dunes displays homeostatic capacity in relationship with structural complexity increasing from pioneer communities of Cakiletum maritimae to mature stands of Viburno- Quercetum ilicis; (3 Cluster Analysis, performed on microclimatic data, allowed to classify vegetation in three different groups, confirming the same patterns obtained by floristic composition. Microclimate resulted a valid and robust tool to detect the ecological status of species and communities, and to follow their temporal changes.

  16. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient.

    Science.gov (United States)

    Lanzén, Anders; Epelde, Lur; Blanco, Fernando; Martín, Iker; Artetxe, Unai; Garbisu, Carlos

    2016-06-20

    Mountain elevation gradients are invaluable sites for understanding the effects of climate change on ecosystem function, community structure and distribution. However, relatively little is known about the impact on soil microbial communities, in spite of their importance for the functioning of the soil ecosystem. Previous studies of microbial diversity along elevational gradients were often limited by confounding variables such as vegetation, pH, and nutrients. Here, we utilised a transect in the Pyrenees established to minimise variation in such parameters, to examine prokaryotic, fungal, protist and metazoan communities throughout three consecutive years. We aimed to determine the influences of climate and environmental parameters on soil microbial community structure; as well as on the relationships between those microbial communities. Further, functional diversity of heterotrophic bacteria was determined using Biolog. Prokaryotic and fungal community structure, but not alpha-diversity, correlated significantly with elevation. However, carbon-to-nitrogen ratio and pH appeared to affect prokaryotic and protist communities more strongly. Both community structure and physicochemical parameters varied considerably between years, illustrating the value of long-term monitoring of the dynamic processes controlling the soil ecosystem. Our study also illustrates both the challenges and strengths of using microbial communities as indicators of potential impacts of climate change.

  17. Organizational Climate and Emotional Intelligence: An Appreciative Inquiry into a "Leaderful" Community College

    Science.gov (United States)

    Yoder, Debra Marie

    2005-01-01

    In an era of unprecedented challenges and rapid change, community colleges need effective leadership that brings out the best in people, organizations, and communities. This qualitative study was based on interpretive research using appreciative inquiry (AI). AI is based on social constructivist theory and is a collaborative and highly…

  18. Strategies for Student Attendance and School Climate in Baltimore's Community Schools

    Science.gov (United States)

    Durham, Rachel E.; Connolly, Faith

    2017-01-01

    In 2012, the Community School Engagement Strategy was adopted by the Family League of Baltimore as a way to address historical racial and structural inequalities that have produced unequal educational outcomes among the city's children and youth. The goals of community schools include integrating health and social supports for children and their…

  19. Climate-mediated competition in a high-elevation salamander community

    Science.gov (United States)

    Dallalio, Eric A.; Brand, Adrianne B,; Grant, Evan H. Campbell

    2017-01-01

    The distribution of the federally endangered Shenandoah Salamander (Plethodon shenandoah) is presumed to be limited by competition with the Red-backed Salamander (Plethodon cinereus). In particular, the current distribution of P. shenandoah is understood to be restricted to warmer and drier habitats because of interspecific interactions. These habitats may be particularly sensitive to climate change, though the influence of competition may also be affected by temperature and relative humidity. We investigated the response of P. shenandoah to competition with P. cinereus under four climate scenarios in 3-dimensional mesocosms. The results suggest that, although climate change may alleviate competitive pressure from P. cinereus, warmer temperatures may also significantly influence the persistence of the species across its known range.

  20. Classification and ordination of main plant communities along an altitudinal gradient in the arid and temperate climates of northeastern Mexico

    Science.gov (United States)

    Castillón, Eduardo Estrada; Arévalo, José Ramón; Quintanilla, José Ángel Villarreal; Rodríguez, María Magdalena Salinas; Encina-Domínguez, Juan Antonio; Rodríguez, Humberto González; Ayala, César Martín Cantú

    2015-10-01

    Quantitative data on the ecology of the main plant communities along an altitudinal gradient in northeastern Mexico were obtained with the aim of identifying the most important environmental variables that affect plant distribution and composition. The main threats to these communities were also investigated. Importance value index (IVi) of the 39 most important species and 16 environmental variables were recorded at 35 altitudinal gradients each spaced at intervals of at least 100-m altitude. Classification and ordination of vegetation showed six well-differentiated but overlapping plant communities: alpine meadow, cold conifer forest, mesic mixed forest, xeric scrub, Tamaulipan piedmont scrub, and halophytic grassland. Altitude, minimum and average temperatures, and organic matter content are the main variables affecting the plant distribution in northeastern Mexico. Urban growth, mechanized agriculture, and changes in land use are the main threats in the short and medium term to plant communities in this area. Climate change also seems to be having an impact at present or in the near future as shown by the presence of exotic shrubs from warmer areas in mesic and temperate areas inhabited by oak and oak-pine forest.

  1. Effective Social Media Practices for Communicating Climate Change Science to Community Leaders

    Science.gov (United States)

    Estrada, M.; DeBenedict, C.; Bruce, L.

    2016-12-01

    Climate Education Partners (CEP) uses an action research approach to increase climate knowledge and informed decision-making among key influential (KI) leaders in San Diego county. Social media has been one method for disseminating knowledge. During CEP's project years, social media use has proliferated. To capitalize on this trend, CEP iteratively developed a strategic method to engage KIs. First, as with all climate education, CEP identified the audience. Three primary Facebook and Twitter audiences were CEP's internal team, local KIs, and strategic partner organizations. Second, post contents were chosen based on interest to CEP key audiences and followed CEP's communications message triangle, which incorporates the Tripartite Integration Model of Social Influence (TIMSI). This message triangle focuses on San Diegan's valued quality of life, future challenges we face due to the changing climate, and ways in which we are working together to protect our quality of life for future generations. Third, an editorial calendar was created to carefully time posts, which capitalize on when target audiences were using social media most and to maintain consistency. The results of these three actions were significant. Results attained utilizing Facebook and Twitter data, which tracks post reach, total followers/likes, and engagement (likes, comments, mentions, shares). For example we found that specifically mentioning KIs resulted in more re-tweets and resulted in reaching a broader audience. Overall, data shows that CEP's reach to audiences of like-minded individuals and organizations now extends beyond CEP's original local network and reached more than 20,000 accounts on Twitter this year (compared with 460 on Twitter the year before). In summary, through posting and participating in the online conversation strategically, CEP disseminated key educational climate resources and relevant climate change news to educate and engage target audience and amplify our work.

  2. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    Science.gov (United States)

    Yates, Kimberly K.; Rogers, Caroline S.; Herlan, James J.; Brooks, Gregg R.; Smiley, Nathan A.; Larson, Rebekka A.

    2014-01-01

    Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business-as-usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. 

  3. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Science.gov (United States)

    Hodd, Rory L; Bourke, David; Skeffington, Micheline Sheehy

    2014-01-01

    Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly

  4. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Directory of Open Access Journals (Sweden)

    Rory L Hodd

    Full Text Available Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1 oceanic montane bryophytes and vascular plants; 2 species belonging to different montane plant communities; 3 species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need

  5. Climate-vegetation relationship: adaptations of jarillal community to the semiarid climate. Lihué Calel National Park, province of La Pampa, Argentina

    Directory of Open Access Journals (Sweden)

    Valeria Soledad Duval

    2015-12-01

    Full Text Available The study of vegetation from the Geography perspective focuses on the analysis of the spatial distribution and on the factors affecting it. One of these factors is the climate, which determines the characteristics of the vegetation and, on a larger scale, of the communities. The aim of this paper is to analyze the climate-vegetation relationship by studying adaptations of the jarillal community regarding the semiarid climate in the Lihué Calel National Park, Argentina. Therefore, this contribution is concerned with the knowledge of the characteristics of the environment in order to understand how vegetation responds to certain phenomena, so management of protected areas will be more suitable. Lihué Calel National Park is a national protected area located in the south-center of La Pampa province, Argentina. According to Cabrera (1976 the area belongs to the floristic province of “monte” and the climate is warm and dry. In the interest to achieve the goals of this paper, Thornthwaite and Mather´s water balance was done. The data was collected from a weather station that belongs to the national park, for the period 1995-2010. Emberger›s pluviothermic coefficient, Lang´s rainfall index, De Martonne´s aridity index and Currey´s continentality index were analyzed. In addition, ten stands or plots of vegetation were placed to determine the floristic composition and the vegetation physiognomy. Then, plants species were identified as individuals and their adaptive responses were also analyzed. In conclusion, the survey verified that semi-arid climate conditions determine the morphology and the appearance of jarillal. Climate analysis shows that for the period 1995-2010 the average annual temperature is 16.2° C and reveals that thermal summers and winters are well differentiated. Large water deficit is defined, because water balance indicates that the evapotranspiration exceeds precipitation during every month of the year. According to

  6. Fractured tenure, unaccountable authority, and benefit capture: Constraints to improving community benefits under climate change mitigation schemes in Ghana

    Directory of Open Access Journals (Sweden)

    Emmanuel Marfo

    2012-01-01

    Full Text Available The debate on climate change and ecosystem services has grown substantially over the past two decades. The post-Kyoto protocol period particularly has witnessed increased formulation of financial mechanisms to compensate for green efforts towards carbon sequestration and reduction in deforestation. In most cases, communities substantially depend on forests for their livelihoods or their actions have a direct bearing on the sustainability of the forests. Will the economic incentives from emerging initiatives offer new sources of income to support rural livelihoods and reduce poverty? There is some doubt about this potential, because there is enormous evidence across the world to show that forest exploitation and use has not substantially benefited local people and Ghana is no exception. This paper draws on existing evidence in Ghana to show that the lack of secure community tenure rights and the dominance of unaccountable authority-which leads to benefit capture by local elites-are critical constraints to equitable forest benefit sharing. Building on the evidence, this paper argues that unless these issues are addressed in policy and practice, the potential economic benefits from the various emerging mechanisms under climate change and ecosystem services may not benefit local people; they may even reinforce the gap between the rich and the poor.

  7. Using a community-driven approach to identify local forest and climate change priorities in Teslin, Yukon

    Directory of Open Access Journals (Sweden)

    Joleen Timko

    2015-12-01

    Full Text Available The likelihood of addressing the complex environmental, economic, and social/cultural issues associated with local climate change impacts is enhanced when collaborative partnerships with local people are established. Using a community-centered approach in the Teslin region of Canada’s Yukon Territory, we utilized our research skills to respond to local needs for information by facilitating both an internal community process to clarify traditional and local knowledge, values, and perceptions on locally identified priorities, while gathering external information to enable local people to make sound decisions. Specifically, we sought to clarify local perceptions surrounding climate change impacts on fire risk and wildlife habitat, and the potential adaptation strategies appropriate and feasible within the Teslin Tlingit Traditional Territory. This paper provides a characterization of the study region and our project team; provides background on the interview and data collection process; presents our key results; and discusses the importance of our findings and charts a way forward for our continued work with the people in the Teslin region. This approach presents an excellent opportunity to help people holistically connect a range of local values, including fire risk mitigation, habitat enhancement, economic development, and enhanced social health.

  8. The impact of state certification of community health workers on team climate among registered nurses in the United States.

    Science.gov (United States)

    Siemon, Mark; Shuster, Geoff; Boursaw, Blake

    2015-04-01

    A number of states have adopted certification programs for community health workers (CHWs) to improve recognition of CHWs as members of health care teams, increase oversight, and to provide sustainable funding. There has been little research into the impact of state CHW certification on the diffusion and adoption of CHWs into existing health care systems. This study examined the impact of state CHW certification on the perceptions of team climate among registered nurses (RNs) who work with CHWs in states with and without CHW certification programs. The study recruited RNs using a purposeful sampling method and used an online survey, which included the Team Climate Inventory (TCI), and compared the perceptions of team climate between the two groups. The study found no significant differences in the overall mean TCI score or TCI subscale scores between RNs who work in states with CHW certification programs (n = 81) and those who work in states without CHW certification programs (n = 115). There was a statistically significant difference on one survey question regarding whether RNs believe state certification of CHWs improved the ability of their health care team to deliver quality care. More research is needed to assess impact of state certification of CHWs and other factors that influence the diffusion and adoption of CHWs into the current health care system.

  9. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy.

    Science.gov (United States)

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela; Johnson, Richard J

    2016-08-08

    Climate change has led to significant rise of 0.8°C-0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions. Copyright © 2016 by the American Society of Nephrology.

  10. Adaptation strategies to climate change in the Arctic: a global patchwork of reactive community-scale initiatives

    Science.gov (United States)

    Loboda, Tatiana V.

    2014-11-01

    Arctic regions have experienced and will continue to experience the greatest rates of warming compared to any other region of the world. The people living in the Arctic are considered among most vulnerable to the impacts of environmental change ranging from decline in natural resources to increasing mental health concerns (IPCC 2014 Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press)). A meta-analysis study by Ford et al (2014 Environ. Res. Lett. 9 104005) has assessed the volume, scope and geographic distribution of reported in the English language peer-reviewed literature initiatives for adaptation to climate change in the Arctic. Their analysis highlights the reactive nature of the adopted policies with a strong emphasis on local and community-level policies mostly targeting indigenous population in Canada and Alaska. The study raises concerns about the lack of monitoring and evaluation mechanism to track the success rate of the existing policies and the need for long-term strategic planning in adaption policies spanning international boundaries and including all groups of population.

  11. Knowledge, perception and practices about malaria, climate change, livelihoods and food security among rural communities of central Tanzania.

    Science.gov (United States)

    Mayala, Benjamin K; Fahey, Carolyn A; Wei, Dorothy; Zinga, Maria M; Bwana, Veneranda M; Mlacha, Tabitha; Rumisha, Susan F; Stanley, Grades; Shayo, Elizabeth H; Mboera, Leonard Eg

    2015-01-01

    Understanding the interactions between malaria and agriculture in Tanzania is of particular significance when considering that they are the major sources of illness and livelihoods. The objective of this study was to determine knowledge, perceptions and practices as regards to malaria, climate change, livelihoods and food insecurity in a rural farming community in central Tanzania. Using a cross-sectional design, heads of households were interviewed on their knowledge and perceptions on malaria transmission, symptoms and prevention and knowledge and practices as regards to climate change and food security. A total of 399 individuals (mean age = 39.8 ± 15.5 years) were interviewed. Most (62.41%) of them had attained primary school education and majority (91.23%) were involved in crop farming activities. Nearly all (94.7%) knew that malaria is acquired through a mosquito bite. Three quarters (73%) reported that most people get sick from malaria during the rainy season. About 50% of the respondents felt that malaria had decreased during the last 10 years. The household coverage of insecticide treated mosquito nets (ITN) was high (95.5%). Ninety-six percent reported to have slept under a mosquito net the previous night. Only one in four understood the official Kiswahili term (Mabadiliko ya Tabia Nchi) for climate change. However, there was a general understanding that the rain patterns have changed in the past 10 years. Sixty-two percent believed that the temperature has increased during the same period. Three quarters of the respondents reported that they had no sufficient production from their own farms to guarantee food security in their household for the year. Three quarters (73.0%) reported to having food shortages in the past five years. About half said they most often experienced severe food shortage during the rainy season. Farming communities in Kilosa District have little knowledge on climate change and its impact on malaria burden. Food

  12. Understanding the interactions between Social Capital, climate change, and community resilience in Gulf of Mexico coastal counties

    Science.gov (United States)

    Young, C.; Blomberg, B.; Kolker, A.; Nguyen, U.; Page, C. M.; Sherchan, S. P.; Tobias, V. D.; Wu, H.

    2017-12-01

    Coastal communities in the Gulf of Mexico are facing new and complex challenges as their physical environment is altered by climate warming and sea level rise. To effectively prepare for environmental changes, coastal communities must build resilience in both physical structures and social structures. One measure of social structure resilience is how much social capital a community possesses. Social capital is defined as the connections among individuals which result in networks with shared norms, values and understandings that facilitate cooperation within or among groups. Social capital exists in three levels; bonding, bridging and linking. Bonding social capital is a measure of the strength of relationships amongst members of a network who are similar in some form. Bridging social capital is a measure of relationships amongst people who are dissimilar in some way, such as age, education, or race/ethnicity. Finally Linking social capital measures the extent to which individuals build relationships with institutions and individuals who have relative power over them (e.g local government, educational institutions). Using census and American Community Survey data, we calculated a Social Capital index value for bonding, bridging and linking for 60 Gulf of Mexico coastal counties for the years 2000, and 2010 to 2015. To investigate the impact of social capital on community resilience we coupled social capital index values with physical datasets of land-use/land cover, sea level change, climate, elevation and surface water quality for each coastal county in each year. Preliminary results indicate that in Gulf of Mexico coastal counties, increased bonding social capital results in decreased population change. In addition, we observed a multi-year time lag in the effect of increased bridging social capital on population stability, potentially suggesting key linkages between the physical and social environment in this complex coupled-natural human system. This

  13. Establishing quantitative relations between mammalian communities, climate regimes, and vegetation density - A diversity-based reference model and case study

    Science.gov (United States)

    Hertler, Christine; Wolf, Dominik; Bruch, Angela; Märker, Michael

    2013-04-01

    A considerable diversity of hominin taxa is described from the Pleistocene of sub-Saharan Africa. Inner-African range expansions of these taxa are primarily addressed by morphological comparisons of the hominin specimens and systematic interpretation of the results. Considering hominin expansion patterns as being at least co-determined by ecology and environment requires an assessment of respective features of paleo-communities as well as features of the environments with which they are associated. Challenges in validation and integration of reconstructions of hominin environments and ecologies can be met with well-organized recent reference models. Modelling the present day situation permits to assess relevant variables and to establish interactions among them on a quantitative basis. In a next step such a model can be applied to classify hominin paleoenvironments, for which not all data sources are available. An example for this approach is introduced here. In order to characterize hominin environments in sub-Saharan Africa, we assessed sets of variables for composition, structure and diversity of the large mammal communities, climate (temperature and precipitation), and vegetation in African national parks. These data are applied to analyse correlations between faunal communities and their environments on a quantitative basis. While information on large mammal communities is frequently available for hominin localities and regional climate features are addressed on the basis of abiotic proxies, information on paleoflora and vegetation is mostly lacking for the Plio-Pleistocene in sub-Saharan Africa. A quantitative reference model therefore offers new options for reconstructions. A recent reference model moreover permits to quantify descriptive terms like 'savanna'. We will introduce a reference model for sub-Saharan Africa and demonstrate its application in the reconstruction of hominin paleoenvironments. The corresponding quantitative characterization of

  14. ­Weather and climate change drivers of agricultural pesticide use in the US

    Science.gov (United States)

    Larsen, A.; Deschenes, O.

    2016-12-01

    Agricultural pesticides have numerous negative consequences for human and environmental health due to direct exposure, and associated air pollution, water contamination and biodiversity losses. As such, understanding the abiotic and biotic drivers of pesticide variability is a scientific and policy priority. Temperature is a direct determinant of insect pest development rates, and as such, it is anticipated that insect pest damage and insecticide use will increase in a warmer climate. Yet, the complexity of plant-insect interactions, diversity of crop growing regions, and uncertainty of climate forecasts have hampered predictions regarding where and to what degree climate change may alter insecticide use. Here we use a county-level, panel data set including the USDA Census of Agriculture and the National Climatic Data Center (NCDC) Global Historical Climatology Network-Daily (GHCN-Daily) for 1987-2012 to statistically evaluate how a rich set of weather variables (e.g. degree days, frosts, precipitation) affect current insecticide use patterns in the continental US. Using climate predictions from National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) we then estimate how different climate change emissions scenarios (i.e. A2, B1) are likely to impact insecticide use in different agricultural regions of the US. We find an increase in growing season temperature (degree days) leads to an increase in insecticides on average, and in most regions of the US. However, our results indicate that the effect of a warm year is heterogeneous in time with, for example, a warm January leading to a more consistent increase in insecticides than a warm July. Therefore, we estimate that while future climate change will lead to an overall increase in insecticide use, the degree to which that increase materializes will depend on how warming manifests during the year.

  15. Climate Change Mitigation: Can the U.S. Intelligence Community Help?

    Science.gov (United States)

    2013-06-01

    WIDER ROLE FOR HOMELAND SECURITY ...........215 H. FLEXIBLE RESPONSE: THE OPEN ROAD AHEAD ..........................216 LIST OF REFERENCES...public will refuse to make the effort.125 A. SECURITIZING CLIMATE CHANGE Well-funded and ingenious interest groups frequently influence public...Research Program, accessed January 16, 2013, http://www.globalchange.gov/. 216 H. FLEXIBLE RESPONSE: THE OPEN ROAD AHEAD Any attempt to design

  16. Community-based Adaptation: Lessons from the Development Marketplace 2009 on Adaptation to Climate Change

    OpenAIRE

    Rasmus Heltberg; Radhika Prabhu; Habiba Gitay

    2010-01-01

    The Development Marketplace 2009 focused on adaptation to climate change. This paper identifies lessons from the Marketplace and assesses their implications for adaptation support. The findings are based on: statistical tabulation of all proposals; in-depth qualitative and quantitative analysis of the 346 semi-finalists; and interviews with finalists and assessors. Proposals were fuelled b...

  17. Vulnerability to climate change and community based adaptation in the Peruvian Andes, a stepwise approach

    NARCIS (Netherlands)

    Lasage, R.; Muis, S.; Sardella, C.S.E.; van Drunen, M.A.; Verburg, P.H.; Aerts, J.C.J.H.

    2015-01-01

    The livelihoods of people in the Andes are expected to be affected by climate change due to their dependence on glacier water. The observed decrease in glacier volume over the last few decades is likely to accelerate during the current century, which will affect water availability in the region.

  18. Investigation of rotated PCA from the perspective of network communities applied to climate data

    Czech Academy of Sciences Publication Activity Database

    Hartman, David; Hlinka, Jaroslav; Vejmelka, Martin; Paluš, Milan

    2013-01-01

    Roč. 15, - (2013), s. 13124 ISSN 1607-7962. [European Geosciences Union General Assembly 2013. 07.04.2013-12.04.2013, Vienna] R&D Projects: GA ČR GCP103/11/J068 Institutional support: RVO:67985807 Keywords : complex networks * graph theory * climate dynamics Subject RIV: BB - Applied Statistics, Operational Research

  19. Sinks and sources : a strategy to involve forest communities in Tanzania in global climate policy

    NARCIS (Netherlands)

    Zahabu, E.M.

    2008-01-01

    At present only the sink ability of forest to sequester atmospheric CO2 through establishing new forests is credited under the current UNFCCC climate change mitigation mechanisms in developing countries, i.e. the Clean Development Mechanism (CDM) of the Kyoto Protocol. Other forest practices such as

  20. Graptolite community responses to global climate change and the late ordovician mass extinction

    Czech Academy of Sciences Publication Activity Database

    Sheets, H. D.; Melchin, M. J.; Loxton, J.; Štorch, Petr; Carlucci, K. L.; Hawkins, A. D.

    2016-01-01

    Roč. 113, č. 30 (2016), s. 8380-8385 ISSN 0027-8424 R&D Projects: GA AV ČR IAA301110908 Institutional support: RVO:67985831 Keywords : abundance * climate change * extinction * macroevolution * selection Subject RIV: DB - Geology ; Mineralogy Impact factor: 9.661, year: 2016

  1. Does the stress tolerance of mixed grassland communities change in a future climate? A test with heavy metal stress (zinc pollution).

    Science.gov (United States)

    Van den Berge, Joke; Naudts, Kim; Janssens, Ivan A; Ceulemans, Reinhart; Nijs, Ivan

    2011-12-01

    Will species that are sensitive/tolerant to Zn pollution still have the same sensitivity/tolerance in a future climate? To answer this question we analysed the response of constructed grassland communities to five levels of zinc (Zn) supply, ranging from 0 to 354 mg Zn kg(-1) dry soil, under a current climate and a future climate (elevated CO2 and warming). Zn concentrations increased in roots and shoots with Zn addition but this increase did not differ between climates. Light-saturated net CO2 assimilation rate (A(sat)) of the species, on the other hand, responded differently to Zn addition depending on climate. Still, current and future climate communities have comparable biomass responses to Zn, i.e., no change in root biomass and a 13% decrease of above-ground biomass. Provided that the different response of A(sat) in a future climate will not compromise productivity and survival on the long term, sensitivity is not altered by climate change. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Unjust waters. Climate change, flooding and the protection of poor urban communities. Experiences from six African cities

    International Nuclear Information System (INIS)

    2007-02-01

    Floods are natural phenomena, but damage and losses from floods are the consequence of human action. The increasing climatic variability, storminess and more frequent flooding driven by climate change will affect poor urban communities far more than other people living in towns and cities. Although driven by human activities ranging from modernisation and development to land degradation by poor farmers and grazing flocks, climate change in Africa has uneven impacts, affecting the poor severely. Flooding in urban areas is not just related to heavy rainfall and extreme climatic events; it is also related to changes in the built-up areas themselves. Urbanisation aggravates flooding by restricting where floods waters can go, by covering large parts of the ground with roofs, roads and pavements, by obstructing sections of natural channels, and by building drains that ensure that water moves to rivers more rapidly than it did under natural conditions. As people crowd into African cities, these human impacts on urban land surfaces and drainage intensify. The proportions of small stream and river catchment areas that are urbanised will increase. As a result, even quite moderate storms now produce quite high flows in rivers because much more of the catchment area supplies direct surface runoff from its hard surfaces and drains. Where streams flow through a series of culverts and concrete channels, they cannot adjust to changes in the frequency of heavy rain as natural streams do. They often get obstructed by silt and urban debris, particularly when houses are built close to the channels. Such situations frequently arise where poor people build their shelters on low-lying flood plains, over swamps or above the tidewater on the coast. The effects of climate change are superimposed on these people-driven local land surface modifications. The links between changes in land use and in heavy rainfall patterns, the frequency and depth of flooding and the problems of the urban poor

  3. Leveraging a Community Participatory Framework to Move Climate Survey Data into Action at a Small College

    Science.gov (United States)

    Peters, C. Ellen; Benitez, Michael, Jr.

    2017-01-01

    A participatory framework in conducting research and implementing decisions can engage multiple constituents throughout a college community. At a small college, it is especially relevant, because nonmajority groups are especially vulnerable because of a smaller critical mass.

  4. Accessing Both Halves of the Brain to Make Climate Decisions: How Community-Sourced Media, Earth Remote Sensing Data, and Creative Placemaking Art Can Cultivate Change

    Science.gov (United States)

    Drapkin, J. K.; Wagner, L.

    2017-12-01

    Decision-making, science tells us, accesses multiple parts of the brain: both logic and data as well as memory and emotion. It is this mix of signals that propels individuals and communities to act. Founded in 2012, ISeeChange is the nation's first community crowdsourced climate and weather journal that empowers users to document environmental changes with others and discuss the impacts over time. Our neighborhood investigation methodology includes residents documenting their personal experiences alongside collected data, Earth remote sensing data, and local artists interpreting community questions and experiences into place-based public art in the neighborhood to inspire a culture of resilience and climate literacy. ISeeChange connects the public with national media, scientists, and data tools that support community dialogue and enable collaborative science and journalism investigations about our changing environment. Our groundbreaking environmental reporting platform—available online and through a mobile app—personalizes and tracks climate change from the perspective of every day experiences, bringing Eearth science home and into the placesspaces people know best and trust most- their own communities Our session will focus on our newest neighborhood pilot program in New Orleans, furthering the climate resilience, green infrastructure, and creative placemaking efforts of the Trust for Public Land, the City of New Orleans, and other resilience community partners.

  5. Implications of climate change on human comfort in buildings: evidence from Nkontompo community of Sekondi-Takoradi, Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Amos-Abanyie, S. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (GH)

    2006-07-01

    Climate change has become the most talked about issue in recent times. The impact of climate change is likely to become more evident in the coming decades. Currently, atmospheric conditions, especially in the dry season, are getting hotter and drier with increased heat waves. Increased demand for air conditioning for space cooling as a result of internal discomfort in buildings is already manifesting. This could put an additional stress on the already over-burdened energy capactiy of the nation. The study on implications of climate change on human comfort in buidlings was conducted in Nkontompo community, a suburb of Sekondi-Takoradi Metropolitan area of the Shama-Ahanta District of the Western Region of Ghana. The objectives of this study are to assemble and disseminate information about some of the possible impacts of climate change on the built environment. This is to set the platform for building professionals to identify possible adaptive measures to serve as basis for development of standards to maintain and enhance the quality of life in buildings. The results showed that there were significant changes in temperature, precipitation, and relative humidity. A rise in temperature and humidity levels constitutes a potential hazard to health and human comfort and accelerates many degradation processes and material damage. Subsequently, the amount of energy needed to maintain the condition of air in spaces at comfort levels keeps increasing. It is therefore imperative that landlords and other property owners should be effectively guided by qualified professionals within the framework of policy guidelines based on sound research.

  6. Climate and biome simulations for the past 21,000 years

    Science.gov (United States)

    Kutzbach, J.; Gallimore, R.; Harrison, S.; Behling, P.; Selin, R.; Laarif, F.

    This paper reports on a set of paleoclimate simulations for 21, 16, 14, 11 and 6 ka (thousands of years ago) carried out with the Community Climate Model, Version 1 (CCM1) of the National Center for Atmospheric Research (NCAR). This climate model uses four interactive components that were not available in our previous simulations with the NCAR CCM0 ( COHMAP, 1988Science, 241, 1043-1052; Wright et al., 1993Global Climate Since the Last Glocial Maximum, University of Minnesota Press, MN): soil moisture, snow hydrology, sea-ice, and mixed-layer ocean temperature. The new simulations also use new estimates of ice sheet height and size from ( Peltier 1994, Science, 265, 195-201), and synchronize the astronomically dated orbital forcing with the ice sheet and atmospheric CO 2 levels corrected from radiocarbon years to calendar years. The CCM1 simulations agree with the previous simulations in their most general characteristics. The 21 ka climate is cold and dry, in response to the presence of the ice sheets and lowered CO 2 levels. The period 14-6 ka has strengthened northern summer monsoons and warm mid-latitude continental interiors in response to orbital changes. Regional differences between the CCM1 and CCM0 simulations can be traced to the effects of either the new interactive model components or the new boundary conditions. CCM1 simulates climate processes more realistically, but has additional degrees of freedom that can allow the model to 'drift' toward less realistic solutions in some instances. The CCM1 simulations are expressed in terms of equilibrium vegetation using BIOME 1, and indicate large shifts in biomes. Northern tundra and forest biomes are displaced southward at glacial maximum and subtropical deserts contract in the mid-Holocene when monsoons strengthen. These vegetation changes could, if simulated interactively, introduce additional climate feedbacks. The total area of vegetated land remains nearly constant through time because the exposure of

  7. Initial findings from the implementation of a community-based sentinel surveillance system to assess the health effects of climate change in Alaska.

    Science.gov (United States)

    Driscoll, David L; Sunbury, Tenaya; Johnston, Janet; Renes, Sue

    2013-01-01

    This report describes the results of a study to determine whether a community-based sentinel surveillance system can be developed and implemented to assess the health effects of climate change, and to contribute to local discussions to mitigate these health effects. The purpose of this report is to describe the process and outcomes of this innovative approach to identifying priority areas for adaptation investment. This report can be used to assist local, state and federal governments in determining how to develop actions and policies to promote adaptation to climate change. To evaluate the health effects of climate change in rural Alaska. We conducted an iterative and participatory process to develop metrics, an instrument and a protocol to collect sentinel surveillance data on the health effects of climate change in 3 ecologically distinct regions of the state. We collected surveillance data from 91 study participants over the course of 12 months. These data were analyzed and categorized by frequency and association between specific health outcomes or health-related factors (such as food security) and reported exposure to environmental effects of climate change. We found significant associations between several health outcomes and health outcome mediators and reported exposures. We presented these data to study participants in community settings and moderated discussions of likely causal factors for these measured associations, and helped community residents to identify specific adaption measures to mitigate those health effects. We conclude that community-based sentinel surveillance is an effective method for assessing health outcomes from exposure to environmental effects of climate change, and informing climate change health adaptation planning in Alaskan communities. We contend that it would be effective in other regions of the nation as well.

  8. Shortcuts to sustainable Nordic communities. Experiences from Nordic Climate Festival (at) Aalto

    Energy Technology Data Exchange (ETDEWEB)

    Haanpaa, S. (ed.)

    2011-07-01

    Nordic Climate Festival (at) Aalto gathered some 90 Nordic Master's and PhD students to Helsinki and Espoo in late August 2011, to search for shortcuts to sustainable Nordic societies. The students worked in 7 workshop tracks, covering all key fields of sustainable societies, under the guidance of researchers from Aalto University. The workshop turned out to be a success with enthusiastic contribution from dedicated students. The real value of the workshop lies not only in the results however, but also in new ways of thinking about sustainability - both for the students and Aalto staff. Most of all, the event helped to build individual connections and networks people engaged in the topic. In the end, the festival was much more than just a Nordic event; the participants represented over 30 countries in total. This can only be seen as a richness in ways of looking at climate change related challenges and especially solutions that, although always being operationalized on a local level and in a local context, in the end are common challenges to all countries in one form or another. The core challenge in dealing with climate change, especially on mitigation, is time. As the level of global greenhouse gas emissions keeps on growing, we desperately need new policies and practices to turn this trend around. At the same time inertia both in natural phenomena and in changing our lifestyles means that global temperatures based on current emissions only will keep on rising for decades to come. This forces us to think of ways to adapt to unavoidable consequences of climate change and adaptation to them, despite the success of mitigation policies. Both aspects of managing climate change require forward oriented thinking already today, so that we can avoid being locked into unsustainable development pathways at the very least - a thing one might argue in many cases is already slowing mitigation efforts down. Therefore the key question the workshop set to study was: can we

  9. Assessing the significance of climate and community factors on urban water demand

    OpenAIRE

    Md Mahmudul Haque; Prasanna Egodawatta; Ataur Rahman; Ashantha Goonetilleke

    2015-01-01

    Ensuring adequate water supply to urban areas is a challenging task due to factors such as rapid urban growth, increasing water demand and climate change. In developing a sustainable water supply system, it is important to identify the dominant water demand factors for any given water supply scheme. This paper applies principal components analysis to identify the factors that dominate residential water demand using the Blue Mountains Water Supply System in Australia as a case study. The resul...

  10. Assessing Effects of Climate Change on Access to Ecosystem Services in Rural Alaska: Enhancing the Science through Community Engagement

    Science.gov (United States)

    Brinkman, T. J.; Cold, H.; Brown, D. N.; Brown, C.; Hollingsworth, T. N.; Verbyla, D.

    2017-12-01

    In Arctic-Boreal regions, studies quantifying the characteristics and prevalence of environmental disruptions to access to ecosystem services are lacking. Empirical investigations are needed to assess the vulnerability of rural communities to climate change. We integrated community-based local observation (9 Interior Alaska Communities), field-based ground measurements, and remote sensing data to: 1) identify and prioritize the relative importance of different environmental changes affecting access, 2) characterize the biophysical causes and mechanisms related to access, and 3) evaluate long-term (30 year) trends in the environment that are challenging access. Dynamic winter ice and snow conditions (e.g., dangerous ice travel; n =147) were the most commonly reported cause of disturbance to access, followed by changes in summer hydrology (e.g., river navigability; n = 77) and seasonal shifts in freeze/thaw cycles (n = 31). Supporting local observations, our remote-sensing analysis indicated a trend toward environmental conditions that hinder or disrupt traditional uses of ecosystem services. For example, we found that the window of safe travel on ice has narrowed by approximately 2 weeks since the 1980s. Shifts in travel have implications on the effectiveness of subsistence activities, such as winter trapping and spring waterfowl hunting. From a methods perspective, we implemented a study design that generated novel science while also addressing locally relevant issues. Our approach and findings highlight opportunities for connecting biophysical science with societal concerns.

  11. Knowledge and perception about climate change and human health: findings from a baseline survey among vulnerable communities in Bangladesh

    Directory of Open Access Journals (Sweden)

    Md Iqbal Kabir

    2016-03-01

    Full Text Available Abstract Background Bangladesh is one of the countries most vulnerable to climate change (CC. A basic understanding of public perception on vulnerability, attitude and the risk in relation to CC and health will provide strategic directions for government policy, adaptation strategies and development of community-based guidelines. The objective of this study was to collect community-based data on peoples’ knowledge and perception about CC and its impact on health. Methods In 2012, a cross-sectional survey was undertaken among 6720 households of 224 enumeration areas of rural villages geographically distributed in seven vulnerable districts of Bangladesh, with total population of 19,228,598. Thirty households were selected randomly from each enumeration area using the household listing provided by the Bangladesh Bureau of Statistics (BBS. Information was collected from all the 6720 research participants using a structured questionnaire. An observation checklist was used by the interviewers to collect household- and community-related information. In addition, we selected the head of each household as the eligible participant for an interview. Evidence of association between sociodemographic variables and knowledge of CC was explored by cross-tabulation and measured using chi-square tests. Logistic regression models were used to further explore the predictors of knowledge. Results The study revealed that the residents of the rural communities selected for this study largely come from a low socioeconomic background: only 9.6 % had postsecondary education or higher, the majority worked as day labourer or farmer (60 %, and only 10 % earned a monthly income above BDT 12000 (equivalent to US $150 approx.. The majority of the participants (54.2 % had some knowledge about CC but 45.8 % did not (p < 0.001. The majority of knowledgeable participants (n = 3645 felt excessive temperature as the change of climate (83.2 %. Among all the

  12. Climate change adaptation planning for the Skeena region of British Columbia, Canada: A combined biophysical modelling, social science, and community engagement approach

    Science.gov (United States)

    Melton, J. R.; Kaplan, J. O.; Matthews, R.; Sydneysmith, R.; Tesluk, J.; Piggot, G.; Robinson, D. C.; Brinkman, D.; Marmorek, D.; Cohen, S.; McPherson, K.

    2011-12-01

    The Skeena region of British Columbia, Canada is among the world's most important commercial forest production areas, a key transportation corridor, and provides critical habitat for salmon and other wildlife. Climate change compounds threats to the region from other local environmental and social challenges. To aid local communities in adaptive planning for future climate change impacts, our project combined biophysical modelling, social science, and community engagement in a participatory approach to build regional capacity to prepare and respond to climate change. The sociological aspect of our study interviewed local leaders and resource managers (both First Nations and settlers groups in three communities) to examine how perceptions of environmental and socioeconomic issues have changed in the recent past, and the values placed on diverse natural resources at the present. The three communities differed in their perception of the relative value and condition of community resources, such as small business, natural resource trade, education and local government. However, all three communities regarded salmon as their most important and threatened resource. The most important future drivers of change in the study region were perceived to be: "aboriginal rights, title and treaty settlements", "availability of natural resources", "natural resource policies", and the "global economy". Climate change, as a potential driver of change in the region, was perceived as less important than other socio-economic factors; even though climate records for the region already demonstrate warmer winters, decreased snowfall, and decreased spring precipitation over the last half century. The natural science component of our project applies a regional-scale dynamic vegetation model (LPJ-GUESS) to simulate the potential future of forest ecosystems, with a focus on how climate change and management strategy interact to influence forest productivity, disturbance frequency, species

  13. Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe.

    Science.gov (United States)

    Múrria, Cesc; Bonada, Núria; Vellend, Mark; Zamora-Muñoz, Carmen; Alba-Tercedor, Javier; Sainz-Cantero, Carmen Elisa; Garrido, Josefina; Acosta, Raul; El Alami, Majida; Barquín, Jose; Derka, Tomáš; Álvarez-Cabria, Mario; Sáinz-Bariain, Marta; Filipe, Ana F; Vogler, Alfried P

    2017-11-01

    Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco-evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole-community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage- or species-specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species-specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels. © 2017 John Wiley & Sons Ltd.

  14. The Worldviews Network: Innovative Strategies for Increasing Climate and Ecological Literacy in Your Community

    Science.gov (United States)

    Connolly, R.; Yu, K.; McConville, D.; Sickler, J.; "Irving, Lindsay", L. S.; Gardiner, N.; Hamilton, H.

    2011-12-01

    Informal science Institutions (ISI) are in the unique position to convene and support community dialogues surrounding local ecological impacts of global change. The Worldviews Network-a collaboration between museums, scientists, and community-based organizations-is developing and testing innovative approaches for promoting and encouraging ecological literacy with the American public. In this session, we will share strategies for sparking and sustaining dialogue and action in local communities through high-impact visual presentations and real-world examples of successful projects that are increasing the healthy functioning of regional and global ecosystems. Educating the public about interconnected global change issues can be a daunting task. ISIs can help communities by facilitating dialogues about realistic and regionally relevant approaches for systemically addressing global challenges. Managing the complexity of these challenges requires going far beyond the standard prescriptions for behavior change; it requires inspiring participants with positive examples of system-wide solutions as well as actively involving the audience in scientifically informed design processes. This session will demonstrate how you can implement and sustain these community dialogues, using real-world examples from our partners' national events. We present visualization story templates and a model for facilitating dialogues that can be adapted at your institution. Based on video and written assessment feedback from visitors of our first Worldviews events, we will present initial evaluation findings about the impact that these strategies are having on our audiences and ISI partners. These findings show that engaging the public and NGO partners in sustainability and design dialogues is a powerful way to maintain the relevance of ISIs within their communities.

  15. Vulnerability to climate change and adaptation strategies of local communities in Malawi: experiences of women fish-processing groups in the Lake Chilwa Basin

    Science.gov (United States)

    Jørstad, Hanne; Webersik, Christian

    2016-12-01

    In recent years, research on climate change and human security has received much attention among policy makers and academia alike. Communities in the Global South that rely on an intact resource base and struggle with poverty, existing inequalities and historical injustices will especially be affected by predicted changes in temperature and precipitation. The objective of this article is to better understand under what conditions local communities can adapt to anticipated impacts of climate change. The empirical part of the paper answers the question as to what extent local women engaged in fish processing in the Chilwa Basin in Malawi have experienced climate change and how they are affected by it. The article assesses an adaptation project designed to make those women more resilient to a warmer and more variable climate. The research results show that marketing and improving fish processing as strategies to adapt to climate change have their limitations. The study concludes that livelihood diversification can be a more effective strategy for Malawian women to adapt to a more variable and unpredictable climate rather than exclusively relying on a resource base that is threatened by climate change.

  16. A Community Perspective on the Effects of Climate Change on Species Distributions in the Boreal Forest of the Northeastern United States

    Science.gov (United States)

    Morelli, T. L.; DeLuca, W. V.; Duclos, T. R.; Foster, J. R.; Siren, A. P.

    2016-12-01

    The way that climate change will impact species ranges through habitat change and modify species interactions is not well enough understood. We took a community view of the climate-vulnerable, biologically-important spruce-fir forest ecosystem of the northeastern U.S., examining if and how species are responding to warming and changing precipitation patterns. We examined how fluctuations in temperature and snowpack influence distributional shifts along elevational and latitudinal gradients; for example, milder winter conditions may allow generalist carnivores such as bobcats to access boreal forest habitat, increasing direct and indirect competition with Canada lynx and American marten for prey. In another example of climate-driven predation shifts, upslope shifts of American red squirrels may increase predation rates on vulnerable montane songbirds. We combined data from weather stations with model-based high resolution data to obtain information on historical and present climate variables. We forecasted spruce-fir forest extent using landscape and ecosystem models under a combination of global circulation model projections and representative concentration pathways for the northern Appalachians. Presence and abundance data from animal surveys were used to build occupancy models to assess the habitat, climate, and species relationships. Species responded individually with geographic variation in response within and across species. Some species closely tracked climate changes, whereas others showed no response, or even responses such as shifts southward that were counter to what would be expected. For example, although low elevation boreal bird species showed evidence of expanding upslope, most high elevation species expanded downslope. This work highlights the need to take a mechanistic perspective of species responses to climate change and avoid generalizations of simple shifts northward and upward. Understanding how climate change affects community dynamics will

  17. Building a global federation system for climate change research: the earth system grid center for enabling technologies (ESG-CET)

    Science.gov (United States)

    Ananthakrishnan, R.; Bernholdt, D. E.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I. T.; Fox, P.; Fraser, D.; Halliday, K.; Hankin, S.; Jones, P.; Kesselman, C.; Middleton, D. E.; Schwidder, J.; Schweitzer, R.; Schuler, R.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wilhelmi, N.; Su, M.; Williams, D. N.

    2007-07-01

    The recent release of the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report (AR4) has generated significant media attention. Much has been said about the US role in this report, which included significant support from the Department of Energy through the Scientific Discovery through Advanced Computing (SciDAC) and other Department of Energy (DOE) programs for climate model development and the production execution of simulations. The SciDAC-supported Earth System Grid Center for Enabling Technologies (ESG-CET) also played a major role in the IPCC AR4: all of the simulation data that went into the report was made available to climate scientists worldwide exclusively via the ESG-CET At the same time as the IPCC AR4 database was being developed, the National Center for Atmospheric Research (NCAR), a leading US climate science laboratory and a ESG participant, began publishing model runs from the Community Climate System Model (CCSM), and its predecessor the Parallel Coupled Model (PCM) through ESG In aggregate, ESG-CET provides seamless access to over 180 terabytes of distributed climate simulation data to over 6,000 registered users worldwide, who have taken delivery of more than 250 terabytes from the archive. Not only does this represent a substantial advance in scientific knowledge, it is also a major step forward in how we conduct the research process on a global scale. Moving forward, the next IPCC assessment report, AR5, will demand multi-site metadata federation for data discovery and cross-domain identity management for single sign-on of users in a more diverse federation enterprise environment. Towards this aim, ESG is leading the effort in the climate community towards standardization of material for the global federation of metadata, security, and data services required to standardize, analyze, and access data worldwide.

  18. Earth System Grid Center for Enabling Technologies (ESG-CET): A Data Infrastructure for Data-Intensive Climate Research

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-03

    For the Earth System Grid Federation (ESGF), the ESG-CET team has led international development and delivered a production environment for managing and accessing ultrascale climate data. This production environment includes multiple national and international climate projects (e.g., Couple Model Intercomparison Project, Community Earth System Model), ocean model data (such as the Parallel Ocean Program), observation data (Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, and so forth), and analysis and visualization tools, all of which serve a diverse community of users. These data holdings and services are distributed across multiple ESG-CET sites (such as LANL, LBNL, LLNL, NCAR, and ORNL) as well as at unfunded partners sites such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, and the National Aeronautics and Space Administration Jet Propulsion Laboratory. More recently, ESG-CET has been extending services beyond data-file access and delivery to develop more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis capabilities. These will allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports

  19. Probabilistic forecast for climate change over Northern Eurasia

    Science.gov (United States)

    Sokolov, Andrei; Monier, Erwan; Kicklighter, David; Scott, Jeffrey; Gao, Xiang; Schlosser, Adam

    2013-04-01

    In this study, we investigate possible climate change over Northern Eurasia and its impact on hydrological and carbon cycles. Northern Eurasia is a major player in the global carbon budget because of boreal forests and wetlands. Permafrost degradation associated with climate change could result in wetlands releasing large amounts of carbon dioxide and methane. Changes in the frequency and magnitude of extreme events, such as extreme precipitation, are likely to have substantial impacts on Northern Eurasia ecosystems. For this reason, it is very important to quantify the possible climate change over Northern Eurasia under different emissions scenarios, while accounting for the uncertainty in the climate response. For several decades, the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change has been investigating uncertainty in climate change using the MIT Integrated Global System Model (IGSM) framework, an integrated assessment model that couples an earth system model of intermediate complexity (with a 2D zonal-mean atmosphere) to a human activity model. Since the IGSM includes a human activity model, it is possible to analyze uncertainties in emissions resulting, for example, from different future climate policies. Another major feature is the flexibility to vary key climate parameters controlling the climate response: climate sensitivity, net aerosol forcing and ocean heat uptake rate. The IGSM has long been used to perform probabilistic forecasts based on estimates of probability density functions of climate parameters. The MIT IGSM-CAM framework links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM), with new modules developed and implemented in CAM to allow climate parameters to be changed to match those of the IGSM. The simulations discussed in this paper were carried out for two emission scenarios and three sets of climate parameters. The "business as usual" and a

  20. Case Studies of School Community and Climate: Success Narratives of Schools in Challenging Circumstances

    Science.gov (United States)

    Parker, Darlene Ciuffetelli; Grenville, Heather; Flessa, Joseph

    2011-01-01

    This paper reports on a Canadian qualitative case study project funded by the Elementary Teachers' Federation of Ontario. The paper describes success stories of students and communities affected by poverty from a diverse sample of eleven elementary schools throughout the province of Ontario. Over the period of one school year (2007-2008) and…

  1. Local climate determines intra- and interspecific variation in sexual size dimorphism in mountain grasshopper communities.

    Science.gov (United States)

    Laiolo, P; Illera, J C; Obeso, J R

    2013-10-01

    The climate is often evoked to explain broad-scale clines of body size, yet its involvement in the processes that generate size inequality in the two sexes (sexual size dimorphism) remains elusive. Here, we analyse climatic clines of sexual size dimorphism along a wide elevation gradient (i) among grasshopper species in a phylogenetically controlled scenario and (ii) within species differing in distribution and cold tolerance, to highlight patterns generated at different time scales, mainly evolutionary (among species or higher taxa) and ontogenetic or microevolutionary (within species). At the interspecific level, grasshoppers were slightly smaller and less dimorphic at high elevations. These clines were associated with gradients of precipitation and sun exposure, which are likely indicators of other factors that directly exert selective pressures, such as resource availability and conditions for effective thermoregulation. Within species, we found a positive effect of temperature and a negative effect of elevation on body size, especially on condition-dependent measures of body size (total body length rather than hind femur length) and in species inhabiting the highest elevations. In spite of a certain degree of species-specific variation, females tended to adjust their body size more often than males, suggesting that body size in females can evolve faster among species and can be more plastic or dependent on nutritional conditions within species living in adverse climates. Natural selection on female body size may therefore prevail over sexual selection on male body size in alpine environments, and abiotic factors may trigger consistent phenotypic patterns across taxonomic scales. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  2. Integrated and Optimized Energy-Efficient Construction Package for a Community of Production Homes in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Wiehagen, J. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Del Bianco, M. [Partnership for Home Innovation, Upper Marlboro, MD (United States)

    2014-10-01

    This research high performance home analyzes how a set of advanced technologies can be integrated into a durable and energy-efficient house in the mixed-humid climate while remaining affordable to homeowners. The technical solutions documented in this report are the cornerstone of the builder's entire business model based on delivering high-performance homes on a production basis as a standard product offering to all price segments of the residential market. Home Innovation Research Labs partnered with production builder Nexus EnergyHomes (CZ 4) and they plan to adopt the successful components of the energy solution package for all 55 homes in the community. The research objective was to optimize the builder's energy solution package based on energy performance and construction costs. All of the major construction features, including envelope upgrades, space conditioning system, hot water system, and solar electric system were analyzed.

  3. A Global Assessment on Climate Research Engaging Indigenous Knowledge Systems and Recommendations for Quality Standards of Research Practice in Indigenous Communities

    Science.gov (United States)

    Davíd-Chavez, D. M.; Gavin, M. C.

    2017-12-01

    Indigenous communities worldwide have maintained their own knowledge systems for millennia informed through careful observation of dynamics of environmental changes. Withstanding centuries of challenges to their rights to maintain and practice these knowledge systems, Indigenous peoples continually speak to a need for quality standards for research in their communities. Although, international and Indigenous peoples' working groups emphasize Indigenous knowledge systems and the communities who hold them as critical resources for understanding and adapting to climate change, there has yet to be a comprehensive, evidence based analysis into how diverse knowledge systems are integrated in scientific studies. Do current research practices challenge or support Indigenous communities in their efforts to maintain and appropriately apply their knowledge systems? This study addresses this question using a systematic literature review and meta-analysis assessing levels of Indigenous community participation and decision-making in all stages of the research process (initiation, design, implementation, analysis, dissemination). Assessment is based on reported quality indicators such as: outputs that serve the community, ethical guidelines in practice (free, prior, and informed consent and intellectual property rights), and community access to findings. These indicators serve to identify patterns between levels of community participation and quality standards in practice. Meta-analysis indicates most climate studies practice an extractive model in which Indigenous knowledge systems are co-opted with minimal participation or decision-making authority from communities who hold them. Few studies report outputs that directly serve Indigenous communities, ethical guidelines in practice, or community access to findings. Studies reporting the most quality indicators were initiated in mutual agreement between Indigenous communities and outside researchers or by communities themselves

  4. Vulnerability to climate change and adaptation strategies of local communities in Malawi: Experiences of women fish processing groups in the Lake Chilwa Basin

    OpenAIRE

    Jørstad, Hanne; Webersik, Christian

    2016-01-01

    In recent years, research on climate change and human security has received much attention among policy makers and academia alike. Communities in the Global South that rely on an intact resource base and struggle with poverty, existing inequalities and historical injustices will especially be affected by predicted changes in temperature and precipitation. The objective of this article is to better understand under what conditions local communities can adapt to anticipated im...

  5. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change

    NARCIS (Netherlands)

    Bokhorst, Stef; Phoenix, Gareth K.; Berg, Matty P.; Callaghan, Terry V.; Kirby-Lambert, Christopher; Bjerke, Jarle W.

    2015-01-01

    Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect

  6. Moral Stress, Moral Practice, and Ethical Climate in Community-Based Drug-Use Research: Views From the Front Line.

    Science.gov (United States)

    Fisher, Celia B; True, Gala; Alexander, Leslie; Fried, Adam L

    2013-01-01

    The role of front-line researchers, those whose responsibilities include face-to-face contact with participants, is critical to ensuring the responsible conduct of community-based drug use research. To date, there has been little empirical examination of how front-line researchers perceive the effectiveness of ethical procedures in their real-world application and the moral stress they may experience when adherence to scientific procedures appears to conflict with participant protections. This study represents a first step in applying psychological science to examine the work-related attitudes, ethics climate, and moral dilemmas experienced by a national sample of 275 front-line staff members whose responsibilities include face-to-face interaction with participants in community-based drug-use research. Using an anonymous Web-based survey we psychometrically evaluated and examined relationships among six new scales tapping moral stress (frustration in response to perceived barriers to conducting research in a morally appropriate manner); organizational ethics climate; staff support; moral practice dilemmas (perceived conflicts between scientific integrity and participant welfare); research commitment; and research mistrust. As predicted, front-line researchers who evidence a strong commitment to their role in the research process and who perceive their organizations as committed to research ethics and staff support experienced lower levels of moral stress. Front-line researchers who were distrustful of the research enterprise and frequently grappled with moral practice dilemmas reported higher levels of moral stress. Applying psychometrically reliable scales to empirically examine research ethics challenges can illuminate specific threats to scientific integrity and human subjects protections encountered by front-line staff and suggest organizational strategies for reducing moral stress and enhancing the responsible conduct of research.

  7. Effects of warmer and drier climate conditions on plant composition and biomass production in a Mediterranean shrubland community

    Directory of Open Access Journals (Sweden)

    De Dato G

    2006-01-01

    Full Text Available The last IPCC report predicts warmer and drier conditions for the future European climate and the Mediterranean basin could be highly sensible to future climatic change. In order to investigate how the forecast more stressing factors could affect Mediterranean shrubland ecosystems, an appropriate manipulation of the microclimate was carried out in an area covered by Mediterranean maquis aimed at extending the drought period and increasing the night-time temperature. Soil cover, plant growth, litterfall, leaf water status, and leaf nutritional status were monitored over three growing seasons. The manipulation altered the microclimate according to common scenarios, increasing mean annual night-time air temperature by about 1 �C and mean annual temperature by about 0.5 �C, and decreasing precipitation between 6-46% of the total rainfall during the growing seasons. A general increase of vegetation cover was observed in the whole community during the three years of experimentation. This positive temporal pattern was mainly observed in control and warming treatment, whereas in the drought treatment it was less evident. At species-specific level, a clear negative effect of drought treatment was observed for C. monspeliensis percentage cover. Shoot elongation was not significantly affected by the warming treatment. A significant negative effect of drought treatment was noticed in the 2001-2002 and 2002-2003 growing seasons. An increase of N and P concentrations in the drought treatment in Cistus was observed and it can be explained by the reduced shoot growth induced by the water shortage that we had observed in the same treatment. The absence of a concentration effect on the other two species could be the signal of the different behaviour with regard to a drier climate, and therefore could be a symptom of future change in species composition. We underline the need of long-term observation, because of the different responses of plants in the short

  8. Wrestling with 'doubt-sayers': a first step in leading community-wide climate change action for better health.

    Science.gov (United States)

    Ritchie, Jan

    2011-12-01

    Although the evidence base for climate change is indisputable and the potential human health impact is extremely concerning, to date public health professionals are playing little part in influencing community change to accept and act on the science. In reviewing the techniques used to obstruct action on tobacco control by vested interests through constantly raising doubt about the science in this arena, a similar pattern is seen in obstructing action on climate change. It is clear that the raising of unverified doubt is the primary tool employed by profit-driven corporations to prevent constructive action in both these arenas, with the very high potential for the health of the whole population to suffer as a result. Those promoting the health of Australians have a responsibility to optimise health in this regard and need to think differently through embracing complexity science and then take action, with the first step being to provide constant counter-arguments to the unsubstantiated statements of the 'doubt-sayers'.

  9. Profiles of Adolescents' Perceptions of Democratic Classroom Climate and Students' Influence: The Effect of School and Community Contexts.

    Science.gov (United States)

    Reichert, Frank; Chen, Jiaxin; Torney-Purta, Judith

    2018-03-03

    Students' learning experiences and outcomes are shaped by school and classroom contexts. Many studies have shown how an open, democratic classroom climate relates to learning in the citizenship domain and helps nurture active and engaged citizens. However, little research has been undertaken to look at how such a favorable classroom climate may work together with broader school factors. The current study examines data from 14,292 Nordic eighth graders (51% female) who had participated in the International Civic and Citizenship Education Study in 2009, as well as contextual data from 5,657 teachers and 618 principals. Latent class analysis identifies profiles of students' perceptions of school context, which are further examined with respect to the contextual correlates at the school level using two-level fixed effects multinomial regression analyses. Five distinct student profiles are identified and labeled "alienated", "indifferent", "activist", "debater", and "communitarian". Compared to indifferent students, debaters and activists appear more frequently at schools with relatively few social problems; being in the communitarian group is associated with aspects of the wider community. Furthermore, being in one of these three groups (and not in the indifferent group) is more likely when teachers act as role models by engaging in school governance. The results are discussed within the framework of ecological assets and developmental niches for emergent participatory citizenship. The implications are that adults at school could enhance multiple contexts that shape adolescents' developmental niches to nurture active and informed citizens for democracies.

  10. Effects of organic amendments and mulches on soil microbial communities in quarry restoration under semiarid climate

    Science.gov (United States)

    Luna Ramos, Lourdes; Pastorelli, Roberta; Miralles Mellado, Isabel; Fabiani, Arturo; Bastida López, Felipe; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2015-04-01

    Mining activities generate loss of the quality of the environment and landscape specially in arid and semiarid Mediterranean regions. A precondition for ecosystem reclamation in such highly disturbed mining areas is the development of functional soils with appropriate levels of organic matter. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, 9 plots 15 x 5 m were prepared to test organic amendments (compost from solid urban residues-DOW-, sludge from urban water treatment-SS-, control-NA-) and different mulches (fine gravel-GM-, wood chips-WM-, control-NM-) with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot, 75 native plants (Macrochloa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. After 5 years from the start of the experiment, we evaluated how microbial community composition responded to the organic amendments and mulches. Microbial community composition of both bacteria and fungi was determined by phospholipid fatty acid (PLFA) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. The results of the two-way ANOVA showed that PLFAs were significantly affected by organic amendments but not by the mulches or interaction of both factors. Experimental plots with DOW showed significantly higher level of fungal PLFAs than those with SS and NA, even higher than the reference undisturbed soil. However, any plot with organic amendments did not reach the content of bacterial PLFAs of the reference soils. The bacterial diversity (evaluated by diversity indices calculated from DGGE profiles) was greater in soil samples taken under NA and GM. Comparing these indices in fungal DGGE, we found greater values for soil samples taken under DOW and without mulches. Results from UPGMA analysis showed significant differences in the structure of soil bacterial communities from the different treatments

  11. Modern and fossilized biological communities from sediments of Bolshoy Harbei lake (Bolshezemelskaya tundra, Russia) and their response to climate change

    Science.gov (United States)

    Tumanov, Oleg; Nazarova, Larisa; Fefilova, Elena; Baturina, Maria; Loskutova, Olga; Frolova, Larisa; Palagushkina, Olga

    2013-04-01

    High-altitude regions are subjected to the threats of global warming. During the last decade the depth of seasonal melting of permafrost in Northern Russia, significantly increased. Investigation of lake sediments from polar regions has an extreme importance for understanding of the modern environmental processes and their influence on northern ecosystems and biological diversity of these regions. Invertebrate communities are used for diagnostic of lake ecosystems because they have a great sensitivity to climatic changes (Andronnikova, 1996; Lazareva, 2008; O'Brien et al., 2005). The data can be used as well as a basis for inference models for reconstruction of the paleoclimatic conditions. Chironomid-based, Cladocera-based and diatom models have successfully been developed (Nazarova et al., 2008, 2011; Self et al., 2011) and can be used for precise paleotemperature reconstructions (Kienast et al., 2011). In summer 2012, we investigated complex of Kharbei lakes, located in the interfluve of Korotaiha and Bolshaya Rogovaya rivers in the east side of Bolshezemelskaya tundra, Russia (67°33'22″ N, 62°53'23″ E). Six different lakes were investigated using modern hydrobiological and palaeoecological methods. In total 9 cores were obtained, cut, dated and further investigated using sedimenthological, geochemical, and paleobiological methods. The standard hydrobiological methods have shown that the modern zooplankton communities did not change significantly during the last 40 years. Taxonomic composition and structure of planktonic communities didn't change, except for appearance of crustaceans Polyarthra euryptera and Daphnia cucullata. In planktonic communities of Bolshoy Harbei lake we revealed 39 species and forms of Rotifera, 19 - Cladocera and 11 - Copepoda. In zoobenthic communities we registered 24 taxonomical groups characteristic for large tundra lakes of the North East of Russia. Chironomids and Oligochaeta are dominant groups of invertebrates. 103 taxa of

  12. Atmospheric balance of the humidity and estimate of the precipitation recycled in Colombia according to the re-analysis NCEP/NCAR

    International Nuclear Information System (INIS)

    Cuartas, Adriana; Poveda, German

    2002-01-01

    The magnitudes of the entrance humidity flows and exit are considered and the amount of precipitable water at different levels from the atmospheric column on Colombia. The water balance is quantified in the Colombian atmosphere; the regions and the atmospheric levels of entrance and exit of humidity are identified. The hypothesis that in the long term the net atmospheric humidity influence must be equal to the average of long term of the net run-off is verified. In addition, the percentage of recycled precipitation is considered on the Colombian territory. The variability during the two phases of the ENSO is analyzed. The calculations are made with the information of the climatic project Reanalysis developed by the National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR), with the collaboration of the National Oceanic and Atmospheric Administration (NOAA)/National Environmental Satellite of the U.S.A. For this work it was counted on monthly information of 41 years between 1958-1998. The hydrological information was obtained from the project Balances Hidrologicos de Colombia, 1999, made by the Posgrado de Recursos Hidraulicos, de la Universidad Nacional, with the support of COLCIENCIAS and the Unidad de Planeacion Minero Energetica-UPME. The results showed the average value of the net influence of humidity to the atmosphere of Colombia is of 5716 mm/year, with a great variability in both phases of the ENSO. The greater humidity advection towards Colombia occurs in the low levels of pressure (between 1000 and 850 hPa), and originating of all the directions, mainly of trade winds of the east and trade winds of the west. Also one was that the greater humidity transport towards Colombia occurs in trimesters DJF and MAM, with average values 505,1 and 606,6 mm/year, respectively. It was observed that the hypothesis that in the long term, the net atmospheric flux, is equal to the net terrestrial run-off, reasonably is adapted for

  13. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean.

    Science.gov (United States)

    Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D

    2013-12-03

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.

  14. Composition and structure of the larval fish community related to environmental parameters in a tropical estuary impacted by climate change

    Science.gov (United States)

    Sloterdijk, Hans; Brehmer, Patrice; Sadio, Oumar; Müller, Hanno; Döring, Julian; Ekau, Werner

    2017-10-01

    Mangrove ecosystems have long been considered essential habitats and are commonly viewed and referred to as "nursery areas". They are highly sensitive to climate change, and environmental transformations in these ecosystems are expected. The Sine Saloum estuary is a case of a system affected by global climate change where reduced precipitation and temperature increase have resulted in an inversion of the salinity gradient. Within the estuary, the composition and structure of the larval fish community related to environmental parameters were investigated using neuston and ring trawl nets. Larval fishes were sampled at 16 stations distributed along a salinity and distance-to-the-sea gradient during four field campaigns (November 2013, February, June, and August 2014) covering an annual cycle. This is the first study documenting the spatial and temporal assemblages of fish larvae in an inverse estuary. The total of 41 taxa representing 24 families and 34 genus identified in this study was lower than that of other tropical estuaries. Clupeidae spp. was the dominant taxon, accounting for 28.9% of the total number of fish larvae caught, followed by Gerreidae spp. (21.1%), Hyporamphus picarti (18.8%), Diplodus bellottii (8.9%), Hypleurochilus langi (4.8%), Mugilidae spp. (4.4%), and Gobiidae sp.1 (3.5%). A total of 20 taxa were recorded within the upper estuary region, whereas 29 and 37 taxa were observed in the middle and lower reaches, respectively. While larval fish were captured at all sites and during all seasons, abundances and richness decreased with increasing salinity. Larval fish assemblages also showed a clear vertical structure corresponding to three distinct water strata. Salinity, water temperature, and dissolved oxygen were the variables that best explained the spatial and temporal differences in larval fish assemblages. It is difficult to forecast the future situation for this system but so far, compared to other mangrove estuarine systems, we have

  15. Climate change due to the gradual increase in atmospheric CO2: a climate system model sensitivity study

    International Nuclear Information System (INIS)

    Park, H.S.; Joh, M.

    2005-01-01

    A numerical experiment investigating climate change due to the gradual increase in atmospheric carbon dioxide (CO 2 ) has been performed with the community climate system model (CCSM) developed by National Center for Atmospheric Research (NCAR). Composed of four independent component models simulating the Earth's atmosphere, ocean, land surface, and sea-ice and one central coupler, the CCSM is used to simulate and understand the Earth's past, present and future climate states. The model experiment consists of a control run with a fixed atmospheric CO 2 concentration at a standardized value for 1990 to 2000 (355 ppmv) and a transient run with a gradually increased atmospheric CO 2 at the rate of 1% per year. ja The initial CO 2 concentration of the transient run is 355 ppmv. Each run has been performed for 80 simulated years. In this experiment, climate change due to the gradually increased atmospheric CO 2 is defined as the difference between the results from the transient and control runs. At the time of CO 2 doubling (about year 70), the globally averaged surface air temperature increases by 1.25 C. The surface air temperature increases are more predominant over the higher-latitude land areas than over other areas, especially in boreal winter. With an increase in the surface air temperature, there is a decrease in the diurnal temperature range, with the nighttime minimum temperature increasing more than the daytime maximum temperature. And air temperature shows tropospheric warming and stratospheric cooling causing the strong temperature gradient and polar jet intensifications. (orig.)

  16. Low Impact Development Planning and Adaptation Decision-Making under Climate Change for a Community against Pluvial Flooding

    Directory of Open Access Journals (Sweden)

    Pei-Yuan Chen

    2017-10-01

    Full Text Available This study integrates and develops methods, namely low impact development (LID selection method and an LID spatial planning model, to enable decision-making to minimize pluvial flooding for a community. The objective is to minimize the flood risk under the worst case of the design storm within the budget constraints. Design storms in current and future climate scenarios are analyzed as input to the Storm Water Management Model (SWMM. Then, LID practices are selected based on the proposed procedure and a spatial planning model is built to identify the optimal LID layouts using the simulated annealing (SA algorithm. The lower and upper bounds of the generated rainfall intensities of a five-year 1-h duration design storms for the Hadley Centre Global Environment Model version 2 for the atmosphere and oceans (HadGEM2-AO, the Norwegian Earth System Model (NorESM1-ME, and the CSIRO-Mk3.6.0 Atmosphere-Ocean GCM (CSIRO-Mk3.6.0 during 2021–2040 are derived. The LID selection helps efficiently identify appropriate LID. Results show that nearly no flood occurs under the optimal LID layouts found by the LID spatial planning model. Moreover, it is more optimal to invest in LID in the lower sub-catchments in LID planning when the budget is limited. These methods are generally applicable for a community using LIDs as adaptation measures against pluvial flooding.

  17. Climate Variability Drives Plankton Community Composition Changes: the 2010-2011 El Nino to La Nina Transition Around Australia

    Science.gov (United States)

    Thompson, Peter A.; Bonham, Pru; Thomson, Paul; Rochester, Wayne; Doblin, Martina A.; Waite, Anya M.; Richardson, Anthony; Rousseaux, Cecile S.

    2015-01-01

    The strong La Nina of 2010-2011 provided an opportunity to investigate the ecological impacts of El Nino-Southern Oscillation on coastal plankton communities using the nine national reference stations around Australia. Based on remote sensing and across the entire Australian region 2011 (La Nina) was only modestly different from 2010 (El Nino) with the average temperature declining 0.2 percent surface chlorophyll a up 3 percent and modelled primary production down 14 percent. Other changes included a poleward shift in Prochlorococcus and Synechococcus. Along the east coast, there was a reduction in salinity, increase in nutrients, Chlorophytes and Prasinophytes (taxa with chlorophyll b, neoxanthin and prasinoxanthin). The southwest region had a rise in the proportion of 19-hexoyloxyfucoxanthin; possibly coccolithophorids in eddies of the Leeuwin Current and along the sub-tropical front. Pennate diatoms increased, Ceratium spp. decreased and Scrippsiella spp. increased in 2011. Zooplankton biomass declined significantly in 2011. There was a reduction in the abundance of Calocalanus pavo and Temora turbinata and increases in Clausocalanus farrani, Oncaea scottodicarloi and Macrosetella gracilis in 2011. The changes in the plankton community during the strong La Nina of 2011 suggest that this climatic oscillation exacerbates the tropicalization of Australia.

  18. Direct and indirect effects of climate change on a prairie plant community.

    Directory of Open Access Journals (Sweden)

    Peter B Adler

    2009-09-01

    Full Text Available Climate change directly affects species by altering their physical environment and indirectly affects species by altering interspecific interactions such as predation and competition. Recent studies have shown that the indirect effects of climate change may amplify or counteract the direct effects. However, little is known about the the relative strength of direct and indirect effects or their potential to impact population persistence.We studied the effects of altered precipitation and interspecific interactions on the low-density tiller growth rates and biomass production of three perennial grass species in a Kansas, USA mixed prairie. We transplanted plugs of each species into local neighborhoods of heterospecific competitors and then exposed the plugs to a factorial manipulation of growing season precipitation and neighbor removal. Precipitation treatments had significant direct effects on two of the three species. Interspecific competition also had strong effects, reducing low-density tiller growth rates and aboveground biomass production for all three species. In fact, in the presence of competitors, (log tiller growth rates were close to or below zero for all three species. However, we found no convincing evidence that per capita competitive effects changed with precipitation, as shown by a lack of significant precipitation x competition interactions.We found little evidence that altered precipitation will influence per capita competitive effects. However, based on species' very low growth rates in the presence of competitors in some precipitation treatments, interspecific interactions appear strong enough to affect the balance between population persistence and local extinction. Therefore, ecological forecasting models should include the effect of interspecific interactions on population growth, even if such interaction coefficients are treated as constants.

  19. Operationalizing ecosystem-based adaptation: harnessing ecosystem services to buffer communities against climate change

    Directory of Open Access Journals (Sweden)

    Christine Wamsler

    2016-03-01

    Full Text Available Ecosystem-based approaches for climate change adaptation are promoted at internatio