WorldWideScience

Sample records for naturally shocked rocks

  1. From regolith to rock by shock

    International Nuclear Information System (INIS)

    Kieffer, S.W.

    1975-01-01

    A model for shock-lithification of terrestrial and lunar regolith is proposed. In this model it is proposed that air or an air-water mixture initially in the pores of terrestrial soil affects the behaviour of the soil-air-water system under shock-loading. Shock lithified rocks found at Meteor Crater are classified as 'strongly lithified' and 'weakly lithified' on the basis of their strength in hand specimen; only weakly lithified rocks are found at the missile impact craters. These qualitative strength properties are related to the mechanisms of bonding in the rocks. The densities of weakly lithified samples are directly related to the pressures to which they were shock-loaded. A comparison of the petrographic textures and densities of weakly lithified samples with textures and densities of 'regolith' shock-loaded to known pressures suggests that weakly lithified terrestrial samples formed at pressures well under 100kb., probably under 50 kb. If terrestrial soils are shock-loaded to pressures between 100 and 200 kb by impact events of short duration, the pore pressure due to hot air or air-water mixtures exceeds the strength of the weak lithification mechanisms and fragmentation rather than lithifications, occurs. At pressures above 200 kb, lithification can occur because the formation of glass provides a lithification mechanism which has sufficient strength to withstand the pore pressure. (Auth.)

  2. Why the Nature of Oil Shocks Matters

    International Nuclear Information System (INIS)

    Archanskaia, Elizaveta; Hubert, Paul; Creel, Jerome

    2009-03-01

    This article studies the impact of oil shocks on the macro-economy in two ways insofar unexploited in the literature. The analysis is conducted at the global level, and it explicitly accounts for the potentially changing nature of oil shocks. Based on an original world GDP series and a grouping of oil shocks according to their nature, we find that oil supply shocks negatively impact world growth, contrary to oil demand shocks, pro-cyclical in their nature. This result is robust at the national level for the US. Furthermore, endogenous monetary policy is shown to have no counter-cyclical effects in the context of an oil demand shock. (authors)

  3. Microdeformation in Vredefort rocks; evidence for shock metamorphism

    Science.gov (United States)

    Reimold, W. U.; Andreoli, M. A. G.; Hart, R. J.

    Planar microdeformations in quartz from basement or collar rocks of the Vredefort Dome have been cited for years as the main microtextural evidence for shock metamorphism in this structure. In addition, Schreyer describes feldspar recrystallization in rocks from the center of the Dome as the result of transformation of diaplectic glass, and Lilly reported the sighting of mosaicism in quartz. These textural observations are widely believed to indicate either an impact or an internally produced shock origin for the Vredefort Dome. Two types of (mostly sub) planar microdeformations are displayed in quartz grains from Vredefort rocks: (1) fluid inclusion trails, and (2) straight optical discontinuities that sometimes resemble lamellae. Both types occur as single features or as single or multiple sets in quartz grains. Besides qualitative descriptions of cleavage and recrystallization in feldspar and kinkbands in mica, no further microtextural evidence for shock metamorphism at Vredefort has been reported to date. Some 150 thin sections of Vredefort basement rocks were re-examined for potential shock and other deformation effects in all rock-forming minerals. This included petrographic study of two drill cores from the immediate vicinity of the center of the Dome. Observations recorded throughout the granitic core are given along with conclusions.

  4. Shock pressure estimation in basement rocks of the Chicxulub impact crater using cathodoluminescence spectroscopy of quartz

    Science.gov (United States)

    Tomioka, N.; Tani, R.; Kayama, M.; Chang, Y.; Nishido, H.; Kaushik, D.; Rae, A.; Ferrière, L.; Gulick, S. P. S.; Morgan, J. V.

    2017-12-01

    The Chicxulub impact structure, located in the northern Yucatan Peninsula, Mexico, was drilled by the joint IODP-ICDP Expedition 364 in April-May 2016. This expedition is the first attempt to obtain materials from the topographic peak ring within the crater previously identified by seismic imaging. A continuous core was successfully recovered from the peak ring at depths between 505.7 and 1334.7 mbsf. Uplifted, fractured, and shocked granitic basement rocks forming the peak ring were found below, in the impact breccia and impact melt rock unit (747.0-1334.7 mbsf; Morgan et al. 2016). In order to constrain impact crater formation, we investigated shock pressure distribution in the peak-ring basement rocks. Thin sections of the granitic rocks were prepared at intervals of 60 m. All the samples contains shocked minerals, with quartz grains frequently showing planar deformation features (PDFs). We determined shock pressures based on the cathodoluminescence (CL) spectroscopy of quartz. The strong advantage of the CL method is its applicability to shock pressure estimation for individual grains for both quartz and diaplectic SiO2 glass with high-spatial resolution ( 1 μm) (Chang et al. 2016). CL spectra of quartz shows a blue emission band caused by shock-induced defect centers, where its intensity increases with shock pressure. A total of 108 quartz grains in ten thin sections were analyzed using a scanning electron microscope with a CL spectrometer attached (an acceleration voltage of 15 kV and a beam current of 2 nA were used). Natural quartz single crystals, which were experimentally shocked at 0-30 GPa, were used for pressure calibration. CL spectra of all the quartz grains in the basement rocks showed broad blue emission band at the wavelength range of 300-500 nm and estimated shock pressures were in the range of 15-20 GPa. The result is consistent with values obtained from PDFs analysis in quartz using the universal stage (Ferrière et al. 2017; Rae et al. 2017

  5. Mineral shock signatures in rocks from Dhala (Mohar) impact ...

    Indian Academy of Sciences (India)

    Madhuparna Roy

    2017-11-23

    Nov 23, 2017 ... The observed unit cell aberration of minerals may indicate an intermediate stage between crystalline and amorphous stages, thereby, signifying possible overprinting of decompression signatures over shock compression effects, from a shock recovery process. Keywords. Dhala (Mohar) impact structure; ...

  6. Shock and Naturalization - An Inquiry into the Perception of Modernity

    OpenAIRE

    Cassegård, Carl

    2002-01-01

    In sociology shock is often seen as emblematic of modernity. However, while Benjamin and Simmel famously portray the big city crowd - and by extension modernity itself - as an arena of shock, shock sensations are notable for their absence in depictions of the crowd as well as of modernity as a whole in much contemporary literature. This is evident in depictions involving streets, trains, technology, interpersonal relations, and so forth. Like a natural environment, this modernity is character...

  7. Mineral shock signatures in rocks from Dhala (Mohar) impact ...

    Indian Academy of Sciences (India)

    Madhuparna Roy

    2017-11-23

    Nov 23, 2017 ... 4.3 X-ray diffractometry. The minerals identified by X-ray diffraction (XRD) method in the melt breccia as well as the shocked basement granite are quartz, albite, microcline, biotite, hornblende, chlorite, apart from traces of calcite, galena, sphalerite and chalcopyrite. The crystallographic parameters of quartz ...

  8. Natural radioactivity of the rocks from the Moon and planets

    International Nuclear Information System (INIS)

    Surkov, Yu.A.

    1982-01-01

    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient contineent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts

  9. Multiple shocks, coping and welfare consequences: natural disasters and health shocks in the Indian Sundarbans.

    Science.gov (United States)

    Mazumdar, Sumit; Mazumdar, Papiya Guha; Kanjilal, Barun; Singh, Prashant Kumar

    2014-01-01

    Based on a household survey in Indian Sundarbans hit by tropical cyclone Aila in May 2009, this study tests for evidence and argues that health and climatic shocks are essentially linked forming a continuum and with exposure to a marginal one, coping mechanisms and welfare outcomes triggered in the response is significantly affected. The data for this study is based on a cross-sectional household survey carried out during June 2010. The survey was aimed to assess the impact of cyclone Aila on households and consequent coping mechanisms in three of the worst-affected blocks (a sub-district administrative unit), viz. Hingalganj, Gosaba and Patharpratima. The survey covered 809 individuals from 179 households, cross cutting age and gender. A separate module on health-seeking behaviour serves as the information source of health shocks defined as illness episodes (ambulatory or hospitalized) experienced by household members. Finding reveals that over half of the households (54%) consider that Aila has dealt a high, damaging impact on their household assets. Result further shows deterioration of health status in the period following the incidence of Aila. Finding suggests having suffered multiple shocks increases the number of adverse welfare outcomes by 55%. Whereas, suffering either from the climatic shock (33%) or the health shock (25%) alone increases such risks by a much lesser extent. The multiple-shock households face a significantly higher degree of difficulty to finance expenses arising out of health shocks, as opposed to their counterparts facing only the health shock. Further, these households are more likely to finance the expenses through informal loans and credit from acquaintances or moneylenders. This paper presented empirical evidence on how natural and health shocks mutually reinforce their resultant impact, making coping increasingly difficult and present significant risks of welfare loss, having short as well as long-run development manifestations.

  10. Water-rock interaction in a high-FeO olivine rock in nature

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Lindberg, A.; Tullborg, E.L.

    1992-12-01

    The long-term behaviour in nature of high-FeO olivine rock in contact with surface water has been studied at the Lovasjaervi instrusion, SE-Finland. The rock has been proposed as a high-capasity, higly reactive redox-buffer backfill in a repository for spent fuel. Favourable groundwater chemistry is a major parameter relevant to safety of such a repository. Reducing conditions favour the retardation of long-lived, redox-sensitive radionuclides. Weathering influences have been studied at the natural outcrop of the rock mass. The interaction of oxidizing surface waters with rock at greater depths has been studied by using fissure filling minerals. Investigation of weathered rock from the outcrop indicates that the olivine rock is highly reactive on a geological time scale and its redox capasity is available although the instrusion as a whole is surprisingly well preserved. The fissure fillings studied allow the conclusion that oxygen seems to be efficiently removed from intruding surface water. Oxidation seem to have caused visible effects only along very conducting fractures and near the contact zones of the surrounding granitic rock. Stable isotope data of fissure filling calcites indicate that the influence of surface waters can be traced clearly down to a depth of about 50 m, but also at greater depths re-equilibration has occurred. Groundwater data from the site were not available. (orig.)

  11. Phisical and chemical transformation of rocks and ores in spherical shock waves

    Science.gov (United States)

    Kozlov, E. A.; Anfilogov, V. N.; Zugin, Y. N.; Belogub, E. V.; Brichko, S. N.

    2003-04-01

    The method of creation of the spherical converging waves in shut system is worked out. A spheric sample of rock is placed into a steel container. The shock wave is produced by layer explosive, which is placed on the surface of a steel container. The experiments are realized in the shut condition and the result of the shock action is preserved in the sample. Graphitic qurartzite, graphic granit and sulfide ore were exposed of the shock wave action. The pressure and temperature in the spheric sample is the function of radius. We have following results of the shock wave action from periphery to center. The graphitic quartzite: 24 - 11 mm - big fractures in quartz grains; 11- 8 mm - planar fractures in quartz grains (P = 7.5 Gpa); 8 - 7 mm (P = 14 - 22 Gpa) amorphous areas in quartz, little crystals of coesite; 7 -5.8 mm-diaplectic and partial meltihg zone; 5.8 - 1.4 mm - isotropic glass. There is no transformation of graphite to diamond. The graphic granit: 24- 13 mm - unchanged granit; 13 - 10 mm - quartz has block structure; 10-8 mm - grains of fielspar become isotropic, quartz has planar separate forms; 8 -4.5 mm - clean transparent rose diaplectic glass; 4,5 - 0 mm clean granulated glass. The sample of the sulphide ore consists of pyrite, chalcopyrite and quartz. The results of the shock action on sulphilde ore: 24 -12 mm - big fractures in the sulphide ore; 12 -8 mm - relicts of the primary sulphides with rims and veinlets of the new sulphides (mainly chalcopyrite), which were crystalizated from melt; 8 -0 mm- porous material consists of bornite, chalcopyrite, pyrrotite, pyrite and little quantity of silicate glass.

  12. Natural analogue for storage of radwaste in crystalline rocks

    International Nuclear Information System (INIS)

    Brookins, D.G.; Abashian, M.S.; Cohen, L.H.; Wollenberg, H.A. Jr.

    1982-01-01

    The Bryan-Eldora stock (Colorado) intruded the Precambrian Idaho Springs Formation metamorphic rocks 58 million years ago. Geochronologic-geochemical work by Hart et al. [S.R. Hart et al., in Radiometric Dating for Geologists, E.I. Hamilton, R.S. Farquhar, eds. (Wiley-Interscience, New York, 1968) pp. 73-110] has demonstrated that the heat from the cooling intrusive rocks was sufficient to affect mineral isotopic systematics up to 2000 m from the contact, and the nature of these isotopic perturbations can be explained by a simple diffusion model in turn based on various heat flow models. Our new studies are focused on elemental exchange between stock and intruded rock as a function of distance from the contact; the assumption is made that the stock is a very large, high heat source analogous to a waste form emplaced in the metamorphic rocks without benefit of canister or engineered backfill. Data for U, Th and the REE indicate actinide and lanthanide immobility except perhaps in the 0 to 2m contact zone where some infiltration of the country rocks by stock-derived fluids occurred. Beyond 4m no stock-derived U, Th, REE or *Pb are noted. Further, whole rock Rb-Sr and stable O isotopic data indicate conductive cooling as opposed to convective, water-induced cooling. The intruded rocks possess low porosity and permeability; this helped prevent elemental migration during the 10 5 to 10 6 years of stock crystallization. The petrographic and geochemical studies show that the Idaho Springs (or equivalent) metamorphic rocks are well suited for radwaste storage. 1 figure, 1 table

  13. BARRINGER AWARD ADDRESS: Shock Metamorphism of Quartz in Nature and Experiment: A Review

    Science.gov (United States)

    Stoffler, D.

    1993-07-01

    Quartz as a widespread rock-forming mineral of the Earth's crust represents the most sensitive indicator of impact-induced shock waves and therefore provides an outstanding tool for the recognition of terrestrial impact formations and for the pressure calibration of shock metamorphosed rocks. This paper attempts to summarize the current knowledge in this field. Shocked quartz has been observed in quite variable spatial relations to impact craters: (1) in the crater basement, (2) in rock and mineral clasts of polymict breccias, and (3) in distal ejecta such as tektites and global air- fall beds (e.g., K/T boundary). Quartz displays a wide variety of shock- induced mechanical deformations and transformations [1,2]. Microscopically observable effects are multiple sets of planar fractures (PF) and planar deformation features (PDF) parallel to low indices crystallographic planes; mosaickism; reduced refractivity and birefringence; partial transformation to stishovite; increased optic axial angle; amorphization (diaplectic glass), partial transformation to coesite; and melting (lechatelierite). Additional effects at the atomic scale are well documented by TEM, X-ray diffraction and spectroscopy [3-7]. All types of shock effects observed so far in natural quartz have been reproduced by experimental shock waves in the laboratory and in large scale TNT and nuclear explosions. By means of sophisticated techniques the pressure dependence of shock effects has been calibrated with high precision. Threshold pressures at room temperature (given in GPa) for the onset of certain effects in single crystals and in nonporous quartzofeldpathic rocks are: 7.5 +- 2, 10 +- 2, 20 +- 2 (various PFs and PDFs), 12 +- 1 (stishovite), 25 +- 1 (reduced refractive index and density), ~30 (coesite), 34 +- 1 (total transformation to diaplectic glass), 50 +- 2 (melting and formation of lechatelierite) [8-12]. The type of shock effects, their paragenetic combination, and their formation pressure are

  14. Multiple Approaches to Characterizing Pore Structure in Natural Rock

    Science.gov (United States)

    Hu, Q.; Dultz, S.; Hamamoto, S.; Ewing, R. P.

    2012-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and chemical transport, and are important in hydrogeological studies of rock formations in the context of energy, environmental, and water resources management. This presentation discusses various approaches to investigating pore structure of rock, with a particular focus on the Barnett Shale in north Texas used for natural gas production. Approaches include imbibition, tracer diffusion, porosimetry (MIP, vapor adsorption/desorption isotherms, NMR cyroporometry), and imaging (μ-tomography, Wood's metal impregnation, FIB/SEM). Results show that the Barnett Shale pores are predominantly in the nm size range, with a measured median pore-throat diameter of 6.5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low gas diffusivity appears to be caused by low pore connectivity. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the pore structure characteristics in the Barnett Shale and other natural rocks.

  15. Shock Waves Trigger Fault Weakening in Calcite-bearing Rocks During Earthquakes

    Science.gov (United States)

    Spagnuolo, E.; Plumper, O.; Violay, M.; Cavallo, A.; Di Toro, G.

    2014-12-01

    The weakening mechanism of calcite-bearing rocks is still poorly understood though many major earthquakes stroke within carbonate sequences. Insights derive from the laboratory: in experiments performed on calcite-bearing gouges, up to 90% drop in friction is associated to grain size reduction to the nanoscale and the formation of crystal-plastic microstructures suggesting the activation of debated weakening mechanisms (e.g., grain boundary sliding and diffusion creep; nanopowder lubrication). Whatever the case, it is unclear how nanoparticles form and what their role is at the initiation of sliding. To investigate initial fault instability we sheared with a rotary shear apparatus SHIVA pre-cut ring-shaped solid cylinders (50/30 mm ext/int diameter) of Carrara marble (99.9% CaCO3). Rock cylinders were slid for few millimetres(0, 1.5 mm and 5mm) at accelerations (6.5 ms-2) and normal stresses (10 MPa) approaching seismic deformation conditions. Initial slip (<2 mm) was concomitant with large frictional weakening (up to 30% of static friction) and CO2emission. Microanalytical observations (FE-SEM, FIB-SEM and TEM) showed that the experimental slipping zones consisted of (1) defects structures, including dislocations, cleavage surfaces and deformation features such as mechanical twins, partially burden beneath (2) a 2-10 micrometer thick layer of nanograins where pervasive nano-fracturing have occurred preserving the grain shape (pulverization) and (3) reaction products attributable to high pressure and high temperature conditions (i.e. calcite decomposition into amorphous carbon rimming the nanograins). All the above features are typical of shock-induced changes in minerals. We interpret the above observations as follows: pre-existing grain boundaries or newly formed defects are the nuclei for the generation of dislocations and for their pile-up; the fast release of those piles-up in avalanches under rapid stress loading (fast moving dislocations) may explain the

  16. Natural radioactivity in rocks from Paraiba Sertao, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Damascena, Kennedy F.R.; Santos Junior, Jose A. dos; Amaral, Romilton dos S.; Bezerra, Jairo D.; Rojas, Lino V.; Medeiros, Nilson V. da S.; Silva, Alberto A. da; Santos, Josineide M. do N.; Santos Junior, Otavio P. dos, E-mail: kennedy.eng.ambiental@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: alberto.silva@barreiros.ifpe.edu.br, E-mail: linomarvic@gmail.com, E-mail: otavio.santos@vitoria.ifpe.edu.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Barreiros, PE (Brazil); Centro de Aplicaciones Tecnologicas y Dessarrollo Nuclear (CEADEN), La Habana (Cuba)

    2017-11-01

    Northeastern Brazil is a region with a large number of natural radioactive occurrences. Monitoring studies carried out over the last 30 years have identified a hundred anomalous points, especially in the State of Paraiba, more specifically the region of Serido Ocidental Paraibano, geologically characterized by the presence of rocky outcrops with radioactive materials associated with granites and pegmatites. Regions with differentiated levels of natural radioactivity and, consequently, greater radioecological relevance, have been the constant object of radiometric and dosimetric studies. Considering their relevance, the present study aimed to evaluate the levels of natural radioactivity in rocks located in the Riacho da Serra and Serra dos Porcos, previously unmonitored, located in the municipalities of Sao Jose do Sabugi and Santa Luzia, in Paraiba, Northeast of Brazil. The radiometric evaluation was performed by measuring the specific activities of U-238, Th-232 and K-40 in rock samples using a high resolution gamma spectrometry system. The mean specific activities of U-238, Th-232 and K-40 were: 2562.30 ± 672.22; 180.68 ± 672.22 and 1374.13 ± 36.90 Bq/kg, respectively. The monitored radionuclides presented high values of specific activity, being 1.6; 4.1 and 71.2 times higher than the mean values for the earth's crust. (author)

  17. Natural radioactivity in rocks from Paraiba Sertao, Brazil

    International Nuclear Information System (INIS)

    Damascena, Kennedy F.R.; Santos Junior, Jose A. dos; Amaral, Romilton dos S.; Bezerra, Jairo D.; Rojas, Lino V.; Medeiros, Nilson V. da S.; Silva, Alberto A. da; Santos, Josineide M. do N.; Santos Junior, Otavio P. dos

    2017-01-01

    Northeastern Brazil is a region with a large number of natural radioactive occurrences. Monitoring studies carried out over the last 30 years have identified a hundred anomalous points, especially in the State of Paraiba, more specifically the region of Serido Ocidental Paraibano, geologically characterized by the presence of rocky outcrops with radioactive materials associated with granites and pegmatites. Regions with differentiated levels of natural radioactivity and, consequently, greater radioecological relevance, have been the constant object of radiometric and dosimetric studies. Considering their relevance, the present study aimed to evaluate the levels of natural radioactivity in rocks located in the Riacho da Serra and Serra dos Porcos, previously unmonitored, located in the municipalities of Sao Jose do Sabugi and Santa Luzia, in Paraiba, Northeast of Brazil. The radiometric evaluation was performed by measuring the specific activities of U-238, Th-232 and K-40 in rock samples using a high resolution gamma spectrometry system. The mean specific activities of U-238, Th-232 and K-40 were: 2562.30 ± 672.22; 180.68 ± 672.22 and 1374.13 ± 36.90 Bq/kg, respectively. The monitored radionuclides presented high values of specific activity, being 1.6; 4.1 and 71.2 times higher than the mean values for the earth's crust. (author)

  18. Radiation shielding properties of some natural rocks in upper Egypt

    International Nuclear Information System (INIS)

    Abbady, A.; Ahmed, N.K.; Saied, M.H.; Uosif, M.A.; El-kamel, A.H.

    1999-01-01

    To support the use of some natural rocks in Upper Egypt as suitable radiation materials, the attenuation of gamma - ray through destructive and nondestructive samples of alabaster, marble and limestone have been tested in the energy range from 356 keV to 1173 keV. The attenuation coefficients of the nondestructive samples are found higher than the values of the destructive samples. The half - layer values for attenuation, and the concentration of uranium and thorium in the samples were calculated and discussed

  19. The nature of oil shocks and the global economy

    International Nuclear Information System (INIS)

    Archanskaïa, Elizaveta; Creel, Jérôme; Hubert, Paul

    2012-01-01

    This paper identifies the main driving force behind oil price shocks in 1970–2006 by applying a simple identification strategy of supply-driven and demand-driven price shocks. The identification hypothesis states that supply-driven oil price shocks have a negative impact on the macroeconomic activity of countries, which are net consumers of oil while demand-driven oil price shocks do not have negative effects. In order to identify global demand-driven shocks, a weighted aggregate GDP series of countries, which are net consumers of oil, is constructed over 1970–2006. The key result is that the main driving force behind oil price shocks has changed from supply-driven shocks in 1970–1992 to demand-driven shocks in 1992–2006. - Highlights: ► We characterize the oil–macroeconomy relationship at the global level. ► We identify oil supply and oil demand shocks drawing on a AS/AS model. ► We construct an indicator of global activity for countries net consumers of oil. ► We use Qu-Perron break tests, TVP, Cyclical correlations and VARs. ► We show that the main driving force behind oil price shocks has changed around 1992.

  20. Nano-Sized Natural Colorants from Rocks and Soils

    Science.gov (United States)

    Ahmad, W. Y. W.; Ruznan, W. S.; Hamid, H. A.; Kadir, M. I. A.; Yusoh, M. K. M.; Ahmad, M. R.

    2010-03-01

    Colored rocks (lateritic) and soils (shales) are available in abundant all around Malaysia and they are from natural sources. The colorants will be useful if they can be transferred to substrates using dyeing, printing or brushing with acceptable fastness. First of all the rocks need to be crushed into powder form before coloration can take place. The sizes of the colorants particles obtained with coffee grinder were of 7-8 microns. They can be reduced to 3-5 micron using fluidized bed jetmill and to nano sizes with the help of planetary mono mill grinders. The experiment was conducted in both dyeing and printing of textiles using all three sizes (7-8 microns, 3-5 microns and nano sizes) of colorants on silk fabric. The colorants were applied on silk fabrics by dyeing and tie and dye techniques. In addition, the colorants can also be applied by brushing technique as in batik canting or batik block as well as silk screen printing. The evaluations of colored materials were based on the levelness of dyeing, fastness properties (washing, light and rubbing fastness) and color strength. The wash fastness testing shows that all colorants sizes have more or less the same fastness to washing but nano sized colorants produced better uniform dyes distribution (levelness of dyeing) and higher color strength.

  1. Radwaste storage in crystalline rocks: a natural analog

    International Nuclear Information System (INIS)

    Brookins, D.G.; Abashian, M.S.; Cohen, L.H.; Wollenberg, H.A.

    1982-01-01

    The Eldora-Bryan Stock (Colorado) intruded the 1.4-1.6 billion year old metamorphic rocks of the Idaho Springs Formation 55 million years ago. The stock may be considered a giant analog of a radwaste form without canister or engineered backfill barriers. The authors' lanthanide studies show the following: (1) The intrusive rocks remained as a closed system. (2) Lanthanide/chondrite versus ionic radius plots show only local redistribution in the immediate contact zone, and that rocks in this zone have not gained lanthanides from the magma. (3) No whole rock perturbations for the lanthanides are noted at distances greater than 3 m from the contact. Stable oxygen isotopic variations show a narrow 9.0 +- 0.3 per mille range for the intrusive rocks and whole rock values from 7.6 to 10.0 per mille for the intruded rocks. The authors conclude: (1) The Idaho Springs Formation was not penetrated by hydrothermal fluids from the Eldora-Bryan magma except possibly on a local scale within 3 m of the contact. (2) The light lanthanides may be locally redistributed in the immediate contact zone, but without additions from the magma. (3) The oxygen isotopic data imply lack of hydrothermal fluids from the magma penetrating the intruded rocks, even in the highest temperature contact zones. Whole rock data imply closed system conditions for Rb, Sr, Th, U, Pb even where mineral ages have been lowered. Data for Co, Cr, Sc, Fe, Cs also indicate retention in whole rock systems and no exchange with the magma. The combined chemical, isotopic, petrographic and theoretical data and calculations indicate suitability of rocks of the Idaho Springs Formation, and thus of many types of crystalline rocks as well, for possible use for the storage of radioactive waste

  2. Rheology Of Natural Dacitic Rocks: Lava Dome Versus Lava Flow

    Science.gov (United States)

    Avard, G.; Whittington, A. G.

    2009-12-01

    Dacitic volcanoes are not only known for their blasts that decapitate the edifice - Bezymianny 1956, Mount Saint Helens 1980 or Pinatubo 1996 - but also for growing large lava domes after the main explosion, which corresponds to the “effusive” stage of their activity. In this range of composition and temperature, the magma is too viscous to flow very far, and therefore a dome forms. Santa-Maria volcano, Guatemala, experienced a cataclysmic eruption in 1902, and since 1922 has grown a complex of four dacitic domes, called Santiaguito. However, Caliente, the currently active dome, extruded a 4-km long lava flow between 1999 and 2004. Several shorter lava flows have been observed on other domes, particularly on Brujo, another dome of the Santiaguito complex, and at Bezymianny, in Kamchatka. One important question is whether the change in eruption style is due in part to changes in the rheology of the lavas, which depends on composition, crystal fraction, temperature, volatile content and strain rate. We studied 5 different natural rocks collected on Santiaguito (1 dome spine and 1 flow), Mount Saint Helens (2004 dome) and Bezymianny (1 bomb and 1 flow). All are crystal-rich dacites composed of up to 30% plagioclase and pyroxene phenocrysts in a rhyolitic matrix that ranges between 72 and 77 wt.% silica, and they contain up to 30 vol.% bubble fraction. Their apparent viscosity was measured using a parallel plate viscometer on cylindrical cores under uniaxial compression, at atmospheric pressure and in the temperature range 880 to 1040°C. Applied stresses were between 0.13 MPa and 0.43 MPa, and resulting strain rates were between 6×10-8 and 2×10-2 s-1. More than thirty experiments were performed, at durations up to ten days, and the amount of shortening varied from 1.8% to over 35%. We were particularly aiming to quantify the yield strength of these natural rocks and the effect of temperature, stress, strain rate, compaction and vesicle content on the apparent

  3. Intertidal Rock Pool Fishes in the Natural Reserve of Glorieuses ...

    African Journals Online (AJOL)

    Coral Reefs Symposium (ICRS), Okinawa,. Japon, 28/06-02/07/2004. Griffiths S. P., 2000. The use of clove oil as an anaesthetic and method for sampling intertidal rock pool fishes. Journal of Fish. Biology, 57: 1453-1464. Grossman G. D., 1986. Resource partitioning in a rocky intertidal fish assemblage. J. Zool., Bl: 317-355 ...

  4. Remanent magnetization and structural effects due to shock in natural and man-made iron-nickel alloys

    Science.gov (United States)

    Wasilewski, P. J.; Doan, A. S., Jr.

    1973-01-01

    Explosive shock or meteorite impact are significant remagnetization processes. The mechanisms of remagnetization associated with the dynamic processes depend on the peak shock pressure, the nature of the shocked materials, and the behavior of the shock in the material. Magnetic measurements can be used to classify products formed during a shock process, and magnetic measurements can be used to investigate the process itself because of the special characteristics of the remanent magnetization vectors. The magnetic coercive force increases more rapidly in quenched and annealed iron-nickel alloys as nickel is added than it does in the alloys which have been shocked.

  5. Study of natural radioactivity in the rocks of Coorg District, Karnataka State

    International Nuclear Information System (INIS)

    Prakash, M.M; KaliPrasad, C.S.; Narayana, Y.

    2016-01-01

    The paper deals with the study of natural radioactivity in the rocks of Coorg district, Karnataka state. The level of terrestrial radiation are related to the geological composition of the region, and to the concentration of 226 Ra, 232 Th and 40 K in rock. Rocks are used in various construction activities, which also have these natural radionuclides. Hence, a study was done to assess the concentration of these radionuclides in rock samples. Coorg lies along the eastern slopes of Western Ghats, which is in the south western side of Karnataka state. The rock samples were collected from different locations of Coorg. The samples were crushed, ovendried and sieved through 240µm sieve. The sieved samples were sealed in a plastic container of 300ml and stored for 30 days

  6. Investigation on natural radioactive nuclide contents of rock products in Xi'an construction materials market

    International Nuclear Information System (INIS)

    Zhou Chunlin; Han Feng; Shang Aiguo; Li Tiantuo; Guo Huiping; Yie Lichao; Li Guifang

    2001-01-01

    The author reports the investigation results on natural radioactive nuclide contents of rock products from Xi'an construction materials market. The products were classified according to the national standard. The results show that natural radioactive nuclide contents in sampled rock products are in normal radioactive background levels. The radio-activity ranges of 238 U, 226 Ra, 232 Th and 40 K are 2.7 - 181.8, 0.92 - 271.0, 0.63 - 148.0, 1.8 - 1245 Bq·kg -1 , respectively. According to the national standard (JC 518-93), the application of some rock products must be limited

  7. Mineral shock signatures in rocks from Dhala (Mohar) impact structure, Shivpuri district, Madhya Pradesh, India

    Science.gov (United States)

    Roy, Madhuparna; Pandey, Pradeep; Kumar, Shailendra; Parihar, P. S.

    2017-12-01

    A concrete study combining optical microscopy, Raman spectroscopy and X-ray diffractometry, was carried out on subsurface samples of basement granite and melt breccia from Mohar (Dhala) impact structure, Shivpuri district, Madhya Pradesh, India. Optical microscopy reveals aberrations in the optical properties of quartz and feldspar in the form of planar deformation feature-like structures, lowered birefringence and mosaics in quartz, toasting, planar fractures and ladder texture in alkali feldspar and near-isotropism in bytownite. It also brings to light incidence of parisite, a radioactive rare mineral in shocked granite. Raman spectral pattern, peak positions, peak widths and multiplicity of peak groups of all minerals, suggest subtle structural/crystallographic deviations. XRD data further reveals minute deviations of unit cell parameters of quartz, alkali feldspar and plagioclase, with respect to standard α-quartz, high- and low albite and microcline. Reduced cell volumes in these minerals indicate compression due to pressure. The c0/a0 values indicate an inter-tetrahedral angle roughly between 120o and 144o, further pointing to a possible pressure maxima of around 12 GPa. The observed unit cell aberration of minerals may indicate an intermediate stage between crystalline and amorphous stages, thereby, signifying possible overprinting of decompression signatures over shock compression effects, from a shock recovery process.

  8. Shock-induced melting in anorthositic rock 60015 and a fragment of anorthositic breccia from the 'picking pot' /70052/. [meteoritic impacts on moon

    Science.gov (United States)

    Sclar, C. B.; Bauer, J. F.

    1974-01-01

    Microscopic and chemical evidence are presented to support the contention that shock-generated incipient grain-boundary melting of plagioclase occurred in an anorthositic lunar rock and that shock-generated plagioclase liquid was present along grain boundaries during post-shock adiabatic expansion in a fragment of anorthositic breccia. The first contention is supported by microtextural relationships in the rock, the composition of its metal particles (most iron with some cobalt and less nickel), and glass inclusions with vapor bubbles. The second contention is supported by angular irregular voids in the fragment as well as the occurrence of oriented glass filaments in some of the voids. It is shown that shock-generation of 'cataclastic anorthosite' and high-temperature plagioclase liquids can explain the exceptionally young lead and argon ages of the anorthositic rock. The results of the breccia study indicate that shock lithification of plagioclase-rich particulate material from the highland regolith is due to grain-boundary melting of plagioclase.

  9. Shock wave calibration of under-expanded natural gas fuel jets

    Science.gov (United States)

    White, T. R.; Milton, B. E.

    2008-10-01

    Natural gas, a fuel abundant in nature, cannot be used by itself in conventional diesel engines because of its low cetane number. However, it can be used as the primary fuel with ignition by a pilot diesel spray. This is called dual-fuelling. The gas may be introduced either into the inlet manifold or, preferably, directly into the cylinder where it is injected as a short duration, intermittent, sonic jet. For accurate delivery in the latter case, a constant flow-rate from the injector is required into the constantly varying pressure in the cylinder. Thus, a sonic (choked) jet is required which is generally highly under-expanded. Immediately at the nozzle exit, a shock structure develops which can provide essential information about the downstream flow. This shock structure, generally referred to as a “barrel” shock, provides a key to understanding the full injection process. It is examined both experimentally and numerically in this paper.

  10. The existence and nature of the interstellar bow shock

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Jaffel, Lotfi [UPMC Univ Paris 06, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Strumik, M.; Ratkiewicz, R.; Grygorczuk, J., E-mail: bjaffel@iap.fr [Space Research Centre, Polish Academy of Sciences, Bartycka 18A, 00-716 Warsaw (Poland)

    2013-12-20

    We report a new diagnosis of two different states of the local interstellar medium (LISM) near our solar system by using a sensitivity study constrained by several distinct and complementary observations of the LISM, solar wind, and inner heliosphere. Assuming the Interstellar Boundary Explorer (IBEX) He flow parameters for the LISM, we obtain a strength of ∼2.7 ± 0.2 μG and a direction pointing away from galactic coordinates (28, 52) ± 3° for the interstellar magnetic field as a result of fitting Voyager 1 and Voyager 2 in situ plasma measurements and IBEX energetic neutral atoms ribbon. When using Ulysses parameters for the LISM He flow, we recently reported the same direction but with a strength of 2.2 ± 0.1 μG. First, we notice that with Ulysses He flow, our solution is in the expected hydrogen deflection plane (HDP). In contrast, for the IBEX He flow, the solution is ∼20° away from the corresponding HDP plane. Second, the long-term monitoring of the interplanetary H I flow speed shows a value of ∼26 km s{sup –1} measured upwind from the Doppler shift in the strong Lyα sky background emission line. All elements of the diagnosis seem therefore to support Ulysses He flow parameters for the interstellar state. In that frame, we argue that reliable discrimination between superfast, subfast, or superslow states of the interstellar flow should be based on most existing in situ and remote observations used together with global modeling of the heliosphere. For commonly accepted LISM ionization rates, we show that a fast interstellar bow shock should be standing off upstream of the heliopause.

  11. The effects of naturally occurring impurities in rock salt

    Indian Academy of Sciences (India)

    To compensate for the small interaction probability [2], a huge volume of detecting material is required, which is found in naturally occurring bulk of dielectrics, such as the ice sheets at the poles or natural salt domes. ..... the salt stock and forms residual accumulation at the dome crest. Other geochemical processes convert ...

  12. Effect of Temperature Shock and Inventory Surprises on Natural Gas and Heating Oil Futures Returns

    Science.gov (United States)

    Hu, John Wei-Shan; Lin, Chien-Yu

    2014-01-01

    The aim of this paper is to examine the impact of temperature shock on both near-month and far-month natural gas and heating oil futures returns by extending the weather and storage models of the previous study. Several notable findings from the empirical studies are presented. First, the expected temperature shock significantly and positively affects both the near-month and far-month natural gas and heating oil futures returns. Next, significant temperature shock has effect on both the conditional mean and volatility of natural gas and heating oil prices. The results indicate that expected inventory surprises significantly and negatively affects the far-month natural gas futures returns. Moreover, volatility of natural gas futures returns is higher on Thursdays and that of near-month heating oil futures returns is higher on Wednesdays than other days. Finally, it is found that storage announcement for natural gas significantly affects near-month and far-month natural gas futures returns. Furthermore, both natural gas and heating oil futures returns are affected more by the weighted average temperature reported by multiple weather reporting stations than that reported by a single weather reporting station. PMID:25133233

  13. Effect of temperature shock and inventory surprises on natural gas and heating oil futures returns.

    Science.gov (United States)

    Hu, John Wei-Shan; Hu, Yi-Chung; Lin, Chien-Yu

    2014-01-01

    The aim of this paper is to examine the impact of temperature shock on both near-month and far-month natural gas and heating oil futures returns by extending the weather and storage models of the previous study. Several notable findings from the empirical studies are presented. First, the expected temperature shock significantly and positively affects both the near-month and far-month natural gas and heating oil futures returns. Next, significant temperature shock has effect on both the conditional mean and volatility of natural gas and heating oil prices. The results indicate that expected inventory surprises significantly and negatively affects the far-month natural gas futures returns. Moreover, volatility of natural gas futures returns is higher on Thursdays and that of near-month heating oil futures returns is higher on Wednesdays than other days. Finally, it is found that storage announcement for natural gas significantly affects near-month and far-month natural gas futures returns. Furthermore, both natural gas and heating oil futures returns are affected more by the weighted average temperature reported by multiple weather reporting stations than that reported by a single weather reporting station.

  14. Natural resilience: healthy ecosystems as climate shock insurance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Joanna [Royal Society for the Protection of the Birds (United Kingdom); Heath, Melanie [Birdlife International (United Kingdom); Reid, Hannah

    2009-12-15

    Resilience to climate change has many roots. A healthy, biodiverse environment is increasingly recognised as key to resilience, particularly in poor communities directly dependent on natural resources. Knowledge about ways of coping with climate variability is also essential - and for many of the poor who live in climate-vulnerable regions, already an area of expertise. A look at the National Adaptation Programmes of Action of the Least Developed Countries shows that many of these nations recognize and prioritise the role that biodiversity, ecosystems and natural habitats play in adaptation. It is now up to policymakers to follow suit.

  15. RADIOACTIVITY OF ROCKS, SOILS AND NATURAL WATERS OF DAGESTAN AND DUE TO THEIR EFFECTIVE DOSE

    Directory of Open Access Journals (Sweden)

    A. S. Abdulaeva

    2012-01-01

    Full Text Available The results of long-term radioecological studies in the mountainous areas of Dagestan. The data of the study of territorial exposure dose, determination of natural radioactive nuclides in rocks, soils and natural waters of Dagestan. The parameters of the correlation between alpha-and beta-activity of rocks, soil, and radon in water and indoor air. This paper discusses issues related to the formation of radiation dose from natural sources of ionizing radiation in the biosphere and as a result of this review - doses to man.

  16. Models for calibration of radiometric probes for measurement of natural radioactivity of rocks

    International Nuclear Information System (INIS)

    Czubek, J.A.; Lenda, A.

    1978-01-01

    The physical problems connected with the depth of investigation in the natural gamma-ray log measurements in the rocks are solved. The primary and the scattered radiation from gamma-ray lines of potassium, uranium and thorium series have been considered. The scattered radiation has been taken into account using the build-up factor approximation. The dimensions of rock models are calculated assuming the cylindrical form. Some recommendations for the realization of such models using the concrete mixtures are given. (author)

  17. Influence of natural mobile organic matter on europium retention on Bure clay rock

    International Nuclear Information System (INIS)

    Vu-Do, Laurence

    2013-01-01

    Bure clay rock (CR) was chosen as host rock for the French high and intermediate level long lived radioactive waste repository. This choice is mostly explained by the retention ability of the Callovo-Oxfordian rock (COx). Bure clay rock contains natural organic matter (OM) that could have an influence on radionuclide retention. The aim of this work is to assess the influence of natural mobile OM on the retention of Eu on clay rock. Eu was chosen as a chemical model for trivalent actinides contained in vitrified waste. Three organic molecules were studied: suberic, sorbic and tiglic acids, small organic acids identified in COx pore water. All the experiments were carried out in an environment recreating COx water (pH=7.5; I=0.1 mol/L; PCO 2 =10 -2 bar).Clay rock sample characterization showed that the sample used in this work was similar to those previously extracted from the area of interest and that it was necessary to maintain pH at 7.5 to avoid altering the clay rock. The Eu-OM system study indicated that organic acids had no influence on Eu speciation in COx water. The Eu-CR system experimental study confirmed that retention implied sorption on CR (C(Eu)≤6.10 -6 mol/L) and precipitation in COx water (C(Eu)≥6.10 -6 mol/L). Distribution coefficient Rd (quantifying sorption) was estimated at 170 ± 30 L/g. This high value is consistent with literature values obtained on clay rocks. The ternary Eu-OM-CR system study showed a slight increase of sorption in the presence of organic matter. This synergistic effect is very satisfactory in terms of storage security: the presence of small organic acids in clay rock does not question retention properties with respect to europium and trivalent actinides. (author)

  18. The effects of naturally occurring impurities in rock salt

    Indian Academy of Sciences (India)

    In this paper we investigate the effect that naturally occurring impurities in salt mines have both on effective permittivity of ... The effect of trapped water in different forms is also evaluated. Keywords. Effective permittivity; salt ... Thus, salt in salt mines (with a theoretical low dielectric permittivity and high purity) can serve as the ...

  19. The effects of naturally occurring impurities in rock salt

    Indian Academy of Sciences (India)

    In this paper we investigate the effect that naturally occurring impurities in salt mines have both on effective permittivity of the medium and on radio wave propagation at ∼200 MHz. The effective permittivity is determined based on the dielectric properties of salt and the characteristics of the main impurities. We conclude that ...

  20. Is the permeability of naturally fractured rocks scale dependent?

    Science.gov (United States)

    Azizmohammadi, Siroos; Matthäi, Stephan K.

    2017-09-01

    The equivalent permeability, keq of stratified fractured porous rocks and its anisotropy is important for hydrocarbon reservoir engineering, groundwater hydrology, and subsurface contaminant transport. However, it is difficult to constrain this tensor property as it is strongly influenced by infrequent large fractures. Boreholes miss them and their directional sampling bias affects the collected geostatistical data. Samples taken at any scale smaller than that of interest truncate distributions and this bias leads to an incorrect characterization and property upscaling. To better understand this sampling problem, we have investigated a collection of outcrop-data-based Discrete Fracture and Matrix (DFM) models with mechanically constrained fracture aperture distributions, trying to establish a useful Representative Elementary Volume (REV). Finite-element analysis and flow-based upscaling have been used to determine keq eigenvalues and anisotropy. While our results indicate a convergence toward a scale-invariant keq REV with increasing sample size, keq magnitude can have multi-modal distributions. REV size relates to the length of dilated fracture segments as opposed to overall fracture length. Tensor orientation and degree of anisotropy also converge with sample size. However, the REV for keq anisotropy is larger than that for keq magnitude. Across scales, tensor orientation varies spatially, reflecting inhomogeneity of the fracture patterns. Inhomogeneity is particularly pronounced where the ambient stress selectively activates late- as opposed to early (through-going) fractures. While we cannot detect any increase of keq with sample size as postulated in some earlier studies, our results highlight a strong keq anisotropy that influences scale dependence.

  1. Natural radioactivity in some rocks employed as dimension and decorative stones in the Nigerian building industry.

    Science.gov (United States)

    Tubosun, I A; Tchokossa, P; Balogun, F A; Fasasi, M K; Ocan, O; Adesanmi, C A

    2013-12-01

    The natural radioactivity in some selected granites and allied rocks from the Basement Complex of Nigeria for use as dimension/decorative stones was measured by gamma-ray spectrometry. The average activity concentrations observed for the selected rock samples range from 9 to 124 Bq kg⁻¹; 13 to 60 Bq kg⁻¹ and 1360 to 2326 Bq kg⁻¹ for ²²⁶Ra, ²³²Th and ⁴⁰K, respectively. The mean radiological hazard indices were 121.62 nGy h⁻¹; 239.73 Bq kg⁻¹; 0.65 Bq kg⁻¹ and 0.77 Bq kg⁻¹ for the absorbed dose rate, radium equivalent, external hazard and internal hazard, respectively. The results obtained were examined on the basis of existing International recommended limits and compared with data on similar rocks from other parts of the world. The values obtained for the rocks, except one, were found to be lower than the values recommended for building materials, and the rocks are considered safe for use as decorative stones as defined by OECD criteria (NEA-OCED Nuclear Energy Agency Dose Constraints in Optimisation of Occupational Radiological Protection Report by NEA Group Experts, OCED, France (2011)). Results highlight the fact that, despite meeting certain suitability criteria such as colour, texture, etc., the radioactivity content of the rocks is another factor of importance for their continued application in the human environment/building industry.

  2. Mode of occurrence of secondary radionuclide-bearing minerals in natural argillized rocks

    International Nuclear Information System (INIS)

    Rimsaite, J.

    1982-01-01

    Three processes that may be activated by the emplacement of radionuclide-bearing waste in natural argilized rock are described: 1. natural decompositon of rock-forming and associated radioactive ore and accessory minerals, such as uraninite, uranothorite, allanite, pyrochlore, apatite, monazite, xenotime, tourmaline, zircon, sulphides and carbonates; 2. mobilization, migration and redeposition of U, Th, REE, Zr, radiogenic lead and other elements along fractures; 3. neoformation of autunite, torbernite, phosphuranylite, coffinite, boltwoodite, kasolite, uranophane, bayleyite, ruthefordine, liebigite, masuyite, anglesite, wulfenite and complex unidentified U, Th, Pb, REE and Zr compounds in clays and in fractures of hydrated rock-forming minerals. The mobilized radionuclides can be fixed by several processes, namely by adsorption, by reacting with other ions, and by entering and capture in the interlayer of swelling mixed-layer clays and hydrated layer silicates. These observations on the natural behaviour of radioactive and radiogenic materials can be applied in evaluating rock formations and planning preventive measures for the escape of nuclear waste from disposal sites

  3. 76 FR 69720 - NaturEner Rim Rock Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2011-11-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER12-295-000] NaturEner Rim Rock Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... NaturEner Rim Rock Wind Energy, LLC's application for market-based rate authority, with an accompanying...

  4. On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments.

    Science.gov (United States)

    Marques, Joana; Gonçalves, João; Oliveira, Cláudia; Favero-Longo, Sergio E; Paz-Bermúdez, Graciela; Almeida, Rubim; Prieto, Beatriz

    2016-10-01

    Contradictory evidence from biogeomorphological studies has increased the debate on the extent of lichen contribution to differential rock surface weathering in both natural and cultural settings. This study, undertaken in Côa Valley Archaeological Park, aimed at evaluating the effect of rock surface orientation on the weathering ability of dominant lichens. Hyphal penetration and oxalate formation at the lichen-rock interface were evaluated as proxies of physical and chemical weathering, respectively. A new protocol of pixel-based supervised image classification for the analysis of periodic acid-Schiff stained cross-sections of colonized schist revealed that hyphal spread of individual species was not influenced by surface orientation. However, hyphal spread was significantly higher in species dominant on northwest facing surfaces. An apparently opposite effect was noticed in terms of calcium oxalate accumulation at the lichen-rock interface; it was detected by Raman spectroscopy and complementary X-ray microdiffraction on southeast facing surfaces only. These results suggest that lichen-induced physical weathering may be most severe on northwest facing surfaces by means of an indirect effect of surface orientation on species abundance, and thus dependent on the species, whereas lichen-induced chemical weathering is apparently higher on southeast facing surfaces and dependent on micro-environmental conditions, giving only weak support to the hypothesis that lichens are responsible for the currently observed pattern of rock-art distribution in Côa Valley. Assumptions about the drivers of open-air rock-art distribution patterns elsewhere should also consider the micro-environmental controls of lichen-induced weathering, to avoid biased measures of lichen contribution to rock-art deterioration. © 2016 by the Ecological Society of America.

  5. Experimental alteration of artificial and natural impact melt rock from the Chesapeake Bay impact structure

    Science.gov (United States)

    Declercq, J.; Dypvik, H.; Aagaard, Per; Jahren, J.; Ferrell, R.E.; Horton, J. Wright

    2009-01-01

    The alteration or transformation of impact melt rock to clay minerals, particularly smectite, has been recognized in several impact structures (e.g., Ries, Chicxulub, Mj??lnir). We studied the experimental alteration of two natural impact melt rocks from suevite clasts that were recovered from drill cores into the Chesapeake Bay impact structure and two synthetic glasses. These experiments were conducted at hydrothermal temperature (265 ??C) in order to reproduce conditions found in meltbearing deposits in the first thousand years after deposition. The experimental results were compared to geochemical modeling (PHREEQC) of the same alteration and to original mineral assemblages in the natural melt rock samples. In the alteration experiments, clay minerals formed on the surfaces of the melt particles and as fine-grained suspended material. Authigenic expanding clay minerals (saponite and Ca-smectite) and vermiculite/chlorite (clinochlore) were identified in addition to analcime. Ferripyrophyllite was formed in three of four experiments. Comparable minerals were predicted in the PHREEQC modeling. A comparison between the phases formed in our experiments and those in the cores suggests that the natural alteration occurred under hydrothermal conditions similar to those reproduced in the experiment. ?? 2009 The Geological Society of America.

  6. Microstructural constraints on the mechanisms of the transformation to reidite in naturally shocked zircon

    Science.gov (United States)

    Erickson, Timmons M.; Pearce, Mark A.; Reddy, Steven M.; Timms, Nicholas E.; Cavosie, Aaron J.; Bourdet, Julien; Rickard, William D. A.; Nemchin, Alexander A.

    2017-01-01

    Zircon (ZrSiO4) is used to study impact structures because it responds to shock loading and unloading in unique, crystallographically controlled manners. One such phenomenon is the transformation of zircon to the high-pressure polymorph, reidite. This study quantifies the geometric and crystallographic orientation relationships between these two phases using naturally shocked zircon grains. Reidite has been characterized in 32 shocked zircon grains (shocked to stages II and III) using a combination of electron backscatter diffraction (EBSD) and focused ion beam cross-sectional imaging techniques. The zircon-bearing clasts were obtained from within suevite breccia from the Nördlingen 1973 borehole, close to the center of the 14.4 Ma Ries impact crater, in Bavaria, Germany. We have determined that multiple sets (up to 4) of reidite lamellae can form in a variety of non-rational habit planes within the parent zircon. However, EBSD mapping demonstrates that all occurrences of lamellar reidite have a consistent interphase misorientation relationship with the host zircon that is characterized by an approximate alignment of a {100}zircon with a {112}reidite and alignment of a {112}zircon with a conjugate {112}reidite. Given the tetragonal symmetry of zircon and reidite, we predict that there are eight possible variants of this interphase relationship for reidite transformation within a single zircon grain. Furthermore, laser Raman mapping of one reidite-bearing grain shows that moderate metamictization can inhibit reidite formation, thereby highlighting that the transformation is controlled by zircon crystallinity. In addition to lamellar reidite, submicrometer-scale granules of reidite were observed in one zircon. The majority of reidite granules have a topotaxial alignment that is similar to the lamellar reidite, with some additional orientation dispersion. We confirm that lamellar reidite likely forms via a deviatoric transformation mechanism in highly crystalline

  7. Natural Rubber Modification For Upper Layer Of Rubberized Asphalt Paving Block AS Shock Absorber

    OpenAIRE

    Nasruddin, Nasruddin

    2017-01-01

    The research of rubber compounding modification for upper layer of rubberized asphalt paving block as shock absorber using natural rubber, styrene butadiene rubber (SBR) as synthetic rubber, fly ash as filler and also vegetable oil as plasticizer has been conducted. The research design was varying the filler Si-69, fly ash and palm oil. The five formulas A, B, C, D, and E designed by varying the amount of Si-69 (48.5; 50.75; 53.00; 55.25; and 57.50) phr; coal fly ash (4.75, 7.00, 9.25, 11.50 ...

  8. Natural fault and fracture network versus anisotropy in the Lower Paleozoic rocks of Pomerania (Poland)

    Science.gov (United States)

    Haluch, Anna; Rybak-Ostrowska, Barbara; Konon, Andrzej

    2017-04-01

    Knowledge of the anisotropy of rock fabric, geometry and distribution of the natural fault and fracture network play a crucial role in the exploration for unconventional hydrocarbon recourses. Lower Paleozoic rocks from Pomerania within the Polish part of Peri-Baltic Basin, as prospective sequences, can be considered a laboratory for analysis of fault and fracture arrangement in relation to the mineral composition of the host rocks. A microstructural study of core samples from five boreholes in Pomerania indicate that the Silurian succession in the study area is predominantly composed of claystones and mudstones interbedded with thin layers of tuffites. Intervals with a high content of detrital quartz or diagenetic silica also occur. Most of the Silurian deposits are abundant in pyrite framboids forming layers or isolated small concretions. Early diagenetic carbonate concretions are also present. The direction and distribution of natural faults and fractures have resulted not only from paleostress. Preliminary study reveals that the fault and fracture arrangement is related to the mechanical properties of the host rocks that depend on their fabric and mineralogical composition: subvertical fractures in mudstones and limestones show steeper dips than those within the more clayey intervals; bedding-parallel fractures occur within organic-rich claystones and along the boundaries between different lithologies; tuffites and radiolaria-bearing siliceous mudstones are more brittle and show denser nets of fractures or wider mineral apertures; and, fracture refraction is observed at competence contrast or around spherical concretions. The fault and fracture mineralization itself is prone to the heterogenity of the rock profile. Thus, fractures infilled with calcite occur in all types of the studied rocks, but mineral growth is syntaxial within marly mudstones because of chemical uniformity, and antitaxial within sillicous mudstones. Fractures infilled with quartz are

  9. Leaching properties of natural aggregates. Rock materials and tills; Lakegenskaper foer naturballast. Bergmaterial och moraener

    Energy Technology Data Exchange (ETDEWEB)

    Ekvall, Annika; Bahr, Bo von; Andersson, Tove; Lax, Kaj; Aakesson, Urban [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-02-15

    The aim of this project is to produce leaching data for natural aggregates needed for assessment of the environmental impact of alternative materials aimed for use in for example road constructions. Both rock materials and tills are tested. The results shows that very little is leached from natural aggregate. A comparison with landfill criteria for inert waste and the Swedish regulations for drinking water shows that a few samples exceeds the criteria for fluoride ions. All other values are lower then these criteria, and a vast majority of the measurements are below the quantification limit.

  10. SITE-94. Natural elemental mass movement in the vicinity of the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.M.; Smith, G.M.; Towler, P.A.; Savage, D. [QuantiSci, Melton Mowbray (United Kingdom)

    1997-05-01

    The primary objective of this study is to quantify natural elemental fluxes at a location exhibiting typical characteristics of a site for a spent fuel repository in Sweden. The relevant pathways are considered to be: Groundwater transport; Glacial erosion; Non-glacial weathering; River transport. Calculations are made of elemental mass fluxes from a volume of rock equivalent to that which would hold a KBS-3 style repository. In addition, the radioactive flux associated with the natural series radionuclide mass fluxes from the repository are also calculated. These can be compared directly to performance assessment predictions of the releases from a repository. 88 refs, 13 figs, 24 tabs.

  11. SITE-94. Natural elemental mass movement in the vicinity of the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Miller, W.M.; Smith, G.M.; Towler, P.A.; Savage, D.

    1997-05-01

    The primary objective of this study is to quantify natural elemental fluxes at a location exhibiting typical characteristics of a site for a spent fuel repository in Sweden. The relevant pathways are considered to be: Groundwater transport; Glacial erosion; Non-glacial weathering; River transport. Calculations are made of elemental mass fluxes from a volume of rock equivalent to that which would hold a KBS-3 style repository. In addition, the radioactive flux associated with the natural series radionuclide mass fluxes from the repository are also calculated. These can be compared directly to performance assessment predictions of the releases from a repository. 88 refs, 13 figs, 24 tabs

  12. Nature of shocks revealed by SOFIA OI observations in the Cepheus E protostellar outflow

    Science.gov (United States)

    Gusdorf, A.; Anderl, S.; Lefloch, B.; Leurini, S.; Wiesemeyer, H.; Güsten, R.; Benedettini, M.; Codella, C.; Godard, B.; Gómez-Ruiz, A. I.; Jacobs, K.; Kristensen, L. E.; Lesaffre, P.; Pineau des Forêts, G.; Lis, D. C.

    2017-06-01

    Context. Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jet and outflow systems are launched, and to quantify their chemical and energetic impacts on the surrounding medium. Aims: We performed a high-spectral resolution study of the [OI]63μm emission in the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow, to constrain the chemical conditions in the various components, and to understand the nature of the underlying shocks, thus probing the origin of the mass-loss phenomenon. Methods: We present observations of the O I 3P1 → 3P2, OH between 2Π1/2J = 3/2 and J = 1/2 at 1837.8 GHz, and CO (16-15) lines with the GREAT receiver onboard SOFIA towards three positions in the Cep E protostellar outflow: Cep E-mm (the driving protostar), Cep E-BI (in the southern lobe), and Cep E-BII (the terminal position in the southern lobe). Results: The CO (16-15) line is detected at all three positions. The [OI]63μm line is detected in Cep E-BI and BII, whereas the OH line is not detected. In Cep E-BII, we identify three kinematical components in O I and CO. These were already detected in CO transitions and relate to spatial components: the jet, the HH377 terminal bow-shock, and the outflow cavity. We measure line temperature and line integrated intensity ratios for all components. The O I column density is higher in the outflow cavity than in the jet, which itself is higher than in the terminal shock. The terminal shock is the region where the abundance ratio of O I to CO is the lowest (about 0.2), whereas the jet component is atomic (N(O I)/N(CO) 2.7). In the jet, we compare the [OI]63μm observations with shock models that successfully fit the integrated intensity of 10 CO lines. We find that these models most likely do not fit the [OI]63

  13. A Coupled Model for Natural Convection and Condensation in Heated Subsurface Enclosures Embedded in Fractured Rock

    International Nuclear Information System (INIS)

    Halecky, N.; Birkholzer, J.T.; Webb, S.W.; Peterson, P.F.; Bodvarsson, G.S.

    2006-01-01

    In heated tunnels such as those designated for emplacement of radioactive waste at Yucca Mountain, axial temperature gradients may cause natural convection processes that can significantly influence the moisture conditions in the tunnels and in the surrounding fractured rock. Large-scale convection cells would provide an effective mechanism for axial vapor transport, driving moisture out of the formation away from the heated tunnel section into cool end sections (where no waste is emplaced). To study such processes, we have developed and applied an enhanced version of TOUGH2 (Pruess et al., 1999) adding a new module that solves for natural convection in open cavities. The new TOUGH2 simulator simultaneously handles (1) the flow and energy transport processes in the fractured rock; (2) the flow and energy transport processes in the cavity; and (3) the heat and mass exchange at the rock-cavity interface. The new module is applied to simulate the future thermal-hydrological (TH) conditions within and near a representative waste emplacement tunnel at Yucca Mountain. Particular focus is on the potential for condensation along the emplacement section, a possible result of heat output differences between individual waste packages

  14. Radiation damage studies on natural and synthetic rock salt utilizing measurements made during electron irradiation

    International Nuclear Information System (INIS)

    Swyler, K.J.; Levy, P.W.

    1977-01-01

    The numerous radiation damage effects which will occur in the rock salt surrounding radioactive waste disposal canisters are being investigated with unique apparatus for making optical and other measurements during 1 to 3 MeV electron irradiation. This equipment, consists of a computer controlled double beam spectrophotometer which simultaneously records 256 point absorption and radioluminescence spectra, in either the 200 to 400 or 400 to 800 nm region, every 40 seconds. Most often the measurements commence as the irradiation is started and continue after it is terminated. This procedure provides information on the kinetics and other details of the damage formation process and, when the irradiation is terminated, on both the transient and stable damage components. The exposure rates may be varied between 10 2 or 10 3 to more than 10 8 rad per hour and the sample temperature maintained between 25 and 800 or 900 0 C. Although this project was started recently, measurements have been made on synthetic NaCl and on natural rock salt from two disposal sites and two mines. Both unstrained and purposely strained samples have been used. Most recently, measurements at temperatures between 25 and 200 0 C have been started. The few measurements completed to date indicate that the damage formation kinetics in natural rock salt are quite different from those observed in synthetic NaCl

  15. A Neutron Radiology Application to Natural Absorption (Imbibition) of Water into Porous Rocks

    International Nuclear Information System (INIS)

    Middleton, M.F.; de Beer, Frikkie

    2005-01-01

    Full text: Dynamic neutron radiology provides a method of evaluating the concentration of water in porous media. A study of water imbibition (absorption of a wetting liquid into a porous medium with a non-wetting fluid, air), which is imaged by dynamic neutron radiology , provides an excellent method of determining the fluid diffusivity parameter, D. This parameter enables one to model water-air regimes in surface hydrological systems and aquifers; analogies can also be made for deeper petroleum systems. A methodology of pixel-by-pixel analysis for the estimation of water concentration, as a function of time under natural absorption conditions, is proposed which provides a good mapping of D within a rock sample. The proposed method entails the discrete mapping of the differential equation for horizontal flow of a partial water concentration, c, in an air-filled rock/soil. (authors)

  16. Suitability analysis of waste rock application in hydric reclamation in the natural water-bearing subsidence troughs in OKR

    International Nuclear Information System (INIS)

    Pertile, E.

    2007-01-01

    The paper deals with a suitability analysis of waste rock application in hydric reclamation on the basis of studying its impact on water quality in the natural water-bearing subsidence troughs. The evaluation was carried out in sixteen localities where waste rock had been used in the past for the purposes of bank system improvement. Within the evaluation of waste rock impact on the hydrochemical character of water in the subsidence troughs the values of geochemical background were identified. In order to compare the impact of waste rock on the quality of water, changes in the hydrochemical parameters were monitored in the localities without waste rock banking, with partial (maximum 1/2 circumference) and complete waste rock banking. (author)

  17. Study of different factors affecting the electrical properties of natural gas reservoir rocks based on digital cores

    International Nuclear Information System (INIS)

    Jiang, Liming; Sun, Jianmeng; Wang, Haitao; Liu, Xuefeng

    2011-01-01

    The effects of the wettability and solubility of natural gas in formation water on the electrical properties of natural gas reservoir rocks are studied using the finite element method based on digital cores. The results show that the resistivity index of gas-wet reservoir rocks is significantly higher than that of water-wet reservoir rocks in the entire range of water saturation. The difference between them increases with decreasing water saturation. The resistivity index of natural gas reservoir rocks decreases with increasing additional conduction of water film. The solubility of natural gas in formation water has a dramatic effect on the electrical properties of reservoir rocks. The resistivity index of reservoir rocks increases as the solubility of natural gas increases. The effect of the solubility of natural gas on the resistivity index is very obvious under conditions of low water saturation, and it becomes weaker with increasing water saturation. Therefore, the reservoir wettability and the solubility of natural gas in formation water should be considered in defining the saturation exponent

  18. Natural gas extraction and artificial gas injection experiments in Opalinus Clay, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Vinsot, A.; Lundy, M. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne Center, Bure (France); Appelo, C.A.J. [Dr C.A.J. Appelo, Hydrochemical Consultant, Amsterdam (Netherlands); and others

    2017-04-15

    Two experiments have been installed at Mont Terri in 2004 and 2009 that allowed gas circulation within a borehole at a pressure between 1 and 2 bar. These experiments made it possible to observe the natural gases that were initially dissolved in pore-water degassing into the borehole and to monitor their content evolution in the borehole over several years. They also allowed for inert (He, Ne) and reactive (H{sub 2}) gases to be injected into the borehole with the aim either to determine their diffusion properties into the rock pore-water or to evaluate their removal reaction kinetics. The natural gases identified were CO{sub 2}, light alkanes, He, and more importantly N{sub 2}. The natural concentration of four gases in Opalinus Clay pore-water was evaluated at the experiment location: N{sub 2} 2.2 mmol/L ± 25%, CH{sub 4} 0.30 mmol/L ± 25%, C{sub 2}H{sub 6} 0.023 mmol/L ± 25%, C{sub 3}H{sub 8} 0.012 mmol/L ± 25%. Retention properties of methane, ethane, and propane were estimated. Ne injection tests helped to characterize rock diffusion properties regarding the dissolved inert gases. These experimental results are highly relevant towards evaluating how the fluid composition could possibly evolve in the drifts of a radioactive waste disposal facility. (authors)

  19. Recent studies on radiation damage formation in synthetic NaCl and natural rock salt for radioactive waste disposal applications

    International Nuclear Information System (INIS)

    Swyler, K.J.; Klaffky, R.W.; Levy, P.W.

    1980-01-01

    Radiation damage formation in natural rock salt is described as a function of irradiation temperature and plastic deformation. F-center formation decreases with increasing temperature while significant colloidal sodium formation occurs over a restricted temperature range around 150 0 C. Plastic deformation increases colloid formation; it is estimated that colloid concentrations may be increased by a factor of 3 if the rock salt near radioactive waste disposal canisters is heavily deformed. Optical bandshape analysis indicates systematic differences between the colloids formed in synthetic and natural rock salts

  20. Dielectric non destructive testing for rock characterization in natural stone industry and cultural heritage

    Science.gov (United States)

    López-Buendía, Angel M.; García-Baños, Beatriz; Mar Urquiola, M.; Gutiérrez, José D.; Catalá-Civera, José M.

    2016-04-01

    Dielectric constant measurement has been used in rocks characterization, mainly for exploration objective in geophysics, particularly related to ground penetration radar characterization in ranges of 10 MHz to 1 GHz. However, few data have been collected for loss factor. Complex permittivity (dielectric constant and loss factor) characterization in rock provide information about mineralogical composition as well as other petrophysic parameters related to the quality, such as fabric parameters, mineralogical distribution, humidity. A study was performed in the frequency of 2,45GHz by using a portable kit for dielectric device based on an open coaxial probe. In situ measurements were made of natural stone marble and granite on selected industrial slabs and building stone. A mapping of their complex permittivity was performed and evaluated, and variations in composition and textures were identified, showing the variability with the mineral composition, metal ore minerals content and fabric. Dielectric constant was a parameter more sensible to rock forming minerals composition, particularly in granites for QAPF-composition (quartz-alkali feldspar-plagioclases-feldspathoids) and in marbles for calcite-dolomite-silicates. Loss factor shown a high sensibility to fabric and minerals of alteration. Results showed that the dielectric properties can be used as a powerful tool for petrographic characterization of building stones in two areas of application: a) in cultural heritage diagnosis to estimate the quality and alteration of the stone, an b) in industrial application for quality control and industrial microwave processing.

  1. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    Science.gov (United States)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  2. Commercial potential of natural gas storage in lined rock caverns (LRC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied

  3. The human impact on natural rock reserves using basalt, anorthosite, and carbonates as raw materials in insulation products

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Clausen, Anders U.; Hansen, Peter B.

    2011-01-01

    , and carbonates are widespread on all continents. Although basaltic rocks cover most of the ocean floor, these reserves are hidden below several kilometres of water and therefore are regarded as inaccessible. Instead, large igneous provinces on land constitute major basaltic reserves useful for human rock...... of these rock types are so large that they could supply current human demand for millions of years. The natural degradation of surface rocks occurs by physical and chemical weathering creating sediment that is transported along rivers and deposited in the ocean. Sediments are either obducted with continental......% basalt, 20 wt% anorthosite, and 40 wt% cement-bonded renewable materials. This study provides an overview of the natural cycle of these resources, including their abundances in nature, and sets the consumption by the stone wool industry and other human activities in perspective. Basalt, anorthosite...

  4. Naturally occurring contaminants in the Piedmont and Blue Ridge crystalline-rock aquifers and Piedmont Early Mesozoic basin siliciclastic-rock aquifers, eastern United States, 1994–2008

    Science.gov (United States)

    Chapman, Melinda J.; Cravotta,, Charles A.; Szabo, Zoltan; Lindsay, Bruce D.

    2013-01-01

    Groundwater quality and aquifer lithologies in the Piedmont and Blue Ridge Physiographic Provinces in the eastern United States vary widely as a result of complex geologic history. Bedrock composition (mineralogy) and geochemical conditions in the aquifer directly affect the occurrence (presence in rock and groundwater) and distribution (concentration and mobility) of potential naturally occurring contaminants, such as arsenic and radionuclides, in drinking water. To evaluate potential relations between aquifer lithology and the spatial distribution of naturally occurring contaminants, the crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces and the siliciclastic-rock aquifers of the Early Mesozoic basin of the Piedmont Physiographic Province were divided into 14 lithologic groups, each having from 1 to 16 lithochemical subgroups, based on primary rock type, mineralogy, and weathering potential. Groundwater-quality data collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program from 1994 through 2008 from 346 wells and springs in various hydrogeologic and land-use settings from Georgia through New Jersey were compiled and analyzed for this study. Analyses for most constituents were for filtered samples, and, thus, the compiled data consist largely of dissolved concentrations. Concentrations were compared to criteria for protection of human health, such as U.S. Environmental Protection Agency (USEPA) drinking water maximum contaminant levels and secondary maximum contaminant levels or health-based screening levels developed by the USGS NAWQA Program in cooperation with the USEPA, the New Jersey Department of Environmental Protection, and Oregon Health & Science University. Correlations among constituent concentrations, pH, and oxidation-reduction (redox) conditions were used to infer geochemical controls on constituent mobility within the aquifers. Of the 23 trace-element constituents evaluated

  5. Radiological impact of natural radioactivity in Egyptian phosphate rocks, phosphogypsum and phosphate fertilizers.

    Science.gov (United States)

    El-Bahi, S M; Sroor, A; Mohamed, Gehan Y; El-Gendy, N S

    2017-05-01

    In this study, the activity concentrations of the natural radionuclides in phosphate rocks and its products were measured using a high- purity germanium detector (HPGe). The obtained activity results show remarkable wide variation in the radioactive contents for the different phosphate samples. The average activity concentration of 235 U, 238 U, 226 Ra, 232 Th and 40 K was found as (45, 1031, 786, 85 and 765Bq/kg) for phosphate rocks, (28, 1234, 457, 123 and 819Bq/kg) for phosphate fertilizers, (47, 663, 550, 79 and 870Bq/kg) for phosphogypsum and (25, 543, 409, 54 and 897Bq/kg) for single super phosphate respectively. Based on the measured activities, the radiological parameters (activity concentration index, absorbed gamma dose rate in outdoor and indoor and the corresponding annual effective dose rates and total excess lifetime cancer risk) were estimated to assess the radiological hazards. The total excess lifetime cancer risk (ELCR) has been calculated and found to be high in all samples, which related to high radioactivity, representing radiological risk for the health of the population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Using a Remotely Piloted Aircraft System (RPAS) to analyze the stability of a natural rock slope

    Science.gov (United States)

    Salvini, Riccardo; Esposito, Giuseppe; Mastrorocco, Giovanni; Seddaiu, Marcello

    2016-04-01

    This paper describes the application of a rotary wing RPAS for monitoring the stability of a natural rock slope in the municipality of Vecchiano (Pisa, Italy). The slope under investigation is approximately oriented NNW-SSE and has a length of about 320 m; elevation ranges from about 7 to 80 m a.s.l.. The hill consists of stratified limestone, somewhere densely fractured, with dip direction predominantly oriented in a normal way respect to the slope. Fracture traces are present in variable lengths, from decimetre to metre, and penetrate inward the rock versant with thickness difficult to estimate, often exceeding one meter in depth. The intersection between different fracture systems and the slope surface generates rocky blocks and wedges of variable size that may be subject to phenomena of gravitational instability (with reference to the variation of hydraulic and dynamic conditions). Geometrical and structural info about the rock mass, necessary to perform the analysis of the slope stability, were obtained in this work from geo-referenced 3D point clouds acquired using photogrammetric and laser scanning techniques. In particular, a terrestrial laser scanning was carried out from two different point of view using a Leica Scanstation2. The laser survey created many shadows in the data due to the presence of vegetation in the lower parts of the slope and limiting the feasibility of geo-structural survey. To overcome such a limitation, we utilized a rotary wing Aibotix Aibot X6 RPAS geared with a Nikon D3200 camera. The drone flights were executed in manual modality and the images were acquired, according to the characteristics of the outcrops, under different acquisition angles. Furthermore, photos were captured very close to the versant (a few meters), allowing to produce a dense 3D point cloud (about 80 Ma points) by the image processing. A topographic survey was carried out in order to guarantee the necessary spatial accuracy to the process of images exterior

  7. Experimental and Numerical Characterization of Synthetic and Natural Rock Properties in Support of the NEESROCK Project

    Science.gov (United States)

    Adams, S.; Smith, S.; Maclaughlin, M.; Wartman, J.; Applegate, K. N.; Gibson, M. D.; Arnold, L.; Keefer, D. K.

    2013-12-01

    Seismically induced rock slope failures are one of the most dangerous and least understood of all seismic hazards. The NEESROCK project, a collaboration between researchers at the University of Washington, Montana Tech, and the University of Maine, is supported by the National Science Foundation through its Network for Earthquake Engineering Simulation (NEES) program. The overall goal of the project is to advance our understanding of the fundamental mechanisms of the rock-slope failure process by integrating centrifuge physical modeling and distinct element numerical simulations in order to develop more advanced predictive tools and analysis procedures. Centrifuge experiments will calibrate and verify the numerical models. A fundamental component of this project and the primary focus of the Montana Tech research is laboratory testing of the synthetic materials used in the centrifuge models and comparison of these materials with natural rock specimens. Properties such as strength of the intact material, the geometry and strength of material interfaces, and the material's response to deformation and wave propagation are being studied with laboratory experiments that include tilt table tests, direct shear tests, laser scanning of the interface surfaces, unconfined compression tests, ultrasonic velocity tests, and free-free resonant column tests. The numerical modeling portion of the study is being used to simulate selected laboratory tests to investigate the abilities of the distinct element programs (Itasca's Universal Distinct Element Code (UDEC) and Particle Flow Code (PFC) software) to simulate the material behavior in the laboratory. Direct shear test results, in particular, are used to validate the performance of the joint constitutive models in UDEC. The experimental ultrasonic velocity tests, in combination with unconfined compression tests, are being used to investigate the relationship between static and dynamic modulus values for the project material as

  8. The subcellular localization of natural 210Po in the hepatopancreas of the rock lobster (Jasus lalandii)

    International Nuclear Information System (INIS)

    Heyraud, M.; Dowdle, E.B.; Cherry, R.D.

    1987-01-01

    The subcellular localization of the naturally occurring nuclide 210 Po in the hepatopancreas of the South African rock lobster, Jasus lalandii, has been studied using centrifugation, ultrafiltration and chromatography. Just over half of the 210 Po was found to be associated with a component in the microsomal pellet. Most of the 210 Po was tightly bound to a component of high molecular mass. Dissociation of the 210 Po from this component required incubation with sulphydryl-reducing reagents, after which the 210 Po appeared to associate with a fraction having a molecular mass of 1500 daltons or less. A search for negatively-charged, hydrophobic, sulphur-containing membrane proteins which bind 210 Po is suggested. (author)

  9. A New Stochastic Approach to Predict Peak and Residual Shear Strength of Natural Rock Discontinuities

    Science.gov (United States)

    Casagrande, D.; Buzzi, O.; Giacomini, A.; Lambert, C.; Fenton, G.

    2018-01-01

    Natural discontinuities are known to play a key role in the stability of rock masses. However, it is a non-trivial task to estimate the shear strength of large discontinuities. Because of the inherent complexity to access to the full surface of the large in situ discontinuities, researchers or engineers tend to work on small-scale specimens. As a consequence, the results are often plagued by the well-known scale effect. A new approach is here proposed to predict shear strength of discontinuities. This approach has the potential to avoid the scale effect. The rationale of the approach is as follows: a major parameter that governs the shear strength of a discontinuity within a rock mass is roughness, which can be accounted for by surveying the discontinuity surface. However, this is typically not possible for discontinuities contained within the rock mass where only traces are visible. For natural surfaces, it can be assumed that traces are, to some extent, representative of the surface. It is here proposed to use the available 2D information (from a visible trace, referred to as a seed trace) and a random field model to create a large number of synthetic surfaces (3D data sets). The shear strength of each synthetic surface can then be estimated using a semi-analytical model. By using a large number of synthetic surfaces and a Monte Carlo strategy, a meaningful shear strength distribution can be obtained. This paper presents the validation of the semi-analytical mechanistic model required to support the new approach for prediction of discontinuity shear strength. The model can predict both peak and residual shear strength. The second part of the paper lays the foundation of a random field model to support the creation of synthetic surfaces having statistical properties in line with those of the data of the seed trace. The paper concludes that it is possible to obtain a reasonable estimate of peak and residual shear strength of the discontinuities tested from the

  10. A thermomechanical anisotropic model for shock loading of elastic-plastic and elastic-viscoplastic materials with application to jointed rock

    Science.gov (United States)

    Rubin, M. B.; Vorobiev, O.; Vitali, E.

    2016-07-01

    A large deformation thermomechanical model is developed for shock loading of a material that can exhibit elastic and inelastic anisotropy. Use is made of evolution equations for a triad of microstructural vectors mathbf{m}i (hbox {i}=1,2,3) which model elastic deformations and directions of anisotropy. Specific constitutive equations are presented for a material with orthotropic elastic response. The rate of inelasticity depends on an orthotropic yield function that can be used to model weak fault planes with failure in shear and which exhibits a smooth transition to isotropic response at high compression. Moreover, a robust, strongly objective numerical algorithm is proposed for both rate-independent and rate-dependent response. The predictions of the continuum model are examined by comparison with exact steady-state solutions. Also, the constitutive equations are used to obtain a simplified continuum model of jointed rock which is compared with high fidelity numerical solutions that model a persistent system of joints explicitly in the rock medium.

  11. Colloid and radionuclide retention mechanisms in fractured rock under near-natural flow conditions

    International Nuclear Information System (INIS)

    Delos, A.; Schaefer, T.; Geckeis, H.; Guimera, J.; Carrera, J.; Fanghaenel, T.

    2005-01-01

    Full text of publication follows: Experiments in fractured host rock (Grimsel Test Site, GTS, Switzerland) revealed that the colloid relevance for actinide migration is high due to the specific geochemical groundwater conditions [1]. However, even under such conditions it is found that retention of colloids and colloid-borne actinides becomes significant under near-natural groundwater flow rates (1-10 m/a) [2]. Underlying mechanisms of colloid and radionuclide retention are not well understood up to now. The present study co-funded by the NoE ACTINET-6 focuses on (i) the kinetics of actinide-colloid interactions and (ii) the relevance of matrix diffusion as a competition process to other retention mechanisms which affect the actinides behavior in fractured rock systems such as the Grimsel granodiorite. Colloid migration is studied with well defined model colloids as e.g. fluorescence dyed carboxylated polystyrene particles, and natural colloids extracted from bentonite (FEBEX) and from fracture filling material (GTS). In order to study the influence of matrix porosity on actinides migration, those experiments are performed in columns of well defined geometry filled with microporous unmodified silica spheres, porous ceramic material and natural fracture filling material from the GTS. The behaviour of actinides (Pu(IV) and Am(III)) sorbed onto bentonite colloids is investigated in column and batch experiments. All experiments are performed under anoxic conditions. Colloid characterization methods used in this study include the combination of photon correlation spectroscopy (PCS), laser-induced breakdown detection (LIBD), fluorimetry and field flow fractionation (FFF). Experimental results and their application to the parametrisation of reactive colloid transport models are discussed. [1] Geckeis H, Schaefer T, Hauser W, Rabung T, Missana T, Degueldre C, Moeri A, Eikenberg J, Fierz T, Alexander WR (2004) Results of the Colloid and Radionuclide Retention experiment

  12. Spectral Analysis of the Light Flash Produced by a Natural Dolomite Plate Under Strong Shock

    International Nuclear Information System (INIS)

    Tang Enling; Xu Mingyang; Shi Xiaohan; Wang Meng; Wang Di; Xiang Shenghai; Xia Jin; Han Yafei; Zhang Lijiao; Wu Jin; Zhang Shuang; Yuan Jianfei; Zhang Qingming

    2015-01-01

    In order to obtain the elemental compositions of the projectile and target materials during 2A12 aluminum projectile shot on a natural dolomite plate, three kinds of experiments have been conducted using a spectral acquirement system established on a two-stage light gas gun for impact velocities ranging from 2.20 km/s to 4.20 km/s, at the same projectile incidence angle of 30°. Experimental results show that the elemental compositions of the projectile and target materials in the strong shock experiments have a good agreement with the original elemental compositions of the projectile and target. In addition, the relations between spectral radiant intensity and elemental compositions of the projectile and target materials have been obtained for different impact velocities, in which the spectral radiant intensity of the main elements in the material increases with increasing impact velocity, and more elements appear with increasing impact velocity since more energy would result from a higher velocity impact. (paper)

  13. Rock deformation in hydrothermal systems: the nature of fractures in plutons and their host rocks. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Norton, D.

    1981-11-01

    The purpose of this program is to accumulate the types of field data which are important for the analysis of magma-hydrothermal systems. The structural effects of thermal processes were identified in order to distinguish the thermally induced deformations from the deformations that occurred subsequent to complete cooling of the system. Mapping techniques were developed to record the structural data on the ground from local domains characteristic of larger areas in the magma chamber, and in the air from low-angle oblique aerial photography of the entire region. The ground system is complete and preliminary testing is currently being carried out to verify the method. The results indicate that granitic crystalline rocks have no structural resistance to thermal perturbations. If nuclear wastes are to be stored in granite, precautionary buffers would have to be incorporated into the system. A total of 30 fossil magma chambers have been studied over the past 2 years. An extensive set of fracture imagery has been collected, together with information related to the geological history of the plutons. Fossil magma chambers in Arizona, Utah, California, Washington, Montana, and British Columbia have been studied.

  14. Dispersive Nature of High Mach Number Collisionless Plasma Shocks: Poynting Flux of Oblique Whistler Waves

    Czech Academy of Sciences Publication Activity Database

    Sundkvist, D.; Krasnoselskikh, V.; Bale, S. D.; Schwartz, S. J.; Souček, Jan; Mozer, F.

    2012-01-01

    Roč. 108, č. 2 (2012), 025002/1-025002/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z30420517 Keywords : shock waves and discontinuities * bow shock * plasma waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 7.943, year: 2012 http://link.aps.org/doi/10.1103/PhysRevLett.108.025002

  15. 3D pore-type digital rock modeling of natural gas hydrate for permafrost and numerical simulation of electrical properties

    Science.gov (United States)

    Dong, Huaimin; Sun, Jianmeng; Lin, Zhenzhou; Fang, Hui; Li, Yafen; Cui, Likai; Yan, Weichao

    2018-02-01

    Natural gas hydrate is being considered as an alternative energy source for sustainable development and has become a focus of research throughout the world. In this paper, based on CT scanning images of hydrate reservoir rocks, combined with the microscopic distribution of hydrate, a diffusion limited aggregation (DLA) model was used to construct 3D hydrate digital rocks of different distribution types, and the finite-element method was used to simulate their electrical characteristics in order to study the influence of different hydrate distribution types, hydrate saturation and formation of water salinity on electrical properties. The results show that the hydrate digital rocks constructed using the DLA model can be used to characterize the microscopic distribution of different types of hydrates. Under the same conditions, the resistivity of the adhesive hydrate digital rock is higher than the cemented and scattered type digital rocks, and the resistivity of the scattered hydrate digital rock is the smallest among the three types. Besides, the difference in the resistivity of the different types of hydrate digital rocks increases with an increase in hydrate saturation, especially when the saturation is larger than 55%, and the rate of increase of each of the hydrate types is quite different. Similarly, the resistivity of the three hydrate types decreases with an increase in the formation of water salinity. The single distribution hydrate digital rock constructed, combined with the law of microscopic distribution and influence of saturation on the electrical properties, can effectively improve the accuracy of logging identification of hydrate reservoirs and is of great significance for the estimation of hydrate reserves.

  16. Specific activities of natural rocks and soils at quaternary intraplate volcanism north of Sana'a, Yemen.

    Science.gov (United States)

    Harb, Shaban; El-Kamel, Abd El-Hadi; Abbady, Abd El-Bast; Saleh, Imran Issa; El-Mageed, Abdallah Ibrahim Abd

    2012-01-01

    The level of natural radioactivity in rocks and soil of 32 samples collected from locations at North Sana'a in Yemen was measured. Concentrations of radionuclides in rocks and soils samples were determined by gamma-ray spectrometer using high purity germanium (HPGe) detector with specially designed shield. The average radioactivity concentrations of (226)Ra, (232)Th, (40)K were determined and expressed in Bq/kg. The results showed that these radionuclides were present in concentrations of 21.79 ± 3.1, 19.5 ± 2.6 and 399.3 ± 16 Bq/kg, respectively, for rocks. For soil, the corresponding values were 48.2 ± 4.4, 41.7 ± 4.5 and 939.1 ± 36 Bq/kg, respectively. Also, the radiological hazard of the natural radionuclide content, radium equivalent activity, total dose rates, external hazard index and gamma activity concentration index of the (rocks/soils) samples in the area under consideration were calculated. The dose rates at 1 m above the ground from terrestrial sources were 38.39 and 86.89 nGy/h for rocks and surface soil, respectively, which present no significant health hazards to humans.

  17. Markov Chain Monte Carlo Simulation to Assess Uncertainty in Models of Naturally Deformed Rock

    Science.gov (United States)

    Davis, J. R.; Titus, S.; Giorgis, S. D.; Horsman, E. M.

    2015-12-01

    Field studies in tectonics and structural geology involve many kinds of data, such as foliation-lineation pairs, folded and boudinaged veins, deformed clasts, and lattice preferred orientations. Each data type can inform a model of deformation, for example by excluding certain geometries or constraining model parameters. In past work we have demonstrated how to systematically integrate a wide variety of data types into the computation of best-fit deformations. However, because even the simplest deformation models tend to be highly non-linear in their parameters, evaluating the uncertainty in the best fit has been difficult. In this presentation we describe an approach to rigorously assessing the uncertainty in models of naturally deformed rock. Rather than finding a single vector of parameter values that fits the data best, we use Bayesian Markov chain Monte Carlo methods to generate a large set of vectors of varying fitness. Taken together, these vectors approximate the probability distribution of the parameters given the data. From this distribution, various auxiliary statistical quantities and conclusions can be derived. Further, the relative probability of differing models can be quantified. We apply this approach to two example data sets, from the Gem Lake shear zone and western Idaho shear zone. Our findings address shear zone geometry, magnitude of deformation, strength of field fabric, and relative viscosity of clasts. We compare our model predictions to those of earlier studies.

  18. Radon as a natural tracer for gas transport within uranium waste rock piles

    International Nuclear Information System (INIS)

    Silva, N.C.; Chagas, E.G.L.; Dias, D.C.S.; Guerreiro, E.T.Z.; Alberti, H.L.C.; Braz, M.L.; Abreu, C.B.; Lopez, D.; Branco, O.; Fleming, P.

    2014-01-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Industrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222 Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222 Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m -3 with mean concentration of 320.7±263.3 kBq m -3 . (authors)

  19. Natural analogue and microstructural studies in relation to radionuclide retardation by rock matrix diffusion in granite

    International Nuclear Information System (INIS)

    Montoto, M.; Rodriguez Rey, A.; Ruiz de Argandona, V.G.; Calleja, L.; Menendez, B.

    1992-01-01

    The possibility that radionuclide retardation by rock matrix diffusion will be limited in granitic rocks by geological factors is studied, as well as the possibility that diffusion will be confined to a narrow zone from water-conducting fractures. Petrophysical measurements, uranium series and geochemical analyses in the rock adjacent to fractures, have been performed to establish the extent of fracture-related microstructural changes that might influence the potential for diffusion and whether or not there is any record of diffusion of uranium, its daughters, or other elements. The results obtained from El Berrocal (Spain), Stripa (Sweden) and White-shell (Canada) granites, suggest that: (a) there is a zone adjacent to the fractures (generally less than 100 mm) where microstructural changes and enhanced uranium mobility exist; (b) the evidence for diffusion having taken place in the rock is confined largely to this zone. So, it appears that diffusivity determinations on rock collected away from the influence of fractures will not give representative data for diffusion modelling, in addition to the effect of distressing after removing rocks from depth. It is suggested that diffusion will be of limited effectiveness as a retardation mechanism in many granitic rocks, particularly in water movement confined to narrow channels where access by nuclides to the fracture walls is restricted. 51 refs., 56 figs., 9 tabs., 9 appendices

  20. Natural radioactivity content in groundwater of Mt. Etna’s eastern flank and gamma background of surrounding rocks.

    Directory of Open Access Journals (Sweden)

    Beata Kozłowska

    2016-02-01

    Full Text Available Waters of Mt. Etna are the main source of drinking water for the local population and are also distributed in municipal supply systems to neighbouring areas. Radioactivity in underground waters and surrounding rocks from the eastern flank of Mt.Etnawas investigated on the basis of 9 water and 8 rocks samples from 12 localities altogether. Three samples were from water drainage galleries and six from water wells. All water intakes are used for consumption. Activity concentration of uranium isotopes 234,238U, radium isotopes 226,228Ra and radon 222Rn were determined with the use different nuclear spectrometry techniques. The determination of uranium isotopes was carried out with the use of alpha spectrometry. The measurements of radium and radon activity concentration in water were performed with the use of a liquid scintillation technique. Additionally, rocks surrounding the intakes were examined with gamma spectrometry. All water samples showed uranium concentration above Minimum Detectable Activity (MDA, with the highest total uranium (234U + 238U activity concentration equal to 149.2±6 mBq/L. Conversely, all samples showed radium isotopes activity concentrations below MDA. Radon activity concentration was within the range from 2.91±0.36 to 21.21±1.10 Bq/L, hence these waters can be classified as low – radon waters. Gamma natural background of the rocks surrounding the water sampling sites was found on the same levels as other volcanic rocks of Italy.

  1. Identification of Uranium Minerals in Natural U-Bearing Rocks Using Infrared Reflectance Spectroscopy.

    Science.gov (United States)

    Beiswenger, Toya N; Gallagher, Neal B; Myers, Tanya L; Szecsody, James E; Tonkyn, Russell G; Su, Yin-Fong; Sweet, Lucas E; Lewallen, Tricia A; Johnson, Timothy J

    2018-02-01

    The identification of minerals, including uranium-bearing species, is often a labor-intensive process using X-ray diffraction (XRD), fluorescence, or other solid-phase or wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field applications, handheld infrared (IR) reflectance spectrometers can now also be used in industrial or field environments, with rapid, nondestructive identification possible via analysis of the solid's reflectance spectrum providing information not found in other techniques. In this paper, we report the use of laboratory methods that measure the IR hemispherical reflectance of solids using an integrating sphere and have applied it to the identification of mineral mixtures (i.e., rocks), with widely varying percentages of uranium mineral content. We then apply classical least squares (CLS) and multivariate curve resolution (MCR) methods to better discriminate the minerals (along with two pure uranium chemicals U 3 O 8 and UO 2 ) against many common natural and anthropogenic background materials (e.g., silica sand, asphalt, calcite, K-feldspar) with good success. Ground truth as to mineral content was attained primarily by XRD. Identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g., boltwoodite, tyuyamunite, etc.) or non-uranium minerals. The characteristic IR bands generate unique (or class-specific) bands, typically arising from similar chemical moieties or functional groups in the minerals: uranyls, phosphates, silicates, etc. In some cases, the chemical groups that provide spectral discrimination in the longwave IR reflectance by generating upward-going (reststrahlen) bands can provide discrimination in the midwave and shortwave IR via downward-going absorption features, i.e., weaker overtone or combination bands arising from the same chemical moieties.

  2. Hydrothermal alterations as natural analogues of radionuclide migration in granitic rocks

    International Nuclear Information System (INIS)

    Piantone, P.

    1989-01-01

    The document is the final report of the project Hydrothermal alteration systems as analogues of nuclear waste repositories in granitic rocks which was the subject of contract n 0 F1 1 W/0072-F (CD) performed at shared cost between the Bureau de Recherches Geologiques et Minieres (BRGM), the Commissariat a l'Energie Atomique and the Commission of the European Communities as part of the MIRAGE programme. This study is the continuation of a preliminary study made by BRGM in 1986 and which concerned the same programme. The data given in this report were obtained from the study of the infilling and hydrothermalized walls of a mineralized vein located at Fombillou, Lot Department, in the French Massif Central. A satisfactory model of the processes generated by hydrothermal alteration then by climatic weathering such as formation of new minerals, flow of elements and variations in volume, was thus built. The mobility of elements displaying physical and chemical properties similar to those of radionuclides present in high-level radioactive waste was studied. A preliminary thermodynamic simulation of mineral transformations and transfers of matter during hydrothermal alteration was performed using the calculation code CEQCSY (Chemical EQuilibrium in Complex SYstem). This simulation is based on the values of the main physical and chemical parameters deduced from the analysis of the natural system. On the basis of the results obtained from Fombillou, an appraisal was made of the response of the granitic environment which has been disturbed by a hydrothermal system produced by heat emitted by the storage of high-level radio-active waste as well as its potential capacities of retention in case of possible leakage

  3. Cordierite production with natural and synthetic raw materials, and evaluation of resistance to thermal shock

    International Nuclear Information System (INIS)

    Buoso, Alberto; Bergmann, Carlos Perez

    1997-01-01

    This work presents a study on the formation of cordierite from raw materials and pure oxides. For this proposal, different formulations and sintering curves were developed. The formation of cordierite was analysed by means of both linear thermal expansion and X-ray diffraction. The performance of these materials under thermal shock was also evaluated. (author)

  4. Quantitative Determination of Noa (Naturally Occurring Asbestos) in Rocks : Comparison Between Pcom and SEM Analysis

    Science.gov (United States)

    Baietto, Oliviero; Amodeo, Francesco; Giorgis, Ilaria; Vitaliti, Martina

    2017-04-01

    The quantification of NOA (Naturally Occurring Asbestos) in a rock or soil matrix is complex and subject to numerous errors. The purpose of this study is to compare two fundamental methodologies used for the analysis: the first one uses Phase Contrast Optical Microscope (PCOM) while the second one uses Scanning Electron Microscope (SEM). The two methods, although they provide the same result, which is the asbestos mass to total mass ratio, have completely different characteristics and both present pros and cons. The current legislation in Italy involves the use of SEM, DRX, FTIR, PCOM (DM 6/9/94) for the quantification of asbestos in bulk materials and soils and the threshold beyond which the material is considered as hazardous waste is a concentration of asbestos fiber of 1000 mg/kg.(DM 161/2012). The most used technology is the SEM which is the one among these with the better analytical sensitivity.(120mg/Kg DM 6 /9/94) The fundamental differences among the analyses are mainly: - Amount of analyzed sample portion - Representativeness of the sample - Resolution - Analytical precision - Uncertainty of the methodology - Operator errors Due to the problem of quantification of DRX and FTIR (1% DM 6/9/94) our Asbestos Laboratory (DIATI POLITO) since more than twenty years apply the PCOM methodology and in the last years the SEM methodology for quantification of asbestos content. The aim of our research is to compare the results obtained from a PCOM analysis with the results provided by SEM analysis on the base of more than 100 natural samples both from cores (tunnel-boring or explorative-drilling) and from tunnelling excavation . The results obtained show, in most cases, a good correlation between the two techniques. Of particular relevance is the fact that both techniques are reliable for very low quantities of asbestos, even lower than the analytical sensitivity. This work highlights the comparison between the two techniques emphasizing strengths and weaknesses of

  5. Assessment of natural radioactivity levels in rocks and their relationships with the geological structure of Johor state, Malaysia.

    Science.gov (United States)

    Alnour, I A; Wagiran, H; Ibrahim, N; Hamzah, S; Elias, M S; Laili, Z; Omar, M

    2014-01-01

    The distribution of natural radionuclides ((238)U, (232)Th and (40)K) and their radiological hazard effect in rocks collected from the state of Johor, Malaysia were determined by gamma spectroscopy using a high-purity germanium detector. The highest values of (238)U, (232)Th and (40)K activity concentrations (67±6, 85±7 and 722±18 Bg kg(-1), respectively) were observed in the granite rock. The lowest concentrations of (238)U and (232)Th (2±0.1 Bq kg(-1) for (238)U and 2±0.1 Bq kg(-1) for (232)Th) were observed in gabbro rock. The lowest concentration of (40)K (45±2 Bq kg(-1)) was detected in sandstone. The radium equivalent activity concentrations for all rock samples investigated were lower than the internationally accepted value of 370 Bq kg(-1). The highest value of radium equivalent in the present study (239±17 Bq kg(-1)) was recorded in the area of granite belonging to an acid intrusive rock geological structure. The absorbed dose rate was found to range from 4 to 112 nGy h(-1). The effective dose ranged from 5 to 138 μSv h(-1). The internal and external hazard index values were given in results lower than unity. The purpose of this study is to provide information related to radioactivity background levels and the effects of radiation on residents in the study area under investigation. Moreover, the relationships between the radioactivity levels in the rocks within the geological structure of the studied area are discussed.

  6. Effects of fluids on rock deformation and fault slip: From nature to societal impact (Louis Néel Medal Lecture)

    Science.gov (United States)

    Spiers, Christopher J.

    2017-04-01

    Understanding the effects of fluid-rock interaction on rock and fault mechanical behaviour is central not only to understanding natural tectonic and seismogenic processes, and phenomena such as resource trapping, but also to evaluating the impact of industrial operations in the Earth's crust. These include activities ranging from extraction of geo-energy to geological storage of fuels, CO2 and wastes. For the assessment of both natural and induced geohazards, a physics-based approach to quantifying rock mechanical behaviour is unmissable. Microstructural studies of rocks deformed naturally in the mid and upper crust, or at seismogenic depths in subduction zones, show widespread evidence for brittle deformation (cataclasis), dissolution-precipitation transfer, fluid-related reactions producing weak minerals, and dilatation/cementation of fractures, cracks and pores. In addition, experimental work on rocks and simulated fault gouges has shown that the presence of water strongly influences their mechanical and transport properties. This implies the operation of fluid-assisted deformation mechanisms, such as stress corrosion cracking and diffusive mass transfer (pressure solution). More recently, other fluid-coupled deformation processes have been recognised, in rocks from peridotites and granites to sandstones, limestones and shales. In this lecture, I will give an overview of progress in this area. I will address the physics of pressure solution and stress corrosion cracking and how they contribute to the deformation and compaction of sandstone, carbonate and evaporite rocks in the mid and upper crust, under natural conditions and in the context of deformation caused by geo-resources production and geo-storage. New results on how these processes are affected by pore fluid salinity, gas content and CO2 activity will also be considered, as will data on the effects of mineral-fluid reactions and associated volume changes on rock deformation, fracturing and transport

  7. Nature of shocks revealed by SOFIA OI observations in the Cepheus e protostellar outflow

    DEFF Research Database (Denmark)

    Gusdorf, A.; Anderl, S.; Lefloch, B.

    2017-01-01

    Context. Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jet and outflow systems are launched, and to quantify their chem......Context. Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jet and outflow systems are launched, and to quantify...... their chemical and energetic impacts on the surrounding medium. Aims. We performed a high-spectral resolution study of the [OI]63μm emission in the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow, to constrain the chemical conditions...

  8. Hemispherical Nature of EUV Shocks Revealed by SOHO, STEREO, and SDO Observations

    Science.gov (United States)

    Gopalswamy, Natchimuthuk; Nitta, N.; Akiyama, S.; Makela, P.; Yashiro, S.

    2011-01-01

    EUV wave transients associated with type II radio bursts are manifestation of CME-driven shocks in the solar corona. We use recent EUV wave observations from SOHO, STEREO, and SDO for a set of CMEs to show that the EUV transients have a spherical shape in the inner corona. We demonstrate this by showing that the radius of the EUV transient on the disk observed by one instrument is approximately equal to the height of the wave above the solar surface in an orthogonal view provided by another instrument. The study also shows that the CME-driven shocks often form very low in the corona at a heliocentric distance of 1.2 Rs, even smaller than the previous estimates from STEREO/CORl data (Gopalswamy et aI., 2009, Solar Phys. 259, 227). These results have important implications for the acceleration of solar energetic particles by CMEs

  9. The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel

    Science.gov (United States)

    Decin, L.; Cox, N. L. J.; Royer, P.; van Marle, A. J.; Vandenbussche, B.

    2013-05-01

    The interaction between stellar winds and the interstellar medium (ISM) can create complex bow shocks. We have studied the bow shock region around Betelgeuse using Herschel PACS images at 70, 100, and 160 μm and SPIRE images at 250, 350, and 500 μm. These data were complemented with ultraviolet GALEX data, near-infrared WISE data, and radio 21 cm GALFA-HI data. The infrared Herschel images of the environment around Betelgeuse are spectacular, showing the occurrence of multiple arcs at ~6-7' from the central target and the presence of a linear bar at ~9'. Remarkably, no large-scale instabilities are seen in the outer arcs and linear bar. The dust temperature in the outer arcs varies between 40 and 140 K, with the linear bar having the same colour temperature as the arcs. The inner envelope shows clear evidence of a non-homogeneous clumpy structure (beyond 15''). The non-homogeneous distribution of the material even persists until the collision with the ISM. A strong variation in brightness of the inner clumps at a radius of ~2' suggests a drastic change in mean gas and dust density ~32 000 yr ago. Using hydrodynamical simulations (see van Marle & Decin, these proceedings), we try to explain the observed morphology of the bow shock around Betelgeuse. Different hypotheses, based on observational and theoretical constraints, are formulated to explain the origin of the multiple arcs and the linear bar and the fact that no large-scale instabilities are visible in the bow shock region. We infer that the two main ingredients for explaining these phenomena are a non-homogeneous mass-loss process and the influence of the Galactic magnetic field. The linear bar is probably an interstellar structure illuminated by Betelgeuse itself.

  10. Effects of source rocks, soil features and climate on natural gamma radioactivity in the Crati valley (Calabria, Southern Italy).

    Science.gov (United States)

    Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; De Rosa, Rosanna; Scarciglia, Fabio; Buttafuoco, Gabriele

    2016-05-01

    The study, which represents an innovative scientific strategy to approach the study of natural radioactivity in terms of spatial and temporal variability, was aimed to characterize the background levels of natural radionuclides in soil and rock in the urban and peri-urban soil of a southern Italy area; to quantify their variations due to radionuclide bearing minerals and soil properties, taking into account nature and extent of seasonality influence. Its main novelty is taking into account the effect of climate in controlling natural gamma radioactivity as well as analysing soil radioactivity in terms of soil properties and pedogenetic processes. In different bedrocks and soils, activities of natural radionuclides ((238)U, (232)Th (4) K) and total radioactivity were measured at 181 locations by means of scintillation γ-ray spectrometry. In addition, selected rocks samples were collected and analysed, using a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS) and an X-Ray Powder Diffraction (XRPD), to assess the main sources of radionuclides. The natural-gamma background is intimately related to differing petrologic features of crystalline source rocks and to peculiar pedogenetic features and processes. The radioactivity survey was conducted during two different seasons with marked changes in the main climatic characteristics, namely dry summer and moist winter, to evaluate possible effects of seasonal climatic variations and soil properties on radioactivity measurements. Seasonal variations of radionuclides activities show their peak values in summer. The activities of (238)U, (232)Th and (4) K exhibit a positive correlation with the air temperature and are negatively correlated with precipitations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Natural radioactivity in rocks of the Modane-Aussois region (SE France).

    Science.gov (United States)

    Malczewski, Dariusz; Żaba, Jerzy

    The activity concentrations of 40 K, 232 Th, and 238 U in the characteristic rocks of the Modane-Aussois region (Western Alps, France) were determined using an HPGe gamma-ray spectrometry system. The activity concentrations of 40 K varied from 18 Bqkg -1 (limestone dolomite) to 392 Bqkg -1 (calcschist), while those of 232 Th varied from 0.7 Bqkg -1 (limestone dolomite) to 18 Bqkg -1 (calcschist). The activities associated with 238 U ranged from 9 (quartzite) to 29 Bqkg -1 (dolomite). In the investigated rock samples, concentrations of 238 U (ppm) and 40 K (%) had a strong negative correlation.

  12. Characterizing the nature of melt-rock reaction in peridotites from the Santa Elena Ophiolite, NW Costa Rica

    Science.gov (United States)

    Carr, D.; Loocke, M. P.; Snow, J. E.; Gazel, E.

    2017-12-01

    The Santa Elena Ophiolite (SEO), located on the northwestern coast of Costa Rica, consists primarily of preserved oceanic mantle and crustal rocks thrust above an accretionary complex. The SEO is predominantly characterized by mantle peridotites (i.e., primarily spinel lherzolite with minor amounts of harzburgite and dunite) cut and intruded by minor pegmatitic gabbros, layered gabbros, plagiogranites, and doleritic and basaltic dykes. Previous studies have concluded that the complex formed in a suprasubduction zone (SSZ) setting based on the geochemical nature of the layered gabbros and plagiogranites (i.e., depleted LREE and HFSE and enriched LILE and Pb), as well, as the peridotites (i.e., low-TiO2, Zr, and V, and high MgO, Cr, and Ni)(Denyer and Gazel, 2009). Eighteen ultramafic samples collected during the winter 2010/2011 field season (SECR11) exhibit abundant evidence for melt-rock reaction (e.g., disseminated plagioclase and plagioclase-spinel, clinopyroxene-spinel, and plagioclase-clinopyroxene symplectites) and provide a unique opportunity to characterize the textural and chemical nature of melt-rock reaction in the SEO. We present the results of a petrologic investigation (i.e., petrography and electron probe microanalysis) of 28 thin sections (19 spinel lherzolites, of which 14 are plagioclase-bearing, 4 pyroxenite veins, and 5 harzburgites) derived from the SECR11 sample set. The results of this investigation have the potential to better our understanding of the nature of melt generation and migration and melt-rock interaction in the SEO mantle section and shed further light on the complex petrogenetic history of the SEO. Denyer, P., Gazel, E., 2009, Journal of South American Earth Sciences, 28:429-442.

  13. Evaluation of natural radioactivity and heavy metals content in Sudanese phosphate rocks used as low cost fertilizer

    International Nuclear Information System (INIS)

    Elkhangi, F.A.; Aamhed, M.M.O.; Abdalla, I.A.

    1997-01-01

    This study was carried out to determine the level of natural radioactivity and heavy metals content of Sudanese rock phosphate used as low cost fertilizer. Thirty samples collected from two types of local phosphate rocks from the Nuba mountains (Uro and Kurun) were used in this study and the activity concentrations of natural radioactivity determined using gamma spectroscopy were compared to those found in samples of imported phosphorous fertilizers Single Super phosphate (SSP) and Triple Super phosphate (TSP). The results showed that the ' Ra activity concentration was 0.6 - 0.8 Bq/g for Uro and 0.3 - 0.5 Bq/g for Kurun. As for the most commonly used imported fertilizer TSP, the result was found to be greater than that of Uro (around 1.0 Bq/g). The heavy metals content of Uro and Kurun rocks measured using X-ray Fluorescence Technique showed their levels were below the toxic levels reported by Christina (1991). It is evident that the environmental hazard is comparable in the local and imported fertilizers and is acceptable in both cases by international standards. The determine factor therefore in optioning for the use of a local or an imported brand should then be the fertilizing efficiency of the brand used against other economic consideration rather than the fertilizers environmental impact

  14. VNIR reflectance spectroscopy of natural carbonate rocks: implication for remote sensing identification of fault damage zones

    Science.gov (United States)

    Traforti, Anna; Mari, Giovanna; Carli, Cristian; Demurtas, Matteo; Massironi, Matteo; Di Toro, Giulio

    2017-04-01

    Reflectance spectroscopy in the visible and near-infrared (VNIR) is a common technique used to study the mineral composition of Solar System bodies from remote sensed and in-situ robotic exploration. In the VNIR spectral range, both crystal field and vibrational overtone absorptions can be present with spectral characteristics (i.e. albedo, slopes, absorption band with different positions and depths) that vary depending on composition and texture (e.g. grain size, roughness) of the sensed materials. The characterization of the spectral variability related to the rock texture, especially in terms of grain size (i.e., both the size of rock components and the size of particulates), commonly allows to obtain a wide range of information about the different geological processes modifying the planetary surfaces. This work is aimed at characterizing how the grain size reduction associated to fault zone development produces reflectance variations in rock and mineral spectral signatures. To achieve this goal we present VNIR reflectance analysis of a set of fifteen rock samples collected at increasing distances from the fault core of the Vado di Corno fault zone (Campo Imperatore Fault System - Italian Central Apennines). The selected samples had similar content of calcite and dolomite but different grain size (X-Ray Powder Diffraction, optical and scanning electron microscopes analysis). Consequently, differences in the spectral signature of the fault rocks should not be ascribed to mineralogical composition. For each sample, bidirectional reflectance spectra were acquired with a Field-Pro Spectrometer mounted on a goniometer, on crushed rock slabs reduced to grain size <800, <200, <63, <10 μm and on intact fault zone rock slabs. The spectra were acquired on dry samples, at room temperature and normal atmospheric pressure. The source used was a Tungsten Halogen lamp with an illuminated spot area of ca. 0.5 cm2and incidence and emission angles of 30˚ and 0˚ respectively

  15. SUITABILITY ANALYSIS OF WASTE ROCK APPLICATION IN HYDRIC RECLAMATION IN THE NATURAL WATER-BEARING SUBSIDENCE TROUGHS IN KARVINSKO, CZECH REPUBLIC

    Directory of Open Access Journals (Sweden)

    Eva Pertile

    2008-12-01

    Full Text Available The paper deals with a suitability analysis of waste rock application in hydric reclamation on the basis of studying its impact on water quality in the natural water-bearing subsidence troughs. The evaluation was carried out in sixteen localities where waste rock had been used in the past for the purposes of bank system improvement. Within the evaluation of waste rock impact on the hydrochemical character of water in the subsidence troughs the values of geochemical background were identified. In order to compare the impact of waste rock on the quality of water, changes in the hydrochemical parameters were monitored in the localities without waste rock banking, with partial (maximum ½ circumference and complete waste rock banking.

  16. Structural shift in global natural gas markets: Demand boom in Asia, supply shock in the US

    OpenAIRE

    Holz, Franziska; Richter, Philipp M.; von Hirschhausen, Christian

    2013-01-01

    The significance of natural gas is on the rise due to the restructuring and decarbonization of energy systems worldwide. Natural gas is widely available and flexible as it can be used in electricity generation, manufacturing, transport, and private households. Compared to other fossil fuels, natural gas produces relatively low carbon dioxide emissions during combustion. For this reason, the natural gas sector also has an important supportive role to play when it comes to the European energy t...

  17. Persistence of Antibodies to West Nile Virus in Naturally Infected Rock Pigeons (Columba livia)

    Science.gov (United States)

    Gibbs, Samantha E. J.; Hoffman, Douglas M.; Stark, Lillian M.; Marlenee, Nicole L.; Blitvich, Bradley J.; Beaty, Barry J.; Stallknecht, David E.

    2005-01-01

    Wild caught rock pigeons (Columba livia) with antibodies to West Nile virus were monitored for 15 months to determine antibody persistence and compare results of three serologic techniques. Antibodies persisted for the entire study as detected by epitope-blocking enzyme-linked immunosorbent assay and plaque reduction neutralization test. Maternal antibodies in squabs derived from seropositive birds persisted for an average of 27 days. PMID:15879030

  18. Effect of Natural Phosphate Rock Enhanced Compost on Pearl Millet-Cowpea Cropping Systems

    OpenAIRE

    Sarr, Papa Saliou; Khouma, Mamadou; Sene, Modou; Guisse, Aliou; Badiane, Amiinata Niane; Yamakawa, Takeo; 山川, 武夫

    2009-01-01

    Phosphorus (P) deficiency is considered as a major soil constraint to increased yields in tropical zones of Africa. Several methods have been tested to improve crop production but little information is available about the usage effect of phosphate rock (PR) and compost on mixed cropping of pearl millet (Pennisetum glaucum L. R. Br.) and cowpea (Vigna unguiculata L. Walp.). In this study, we investigated the effects of different PR application methods on pearl millet (millet) and cowpea croppi...

  19. Pravcice Rock Arch (Bohemian Switzerland National Park, Czech Republic) deterioration due to natural and anthropogenic weathering

    Czech Academy of Sciences Publication Activity Database

    Vařilová, Z.; Přikryl, R.; Cílek, Václav

    2011-01-01

    Roč. 63, 7/8 (2011), s. 1861-1878 ISSN 1866-6280 R&D Projects: GA ČR GA205/08/0676 Institutional research plan: CEZ:AV0Z30130516 Keywords : Upper Cretaceous sandstone * rock arch * Bohemian Cretaceous basin * weathering processes * mineralogy of efflorescence * water soluble salts chemistry Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.059, year: 2011

  20. Shock Propagation In Crustal Rock

    Science.gov (United States)

    1991-04-29

    Drawer 719 La Jolla, CA 92093 Santa Barbara, CA 93102 Dr. Gilbert A. Bollinger Prof. Stanley Flatte Department of Geological Sciences Applied Sciences...G.P.O. Box 4 Canberra 2601, AUSTRALIA Dr. Bernard Massinon Societe Radiomana 27 rue Claude Bernard 75005 Paris , FRANCE (2 Copies) Dr. Pierre Mecheler

  1. The correlations between natural elements (K, U, Th) concentrations and thermal neutron absorption cross-section value (Σa) for rock samples of Carpatia area

    International Nuclear Information System (INIS)

    Swakon, J.; Cywicka-Jakiel, T.; Drozdowicz, E.; Gabanska, B.; Loskiewicz, J.; Woznicka, U.

    1991-01-01

    The paper presents a study of correlations between concentrations of potassium, uranium and thorium and thermal neutron absorption cross section in rock samples. This knowledge of correlation should help in recognizing the expansion ways and accumulation places of the elements responsible of high thermal neutron absorption cross section in some geological environments. The correlations show the existence of connections between the thermal neutron absorption cross section value and natural radioactivity elements concentration in rocks. The results confirm the existence of correlations between natural radioactive elements concentrations (particularly thorium) and thermal neutron absorption cross - section value in some rocks. (author). 12 refs, 23 figs, 6 tabs

  2. Radiation damage studies on synthetic NaCl crystals and natural rock salt for waste disposal applications

    International Nuclear Information System (INIS)

    Klaffky, R.W.; Swyler, K.J.; Levy, P.W.

    1979-01-01

    Radiation damage studies are being made on synthetic NaCl and natural rock salt crystals from various localities, including potential repository sites. Measurements are being made with equipment for recording the radiation induced F-center and colloid particle absorption bands during irradiation with 1.5 MeV electrons at various temperatures. A technique has been developed to resolve the overlapping F-center and colloid bands. The resulting spectra and curves of absorption vs. dose provide information on colloid particle size and concentration, activation energies for processes occurring during colloid formation, and additional data suggesting that both strain and radiation induced dislocations contribute to the colloid formation process

  3. Radiation damage studies on natural rock salt from various geological localities of interest to the radioactive waste disposal program

    International Nuclear Information System (INIS)

    Levy, P.W.

    1981-01-01

    As part of a program to investigate radiation damage in geological materials of interest to the radioactive waste disposal program, radiation damage, particularly radiation induced sodium metal colloid formation, has been studied in 14 natural rock salt samples. All measurements were made with equipment for making optical absorption and other measurements on samples, in a temperature controlled irradiation chamber, during and after 0.5 to 3.0 MeV electron irradiation. Samples were chosen for practical and scientific purposes, from localities that are potential repository sites and from different horizons at certain localities

  4. Quantitative determination of uranium and thorum contents of some rock samples in Nigeria using natural calibration sources

    International Nuclear Information System (INIS)

    Uwah, E.J.; Ajakaiye, D.E.

    1987-01-01

    Three natural multiple-source standards were used to estimate eU and eTh concentrations in rock samples collected during in-situ reconnaissance surveys in the Sokoto Basin of Nigeria. The standards were those previously analyzed by Delayed neutron counting (DNC) and X0ray Fluoresence (DRF) techniques (Uwah and Ajakaiye, 1986). Regression analysis of the data from twelve of the samples analyzed by DNC and XRF techniques enabled a quick approximate determination of eU and eTh in many samples in the survey area, containing about 50 ppm U and above

  5. Surface Roughness Effects on Fluid Transport Through a Natural Rock Fracture

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, D.M.; Ahmadi, Goodarz; Smith, D.H.

    2008-04-01

    Fluid flow through rock fractures can be orders of magnitude faster than through the adjacent low-permeability rock. Understanding how fluid moves through these pathways is important for the prediction of sequestered CO2 transport in geologic reservoirs. Reservoir-scale, discrete-fracture simulators use simplified models of flow through fractures to determine transport properties in complex fracture networks. A high level of approximation is required in these reservoir-scale simulations due to the number of fractures within the domain of interest and because of the limited amount of information that can be obtained from geophysical well-logs (Long et al. (1996)). For this study, flow simulations through a CT-scanned fracture were performed to evaluate different fluid transport parameters that are important in geological flow analysis. The ‘roughness’ of the fracture was varied to determine the effect of the bumpy fracture walls on the fluid flow. The permeability and effective aperture were determined for flow under a constant pressure head. The fracture roughness is shown to dramatically reduce the flow through the fracture, and various relations are described.

  6. Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environments of Juban town in Yemen

    International Nuclear Information System (INIS)

    Abd El-mageed, A.I.; El-Kamel, A.H.; Abbady, A.; Harb, S.; Youssef, A.M.M.; Saleh, I.I.

    2011-01-01

    The natural radioactivities of 40 K, 226 Ra, and 232 Th and the fallout of 137 Cs in rock and soil samples collected around Juban town in Yemen (south west of Asia) were measured. Concentrations of radionuclides in samples were determined by gamma-ray spectrometer using HPGe detector with specially designed shield. The average radioactivity concentrations of 226 Ra, 232 Th, and 40 K were determined expressed in Bq/kg. The results show that these radionuclides were present in concentrations of (53.6±4, 127±6.7, and 1742.8±62 Bq/kg), (55±4, 121±6.6, and 2341±78 Bq/kg), (212.8±8.7, 109 ±5.5, and 32.4±4.7 Bq/kg), and (32.1±3, 22.3±2.9 and 190.9±15 Bq/kg) for granite, gneiss, siltstone, and sandstone rocks, respectively. For soil the corresponding values were 44.4±4.5, 58.2±5.1, and 822.7±31 Bq/kg. Low deposits of 137 Cs were noted in investigation area, where the activity concentrations ranged from 0.1±0.1 to 23.2±1.2 Bq/kg. Also the radiological hazard of the natural radionuclides content, radium equivalent activity, total dose rates, external hazard index, and gamma activity concentration index of the (rocks/soils) samples in the area under consideration were calculated. The data were discussed and compared with those given in the literature.

  7. Hydraulic and mechanical properties of natural fractures in low-permeability rock

    International Nuclear Information System (INIS)

    Pyrack-Nolte, L.J.; Myer, L.R.; Cook, N.G.W.; Witherspoon, P.A.

    1987-01-01

    The results of a comprehensive laboratory study of the mechanical displacement, permeability, and void geometry of single rock fractures in a quartz monzonite are summarized and analyzed. A metal-injection technique was developed that provided quantitative data on the precise geometry of the void spaces between the fracture surfaces and the areas of contact at different stresses. At effective stresses of less than 20 MPa fluid flow was proportional to the mean fracture aperture raised to a power greater than 3. As stress was increased, contact area was increased and void spaces become interconnected by small tortuous channels that constitute the principal impediment to fluid flow. At effective stresses higher than 20 MPa, the mean fracture aperture continued to diminish with increasing stress, but this had little effect on flow because the small tortuous flow channels deformed little with increasing stress

  8. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  9. [Change and Significance of RhoA/ROCK signaling pathway in the model with natural degeneration of the rat endplate chondrocytes].

    Science.gov (United States)

    Ma, Mingming; Xu, Hongguang; Zhang, Xiaoling; Wang, Hong; Zheng, Quan; Xu, Jiajia; Shen, Xiang; Zhang, Shufeng

    2015-11-03

    To explore the change and Significance of RhoA/ROCK signaling pathway in the model with natural degeneration of the rat endplate chondrocytes. Endplate chondrocytes were selected by enzyme digestion and cultured in vitro to divided into control (P2 cells), naturally passaged (P5 cells) groups and treatment group (P5+ROCK Inhibitor Y27632). The phenotype of endplate chondrocytes were identified by toluidine blue stains and F-actin stains. Type II collagen, aggrecan and SOX9 genes were examed by Real-time RT-PCR to verify the degeneration model. The RhoA/ROCK signaling pathway related gene ROCK-1, ROCK-2 were detected by RT-PCR and Western blot. The actived RhoA was examed by active-RhoA detection and Western blot. With the passaging,endplate chondrocytes completely lost the original cell morphology, the levels of type II collagen (P5/P2=0.248, PROCK-1 (P5/P2=0.652, PROCK-2 (P5/P2=2.527, PROCK-1 AND ROCK-2 were down-regulated in the treatment group. And type II collagen, aggrecan, SOX9 significantly increased. The degeneration of endplate chondrocytes with decreased ROCK-1 expression but increased active-RhoA and ROCK-2 expression suggest that RhoA/ROCK signaling pathway play an important role in the in vitro degeneration of endplate chondrocytes.Modulating the expression of RhoA/ROCK signaling pathway may be a new method of solving the problem of the degeneration of intervertebral disc.

  10. Repeated shock and thermal metamorphism of the Abernathy meteorite

    Science.gov (United States)

    Lambert, P.; Lewis, C.; Moore, C. B.

    1984-01-01

    Based on the example of Abernathy (L6 chondrite), it is shown how petrographic investigation can be used to unravel the nature, chronology and conditions of superposed metamorphic events in chondrites. Features considered include the texture of the rock, optical characteristics of olivine, pyroxene and plagioclase, refractive index of plagioclase, metallographical characteristics and microhardness of Fe-Ni alloys. It is deduced that Abernathy has been involved in at least six metamorphic events since the formation of the chondrite. Four distinct shock events and two separate reheating events have been identified. The chronology of these events is established. The conditions for the last four events are reasonably well constrained. These include severe reheating (T greater than 1200 C); severe shock causing complete melting of plagioclase and local melting of the rock (P between 90 and 110 GPa, T between 1250 and 1350 C); mild shock (P between 10 and 25 GPa, T less than 500 C); and reheating below 800 C.

  11. Natural Ni speciation in the Callovo-Oxfordian clay rocks: implications for potential 63Ni isotopic exchange and retention mechanisms

    International Nuclear Information System (INIS)

    Grangeon, S.; Tournassat, C.; Schaefer, T.; Lerouge, C.; Wille, G.; Giffaut, E.

    2010-01-01

    Document available in extended abstract form only. In the perspective of deep underground long-term nuclear waste storage, 63 Ni is considered as a priority radio-element to be studied. 63 Ni behaviour prediction is made difficult mainly because its geochemical behaviour is still subject to debate. For instance, the solubility of Ni simple compounds at high pH is ill-defined, and the knowledge on solubility control phases is still pending. Clay rocks such as Callovo-Oxfordian (COx) contain non negligible amounts of natural and stable isotopes of Ni. As a consequence, a good understanding of the natural speciation of Ni in the formation could help to understand 63 Ni controls in this environment, including long term isotopic exchange with naturally present Ni. We focused our study on the COx formation, where the Bure (France) ANDRA underground research laboratory is located. Speciation of naturally occurring Ni was studied by combining chemical, microscopic and spectrometric methods. Chemical methods consisted of total rock analyses and sequential extractions on various COx samples representative of the variability of the formation (from carbonate rich samples to clay rich samples). This method enabled quantifying the main Ni reservoirs. Physical methods were used to get a closer look at the Ni-bearing phases. Optical and scanning electron microscopy techniques were used to identify and isolate minerals from thin rock sections, originating from different geological horizons. Chemical results indicate that the mean Ni concentration in the Callovo-Oxfordian clay rock is of ∼30 ppm (10 -6 g/g). Identified Ni-bearing minerals were mainly primary minerals (biotite, chlorite, muscovite), calcite and pyrite; organic matter being also observed. Electron microprobe and X-ray fluorescence analyses were performed in order to quantify the amounts and variability of Ni contents in these different Callovo-Oxfordian components. Ni is occasionally present in primary minerals with

  12. LABORATORY EXPERIMENTS ON HEAT-DRIVEN TWO-PHASE FLOWS IN NATURAL AND ARTIFICIAL ROCK FRACTURES

    International Nuclear Information System (INIS)

    TIMOTHY J. KNEAFSEY AND KARSTEN PRUESS

    1998-01-01

    Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed, but not when liquid-vapor counterflow was hindered by very narrow apertures, and when inadequate working fluid volume was used

  13. Laboratory experiments on heat-drive two-phase flows in natural and artificial rock fractures

    International Nuclear Information System (INIS)

    Kneafsey, Timothy J.; Pruess, Karsten

    1998-01-01

    Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed but not when vapor-liquid counterflow was hindered by very narrow apertures and when an inadequate working fluid volume was used

  14. An Integrated Numerical Modelling-Discrete Fracture Network Approach Applied to the Characterisation of Rock Mass Strength of Naturally Fractured Pillars

    Science.gov (United States)

    Elmo, Davide; Stead, Doug

    2010-02-01

    Naturally fractured mine pillars provide an excellent example of the importance of accurately determining rock mass strength. Failure in slender pillars is predominantly controlled by naturally occurring discontinuities, their influence diminishing with increasing pillar width, with wider pillars failing through a combination of brittle and shearing processes. To accurately simulate this behaviour by numerical modelling, the current analysis incorporates a more realistic representation of the mechanical behaviour of discrete fracture systems. This involves realistic simulation and representation of fracture networks, either as individual entities or as a collective system of fracture sets, or a combination of both. By using an integrated finite element/discrete element-discrete fracture network approach it is possible to study the failure of rock masses in tension and compression, along both existing pre-existing fractures and through intact rock bridges, and incorporating complex kinematic mechanisms. The proposed modelling approach fully captures the anisotropic and inhomogeneous effects of natural jointing and is considered to be more realistic than methods relying solely on continuum or discontinuum representation. The paper concludes with a discussion on the development of synthetic rock mass properties, with the intention of providing a more robust link between rock mass strength and rock mass classification systems.

  15. Shock melting of K-feldspar and interlacing with cataclastically deformed plagioclase in granitic rocks at Toqqusap Nunaa, southern West Greenland: Implications for the genesis of the Maniitsoq structure

    Science.gov (United States)

    Keulen, Nynke; Garde, Adam A.; Jørgart, Tommy

    2015-11-01

    Folded sheets of Mesoarchaean, leucocratic plagioclase-K-feldspar-mesoperthite-bearing granitic rocks in the Toqqusap Nunaa area of the Maniitsoq structure, West Greenland, are characterised by their very fine grain sizes and microstructures without normal igneous or planar/linear tectonic fabrics. Quartz forms equidimensional and branching, ductilely deformed aggregates and bifurcating panels with protrusions, constrictions and chains of ball-shaped grains with healed, radiating intergranular fractures. Plagioclase (An10-20) was cataclastically deformed and comminuted, whereas K-feldspar and mesoperthite are devoid of cataclastic microstructures. K-feldspar forms dispersed, highly irregular grains with numerous cusps and saddles, indicating almost ubiquitous direct (shock) melting of this mineral. It is commonly located along former fractures in plagioclase, resulting in an 'interlaced' feldspar microstructure with contact shapes indicating subsequent melting of plagioclase directly adjacent to K-feldspar. Mesoperthite forms separate, rounded, and irregular grains with protrusions and cusped margins indicating crystallisation from melts. Some mesoperthite grains are texturally and compositionally heterogeneous and contain internal lenses of K-feldspar and/or plagioclase. Other mesoperthite grains comprise coarsened, 'unzipped' areas, presumably due to localised, fluid-controlled dissolution-reprecipitation processes. The ternary feldspar precursor of the mesoperthite is interpreted as having crystallised from variably effectively mixed K-feldspar shock melts and plagioclase contact melts. Direct melting of K-feldspar, but no whole-rock melting, requires shock metamorphism with a short-lived temperature excursion to above the melting temperature of K-feldspar (~ 1300 °C). The presence of three different feldspar species and absence of chemical zonation, magmatic mantling, or metamorphic coronas furthermore hinders interpretations solely by means of endogenic

  16. Non-steady homogeneous deformations: Computational techniques using Lie theory, and application to ellipsoidal markers in naturally deformed rocks

    Science.gov (United States)

    Davis, Joshua R.; Titus, Sarah J.; Horsman, Eric

    2013-11-01

    The dynamic theory of deformable ellipsoidal inclusions in slow viscous flows was worked out by J.D. Eshelby in the 1950s, and further developed and applied by various authors. We describe three approaches to computing Eshelby's ellipsoid dynamics and other homogeneous deformations. The most sophisticated of our methods uses differential-geometric techniques on Lie groups. This Lie group method is faster and more precise than earlier methods, and perfectly preserves certain geometric properties of the ellipsoids, including volume. We apply our method to the analysis of naturally deformed clasts from the Gem Lake shear zone in the Sierra Nevada mountains of California, USA. This application demonstrates how, given three-dimensional strain data, we can solve simultaneously for best-fit bulk kinematics of the shear zone, as well as relative viscosities of clasts and matrix rocks.

  17. Evaluation of natural radioactivity in some granitic rocks in the state of Parana, Brazil and its use in civil construction

    International Nuclear Information System (INIS)

    Ferreira, Ademar de Oliveira

    2013-01-01

    Primordial, or terrestrial natural radionuclides, are found in different amounts in the environment. In dwellings, an important dose increment is due to building materials, which contribute for both the external gamma dose from the radionuclides of the 238 U, 235 U and 232 Th series and the natural 40 K and the internal dose, due mainly to 222 Rn inhalation. Once granitic rocks are widely used both as construction materials or structural flooring, those rocks can become an important dose source, depending on the content of concentrations of radioactivity, and the construction application. In this work, a database for granitic rocks of the crystalline shield of Parana (mainly in the Metropolitan Region of Curitiba, RMC), used in civil construction, was generated, evaluating in terms of radiological protection the external and internal dose increments, caused by the use of these materials. Also, possible correlations between the 226 Ra activity concentration, the 222 Rn exhalation rate, density, porosity and chemical composition (oxide content) in these samples had been studied. The external dose was assessed by gamma-ray spectrometry with High-Purity Germanium detectors, where the activity concentration of the radionuclides 232 Th, 226 Ra and 40 K are the parameters used in dosimetric models (Dosimetric Indexes), which established limits in accordance with the form, amount and application of material of construction. For the calculation of the annual effective external dose it was assumed a room model with dimensions of 4 m x 5 m x 2:8 m and all walls internally covered with 2 cm thickness of granite and an annual exposure time of 7000 h as suggested by the European Commission of Radiological Protection for internal superficial coating materials. The internal exposure was assessed from the radon concentration in the air of the room model, simulated from the superficial exhalation rate of 222 Rn. The exhalation rate was determined by the passive detection technique

  18. Natural radionuclides in rocks and soils of the high-mountain regions of the Great Caucasus

    Science.gov (United States)

    Asvarova, T. A.; Abdulaeva, A. S.; Magomedov, M. A.

    2012-06-01

    The results of the radioecological survey in the high-mountain regions of the Great Caucasus at the heights from 2200 to 3800 m a.s.l. are considered. This survey encompassed the territories of Dagestan, Azerbaijan, Georgia, Chechnya, Northern Ossetia-Alania, Kabardino-Balkaria, Karachay-Cherkessia, and the Stavropol and Krasnodar regions. The natural γ background radiation in the studied regions is subjected to considerable fluctuations and varies from 6 to 40 μR/h. The major regularities of the migration of natural radionuclides 238U, 232Th, 226Ra, and 40K in soils in dependence on the particular environmental conditions (the initial concentration of the radionuclides in the parent material; the intensity of pedogenesis; the intensity of the vertical and horizontal migration; and the geographic, climatic, and landscape-geochemical factors) are discussed.

  19. Multi-isotope tracing of CO2 leakage and water-rock interaction in a natural CCS analogue.

    Science.gov (United States)

    Kloppmann, Wolfram; Gemeni, Vasiliki; Lions, Julie; Koukouzas, Nikolaos; Humez, Pauline; Vasilatos, Charalampos; Millot, Romain; Pauwels, Hélène

    2015-04-01

    Natural analogues of CO2 accumulation and, potentially, leakage, provide a highly valuable opportunity to study (1) geochemical processes within a CO2-reservoir and the overlying aquifers or aquicludes, i.e. gas-water-rock interactions, (2) geology and tightness of reservoirs over geological timescales, (3) potential or real leakage pathways, (3) impact of leakage on shallow groundwater resources quality, and (4) direct and indirect geochemical indicators of gas leakage (Lions et al., 2014, Humez et al., 2014). The Florina Basin in NW Macedonia, Greece, contains a deep CO2-rich aquifer within a graben structure. The graben filling consists of highly heterogeneous Neogene clastic sediments constituted by components from the adjacent massifs including carbonates, schists, gneiss as well as some ultramafic volcanic rocks. Clay layers are observed that isolate hydraulically the deep, partly artesian aquifer. Organic matter, in form of lignite accumulations, is abundant in the Neogene series. The underlying bedrocks are metamorphic carbonates and silicate rocks. The origin of the CO2 accumulation is controversial (deep, partially mantle-derived D'Allessandro et al., 2008 or resulting from thermal decomposition of carbonates, Hatziyannis and Arvanitis, 2011). Groundwaters have been sampled from springs and borewells over 3 years at different depths. First results on major, minor and trace elements give evidence of water-rock interaction, mainly with carbonates but also with ultramafic components but do not indicate that CO2-seepage is the principal driver of those processes (Gemeni et al., submitted). Here we present isotope data on a selection of groundwaters (δ2H , δ18O, δ13CTDIC, 87Sr/86Sr, δ11B, δ7Li). Stable isotopes of water indicate paleo-recharge for some of the groundwaters, limited exchange with gaseous CO2 and, in one case, possibly thermal exchange processes with silicates. Sr isotope ratios vary between marine ratios and radiogenic values indicating

  20. Hospitalized dogs recovery from naturally occurring heatstroke; does serum heat shock protein 72 can provide prognostic biomarker?

    Science.gov (United States)

    Bruchim, Yaron; Segev, Gilad; Kelmer, Efrat; Codner, Carolina; Marisat, Ahmad; Horowitz, Michal

    2016-01-01

    Heatstroke is a serious illness in dogs characterized by core temperatures above 41°C with central nervous system dysfunction. Experimental heatstroke models have tried to correlate biomarker levels with the severity of the syndrome. Serum heat shock protein (eHSP70) levels were recently evaluated as a biomarker of heat tolerance and acclimation, their role as a marker of heatstroke is inconclusive. Here, we monitored eHSP70 levels in correlation with systemic biomarkers in 30 naturally occurring canine heatstroke cases. Thirty dogs diagnosed with environmental (33%) or exertional (66%) heatstroke admitted to hospital (0-14 h post-injury) were tested for biomarkers of organ damage and coagulation parameters. eHSP70 levels were measured upon admission and 4, 12, and 24 h later (T1, T2, and T3, respectively). No differences were found between exertional and environmental heatstroke cases. The eHSP profile demonstrated an inverted bell shape, with the lowest levels at the 12 h time point. A positive correlation between eHSP70, lactate, and aPPT was also noted at T2 in all the dogs in the study. Twenty-four h after presentation, eHSP70 levels returned to those measured upon admission, this change was only significant in the survivors. The obtained results suggest that eHSP72 level profile may be predictive of survival.

  1. Mineralogical, chemical and K-Ar isotopic changes in Kreyenhagen Shale whole rocks and natural burial and hydrous-pyrolysis experimental maturation

    Science.gov (United States)

    Clauer, Norbert; Lewan, Michael D.; Dolan, Michael P.; Chaudhuri, Sambhudas; Curtis, John B.

    2014-01-01

    Progressive maturation of the Eocene Kreyenhagen Shale from the San Joaquin Basin of California was studied by combining mineralogical and chemical analyses with K–Ar dating of whole rocks and naturally buried samples and laboratory induced maturation by hydrous pyrolysis of an immature outcrop sample. The K–Ar age decreases from 89.9 ± 3.9 and 72.4 ± 4.2 Ma for the outcrop whole rock and its natural maturation does not produce K–Ar ages in the historical sense, but rather K/Ar ratios of relative K and radiogenic 40Ar amounts resulting from a combined crystallization of authigenic and alteration of initial detrital K-bearing minerals of the rocks. The Al/K ratio of the naturally matured rocks is essentially constant for the entire depth sequence, indicating that there is no detectable variation in the crystallo-chemical organization of the K-bearing alumino-silicates with depth. No supply of K from outside of the rock volumes occurred, which indicates a closed-system behavior for it. Conversely, the content of the total organic carbon (TOC) content decreases significantly with burial, based on the progressive increasing Al/TOC ratio of the whole rocks. The initial varied mineralogy and chemistry of the rocks and their <2 μm fractions resulting from differences in detrital sources and depositional settings give scattered results that homogenize progressively during burial due to increased authigenesis, and concomitant increased alteration of the detrital material.

  2. Natural organics in groundwaters and their potential effect on contaminant transport in granitic rock

    International Nuclear Information System (INIS)

    Vilks, P.; Bachinski, D.B.; Richer, D.

    1996-07-01

    Naturally occurring organics in groundwaters of the Whiteshell Research Area (WRA) of southern Manitoba and of the Atikokan Research Area of northwestern Ontario were investigated to assess their potential role in radionuclide transport within granite fractures of the Canadian Shield. A survey of dissolved organic carbon (DOC) concentrations, carried out to determine the variability in the organic content of these groundwaters, showed average concentrations in WRA deep groundwaters of 0.8 ± 0.1 mg/L for Fracture Zone 2, 0.8 ± 0.4 mg/L for near-vertical fractures, and 2.3 ± 0.8 mg/L for deeper saline groundwater. Surface waters and near-surface groundwaters had significantly higher DOC with 29.2 ± 0.6 mg/L in streams from the East Swamp. The DOC consisted mainly of hydrophilic neutral compounds 60 to 75%, and hydrophobic and hydrophilic acids 23 to 39%, along with very small amounts of hydrophobic bases and neutrals, and hydrophilic bases. The average complexing capacity of natural organics in WRA deep groundwaters was calculated to be 6.7 x 10 -6 eq/L. The ability of these organics to complex radionuclides was tested using conditional stability constants from the literature for humic complex formation with trivalent, tetravalent, pentavalent and hexavalent actinides. The chemistries of Np(V) and U(VI) were predicted to be dominated by inorganic complexes and not significantly affected by organics. Accurate predictions for AM(III) and Th(IV) could not be made since the literature contains a wide range in values of stability constants for humic complexes with these elements. Surface waters and near-surface groundwaters in many areas of the Canadian Shield contain enough humics to complex a significant fraction of dissolved actinides. Radiocarbon ages of humics from WRA groundwater varied between 3600 and 6200 years before present, indicating that a component of humic substances in deep groundwaters must originate from near-surface waters. 54 refs., 15 tabs., 5

  3. Natural analogue studies in crystalline rock: the influence of water-bearing fractures on radionuclide immobilisation in a granitic rock repository

    International Nuclear Information System (INIS)

    Alexander, W.R.; MacKenzie, A.B.; Scott, R.D.; McKinley, I.G.

    1990-06-01

    Current Swiss concepts for the disposal of radioactive waste involve disposal in deep mined repositories to ensure that only insignificant quantities of radionuclides will ever reach the surface and so enter the biosphere. The rock formations presently considered as potential candidates for hosting radwaste repositories have thus been selected on the basis of their capacity to isolate radionuclides from the biosphere. An important factor in ensuring such containment is a very low solute transport rate through the host formation. However, it is considered likely that, in the formations of interest in the Swiss programme (eg. granites, argillaceous sediments, anhydrite), the rocks will be fractured to some extent even at repository depth. In the instance of the cumulative failure of near-field barriers in the repository, these hydraulically connected fractures in the host formation could be very important far-field routes of migration (and possible sites of retardation) of radionuclides dissolved in the groundwaters. In this context, the so-called 'matrix diffusion' mechanism is potentially very important for radionuclide retardation. This report is the culmination of a programme which has attempted to assess the potential influence of these water-bearing fractures on radionuclide transport in a crystalline rock radwaste repository. 162 refs., 36 figs., 16 tabs

  4. Evaluation of the nature, origin and potentiality of the subsurface Middle Jurassic and Lower Cretaceous source rocks in Melleiha G-1x well, North Western Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed M. El Nady

    2015-09-01

    Full Text Available The present work aims to evaluate the nature and origin of the source rock potentiality of subsurface Middle Jurassic and Lower Cretaceous source rocks in Melleiha G-1x well. This target was achieved throughout the evaluation of total organic carbon, rock Eval pyrolysis and vitrinite reflectance for fifteen cutting samples and three extract samples collected from Khatatba, Alam El Bueib and Kharita formations in the studied well. The result revealed that the main hydrocarbon of source rocks, for the Middle Jurassic (Khatatba Fm. is mainly mature, and has good capability of producing oil and minor gas. Lower Cretaceous source rocks (Alam El Bueib Fm. are mature, derived from mixed organic sources and have fair to good capability to generate gas and oil. Kharita Formation of immature source rocks originated from terrestrial origin and has poor to fair potential to produce gas. This indicates that Khatatba and Alam El Bueib formations take the direction of increasing maturity far away from the direction of biodegradation and can be considered as effective source potential in the Melleiha G-1x well.

  5. Pravcice Rock Arch (Bohemian Switzerland National Park, Czech Republic) deterioration due to natural and anthropogenic weathering (vol 63, pg 1861, 2011)

    Czech Academy of Sciences Publication Activity Database

    Vařilová, Z.; Přikryl, R.; Cílek, Václav

    2011-01-01

    Roč. 64, č. 4 (2011), s. 1191-1194 ISSN 1866-6280 Institutional research plan: CEZ:AV0Z30130516 Keywords : corection * Pra vcice Rock Arch * nature protection Subject RIV: DO - Wilderness Conservation Impact factor: 1.059, year: 2011

  6. An analysis of natural gas exploration potential in the Qiongdongnan Basin by use of the theory of “joint control of source rocks and geothermal heat”

    Directory of Open Access Journals (Sweden)

    Zhang Gongcheng

    2014-10-01

    Full Text Available The Oligocene Yacheng Fm contains the most important source rocks that have been confirmed by exploratory wells in the Qiongdongnan Basin. The efficiency of these source rocks is the key to the breakthrough in natural gas exploration in the study area. This paper analyzes the hydrocarbon potential of each sag in this basin from the perspective of control of both source rocks and geothermal heat. Two types of source rocks occur in the Yacheng Fm, namely mudstone of transitional facies and mudstone of neritic facies. Both of them are dominated by a kerogen of type-III, followed by type-II. Their organic matter abundances are controlled by the amount of continental clastic input. The mudstone of transitional facies is commonly higher in organic matter abundance, while that of neritic facies is lower. The coal-measure source rocks of transitional facies were mainly formed in such environments as delta plains, coastal plains and barrier tidal flat-marshes. Due to the control of Cenozoic lithosphere extension and influence of neotectonism, the geothermal gradient, terrestrial heat flow value (HFV and level of thermal evolution are generally high in deep water. The hot setting not only determines the predominance of gas generation in the deep-water sags, but can promote the shallow-buried source rocks in shallow water into oil window to generate oil. In addition to promoting the hydrocarbon generation of source rocks, the high geothermal and high heat flow value can also speed up the cracking of residual hydrocarbons, thus enhancing hydrocarbon generation efficiency and capacity. According to the theory of joint control of source quality and geothermal heat on hydrocarbon generation, we comprehensively evaluate and rank the exploration potentials of major sags in the Qiongdongnan Basin. These sags are divided into 3 types, of which type-I sags including Yanan, Lingshui, Baodao, Ledong and Huaguang are the highest in hydrocarbon exploration potential.

  7. Our Favorite Film Shocks

    DEFF Research Database (Denmark)

    Willerslev, Rane; Suhr, Christian

    2014-01-01

    The modern medium of film has long been hailed for its capacity for producing shocks of an entertaining, thought-provoking, or even politically emancipative nature. But what is a shock, how and when does it occur, how long does it last, and are there particular techniques for producing cinematic...

  8. The weathering of municipal solid waste incineration bottom ash evaluated by some weathering indices for natural rock.

    Science.gov (United States)

    Takahashi, Fumitake; Shimaoka, Takayuki

    2012-12-01

    The weathering of municipal solid waste incineration (MSWI) residues consists of complicated phenomena. This makes it difficult to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash, which was relevant interactively to pH neutralization and formation of secondary minerals. In this study, mineralogical weathering indices for natural rock profiles were applied to fresh/landfilled MSWI bottom ash to investigate the relation of these weathering indices to landfill time and leaching concentrations of component elements. Tested mineralogical weathering indices were Weathering Potential Index (WPI), Ruxton ratio (R), Weathering Index of Parker (WIP), Vogt's Residual Index (V), Chemical Index of Alternation (CIA), Chemical Index of Weathering (CIW), Plagioclase Index of Alternation (PIA), Silica-Titania Index (STI), Weathering Index of Miura (Wm), and Weatherability index of Hodder (Ks). Welch's t-test accepted at 0.2% of significance level that all weathering indices could distinguish fresh and landfilled MSWI bottom ash. However, R and STI showed contrasted results for landfilled bottom ash to theoretical expectation. WPI, WIP, Wm, and Ks had good linearity with reclamation time of landfilled MSWI bottom ash. Therefore, these four indices might be applicable as an indicator to identify fresh/weathered MSWI bottom ash and to estimate weathering time. Although WPI had weak correlation with leachate pH, other weathering indices had no significant correlation. In addition, all weathering indices could not explain leaching concentration of Al, Ca, Cu, and Zn quantitatively. Large difficulty to modify weathering indices correctly suggests that geochemical simulation including surface sorption, complexation with DOM, and other mechanisms seems to be the only way to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Nature of the interfacial region between cementitious mixtures and rocks from the Palo Duro Basin and other seal components

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Roy, D.M.

    1986-03-01

    Using the interface zone as an indicator of compatibility, preliminary tests were run using cement-based formulations designed to be used for shaft sealing in conjunction with evaporite and clastic rocks of the Palo Duro Basin, one of several potential sites for a high-level radioactive waste repository. Emphasis focused on two formulations, both designed to be slightly expansive. Mixture 83-05 was tested in combination with anhydrite and siltstone. A comparable mixture (83-03) containing salt was used with the halite. Cement, rocks, and their respective interfaces were examined using x-ray diffraction, optical microscopy, and scanning electron microscopy. Bond strengths between rock and cement as well as between selected steels and grout were determined as a function of curing conditions and pretest surface treatment. Permeabilities of cement/rock and cement/steel composites were also determined. Bond strength and permeability were found to vary with curing conditions as well as surface treatment

  10. Contrasting Nature of Magnetic Anomalies over Thin Sections Made out of Barrandien’s Basaltic Rocks Points to their Origin

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Pruner, Petr; Schnabl, Petr; Šifnerová, Kristýna

    -, special issue (2012), s. 69-70 ISSN 1335-2806. [Castle meeting New Trends in Geomagnetism : Paleo, rock and environmental magnetism/13./. 17.06.2012-23.06.2012, Zvolen] R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 Keywords : magnetic anomalies * thin sections * volcanic rocks Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://gauss.savba.sk/GPIweb/conferences/Castle2012/abstrCastle.pdf

  11. Effect of Rock Fragment Cover on Hydraulics Properties of Surface Flows and Rill Initiation with Simulating Runoff under Natural Conditions

    Directory of Open Access Journals (Sweden)

    sara kalbali

    2017-06-01

    Full Text Available Introduction: Rock fragments on soil surfaces can also have several contrasting effects on the hydraulics of overland flow and soil erosion processes. Many investigators have found that a cover of rock fragments on a soil surface can decrease its erosion potential compared to bare soil surface (1, 12 and 18. This has mainly been attributed to the protection of the soil surface by rock fragments against the beating action of rain. This leads to a decrease in the intensity of surface sealing, an increase in the infiltration rate, a decrease in the runoff volume and rate, and, hence, a decrease in sediment generation and production for soils covered by rock fragments. Parameters that have been reported to be important for explaining the degree of runoff or soil loss from soils containing rock fragments include the position and size (15, geometry (18, and percentage cover (11 and 12 of rock fragments and the structure of fine earth (16. Surface rock fragment cover is a more important factor for hydroulic properties of surface flows such as flow depth, flow velocity, Manning’s roughness coefficient (n parameter and flow shear stress and geometrics properties of formed rill such as time, location, number, length, width and depth of rill. Surface rock fragment cover is directly affected soil erosion processes in dry area specially in areas that plant can not grow because of sever dryness and salinity. Also, Surface rock fragment prevent the contact of rain drops to aggregates, decreasing physical degradation by decreasing flow velocity. The objective of this study was to investigate the effect of different surface rock fragment cover on hydraulic properties of surface flows and geometrics properties of formed rill. Materials and Methods: For this purpose, 36 field plots of 20 meter length and 0.5 meter width with 3% slope were established in research field of agricultural faculty, Shahrekord University. Before each erosion event, topsoil was tilled

  12. Study of weathering velocity of rocks with uranium as a natural tracer. Application to two drainage basins of the north-east of Brazil

    International Nuclear Information System (INIS)

    Costa Pinto Moreira Nordemann, L.M. da.

    1977-01-01

    Study on rock weathering rate, i.e. rock-soil interface formation, by measuring the elements dissolved in river waters. These elements are used as natural tracers. This work has been carried out in the drainage basin of Preto and Salgado Rivers, in Brazil. Conventional elements, sodium, potassium, calcium and magnesium have been utilized first and all dissolved salts have been used as natural tracers to allow comparison with other scientific works. Then, uranium has been used because it is not found in rain waters so that corrections are not necessary and because its abundance can be measured by α and γ spectrometry, and the 234 U/ 238 U ratio obtained, 234 U being more rapidly dissolved during weathering. Another reason is that no interaction occurs between uranium and the biomass. It is then possible to find a geochemical balance for this area [fr

  13. Analysis of the natural remanent magnetization of rocks by measuring the efficiency ratio through alternating field demagnetization spectra

    Czech Academy of Sciences Publication Activity Database

    Kohout, T.; Kletetschka, Günther; Donadini, F.; Fuller, M.; Herrero-Bervera, E.

    2008-01-01

    Roč. 52, č. 2 (2008), s. 225-235 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30130516 Keywords : REM * efficiency of magnetization * coercivity * shock remanence * SRM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.770, year: 2008

  14. Igneous Rocks

    Science.gov (United States)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  15. Osmium isotope and highly siderophile element constraints on ages and nature of meteoritic components in ancient lunar impact rocks

    Science.gov (United States)

    Fischer-Gödde, Mario; Becker, Harry

    2012-01-01

    The concentrations of highly siderophile elements (HSE: Re, Os, Ir, Ru, Pt, Rh, Pd, Au) and 187Os/188Os isotope compositions have been determined for 67 subsamples of six lunar impact rocks from the Apollo 14, 16 and 17 landing sites, and the lunar meteorite Dar al Gani (DaG) 400 using inductively coupled plasma mass spectrometry (ICP-MS) and negative thermal ionization mass spectrometry (N-TIMS). We report the first Re-Os isochron age on a lunar impact melt rock. 187Re-187Os isotope systematics for Apollo 16 sample 67935 define an isochron age of 4.21 ± 0.13 Ga (MSWD = 1.5), which is interpreted to reflect localized partitioning processes between solid metal-liquid metal as this rock melted. The new age adds further constraints on the significance of pre-4.0 Ga basin forming impacts on the Moon and possible mixing of ancient impactor compositions in lunar impact rocks. Linear correlations displayed by subsamples of a given impact rock in plots of HSE versus Ir concentrations are explained by dilution processes through essentially HSE-free anorthositic lunar crustal target rocks or binary mixing between a high HSE meteoritic end-member and a low HSE end-member composition. Slope-derived HSE ratios and 187Os/188Os of the meteoritic component in granulitic impactites 67915, 67955 and 79215 are similar to slightly volatile element depleted carbonaceous chondrites. Suprachondritic ratios of Ru/Ir, Pt/Ir, Rh/Ir, and Pd/Ir for Apollo 14 impact melt rock 14310 are similar to ratios observed for other Apollo 14 samples and Apollo 17 poikilitic impact melt rocks. Apollo 16 poikilitic and subophitic impact melt rocks 60315 and 67935 show slightly subchondritic Os/Ir and suprachondritic ratios of 187Os/188Os, Ru/Ir, Pt/Ir, Rh/Ir, Pd/Ir and Au/Ir. Their strongly fractionated HSE compositions are similar to some members of the IVA iron meteorite group and provide further evidence for an iron meteorite impactor component in Apollo 16 impact melt rocks. The range of chondritic

  16. Natural Radioactivity of Intrusive-Metamorphic and Sedimentary Rocks of the Balkan Mountain Range (Serbia, Stara Planina

    Directory of Open Access Journals (Sweden)

    Sanna Masod Abdulqader

    2017-12-01

    Full Text Available Stara Planina (also known as the Balkan mountain range is known for numerous occurrences and deposits of uranium and associated radionuclides. It is also famous for its geodiversity. The geologic framework is highly complex. The mountain is situated between the latitudes of 43° and 44° N and the longitudes from 22°16′ to 23°00′ E. Uranium exploration and radioactivity testing on Stara Planina began back in 1948. Uranium has also been mined in the zone of Kalna, within the Janja granite intrusive. The naturally radioactive geologic units of Stara Planina are presented in detail in this paper. The main sources of radioactivity on Stara Planina can be classified as: 1. Granitic endogenous—syngenetic–epigenetic deposits and occurrences; 2. Metamorphogenic—syngenetic; and 3. Sedimentary, including occurrences of uranium deposition and fluctuation caused by water in different types of sedimentary rocks formed in a continental setting, which could be classified under epigenetic types. The area of Stara Planina with increased radioactivity (higher than 200 cps, measured by airborne gamma spectrometry, is about 380 square kilometers. The highest values of measured radioactivity and uranium grade were obtained from a sample taken from the Mezdreja uranium mine tailing dump, where 226Ra measures 2600 ± 100 Bq/kg and the uranium grade is from 76.54 to 77.65 ppm U. The highest uranium (and lead concentration, among all samples, is measured in graphitic schist with high concentrations of organic (graphitic material from the Inovska Series—99.47 ppm U and 107.69 ppm Pb. Thorium related radioactivity is the highest in granite samples from the Janja granite in the vicinity of the Mezdreja granite mine and the Gabrovnica granite mine tailing dump, and it is the same—250 ± 10 Bq/kg for 232Th, while the thorium grade varies from 30.82 to 60.27 ppm Th. In gray siltstones with a small amount of organic material, the highest radioactivity is

  17. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  18. Gas sealing efficiency of cap rocks. Pt. 1: Experimental investigations in pelitic sediment rocks. - Pt. 2: Geochemical investigations on redistribution of volatile hydrocarbons in the overburden of natural gas reservoirs; Gas sealing efficiency of cap rocks. T. 1: Experimentelle Untersuchungen in pelitischen Sedimentgesteinen. - T.2: Geochemische Untersuchungen zur Umverteilung leichtfluechtiger Kohlenwasserstoffe in den Deckschichten von Erdgaslagerstaetten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Leythaeuser; Konstanty, J.; Pankalla, F.; Schwark, L.; Krooss, B.M.; Ehrlich, R.; Schloemer, S.

    1997-09-01

    New methods and concepts for the assessment of sealing properties of cap rocks above natural gas reservoirs and of the migration behaviour of low molecular-weight hydrocarbons in sedimentary basins were developed and tested. The experimental work comprised the systematic assesment of gas transport parameters on representative samples of pelitic rocks at elevated pressure and temperature conditions, and the characterization of their sealing efficiency as cap rocks overlying hydrocarbon accumulations. Geochemical case histories were carried out to analyse the distribution of low molecular-weight hydrocarbons in the overburden of known natural gas reservoirs in NW Germany. The results were interpreted with respect to the sealing efficiency of individual cap rock lithologies and the type and extent of gas losses. (orig.) [Deutsch] Zur Beurteilung der Abdichtungseigenschaften von Caprocks ueber Gaslagerstaetten und des Migrationsverhaltens niedrigmolekularer Kohlenwasserstoffe in Sedimentbecken wurden neue Methoden und Konzepte entwickelt und angewendet. In experimentellen Arbeiten erfolgte die systematische Bestimmung von Gas-Transportparametern an repraesentativen Proben pelitischer Gesteine unter erhoehten Druck- und Temperaturbedingungen und die Charakterisierung ihrer Abdichtungseffizienz als Deckschicht ueber Kohlenwasserstofflagerstaetten. In geochemischen Fallstudien wurde die Verteilung niedrigmolekularer Kohlenwasserstoffe in den Deckschichten ueber bekannten Erdgaslagerstaetten in NW-Deutschland analysiert und im Hinblick auf die Abdichtungseffizienz einzelner Caprock-Lithologien bzw. Art und Ausmass von Gasverlusten interpretiert. (orig.)

  19. Characteristic aerial and ground radioactives of basement and sedimentary rocks in (Egypt): relations and natural cycles across geologic time

    International Nuclear Information System (INIS)

    Ammar, A.A.

    1998-01-01

    Each geologic unit, exposure, formation or rock group of the exposed precambrian I (igneous and metamorphic) basement complex (Upper proterozoic) and phanerozoic cover sediments in an area covering about 4500 km2 located in the central eastern desert of egypt, has been found to possess certain radioactivity characteristics and levels. Minimum values of radiation are generally associated with the first basement volcanics, maximum values are correlated are correlated with the third basement plutonites and phosphate formation (upper cretaceous), while intermedialte values are connected with the first basement sediments and upper eocene-quaternary fifth detrital-calcareous-evaporite sediments. Therefore, the radioactivities of various rock groups of the precambrian I basement complex - except the first basement sediments sediments- correlate progressively well with their chronology. Generally, the increase of radioactivity within this complex is connected with the transition into final stages of the magmatic evolution

  20. Fault-controlled permeability and fluid flow in low-porosity crystalline rocks: an example from naturally fractured geothermal systems in the Southern Andes

    Science.gov (United States)

    Arancibia, G.; Roquer, T.; Sepúlveda, J.; Veloso, E. A.; Morata, D.; Rowland, J. V.

    2017-12-01

    Fault zones can control the location, emplacement, and evolution of economic mineral deposits and geothermal systems by acting as barriers and/or conduits to crustal fluid flow (e.g. magma, gas, oil, hydro-geothermal and groundwater). The nature of the fault control permeability is critical in the case of fluid flow into low porosity/permeability crystalline rocks, since structural permeability provides the main hydraulic conductivity to generate a natural fractured system. However, several processes accompanying the failure of rocks (i.e. episodic permeability given by cycling ruptures, mineral precipitation from fluids in veins, dissolution of minerals in the vicinity of a fracture) promote a complex time-dependent and enhancing/reducing fault-controlled permeability. We propose the Southern Volcanic Zone (Southern Andes, Chile) as a case study to evaluate the role of the structural permeability in low porosity crystalline rocks belonging to the Miocene North Patagonian Batholith. Recently published studies propose a relatively well-constrained first-order role of two active fault systems, the arc-parallel (NS to NNE trending) Liquiñe Ofqui Fault System and the arc-oblique (NW trending) Andean Transverse Fault Zones, in fluid flow at crustal scales. We now propose to examine the Liquiñe ( 39°S) and Maihue ( 40°S) areas as sites of interaction between these fault systems, in order to evaluate a naturally fractured geothermal system. Preliminary results indicate upwelling of thermal water directly from fractured granite or from fluvial deposits overlying granitoids. Measured temperatures of thermal springs suggest a low- to medium-enthalpy system, which could potentially be harnessed for use in geothermal energy applications (e.g. heating, wood dryer and green house), which are much needed in Southern Chile. Future work will aim to examine the nature of structural permeability from the regional to the microscopic scale connecting the paleo- and current- fluid

  1. X-ray imaging by partially coherent synchrotron light. Application to metallic alloys, tooth dentin and natural rock

    International Nuclear Information System (INIS)

    Zabler, Simon Andreas

    2007-01-01

    The hard spectrum which is available on the BAMline at Berlin's synchrotron BESSY offers the rare opportunity to perform high-resolution X-ray imaging experiments with a partially coherent beam. This thesis work reports on the development of a new tomography system, including Fresnel-propagated imaging, and its application to three specific materials science problems from the fields of engineering materials, biology and earth science. Static and dynamic 2D and 3D images were recorded from a variety of aluminum-based alloys. Coarsening of particle agglomerates (at high solid volume fraction) in liquid solution, as well as rheological properties of semi-solid alloys are thus characterized. Dentin is characterized by a quasi-parallel arrangement of micrometer-sized tubules. This work shows how high-resolution 3D images of water-immersed tooth dentin are recorded, and detailed simulations of the optical wave propagation reveal that Fresnel-images contain additional information about the dense cuff of peritubular dentin surrounding the tubules. The cuff thickness can be extrapolated from the interference fringes that form the propagated images of tubules. Absorption and Fresnel-propagated X-ray tomography are applied to measure samples of different rocks before and after mechanical compression nondestructively. In a first approach, limestone and greywacke are investigated, representing two sedimentary rocks of different grain size. Basalt and granite are tested in a second approach to compare different rock types. Development of cracks is observed in all materials, leading to fracture when increasing mechanical load is applied. In this work, relatively small mm-sized samples are used in order to test a classical fracture model wherein micro-flaws initiate the formation of larger cracks. For the first time, Fresnel-propagated imaging is applied to rock samples, highlighting micrometer-sized intergranular porosity as well as different material phases. The latter is shown

  2. X-ray imaging by partially coherent synchrotron light. Application to metallic alloys, tooth dentin and natural rock

    Energy Technology Data Exchange (ETDEWEB)

    Zabler, Simon Andreas

    2007-10-09

    The hard spectrum which is available on the BAMline at Berlin's synchrotron BESSY offers the rare opportunity to perform high-resolution X-ray imaging experiments with a partially coherent beam. This thesis work reports on the development of a new tomography system, including Fresnel-propagated imaging, and its application to three specific materials science problems from the fields of engineering materials, biology and earth science. Static and dynamic 2D and 3D images were recorded from a variety of aluminum-based alloys. Coarsening of particle agglomerates (at high solid volume fraction) in liquid solution, as well as rheological properties of semi-solid alloys are thus characterized. Dentin is characterized by a quasi-parallel arrangement of micrometer-sized tubules. This work shows how high-resolution 3D images of water-immersed tooth dentin are recorded, and detailed simulations of the optical wave propagation reveal that Fresnel-images contain additional information about the dense cuff of peritubular dentin surrounding the tubules. The cuff thickness can be extrapolated from the interference fringes that form the propagated images of tubules. Absorption and Fresnel-propagated X-ray tomography are applied to measure samples of different rocks before and after mechanical compression nondestructively. In a first approach, limestone and greywacke are investigated, representing two sedimentary rocks of different grain size. Basalt and granite are tested in a second approach to compare different rock types. Development of cracks is observed in all materials, leading to fracture when increasing mechanical load is applied. In this work, relatively small mm-sized samples are used in order to test a classical fracture model wherein micro-flaws initiate the formation of larger cracks. For the first time, Fresnel-propagated imaging is applied to rock samples, highlighting micrometer-sized intergranular porosity as well as different material phases. The latter is

  3. Iodine distribution in natural waters of different chemical composition in relation to water-bearing soils and rocks and water fractions in areas subjected to radioiodine contamination

    Science.gov (United States)

    Kolmykova, Liudmila; Korobova, Elena

    2017-04-01

    Iodine is an essential microelement required for normal functioning of thyroid gland. Natural deficiency of stable iodine is compensated by its active intake by thyroid and provokes its higher irradiation in case of radiation accidents and contamination of the environment by radioiodine isotopes. The bioavailability of both stable and radioactive iodine and the specificity of its uptake by living organisms largely depends on geochemical parameters of the environment related to natural conditions of water migration. The goal of the study was to investigate spatial distribution of iodine in natural water of different chemical composition in relation to typical water-bearing soils and rocks and water fractions in Bryansk areas subjected to radioiodine contamination after the Chernobyl accident and to evaluate contribution of this factor to the occurrence of endemic thyroid diseases among local population inhabiting geochemically different areas of fluvioglacial and loess-like sedimentary rocks. The highest content of iodine (Me=13.3 µg/l) was observed in surface water of landscapes with H-Ca, Ca and H-Ca-Fe classes of water migration. The lowest microelement level (Me=5.25 µg/l) was noted in groundwater of landscapes with H, H-Fe classes of water migration in areas of Paleogene water bearing rocks. Regardless of the type of source and class of water migration up to 90% of the total content of iodide is present in the fraction radioactive analogues by rural population living in different geochemical conditions and using local drinking waters. The data should be accounted of in planning prophylactics of endemic diseases and counter measures in case of radioiodine fallout.

  4. Quartz preferred orientation in naturally deformed mylonitic rocks (Montalto shear zone-Italy): a comparison of results by different techniques, their advantages and limitations

    Science.gov (United States)

    Fazio, Eugenio; Punturo, Rosalda; Cirrincione, Rosolino; Kern, Hartmut; Pezzino, Antonino; Wenk, Hans-Rudolf; Goswami, Shalini; Mamtani, Manish A.

    2017-10-01

    In the geologic record, the quartz c-axis patterns are widely adopted in the investigation of crystallographic preferred orientations (CPO) of naturally deformed rocks. To this aim, in the present work, four different methods for measuring quartz c-axis orientations in naturally sheared rocks were applied and compared: the classical universal stage technique, the computer-integrated polarization microscopy method (CIP), the time-of-flight (TOF) neutron diffraction analysis , and the electron backscatter diffraction (EBSD). Microstructural analysis and CPO patterns of quartz, together with the ones obtained for feldspars and micas in mylonitic granitoid rocks, have been then considered to solve structural and geological questions related to the Montalto crustal scale shear zone (Calabria, southern Italy). Results obtained by applying the different techniques are discussed, and the advantages as well as limitations of each method are highlighted. Importantly, our findings suggest that patterns obtained by means of different techniques are quite similar. In particular, for such mylonites, a subsimple shear (40% simple shear vs 60% pure shear) by shape analysis of porphyroclasts was inferred. A general tendency of an asymmetric c-maximum near to the Z direction (normal to foliation) suggesting dominant basal slip, consistent with fabric patterns related to dynamically recrystallization under greenschist facies, is recognized. Rhombohedral slip was likely active as documented by pole figures of positive and negative rhombs (TOF), which reveal also potential mechanical Dauphiné twinning. Results showed that the most complete CPO characterization on deformed rocks is given by the TOF (from which also other quartz crystallographic axes can be obtained as well as various mineral phases may be investigated). However, this use is restricted by the fact that (a) there are very few TOF facilities around the world and (b) there is loss of any domainal reference, since TOF is a

  5. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  6. Enhancement of nitrogen and phosphorus removal in landscape water using polymeric ferric sulfate as well as the synergistic effect of four kinds of natural rocks as promoter.

    Science.gov (United States)

    Huang, Xuejiao; Feng, Mi; Ni, Chengsheng; Xie, Deti; Li, Zhenlun

    2018-02-23

    Eutrophication in lakes and rivers caused by the nitrogen (N) and phosphorus (P) is urgent since the accumulation of N and P can possibly cause the algal blooms and devastation to the water ecological system. The removal of N and P in the landscape water would be an efficient way to reduce the enrichment of nutrition before they reach the large water system. The N and P removal efficiency of PFS as well as the synergistic effect of natural rocks (four types of purple parent rock (J 3 p, J 2 s, T 1 f, and J 3 s)) as promoter was examined under laboratory conditions. The results indicated that TN and TP removal efficiency of the composite coagulant was significantly better than that of PFS or purple parent rock alone and J 3 p + PFS (combination of PFS and J 3 p purple parent rock) showed the best TN and TP removal efficiency. TN and TP removal efficiency of 53.53 and 86.48%, respectively, were achieved with coagulant dosage of 6 g L -1 J 3 p and 30 mg L -1 PFS, water temperature of 30 °C, and wastewater initial pH of 9. In addition, Fourier transformed infrared (FTIR) spectrophotometer, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis (EDX), and the water quality index analysis revealed that the treatment of TN and TP by using J 3 p + PFS was taking advantage of the flocculation function of PFS and the adsorption function of PFS and J 3 p. In which, the flocculation mechanism was mainly charge neutralization; adsorption mechanism was mainly physical and chemical adsorption.

  7. Natural gas in the 21st century. Part 1. Rock-solid trust in the future of the Dutch natural gas trading company Nederlandse Gasunie

    International Nuclear Information System (INIS)

    Krikke, R.

    2000-01-01

    In this first part of a new series experts in the field of the natural gas market in the Netherlands are interviewed about their opinion on the consequences of and developments after the new Dutch Natural Gas Law ('Gaswet') has come into effect. In this article the general manager of the natural gas trading company Gasunie answers questions on the natural gas market and the position of Gasunie in that market. He also expresses his personal interest in domotics

  8. Evaluation of natural and degradation by salt spray of red ceramics incorporated with ornamental rock waste; Avaliacao da degradacao natural e por nevoa salina de ceramica vermelha incorporadas com rejeito de rocha ornamental

    Energy Technology Data Exchange (ETDEWEB)

    Altoe, Larissa Machado; Xavier, Gustavo de Castro; Albuquerque, Fernando Saboya; Maia, Paulo Cesar de Almeida; Alexandre, Jonas, E-mail: daniellavrodrigues@hotmail.com, E-mail: gxavier@uenf.br [Universidade Estadual do Norte Fluminense Darcy Ribeiro (LECIV/UENF), Campos dos Goytacazes, RJ (Brazil)Laboratorio de Engenharia Civil

    2011-07-01

    To better study the mechanical behavior of red ceramic, the samples were degraded in salt spray equipment and exposed in environment. The salt spray equipment subjects the samples to conditions found by the sea, through the mix solutions of sodium chloride. The ceramic samples were prepared with up to 10% by mass of ornamental rock waste to dry and pressed into rectangular mold of steel. The materials were fired at temperatures of 650°C, 750° C and 850°C. After 90 days of degradation natural and 45 days in salt spray, ware analyzed the properties of ceramic material. The results of mechanical strength were compared using the Weibull distribution, before and after the degradation. Note that the material with ornamental rock waste raised the mechanical strength and did'nt significantly changes the material properties after degradation. (author)

  9. Structure and chemistry of bacterially populated acidic microenvironments found on naturally colonized and weathered circumneutral pH unsaturated waste rock from the Antamina Mine, Peru

    Science.gov (United States)

    Dockrey, J. W.; Mayer, K. U.; Beckie, R. D.; Southam, G.

    2009-12-01

    The microbial community present in geochemically well characterized field cells and experimental waste rock piles at the Antamina Mine, were examined using electron microscopy, culture dependent, and culture independent techniques. Relatively large populations of up to 10^8 bacteria per gram were found, despite the young age of the waste rock (1.5 years). Most samples were at alkaline pH and dominated by bacteria capable of neutral pH thiosulfate oxidation. One sample from a field cell producing drainage at a pH of 6.5 was dominated by acidophilic bacteria capable of Fe^2+ and S^0 oxidation. A weathered massive sulfide from this sample was thoroughly examined using a field emission gun scanning electron microscope equipped with a focused ion beam (FE-SEM-FIB). Bacteria were abundant as monolayer and agglomerate biofilms upon and within a porous schwertmannite precipitate, while no bacteria were found directly attached to clean sulfide surfaces. Pitting of pyrrhotite was observed beneath the microbially inhabited schwertmannite, while no pitting was observed in adjacent clean pyrrhotite surfaces indicating greater oxidation of the pyrrhotite surface beneath the schwertmannite. Some waste rock that has been exposed to natural surface weathering conditions for more than twice the amount of time, possessed larger total populations of bacteria, but did not support significant populations of acidophiles, suggesting a succession from neutrophiles to acidophiles takes place prior to the development of acid mine drainage. The development of the porous iron oxide film may be prerequisite for acidophilic bacteria to flourish, creating acidic microenvironments within a neutral bulk, ambient pH mine waste.

  10. Rock strength under explosive loading

    International Nuclear Information System (INIS)

    Rimer, N.; Proffer, W.

    1993-01-01

    This presentation emphasizes the importance of a detailed description of the nonlinear deviatoric (strength) response of the surrounding rock in the numerical simulation of underground nuclear explosion phenomenology to the late times needed for test ban monitoring applications. We will show how numerical simulations which match ground motion measurements in volcanic tuffs and in granite use the strength values obtained from laboratory measurements on small core samples of these rocks but also require much lower strength values after the ground motion has interacted with the rock. The underlying physical mechanisms for the implied strength reduction are not yet well understood, and in fact may depend on the particular rock type. However, constitutive models for shock damage and/or effective stress have been used successfully at S-Cubed in both the Geophysics Program (primarily for DARPA) and the Containment Support Program (for DNA) to simulate late time ground motions measured at NTS in many different rock types

  11. Science Rocks!

    Science.gov (United States)

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?"…

  12. Permeability of natural rock salt from the Waste Isolation Pilot Plant (WIPP) during damage evolution and healing

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hurtado, L.D.

    1998-06-01

    The US Department of Energy has developed the Waste Isolation Pilot Plant (WIPP) in the bedded salt of southeastern New Mexico to demonstrate the safe disposal of radioactive transuranic wastes. Four vertical shafts provide access to the underground workings located at a depth of about 660 meters. These shafts connect the underground facility to the surface and potentially provide communication between lithologic units, so they will be sealed to limit both the release of hazardous waste from and fluid flow into the repository. The seal design must consider the potential for fluid flow through a disturbed rock zone (DRZ) that develops in the salt near the shafts. The DRZ, which forms initially during excavation and then evolves with time, is expected to have higher permeability than the native salt. The closure of the shaft openings (i.e., through salt creep) will compress the seals, thereby inducing a compressive back-stress on the DRZ. This back-stress is expected to arrest the evolution of the DRZ, and with time will promote healing of damage. This paper presents laboratory data from tertiary creep and hydrostatic compression tests designed to characterize damage evolution and healing in WIPP salt. Healing is quantified in terms of permanent reduction in permeability, and the data are used to estimate healing times based on considerations of first-order kinetics

  13. Preferential flow paths and heat pipes: Results from laboratory experiments on heat-driven flow in natural and artificial rock fractures

    International Nuclear Information System (INIS)

    Kneafsey, T.J.; Pruess, K.

    1997-06-01

    Water flow in fractures under the conditions of partial saturation and thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. Water flowing in fast pathways may ultimately contact waste packages at Yucca Mountain and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize liquid flow in glass fracture models, a transparent epoxy fracture replica, and a rock/replica fracture assembly. Spatially resolved thermal monitoring was performed in seven of these experiments to evaluate heat-pipe formation. Depending on the fracture apertures and flow conditions, various flow regimes were observed including continuous rivulet flow for high flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for low flow rates and wide apertures. These flow regimes were present in both fracture models and in the replica of a natural fracture. Heat-pipe conditions indicated by low thermal gradients were observed in five experiments. Conditions conducive to heat-pipe formation include an evaporation zone, condensation zone, adequate space for vapor and liquid to travel, and appropriate fluid driving forces. In one of the two experiments where heat pipe conditions were not observed, adequate space for liquid-vapor counterflow was not provided. Heat pipe conditions were not established in the other, because liquid flow was inadequate to compensate for imbibition and the quantity of heat contained within the rock

  14. demystifying the shock of shocking

    African Journals Online (AJOL)

    demystifying the shock of shocking. Beyra Rossouw, MB ChB, MMed. (Paed), DTM, MSc (Sports Medicine),. Certificate Critical Care (Paed). Senior Registrar Paediatric Cardiology, Western. Cape Paediatric Cardiac Services, Red Cross. War Memorial Children's Hospital, University of. Cape Town, and Tygerberg Children's ...

  15. Evaluation of host rocks and background lithologies as secondary contributors to the uranium and rare-earth element source-term at the Needle's Eye natural analogue site

    International Nuclear Information System (INIS)

    Hyslop, E.K.

    1993-01-01

    HMIP has a research programme investigating some naturally radioactive sites in the UK as geochemical analogues of radionuclide migration. The objective is to test thermodynamic database and computer codes used for modelling radionuclide migration under environmental conditions. This report describes a study of the distributions of uranium (U) and the rare-earth elements (REE) in the vicinity of pitchblende veins outcropping in the cliff at Needle's Eye on the Solway Coats, SW Scotland. This report improves the information available on the secondary source-terms of U and REE. The minerals in the country rocks are thought to be supplying only minor amounts of these elements to the groundwaters flowing into the Merse silts within the detailed study area close to the mineralisation in the cliff. The pitchblende veins are the principal source-term for U migrating into the Merse silts at the foot of the cliff. (author)

  16. Decoupling of unpolluted temperate forests from rock nutrient sources revealed by natural 87Sr/86Sr and 84Sr tracer addition

    Science.gov (United States)

    Kennedy, Martin J.; Hedin, Lars O.; Derry, Louis A.

    2002-01-01

    An experimental tracer addition of 84Sr to an unpolluted temperate forest site in southern Chile, as well as the natural variation of 87Sr/86Sr within plants and soils, indicates that mechanisms in shallow soil organic horizons are of key importance for retaining and recycling atmospheric cation inputs at scales of decades or less. The dominant tree species Nothofagus nitida feeds nearly exclusively (>90%) on cations of atmospheric origin, despite strong variations in tree size and location in the forest landscape. Our results illustrate that (i) unpolluted temperate forests can become nutritionally decoupled from deeper weathering processes, virtually functioning as atmospherically fed ecosystems, and (ii) base cation turnover times are considerably more rapid than previously recognized in the plant available pool of soil. These results challenge the prevalent paradigm that plants largely feed on rock-derived cations and have important implications for understanding sensitivity of forests to air pollution. PMID:12119394

  17. Contamination of roads in Klatovy by natural radionuclides from waste rock dumps of the former uranium mine Ustalec

    International Nuclear Information System (INIS)

    Nekl, M.; Golias, V.

    2002-01-01

    Contamination by natural radioisotopes was detected in the road network of the town Klatovy (Czech Republic). The extent and distribution of the contamination were studied using automobile and portable gamma ray spectrometers. Samples of the roadway were taken for a mineralogical and petrological study at two localities. Processes of re-distribution of uranium in the road and its surroundings were studied. (author)

  18. A new method for testing thermal shock resistance properties of soapstone – Effects of microstructures and mineralogical variables

    Directory of Open Access Journals (Sweden)

    A. Huhta

    2016-09-01

    Full Text Available Soapstone industry utilizes different types of soapstone mainly as a construction material for fireplaces. In this application soapstone has to meet different temperature requirements in different parts of fireplaces. Mineralogical and structural information is needed for placing an appropriate type of soapstone in an appropriate position in the fireplace construction. This allows employment of higher temperatures resulting in more particulate-free combustion, which makes it possible for soapstone industry to develop more efficient and environmentally friendly fireplaces. Of many soapstone types, which differ from each other in their chemical composition and thermal properties, carbonate soapstone and its microstructural variations were investigated in this study. A new method was developed to measure thermal shock resistant of natural stones. By exposing carbonate soapstone samples of different textural types to rapid temperature changes, it was possible to determine the parameters that affect the capacity of the rock to resist thermal shock. The results indicate that the type of microtexture is an important factor in controlling the thermal shock resistance of carbonate soapstone. The soapstone samples with a high thermal shock resistance show deformation textures, such as crenulation cleavage and S/C mylonite. A strong negative correlation was observed between the thermal shock resistance and length of cleavage domains in foliated rocks. Also a slight elevation in the iron concentration of talc and magnesite was discovered to improve the thermal shock resistance of carbonate soapstone. Attention should especially be paid to the length and planarity of cleavage domains of spaced foliation.

  19. Characterization of anthropogenic and natural sources of acid rock drainage at the Cinnamon Gulch abandoned mine land inventory site, Summit County, Colorado

    Science.gov (United States)

    Bird, D.A.

    2003-01-01

    Colorado's Cinnamon Gulch releases acid rock drainage (ARD) from anthropogenic and natural sources. In 2001, the total discharge from Cinnamon Gulch was measured at 1.02 cfs (29 L/s) at base flow and 4.3 cfs (122 L/s) at high flow (spring runoff). At base flow, natural sources account for 98% of the discharge from the watershed, and about 96% of the chemical loading. At high flow, natural sources contribute 96% of discharge and 92 to 95% of chemical loading. The pH is acidic throughout the Cinnamon Gulch watershed, ranging from 2.9 to 5.4. At baseflow, nearly all of the trace metals analyzed in the 18 samples exceeded state hardness-dependent water quality standards for aquatic life. Maximum dissolved concentrations of selected constituents included 16 mg/ L aluminum, 15 mg/L manganese, 40 mg/L iron, 2 mg/L copper, 560 ??g/L lead, 8.4 mg/L zinc, and 300 mg/L sulfate. Average dissolved concentrations of selected metals at baseflow were 5.5 mg/L aluminum, 5.5 mg/L manganese, 14 ??g/L cadmium, 260 ??g/L copper, 82 ??g/L lead, and 2.8 mg/L zinc.

  20. Rock and Soil Rheology

    Science.gov (United States)

    Cristescu, Nicolae; Ene, Horia I.

    The first part of the volume contains theoretical considerations of the physical properties of soils and rocks. Articles on the mechanical and kinematical behavior of rocks as well as mathematical models are the base for the understanding of the physical properties of natural systems. In the second part articles deal with experiments and applications regarding creep deformation of clay, underground cavities, tunnels and deformation of sand and lamistrine sediments.

  1. Cardiogenic shock

    Science.gov (United States)

    ... occur during or after a heart attack (myocardial infarction). These complications include: A large section of heart ... high blood pressure, high cholesterol and triglycerides, or tobacco use Alternative Names Shock - cardiogenic Images Heart, section ...

  2. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  3. The Shock Routine

    DEFF Research Database (Denmark)

    van Hooren, Franca; Kaasch, Alexandra; Starke, Peter

    2014-01-01

    in Australia, Belgium, the Netherlands and Sweden over the course of four global economic shocks, we ask whether the notion of critical junctures is useful in understanding the nature of change triggered by crisis. The main empirical finding is that fundamental change in the aftermath of an exogenous shock...... is the exception rather than the rule. Instead, incremental ‘crisis routines’ based on existing policy instruments are overwhelmingly used to deal with economic hardship. We discuss these findings in the light of the psychological ‘threat-rigidity’ effect and reflect on their consequences for theories...

  4. The location of uranium in source rocks and sites of secondary deposition at the Needle's Eye natural analogue site, Dumfries and Galloway

    International Nuclear Information System (INIS)

    Basham, I.R.; Hyslop, E.K.; Milodowski, A.E.; Pearce, J.M.

    1991-01-01

    The British Geological Survey has been conducting a coordinated research programme at the natural analogue site of Needle's Eye at Southwick on the Solway coast in south-west Scotland. This study of a naturally radioactive geochemical system has been carried out with the aim of improving our confidence in using predictive models of radionuclide migration in the geosphere. This report describes results of integrated mineralogical techniques which have been applied to the study of both the source-term and sites of secondary accumulation of uranium. Pitchblende in a polymetallic-carbonate breccia vein exposed in ancient sea-cliffs is the main source of labile uranium although other uranium-bearing minerals present in the granodiorite and hornfelsed siltstone host-rocks present probable ancillary leachable sites. In keeping with the complex chemistry of the primary sulphide-rich mineralization, a large variety of secondary U minerals has been recorded among which arsenates and hydrous silicates appear to predominate. Uranium transported in groundwaters draining the cliffs has accumulated in organic-rich estuarine/intertidal mudflat sediments of Quaternary age. Charged particle track registration techniques have demonstrated convincingly the effectiveness of humified organic matter in retarding uranium transport and, coupled with scanning electron microscopy, have indicated the important role of living plants and bacteria in uranium uptake and concentration. Computer codes used: CHEMVAL; CHEMTARD 5 figs.; 64 plates; 37 refs

  5. The location of uranium in source rocks and sites of secondary deposition at the Needle's Eye natural analogue site, Dumfries and Galloway

    International Nuclear Information System (INIS)

    Basham, I.R.; Hyslop, E.K.; Milodowski, A.E.; Pearce, J.M.

    1989-08-01

    The British Geological Survey has been conducting a co-ordinated research programme at the natural analogue site of Needle's Eye at Southwick on the Solway coast in SW Scotland. This study of a naturally radioactive geochemical system has been carried out with the aim of improving our confidence in using predictive models of radionuclide migration in the geosphere. This report describes results of integrated mineralogical techniques which have been applied to the study of both the 'source-term' and sites of secondary accumulation of uranium. Pitchblende in a polymetallic-carbonate breccia vein exposed in ancient sea-cliffs is the main source of labile uranium although other uranium-bearing minerals present in the granodiorite and hornfelsed siltstone host-rocks present probable ancillary leachable sites. In keeping with the complex chemistry of the primary sulphide-rich mineralization, a large variety of secondary U minerals has been recorded among which arsenates and hydrous silicates appear to predominate. Uranium transported in groundwaters draining the cliffs has accumulated in organic-rich estuarine/intertidal mudflat sediments of Quaternary age. Charged particle track registration techniques have demonstrated convincingly the effectiveness of humidified organic matter in retarding uranium transport and, coupled with scanning electron microscopy, have indicated an important role of living plants and bacteria in uranium uptake and concentration. (author)

  6. Metrological system for y-ray spectrometry measurement of the specific activity and mass fraction of natural radioactive elements in soil and rock samples

    International Nuclear Information System (INIS)

    Khaikovich, I.M.; Fominykh, V.I.; Kirisyuk, E.M.; Belyachkov, Y.A.

    1994-01-01

    In the last few years a great deal of attention has been devoted to the study of the radiation conditions, which in some regions change markedly as a result of intense human activity. One reason for radioactive contamination of an area is dissemination during extraction and processing of radioactive ores or other minerals of natural radioactive elements with a high content of potassium, uranium (radium), and thorium. Estimation of the level of radioactive contamination is one of the main problems of ecological monitoring, and the quality of the measurements sometimes plays a deciding role in the fate of the object being investigated. This also pertains to, in particular, estimation of radioactive contamination of minerals employed for building homes and factories and other industrial structures. In order to draw unequivocal and well-founded conclusions from measurements of the content of natural radioactive elements in soil and rock samples, collected at the object being investigated, a great deal of attention must be devoted during the organization of the measurements to the metrological system

  7. Recreating Rocks

    DEFF Research Database (Denmark)

    Posth, Nicole R

    2008-01-01

    Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers.......Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers....

  8. Evaluation of natural radioactivity in some granitic rocks in the state of Parana, Brazil and its use in civil construction; Avaliacao da radioatividade natural em algumas rochas graniticas do estado do Parana e sua utilizacao na construcao civil

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ademar de Oliveira

    2013-07-01

    Primordial, or terrestrial natural radionuclides, are found in different amounts in the environment. In dwellings, an important dose increment is due to building materials, which contribute for both the external gamma dose from the radionuclides of the {sup 238}U, {sup 235}U and {sup 232}Th series and the natural {sup 40}K and the internal dose, due mainly to {sup 222}Rn inhalation. Once granitic rocks are widely used both as construction materials or structural flooring, those rocks can become an important dose source, depending on the content of concentrations of radioactivity, and the construction application. In this work, a database for granitic rocks of the crystalline shield of Parana (mainly in the Metropolitan Region of Curitiba, RMC), used in civil construction, was generated, evaluating in terms of radiological protection the external and internal dose increments, caused by the use of these materials. Also, possible correlations between the {sup 226}Ra activity concentration, the {sup 222}Rn exhalation rate, density, porosity and chemical composition (oxide content) in these samples had been studied. The external dose was assessed by gamma-ray spectrometry with High-Purity Germanium detectors, where the activity concentration of the radionuclides {sup 232}Th, {sup 226}Ra and {sup 40}K are the parameters used in dosimetric models (Dosimetric Indexes), which established limits in accordance with the form, amount and application of material of construction. For the calculation of the annual effective external dose it was assumed a room model with dimensions of 4 m x 5 m x 2:8 m and all walls internally covered with 2 cm thickness of granite and an annual exposure time of 7000 h as suggested by the European Commission of Radiological Protection for internal superficial coating materials. The internal exposure was assessed from the radon concentration in the air of the room model, simulated from the superficial exhalation rate of {sup 222}Rn. The exhalation

  9. Quantitative measurement of channel-block hydraulic interactions by experimental saturation of a large, natural, fissured rock mass.

    Science.gov (United States)

    Guglielmi, Y; Mudry, J

    2001-01-01

    The hydrodynamic behavior of fissured media relies on the relationships between a few very conductive fractures (channels) and the remaining low-conductivity fractures and matrix (blocks). We made a quantitative measurement of those relationships and their effect on water drainage and storage in a 19,000 m3 natural reservoir consisting of karstified limestones. This reservoir was artificially saturated with water by closing a water gate on the main outlet during a varying time (delta t) fixed by the operator. The water gate was completely or partly closed until the water pressure reached a particular specified value. If the water gate was left completely closed long enough, the water pressure was fixed by the elevation of temporary outlets at the site boundaries. The water elevation within the reservoir was monitored by means of pressure cells located on single fractures representative of the bedding plane and the two families of fractures of the massif network. The comparison of pressure variations with the network geometry allows us to identify a typical double permeability characterized by a few very conductive channels along 10 vertical faults. These channels limit blocks consisting of low-conductivity bedding planes and a rather impervious matrix. Depending on the closure interval, delta t, of the water gate, the total volume of water stored in the reservoir can vary from 0.8 m3 (delta t = 5 minutes) to 18.6 m3 (delta t = 2 days). Such a variance of storage versus closure time is explained by the reservoir's double permeability that is characterized by blocks that saturate much more slowly than channels. If plotted versus time, this injected volume fits a power relationship, according to the saturation state of the blocks. In less than 34 minutes, storage is close to zero in the blocks and to 1.6 to 2 m3 in the channels. For closing times shorter than 1 hour, only 1% of the volume that flows in the channels is stored into the blocks. Depending on the water

  10. Space Weathering of Rocks

    Science.gov (United States)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  11. Art Rocks with Rock Art!

    Science.gov (United States)

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  12. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  13. Rock Physics

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2017-01-01

    Rock physics is the discipline linking petrophysical properties as derived from borehole data to surface based geophysical exploration data. It can involve interpretation of both elastic wave propagation and electrical conductivity, but in this chapter focus is on elasticity. Rock physics is based...... on continuum mechanics, and the theory of elasticity developed for statics becomes the key to petrophysical interpretation of velocity of elastic waves. In practice, rock physics involves interpretation of well logs including vertical seismic profiling (VSP) and analysis of core samples. The results...

  14. Performance evaluation of a natural treatment system for small communities, composed of a UASB reactor, maturation ponds (baffled and unbaffled) and a granular rock filter in series.

    Science.gov (United States)

    Dias, D F C; Passos, R G; Rodrigues, V A J; de Matos, M P; Santos, C R S; von Sperling, M

    2018-02-01

    Post-treatment of anaerobic reactor effluent with maturation ponds is a good option for small to medium-sized communities in tropical climates. The treatment line investigated, operating in Brazil, with an equivalent capacity to treat domestic sewage from 250 inhabitants, comprised a upflow anaerobic sludge blanket reactor followed by two shallow maturation ponds (unbaffled and baffled) and a granular rock filter (decreasing grain size) in series, requiring an area of only 1.5 m 2  inhabitant -1 . With an overall hydraulic retention time of only 6.7 days, the performance was excellent for a natural treatment system. Based on over two years of continuous monitoring, median removal efficiencies were: biochemical oxygen demand = 93%, chemical oxygen demand = 79%, total suspended solids = 87%, ammonia = 43% and Escherichia coli = 6.1 log units. The final effluent complied with European discharge standards and WHO guidelines for some forms of irrigation, and appeared to be a suitable alternative for treating domestic sewage for small communities in warm areas, especially in developing countries.

  15. Natural Infections With Pigeon Paramyxovirus Serotype 1: Pathologic Changes in Eurasian Collared-Doves ( Streptopelia decaocto) and Rock Pigeons ( Columba livia) in the United States.

    Science.gov (United States)

    Isidoro-Ayza, M; Afonso, C L; Stanton, J B; Knowles, S; Ip, H S; White, C L; Fenton, H; Ruder, M G; Dolinski, A C; Lankton, J

    2017-07-01

    Pigeon paramyxovirus serotype 1 (PPMV-1) is a globally distributed, virulent member of the avian paramyxovirus serotype 1 serogroup that causes mortality in columbiformes and poultry. Following introduction into the United States in the mid-1980s, PPMV-1 rapidly spread causing numerous mortality events in Eurasian collared-doves ( Streptopelia decaocto) (ECDOs) and rock pigeons ( Columba livia) (ROPIs). The investigators reviewed pathological findings of 70 naturally infected, free-ranging columbiforms from 25 different mortality events in the United States. Immunohistochemistry targeting PPMV-1 nucleoprotein was used to determine the tissue distribution of the virus in a subset of 17 birds from 10 of the studied outbreaks. ECDOs (61 birds) and ROPIs (9 birds) were the only species in which PPMV-1-associated disease was confirmed by viral isolation and presence of histologic lesions. Acute to subacute tubulointerstitial nephritis and necrotizing pancreatitis were the most frequent histologic lesions, with immunolabeling of viral antigen in renal tubular epithelial cells and pancreatic acinar epithelium. Lymphoid depletion of bursa of Fabricius and spleen was common, but the presence of viral antigen in these organs was inconsistent among infected birds. Hepatocellular necrosis was occasionally present with immunolabeling of hypertrophic Kupffer cells, and immunopositive eosinophilic intracytoplasmic inclusion bodies were present in hepatocytes of 1 ECDO. Immunopositive lymphocytic choroiditis was present in 1 ECDO, while lymphocytic meningoencephalitis was frequent in ROPIs in absence of immunolabeling. This study demonstrates widespread presence of PPMV-1 antigen in association with histologic lesions, confirming the lethal potential of this virus in these particular bird species.

  16. Natural infections with pigeon paramyxovirus serotype 1: Pathologic changes in Eurasian collared-doves (Streptopelia decaocto) and rock pigeons (Columba livia) in the United States

    Science.gov (United States)

    Isidoro Ayza, Marcos; Afonso, C.L.; Stanton, J.B.; Knowles, Susan N.; Ip, Hon S.; White, C. LeAnn; Fenton, Heather; Ruder, M.G.; Dolinski, A. C.; Lankton, Julia S.

    2017-01-01

    Pigeon paramyxovirus serotype 1 (PPMV-1) is a globally distributed, virulent member of the avian paramyxovirus serotype 1 serogroup that causes mortality in columbiformes and poultry. Following introduction into the United States in the mid-1980s, PPMV-1 rapidly spread causing numerous mortality events in Eurasian collared-doves (Streptopelia decaocto) (ECDOs) and rock pigeons (Columba livia) (ROPIs). The investigators reviewed pathological findings of 70 naturally infected, free-ranging columbiforms from 25 different mortality events in the United States. Immunohistochemistry targeting PPMV-1 nucleoprotein was used to determine the tissue distribution of the virus in a subset of 17 birds from 10 of the studied outbreaks. ECDOs (61 birds) and ROPIs (9 birds) were the only species in which PPMV-1-associated disease was confirmed by viral isolation and presence of histologic lesions. Acute to subacute tubulointerstitial nephritis and necrotizing pancreatitis were the most frequent histologic lesions, with immunolabeling of viral antigen in renal tubular epithelial cells and pancreatic acinar epithelium. Lymphoid depletion of bursa of Fabricius and spleen was common, but the presence of viral antigen in these organs was inconsistent among infected birds. Hepatocellular necrosis was occasionally present with immunolabeling of hypertrophic Kupffer cells, and immunopositive eosinophilic intracytoplasmic inclusion bodies were present in hepatocytes of 1 ECDO. Immunopositive lymphocytic choroiditis was present in 1 ECDO, while lymphocytic meningoencephalitis was frequent in ROPIs in absence of immunolabeling. This study demonstrates widespread presence of PPMV-1 antigen in association with histologic lesions, confirming the lethal potential of this virus in these particular bird species.

  17. Natural remanent magnetization and rock magnetic parameters from the North-East Atlantic continental margin : Insights from a new, automated cryogenic magnetometer at the Geological Survey of Norway

    Science.gov (United States)

    Klug, Martin; Fabian, Karl; Knies, Jochen; Sauer, Simone

    2017-04-01

    Natural remanent magnetization (NRM) and rock magnetic parameters from two locations, West Barents Sea ( 71.6°N,16.2°E) and Vestnesa Ridge, NW Svalbard ( 79.0°N, 6.9°E), were acquired using a new, automatically operating cryogenic magnetometer system at the Geological Survey of Norway. The magnetometer setup comprises an automated robot sample feeding, dynamic operation and measurement monitoring, and customised output-to-database data handling. The setup is designed to dynamically enable a variety of parallel measurements with several coupled devices (e.g. balance, MS2B) to effectively use dead-time in between the otherwise time-consuming measurements with the cryogen magnetometer. Web-based access allows remote quality control and interaction 24/7 and enables high sample throughput. The magnetic properties are combined with geophysical, geochemical measurements and optical imaging, both radiographic and colour images, from high-resolution core-logging. The multidisciplinary approach enables determination and interpretation of content and formation of the magnetic fraction, and its development during diagenetic processes. Besides palaeomagnetic age determination the results offer the opportunity to study sediment transformation processes that have implications for the burial and degradation of organic matter. The results also help to understand long and short-term variability of sediment accumulation. Chemical sediment stability is directly linked to environmental and climate variability in the polar marine environment during the recent past.

  18. Natural radioisotopes. The ''atomic clock'' for the age determination of rocks and archeological discoveries; Natuerliche Radioisotope. Die ''Atomuhr'' fuer die Bestimmung des absoluten Alters von Gesteinen und archaeologischen Funden

    Energy Technology Data Exchange (ETDEWEB)

    Heuel-Fabianek, Burkhard [Forschungszentrum Juelich (Germany)

    2017-04-01

    The contribution describes the fundamentals of radiometric age determination based on natural radionuclides. Organic (carbon containing) materials can be dated up to an age of 60.000 years using C-14. The methods used for radiometric dating of rocks and minerals include the radioactive decay series of U-238, U-235, Th -232, but also the beta decay of Rb-87 to Sr-87 or K-40 to Ar-40. The absolute age of rocks is not necessarily identical with the radiometric dating result, since geological processes could influence the radionuclide ratio.

  19. Rock Foundations

    National Research Council Canada - National Science Library

    1994-01-01

    .... Chapter 4 provides guidance on rock mass characterization and classification schemes. Chapters 5 and 6 provide guidance on related topic areas of foundation deformation and settlement and foundation bearing capacity, respectively...

  20. demystifying the shock of shocking

    African Journals Online (AJOL)

    aimed at depolarising a myocardium that is not generating a co-ordinated, perfusing rhythm. Organised QRS complexes cannot be identified and the electrical current is delivered without synchronising with the patient's native rhythm. DC shock should not be delayed once a shockable rhythm is recognised. The longer the ...

  1. Bugbuster: Survivability of Living Bacteria Upon Shock Compression

    Science.gov (United States)

    Willis, M. J.; Ahrens, T. J.; Bertani, L. E.; Nash, C. Z.

    2003-12-01

    Survivability of bacteria during impact events has implications both for the transport of life between planets and development of organisms on Hadean Earth and other planets during the period of heavy bombardment which ended 3.5 Gyr before the present [1]. We envision that life existed within internal rock surfaces immersed in the early ocean. We performed shock recovery experiments on live E. coli bacteria to determine survival rate vs. shock pressure. Samples of 2x107 cells were suspended in ˜10-5 l of a buffer solution (TE: a 10:1 solution of Tris and EDTA), sealed into stainless steel chambers that are impacted by 1.5 mm thick flyer plates at 670-760 m s-1 using a 20 mm gun. Recovered liquid was mixed with a nutrient broth (LB: growth medium containing tryptone, yeast extract and NaCl) and spread on a Petrie dish containing agar (a polysaccharide growth medium extracted from marine algae Rhodophyceae). Recovered samples were cultured for ˜16 hours at 37° C. In addition, sample bacteria studied under an optical microscope with DAPI fluorescent stain to verify presence of bacteria in shock recovered samples. Initial and reverberated shock pressures in H2O varied from 0.2 to 2.0 and 2.4 to 14.9 GPa respectively. We modeled the bacteria cell walls with stilbene, ρ 0=1.16 g cm-3, US=2.866+1.588uP and the cell interiors as water. Upon initial loading the net strain imposed on E. coli that just caused non-survival for 10-6 s duration stress was 2.8. If this strain is characteristic of that tolerable by E. coli, we predict that shock stresses of 25 MPa, 25 kPa and 25 Pa are sustainable upon shock loading by 0.1 ms, 0.1 s and 100 s shock duration pulses. Such shock durations are induced by 2.5 m, 2.5 km and 2,500 km diameter silicate impactors. References: [1] Maher K.A. & Stevenson D.J., Nature, 331, pp.612-614, 1988

  2. Shock Deformation and Volcanism across the Cretaceous - Transition.

    Science.gov (United States)

    Huffman, Alan Royce

    1990-01-01

    The cause of the Cretaceous-Tertiary (K/T) transition remains one of the most controversial scientific topics in the geosciences. Geological and geophysical evidence associated with the K/T boundary have been used to argue that the extinctions were caused by meteor impact or volcanism. The goal of this study was to assess the viability of a volcanic model for the K/T transition. Comparison of natural and experimentally-shocked quartz and feldspar using optical and transmission electron microscopy (TEM) revealed that the optical and statistical character of shock-induced microstructures in volcanic rocks are different from both classic impact microstructures, and from the Raton K/T samples. A series of 31 high-explosive (HE) shock-recovery experiments at pressures to 25 GPa and temperatures to 750^circC were completed on samples of granite and quartzite. TEM and optical microscopy reveal that pre-shock temperature and pulse duration have a first-order effect on the development of shock-induced microstructures in quartz and feldspar. Application of the experimental results to natural shock-induced microstructures indicates that the volcanic microstructures are probably produced at elevated temperatures and shock pressures that do not exceed 15 GPa. The results also suggest that the Raton K/T deposits were produced at pressures below about 25 GPa. Analysis of samples from the K/T transition at DSDP Site 527 and correlations between biostratigraphy, isotopes, and the data from this study suggest that the decline in marine productivity over an extended period of time may be due to climate changes induced by basaltic volcanism. The eruption of the Deccan Traps is a viable mechanism for the K/T extinctions, and the correlation of flood basalts with every major biotic crisis in the last 250 Ma supports the link between these two phenomena. Eruption of flood basalts enriched in F, Cl, CO_2 , and SO_2, could disrupt the terrestrial ecosystem, and could produce effects

  3. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  4. Cardiogenic Shock.

    Science.gov (United States)

    Moskovitz, Joshua B; Levy, Zachary D; Slesinger, Todd L

    2015-08-01

    Cardiogenic shock is the leading cause of morbidity and mortality in patients presenting with acute coronary syndrome. Although early reperfusion strategies are essential to the management of these critically ill patients, additional treatment plans are often needed to stabilize and treat the patient before reperfusion may be possible. This article discusses pharmacologic and surgical interventions, their indications and contraindications, management strategies, and treatment algorithms. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Confinement properties evolution of the cap-rocks argillite-type under CO2 enriched-fluids: impact of the natural and artificial discontinuities

    International Nuclear Information System (INIS)

    Berthe, G.

    2012-01-01

    This research is part of the studies of feasibility of CO 2 storage in deep geological strata, focusing more particularly on the evolution of the confinement properties of cap-rocks type argillite subjected to CO 2 enriched fluids. The argillite of Tournemire (Aveyron, France) were used as analog rocks, having identified what their weak points could be face to storage, namely their mineralogy, natural fractures filled with calcite and the presence of interfaces cement/argillite expected in filled injection wells. The 'through diffusion' experimental setup has been adapted to estimate (i) the possible modification of diffusive transport parameters recorded before and after acid attack for different radioactive tracers (tritium and chlorine-36) and non-radioactive tracers (deuterium and bromide) used to characterize samples of argillite of Tournemire and cement paste and (ii) the evolution of the chemical compositions of the solutions in the upstream and downstream reservoirs of diffusion cells during acid attacks. Finally, the analysis of solids was carried out in part by SEM-EDS, XRD and X-μTomography. Firstly, for all the samples studied, the values of the transport parameters determined before acid attack (effective diffusion coefficient and porosity) are consistent with those of the literature. In addition, it appears that all materials have reacted strongly to acid attacks. Thus, argillites saw their diffusion parameters increase up to a factor of two, especially for anionic tracers, and, whatever the proportion of carbonate minerals initially present in samples of argillite. The post-mortem observations have led to the identification of a zone of dissolution of carbonate minerals in them, but whose extension (400 microns or less) can not alone explain the significant degradation of the containment properties. Only unobservable phenomena during investigation scale, such as wormhole effects in porous network could be the cause. In addition, the samples of

  6. Radiation induced F-center and colloid formation in synthetic NaCl and natural rock salt: applications to radioactive waste repositories

    International Nuclear Information System (INIS)

    Levy, P.W.; Loman, J.M.; Kierstead, J.A.

    1983-01-01

    Radiation damage, particularly Na metal colloid formation, has been studied in synthetic NaCl and natural rock salt using unique equipment for making optical absorption, luminescence and other measurements during irradiation with 1 to 3 MeV electrons. Previous studies have established the F-center and colloid growth phenomenology. At temperatures where colloids form most rapidly, 100 to 250 C, F-centers appear when the irradiation is initiated and increase at a decreasing rate to a plateau, reached at doses of 10 6 to 10 7 rad. Concomitant colloid growth is described by classical nucleation and growth curves with the transition to rapid growth occurring at 10 6 to 10 7 rad. The colloid growth rate is low at 100 C, increases markedly to a maximum at 150 to 175 C and decreases to a negligible rate at 225 C. At 1.2x10 8 rad/h the induction period is >10 4 sec at 100 C, 10 4 sec at 275 C. The colloid growth in salt from 14 localities is well described by C(dose)/sup n/ relations. Data on WIPP site salt (Los Medanos, NM, USA) has been used to estimate roughly the colloid expected in radioactive waste repositories. Doses of 1 to 2x10 10 rad, which will accumulate in salt adjacent to lightly shielded high level canisters in 200 to 500 years, will convert between 1 and 100% of the salt to Na colloids (and Cl) if back reactions or other limiting reactions do not occur. Each high level lightly shielded canister may ultimately be surrounded by 200 to 300 kg of colloid sodium. Low level or heavily shielded canisters may produce as little as 1 kg sodium

  7. Natural analogs in the host rock salt. Pt. 1. General study (2011). Pt. 2. Detail studies (2012-2013); Natuerliche Analoga im Wirtsgestein Salz. T. 1. Generelle Studie (2011). T. 2. Detailstudien (2012-2013)

    Energy Technology Data Exchange (ETDEWEB)

    Brasser, Thomas; Fahrenholz, Christine; Kull, Herbert; Meleshyn, Artur; Moenig, Heike; Noseck, Ulrich; Schoenwiese, Dagmar; Wolf, Jens

    2014-12-15

    The first part of the project ISIBELII on natural analogs in the host rock salt included a summary of available studies on the topic to be used in a safety analysis for a final repository for heat generating radioactive waste. In 2012 the results of the preliminary safety analysis Gorleben was available, including results on the fracturing of anhydrite, the formation of cryogenic gaps and the influence of earthquakes. The requirements for the barrier system have been modified due to the safety requirements for the final disposal of heat-generating radioactive wastes valid since 2010. For containers the functionality gas to be demonstrated for 500 years. The following issues are covered: natural analogs for the integrity demonstration of the geological barrier, natural analogs for the integrity demonstration of geotechnical barriers, natural analogs for the evaluation of release scenarios. The detail studies include anhydrite fracturing, salt grit compaction, chemical composition of fluid inclusions, thermal stability of salt rock, mechanical stability of salt rock, influence of earthquakes, qualified closures, iron corrosion, and microbial processes.

  8. Source rock

    Directory of Open Access Journals (Sweden)

    Abubakr F. Makky

    2014-03-01

    Full Text Available West Beni Suef Concession is located at the western part of Beni Suef Basin which is a relatively under-explored basin and lies about 150 km south of Cairo. The major goal of this study is to evaluate the source rock by using different techniques as Rock-Eval pyrolysis, Vitrinite reflectance (%Ro, and well log data of some Cretaceous sequences including Abu Roash (E, F and G members, Kharita and Betty formations. The BasinMod 1D program is used in this study to construct the burial history and calculate the levels of thermal maturity of the Fayoum-1X well based on calibration of measured %Ro and Tmax against calculated %Ro model. The calculated Total Organic Carbon (TOC content from well log data compared with the measured TOC from the Rock-Eval pyrolysis in Fayoum-1X well is shown to match against the shale source rock but gives high values against the limestone source rock. For that, a new model is derived from well log data to calculate accurately the TOC content against the limestone source rock in the study area. The organic matter existing in Abu Roash (F member is fair to excellent and capable of generating a significant amount of hydrocarbons (oil prone produced from (mixed type I/II kerogen. The generation potential of kerogen in Abu Roash (E and G members and Betty formations is ranging from poor to fair, and generating hydrocarbons of oil and gas prone (mixed type II/III kerogen. Eventually, kerogen (type III of Kharita Formation has poor to very good generation potential and mainly produces gas. Thermal maturation of the measured %Ro, calculated %Ro model, Tmax and Production index (PI indicates that Abu Roash (F member exciting in the onset of oil generation, whereas Abu Roash (E and G members, Kharita and Betty formations entered the peak of oil generation.

  9. Rocking pneumonia.

    Science.gov (United States)

    Rijkers, Ger T; Rodriguez Gomez, Maria

    2017-01-01

    Ever since Chuck Berry coined the term "rocking pneumonia" in his 1956 song "Roll over Beethoven", pneumonia has been mentioned frequently in modern blues and rock songs. We analyzed the lyrics of these songs to examine how various elements of pneumonia have been represented in popular music, specifically the cause of pneumonia, the risk groups, comorbidity (such as the boogie woogie flu), the clinical symptoms, and treatment and outcome. Up to this day, songwriters suggest that pneumonia is caused mainly by the cold and rain and that treatment is hardly possible, aside from a shot of rhythm and blues.

  10. Natural impacts on the Moon and Mars: seismic constrains on the impact shock wave and perspectives in term of crustal and upper mantle imaging.

    Science.gov (United States)

    Lognonne, P.; Gudkova, T.; Le Feuvre, M.; Garcia, R. F.; Kawamura, T.; Banerdt, B.; Kobayashi, N.

    2011-12-01

    Natural Impacts occurring on the surface of telluric planets are important seismic sources for constraining the crustal and upper mantle structure, especially when their impact location and impacting time can be determined by other complementing experiments, such as Earth based flash detection for the Moon or differential orbital imaging of the surface for Mars. When these complementary data are not available, which was the case of Apollo with the exception of artificial impacts, the location of impact as compared to quake is easier, as only their geographical location must be determined from seismic data. We present recent results of the analysis of impact related seismic data gathered by the Apollo Lunar seismic network during the 70th. By using the artificial impact, we first develop a calibrated analysis for extracting the impulse (i.e. mass time impact velocity) from the amplitude of seismic waves, and point out the effect of the generation of ejecta in the seismic impulse. This approach not only allows to constrain the mass of the impacts, but also to constrain the impact frequency-impactor mass relation. By combining both the Apollo long period and short period data, further analysis can be made on the dynamic of the seismic source. The combination of these date provides indeed broadband seismic analysis have been made allowing to constraint the seismic cut-off frequency and source spectrum associated with both natural and artificial impacts. We show that the source cut-off is, as compared to moonquakes, relatively low and around a few Hz for remotely detected impacts. It is also depending not only on the impact size, but also on the impact location, as the seismic radiation of the shock wave depends on the most-upper regolith layers. We finally use our results and forward modeling to prepare the GEMS seismic mission to Mars, considered by NASA for a launch in 2016. In order to have a robust estimation of the rates of seismic detection of impacts, we analyze

  11. Intellektuaalne rock

    Index Scriptorium Estoniae

    2007-01-01

    Briti laulja-helilooja ja näitleja Toyah Willcox ning Bill Rieflin ansamblist R.E.M. ja Pat Mastelotto King Krimsonist esinevad koos ansamblitega The Humans ja Tuner 25. okt. Tallinnas Rock Cafés ja 27. okt Tartu Jaani kirikus

  12. Nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, Southern Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David

    1988-01-01

    Comparative lab spectra and Thematic Mapper imagery investigations at 3 Tertiary calderas in southern Nevada indicate that desert varnish is absorbant relative to underlying host rocks below about 0.7 to 1.3 microns, depending on mafic affinity of the sample, but less absorbant than mafic host rocks at higher wavelengths. Desert varnish occurs chiefly as thin impregnating films. Distribution of significant varnish accumulations is sparse and localized, occurring chiefly in surface recesses. These relationships result in the longer wavelength bands and high 5/2 values over felsic units with extensive desert varnish coatings. These lithologic, petrochemical, and desert varnish controlled spectral responses lead to characteristic TM band relationships which tend to correlate with conventionally mappable geologic formations. The concept of a Rock-Varnish Index (RVI) is introduced to help distinguish rocks with a potentially detectable varnish. Felsic rocks have a high RVI, and those with extensive desert varnish behave differently, spectrally, from those without extensive varnish. The spectrally distinctive volcanic formations at Stonewall Mountain provide excellent statistical class segregation on supervised classification images. A binary decision rule flow-diagram is presented to aid TM imagery analysis over volcanic terrane in semi-arid environments.

  13. Rock Pore Structure as Main Reason of Rock Deterioration

    Science.gov (United States)

    Ondrášik, Martin; Kopecký, Miloslav

    2014-03-01

    Crashed or dimensional rocks have been used as natural construction material, decoration stone or as material for artistic sculptures. Especially old historical towns not only in Slovakia have had experiences with use of stones for construction purposes for centuries. The whole buildings were made from dimensional stone, like sandstone, limestone or rhyolite. Pavements were made especially from basalt, andesite, rhyolite or granite. Also the most common modern construction material - concrete includes large amounts of crashed rock, especially limestone, dolostone and andesite. However, rock as any other material if exposed to exogenous processes starts to deteriorate. Especially mechanical weathering can be very intensive if rock with unsuitable rock properties is used. For long it had been believed that repeated freezing and thawing in relation to high absorption is the main reason of the rock deterioration. In Slovakia for many years the high water absorption was set as exclusion criterion for use of rocks and stones in building industry. Only after 1989 the absorption was accepted as merely informational rock property and not exclusion. The reason of the change was not the understanding of the relationship between the porosity and rock deterioration, but more or less good experiences with some high porous rocks used in constructions exposed to severe weather conditions and proving a lack of relationship between rock freeze-thaw resistivity and water absorption. Results of the recent worldwide research suggest that understanding a resistivity of rocks against deterioration is hidden not in the absorption but in the structure of rock pores in relation to thermodynamic properties of pore water and tensile strength of rocks and rock minerals. Also this article presents some results of research on rock deterioration and pore structure performed on 88 rock samples. The results divide the rocks tested into two groups - group N in which the pore water does not freeze

  14. Comparison of greenhouse and 32P isotopic laboratory methods for evaluating the agronomic effectiveness of natural and modified rock phosphates in some acid soils of Ghana

    International Nuclear Information System (INIS)

    Owusu-Bennoah, E.; Zapata, F.; Fardeau, J.C.

    2002-01-01

    Phosphorus deficiency is one of the major constraints for normal plant growth and crop yields in the acid soils of Ghana and therefore addition of P inputs is required for sustainable crop production. This is often difficult, if not impossible for small-scale farmers due to the high cost of mineral P fertilizers and limited access to fertilizer supplies. Direct application of finely ground phosphate rocks (PRs) and their modified forms have been recommended as alternatives for P fertilization. The direct application of the natural and modified PRs to these acid soils implies the need to predict their agronomic effectiveness of the PRs in the simplest and most cost-effective manner. In this study the classical greenhouse pot experiment was compared to the 32 P isotopic kinetics laboratory method for evaluating the agronomic effectiveness of natural and modified Togo PR in six highly weathered Oxisols from southwest Ghana. In the 32 P isotopic kinetics laboratory experiment the six soil samples were each fertilised at the rate of 50 mg P kg -1 soil in the form of triple superphosphate (TSP), Togo PAPR-50%, and Togo PR, respectively. Controls without P amendment were also included. Isotopic exchange kinetics experiments were carried out on two sets of samples, immediately after P fertilizer additions (without incubation) and after 6 weeks of incubation under wet conditions and at a room temperature of 25 deg C. In the greenhouse pot experiment, P fertilizers in the form of Togo PR, Togo PAPR, Mali PR and TSP were each applied to the six soils at rates equivalent to 0, 30, 60, and 120 kg P ha -1 , respectively. The P fertilizers were mixed with the soils and maize (Zea mays L.) variety Obatanpa was grown for 42 days before harvest. The isotopic kinetics data of the control samples indicated that 5 of the studied soils had very low P fertility status as reflected by their low P concentrations in solution (C P -1 ) and low exchangeable P (E 1 min -1 ). The capacity

  15. Shock Prevention

    Science.gov (United States)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  16. Rock and mineral magnetism

    CERN Document Server

    O’Reilly, W

    1984-01-01

    The past two decades have witnessed a revolution in the earth sciences. The quantitative, instrument-based measurements and physical models of. geophysics, together with advances in technology, have radically transformed the way in which the Earth, and especially its crust, is described. The study of the magnetism of the rocks of the Earth's crust has played a major part in this transformation. Rocks, or more specifically their constituent magnetic minerals, can be regarded as a measuring instrument provided by nature, which can be employed in the service of the earth sciences. Thus magnetic minerals are a recording magnetometer; a goniometer or protractor, recording the directions of flows, fields and forces; a clock; a recording thermometer; a position recorder; astrain gauge; an instrument for geo­ logical surveying; a tracer in climatology and hydrology; a tool in petrology. No instrument is linear, or free from noise and systematic errors, and the performance of nature's instrument must be assessed and ...

  17. White Rock

    Science.gov (United States)

    2005-01-01

    14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples. Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  18. Rock suitability classification RSC 2012

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, T. (ed.) [McEwen Consulting, Leicester (United Kingdom); Kapyaho, A. [Geological Survey of Finland, Espoo (Finland); Hella, P. [Saanio and Riekkola, Helsinki (Finland); Aro, S.; Kosunen, P.; Mattila, J.; Pere, T.

    2012-12-15

    This report presents Posiva's Rock Suitability Classification (RSC) system, developed for locating suitable rock volumes for repository design and construction. The RSC system comprises both the revised rock suitability criteria and the procedure for the suitability classification during the construction of the repository. The aim of the classification is to avoid such features of the host rock that may be detrimental to the favourable conditions within the repository, either initially or in the long term. This report also discusses the implications of applying the RSC system for the fulfilment of the regulatory requirements concerning the host rock as a natural barrier and the site's overall suitability for hosting a final repository of spent nuclear fuel.

  19. Formation of Ocean Sedimentary Rocks as Active Planets and Life-Like Systems

    Science.gov (United States)

    Miura, Y.

    2017-10-01

    Wet shocked rocks are discarded globally and enriched elements in ocean-sedimentary rocks, which is strong indicator of ocean water of other planets. Ocean-sedimentary rocks are strong indicator of water planets and possible exo-life on planet Mars.

  20. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.

    1991-01-01

    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  1. Fascinating World of Shock Waves

    Indian Academy of Sciences (India)

    Srimath

    elements in a fluid approach one another with a velocity higher than the local ... observed in nature. The dissipation of mechanical, nuclear, chemi- cal, and electrical energy in a limited space will usually result in the formation of a shock wave. Because of ..... aerodynamics, chemical kinetics, medicine, process engineering,.

  2. Terrestrial impact melt rocks and glasses

    Science.gov (United States)

    Dressler, B. O.; Reimold, W. U.

    2001-12-01

    The effects of meteorite and comet impact on Earth are rock brecciation, the formation of shock metamorphic features, rock melting, and the formation of impact structures, i.e. simple craters, complex craters, and multi-ring basins. Large events, such as the 65-Ma Chicxulub impact, are believed to have had catastrophic environmental effects that profoundly influenced the development of life on Earth. In this review, an attempt is made to summarize some of the voluminous literature on impact melting, one important aspect of planetary impact, provide some comments on this process, and to make suggestions for future research. The products of impact melting are glasses, impact melt rocks, and pseudotachylites. Our treatise deals mainly with the geological setting, petrography, and major-element chemistry of melt rocks and glasses. Impact glasses, in several petrographic aspects, are similar to volcanic glasses, but they are associated with shock metamorphosed mineral and rock fragments and, in places, with siderophile element anomalies suggestive of meteoritic contamination. They are found in allogenic breccia deposits within (fall-back 'suevite') and outside (fall-out 'suevite') impact craters and, as spherules, in distal ejecta. Large events, such as the K/T boundary Chicxulub impact, are responsible for the formation of worldwide ejecta horizons which are associated with siderophile element anomalies and shock metamorphosed mineral and rock debris. Impact glasses have a bulk chemical composition that is homogeneous but exemptions to this rule are common. On a microscopic scale, however, impact glasses are commonly strikingly heterogeneous. Tektites are glasses ejected from craters over large distances. They are characterized by very low water and volatile contents and element abundances and ratios that are evidence that tektites formed by melting of upper crustal, sedimentary rocks. Four tektite strewn-fields are known, three of which can be tied to specific impact

  3. Reverse Shock Emission in Gamma-Ray Bursts Revisited

    Directory of Open Access Journals (Sweden)

    He Gao

    2015-01-01

    reverse shock which have been confirmed by observations. Investigations of the nature of the reverse shock emission can provide valuable insights into the intrinsic properties of the GRB ejecta. Here we briefly review the standard and the extended models of the reverse shock emission, discussing the connection between the theory and observations, including the implications of the latest observational advances.

  4. Thermal Inertia of Rocks and Rock Populations

    Science.gov (United States)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  5. An investigation of rock fall and pore water pressure using LIDAR in Highway 63 rock cuts.

    Science.gov (United States)

    2014-07-01

    The purpose of this research work is compare LIDAR scanning measurements of rock fall with the natural changes in groundwater level to determining the effect of water pressures (levels) on rock fall. To collect the information of rock cut volume chan...

  6. Analysis of the distributions of stress in natural ridge forms: implications for the deformation mechanisms of rock slopes and the formation of sackung

    Science.gov (United States)

    Kinakin, D.; Stead, D.

    2005-02-01

    Stress distributions in general asymmetric ridge forms, derived from 13 ridges in British Columbia and Colorado, are modelled in two dimensions with a finite difference method. In each of the 13 ridges, sackung (scarps, tension cracks, trenches) can be found. Spatial correlations between stress concentrations and these sackungen landforms are investigated for the mean ridge forms. Rock mass properties for the modelled ridges are developed using the Hoek-Brown criterion and the Geological Strength Index (GSI). Gravity loading and combined gravity-tectonic loading on the ridge forms are considered. The importance of representing in situ rock masses with an elastoplastic (as opposed to elastic) constitutive criterion is discussed. The resulting stress distributions for the three general ridge classes indicate that different processes are responsible for the formation of sackungen landforms and slope deformations in each type of ridge.

  7. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  8. Natural radionuclides distribution in the products obtained in the phosphoric acid fabrication from the phosphate rock of Itataia, Ceara State, Brazil

    International Nuclear Information System (INIS)

    Fukuma, Henrique Takuji

    1999-11-01

    The Itataia-Ceara deposit is important as the largest uranium reserve presently known in Brazil exhibiting geological characteristics of the phosphorus and uranium association as uraniferous apatite. The total reserve of Itataia is about 13.8 million tons of P 2 O 5 and 142.5 thousand tons of U 3 O 8 . The uranium content in the Itataia phosphate rock is about ten time higher than commercial phosphate rock concentrates produced in the main Brazilian mines. The Itataia phosphate rock was milled in a pilot plant for wet-process phosphoric acid production by dihydrate method. The uranium contained in the phosphoric acid was recovered by solvent extraction using the DEHPA and TOPO mixture as extractant. After separation from the phosphoric acid, the uranium was precipitated as ammonium diuranate. In this work, the distribution of radionuclides with long physical half-life of the 238 U and 232 Th decay series was evaluated in the products and wastes generated during the Itataia phosphate rock milling. The results obtained will be useful to establish the program of environmental and occupational radiological protection for the future Itataia industrial complex. In addition, the knowledge of activity of the radionuclides contained in the uranium-free phosphoric acid that will be commercially available will allow the previous estimation of the radiological impact due to the use of fertilizers produced from this raw material. The radionuclides 226 Ra, 228 Ra and 210 Pb were preferentially concentrated in the phosphogypsum, while 228 Th, 230 Th and 232 Th remained in the phosphoric acid after uranium extraction. (author)

  9. Nature and origin of secondary mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, southern, Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David M.; Chenevey, Michael J.

    1989-10-01

    The following subject areas are covered: (1) genetic, spectral, and LANDSAT Thematic Mapper imagery relationship between desert varnish and tertiary volcanic host rocks, southern Nevada; (2) reconnaissance geologic mapping of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada, using multispectral thermal infrared imagery; (3) interregional comparisons of desert varnish; and (4) airborne scanner (GERIS) imagery of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada.

  10. The nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain and Kane Springs Wash volcanic centers in southern Nevada

    Science.gov (United States)

    Taranik, J. V.; Noble, D. D.; Hsu, L. C.; Hutsinpiller, A.

    1986-01-01

    Four LANDSAT thematic mapping scenes in southern Nevada were requested at two different acquisition times in order to assess the effect of vegetation on the signature of the volcanic units. The remote sensing data acquisition and analysis portion are nearly completed. The LANDSAT thematic mapping data is of good quality, and image analysis techniques are so far successful in delineating areas with distinct spectral characteristics. Spectrally distinct areas were correlated with variations in surface coating and lithologies of the volcanic rocks.

  11. Nature and origin of secondary mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, southern, Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David M.; Chenevey, Michael J.

    1989-01-01

    The following subject areas are covered: (1) genetic, spectral, and LANDSAT Thematic Mapper imagery relationship between desert varnish and tertiary volcanic host rocks, southern Nevada; (2) reconnaissance geologic mapping of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada, using multispectral thermal infrared imagery; (3) interregional comparisons of desert varnish; and (4) airborne scanner (GERIS) imagery of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada.

  12. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  13. Seismological investigation of crack formation in hydraulic rock fracturing experiments and in natural geothermal environments. Progress report, September 1, 1979-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Aki, K.

    1980-09-01

    Progress is reported in the following research areas: a synthesis of seismic experiments at the Fenton Hill Hot-Dry-Rock System; attenuation of high-frequency shear waves in the lithosphere; a new kinematic source model for deep volcanic tremors; ground motion in the near-field of a fluid-driven crack and its interpretation in the study of shallow volcanic tremor; low-velocity bodies under geothermal areas; and operation of event recorders in Mt. St. Helens and Newberry Peak with preliminary results from them. (MHR)

  14. Reverse polarity magnetized melt rocks from the Chicxulub impact structure, Yucatan Peninsula, Mexico

    Science.gov (United States)

    Urrutia-Fucugauchi, Jaime; Marin, Luis E.; Sharpton, Virgil L.; Quezada, Juan Manuel

    1993-03-01

    Further paleomagnetic data for core samples of melt rock recovered in the Petroleos Mexicanos (PEMEX) exploratory wells within the Chicxulub structure, northern Yucatan peninsula, Mexico are reported. A previous report by Sharpton showed that the rocks studied contain high iridium levels and shocked breccia clasts, and an Ar-40/Ar-39 age of 65.2 plus or minus 0.4 Ma. The geomagnetic polarity determined for two samples is reverse (R) and was correlated with chron 29R that includes the K/T boundary. Our present analysis is based on two samples from each of three clasts of the melt rock from PEMEX well Y6-N17 (1295 to 1299 m b.s.l.). This study concentrates on the vectorial nature and stability of the remanence (NRM), the magnetic mineralogy and remanence carriers (i.e., the reliability and origin of the record), and on the implications (correlation with expected paleolatitude and polarity). The relative orientation of the drill core samples with respect to the horizontal is known. Samples were stable under alternating field (AF) and thermal treatments, and after removal of a small component they exhibited single-vectorial behavior. The characteristic remanence inclinations show small dispersion and a mean value (-43 deg) in close agreement with the expected inclination and paleolatitude (derived from the North American apparent polar wander path). Isothermal remenence (IRM) acquisition experiments, Lowrie-Fuller tests, coercivity and unblocking temperature spectra of NRM and saturation IRM, susceptibility and Q-coefficient analyses, and the single-component nature indicate a dominant mineralogy of iron-rich titanomagnetites with single or pseduo-single domain states. The stable characteristic magnetization may be interpreted as a result of shock heating of the rock at the time of formation of the inpact structure and its polarity, age, and paleolatitude are consistent with a time about the K/T boundary.

  15. Vibration analysis on compact car shock absorber

    Science.gov (United States)

    Tan, W. H.; Cheah, J. X.; Lam, C. K.; Lim, E. A.; Chuah, H. G.; Khor, C. Y.

    2017-10-01

    Shock absorber is a part of the suspension system which provides comfort experience while driving. Resonance, a phenomenon where forced frequency is coinciding with the natural frequency has significant effect on the shock absorber itself. Thus, in this study, natural frequencies of the shock absorber in a 2 degree-of-freedom system were investigated using Wolfram Mathematica 11, CATIA, and ANSYS. Both theoretical and simulation study how will the resonance affect the car shock absorber. The parametric study on the performance of shock absorber also had been conducted. It is found that the failure tends to occur on coil sprung of the shock absorber before the body of the shock absorber is fail. From mathematical modelling, it can also be seen that higher vibration level occurred on un-sprung mass compare to spring mass. This is due to the weight of sprung mass which could stabilize as compared with the weight of un-sprung mass. Besides that, two natural frequencies had been obtained which are 1.0 Hz and 9.1 Hz for sprung mass and un-sprung mass respectively where the acceleration is recorded as maximum. In conclusion, ANSYS can be used to validate with theoretical results with complete model in order to match with mathematical modelling.

  16. Antibodies against small heat-shock proteins in Alzheimer's disease as a part of natural human immune repertoire or activation of humoral response?

    Science.gov (United States)

    Papuć, Ewa; Krupski, Witold; Kurys-Denis, Ewa; Rejdak, Konrad

    2016-04-01

    Characterization of autoantibodies specific for some disease-related proteins, would allow to better assess their role as diagnostic and prognostic markers. In the light of increasing evidence for both humoral and cellular adaptive immune responses in the pathophysiology of Alzheimer's disease (AD), and data on the increased small heat-shock proteins (sHSP) expression in this disease, it seemed justified to assess humoral response against sHSP in AD patients. The aim of the study was to check whether AD has the ability to elicit immune response against small HSP, which could also serve as disease biomarkers. IgG and IgM autoantibodies against alpha B-crystallin and anti-HSP 60 IgG autoantibodies were assessed in 59 AD patients and 59 healthy subjects. Both IgM and IgG autoantibodies against alpha B-crystallin in AD patients were significantly higher compared to healthy controls (p immune repertoire, and chronic neurodegenerative process does not have significant inducing effect on the systemic immunoreactivity against HSP60. Increased titers of IgM and IgG autoantibodies against alpha B-crystallin in AD patients may reflect activation of humoral immune response in the course of this chronic disease, probably secondary to its increased expression. Further prospective studies, on larger group of AD patients and measuring a change in antibodies titers with disease progression are necessary to assess the exact role of these antibodies in AD.

  17. Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure.

    Science.gov (United States)

    Zhang, Bo; Peng, Yu; Zheng, Jincheng; Liang, Lina; Hoffmann, Ary A; Ma, Chun-Sen

    2016-07-01

    Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.

  18. The natural human IgM antibody PAT-SM6 induces apoptosis in primary human multiple myeloma cells by targeting heat shock protein GRP78.

    Directory of Open Access Journals (Sweden)

    Leo Rasche

    Full Text Available In contrast to other haematological malignancies, targeted immunotherapy has not entered standard treatment regimens for de novo or relapsed multiple myeloma (MM yet. While a number of IgG-formatted monoclonal antibodies are currently being evaluated in clinical trials in MM, our study aimed to investigate whether the fully human IgM monoclonal antibody PAT-SM6 that targets a tumour-specific variant of the heat shock protein GRP78 might be an attractive candidate for future immunotherapeutic approaches. We here show that GRP78 is stably and consistently expressed on the surface on tumour cells from patients with de novo, but also relapsed MM and that binding of PAT-SM6 to MM cells can specifically exert cytotoxic effects on malignant plasma cells, whereas non-malignant cells are not targeted. We demonstrate that the induction of apoptosis and, to a lesser extent, complement dependent cytotoxicity is the main mode of action of PAT-SM6, whereas antibody dependent cellular cytotoxicity does not appear to contribute to the cytotoxic properties of this antibody. Given the favourable safety profile of PAT-SM6 in monkeys, but also in a recent phase I trial in patients with malignant melanoma, our results form the basis for a planned phase I study in patients with relapsed MM.

  19. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model

    Science.gov (United States)

    Li, Yan Hei Martin; Zhao, Wen Winston; Zhou, Mei-Fu

    2017-10-01

    Regolith-hosted rare earth element (REE) deposits, also called ion-adsorption or weathered crust elution-deposited REE deposits are distributed over Jiangxi, Guangdong, Fujian, Hunan, Guangxi and Yunnan provinces in South China. In general, these deposits can be categorized into the HREE-dominated type, for example the famous Zudong deposit in southern Jiangxi province and the LREE-dominated type, such as the Heling and Dingnan deposits in southern Jiangxi province. Most of these deposits form from weathering of biotite and muscovite granites, syenites, monzogranites, granodiorites, granite porphyries, and rhyolitic tuffs. The parent rocks are generally peraluminous, siliceous, alkaline and contain a variety of REE-bearing minerals. Mostly, REE patterns of regolith are inherited from the parent rocks, and therefore, characteristics of the parent rocks impose a significant control on the ore formation. Data compilation shows that autometasomatism during the latest stage of granite crystallization is likely essential in forming the HREE-enriched granites, whereas LREE-enriched granites could form through magmatic differentiation. These deposits are normally two- to three-fold, but could be up to ten-fold enrichment in REE compared to the parent granites, where the maximum enrichment usually occurs from the lower B to the upper C horizon. Ce shows different behavior with the other REEs. Strongly positive Ce anomalies commonly occur at the upper part of weathering profiles, likely due to oxidation of Ce3+ to Ce4+ and removal of Ce from soil solutions through precipitation of cerianite. Vertical pH and redox gradients in weathering crusts facilitate dissolution of REE-bearing minerals at shallow level and fixation of REE at depth through either adsorption on clay minerals or precipitation of secondary minerals. At the same time, mass removal of major elements plays an important role in concentrating REE in regolith. Combination of mass removal and eluviation

  20. CERN Rocks

    CERN Document Server

    2004-01-01

    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  1. Shock metamorphism in the Vredefort Collar: Evidence for internal shock sources

    Science.gov (United States)

    Lilly, P. A.

    1981-11-01

    Shock metamorphic microstructures in the Vredefort collar include planar features, crystallographically controlled cleavage, crystallographically controlled faults, and mosaic extinction. In addition, several recrystallization textures are developed in the quartzites of the collar, and quartz c axis distributions for both primary and recrystallized quartz grains are random. The degree of recrystallization decreases away from the core-collar contact. Two events of shock deformation have been identified in the collar, and using planar feature orientations, shock pressures have been estimated using the technique of Robertson (1975). The first shock (D1) subjected the lowermost Witwatersrand rocks to shock pressures of about 150 kbar and the uppermost beds to pressures of about 60 kbar. Following a period of extensive recrystallization of the quartzites came the second shock event (D2), which was weaker than the first and subjected the lowermost strata in the collar to pressures of between 75 and 100 kbar. The D2 event has been shown to be separated in time from the D1 event. The results are used to show that the shock sources were probably within the earth and that the Vredefort ring structure has formed as a result of endogenous processes rather than hypervelocity meteorite impact.

  2. Red Rock Canyon National Conservation Area Transportation Feasibility Study

    Science.gov (United States)

    2012-07-31

    Red Rock Canyon National Conservation Area is a popular Bureau of Land Management natural area located near Las Vegas, Nevada. Red Rock Canyon experiences heavy congestion on its Scenic Drive and associated parking areas, due to high volumes of visit...

  3. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  4. Toxic Shock Syndrome

    Science.gov (United States)

    ... may also be caused by toxins produced by group A streptococcus (strep) bacteria. Toxic shock syndrome has been associated ... syndrome. The syndrome can also be caused by group A streptococcus (strep) bacteria. Risk factors Toxic shock syndrome can ...

  5. A Phased Array Approach to Rock Blasting

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Gertsch; Jason Baird

    2006-07-01

    A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

  6. natural

    Directory of Open Access Journals (Sweden)

    Elías Gómez Macías

    2006-01-01

    Full Text Available Partiendo de óxido de magnesio comercial se preparó una suspensión acuosa, la cual se secó y calcinó para conferirle estabilidad térmica. El material, tanto fresco como usado, se caracterizó mediante DRX, área superficial BET y SEM-EPMA. El catalizador mostró una matriz de MgO tipo periclasa con CaO en la superficie. Las pruebas de actividad catalítica se efectuaron en lecho fijo empacado con partículas obtenidas mediante prensado, trituración y clasificación del material. El flujo de reactivos consistió en mezclas gas natural-aire por debajo del límite inferior de inflamabilidad. Para diferentes flujos y temperaturas de entrada de la mezcla reactiva, se midieron las concentraciones de CH4, CO2 y CO en los gases de combustión con un analizador de gases tipo infrarrojo no dispersivo (NDIR. Para alcanzar conversión total de metano se requirió aumentar la temperatura de entrada al lecho a medida que se incrementó el flujo de gases reaccionantes. Los resultados obtenidos permiten desarrollar un sistema de combustión catalítica de bajo costo con un material térmicamente estable, que promueva la alta eficiencia en la combustión de gas natural y elimine los problemas de estabilidad, seguridad y de impacto ambiental negativo inherentes a los procesos de combustión térmica convencional.

  7. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  8. The Institute for Rock Magnetism Facility Database

    Science.gov (United States)

    Jackson, M. J.; Sølheid, P.; Bowles, J. A.; Moskowitz, B. M.; Feinberg, J. M.

    2012-12-01

    The Institute for Rock Magnetism (IRM) is one of 19 National Multi-User Facilities supported by the Instruments and Facilities program of NSF for geoscience research that requires complex, expensive and advanced instrumentation. Visiting and in-house researchers at the IRM have access to sensitive laboratory instruments for magnetometry, magnetic microscopy and Mössbauer spectroscopy, for carrying out a wide variety of experiments under a range of applied field and temperature conditions. Results are used to gain insight into a very diverse assortment of natural materials and phenomena including biomagnetism, environmental magnetism, petrofabrics, nanophase materials, shocked materials, and paleomagnetism of terrestrial and extraterrestrial materials. A comprehensive laboratory database has been in operation since 2004, storing detailed experimental data and metadata for more than 250 facility users, with measurements on over 50,000 specimens, including over one million remanence measurements and 45,000 hysteresis loops. Custom software tools provide consistent and reliable handling of basic data processing (e.g., mass normalization and unit conversion), as well as more advanced interactive analysis (e.g., deconvolution of u-channel paleomagnetic data; filtering and statistical tests for high-field nonlinearity in calculating hysteresis loop parameters; thermal fluctuation tomography using T-dependent switching-field distributions from backfield remanence measurements or hysteresis loops). Users are also able to access their data and the custom software tools remotely once they leave the IRM for their home institutions. A key advantage of an integrated database/software system for a facility like the IRM is that it provides a rapid and automatic means of combining different kinds of data measured on different instruments. An important design consideration in the development of the facility database has been structural compatibility with the community-wide Mag

  9. Isotopic implications for the origin and the geodynamic nature of the Miocene granitic rocks in the northwest Anatolia (Turkey): comparison with the central Aegean magmatism

    Science.gov (United States)

    Hasözbek, Altug; Satir, Muharrem; Erdogan, Burhan; Siebel, Wolfgang; Akay, Erhan; Deniz Dogan, Güllü

    2010-05-01

    Central Aegean magmatic belt including the northwestern Anatolia is interpreted in the literature as formed along magmatic arc which has migrated southwardly to its present position. During and after the closure of the Neo-Tethyan Ocean and progressive collision of the Tauride-Anatolide Platform with the Sakarya Continent, widespread magmatism occurred in NW Anatolia. These magmatic associations form a NW trending belt. In NW Anatolia, mostly Miocene I-type, shallow seated Egrigöz, Koyunoba, Alacam plutons expose along the suture zone called İzmir-Ankara Zone. These granitoid rocks intruded into the basement rocks of the region which are from bottom to top consist of Menderes Massif, Afyon Zone and Bornova Flysch Zone. Due to the complex geodynamic evolution, the exact emplacement mode of the Miocene granitoids is still a subject for debate. New results give rise to re-consider the general mode of the Miocene magmatic activity and address the question if the magmatism was triggered by compression or extensional tectonic processes. The new data are also compared to those of the central Aegean granitoids. Initial isotopic signatures of these shallow seated granitoids of NW Anatolian are 87Sr/86Sr(I) = 0.70800-0.70975, ENd(I) = -4.9 to -7.3, δ18O = 9.4-10.6, 206Pb/204Pb = 18.85-18.918. These characteristics indicate an assimilation-dominated crystallization and most probably origin of a metaluminous older meta-sedimentary protolith which is also common in most of the central Aegean magmatic suites. However, the geodynamic scenario for the mode of emplacement of the Miocene granitoids along the NW Anatolia implies remarkable differences when comparing to the central Aegean granitoid suites. These differences can be summarized as: an extension related granitoid emplacement in the central Aegean occurred between 15 Ma to 10 Ma. However, in NW Anatolia, the granitoids emplaced after Eocene collision and continue till 20-22 Ma. Isotopic patterns with suggested mixing

  10. Aplicação de fosfato natural e reciclagem de fósforo por milheto, braquiária, milho e soja Rock phosphate fertilization and phosphorus recycling by pearl millet, Brachiaria sp., corn and soybean

    Directory of Open Access Journals (Sweden)

    José Salvador Simoneti Foloni

    2008-06-01

    Full Text Available Este trabalho teve por objetivo avaliar, comparativamente, a capacidade extratora de P da soja (Glycine max, milho (Zea mays, braquiária brizantha (Brachiaria brizantha e milheto (Pennisetum glaucum, submetidos a diferentes doses do fertilizante fosfatado natural fosforita Alvorada, em condições controladas. Utilizou-se um Argissolo Vermelho distroférrico de textura média, corrigido e adubado com N, K e micronutrientes. As espécies foram cultivadas em vasos de 18 dm³ por 50 dias em casa de vegetação, com aplicação de 0, 100, 200 e 400 kg ha-1 de P2O5. As quantidades de fosfato natural foram calculadas com base na teor total de P2O5. O milho, ao contrário da soja, respondeu positivamente ao aumento da dose de P2O5 via fosforita Alvorada. A Brachiaria brizantha cv. Marandu, apesar da menor produção de matéria seca em relação ao milheto, apresentou alta eficiência na absorção de P, mesmo com o fornecido deste nutriente por meio de fonte pouco solúvel. O milheto apresentou-se como importante espécie de cobertura do solo, graças ao alto potencial para produção de fitomassa e reciclagem de P num intervalo de tempo relativamente curto (50 dias.The objective of this experiment was to compare the ability of soybean (Glycine max, corn (Zea mays, Brachiaria brizantha cv. Marandu and pearl millet (Pennisetum glaucum for P-uptake, at different levels of the Alvorada natural rock phosphate, under controlled conditions. The soil used was a dystrophic Hapludalf (180 g kg-1 clay, which was limed and fertilized with N, K and micronutrients. The crops were grown in 18 dm³ pots for 50 days in a greenhouse, at different P2O5 rates (0, 100, 200, and 400 kg ha-1. The amount of rock phosphate was calculated based on the total P2O5 content. Contrasting to soybean, there was a positive response of maize to higher P2O5 doses. The dry matter production by Brachiaria brizantha cv. Marandu was lower than that observed for pearl millet, but it still

  11. Hot dry rock heat mining

    International Nuclear Information System (INIS)

    Duchane, D.V.

    1992-01-01

    Geothermal energy utilizing fluids from natural sources is currently exploited on a commercial scale at sites around the world. A much greater geothermal resource exists, however, in the form of hot rock at depth which is essentially dry. This hot dry rock (HDR) resource is found almost everywhere, but the depth at which usefully high temperatures are reached varies from place to place. The technology to mine the thermal energy from HDR has been under development for a number of years. Using techniques adapted from the petroleum industry, water is pumped at high pressure down an injection well to a region of usefully hot rock. The pressure forces open natural joints to form a reservoir consisting of a small amount of water dispensed in a large volume of hot rock. This reservoir is tapped by second well located at some distance from the first, and the heated water is brought to the surface where its thermal energy is extracted. The same water is then recirculated to mine more heat. Economic studies have indicated that it may be possible to produce electricity at competitive prices today in regions where hot rock is found relatively close to the surface

  12. Natural gas in the 21st century. Part 1. Rock-solid trust in the future of the Dutch natural gas trading company Nederlandse Gasunie; Gas in de 21ste eeuw. Deel 1. Rotsvast vertrouwen in de toekomst van Gasunie

    Energy Technology Data Exchange (ETDEWEB)

    Krikke, R. [ed.

    2000-03-01

    In this first part of a new series experts in the field of the natural gas market in the Netherlands are interviewed about their opinion on the consequences of and developments after the new Dutch Natural Gas Law ('Gaswet') has come into effect. In this article the general manager of the natural gas trading company Gasunie answers questions on the natural gas market and the position of Gasunie in that market. He also expresses his personal interest in domotics.

  13. Rock Pore Structure as Main Reason of Rock Deterioration

    Directory of Open Access Journals (Sweden)

    Ondrášik Martin

    2014-03-01

    Full Text Available Crashed or dimensional rocks have been used as natural construction material, decoration stone or as material for artistic sculptures. Especially old historical towns not only in Slovakia have had experiences with use of stones for construction purposes for centuries. The whole buildings were made from dimensional stone, like sandstone, limestone or rhyolite. Pavements were made especially from basalt, andesite, rhyolite or granite. Also the most common modern construction material - concrete includes large amounts of crashed rock, especially limestone, dolostone and andesite.

  14. Rollerjaw Rock Crusher

    Science.gov (United States)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  15. Model for Shock Wave Chaos

    KAUST Repository

    Kasimov, Aslan R.

    2013-03-08

    We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  16. Rapid formation of rock armour for soil - rock fragment mixture during simulated rainfall

    Science.gov (United States)

    Poultney, E.; McGrath, G. S.; Hinz, C.

    2009-04-01

    Preventing erosion is an important issue in disturbed semi-arid and arid landscapes. This is in particular of highest importance for mining companies while undertaking land rehabilitation. An onsite investigation of the impact of surface rock fragments on erosion was conducted at Telfer goldmine in the Great Sandy Desert, Western Australia. The study site is a waste rock dump designed to mimic the concave slope of a natural mesa to both discourage erosion and blend in with its natural surroundings. Four treatments were used to construct the slope: two are topsoil mixed with rock fragments, and two are unmixed topsoil. A field study investigating erosion rills, particle size distribution, rock fragment coverage surface roughness and vegetation was carried out to determine changes down and across slope. The treatments constructed by mixing topsoil and rock fragments are more stable and show rock fragment distributions that more closely resemble patterns found on natural mesas surrounding Telfer. A controlled study using trays of topsoil mixed with rock fragment volumes of 50%, 60%, 70% and 80% were used to investigate how varying mixtures of rock fragments and topsoil erode using rainfall intensities between 20 and 100 mm h-1. Two runs of 25 minutes each were used to assess the temporal evolution of rock armouring. Surface coverage results converged for the 50%, 60% and 70% mixtures after the first run to coverage of about 90%, suggesting that fine sediment proportion does not affect rate and degree of rock armouring.

  17. From stones to rocks

    Science.gov (United States)

    Mortier, Marie-Astrid; Jean-Leroux, Kathleen; Cirio, Raymond

    2013-04-01

    With the Aquila earthquake in 2009, earthquake prediction is more and more necessary nowadays, and people are waiting for even more accurate data. Earthquake accuracy has increased in recent times mainly thanks to the understanding of how oceanic expansion works and significant development of numerical seismic prediction models. Despite the improvements, the location and the magnitude can't be as accurate as citizen and authorities would like. The basis of anticipating earthquakes requires the understanding of: - The composition of the earth, - The structure of the earth, - The relations and movements between the different parts of the surface of the earth. In order to answer these questions, the Alps are an interesting field for students. This study combines natural curiosity about understanding the predictable part of natural hazard in geology and scientific skills on site: observing and drawing landscape, choosing and reading a representative core drilling, replacing the facts chronologically and considering the age, the length of time and the strength needed. This experience requires students to have an approach of time and space radically different than the one they can consider in a classroom. It also limits their imagination, in a positive way, because they realize that prediction is based on real data and some of former theories have become present paradigms thanks to geologists. On each location the analyzed data include landscape, core drilling and the relation established between them by students. The data is used by the students to understand the meaning, so that the history of the formation of the rocks tells by the rocks can be explained. Until this year, the CBGA's perspective regarding the study of the Alps ground allowed students to build the story of the creation and disappearance of the ocean, which was a concept required by French educational authorities. But not long ago, the authorities changed their scientific expectations. To meet the

  18. Systematics and natural history of Southeast Asian Rock Geckos (genus Cnemaspis Strauch, 1887) with descriptions of eight new species from Malaysia, Thailand, and Indonesia.

    Science.gov (United States)

    Grismer, L Lee; Wood, Perry L; Anuar, Shahrul; Riyanto, Awal; Ahmad, Norhayati; Muin, Mohd A; Sumontha, Montri; Grismer, Jesse L; Onn, Chan Kin; Quah, Evan S H; Pauwels, Olivier S A

    2014-10-31

    A well-supported and well-resolved phylogeny based on a concatenated data set from one mitochondrial and two nuclear genes, six morphological characters, and nine color pattern characters for 44 of the 50 species of the Southeast Asian Rock Geckos (genus Cnemaspis Strauch, 1887) is consistent with the previous taxonomy of Cnemaspis based solely on morphology and color pattern. Cnemaspis is partitioned into four major clades that collectively contain six species groups. The monophyly of all clades and species groups is strongly supported and they are parapatrically distributed across well-established, biogeographical regions ranging from southern Vietnam westward through southern Indochina, southward through the Thai-Malay Peninsula, then eastward to Borneo. Eight new species (Cnemaspis omari sp. nov. from the Thai-Malaysian border; C. temiah sp. nov. from Cameron Highlands, Pahang, Malaysia; C. stongensis sp. nov. from Gunung Stong, Kelantan, Malaysia; C. hangus sp. nov. from Bukit Hangus, Pahang, Malaysia; C. sundagekko sp. nov. from Pulau Siantan, Indonesia; C. peninsularis sp. nov. from southern Peninsular Malaysia and Singapore, and C. mumpuniae sp. nov. and C. sundainsula sp. nov. from Pulau Natuna Besar, Indonesia) are described based on morphology and color pattern and all but C. sundagekko sp. nov. are included in the phylogenetic analyses. Cnemaspis kendallii is polyphyletic and a composite of six species. An updated taxonomy consistent with the phylogeny is proposed for all 50 species and is based on 25 morphological and 53 color pattern characters scored across 594 specimens. Cladogenetic events and biogeographical relationships within Cnemaspis were likely influenced by this group's low vagility and the cyclical patterns of geographical and environmental changes in Sundaland over the last 25 million years and especially within the last 2.5 million years. The phylogeny indicates that nocturnality, diurnality, substrate preferences, and the presence of

  19. Role of Lithology and Rock Structure in Drainage Development in ...

    African Journals Online (AJOL)

    Lithology and Rock structure play a vital role in the development of Drainage Network in any drainage basin. The drainage patterns upon land surface develop as directed by the underlying lithology and rock structure. In fact, lithology and rock structure together shape the basin and are decisive parameters of nature and ...

  20. Vasogenic shock physiology

    OpenAIRE

    Gkisioti, Sotiria; Mentzelopoulos, Spyros D

    2011-01-01

    Sotiria Gkisioti, Spyros D MentzelopoulosDepartment of Intensive Care Medicine, University of Athens Medical School, Evaggelismos General Hospital, Athens, GreeceAbstract: Shock means inadequate tissue perfusion by oxygen-carrying blood. In vasogenic shock, this circulatory failure results from vasodilation and/or vasoplegia. There is vascular hyporeactivity with reduced vascular smooth muscle contraction in response to α1 adrenergic agonists. Considering vasogenic shock, one can un...

  1. Life Shocks and Homelessness

    OpenAIRE

    Marah A. Curtis; Hope Corman; Kelly Noonan; Nancy Reichman

    2011-01-01

    We exploit an exogenous health shock--the birth of a child with a severe health condition--to investigate the causal effect of a life shock on homelessness. Using survey data from the Fragile Families and Child Wellbeing study that have been augmented with information from hospital medical records, we find that the health shock increases the likelihood of homelessness three years later, particularly in cities with high housing costs. Homelessness is defined using both a traditional measure an...

  2. Shock transformations in quartzite

    Science.gov (United States)

    Badjukov, D. D.; Koslov, E. A.; Zhugin, Yu. N.; Abakshin, E. V.

    1993-01-01

    We report results of studies of experimental shock metamorphism in a quartzite sample. Shock pressure increases in the experiment from a rim to a center of the bowl-shaped sample due to a design of a recovery assembly. The section along an equatorial plane shows a progressive development of shock metamorphism. On the basis of observations, it is proposed that diaplectic glass can be a product of quenching a melt.

  3. Interaction of MHD shocks

    International Nuclear Information System (INIS)

    Gundersen, R.M.

    1983-01-01

    A plane MHD shock wave of arbitrary strength meets a slender body moving at super-true-sonic speed in the opposite direction. The interaction between the given shock wave and the weak shock attached to the slender body is studied for aligned fields for axisymmetrical flow and for both aligned and transverse fields in the two-dimensional case. Formal solutions for the linearized flow in the interaction region are obtained by the use of integral transforms. (author)

  4. Acceleration of energetic protons by interplanetary shock waves

    International Nuclear Information System (INIS)

    Pesses, M.E.

    1979-01-01

    The acceleration of energetic protons in interplanetary magnetosonic fast-mode shock waves is studied via analytical modelling, numerical simulations and in situ observations. It is found that the only physical process by which energetic particles can gain energy from magnetosonic fast-mode shock waves is the one in which the particles cross the shock front several times during a shock encounter and the particle guiding centers gradient B and/or curvature drift at the shock front in the vector V x vector B electric field that exists in the shock rest frame. It is shown that it is physically impossible for charged particles to be Fermi accelerated by MHD shock waves or discontinuities. An analytical model is presented in which the particle-shock interaction is viewed in an intermediate frame in which the upstream and downstream vector V x vector B and partial derivative of vector B with respect to the electric fields are simultaneously zero. It is shown by numerical simulations that both reflected and transmitted particles conserve the first adiabatic invariant in the vector E = 0 frame for quasi-perpendicular shocks psi greater than or equal to 70 0 . The analytical predictions of post-shock energies and pitch angles and shock reflection and transmission coefficients are shown to be in excellent agreement with numerical simulation results. It is found that the 2 to 3 orders of magnitude increases in the Ca 1 MeV proton intensity frequently observed around the time of shock passage apparently cannot be produced by protons encountering the shocks just once, and that the average particle probably encounters the shocks several times prior to observation at Ca 1 MeV. The combination of vector V x vector B electric field mechanism and multiple shock encounters is shown to lead naturally to a differential energy spectrum that is an exponential in momentum

  5. Shock experiments on maskelynite-bearing anorthosite

    Science.gov (United States)

    Lambert, P.; Grieve, R. A. F.

    1984-01-01

    A series of shock recovery experiments over 9.9-60.4 GPa have been carried out on naturally shocked anorthosite from the Mistastin impact structure in Labrador consisting primarily of diaplectic plagioclase glass or maskelynite, An(50), and pyroxene. Petrographic observations of the experimental products indicate that the component minerals and diaplectic glasses generally retained their initial character throughout, the only exception being the increase in fracturing which occurred in the 9.9 GPa shot. Reshocking at pressures higher than the initial shock tends to lower the refractive index of maskelynite. The increase in refractive index of maskelynite reshocked to pressures lower than the initial pressure is interpreted as due to shock densification of the diaplectic glass above the Hugoniot elastic limit and below the mixed phase regime. The data suggest that the low-high-low density transition of maskelynite occurs about 8 GPa below that of the crystal of corresponding composition.

  6. Toxic Shock Syndrome (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Toxic Shock Syndrome KidsHealth / For Parents / Toxic Shock Syndrome What's ... en español Síndrome de shock tóxico About Toxic Shock Syndrome Toxic shock syndrome (TSS) is a serious ...

  7. Rocks Can Wow? Yes, Rocks Can Wow!

    Science.gov (United States)

    Hardman, Sally; Luke, Sue

    2016-01-01

    Rocks and fossils appear in the National Curriculum of England science programmes of study for children in year 3 (ages 7-8). A frequently asked question is "How do you make the classification of rocks engaging?" In response to this request from a school, a set of interactive activities was designed and organised by tutors and students…

  8. Rock and soil rheology

    International Nuclear Information System (INIS)

    Cristescu, N.; Ene, H.I.

    1988-01-01

    The aim of the Euromech Colloquium 196 devoted to Rock and Soil Rheology is to review some of the main results obtained in the last years in this field of research and also to formulate some of the major not yet solved problems which are now under consideration. Exchange of opinions and scientific discussions are quite helpful mainly in those areas where some approaches are controversial and the progress made is quite fast. That is especially true for the rheology of geomaterials, domain of great interest for mining and petroleum engineers, engineering geology, seismology, geophysics, civil engineering, nuclear and industrial waste storage, geothermal energy storage, caverns for sports, culture, telecommunications, storage of goods and foodstuffs (cold, hot and refrigerated storages), underground oil and natural gas reservoirs etc. Some of the last obtained results are mentioned in the present volume. (orig./HP)

  9. Rock Slope Design Criteria

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  10. Rocks in Our Pockets

    Science.gov (United States)

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  11. Rock slope design guide.

    Science.gov (United States)

    2011-04-01

    This Manual is intended to provide guidance for the design of rock cut slopes, rockfall catchment, and : rockfall controls. Recommendations presented in this manual are based on research presented in Shakoor : and Admassu (2010) entitled Rock Slop...

  12. Range sections as rock models for intensity rock scene segmentation

    CSIR Research Space (South Africa)

    Mkwelo, S

    2007-11-01

    Full Text Available can be drawn. • A methodology for rock-scene segmentation that com- bines intensity and range image analysis to reduce the effects of texture and color density variations is presented. • Post-processing in the form of outlier rejection... to the environment under imaging: poor lighting; color density and texture variations. Lighting conditions have been controlled through the elimination of natural lighting and proper design of syn- thetic lighting [3]. We present a methodology that avoids...

  13. Toxic Shock Syndrome (For Teens)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Toxic Shock Syndrome KidsHealth / For Teens / Toxic Shock Syndrome What's ... it, then take some precautions. What Is Toxic Shock Syndrome? If you're a girl who's had ...

  14. Natural fracturing of rocks: application to the Ahnet basin (Algeria); Fracturation naturelle des roches: application au bassin de l`Ahnet (Algerie)

    Energy Technology Data Exchange (ETDEWEB)

    Badsi, M.

    1998-07-06

    In the Ahnet basin, the production seems to be unrelated to lithological variations in the reservoirs. In these large anticline structures, located in the central Ahnet basin, the presence of gas has been proven, but only a few production wells have been moderately successful. This inconsistency is probably related to the spatial distribution of fracturing throughout the reservoir. In order to investigate several hypothesis, we used several approach to solve problems posed by the interpreter: namely understanding the deformation process, predicting the fractured zones and building the discrete model of fracture network. This approach combines several methods, including sand box modelling, numerical modelling and Statistics rules, often related with fractal behaviour of faults families, have been used for extrapolating observations from seismic or from wells. The numerical tools and sand box analysis have allowed us to answer to the questions related to the formation of this large anticlines in the Ahnet basin and suggest a probable origin of the variation in the spatial distribution of natural fractures. The deterministic predictions of small-scale faults use probabilistic approaches for spatial interpolation assuming implicitly relationship between detected large faults and unresolved small faults. The statistical modelling is used to carry out analysis of the spatial variation of mean fracture attributes at the global scale (a few kilometers) and a 3D stochastic modelling of the fracture system at the local scale (a few ten of meters). (author) 139 refs.

  15. Mineral shock signatures in rocks from Dhala (Mohar) impact ...

    Indian Academy of Sciences (India)

    A concrete study combining optical microscopy, Raman spectroscopy and X-ray diffractometry, was carried out on subsurface samples of basement granite and melt breccia from Mohar (Dhala) impact structure, Shivpuri district, Madhya Pradesh, India. Optical microscopy reveals aberrations in the optical properties of quartz ...

  16. Shock Probation in Iowa.

    Science.gov (United States)

    Boudouris, James; Turnbull, Bruce W.

    1985-01-01

    Compared characteristics and recidivism of 820 shock probationers with recidivism of parolees, straight probationers, and persons sentenced to residential facilities or halfway houses. The results indicated that age, prior juvenile or adult commitments, unemployment, and marital status were related to recidivism for all male shock probationers.…

  17. Climate shocks and conflict

    NARCIS (Netherlands)

    Papaioannou, Kostadis J.

    2016-01-01

    This paper offers a historical micro-level analysis of the impact of climate shocks on the incidence of civil conflict in colonial Nigeria (1912-1945). Primary historical sources on court cases, prisoners and homicides are used to capture conflict. To measure climate shocks we use the deviation

  18. Geochemical constraints on accumulation of actinide critical masses from stored nuclear waste in natural rock repositories. Technical report, April 1, 1978--August 31, 1978 (plus supplemental time to December 31, 1978)

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1978-01-01

    Results of a literature search of abundant data on lanthanide and actinide individual and joint systematics are presented. Covered were several papers/reports about uranium solution chemistry, uranium deposits, a natural fission reactor, rare-earch deposits, manganese nodules, bedded and dome salt deposits, and miscellaneous items. This literature search is not complete but represents efforts of seven individuals attempting to gather data relevant to the objectives defined in this report. Many foreign articles, as well as many English language articles are absent. Approximately 800 articles were inspected; 69 are included in the References cited. The data search for actinides and lanthanides in natural rocks indicated that only limited segregation of the actinides U, Np, Pu, Am, and Cm from the lanthanides is possible should high-level waste be released from canisters stored in various geomedia. Supporting this were studies of Oklo and other uranium deposits, manganese nodules, monomineralic and concretion formation rates, and actinide and lathanide transport in brines. The fact that some waste canisters may, under certain conditions, contain several critical masses of one or more actinides is countered by the facts that (a) most actinides have very short half-lives and would decay before release from canisters, (b) released actinides and lanthanides, although dispersed, would be transported and deposited as a group, thus preventing point concentration of any actinides, and (c) 235 U has a much longer half-life than the other actinides, thus allowing greater time for possible reaccumulation and criticality; such a scenario would demand that 235 U be segregated effectively from other elements in the lanthanide-actinide groups.No mechanism to do this is consistent with the natural occurrences studied or the theoretical Eh-pH diagrams considered

  19. Reflection of curved shock waves

    Science.gov (United States)

    Mölder, S.

    2017-09-01

    Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.

  20. Weather shocks and cropland decisions in rural Mozambique

    DEFF Research Database (Denmark)

    Salazar Espinoza, César Antonio; Jones, Edward Samuel; Tarp, Finn

    2015-01-01

    to examine the effect of weather shocks on cropland decisions. We account for the bounded nature of land shares and estimate a Pooled Fractional Probit model for panel data. Our results show that crop choice is sensitive to past weather shocks. Farmers shift land use away from cash and permanent crops one...

  1. Rock-magnetic properties of TRM carrying baked and molten rocks straddling burnt coal seams

    NARCIS (Netherlands)

    Boer, C.B. de; Dekkers, M.J.; Hoof, Ton A.M. van

    2001-01-01

    The subsurface spontaneous combustion of coal seams in Xinjiang (NW China) during Pleistocene to recent times produced large areas of thermally altered sedimentary rocks with large magnetic moments. The natural remanent magnetization (NRM) and thermoremanent magnetization (TRM) intensities and

  2. Scattering from Rock and Rock Outcrops

    Science.gov (United States)

    2018-01-23

    of the open questions which exist for scattering from these types of surfaces and include increasing our basic understanding of: (1) geoacoustic...ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research 875 North Randolph Street ...ideal mean seafloor could be mapped to the local SCATTERING FROM ROCKS 5 Figure 4. (color online) SAS images of the calibration rock outcrop. Boxes

  3. Oscillatory instability of interstellar medium radiative shock waves

    International Nuclear Information System (INIS)

    Imamura, J.N.

    1984-01-01

    Observations of the radiative shock waves produced during the late stages of supernova remnant evolution cannot be understood in the context of steady state shock models. As a result, several more complicated scenarios have been suggested. For example, it has been proposed that several shocks are producing the emission or that one shock, which is in the process of making the transition between the adiabatic and the radiative phases of its evolution, produces the emission. In this paper, we suggest another explanation. We propose that supernova remnant shock waves are subject to an oscillatory instability. By an oscillatory instability, we mean one where the postshock cooling region periodically varies in size on a time scale determined by the postshock plasma cooling time. An oscillatory instability may be able to produce the types of behavior exhibited by supernova remnant radiative shocks in a natural way. 16 refs., 1 fig

  4. Simulation of rock deformation behavior

    Directory of Open Access Journals (Sweden)

    Я. И. Рудаев

    2016-12-01

    Full Text Available A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

  5. Echocardiography in shock management.

    Science.gov (United States)

    McLean, Anthony S

    2016-08-20

    Echocardiography is pivotal in the diagnosis and management of the shocked patient. Important characteristics in the setting of shock are that it is non-invasive and can be rapidly applied.In the acute situation a basic study often yields immediate results allowing for the initiation of therapy, while a follow-up advanced study brings the advantage of further refining the diagnosis and providing an in-depth hemodynamic assessment. Competency in basic critical care echocardiography is now regarded as a mandatory part of critical care training with clear guidelines available. The majority of pathologies found in shocked patients are readily identified using basic level 2D and M-mode echocardiography. A more comprehensive diagnosis can be achieved with advanced levels of competency, for which practice guidelines are also now available. Hemodynamic evaluation and ongoing monitoring are possible with advanced levels of competency, which includes the use of colour Doppler, spectral Doppler, and tissue Doppler imaging and occasionally the use of more recent technological advances such as 3D or speckled tracking.The four core types of shock-cardiogenic, hypovolemic, obstructive, and vasoplegic-can readily be identified by echocardiography. Even within each of the main headings contained in the shock classification, a variety of pathologies may be the cause and echocardiography will differentiate which of these is responsible. Increasingly, as a result of more complex and elderly patients, the shock may be multifactorial, such as a combination of cardiogenic and septic shock or hypovolemia and ventricular outflow obstruction.The diagnostic benefit of echocardiography in the shocked patient is obvious. The increasing prevalence of critical care physicians experienced in advanced techniques means echocardiography often supplants the need for more invasive hemodynamic assessment and monitoring in shock.

  6. Pediatric Toxic Shock Syndrome

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  7. Imploding conical shock waves

    Science.gov (United States)

    Paton, R. T.; Skews, B. W.; Rubidge, S.; Snow, J.

    2013-07-01

    The behaviour of conical shock waves imploding axisymmetrically was first studied numerically by Hornung (J Fluid Mech 409:1-12, 2000) and this prompted a limited experimental investigation into these complex flow patterns by Skews et al. (Shock Waves 11:323-326, 2002). Modification of the simulation boundary conditions, resulting in the loss of self-similarity, was necessary to image the flow experimentally. The current tests examine the temporal evolution of these flows utilising a converging conical gap of fixed width fed by a shock wave impinging at its entrance, supported by CFD simulations. The effects of gap thickness, angle and incident shock strength were investigated. The wave initially diffracts around the outer lip of the gap shedding a vortex which, for strong incident shock cases, can contain embedded shocks. The converging shock at exit reflects on the axis of symmetry with the reflected wave propagating outwards resulting in a triple point developing on the incident wave together with the associated shear layer. This axisymmetric shear layer rolls up into a mushroom-shaped toroidal vortex ring and forward-facing jet. For strong shocks, this deforms the Mach disk to the extent of forming a second triple point with the primary shock exhibiting a double bulge. Separate features resembling the Richtmeyer-Meshkov and Kelvin-Helmholtz instabilities were noted in some tests. Aside from the incident wave curvature, the reflection patterns demonstrated correspond well with the V- and DV-types identified by Hornung although type S was not clearly seen, possibly due to the occlusion of the reflection region by the outer diffraction vortex at these early times. Some additional computational work explicitly exploring the limits of the parameter space for such systems has demonstrated the existence of a possible further reflection type, called vN-type, which is similar to the von Neumann reflection for plane waves. It is recommended that the parameter space be

  8. Digital Rock Studies of Tight Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Silin, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-07

    This technical report summarizes some recently developed approaches to studies of rock properties at a pore scale. Digital rock approach is complementary to laboratory and field studies. It can be especially helpful in situations where experimental data are uncertain, or are difficult or impossible to obtain. Digitized binary images of the pore geometries of natural rocks obtained by different imaging techniques are the input data. Computer-generated models of natural rocks can be used instead of images in a case where microtomography data are unavailable, or the resolution of the tools is insufficient to adequately characterize the features of interest. Simulations of creeping viscous flow in pores produce estimates of Darcy permeability. Maximal Inscribed Spheres calculations estimate two-phase fluid distribution in capillary equilibrium. A combination of both produce relative permeability curves. Computer-generated rock models were employed to study two-phase properties of fractured rocks, or tight sands with slit-like pores, too narrow to be characterized with micro-tomography. Various scenarios can simulate different fluid displacement mechanisms, from piston-like drainage to liquid dropout at the dew point. A finite differences discretization of Stokes equation is developed to simulate flow in the pore space of natural rocks. The numerical schemes are capable to handle both no-slip and slippage flows. An upscaling procedure estimates the permeability by subsampling a large data set. Capillary equilibrium and capillary pressure curves are efficiently estimated with the method of maximal inscribed spheres both an arbitrary contact angle. The algorithms can handle gigobytes of data on a desktop workstation. Customized QuickHull algorithms model natural rocks. Capillary pressure curves evaluated from computer-generated images mimic those obtained for microtomography data.

  9. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available BACKGROUND: Although cold shock responses and the roles of cold shock proteins in microorganisms containing multiple cold shock protein genes have been well characterized, related studies on bacteria possessing a single cold shock protein gene have not been reported. Thermoanaerobacter tengcongensis MB4, a thermophile harboring only one known cold shock protein gene (TtescpC, can survive from 50° to 80 °C, but has poor natural competence under cold shock at 50 °C. We therefore examined cold shock responses and their effect on natural competence in this bacterium. RESULTS: The transcriptomes of T. tengcongensis before and after cold shock were analyzed by RNA-seq and over 1200 differentially expressed genes were successfully identified. These genes were involved in a wide range of biological processes, including modulation of DNA replication, recombination, and repair; energy metabolism; production of cold shock protein; synthesis of branched amino acids and branched-chain fatty acids; and sporulation. RNA-seq analysis also suggested that T. tengcongensis initiates cell wall and membrane remodeling processes, flagellar assembly, and sporulation in response to low temperature. Expression profiles of TtecspC and failed attempts to produce a TtecspC knockout strain confirmed the essential role of TteCspC in the cold shock response, and also suggested a role of this protein in survival at optimum growth temperature. Repression of genes encoding ComEA and ComEC and low energy metabolism levels in cold-shocked cells are the likely basis of poor natural competence at low temperature. CONCLUSION: Our study demonstrated changes in global gene expression under cold shock and identified several candidate genes related to cold shock in T. tengcongensis. At the same time, the relationship between cold shock response and poor natural competence at low temperature was preliminarily elucidated. These findings provide a foundation for future studies on genetic

  10. Life shocks and homelessness.

    Science.gov (United States)

    Curtis, Marah A; Corman, Hope; Noonan, Kelly; Reichman, Nancy E

    2013-12-01

    We exploited an exogenous health shock-namely, the birth of a child with a severe health condition-to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide.

  11. Electrical Shock: First Aid

    Science.gov (United States)

    ... using a dry, nonconducting object made of cardboard, plastic or wood. Begin CPR if the person shows ... org/first-aid/first-aid-electrical-shock/basics/art-20056695 . Mayo Clinic Footer Legal Conditions and Terms ...

  12. Shock Waves in Supernova Ejecta

    Science.gov (United States)

    Raymond, J. C.

    2018-02-01

    Astrophysical shock waves are a major mechanism for dissipating energy, and by heating and ionizing the gas they produce emission spectra that provide valuable diagnostics for the shock parameters, for the physics of collisionless shocks, and for the composition of the shocked material. Shocks in SN ejecta in which H and He have been burned to heavier elements behave differently than shocks in ordinary astrophysical gas because of their very large radiative cooling rates. In particular, extreme departures from thermal equilibrium among ions and electrons and from ionization equilibrium may arise. This paper discusses the consequences of the enhanced metal abundances for the structure and emission spectra of those shocks.

  13. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  14. Pediatric Toxic Shock Syndrome

    OpenAIRE

    Yee, Jennifer; King, Andrew

    2017-01-01

    Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management....

  15. Rocks and walls: natural versus secondary habitats

    Czech Academy of Sciences Publication Activity Database

    Láníková, Deana; Lososová, Z.

    2009-01-01

    Roč. 44, č. 3 (2009), s. 263-280 ISSN 1211-9520 R&D Projects: GA ČR GA206/09/0329 Institutional research plan: CEZ:AV0Z60050516 Keywords : alien species * chasmophytic vegetation * diversity Subject RIV: EF - Botanics Impact factor: 1.320, year: 2009

  16. The structure of quasiperpendicular collisionless shocks

    International Nuclear Information System (INIS)

    Gedalin, M.E.; Lominadze, J.G.

    1989-01-01

    A quasiperpendicular shock is considered as a structure, evolved from a fast magnetosonic nonlinear wave. Due to the steepening and tendency towards overturning the scales become smaller and the ramp is an intermediate whistler. The noncoplanar magnetic field component in the ramp appears in a quite natural way. The ramp is characterized by a large peak of the potential electric field, its width is much smaller than the ramp width. It is shown that in such a case electrons are heated efficiently. Ions are heated also, the heating process is closely related to the shock drift acceleration. (author). 8 refs.; 6 figs

  17. On the possible effect of round-the-world surface seismic waves in the dynamics of repeated shocks after strong earthquakes

    Science.gov (United States)

    Zotov, O. D.; Zavyalov, A. D.; Guglielmi, A. V.; Lavrov, I. P.

    2018-01-01

    Based on the observation data for hundreds of the main shocks and thousands of aftershocks, the existence of effect of round-the-world surface seismic waves is demonstrated (let us conditionally refer to them as a round-the-world seismic echo) and the manifestations of this effect in the dynamics of the repeated shocks of strong earthquakes are analyzed. At the same time, we by no means believe this effect has been fully proven. We only present a version of our own understanding of the physical causes of the observed phenomenon and analyze the regularities in its manifestation. The effect is that the surface waves excited in the Earth by the main shock make a full revolution around the Earth and excite a strong aftershock in the epicentral zone of the main shock. In our opinion, the physical nature of this phenomenon consists in the fact that the superposition leads to a concentration of wave energy when the convergent surface waves reach the epicentral zone (cumulative effect). The effect of the first seismic echo is most manifest. Thus, the present work supports our hypothesis of the activation of rock failure under the cumulative impact of an round-the-world seismic echo on the source area which is releasing ("cooling") after the main shock. The spatial regularities in the manifestations of this effect are established, and the independence of the probability of its occurrence on the main shock magnitude is revealed. The effect of a round-the-world seismic echo can be used to improve the reliability of the forecasts of strong aftershocks in determining the scenario for the seismic process developing in the epicentral zone of a strong earthquake that has taken place.

  18. Passive Shock Isolation Utilising Dry Friction

    Directory of Open Access Journals (Sweden)

    Mohd Ikmal Ismail

    2017-01-01

    Full Text Available A novel shock isolation strategy for base excited system is presented by introducing a two-degree-of-freedom model with passive friction, where the friction is applied to an attached mass instead of directly to the primary isolated mass. The model is evaluated against the benchmark case of single-degree-of-freedom system with friction applied directly to the primary isolated mass. The performances of the models are compared in terms of the maximum displacement response and the acceleration during the application of the shock input for the case when the shock input duration is approximately equal to the natural period of the system (amplification region. From the results, the two-degree-of-freedom model can produce both maximum displacement reduction and smoother acceleration at the point of motion transition. An experimental rig was built to validate the theoretical results against the experimental results; it is found that the experimental results closely match the theoretical predictions.

  19. SHORT ACCELERATION TIMES FROM SUPERDIFFUSIVE SHOCK ACCELERATION IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Perri, S.; Zimbardo, G., E-mail: silvia.perri@fis.unical.it [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, I-87036 Rende (Italy)

    2015-12-10

    The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and we compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.

  20. Carbon and oxygen isotope study of carbonates from highly shocked clasts of the polymict breccia of the Haughton Crater (Canada)

    Science.gov (United States)

    Agrinier, P.; Martinez, I.; Javoy, M.; Schaerer, U.

    1992-01-01

    It is known that the release of volatiles on impact is an important controlling factor in cratering processes in carbonate terranes and in the mobility of chemical elements. In order to assess the nature and the role of carbon- and oxygen-bearing volatiles during impact-induced metamorphism of sedimentary rocks, the C-13/C-12 and O-18/O-16 ratios and carbonate contents were determined for 30 shocked clasts from the Haughton Crater polymict breccia as well as for some unshocked carbonates from the sedimentary cover adjacent to the crater. Shock-induced CO2 loss during decarbonation of calcite is known to be a function of peak pressure and ambient partial pressure of the volatile species. In our clast samples, shocked from 20 to 60 GPa, we expect about 20 to 100 percent CO2 loss and preferential depletion in C-13 and O-18 in the residual carbonate. Rayleigh model (progressive loss of CO2) and batch model (single-step loss of CO2) curves for this depletion are shown. The magnitudes of the C-13 and O-18 depletions increase with the increase of the CO2 loss. In addition, the isotopic depletions should be correlated with an enrichment in CaO and MgO in the residual solid.

  1. Rock cavern storage of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Kim, Kyung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Sang Ki [Inha University, Incheon (Korea, Republic of)

    2015-12-15

    The rock cavern storage for spent fuel has been assessed to apply in Korea with reviewing the state of the art of the technologies for surface storage and rock cavern storage of spent fuel. The technical feasibility and economic aspects of the rock cavern storage of spent fuel were also analyzed. A considerable area of flat land isolated from the exterior are needed to meet the requirement for the site of the surface storage facilities. It may, however, not be easy to secure such areas in the mountainous region of Korea. Instead, the spent fuel storage facilities constructed in the rock cavern moderate their demands for the suitable site. As a result, the rock cavern storage is a promising alternative for the storage of spent fuel in the aspect of natural and social environments. The rock cavern storage of spent fuel has several advantages compared with the surface storage, and there is no significant difference on the viewpoint of economy between the two alternatives. In addition, no great technical difficulties are present to apply the rock cavern storage technologies to the storage of domestic spent fuel.

  2. Comparison of heat shock protein 70 kDa and 18S rDNA genes for molecular detection and phylogenetic analysis of Babesia vogeli from whole blood of naturally infected dogs.

    Science.gov (United States)

    Paulino, Patrícia G; Pires, Marcus S; Silva, Claudia B da; Peckle, Maristela; Costa, Renata L da; Vitari, Gabriela L V; Abreu, Ana Paula M de; Almosny, Nádia R P; Massard, Carlos L; Santos, Huarrisson A

    2018-03-01

    A total of 300 blood samples of domiciliated dogs in rural and urban areas of southeast Rio de Janeiro State, Brazil, were used to compare the 18S ribosomal DNA region (18S rDNA) and the heat shock protein 70 kDa (hsp70) gene for molecular detection of Babesia vogeli and to perform a phylogenetic study comparing the two genes for B. vogeli classification. Using conventional polymerase chain reaction (cPCR) of 18S rDNA and hsp70 sequences, we were able to detect B. vogeli with the same sensitivity (96.15%) and specificity (99.63%). However, sequencing revealed one false positive (Rangelia sp.) for 18S rDNA that was not detected by hsp70. This is the first report of an organism closely related to the Rangelia vitalii parasite of dogs in Brazil. In the hsp70-cPCR and hsp70-qPCR comparison, 15.66% of samples were considered positive by quantitative (q)PCR, significantly more than was detected by cPCR (8.66%). In addition to the high conservation of the 18S rDNA, phylogenetic analysis showed that the hsp70 gene can be used to describe phylogenetic relationships between canine piroplasmids with more accuracy than 18S rDNA. According to these findings, the qPCR method has greater sensitivity than cPCR for detection of B. vogeli in naturally infected dogs. The hsp70-qPCR detection limit was 10 copies, with an efficiency of 100.30% and a determination coefficient (R 2 ) of 0.998. The development of this qPCR method provides a highly sensitive approach for B. vogeli molecular detection and a tool that is capable of quantifying parasitemia levels in whole blood samples from dogs. The primers and probes were designed to be specific for B. vogeli, though analytical specificity of the assay has not been tested in vitro with DNA of certain Babesia species that infect dogs. The hsp70 gene is a precise molecular marker for Babesia phylogeny, especially species that infect dogs. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    International Nuclear Information System (INIS)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-01-01

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  4. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  5. Life Shocks and Homelessness

    Science.gov (United States)

    Corman, Hope; Noonan, Kelly; Reichman, Nancy E.

    2014-01-01

    We exploited an exogenous health shock—namely, the birth of a child with a severe health condition—to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide. PMID:23868747

  6. Radon exhalation from granitic rocks

    International Nuclear Information System (INIS)

    Del Claro, Flávia; Paschuk, Sergei A.; Corrêa, Janine N.; Mazer, Wellington; Narloch, Danielle Cristine; Martin, Aline Cristina; Denyak, Valeriy

    2017-01-01

    Naturally occurring radionuclides such as radon ( 222 Rn), its decay products and other elements from the radioactive series of uranium ( 238 U and 235 U) and thorium ( 232 Th) are an important source of human exposure to natural radioactivity. The worldwide evaluation of health radiobiological effects and risks from population exposure to natural radionuclides is a growing concern. About 50% of personal radiation annual dose is related to radionuclides such as radon ( 222 Rn), thoron ( 220 Rn), radium ( 226 Ra), thorium ( 232 Th) and potassium ( 40 K), which are present in modern materials commonly used in construction of dwellings and buildings. The radioactivity of marbles and granites is of big concern since under certain conditions the radioactivity levels of these materials can be hazardous to the population and require the implementation of mitigation procedures. Present survey of the 222 Rn and 220 Rn activity concentration liberated in the air was performed using commercialized Brazilian granite rocks at national market as well as exported to other countries. The 222 Rn and 220 Rn measurements were performed using the AlphaGUARD instant monitor and RAD7 detector, respectively. This study was performed at the Applied Nuclear Physics Laboratory of the Federal University of Technology – Paraná (UTFPR). Obtained results of radon concentration activity in air exhaled studied samples of granites varied from 3±1 Bq/m 3 to 2087±19 Bq/m 3 , which shows that some samples of granitic rocks represent rather elevated health risk the population. (author)

  7. Big Bang Day : Physics Rocks

    CERN Multimedia

    Brian Cox; John Barrowman; Eddie Izzard

    2008-01-01

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  8. Self-organized rock textures and multiring structure in the Duolun crater

    Science.gov (United States)

    Wu, Siben; Zhang, Jiayun

    1992-01-01

    The Duolun impact crater is a multiring basin located 200 km north of Beijing. From the center to the edge of the crater there are innermost rim, inner ring, outer rim, and outermost ring. Recently, we have found some self-organized textures or chaos phenomena in shock-metamorphic rocks from the Duolun impact crater, such as turbulence in matrices of impact glass, oscillatory zoning, or chemical chaos of spherulites in spherulitic splashed breccia, fractal wavy textures or self-similar wavy textures with varied scaling in impact glass, and crystallite beams shaped like Lorentz strange attractors. The rare phenomena indicate that the shock-metamorphic rocks from Duolun crater are formed far from equilibrium. If impact cratering generates momentarily under high-pressure and superhigh-temperature, occurrence of those chaos phenomena in shock-metamorphic rock is not surprising.

  9. Analysis of compaction shock interactions during DDT of low density HMX

    Science.gov (United States)

    Rao, Pratap T.; Gonthier, Keith A.

    2017-01-01

    Deflagration-to-Detonation Transition (DDT) in confined, low density granular HMX occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong combustion-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting dissipative heating within the microstructure during pore collapse. Inert meso-scale simulations of successive shock loading of low density HMX are performed to examine how dissipation and hot-spot formation are affected by the initial density, and the primary and secondary shock strengths. This information is used to formulate an ignition and burn model for low density HMX that accounts for the effect of shock densensitization on burn. Preliminary DDT predictions are presented that illustrate how primary shock strength affects the transition mechanism.

  10. A Common Loon incubates rocks as surrogates for eggs

    Science.gov (United States)

    DeStefano, Stephen; Koenen, Kiana K. G.; Pereira, Jillian W.

    2013-01-01

    A nesting Gavia immer (Common Loon) was discovered incubating 2 rocks on a floating nest platform on the Quabbin reservoir in central Massachusetts for 43 days, well beyond the typical period of 28 days, before we moved in to investigate. The rocks were likely unearthed in the soil and vegetation used on the platform to create a more natural substrate for the nest. We suggest sifting through soil and vegetation to remove rocks before placing material on nest platforms.

  11. On the Magnitude and Orientation of Stress during Shock Metamorphism: Understanding Peak Ring Formation by Combining Observations and Models.

    Science.gov (United States)

    Rae, A.; Poelchau, M.; Collins, G. S.; Timms, N.; Cavosie, A. J.; Lofi, J.; Salge, T.; Riller, U. P.; Ferrière, L.; Grieve, R. A. F.; Osinski, G.; Morgan, J. V.; Expedition 364 Science Party, I. I.

    2017-12-01

    Shock metamorphism occurs during the earliest moments after impact. The magnitude and orientation of shock leaves recordable signatures in rocks, which spatially vary across an impact structure. Consequently, observations of shock metamorphism can be used to understand deformation and its history within a shock wave, and to examine subsequent deformation during crater modification. IODP-ICDP Expedition 364 recovered nearly 600 m of shocked target rocks from the peak ring of the Chicxulub Crater. Samples from the expedition were used to measure the magnitude and orientation of shock in peak ring materials, and to determine the mechanism of peak-ring emplacement. Here, we present the results of petrographic analyses of the shocked granitic target rocks of the Chicxulub peak ring; using universal-stage optical microscopy, back-scattered electron images, and electron back-scatter diffraction. Deformation microstructures in quartz include planar deformation features (PDFs), feather features (FFs), which are unique to shock conditions, as well as planar fractures and crystal-plastic deformation bands. The assemblage of PDFs in quartz suggest that the peak-ring rocks experienced shock pressures of 15 GPa throughout the recovered drill core, and that the orientation of FFs are consistent with the present-day orientation of the maximum principal stress direction during shock is close to vertical. Numerical impact simulations of the impact event were run to determine the magnitude and orientation of principal stresses during shock and track those orientations throughout crater formation. Our results are remarkably consistent with the geological data, and accurately predict both the shock-pressure magnitudes, and the final near-vertical orientation of the direction of maximum principal stress in the shock wave. Furthermore, analysis of the state of stress throughout the impact event can be used to constrain the timing of fracture and fault orientations observed in the core

  12. Gastrointestinal perfusion in septic shock.

    NARCIS (Netherlands)

    Haren, E.M. van; Sleight, J.W.; Pickkers, P.; Hoeven, J.G. van der

    2007-01-01

    Septic shock is characterised by vasodilation, myocardial depression and impaired microcirculatory blood flow, resulting in redistribution of regional blood flow. Animal and human studies have shown that gastrointestinal mucosal blood flow is impaired in septic shock. This is consistent with

  13. A Single Deformed Bow Shock for Titan-Saturn System

    Science.gov (United States)

    Sulaiman, A. H.; Omidi, N.; Kurth, W. S.; Madanian, H.; Cravens, T.; Sergis, N.; Dougherty, M. K.; Edberg, N. J. T.

    2017-12-01

    During periods of high solar wind pressure, Saturn's bow shock is pushed inside Titan's orbit exposing the moon and its ionosphere to the supersonic solar wind. The Cassini spacecraft's T96 encounter with Titan occurred during such a period and is the subject of this presentation. The observations during this encounter show evidence for the presence of outbound and inbound shock crossings associated with Saturn and Titan. They also reveal the presence of two foreshocks: one between the outbound Kronian and inbound Titan bow shocks (foreshock-1) and the other between the outbound Titan and inbound Kronian bow shocks (foreshock-2). Using electromagnetic hybrid (kinetic ions, fluid electrons) simulations and Cassini observations we show that the origin of foreshock-1 is tied to the formation of a single deformed bow shock for the Titan-Saturn system. We also report for the first time, the observations of spontaneous hot flow anomalies (SHFAs) in foreshock-1 making Saturn the fourth planet this phenomenon has been observed and indicating its universal nature. The results of hybrid simulations also show the generation of oblique fast magnetosonic waves upstream of the outbound Titan bow shock in agreement with the observations of large amplitude magnetosonic pulsations in foreshock-2. The formation of a single deformed bow shock results in unique foreshock-bow shock or foreshock-foreshock geometries. For example, the presence of Saturn's foreshock upstream of Titan's quasi-perpendicular bow shock result in ion acceleration through a combination of shock drift and Fermi processes. We also discuss the implications of a single deformed bow shock for Saturn's magnetopause and magnetosphere.

  14. Heterogeneous Rock Simulation Using DIP-Micromechanics-Statistical Methods

    Directory of Open Access Journals (Sweden)

    H. Molladavoodi

    2018-01-01

    Full Text Available Rock as a natural material is heterogeneous. Rock material consists of minerals, crystals, cement, grains, and microcracks. Each component of rock has a different mechanical behavior under applied loading condition. Therefore, rock component distribution has an important effect on rock mechanical behavior, especially in the postpeak region. In this paper, the rock sample was studied by digital image processing (DIP, micromechanics, and statistical methods. Using image processing, volume fractions of the rock minerals composing the rock sample were evaluated precisely. The mechanical properties of the rock matrix were determined based on upscaling micromechanics. In order to consider the rock heterogeneities effect on mechanical behavior, the heterogeneity index was calculated in a framework of statistical method. A Weibull distribution function was fitted to the Young modulus distribution of minerals. Finally, statistical and Mohr–Coulomb strain-softening models were used simultaneously as a constitutive model in DEM code. The acoustic emission, strain energy release, and the effect of rock heterogeneities on the postpeak behavior process were investigated. The numerical results are in good agreement with experimental data.

  15. Pediatric cardiogenic shock: Current perspectives

    OpenAIRE

    Subhranshu Sekhar Kar

    2015-01-01

    Cardiogenic shock is a pathophysiologic state where an abnormality of cardiac function is responsible for the failure of the cardiovascular system to meet the metabolic needs of the body tissues.Though it is less common than hypovolemia as the primary etiology in paediatric shock, eventually myocardial function is affected because of reduced perfusion in all forms of shock. Myocardial malfunction, in other forms of shock, is secondary to ischemia, acidosis, drugs, toxins or inflammation. Card...

  16. Teleconnected food supply shocks

    Science.gov (United States)

    Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix

    2016-03-01

    The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.

  17. SHOCK-INDUCED LUMINESCENCE

    Science.gov (United States)

    When a 270 kilobar shock wave emerges from an illuminated aluminum surface in a vacuum, blue light is emitted. This phenomenon is affected...acoustoelectric effect). The electrons reach the aluminum oxide layer and, falling into the ionized F’ centers, emit blue light .

  18. Health Shocks and Retirement:

    DEFF Research Database (Denmark)

    Datta Gupta, Nabanita; Larsen, Mona

    benefits in Denmark nor by the promotion of corporate social responsibility initiatives since the mid-1990s. In the late 1990s, however, the retirement rate following a health shock is reduced to 3% with the introduction of the subsidized employment program (fleksjob) but this effect is not strongly...

  19. Shock tube Multiphase Experiments

    Science.gov (United States)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  20. Rock kinoekraanil / Katrin Rajasaare

    Index Scriptorium Estoniae

    Rajasaare, Katrin

    2008-01-01

    7.-11. juulini kinos Sõprus toimuval filminädalal "Rock On Screen" ekraanile jõudvatest rockmuusikuid portreteerivatest filmidest "Lou Reed's Berlin", "The Future Is Unwritten: Joe Strummer", "Control: Joy Division", "Hurriganes", "Shlaager"

  1. Rock Equity Holdings, LLC

    Science.gov (United States)

    The EPA is providing notice of an Administrative Penalty Assessment in the form of an Expedited Storm Water Settlement Agreement against Rock Equity Holdings, LLC, for alleged violations at The Cove at Kettlestone/98th Street Reconstruction located at 3015

  2. Pop & rock / Berk Vaher

    Index Scriptorium Estoniae

    Vaher, Berk, 1975-

    2001-01-01

    Uute heliplaatide Redman "Malpractice", Brian Eno & Peter Schwalm "Popstars", Clawfinger "A Whole Lot of Nothing", Dario G "In Full Color", MLTR e. Michael Learns To Rock "Blue Night" lühitutvustused

  3. Solid as a rock

    International Nuclear Information System (INIS)

    Pincus, H.J.

    1984-01-01

    Recent technologic developments have required a more comprehensive approach to the behavior of rock mass or rock substance plus discontinuities than was adequate previously. This work considers the inherent problems in such operations as the storage of hot or cold fluids in caverns and aquifers, underground storage of nuclear waste, underground recovery of heat from hydrocarbon fuels, tertiary recovery of oil by thermal methods, rapid excavation of large openings at shallow to great depths and in hostile environments, and retrofitting of large structures built on or in rock. The standardization of methods for determining rock properties is essential to all of the activities described, for use not only in design and construction but also in site selection and post-construction monitoring. Development of such standards is seen as a multidisciplinary effort

  4. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  5. Shock Waves in Gas Dynamics

    Directory of Open Access Journals (Sweden)

    Abdolrahman Razani

    2007-11-01

    Full Text Available Shock wave theory was studied in literature by many authors. This article presents a survey with references about various topics related to shock waves: Hyperbolic conservation laws, Well-posedness theory, Compactness theory, Shock and reaction-diffusion wave, The CJ and ZND theory, Existence of detonation in Majda's model, Premixed laminar flame, Multidimensional gas flows, Multidimensional Riemann problem.

  6. Shock wave treatment in medicine

    Indian Academy of Sciences (India)

    Urology has long been the only medical field for shock waves in medicine. Meanwhile shock waves have been used in orthopedics and traumatology to treat insertion tendinitis, avascular necrosis of the head of femur and other necrotic bone alterations. Another field of shock wave application is the treatment of tendons, ...

  7. Fascinating World of Shock Waves

    Indian Academy of Sciences (India)

    Srimath

    travelling at supersonic speeds (more than the sound speed at local temperature) then one can see a shock wave around the body as shown in Figure 1. Dissipation of energy, rapid changes in velocity, presure, temperature and flow turning are some of the features associated with shock waves. Obviously the word 'shock.

  8. Shock wave treatment in medicine

    Indian Academy of Sciences (India)

    Unknown

    compared to urology where shock waves are used for disintegration. [Shrivastava S K and Kailash 2005 Shock wave treatment in medicine; J. Biosci. 30 269–275]. 1. Introduction. Extracorporeal generated shock waves have been intro- duced for medical therapy approximately 20 years back to disintegrate kidney stones.

  9. Innovative rock bed construction

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.

    1983-06-01

    A general discussion of the use of rock beds for heating and cooling thermal storage is particularized for design and construction in Phoenix, Arizona. The rock bed parameters for three two-story condominium apartments constructed in 1982 are discussed, including sizing criteria and original construction details. A revised construction method using gabions that are self-supporting chain link cylinders provided a much more economical construction method as well as other advantages of speed and structural flexibility.

  10. Basic rocks in Finland

    International Nuclear Information System (INIS)

    Piirainen, T.; Gehoer, S.; Iljina, M.; Kaerki, A.; Paakkola, J.; Vuollo, J.

    1992-10-01

    Basic igneous rocks, containing less than 52% SiO 2 , constitute an important part of the Finnish Archaean and Proterozoic crust. In the Archaean crust exist two units which contain the majority of the basic rocks. The Arcaean basic rocks are metavolcanics and situated in the Greenstone Belts of Eastern Finland. They are divided into two units. The greenstones of the lower one are tholeiites, komatiites and basaltic komatiites. The upper consists of bimodal series of volcanics and the basic rocks of which are Fe-tholeiites, basaltic komatiites and komatiites. Proterozoic basic rocks are divided into seven groups according to their ages. The Proterozoic igneous activity started by the volominous basic magmatism 2.44 Ga ago. During this stage formed the layered intrusions and related dykes in the Northern Finland. 2.2 Ga old basic rocks are situated at the margins of Karelian formations. 2.1 Ga aged Fe-tholeiitic magmatic activity is widespread in Eastern and Northern Finland. The basic rocks of 1.97 Ga age group are met within the Karelian Schist Belts as obducted ophiolite complexes but they occur also as tholeiitic diabase dykes cutting the Karelian schists and Archean basement. The intrusions and the volcanics of the 1.9 Ga old basic igneous activity are mostly encountered around the Granitoid Complex of Central Finland. Subjotnian, 1.6 Ga aged tholeiitic diabases are situated around the Rapakivi massifs of Southern Finland, and postjotnian, 1.2 Ga diabases in Western Finland where they form dykes cutting Svecofennian rocks

  11. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  12. Nonlinear interactions in superfluid dynamics: Nonstationary heat transfer due to second sound shock waves

    Science.gov (United States)

    Liepmann, H. W.; Torczynski, J. R.

    1983-01-01

    Second sound techniques were used to study superfluid helium. Second sound shock waves produced relative velocities in the bulk fluid. Maximum counterflow velocities produced in this way are found to follow the Langer-Fischer prediction for the fundamental critical velocity in its functional dependence on temperature and pressure. Comparison of successive shock and rotating experiments provides strong evidence that breakdown results in vorticity production in the flow behind the shock. Schlieren pictures have verified the planar nature of second sound shocks even after multiple reflections. The nonlinear theory of second sound was repeatedly verified in its prediction of double shocks and other nonlinear phenomena.

  13. Chemical analysis of the Assale (Ethiopia) rock salt deposit | Binega ...

    African Journals Online (AJOL)

    contaminants) elements found in the Assale (Ethiopia) rock salt. The results showed that the rock salt is found to be the best natural common salt. This was proved by comparison with the chemical requirement and trace elements in common ...

  14. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  15. Studies of an artificially shock-loaded H group chondrite

    Science.gov (United States)

    Sears, D. W.; Ashworth, J. R.; Broadbent, C. P.; Bevan, A. W. R.

    1984-01-01

    SEM and TEM, together with thermoluminescence (TL), are used to study five samples of the naturally unshocked Kernouve (H6) meteorite that were shock-loaded to pressures of 70, 165, 270, and 390 kbar. Attention is given to olivine and orthopyroxene deformation mechanisms at these pressure levels. The microhardness of the kamacite in the samples increases with shock pressure, and it is noted that annealed kamacite displays incipient crystallinity, while alpha-martensite and taenite sometimes contain slip lines. At pressures over 200 kbar, there was a systematic decrease in both natural TL and TL sensitivity. Changes in the ratio of these two values for various regions of the TL glow curve suggest that two processes were effective during shock: thermal drainage of electron traps and a reduction in the effective trap density. Thermal effects with widespread annealing are noted in the case of a sample subjected to shock pulse.

  16. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  17. Natural radioactive phon

    International Nuclear Information System (INIS)

    Birjukovs, V.; Birjukov, P.

    2004-01-01

    The natural radiating phon is determined by radioactive isotopes of elements which time of half-decay is commensurable in due course existence of the Earth, dispersing in rocks, ground, water and air, and also space radiation. (authors)

  18. Errors when shock waves interact due to numerical shock width

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, R.

    1993-03-04

    A simple test problem proposed by Noh, a strong shock reflecting from a rigid wall, demonstrates a generic problem with numerical shock capturing algorithms at boundaries that Noh called ``excess wall heating.`` We show that the same type of numerical error occurs in general when shock waves interact. The underlying cause is the non-uniform convergence to the hyperbolic solution of the inviscid limit of the solution to the PDEs with viscosity. The error can be understood from an analysis of the asymptotic solution. For a propagating shock, there is a difference in the total energy of the parabolic wave relative to the hyperbolic shock. Moreover, the relative energy depends on the strength of the shock. The error when shock waves interact is due to the difference in the relative energies between the incoming and outgoing shock waves. It is analogous to a phase shift in a scattering matrix. A conservative differencing scheme correctly describes the Hugoniot jump conditions for a steady propagating shock. Therefore, the error from the asymptotics occurs in the transient when the waves interact. The entropy error that occurs in the interaction region remains localized but does not dissipate. A scaling argument shows that as the viscosity coefficient goes to zero, the error shrinks in spatial extend but is constant in magnitude. Noh`s problem of the reflection of a shock from a rigid wall is equivalent to the symmetric impact of two shock waves of the opposite family. The asymptotic argument shows that the same type of numerical error would occur when the shocks are of unequal strength. Thus, Noh`s problem is indicative of a numerical error that occurs when shocks interact due to the numerical shock width.

  19. Errors when shock waves interact due to numerical shock width

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, R.

    1993-03-04

    A simple test problem proposed by Noh, a strong shock reflecting from a rigid wall, demonstrates a generic problem with numerical shock capturing algorithms at boundaries that Noh called excess wall heating.'' We show that the same type of numerical error occurs in general when shock waves interact. The underlying cause is the non-uniform convergence to the hyperbolic solution of the inviscid limit of the solution to the PDEs with viscosity. The error can be understood from an analysis of the asymptotic solution. For a propagating shock, there is a difference in the total energy of the parabolic wave relative to the hyperbolic shock. Moreover, the relative energy depends on the strength of the shock. The error when shock waves interact is due to the difference in the relative energies between the incoming and outgoing shock waves. It is analogous to a phase shift in a scattering matrix. A conservative differencing scheme correctly describes the Hugoniot jump conditions for a steady propagating shock. Therefore, the error from the asymptotics occurs in the transient when the waves interact. The entropy error that occurs in the interaction region remains localized but does not dissipate. A scaling argument shows that as the viscosity coefficient goes to zero, the error shrinks in spatial extend but is constant in magnitude. Noh's problem of the reflection of a shock from a rigid wall is equivalent to the symmetric impact of two shock waves of the opposite family. The asymptotic argument shows that the same type of numerical error would occur when the shocks are of unequal strength. Thus, Noh's problem is indicative of a numerical error that occurs when shocks interact due to the numerical shock width.

  20. Shock detachment from curved wedges

    Science.gov (United States)

    Mölder, S.

    2017-09-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  1. Interaction and transport of actinides in natural clay rock with consideration of humic substances and clay organics. Characterization and quantification of the influence of clay organics on the interaction and diffusion of uranium and americium in the clay. Joint project

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard, Gert [Helmholtz-Zentrum Dresden-Rossendorf e.V. (Germany). Inst. of Radiochemistry; Schmeide, Katja; Joseph, Claudia; Sachs, Susanne; Steudtner, Robin; Raditzky, Bianca; Guenther, Alix

    2011-07-01

    The objective of this project was the study of basic interaction processes in the systems actinide - clay organics - aquifer and actinide - natural clay - clay organics - aquifer. Thus, complexation, redox, sorption and diffusion studies were performed. To evaluate the influence of nitrogen, phosphorus and sulfur containing functional groups of humic acid (HA) on the complexation of actinides in comparison to carboxylic groups, the Am(III) and U(VI) complexation by model ligands was studied by UV-Vis spectroscopy and TRLFS. The results show that Am(III) is mainly coordinated via carboxylic groups, however, probably stabilized by nitrogen groups. The U(VI) complexation is dominated by carboxylic groups, whereas nitrogen and sulfur containing groups play a minor role. Phosphorus containing groups may contribute to the U(VI) complexation by HA, however, due to their low concentration in HA they play only a subordinate role compared to carboxylic groups. Applying synthetic HA with varying sulfur contents (0 to 6.9 wt.%), the role of sulfur functionalities of HA for the U(VI) complexation and Np(V) reduction was studied. The results have shown that sulfur functionalities can be involved in U(VI) humate complexation and act as redox-active sites in HA for the Np(V) reduction. However, due to the low content of sulfur in natural HA, its influence is less pronounced. In the presence of carbonate, the U(VI) complexation by HA was studied in the alkaline pH range by means of cryo-TRLFS (-120 C) and ATR FT-IR spectroscopy. The formation of the ternary UO{sub 2}(CO{sub 3}){sub 2}HA(II){sup 4-} complex was detected. The complex formation constant was determined with log {beta}{sub 0.1} M = 24.57 {+-} 0.17. For aqueous U(VI) citrate and oxalate species, luminescence emission properties were determined by cryo-TRLFS and used to determine stability constants. The existing data base could be validated. The U(VI) complexation by lactate, studied in the temperature range 7 to 65 C

  2. Interaction and transport of actinides in natural clay rock with consideration of humic substances and clay organics. Characterization and quantification of the influence of clay organics on the interaction and diffusion of uranium and americium in the clay. Joint project

    International Nuclear Information System (INIS)

    Bernhard, Gert; Schmeide, Katja; Joseph, Claudia; Sachs, Susanne; Steudtner, Robin; Raditzky, Bianca; Guenther, Alix

    2011-01-01

    The objective of this project was the study of basic interaction processes in the systems actinide - clay organics - aquifer and actinide - natural clay - clay organics - aquifer. Thus, complexation, redox, sorption and diffusion studies were performed. To evaluate the influence of nitrogen, phosphorus and sulfur containing functional groups of humic acid (HA) on the complexation of actinides in comparison to carboxylic groups, the Am(III) and U(VI) complexation by model ligands was studied by UV-Vis spectroscopy and TRLFS. The results show that Am(III) is mainly coordinated via carboxylic groups, however, probably stabilized by nitrogen groups. The U(VI) complexation is dominated by carboxylic groups, whereas nitrogen and sulfur containing groups play a minor role. Phosphorus containing groups may contribute to the U(VI) complexation by HA, however, due to their low concentration in HA they play only a subordinate role compared to carboxylic groups. Applying synthetic HA with varying sulfur contents (0 to 6.9 wt.%), the role of sulfur functionalities of HA for the U(VI) complexation and Np(V) reduction was studied. The results have shown that sulfur functionalities can be involved in U(VI) humate complexation and act as redox-active sites in HA for the Np(V) reduction. However, due to the low content of sulfur in natural HA, its influence is less pronounced. In the presence of carbonate, the U(VI) complexation by HA was studied in the alkaline pH range by means of cryo-TRLFS (-120 C) and ATR FT-IR spectroscopy. The formation of the ternary UO 2 (CO 3 ) 2 HA(II) 4- complex was detected. The complex formation constant was determined with log β 0.1 M = 24.57 ± 0.17. For aqueous U(VI) citrate and oxalate species, luminescence emission properties were determined by cryo-TRLFS and used to determine stability constants. The existing data base could be validated. The U(VI) complexation by lactate, studied in the temperature range 7 to 65 C, was found to be endothermic

  3. Ratio and rate effects of 32P-triple superphosphate and phosphate rock mixtures on corn growth Proporções e doses das misturas de 32P-superfosfato triplo com fosfato natural no desenvolvimento do milho

    Directory of Open Access Journals (Sweden)

    Vinícius Ide Franzini

    2009-02-01

    Full Text Available The availability of phosphorus (P from " Patos de Minas" phosphate rock (PR can be improved if it is applied mixed with a water-soluble P source. The objective of this study was to evaluate 32P as a tracer to quantify the effect of the ratio of mixtures of triple superphosphate (TSP with PR and the rates of application on P availability from PR. Two experiments were conducted in a greenhouse utilizing corn (Zea mays L. plants as test crop. In the first experiment, the P sources were applied at the rate of 90 mg P kg-1 soil either separately or as compacted mixtures in several TSP:PR ratios (100:0, 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100 calculated on the basis of the total P content. In the second experiment, the TSP was applied alone or as 50:50 compacted mixtures with PR applied at four P rates (15, 30, 60 and 90 mg P kg-1 while the sole PR treatment was applied at the 90 mg kg-1 P rate . The mixture of PR with TSP improved the P recovery from PR in the corn plant and this effect increased proportionally to the TSP amounts in the mixture. When compared with the plant P recovery from TSP (10.52%, PR-P recovery (2.57% was much lower even when mixed together in the ratio of 80% TSP: 20% PR. There was no difference in PR-P utilization by the corn plants with increasing P rates in the mixture (1:1 proportion. Therefore, PR-P availability is affected by the proportions of the mixtures with water soluble P, but not by P rates.A disponibilidade de fósforo do fosfato natural de Patos de Minas (FN pode ser melhorada se aplicado junto com uma fonte de P solúvel em água. O objetivo desse estudo foi usar o 32P como traçador para quantificar o efeito das doses e das proporções das misturas de superfosfato triplo (SFT com FN no aumento da disponibilidade de P do FN. Dois experimentos foram desenvolvidos em casa-de-vegetação com plantas de milho (Zea mays L. como cultura teste. No primeiro experimento as fontes de fósforo, na dose de 90 mg kg-1

  4. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  5. Bioremediation in Fractured Rock: 2. Mobilization of Chloroethene Compounds from the Rock Matrix.

    Science.gov (United States)

    Shapiro, Allen M; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Hsieh, Paul A; Lacombe, Pierre J; DeFlaun, Mary F; Drew, Scott R; Curtis, Gary P

    2018-03-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards. © 2017, National Ground Water Association.

  6. Bioremediation in fractured rock: 2. Mobilization of chloroethene compounds from the rock matrix

    Science.gov (United States)

    Shapiro, Allen M.; Tiedeman, Claire; Imbrigiotta, Thomas; Goode, Daniel J.; Hsieh, Paul A.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Curtis, Gary P.

    2018-01-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards.

  7. POSTURAL SHOCK IN PREGNANCY

    Science.gov (United States)

    Wilkening, Ralph L.; Knauer, John; Larson, Roger K.

    1955-01-01

    Signs and symptoms of shock may be produced in some patients in late pregnancy by putting them in the dorsal recumbent posture. Change from this position will relieve the condition. The features of the supine hypotensive syndrome can be duplicated by applying pressure to the abdomen with the patient in a lateral position. The postural variations of venous pressure, blood pressure, and pulse appear to be due to obstruction of venous return from the lower portion of the body caused by the large uterus of late pregnancy compressing the vena cava. When shock is observed in a woman in late pregnancy, she should be turned to a lateral position before more active measures of treatment are begun. ImagesFigure 1. PMID:14351983

  8. Radiative relativistic shock adiabate

    International Nuclear Information System (INIS)

    Tsintsadze, L.N.; Nishikawa, K.

    1997-01-01

    The influences of thermal radiation on the state equation of shock waves, derived in the previous paper [L. N. Tsintsadze, Phys. Plasmas 2, 4462 (1995)], are studied and a series of relations of thermodynamic quantities that hold for shock waves are derived. It is shown that the presence of radiation can strongly change the compressibility of the plasma. It is well known that for polytropic gases the compressibility cannot change more than four times the initial value in the case of nonrelativistic temperatures. The numerical calculations show that there are no such restrictions, when the radiation energy exceeds the kinetic energy of the plasma. The ultrarelativistic temperature range is also covered in our numerical calculations. Also studied are the influences of the radiation on the PT and the TV diagrams. A significant modification due to radiation is found in every case studied. copyright 1997 American Institute of Physics

  9. Rock magnetic properties

    International Nuclear Information System (INIS)

    Hearst, R.B.; Morris, W.A.

    1991-01-01

    In 1978 the Nuclear Fuel Waste Management Program began the long task of site selection and evaluation for nuclear waste disposal. The Canadian Nuclear Fuel Waste Management Program, administered by Atomic Energy of Canada Limited, Research Company has provided the geophysicist with the unique opportunity to evaluate many modes of geophysical investigation in conjunction with detailed geologic mapping at a number of research areas. Of particular interest is research area RA-7, East Bull Lake, Algoma District, Ontario. Geophysical survey methods applied to the study of this included detailed gravity, ground magnetics, VLF, an airborne magnetic gradiometer survey and an airborne helicopter magnetic and EM survey. A comprehensive suite of rock property studies was also undertaken providing information on rock densities and magnetic rock properties. Preliminary modeling of the magnetic data sets assuming only induced magnetization illustrated the difficulty of arriving at a magnetic source geometry consistent with the mapped surficial and borehole geology. Integration of the magnetic rock properties observations and industry standard magnetic modelling techniques provides a source model geometry that is consistent with other geophysical/geological data sets, e.g. gravity and observed geology. The genesis of individual magnetic signatures in the East Bull Lake gabbro-anorthosite record the intrusion, metamorphism and fracture alteration of the pluton. As shown by this paper, only by understanding the rock magnetic signatures associated with each of these events is it possible to obtain geologically meaningful interpretative models

  10. Summary of rock mechanics work completed for Posiva before 2005

    International Nuclear Information System (INIS)

    Hudson, J.A.; Johansson, E.

    2006-06-01

    To plan Posiva's rock mechanics work for 2005-2006 and beyond, it was necessary to have a clear understanding of the individual components of work that had been completed for Posiva before 2005 and to assess the cumulative rock mechanics knowledge base. This review summarizes the 80 individual completed documents, which include rock mechanics reports and other reports containing rock mechanics material. They are summarised within a structured framework of rock properties, analyses and the effects of excavation. Following the introductory section, the method of structuring the rock mechanics information is presented. Then the tabulation highlighting the features of all the previous rock mechanics work is explained. This tabulation forms the Appendix; the content of each rock mechanics report that has been produced is summarized via the table headings of document number, subject area, document reference, subject matter, objectives, methodology, highlighted figures, conclusions and comments. In addition to the direct usefulness of the tabulation in summarizing each report, it has been possible to draw overall conclusions: Information has also been obtained worldwide, especially Sweden and Canada; The rock stress state has been measured but further work is required related both to in situ measurements and numerical modelling to study, e.g., the influence of deformation zones on the local stress state; The intact rock has been extensively studied: there is a good knowledge of the parameters and their values, including the anisotropic nature of the site rocks; The geometry of the fractures is included in the geological characterisation but more rock mechanics work is required on the mechanical properties; The mechanical properties of the deformation zones have not been studied in detail; The thermal properties of the site rock are relatively well understood; A new classification has been developed for constructability and long-term safety assessment. This classification

  11. Geophagy (rock eating, experimental stress and cognitive idiosyncrasy

    Directory of Open Access Journals (Sweden)

    Kirill Golokhvast

    2014-05-01

    Conclusions: These results suggest that, in natural environmental conditions, “edible” rocks serve as an adaptive tool for recovery from various types of environmental stresses, and are examples of self-medication.

  12. Shock resistance testing

    International Nuclear Information System (INIS)

    Pouard, M.

    1984-03-01

    In the framework of mechanical tests and to answer the different requests for tests, the T.C.R (Transport Conditionnement et Retraitement) laboratory got test facilities. These installations allow to carry out tests of resistance to shocks, mainly at the safety level of components of nuclear power plants, mockups of transport casks for fuel elements and transport containers for radioactive materials. They include a tower and a catapult. This paper give a decription of the facilities and explain their operation way [fr

  13. Characterization of shocked beryllium

    Directory of Open Access Journals (Sweden)

    Papin P.A.

    2012-08-01

    Full Text Available While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity models, the Preston-Tonks-Wallace (PTW and Mechanical Threshold Stress (MTS models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional “arrested” drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  14. Excavated rock materials from tunnels for sprayed concrete

    OpenAIRE

    Luong, Judy Yuen Wah; Aarstad, Kari; De Weerdt, Klaartje; Bjøntegaard, Øyvind

    2017-01-01

    Sand extracted from natural resources is widely used in concrete production nowadays. The increase in demand for concrete production has resulted in shortage of natural sand resources, especially in terms of suitable materials for concrete production. At the same time, large amounts of excavated rock materials are and have been generated from tunnelling projects and discarded. Hence, there is an opportunity to use these excavated rock materials as aggregates for concrete production. The chall...

  15. Pore water colloid properties in argillaceous sedimentary rocks

    OpenAIRE

    Degueldre, Claude; Cloet, Veerle

    2016-01-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions ...

  16. Radon exhalation from granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Del Claro, Flávia; Paschuk, Sergei A.; Corrêa, Janine N.; Mazer, Wellington; Narloch, Danielle Cristine; Martin, Aline Cristina [Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: flaviadelclaro@gmail.com, E-mail: spaschuk@gmail.com, E-mail: janine_nicolosi@hotmail.com, E-mail: denyak@gmail.com [Instituto de Pesquisa Pelé Pequeno Príncipe (IPPP), Curitiba, PR (Brazil)

    2017-07-01

    Naturally occurring radionuclides such as radon ({sup 222}Rn), its decay products and other elements from the radioactive series of uranium ({sup 238}U and {sup 235}U) and thorium ({sup 232}Th) are an important source of human exposure to natural radioactivity. The worldwide evaluation of health radiobiological effects and risks from population exposure to natural radionuclides is a growing concern. About 50% of personal radiation annual dose is related to radionuclides such as radon ({sup 222}Rn), thoron ({sup 220}Rn), radium ({sup 226}Ra), thorium ({sup 232}Th) and potassium ({sup 40}K), which are present in modern materials commonly used in construction of dwellings and buildings. The radioactivity of marbles and granites is of big concern since under certain conditions the radioactivity levels of these materials can be hazardous to the population and require the implementation of mitigation procedures. Present survey of the {sup 222}Rn and {sup 220}Rn activity concentration liberated in the air was performed using commercialized Brazilian granite rocks at national market as well as exported to other countries. The {sup 222}Rn and {sup 220}Rn measurements were performed using the AlphaGUARD instant monitor and RAD7 detector, respectively. This study was performed at the Applied Nuclear Physics Laboratory of the Federal University of Technology – Paraná (UTFPR). Obtained results of radon concentration activity in air exhaled studied samples of granites varied from 3±1 Bq/m{sup 3} to 2087±19 Bq/m{sup 3}, which shows that some samples of granitic rocks represent rather elevated health risk the population. (author)

  17. Mechanical property and cutting rate of microwave treated granite rock

    Directory of Open Access Journals (Sweden)

    Lek Sikong

    2009-10-01

    Full Text Available The purpose of this study is to investigate the effect of microwave treatment, especially at low power level on compressive strength and cutting rate of granite rock by using multimodal cavity. The power level and cooling rate of treated samples were found to have an effect on the compressive strength, and the cutting rate. This effect is due to the induction of the plastic zones and micro cracks in the rock matrix, especially at the grain boundaries induced by the thermal stresses of rock forming minerals which have the difference in dielectric properties after microwave heating for a certain exposure time together with the thermal-shock treatment after the heating. It was found that the strength of treated granite is less than 60% of the original after 30 minutes of exposure.The dry heated samples with a water quenching seem to be the most affected samples. They exhibit a significant decrease in compressive strength up to 70% and cutting rate up to 38% after 30-minute treatment at the power of 850W, and after 10-minute treatment at the power of 600W respectively. Prolonged treatment causes the relaxation of induced thermal stresses in the rock mass, leading to a slight increase in compressive strength, and a slight decrease in cutting rate. For dry samples, the cutting rate can be enhanced because of a decrease in hardness of rock mass dropped from 61.5 to 55.4 HRC afterthe 10-minute heating at 600W with thermal shock treatment.The absorbed water in the pores of rock mass also has an effect on a decrease in compressive strength. Because micro cracks developed by the water vapor generated by heat which escapes through open pores. However, it seems to have less effect on the cutting rate because it causes a slight decrease in the hardness.

  18. Sedimentary Rocks and Dunes

    Science.gov (United States)

    2004-01-01

    25 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows buttes composed of light-toned, sedimentary rock exposed by erosion within a crater occurring immediately west of Schiaparelli Basin near 4.0oS, 347.9oW. Surrounding these buttes is a field of dark sand dunes and lighter-toned, very large windblown ripples. The sedimentary rocks might indicate that the crater interior was once the site of a lake. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  19. Session: Hard Rock Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  20. Eficiência agronômica de superfosfato triplo e fosfato natural de Arad em cultivos sucessivos de soja e milho Agronomic efficiency of triple superphosphate and Arad rock phosphate on crop rotation of soybean and corn

    Directory of Open Access Journals (Sweden)

    Fábio Benedito Ono

    2009-06-01

    Full Text Available Conduziu-se este estudo, com o objetivo de avaliar os efeitos de doses de adubos fosfatados sobre a cultura da soja e do milho, em cultivos sucessivos. O experimento foi realizado em casa de vegetação da UFGD, em vasos contendo amostras de 5,5 dm³ de um Latossolo Vermelho Distroférrico argiloso, sendo utilizado como fontes de fósforo (P o superfosfato triplo (SFT e o fosfato natural de Arad (FNA. O FNA foi utilizado sob duas formas. Em uma, considerou-se o P total (Arad T e, em outra, apenas a fração de P solúvel em ácido cítrico a 2% (Arad SA, resultando em três fatores de estudo, cada um em seis níveis de P (0, 56, 112, 224, 336 e 560, expressos em mg dm-3. A soja foi semeada em dezembro de 2006 e ao final do ciclo, efetuou-se a colheita, avaliando-se a produtividade de grãos, teores de P na folha e no solo. Após o cultivo da soja, semeou-se o milho, cuja colheita das plantas ocorreu aos 76 dias após a semeadura, sendo avaliados a produção de massa seca da parte aérea e teores de P na folha. O índice de eficiência agronômica foi calculado para ambas as culturas. Conclui-se que, para o primeiro cultivo (soja, o SFT apresentou um melhor desempenho no que se refere à produtividade de grãos, quando comparado ao FNA. No cultivo do milho em sucessão a soja, o FNA tendeu a equiparar-se ao SFT nos atributos avaliados.The aim of this study was to evaluate the effects of phosphate fertilizer rates on soybean and corn crops, in crop rotation. The experiment was carried out in a greenhouse at the Grande Dourados University, in pots with samples of 5.5 dm³ clayey Dystropherric Red Latosol, where the triple superphosphate (TSP and the Arad rock phosphate (ARP were used as P source. Two kinds of ARP were used. In one, the total P (Arad T was considered while in the other, only the P soluble fraction in citric acid at the concentration of 2% (Arad SA was considered, resulting in three factors of study, each with six levels of P (0, 56

  1. Fractal Analysis of Rock Joint Profiles

    Science.gov (United States)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.

  2. Structure analysis - chiromancy of the rock

    International Nuclear Information System (INIS)

    Huber, A.; Huber, M.

    1989-01-01

    The reader may initially be surprised by a comparison between structure analysis and palmistry which is, in effect, a comparison between a scientific research method on the one hand and art which is equated with magical powers on the other. In the figurative sense, however, these two fields have some points in common which should help us to obtain a first impression of the nature of geological structure analysis. Chiromancy uses the lines and the form of the hand to predict the character and the future of the person in question. In the same way, geologists use rocks and rock forms to obtain information on structure and behaviour of different formations. Structure analysis is a specialised field of geological investigation in which traces of deformation are interpreted as expressions of rockforming forces. This article discusses how and why the character of a rock formation as well as its past, present and even future behaviour can be determined using structure analysis. (author) 11 figs

  3. Geomorphology: the Shock of the Familiar

    Science.gov (United States)

    Dietrich, W. E.

    2008-12-01

    Everyone experiences landscapes and has a sense about how they work: water runs down hill, it erodes and carries sediments, and that's about it, right? Introductory earth science text books are uniformly qualitative about the field, and leave one with little sense of wonder, and certainly not "shock". But four shocks occur if one peels away the first impressions. First, landscapes are surprisingly similar: the same forms are repeated in virtually all environments, including under the ocean and on other planets. Second, we lack theory and mechanistic observations to answer many simple first-order questions, e.g. what controls the width of a river, how does rock type control hillslope form and erosion rate, or, is there a topographic signature of life. Third, there are unexpected connections between surface erosion, deep earth processes, and climate. And fourth, the field itself, despite having been a subject of study for well over 100 years, is currently experiencing a revolution of ideas and discoveries through new tools, observatories, centers, journals, books, contributions of researchers from other disciplines, and from a significant hiring of young researchers in geomorphology. Deep messages await discovery in the simple landforms surrounding us.

  4. ON THE EXISTENCE OF SHOCKS IN IRRADIATED EXOPLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin [Institute for Astronomy, ETH Zuerich, Wolfgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland)

    2012-12-10

    Supersonic flows are expected to exist in the atmospheres of irradiated exoplanets, but the question of whether shocks develop lingers. Specifically, it reduces to whether continuous flow in a closed loop may become supersonic and if some portions of the supersonic flow steepen into shocks. We first demonstrate that continuous, supersonic flow may exist in two flavors: isentropic and non-isentropic, with shocks being included in the latter class of solutions. Supersonic flow is a necessary but insufficient condition for shocks to develop. The development of a shock requires the characteristics of neighboring points in a flow to intersect. We demonstrate that the intersection of characteristics may be quantified via the knowledge of the Mach number. Finally, we examine three-dimensional simulations of hot Jovian atmospheres and demonstrate that shock formation is expected to occur mostly on the dayside hemisphere, upstream of the substellar point, because the enhanced temperatures near the substellar point provide a natural pressure barrier for the returning flow. Understanding the role of shocks in irradiated exoplanetary atmospheres is relevant to correctly modeling observables such as the peak offsets of infrared phase curves.

  5. Natural factors and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process.

    Science.gov (United States)

    Parra, Amparo; Oyarzún, Jorge; Maturana, Hugo; Kretschmer, Nicole; Meza, Francisco; Oyarzún, Ricardo

    2011-10-01

    This contribution analyzes water chemical data for the Choapa basin, North Central Chile, for the period 1980-2004. The parameters considered are As, Cu Fe, pH, EC, SO₄⁻², Cl⁻¹, and HCO[Formula: see text], from samples taken in nine monitoring stations throughout the basin. Results show rather moderate contents of As, Cu, and Fe, with the exception of the Cuncumén River and the Aucó creek, explained by the influence of the huge porphyry copper deposit of Los Pelambres and by the presence of mining operations, respectively. When compared against results obtained in previous researches at the neighboring Elqui river basin, which host the El Indio Au-Cu-As district, a much reduced grade of pollution is recognized for the Choapa basin. Considering the effect of acid rock drainage (ARD)-related Cu contents on the fine fraction of the sediments of both river basins, the differences recorded are even more striking. Although the Los Pelambres porphyry copper deposit, on the headwaters of the Choapa river basin, is between one and two orders of magnitude bigger than El Indio, stream water and sediments of the former exhibit significantly lower copper contents than those of the latter. A main factor which may explain these results is the smaller degree of H( + )-metasomatism on the host rocks of the Los Pelambres deposit, where mafic andesitic volcanic rocks presenting propylitic hydrothermal alteration are dominant. This fact contrast with the highly altered host rocks of El Indio district, where most of them have lost their potential to neutralize ARD.

  6. A more general model for the analysis of the rock slope stability

    Indian Academy of Sciences (India)

    Because of the numerous problems related to the rock slope stability the above assumption is satisfied and the shear strength characteristics of intact rock have taken part in the analysis. The analysis presented here gives a better concept, view, and idea of understanding the physical nature of rock slopes and includes ...

  7. Fire effects on rock images and similar cultural resources [Chapter 5

    Science.gov (United States)

    Roger E. Kelly; Daniel F. McCarthy

    2012-01-01

    Throughout human global history, people have purposely altered natural rock surfaces by drilling, drawing, painting, incising, pecking, abrading and chiseling images into stone. Some rock types that present suitable media surfaces for these activities are fine-grained sandstones and granites, basalts, volcanic tuff, dolomites, and limestones. Commonly called rock...

  8. Modelling Progressive Failure in Rock-slopes

    Science.gov (United States)

    Pons, M. Güell I.; Jaboyedoff, M.

    2009-04-01

    Rock failures are common in Alpine mountain chains and pose a threat to life and infrastructures. In general, rock slope stability is an interplay between existing discontinuities and development of new ones in intact material. In this work, we study progressive failure by means of numerical methods at multiple scales and using distinct element methods (DEM). Distinct element methods are of advantage because they account for discontinuities and are able to simulate the development of failure in time. The use of micro-parameters instead of constitutive laws allows studying the influence of heterogeneities present in the rock mass. In the first case, the code PFC-2D is used at the slope scale to test the influence of the slope geometry, the joint sets distribution and the joint set persistence in the case of toppling failures under various triggering mechanisms. Heterogeneity properties (cohesion and friction angle) are distributed randomly to simulate natural rock variability. In the second case, a cellular automata model, which is based on concepts of progressive failure in disordered systems, is used to explain the role of heterogeneities in the fracture process at a small scale. The results provide a link to time-to-failure predictions observed in some field cases. This study aims to be a base for the development of a model which permits to understand why some rock masses accelerate until global failure while other are capable to stabilize under the same conditions.

  9. Thermal shock behaviour of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, G.; Saadaoui, M.; Chevalier, J.; Olagnon, C. [Groupe d' Etude de Metallurgie Physique UMR, Institut National des Sciences Appliquees de Lyon, Villeurbanne (France)

    2000-07-01

    Thermal shock of ceramics is complex to analyse because of the important number of parameters to take into account. Thermal shock analysis has been refined by considering the dependence with temperature of the different parameters. From the temperature evolution in the specimen, the stress and stress intensity factor (SIF) profiles can be calculated. This allows the prediction of the crack evolution during thermal shock. Thermal shock experiments conducted by using an in-situ acoustic emission (AE) apparatus allow the determination of the time of unstable crack growth. The effect of crack growth resistance (R-curve behaviour) can be taken into account and, if it is significant, the thermal shock resistance of ceramics can be improved. The fracture mechanical analysis was used to determine the R-curve behaviour of alumina material subjected to thermal shock. A good agreement is observed between predictions of thermal fracture theory based on fracture mechanics and experimental results. (orig.)

  10. Northeast Church Rock Mine

    Science.gov (United States)

    Northeast Church Rock Mine, a former uranium mine 17 miles northeast of Gallup, NM in the Pinedale Chapter of the Navajo Nation. EPA is working with NNEPA to oversee cleanup work by United Nuclear Corporation, a company owned by General Electric (GE).

  11. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  12. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  13. Fluids in metamorphic rocks

    NARCIS (Netherlands)

    Touret, J.L.R.

    2001-01-01

    Basic principles for the study of fluid inclusions in metamorphic rocks are reviewed and illustrated. A major problem relates to the number of inclusions, possibly formed on a wide range of P-T conditions, having also suffered, in most cases, extensive changes after initial trapping. The

  14. Finnish exchange students' culture shock

    OpenAIRE

    Pekkala, Karoliina

    2015-01-01

    This bachelor’s thesis is written about culture shock experienced by the exchange students from Finland. It is commissioned by an international students exchange organisation located in Finland. The aim of the research was to find out how much the host country affects the culture shock and to identify aspects that affect the adaptation of the students. The goal is to provide the future exchange students with advise on coping with culture shock. Theoretical framework consists of defining w...

  15. Eight Annual Conference on Shock

    Science.gov (United States)

    1985-11-01

    University 2) "Role of Eicosanoids in Disease States Other Than Shock" Perry V. Halushka, MD, PhD Medical University of South Carolina, Charleston 3...anoxemia re- sults in improved myocardial function and augments energy reserves of myocardial gly- cogen(MG). As many patients with heart disease also have...pretreated (30 min) shocked and sham control rats. SAO shock was induced by occlusions of the coeliac and superior mesenteric arteries for 60 mins. Plasma

  16. (U-Th)/He ages of phosphates from Zagami and ALHA77005 Martian meteorites: Implications to shock temperatures

    Science.gov (United States)

    Min, Kyoungwon; Farah, Annette E.; Lee, Seung Ryeol; Lee, Jong Ik

    2017-01-01

    Shock conditions of Martian meteorites provide crucial information about ejection dynamics and original features of the Martian rocks. To better constrain equilibrium shock temperatures (Tequi-shock) of Martian meteorites, we investigated (U-Th)/He systematics of moderately-shocked (Zagami) and intensively shocked (ALHA77005) Martian meteorites. Multiple phosphate aggregates from Zagami and ALHA77005 yielded overall (U-Th)/He ages 92.2 ± 4.4 Ma (2σ) and 8.4 ± 1.2 Ma, respectively. These ages correspond to fractional losses of 0.49 ± 0.03 (Zagami) and 0.97 ± 0.01 (ALHA77005), assuming that the ejection-related shock event at ∼3 Ma is solely responsible for diffusive helium loss since crystallization. For He diffusion modeling, the diffusion domain radius is estimated based on detailed examination of fracture patterns in phosphates using a scanning electron microscope. For Zagami, the diffusion domain radius is estimated to be ∼2-9 μm, which is generally consistent with calculations from isothermal heating experiments (1-4 μm). For ALHA77005, the diffusion domain radius of ∼4-20 μm is estimated. Using the newly constrained (U-Th)/He data, diffusion domain radii, and other previously estimated parameters, the conductive cooling models yield Tequi-shock estimates of 360-410 °C and 460-560 °C for Zagami and ALHA77005, respectively. According to the sensitivity test, the estimated Tequi-shock values are relatively robust to input parameters. The Tequi-shock estimates for Zagami are more robust than those for ALHA77005, primarily because Zagami yielded intermediate fHe value (0.49) compared to ALHA77005 (0.97). For less intensively shocked Zagami, the He diffusion-based Tequi-shock estimates (this study) are significantly higher than expected from previously reported Tpost-shock values. For intensively shocked ALHA77005, the two independent approaches yielded generally consistent results. Using two other examples of previously studied Martian meteorites

  17. Directional amorphization of boron carbide subjected to laser shock compression.

    Science.gov (United States)

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A

    2016-10-25

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.

  18. Directional amorphization of boron carbide subjected to laser shock compression

    Science.gov (United States)

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-10-01

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45˜50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C.

  19. Circulatory Shock. Volume 34. Number 1. May 1991. International Conference on Shock (2nd), Meeting of European Shock Society (5th), Annual Meeting of the Shock Society (USA) (14th), Vienna Shock Form (3rd) Held in Vienna, Austria on 2-6 June 1991

    Science.gov (United States)

    1991-06-06

    common medical therapies, one group received also glutathion tOSH ) 1200 mg/day. The trial lasted 15 days and the treated group showed a marked reduction in...coil SEPTIC SHOCK. E. Fischer, M.A. Marano, K. Van Zee, A.E. Hayes, C. Rock , A.A. Hudson, R.C. Thompson, S.F. Lowry, L.L. Moldawer (spons. H. Redl...at Greenspring 4301 W. Markham Baltimore, MD 21215 Little Rock , AR 72205 186 Membership Directory Connell, Reid S. Cunningham, Paul Dept. of Anatomy

  20. Myths of "shock therapy".

    Science.gov (United States)

    Fink, M

    1977-09-01

    The author discusses the myths of the ECT process--that shock and the convulsion are essential, memory loss and brain damage are inescapable, and little is known of the process--and assesses the fallacies in these ideas. Present views of the ECT process suggest that its mode of action in depression may best be described as a prolonged form of diencephalic stimulation, particularly useful to affect the hypothalamic dysfunctions that characterize depressive illness. The author emphasizes the need for further study of this treatment modality and for self-regulation by the profession.

  1. The Outsider's Syndrome Model: an inquiry into the psychodynamics of culture shock experience

    OpenAIRE

    Med HAFSI

    1992-01-01

    This paper explores the nature, or the psychodynamics of culture shock experience. The term culture shock, as far as I know, was first introduced by Oberg (1960), when studying the adjustment process of anthropologists to different cultures during their field research. For a longtime a subject for anthropology, thep henomenon of culture shock was studied as one of the phenomena observed during the course of adjustment to a new culture (Berry,1985). Recently, as can be shown by the large numbe...

  2. Gusev Rocks Solidified from Lava (3-D)

    Science.gov (United States)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  3. Gusev Rocks Solidified from Lava (False Color)

    Science.gov (United States)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  4. VIRTUAL HERITAGE ARCHIVES: BUILDING A CENTRALIZED AUSTRALIAN ROCK ART ARCHIVE

    Directory of Open Access Journals (Sweden)

    R. A. Haubt

    2013-07-01

    Full Text Available This paper examines use of multi-media in the curation, presentation and promotion of rock art. It discusses the construction of a centralised Australian rock art database and explores new technologies available for looking at rock art. In 2011, Prof. Taçon Chair in Rock Art Research and Director of PERAHU (Place, Evolution and Rock Art Heritage Unit called for a national rock art database raising awareness of the importance of preserving rock art as part of Australia's valuable Indigenous heritage (Taçon, 2011. Australia has over 100,000 rock art sites, important heritage places for Indigenous and non-Indigenous Australians and a testament to over 10,000 years of human activity, including interactions with other peoples and the environment. Many of these sites have not been documented or recorded and are threatened by natural and cultural agents. It is becoming increasingly important to develop conservation models for the protection and preservation of sites. Indigenous cultural heritage is difficult to manage on a local government level due to complex human / time / environment relationships and the importance of intangible cultural heritage (SoE SEWPAC, 2011. Currently no centralised database system exists in Australia to curate, present and promote rock art.

  5. Constitutive Theories for Woven Composite Structures Subjected to Shock Loading; Experimental Validation Using a Conical Shock Tube

    Directory of Open Access Journals (Sweden)

    David R. Hufner

    2012-01-01

    Full Text Available Woven polymer-based composites are currently used in a wide range of marine applications. These materials often exhibit highly nonlinear, rate dependent, anisotropic behavior under shock loadings. Correlation to transient response data, beyond an initial peak, is often difficult. The state of damage evolves throughout the time history and the unloading response varies based on the amount, and nature of, the accumulated damage. Constitutive theories that address the loading and unloading responses have been developed and integrated with each other. A complete theory, applicable to transient dynamic analysis, is presented. The model is implemented within the commercial finite element code, Abaqus, in the form of a user material subroutine. In this study, the conical shock tube is used to experimentally reproduce the high strain rates and fluid structure interactions typical of underwater shock loadings. The conical shock tube data is used to validate analytical model predictions. Simulation results are in good agreement with test data.

  6. Soil/Rock Properties Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Soil/Rock Properties LaboratoryLocation: Spokane SiteThe Soil/Rock Properties Laboratory is contained in the soils bay, a 4,700 sq. ft. facility that provides space...

  7. The nature of the Ailao Shan-Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs

    Science.gov (United States)

    Liu, Junlai; Tang, Yuan; Tran, My-Dung; Cao, Shuyun; Zhao, Li; Zhang, Zhaochong; Zhao, Zhidan; Chen, Wen

    2012-03-01

    The structural geology, timing of shearing, and tectonic implications of the ASRR shear zone, one of the most striking lineaments in Southeast Asia, have been the topics of extensive studies over the past few decades. The Xuelong Shan (XLS), Diancang Shan (DCS), Ailao Shan (ALS) and Day Nui Con Voi (DNCV) metamorphic massifs along the shear zone have preserved important information on its structural and tectonic evolution. Our field structural analysis, detailed microstructural and fabric analysis, as well as the quartz, sillimanite and garnet fabric studies of the sheared rocks from the massifs demonstrate the dominant roles of three deformation episodes during Cenozoic tectonic evolution in the shear zone. Among the contrasting structural and microstructural associations in the shear zone, D2 structures, which were formed at the brittle to ductile transition during large-scale left-lateral shearing in the second deformation episode, predominate over the structural styles of the other two deformation episodes. Discrete micro-shear zones with intensive grain size reduction compose the characteristic structural style of D2 deformation. In addition, several types of folds (early shearing folds, F21, and late-shearing folds, F22) were formed in the sheared rocks, including discrete to distributed mylonitic foliation, stretching lineation and shear fabrics (e.g., mica fish, domino structures, as well as sigma and delta fabrics). A sequence of microstructures from syn-kinematic magmatic flow, high-temperature solid-state deformation, to brittle-ductile shearing is well-preserved in the syn-kinematic leucocratic intrusions. Deformation structures from the first episode (D1) are characterized by F1 folds and distributed foliations (S1) in rocks due to pure shearing at high temperatures. They are preserved in weakly sheared (D2) rocks along the eastern margin of the ALS belt or in certain low-strain tectonic enclaves within the shear zone. Furthermore, semi

  8. Synthetic Rock Analogue for Permeability Studies of Rock Salt with Mudstone

    Directory of Open Access Journals (Sweden)

    Hongwu Yin

    2017-09-01

    Full Text Available Knowledge about the permeability of surrounding rock (salt rock and mudstone interlayer is an important topic, which acts as a key parameter to characterize the tightness of gas storage. The goal of experiments that test the permeability of gas storage facilities in rock salt is to develop a synthetic analogue to use as a permeability model. To address the permeability of a mudstone/salt layered and mixed rock mass in Jintan, Jiangsu Province, synthetic mixed and layered specimens using the mudstone and the salt were fabricated for permeability testing. Because of the gas “slippage effect”, test results are corrected by the Klinkenberg method, and the permeability of specimens is obtained by regression fitting. The results show that the permeability of synthetic pure rock salt is 6.9 × 10−20 m2, and its porosity is 3.8%. The permeability of synthetic mudstone rock is 2.97 × 10−18 m2, with a porosity 17.8%. These results are close to those obtained from intact natural specimens. We also find that with the same mudstone content, the permeability of mixed specimens is about 40% higher than for the layered specimens, and with an increase in the mudstone content, the Klinkenberg permeability increases for both types of specimens. The permeability and mudstone content have a strong exponential relationship. When the mudstone content is below 40%, the permeability increases only slightly with mudstone content, whereas above this threshold, the permeability increases rapidly with mudstone content. The results of the study are of use in the assessment of the tightness of natural gas storage facilities in mudstone-rich rock salt formations in China.

  9. 30th International Symposium on Shock Waves

    CERN Document Server

    Sadot, Oren; Igra, Ozer

    2017-01-01

    These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...

  10. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  11. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  12. Electric Shock Injuries in Children

    Science.gov (United States)

    ... Español Text Size Email Print Share Electric Shock Injuries in Children Page Content ​When the human body comes into ... can cause anything from minor discomfort to serious injury (even death). Young children, particularly toddlers, experience electric shock most often when ...

  13. Shock wave treatment in medicine

    Indian Academy of Sciences (India)

    Unknown

    to open surgery, the cost of the ESWT is very reasonable. But nevertheless it is necessary to improve the basic un ... In second group, shock waves are used to measure distances because of the low energy loss over large distances ... pared to a piezoelectric hydrophone. The rise time of an electrohydraulic generated shock ...

  14. Molecular diagnostics of interstellar shocks

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  15. Limados : Rock peruano

    OpenAIRE

    García Morete, Ramiro

    2013-01-01

    Incentivado por la corriente nuevaolera que llegaba de México, fue señalado por especialistas como pionero del punk. Aunque el plan, era tocar con lo que hubiera. Un recodo ínfimo de un período breve pero sorprendentemente poderoso, los 60 en un país que hizo del rock una expresión propia de su cultura. Facultad de Periodismo y Comunicación Social

  16. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  17. Floating shock fitting via Lagrangian adaptive meshes

    Science.gov (United States)

    Vanrosendale, John

    1995-01-01

    In recent work we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered on Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM), is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence.

  18. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  19. Kinetic modelization of water-rock interaction processes

    International Nuclear Information System (INIS)

    Pena, J.; Gimeno, M.J.

    1994-01-01

    A review of basic concepts in kinetics of low temperature natural systems is given: elementary and overall reactions, steady state and reaction mechanism, sequential reactions, parallel reactions and rate-determining step, temperature dependence of rate constant and principle of detailed balancing. The current status of kinetics modeling of water/rock interaction is treated. The comparison of the mean life of the processes with the residence time of the water in the system is very useful to decide the application or not of the kinetics treatment to the water/rock interaction processes. The right application of the kinetics treatment to the water/rock interaction needs the knowledge of the magnitude of the surface through which the water/rock reaction take place and its variation with time. Two ways to treat kinetically the water/rock interaction are the Mass Transfer method and the quasi-stationary state method

  20. Rock in Rio: forever young

    Directory of Open Access Journals (Sweden)

    Ricardo Ferreira Freitas

    2014-12-01

    Full Text Available The purpose of this article is to discuss the role of Rock in Rio: The Musical, as herald of megafestival Rock in Rio. Driven by the success that musicals have reached in Brazil, we believe that the design of this spectacle of music, dance and staging renews the brand of the rock festival, once it adds the force of young and healthy bodies to its concept. Moreover, the musical provides Rock in Rio with some distance from the controversal trilogy of sex, drugs and rock and roll, a strong mark of past festivals around the world. Thus, the musical expands the possibilities of growth for the brand.

  1. Bacterial transformation using micro-shock waves.

    Science.gov (United States)

    Divya Prakash, G; Anish, R V; Jagadeesh, G; Chakravortty, Dipshikha

    2011-12-15

    Shock waves are one of the most competent mechanisms of energy dissipation observed in nature. We have developed a novel device to generate controlled micro-shock waves using an explosive-coated polymer tube. In this study, we harnessed these controlled micro-shock waves to develop a unique bacterial transformation method. The conditions were optimized for the maximum transformation efficiency in Escherichia coli. The maximum transformation efficiency was obtained when we used a 30 cm length polymer tube, 100 μm thick metal foil, 200 mM CaCl(2), 1 ng/μl plasmid DNA concentration, and 1×10(9) cell density. The highest transformation efficiency achieved (1×10(-5) transformants/cell) was at least 10 times greater than the previously reported ultrasound-mediated transformation (1×10(-6) transformants/cell). This method was also successfully employed for the efficient and reproducible transformation of Pseudomonas aeruginosa and Salmonella typhimurium. This novel method of transformation was shown to be as efficient as electroporation with the added advantage of better recovery of cells, reduced cost (40 times cheaper than a commercial electroporator), and growth phase independent transformation. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Heat shock proteins: facts, thoughts, and dreams.

    Science.gov (United States)

    De Maio, A

    1999-01-01

    The most primitive mechanism of cellular protection involves the expression of a polypeptide family named heat shock or stress proteins (hsps). Some of these hsps are present in unstressed cells and play an important role in the folding and translocation of polypeptides across membranes. Thus, they have been termed molecular chaperones. Hsps are expressed in response to an array of stresses, including hyperthermia, oxygen radicals, heavy metals, ethanol, and amino acid analogues. In addition, the heat shock response is induced during clinically relevant situations such as ischemia/reperfusion and circulatory and hemorrhagic shock. All of the above stresses have in common that they disturb the tertiary structure of proteins and have adverse effects on cellular metabolism. Pretreatment of cells with a mild stress, sufficient to induce the expression of hsps, results in protection to subsequent insults. This phenomenon has been coined "stress tolerance" and is apparently caused by the resolubilization of proteins that were denatured during the stress. In addition, cellular structures (microfilaments and centrosomes) and processes (transcription, splicing, and translation) are stabilized or repaired during a second stress in stress tolerant cells and organisms. There is a great body of evidence indicating a direct role of hsps in the stabilization of these events. The intrinsic capacity of hsps to protect cells has potential relevance as a natural mechanism of organ protection during harmful environmental conditions and operative procedures, and in the combat against pathogens.

  3. Hydrological characteristics of Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial to evaluate the hydrogeological characteristics of rock in Japan in order to assess the performance of geosphere. This report summarizes the hydrogeological characteristics of various rock types obtained from broad literature surveys and the fields experiments at the Kamaishi mine in northern Japan and at the Tono mine in central Japan. It is found that the hydraulic conductivity of rock mass ranges from 10 -9 m/s to 10 -8 m/s, whereas the hydraulic conductivity of fault zone ranges from 10 -9 m/s to 10 -3 m/s. It is also found that the hydraulic conductivity tends to decrease with depth. Therefore, the hydraulic conductivity of rock mass at the depth of a repository will be smaller than above values. From the investigations at outcrops and galleries throughout the country, fractures are observed as potential pathways in all rock types. All kinds of crystalline rocks and pre-Neogene sedimentary rocks are classified as fractured media where fracture flow is dominant. Among these rocks, granitic rock is considered the archetype fractured media. On the other hand, andesite, tuff and Neogene sedimentary rocks are considered as intermediate between fractured media and porous media where flow in fractures as well as in rock matrix are significant. (author)

  4. Development of artificial soft rock

    International Nuclear Information System (INIS)

    Kishi, Kiyoshi

    1995-01-01

    When foundation base rocks are deeper than the level of installing structures or there exist weathered rocks and crushed rocks in a part of base rocks, often sound artificial base rocks are made by substituting the part with concrete. But in the construction of Kashiwazaki Kariwa Nuclear Power Station of Tokyo Electric Power Co., Inc., the foundation base rocks consist of mudstone, and the stiffness of concrete is large as compared with the surrounding base rocks. As the quality of the substituting material, the nearly same stiffness as that of the surrounding soft rocks and long term stability are suitable, and the excellent workability and economical efficiency are required, therefore, artificial soft rocks were developed. As the substituting material, the soil mortar that can obtain the physical property values in stable form, which are similar to those of Nishiyama mudstone, was selected. The mechanism of its hardening and the long term stability, and the manufacturing plant are reported. As for its application to the base rocks of Kashiwazaki Kariwa Nuclear Power Station, the verification test at the site and the application to the base rocks for No. 7 plant reactor building and other places are described. (K.I.)

  5. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  6. Control of adverse effects of explosive blasting in mines by using shock tube (non-electric) initiation systems and its future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P.D. [Maharashtra Explosives Ltd., Nagpur (India)

    2000-04-01

    Every kind of blasting in mines produces some adverse effects on environment, such as ground vibration, noise, fly rock etc. Presently, for restricting these adverse effects, use of shock tube (non-electric) initiation systems are gaining momentum. There are some inherent shortcomings of this initiation system regarding chances of misfires. This paper discusses the various adverse effects of blasting, advantages of shock tube initiation system and the shortcomings of shock tube initiation system regarding chances of misfire and how misfire arises out of failure of shock tube initiation system is different and more dangerous than the misfire occurring due to failure of conventional system (with detonating fuse and cord relays). 1 tab.

  7. In situ insights into shock-driven reactive flow

    Science.gov (United States)

    Dattelbaum, Dana

    2017-06-01

    Shock-driven reactions are commonplace. Examples include the detonation of high explosives, shock-driven dissociation of polymers, and transformation of carbon from graphite to diamond phases. The study of shock-driven chemical reactions is important for understanding reaction thresholds, their mechanisms and rates, and associated state sensitivities under the extreme conditions generated by shock compression. Reactions are distinguished by their thermicity - e.g. the volume and enthalpy changes along the reaction coordinate. A survey of the hallmarks of shock-driven reactivity for a variety of simple molecules and polymers will be presented, including benzene, acetylenes and nitriles, and formic acid. Many of the examples will illustrate the nature of the reactive flow through particle velocity wave profiles measured by in situ electromagnetic gauging in gas gun-driven plate impact experiments. General trends will be presented linking molecular moieties, shock temperatures, and reaction state sensitivities. Progress in applying bond-specific diagnostics will also be presented, including time-resolved Raman spectroscopy, and recent results of in situ x-ray diffraction of carbon at the Linac Coherent Light Souce (LCLS) free electron laser.

  8. Evaluation of XHVRB for Capturing Explosive Shock Desensitization

    Science.gov (United States)

    Tuttle, Leah; Schmitt, Robert; Kittell, Dave; Harstad, Eric

    2017-06-01

    Explosive shock desensitization phenomena have been recognized for some time. It has been demonstrated that pressure-based reactive flow models do not adequately capture the basic nature of the explosive behavior. Historically, replacing the local pressure with a shock captured pressure has dramatically improved the numerical modeling approaches. Models based upon shock pressure or functions of entropy have recently been developed. A pseudo-entropy based formulation using the History Variable Reactive Burn model, as proposed by Starkenberg, was implemented into the Eulerian shock physics code CTH. Improvements in the shock capturing algorithm were made. The model is demonstrated to reproduce single shock behavior consistent with published pop plot data. It is also demonstrated to capture a desensitization effect based on available literature data, and to qualitatively capture dead zones from desensitization in 2D corner turning experiments. This models shows promise for use in modeling and simulation problems that are relevant to the desensitization phenomena. Issues are identified with the current implementation and future work is proposed for improving and expanding model capabilities. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Elastic and transport properties of steam-cured pozzolanic-lime rock composites upon CO2 injection

    Science.gov (United States)

    Emery, Dan; Vanorio, Tiziana

    2016-04-01

    Understanding the relationship between pozzolanic ash-lime reactions and the rock physics properties of the resulting rock microstructure is important for monitoring unrest conditions in volcanic-hydrothermal systems as well as devising concrete with enhanced performance. By mixing pozzolanic ash with lime, the ancient Romans incorporated these reactions in the production of concrete. Recently, it has been discovered that a fiber-reinforced, concrete-like rock is forming naturally in the depths of the Campi Flegrei volcanic-hydrothermal systems (Vanorio and Kanitpanyacharoen, 2015). We investigate the physico-chemical conditions contributing to undermine or enhance the laboratory measured properties of the subsurface rocks of volcanic-hydrothermal systems and, in turn, build upon those processes that the ancient Romans unwittingly exploited to create their famous concrete. We prepared samples by mixing the pozzolana volcanic ash, slaked lime, aggregates of Neapolitan Yellow tuff, and seawater from Campi Flegrei in the same ratios as the ancient Romans. To mimic the conditions of the caldera, we used mineral seawater from a well in the Campi Flegrei region rich in sulfate, bicarbonate, calcium, potassium, and magnesium ions. The samples were cured by steam. We measured baseline properties of porosity, permeability, P-wave velocity, and S-wave velocity of the samples. P and S-wave velocities were used to derive bulk, shear, and Young's moduli. Subsequently, half of the samples were injected with CO2-rich aqueous solution and the changes in their microstructure and physical properties measured. One sample was subjected to rapid temperature changes to determine how porosity and permeability changed as a function of the number of thermal shocks. Exposure of CO2 to the concrete-like rock samples destabilized fibrous mineral forming and decreased the samples' ability to deform without breaking. We show that steam- and sulfur-alkaline- rich environments affect both

  10. IRC -10414: a bow-shock-producing red supergiant star

    Science.gov (United States)

    Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M.-A.; Kamiński, T.

    2014-01-01

    Most runaway OB stars, like the majority of massive stars residing in their parent clusters, go through the red supergiant (RSG) phase during their lifetimes. Nonetheless, although many dozens of massive runaways were found to be associated with bow shocks, only two RSG bow-shock-producing stars, Betelgeuse and μ Cep, are known to date. In this paper, we report the discovery of an arc-like nebula around the late M-type star IRC -10414 using the SuperCOSMOS H-alpha Survey. Our spectroscopic follow-up of IRC -10414 with the Southern African Large Telescope (SALT) showed that it is a M7 supergiant, which supports previous claims on the RSG nature of this star based on observations of its maser emission. This was reinforced by our new radio- and (sub)millimetre-wavelength molecular line observations made with the Atacama Pathfinder Experiment 12-m telescope and the Effelsberg 100-m radio telescope, respectively. The SALT spectrum of the nebula indicates that its emission is the result of shock excitation. This finding along with the arc-like shape of the nebula and an estimate of the space velocity of IRC -10414 (≈70 ± 20 km s-1) imply the bow shock interpretation for the nebula. Thus, IRC -10414 represents the third case of a bow-shock-producing RSG and the first one with a bow shock visible at optical wavelengths. We discuss the smooth appearance of the bow shocks around IRC -10414 and Betelgeuse and propose that one of the necessary conditions for stability of bow shocks generated by RSGs is the ionization of the stellar wind. Possible ionization sources of the wind of IRC -10414 are proposed and discussed.

  11. Tracking kidney stones with sound during shock wave lithotripsy

    Science.gov (United States)

    Kracht, Jonathan M.

    The prevalence of kidney stones has increased significantly over the past decades. One of the primary treatments for kidney stones is shock wave lithotripsy which focuses acoustic shock waves onto the stone in order to fragment it into pieces that are small enough to pass naturally. This typically requires a few thousand shock waves delivered at a rate of about 2 Hz. Although lithotripsy is the only non-invasive treatment option for kidney stories, both acute and chronic complications have been identified which could be reduced if fewer shock waves were used. One factor that could be used to reduce the number of shock waves is accounting for the motion of the stone which causes a portion of the delivered shock waves to miss the stone, yielding no therapeutic benefit. Therefore identifying when the stone is not in focus would allow tissue to be spared without affecting fragmentation. The goal of this thesis is to investigate acoustic methods to track the stone in real-time during lithotripsy in order to minimize poorly-targeted shock waves. A relatively small number of low frequency ultrasound transducers were used in pulse-echo mode and a novel optimization routine based on time-of-flight triangulation is used to determine stone location. It was shown that the accuracy of the localization may be estimated without knowing the true stone location. This method performed well in preliminary experiments but the inclusion of tissue-like aberrating layers reduced the accuracy of the localization. Therefore a hybrid imaging technique employing DORT (Decomposition of the Time Reversal Operator) and the MUSIC (Multiple Signal Classification) algorithm was developed. This method was able to localize kidney stories to within a few millimeters even in the presence of an aberrating layer. This would be sufficient accuracy for targeting lithotripter shock waves. The conclusion of this work is that tracking kidney stones with low frequency ultrasound should be effective clinically.

  12. Two-state ion heating at quasi-parallel shocks

    International Nuclear Information System (INIS)

    Thomsen, M.F.; Gosling, J.T.; Bame, S.J.; Onsager, T.G.; Russell, C.T.

    1990-01-01

    In a previous study of ion heating at quasi-parallel shocks, the authors showed a case in which the ion distributions downstream from the shock alternated between a cooler, denser, core/shoulder type and a hotter, less dense, more Maxwellian type. In this paper they further document the alternating occurrence of two different ion states downstream from several quasi-parallel shocks. Three separate lines of evidence are presented to show that the two states are not related in an evolutionary sense, but rather both are produced alternately at the shock: (1) the asymptotic downstream plasma parameters (density, ion temperature, and flow speed) are intermediate between those characterizing the two different states closer to the shock, suggesting that the asymptotic state is produced by a mixing of the two initial states; (2) examples of apparently interpenetrating (i.e., mixing) distributions can be found during transitions from one state to the other; and (3) examples of both types of distributions can be found at actual crossings of the shock ramp. The alternation between the two different types of ion distribution provides direct observational support for the idea that the dissipative dynamics of at least some quasi-parallel shocks is non-stationary and cyclic in nature, as demonstrated by recent numerical simulations. Typical cycle times between intervals of similar ion heating states are ∼2 upstream ion gyroperiods. Both the simulations and the in situ observations indicate that a process of coherent ion reflection is commonly an important part of the dissipation at quasi-parallel shocks

  13. Migration of fluids as a tool to evaluate the feasibility of the implantation of geological radioactive wastes repositories (RARN) in granitoid rocks: tests on granites submitted to natural deformation vs. not deformed

    International Nuclear Information System (INIS)

    Lopes, Nilo Henrique Balzani; Barbosa, Pedro Henrique Silva; Santos, Alanna Leite dos; Amorim, Lucas Eustáquio Dias; Freitas, Mônica Elizetti de; Rios, Francisco Javier

    2017-01-01

    Fluid composition and migration studies in granitoid rocks subjected to deformation events are a factor that should be considered in the selection of geologically favorable areas for RANR construction, and may be an excellent complement to engineering barrier designs. The research objective was to develop an academic approach, comparing the behavior of deformed and non-deformed granites, not being related to any CNEN project of deploying repositories. It is concluded that in the choice of suitable sites for the construction of repositories, granite bodies that are submitted to metamorphic / deformation / hydrothermal events or that are very fractured should be disregarded. The domes of granite batholith that have undergone hydraulic billing should also be discarded. It has been found that, because of the warming caused by radioactive decay reactions, there is a real possibility that the release of potentially abrasive fluids contained in the minerals can reach and corrode the walls of the repositories and / or packaging

  14. Progress in Predicting Rock-Slope Failures

    Science.gov (United States)

    Korup, O.

    2015-12-01

    Recent research on predicting landslides has seen a massive increase in statistical and computational methods that are largely adapted from the fields of machine learning and data mining. Judging from a sample of some 150 recent scientific papers, the gross majority of the reported success rates of these statistical methods are overwhelmingly high and promising at between 71% and 98%. Perhaps surprisingly, though, the death toll and damage from landslides has remained elevated in the early 21st century, so that reliably predicting the occurrence of rock-slope failures without overfitting our models remains challenging. Here I review some of the recent advances in this field, and show how novel results from landslide seismology and landslide sedimentology have promoted our ability of detecting large rock-slope failures in mountainous terrain. Several new detailed investigations of the internal nature of large rockslide deposits, for example, help to reduce the confusion potential with macroscopically similar moraine debris, or microscopically similar fault breccia. I further outline some of the limitations of empirical models that use rainfall intensity-duration thresholds for landslide early warning, and of multivariate methods concerned with mapping landslide susceptibility at the regional scale. I conclude by discussing the occurrence of 'black swans' such as long-runout rock-ice avalanches in size distributions of rock-slope failures, and their implications for quantitative hazard appraisals.

  15. Pediatric cardiogenic shock: Current perspectives

    Directory of Open Access Journals (Sweden)

    Subhranshu Sekhar Kar

    2015-01-01

    Full Text Available Cardiogenic shock is a pathophysiologic state where an abnormality of cardiac function is responsible for the failure of the cardiovascular system to meet the metabolic needs of the body tissues.Though it is less common than hypovolemia as the primary etiology in paediatric shock, eventually myocardial function is affected because of reduced perfusion in all forms of shock. Myocardial malfunction, in other forms of shock, is secondary to ischemia, acidosis, drugs, toxins or inflammation. Cardiogenic shock is a low output state characterized by elevated filling pressures, neurohormonal activation with the evidence of end-organ hypoperfusion. The management is challenging and consists of a combination of conventional cardio-respiratory support, vasoactive medications with correction of the anatomic cardiac defects. Treatment options like Extracorporeal membrane oxygenation and Ventricular assist devices provide a bridge to recovery, surgery or transplant. As cardiogenic shock in children carries a high risk of morbidity and mortality, emphasis should be placed on expedient management to arrest the pathophysiological cascade and avoid hypotension.This article aims to review the aetio-pathophysiological basis of pediatric cardiogenic shock, diagnostic options, recent advances in management modalities and outcome.

  16. Micas in experimentally shocked gneiss

    Science.gov (United States)

    Lambert, P.; Mackinnon, I. D. R.

    1984-01-01

    Powder-propellant guns are used to shock biotites and muscovites from a gneiss at pressures between 18 and 70 GPa. It is shown that shock in biotite and muscovite can produce homogeneous and devolatilized glasses within microseconds. Shock-deformed micas are found to exhibit fracturing, kinking, and complex extinction patterns over the entire pressure range investigated. Localized melting of micas commences at 33 GPa and reaches completion at 70 GPa. Even though melted biotite and muscovite are opaque optically, they exhibit extensive microvesiculation and flow when observed with the SEM. It is confirmed through electron diffraction that biotite and muscovite have transformed to a glass. The distribution of vesicles in shock-vitrified mica reveals escape of volatiles within the short duration of the shock experiment. It is noted that experimentally shocked biotite and muscovite undergo congruent melting. It is noted that the compositions of the glasses are similar to the unshocked micas except for volatiles (H2O loss and and K loss). These unusual glasses produced from mica can be quenched by rapid cooling conditions during the shock experiment. On the basis of the results, it is pointed out that the extremely low H2O content of tektites can be reconciled with a terrestrial origin by impact.

  17. Shock-induced kelyphite formation in the core of a complex impact crater

    Science.gov (United States)

    Deseta, Natalie; Boonsue, Suporn; Gibson, Roger L.; Spray, John G.

    2017-10-01

    occurred as the shocked rock volume underwent post-shock expansion, forming the core of the central uplift, and was followed by variable textural re-equilibration. This study thus provides a microtextural and mineralogical perspective of the shock regime within confined crust immediately prior to and during central uplift formation.

  18. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 2

    International Nuclear Information System (INIS)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1997-01-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil and rock penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reached the electronics contained in the various mechanical systems. Here, a study to compare two thickness values, 0.125 and 0.250 in. of five materials, GE RTV 630, HS II Silicone, Polysulfide Rubber, Sylgard 184, and Teflon for their shock mitigating characteristics with a split Hopkinson bar configuration has been completed. The five materials have been tested in both unconfined and confined conditions at ambient temperature and with two applied loads of 750 με peak (25 fps peak) with a 100 micros duration, measured at 10% amplitude, and 1500 με peak (50 fps peak) with a 100 micros duration, measured at 10% amplitude. The five materials have been tested at ambient, cold (-65 F), and hot (+165 F) for the unconfined condition with the 750 με peak (25 fps peak) applied load. Time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare how these materials lengthen the shock pulse, attenuate the shock pulse, reflect high

  19. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 1

    International Nuclear Information System (INIS)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1998-06-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125 fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical systems. As part of the investigation of packaging techniques, a two phase study of shock mitigating materials is being conducted. The purpose of the first phase reported here is to examine the performance of a joint that consists of shock mitigating material sandwiched in between steel and to compare the performance of the shock mitigating materials. A split Hopkinson bar experimental configuration simulates this joint and has been used to study the shock mitigating characteristics of seventeen, unconfined materials. The nominal input for these tests is an incident compressive wave with 50 fps peak (1,500 micro var-epsilon peak) amplitude and a 100 micros duration (measured at 10% amplitude)

  20. Laboratory measurements of P- and S-wave anisotropy in synthetic rocks by 3D printing

    Science.gov (United States)

    Kong, L.; Ostadhassan, M.; Tamimi, N.; Li, C.; Alexeyev, A.

    2017-12-01

    Synthetic rocks have been widely used to realize the models with controlled factors in rock physics and geomechanics experiments. Additive manufacturing technology, known as 3D printing, is becoming a popular method to produce the synthetic rocks as the advantages of timesaving, economics, and control. In terms of mechanical properties, the duplicability of 3D printed rock towards a natural rock has been studied whereas the seismic anisotropy still remains unknown as being the key factor in conducting rock physics experiments. This study utilized a 3D printer with gypsum as the ink to manufacture a series of synthetic rocks that have the shapes of octagonal prisms, with half of them printed from lateral and another half from the bottom. An ultrasonic investigation system was set up to measure the P- and S- wave velocities at different frequencies while samples were under dry conditions. The results show the impact of layered property on the P- and S- wave velocities. The measurement results were compared with the predicted results of Hudson model, demonstrating that the synthetic rock from 3D printing is a transverse isotropic model. The seismic anisotropy indicates that the availability of using 3D printed rocks to duplicate natural rocks for the purpose of recreating the experiments of rock physics. Future experiments will be performed on the dependence of seismic anisotropy on fracture geometry and density in 3D printed synthetic rocks.

  1. Study of deep fracturation of granitic rock mass. Documentary study

    International Nuclear Information System (INIS)

    Bles, J.L.; Landry, J.

    1984-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground. The Mt Blanc road tunnel, the EDF's Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied because detailed structural and geological studies have been realized these last 20 years. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater

  2. Livelihoods and natural resources

    DEFF Research Database (Denmark)

    Cotta, Jamie Nicole

    This dissertation research contributes to the emerging body of knowledge on the economic contributions of natural resources to rural livelihoods, including their role in household shock coping, in the humid tropics. Data from one of the first comprehensive household income quantifications...

  3. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-03-01

    Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas

  4. A collisionless shock wave experiment

    International Nuclear Information System (INIS)

    Winske, D.; Jones, M.E.; Sgro, A.G.; Thomas, V.A.

    1995-01-01

    Collisionless shock waves are a very important heating mechanism for plasmas and are commonly found in space and astrophysical environments. Collisionless shocks were studied in the laboratory more than 20 years ago, and more recently in space via in situ satellite measurements. The authors propose a new laboratory shock wave experiment to address unresolved issues related to the differences in the partition of plasma heating between electrons and ions in space and laboratory plasmas, which can have important implications for a number of physical systems

  5. Shocks in the Early Universe.

    Science.gov (United States)

    Pen, Ue-Li; Turok, Neil

    2016-09-23

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1  GeVUniverse as early as 10^{-30}  sec after the big bang.

  6. Simulation of mechanical shock environments

    International Nuclear Information System (INIS)

    Lalanne, Christian.

    1975-07-01

    Shocks can produce a severe mechanical environment which must be taken into account when designing and developing new equipments. After some mathematical (Laplace and Fourier transforms) and mechanical recalls (response of a one degree freedom system to a sinusoidal excitation), different analysis methods are compared, these methods being the most used now to compare relative severities of tests and establish specifications. A few chapter deal with the different properties of simple, easy to produce, shock shapes. Then some now-in-use programmators or shock-machines specifications are shown. A final chapter concerns acceleration transducers [fr

  7. Asymmetric impacts of international energy shocks on macroeconomic activities

    International Nuclear Information System (INIS)

    While limited by its scarcity of natural resources, the impacts of energy price changes on Taiwan's economic activities have been an important issue for social public and government authorities. This study applies the multivariate threshold model to investigate the effects of various international energy price shocks on Taiwan's macroeconomic activity. By separating energy price changes into the so-called decrease and increase regimes, we can realize different impacts of energy price changes and their shocks on economic output. The results confirm that there is an asymmetric threshold effect for the energy-output nexus. The optimal threshold levels are exactly where the oil price change is at 2.48%, the natural gas price change is at 0.66%, and the coal price change is at 0.25%. The impulse response analysis suggests that oil price and natural gas shocks have a delayed negative impact on macroeconomic activities. - Highlights: ► This study applies multivariate threshold model to investigate the effects of various international energy price shocks on Taiwan's macroeconomic activity. ► The results confirm that there is an asymmetric threshold effect for energy-output nexus. ► The optimal threshold levels are exactly found where oil price change is at 2.48%, natural gas price change is at 0.66%, and coal price change is at 0.25%.

  8. Postpartum Clostridium sordellii infection associated with fatal toxic shock syndrome

    DEFF Research Database (Denmark)

    Rørbye, C; Petersen, Ina Sleimann; Nilas, Lisbeth

    2000-01-01

    Clostridium bacteria are anaerobic Gram positive spore-form-ing bacilli, known to cause distinct clinical syndromes such as botulism, tetanus, pseudomembranous colitis and myonecrosis. The natural habitats of Clostridium species are soil, water and the gastrointestinal tract of animals and humans....... sorlellii associated toxic shock syndrome - the first recognized in Scandinavia....

  9. Shock parameter calculations at weak interplanetary shock waves

    Directory of Open Access Journals (Sweden)

    J. M. Gloag

    2005-02-01

    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  10. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  11. Shock wave dynamics derivatives and related topics

    CERN Document Server

    Emanuel, George

    2012-01-01

    "...this monograph develops an esoteric niche within shock wave theory. …treats shock waves from an analytical approach assuming perfect gas. Emanuel has made significant contributions to the theory of shock waves and has selected a number of topics that reflect those contributions."-Shock Waves, 2013.

  12. A smart rock

    Science.gov (United States)

    Pressel, Phil

    2014-12-01

    This project was to design and build a protective weapon for a group of associations that believed in aliens and UFO's. They collected enough contributions from societies and individuals to be able to sponsor and totally fund the design, fabrication and testing of this equipment. The location of this facility is classified. It also eventually was redesigned by the Quartus Engineering Company for use at a major amusement park as a "shoot at targets facility." The challenge of this project was to design a "smart rock," namely an infrared bullet (the size of a gallon can of paint) that could be shot from the ground to intercept a UFO or any incoming suspicious item heading towards the earth. Some of the challenges to design this weapon were to feed cryogenic helium at 5 degrees Kelvin from an inair environment through a unique rotary coupling and air-vacuum seal while spinning the bullet at 1500 rpm and maintain its dynamic stability (wobble) about its spin axis to less than 10 micro-radians (2 arc seconds) while it operated in a vacuum. Precision optics monitored the dynamic motion of the "smart rock."

  13. Rock Properties Model

    International Nuclear Information System (INIS)

    Lum, C.

    2004-01-01

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process

  14. In situ measurement of flow characteristics of natural saline rock in loose zones for gas and saline solutions in given rock stress conditions. Final report; In-situ-Ermittlung von Stroemungskennwerten natuerlicher Salzgesteine in Auflockerungszonen gegenueber Gas und Salzloesungen unter den gegebenen Spannungsbedingungen im Gebirge. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, F.; Belohlavek, K.U.; Behr, A.; Foerster, S.; Pohl, A.

    2001-04-01

    A method and equipment were developed for measuring the extension of loose zones around worked areas in saline rock and for in situ measurement of very small permeabilities and porosities in these zones. The experiments are based on unsteady borehole logs with flowing gases or liquids with special multiple pack systems that enable measurements from 4 cm to 15 m from the cavern contour. The measurements were evaluated by a specially developed software with automatic parameter identification. Permeabilities were identified between 10{sup 14} m{sup 2} and the detection limit of 10{sup 24} m{sup 2} and effective porosities of less than 0.1% at experimental times of several minutes up to several days. The logs were made in 3 mines in Stassfurt rock salt at depths of 700 and 500 m with different geological and geomechanical boundary conditions, worked in different ways and for different periods of time (between a few days and 37 years). Some of the findings were validated by ultrasonic measurements. [German] Fuer die Ermittlung der Ausdehnung von Auflockerungszonen um bergmaennisch aufgefahrene Strecken/Hohlraeume im Salzgestein und zur In-situ-Bestimmung kleinster Permeabilitaeten und Porositaeten in diesen Bereichen wurde ein Verfahren und eine praktikable Versuchsausruestung entwickelt. Diese eignet sich auch fuer Frac-Untersuchungen. Basis der Versuchsdurchfuehrungen sind instationaere Bohrlochuntersuchungen mit Gasen oder Fluessigkeiten als Stroemungsfluid unter Einsatz spezieller Mehrfachpackersysteme. Damit sind Messungen ab 4 cm Abstand zur Hohlraumkontur bis zu 15 m moeglich. Die Versuchsauswertung erfolgt mittels einer speziell entwickelten Software mit automatischer Parameteridentifikation, die die instationaere Stroemung um die Versuchsbohrung raeumlich vollstaendig beschreibt. Permeabilitaeten wurden je nach Abstand zur Hohlraumkontur zwischen 10{sup -14} m{sup 2} und der Nachweisgrenze 10{sup -24} m{sup 2} und effektive Porositaeten bis <0,1% ermittelt, bei

  15. Rock critics as 'Mouldy Modernists'

    Directory of Open Access Journals (Sweden)

    Becky Shepherd

    2011-09-01

    Full Text Available Contemporary rock criticism appears to be firmly tied to the past. The specialist music press valorise rock music of the 1960s and 1970s, and new emerging artists are championed for their ‘retro’ sounding music by journalists who compare the sound of these new artists with those included in the established ‘canon’ of rock music. This article examines the narrative tropes of authenticity and nostalgia that frame the retrospective focus of this contemporary rock writing, and most significantly, the maintenance of the rock canon within contemporary popular culture. The article concludes by suggesting that while contemporary rock criticism is predominately characterised by nostalgia, this nostalgia is not simply a passive romanticism of the past. Rather, this nostalgia fuels a process of active recontextualisation within contemporary popular culture.

  16. Aespoe Hard Rock Laboratory. Annual Report 2006

    International Nuclear Information System (INIS)

    2006-06-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. The work performed at Aespoe HRL during 2006 is in this report described in six chapters: Geo-science - experiments, analysis and modelling to increase the knowledge of the surrounding rock; Natural barriers - experiments, analysis and modelling to increase the knowledge of the repository barriers under natural conditions; Engineered barriers - demonstration of technology for and function of important engineered parts of the repository barrier system; Aespoe facility - operation, maintenance, data management, monitoring, public relations etc; Environmental research; and finally, International co-operation

  17. Aespoe Hard Rock Laboratory. Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. The work performed at Aespoe HRL during 2006 is in this report described in six chapters: Geo-science - experiments, analysis and modelling to increase the knowledge of the surrounding rock; Natural barriers - experiments, analysis and modelling to increase the knowledge of the repository barriers under natural conditions; Engineered barriers - demonstration of technology for and function of important engineered parts of the repository barrier system; Aespoe facility - operation, maintenance, data management, monitoring, public relations etc; Environmental research; and finally, International co-operation.

  18. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  19. Chemical and stable isotopic composition of water and gas in the Fort Union Formation of the Powder River Basin, Wyoming and Montana: Evidence for water/rock interaction and the biogenic origin of coalbed natural gas

    Science.gov (United States)

    Rice, Cynthia A.; Flores, Romeo M.; Stricker, Gary D.; Ellis, Margaret S.

    2008-01-01

    Significant amounts (> 36 million m3/day) of coalbed methane (CBM) are currently being extracted from coal beds in the Paleocene Fort Union Formation of the Powder River Basin of Wyoming and Montana. Information on processes that generate methane in these coalbed reservoirs is important for developing methods that will stimulate additional production. The chemical and isotopic compositions of gas and ground water from CBM wells throughout the basin reflect generation processes as well as those that affect water/rock interaction. Our study included analyses of water samples collected from 228 CBM wells. Major cations and anions were measured for all samples, δDH2O and δ18OH2O were measured for 199 of the samples, and δDCH4 of gas co-produced with water was measured for 100 of the samples. Results show that (1) water from Fort Union Formation coal beds is exclusively Na–HCO3-type water with low dissolved SO4 content (median oxygen (< 0.15 mg/L), whereas shallow groundwater (depth generally < 120 m) is a mixed Ca–Mg–Na–SO4–HCO3 type; (2) water/rock interactions, such as cation exchange on clay minerals and precipitation/dissolution of CaCO3 and SO4 minerals, account for the accumulation of dissolved Na and depletion of Ca and Mg; (3) bacterially-mediated oxidation–reduction reactions account for high HCO3 (270–3310 mg/L) and low SO4 (median < 0.15 mg/L) values; (4) fractionation between δDCH4 (− 283 to − 328 per mil) and δDH2O (− 121 to − 167 per mil) indicates that the production of methane is primarily by biogenic CO2 reduction; and (5) values of δDH2O and δ18OH2O (− 16 to − 22 per mil) have a wide range of values and plot near or above the global meteoric water line, indicating that the original meteoric water has been influenced by methanogenesis and by being mixed with surface and shallow groundwater.

  20. Shock wave velocity and shock pressure for low density powders : A novel approach

    NARCIS (Netherlands)

    Dijken, D.K.; Hosson, J.Th.M. De

    1994-01-01

    A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new

  1. SHOCK-WAVE VELOCITY AND SHOCK PRESSURE FOR LOW-DENSITY POWDERS - A NOVEL-APPROACH

    NARCIS (Netherlands)

    DIJKEN, DK; DEHOSSON, JTM

    1994-01-01

    A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new

  2. Sepsis and septic shock

    Science.gov (United States)

    Hotchkiss, Richard S.; Moldawer, Lyle L.; Opal, Steven M.; Reinhart, Konrad; Turnbull, Isaiah R.; Vincent, Jean-Louis

    2017-01-01

    For more than two decades, sepsis was defined as a microbial infection that produces fever (or hypothermia), tachycardia, tachypnoea and blood leukocyte changes. Sepsis is now increasingly being considered a dysregulated systemic inflammatory and immune response to microbial invasion that produces organ injury for which mortality rates are declining to 15–25%. Septic shock remains defined as sepsis with hyperlactataemia and concurrent hypotension requiring vasopressor therapy, with in-hospital mortality rates approaching 30–50%. With earlier recognition and more compliance to best practices, sepsis has become less of an immediate life-threatening disorder and more of a long-term chronic critical illness, often associated with prolonged inflammation, immune suppression, organ injury and lean tissue wasting. Furthermore, patients who survive sepsis have continuing risk of mortality after discharge, as well as long-term cognitive and functional deficits. Earlier recognition and improved implementation of best practices have reduced in-hospital mortality, but results from the use of immunomodulatory agents to date have been disappointing. Similarly, no biomarker can definitely diagnose sepsis or predict its clinical outcome. Because of its complexity, improvements in sepsis outcomes are likely to continue to be slow and incremental. PMID:28117397

  3. Theoretical Insight into Shocked Gases

    Energy Technology Data Exchange (ETDEWEB)

    Leiding, Jeffery Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-29

    I present the results of statistical mechanical calculations on shocked molecular gases. This work provides insight into the general behavior of shock Hugoniots of gas phase molecular targets with varying initial pressures. The dissociation behavior of the molecules is emphasized. Impedance matching calculations are performed to determine the maximum degree of dissociation accessible for a given flyer velocity as a function of initial gas pressure.

  4. The microphysics of collisionless shock waves

    DEFF Research Database (Denmark)

    Marcowith, Alexandre; Bret, Antoine; Bykov, Andrei

    2016-01-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active...... galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space....... It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments...

  5. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  6. Neutrophil Activation During Septic Shock.

    Science.gov (United States)

    Stiel, Laure; Meziani, Ferhat; Helms, Julie

    2018-04-01

    In addition to their well-known role as the cellular mediators of immunity, key other roles have been identified for neutrophils during septic shock. Importantly, neutrophils indeed play a critical role in the recently described immunothrombosis concept and in septic shock-induced coagulopathy. Septic shock is one of the most severe forms of infection, characterized by an inadequate host response to the pathogenic organism. This host response involves numerous defense mechanisms with an intense cellular activation, including neutrophil activation. Neutrophils are key cells of innate immunity through complex interactions with vascular cells and their activation may participate in systemic tissue damages. Their activation also leads to the emission of neutrophil extracellular traps, which take part in both pathogen circumscription and phagocytosis, but also in coagulation activation. Neutrophils thus stand at the interface between hemostasis and immunity, called immunothrombosis.The present review will develop a cellular approach of septic shock pathophysiology focusing on neutrophils as key players of septic shock-induced vascular cell dysfunction and of the host response, associating immunity and hemostasis. We will therefore first develop the role of neutrophils in the interplay between innate and adaptive immunity, and will then highlight recent advances in our understanding of immunothrombosis septic shock-induced coagulopathy.

  7. Computations of slowly moving shocks

    International Nuclear Information System (INIS)

    Karni, S.; Canic, S.

    1997-01-01

    Computations of slowly moving shocks by shock capturing schemes may generate oscillations are generated already by first-order schemes, but become more pronounced in higher-order schemes which seem to exhibit different behaviors: (i) the first-order upwind (UW) scheme which generates strong oscillations and (ii) the Lax-Friedrichs scheme which appears not to generate any disturbances at all. A key observation is that in the UW case, the numerical viscosity in the shock family vanishes inside the slow shock layer. Simple scaling arguments show the third-order effects on the solution may no longer be neglected. We derive the third-order modified equation for the UW scheme and regard the oscillatory solution as a traveling wave solution of the parabolic modified equation for the perturbation. We then look at the governing equation for the perturbation, which points to a plausible mechanism by which postshock oscillations are generated. It contains a third-order source term that becomes significant inside the shock layer, and a nonlinear coupling term which projects the perturbation on all characteristic fields, including those not associated with the shock family. 5 refs., 8 figs

  8. Textural remanence - A new model of lunar rock magnetism

    Science.gov (United States)

    Brecher, A.

    1976-01-01

    In reexamining the accumulated magnetic data on lunar rocks, several common patterns of magnetic behavior are recognized. Their joint occurrence strongly suggests a new model of lunar rock magnetism, which is based on partial preferred textural alignment of the spontaneous moments of magnetic grains without requiring the existence of ancient lunar magnetic fields. This magnetic fabric, mimetic to locally oriented petrofabric, gives rise to an apparent 'textural remanent magnetization'. In order to account for the observed intensity of 'stable remanence' in lunar rocks, only a minute fraction (0.001 to 0.00001) of the single-domain iron grains present need be preferentially aligned. Several mechanisms operating on the lunar surface, including shock and diurnal thermal cycling, appear adequate for producing the required type and degree of magnetic alignment in all lunar rock classes. The model is supported by a wide variety of direct and indirect evidence, and its predictions (e.g., regarding anisotropic susceptibility and remanence acquisition) can be experimentally tested.

  9. Rock.XML - Towards a library of rock physics models

    Science.gov (United States)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  10. Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations

    Science.gov (United States)

    Ravelo, R.; Germann, T. C.; Guerrero, O.; An, Q.; Holian, B. L.

    2013-10-01

    We report on large-scale nonequilibrium molecular dynamics simulations of shock wave compression in tantalum single crystals. Two new embedded atom method interatomic potentials of Ta have been developed and optimized by fitting to experimental and density functional theory data. The potentials reproduce the isothermal equation of state of Ta up to 300 GPa. We examined the nature of the plastic deformation and elastic limits as functions of crystal orientation. Shock waves along (100), (110), and (111) exhibit elastic-plastic two-wave structures. Plastic deformation in shock compression along (110) is due primarily to the formation of twins that nucleate at the shock front. The strain-rate dependence of the flow stress is found to be orientation dependent, with (110) shocks exhibiting the weaker dependence. Premelting at a temperature much below that of thermodynamic melting at the shock front is observed in all three directions for shock pressures above about 180 GPa.

  11. Diaplectic quartz glass and SiO2 melt experimentally generated at only 5 GPa shock pressure in porous sandstone: Laboratory observations and meso-scale numerical modeling

    Science.gov (United States)

    Kowitz, A.; Güldemeister, N.; Reimold, W. U.; Schmitt, R. T.; Wünnemann, K.

    2013-12-01

    A combination of shock recovery experiments and numerical modeling of shock deformation in the low pressure range from 2.5 to 17.5 GPa in dry, porous Seeberger sandstone provides new, significant insights with respect to the heterogeneous nature of shock distribution in such important, upper crustal material, for which to date no pressure-calibrated scheme for shock metamorphism exists. We found that pores are already completely closed at 2.5 GPa shock pressure. Whole quartz grains or parts of them are transformed to diaplectic quartz glass and/or SiO2 melt starting already at 5 GPa, whereas these effects are not observed below shock pressures of 30-35 and ˜45 GPa, respectively, in shock experiments with quartz single crystals. The appearance of diaplectic glass or melt is not restricted to the zone directly below the impacted surface but is related to the occurrence of pores in a much broader zone. The combined amount of these phases increases distinctly with increasing shock pressure from 0.03 vol.% at 5 GPa to ˜80 vol.% at 17.5 GPa. In accordance with a previous shock classification for silica phases in naturally shocked Coconino sandstone from Meteor Crater that was based on varied slopes of the Coconino sandstone Hugoniot curve, our observations allow us to construct a shock pressure classification for porous sandstone consistent with shock stages 1b-4 of the progressive shock metamorphism classification of Kieffer (1971).

  12. Rock the Globe

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    Created in 2005, the Swiss rock band "Wind of Change" is now candidate for the Eurovision Song Contest 2011 with a new song " Night & Light " with the music video filmed at CERN.   With over 20 gigs under their belt and two albums already released, the five members of the band (Alex Büchi, vocals; Arthur Spierer, drums; David Gantner, bass; Romain Mage and Yannick Gaudy, guitar) continue to excite audiences. For their latest composition "Night & Light", the group filmed their music video in the Globe of Science and Innovation. Winning the Eurovision contest would be a springboard in their artistic career for these young musicians. The selection results will be available December 11, 2010.      

  13. Pressurized thermal shock (PTS)

    International Nuclear Information System (INIS)

    Rosso, Ricardo D.; Ventura, Mirta A.

    2006-01-01

    In the present work, a description of Thermal Shock in Pressurized conditions (PTS), and its influence in the treatment of the integrity of the pressure vessel (RPV) of a Pressurized Water Reactor (PWR) and/or of a Heavy water Pressurized water Reactor (PHWR) is made. Generally, the analysis of PTS involves a process of three stages: a-) Modeling with a System Code of relevant thermohydraulics transients in reference with the thermal shock; b-) The local distribution of temperatures in the downcomer and the heat transference coefficients from the RPV wall to the fluid, are determined; c-) The fracture mechanical analysis. These three stages are included in this work: Results with the thermohydraulics code Relap5/mod.3, are obtained, for a LOCA scenario in the hot leg of the cooling System of the Primary System of the CAN-I reactor. The method used in obtaining results is described. A study on the basis of lumped parameters of the local evolutions of the temperature of the flow is made, in the downcomer of the reactor pressure vessel. The purpose of this study is to determine how the intensification of the stress coefficient, varies in function of the emergency injected water during the thermohydraulic transients that take place under the imposed conditions in the postulated scene. Specially, it is considered a 50 cm 2 break, located in the neighborhoods of the pressurized with the corresponding hot leg connection. This size is considered like the most critical. The method used to obtain the results is described. The fracture mechanical analysis is made. From the obtained results we confirmed that we have a simple tool of easy application in order to analyze phenomena of the type PTS in the postulated scenes by break in the cold and hot legs of the primary system. This methodology of calculus is completely independent of the used ones by the Nucleoelectrica Argentina S.A. (NASA) in the analysis of the PTS phenomena in the CAN-I. The results obtained with the adopted

  14. Rocks age and metamorphic occurrence from the southeastern part of Sao Paulo State and their crustal evaluation

    International Nuclear Information System (INIS)

    Tassinari, C.C.G.

    1988-01-01

    Pb-Pb and Rb-Sr whole rock isotope systematics and U-Pb on zircons method analyses are reported for rocks from the southeastern part of Sao Paulo state Brazil. The isotopic studies on granitic intrusions, orthogneissic rocks and migmatitic terranes, in this area, provides an important indication of the age and nature of the continental crust. (author) [pt

  15. Mineralogy and petrology of some Apollo 16 rocks and fines - General petrologic model of moon

    Science.gov (United States)

    Steele, I. M.; Smith, J. V.

    1973-01-01

    Data published in the literature and original results of mineralogical and petrological analyses of Apollo 16 rocks and fines indicate that Apollo 16 and Luna 20 sites are dominated by plagioclase-rich rocks with minor olivine and/or pyroxene. Data suggest that shock, brecciation, and recrystallization have largely eliminated primary textures. In general, all data are consistent with derivation from ejecta blankets produced from plagioclase-rich rocks by impacts. The lunar crust is discussed as a product of an early differentiation of the entire moon, and Mg/Fe data for experimental olivine-liquid and olivine-orthopyroxene equilibria are used as constraints to examine compositional data for rocks, glasses, and fragments in the light of specific models for crystal-liquid differentiation.

  16. Shocking findings in Manipur.

    Science.gov (United States)

    Sehgal, P N

    1991-08-01

    A sero-surveillance program in the state of Manipur, India revealed an alarmingly high rate of HIV infection, detected primarily among intravenous drug users. Previous surveillance had indicated that heterosexual intercourse was the leading mode of HIV transmission, and in 1989, no HIV infections had been detected in Manipur. But in February 1990, 5 HIV-positive cases were reported, and by May 1991, 1263 had been reported -- 93.9% of them among intravenous drug users. This came as shocking news, considering that at the same time only 5131 HIV cases had been reported in all of India. Although Manipur makes up only 0.91% of the country's population, the state's intravenous drug account for 23.1% of the nation's HIV cases. Manipur has an estimated 30,000 drug addicts, approximately 1/2 of which are intravenous drug users. Heroin is easily available in Manipur, due to the fact that the state shares a common international border of 352 km with Myanmar, one of the 3 countries that make up Southeast Asia's heroin producing "Golden Triangle." The author stresses, however, that drug abuse is not the cause of the transmission of HIV. It is the sharing of needles and syringes among intravenous drug users that creates the risk of infection, and preventive measures should reflect that fact. Besides discouraging drug use, preventive measures will require a dual strategy: 1) until they are cured, intravenous drug users should be given sterilized needles and syringes to avoid sharing; and 2) the law needs to be revised so that drug addicts are treated as patients and not as criminals. The Voluntary Health Association of India has begun to discuss such measures with governmental and nongovernmental organizations involved in the prevention and control of AIDS.

  17. Numerical Homogenization of Jointed Rock Masses Using Wave Propagation Simulation

    Science.gov (United States)

    Gasmi, Hatem; Hamdi, Essaïeb; Bouden Romdhane, Nejla

    2014-07-01

    Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young's modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young's modulus of equivalent medium for wave propagation analysis.

  18. Rock discontinuity surface roughness variation with scale

    Science.gov (United States)

    Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh

    2017-04-01

    ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We

  19. Rock Art in Kurdistan Iran

    Directory of Open Access Journals (Sweden)

    Jamal Lahafian

    2013-12-01

    Full Text Available Kurdistan, with great potential and prehistoric resources, has numerous petroglyphs in different areas of the province. During the last 14 years of extensive field study, more than 30 sites of rock art have been identified and introduced by the author. In this article, we summarize these rock art areas in Iranian Kurdistan.

  20. Beach rock from Goa Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.; Wagle, B.G.

    Beach rock is a common rock type in many parts of the southern hemisphere and also some areas north of the equator. Its distribution particularly in the Indian Ocean islands and atolls and coasts of India is reviewed. The mineralogic and faunal...

  1. Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish

    Science.gov (United States)

    Phillips, F.M.; Zreda, M.G.; Smith, S.S.; Elmore, D.; Kubik, P.W.; Dorn, R.I.; Roddy, D.J.

    1991-01-01

    Using cosmogenic 36Cl buildup and rock varnish radiocarbon, we have measured the exposure age of rock surfaces at Meteor Crater, Arizona. Our 36Cl measurements on four dolomite boulders ejected from the crater by the impact yield a mean age of 49.7 ?? 0.85 ka, which is in excellent agreement with an average age of 49 ?? 3 ka obtained from thermoluminescence studies on shock-metamorphosed dolomite and quartz. These ages are supported by undetectably low 14C in the oldest rock varnish sample. ?? 1991.

  2. Shock-wave induced synthesis of few layer graphene nanosheets

    Science.gov (United States)

    Chen, Pengwan; Yin, Hao; Xu, Chunxiao; Gao, Xin; Zhou, Qiang; Qu, Liangti

    2017-06-01

    Shock wave action combining shock-induced chemical reaction will cause a series of changes of material physical and chemical properties, which is supposed to be a new method for material synthesis and modification. Using solid CO2 (dry ice) as the carbon source, few layer graphene nanosheets were successful synthesized by reduction of CO2 with calcium hydride under detonation-driven flyer impact loading in this study. Furthermore, by adding ammonium nitrate to the reaction system, nitrogen-doped graphene materials were formed in this one-step shock-wave treatment. Similarly, few layer graphene and nitrogen-doped graphene materials were also prepared through the reaction of calcium carbonate and magnesium induced by shock wave. The shock synthesis of graphene nanosheets requires a balance between the growth rate of graphene materials and the formation rate of carbon atoms. Meanwhile, the pressure and temperature are two important factors affecting the synthesis of few layer graphene nanosheets. This work is supported by the National Natural Science Foundation of China under Grant Nos. 11521062 and 11172043.

  3. Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock

    Science.gov (United States)

    Desai, M. I.; Burch, J. L.; Broll, J. M.; Genestreti, K.; Torbert, R. B.; Ergun, R.; Wei, H.; Giles, B. L.; Russell, C. T.; Phan, T.; Chen, L. J.; Lai, H.; Wang, S.; Schwartz, S. J.; Allen, R. C.; Mauk, B.; Gingell, I.

    2017-12-01

    NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. During Phase 1a, MMS also encountered and crossed the Earth's bow shock more than 300 times. We use burst data during 2 bow shock crossings to shed new light on key open questions regarding the formation, evolution, and dissipation mechanisms at collisionless shocks. Specifically, we focus on two events that exhibit clear differences in the ion and electron properties, the associated wave activity, and, therefore in the nature of the dissipation. In the case of a quasi-perpendicular, low beta shock crossing, we find that the dissipation processes are most likely associated with field-aligned electron beams that are coincident with high frequency electrostatic waves. On the other hand, the dissipation processes at an oblique, high beta shock crossing are largely governed by the quasi-static electric field and generation of magnetosonic whistler waves that result in perpendicular temperature anisotropy for the electrons. We also discuss the implications of these results for ion heating, reflection, and particle acceleration.

  4. ROCK inhibitors in ocular disease

    Directory of Open Access Journals (Sweden)

    Eva Halasz

    2016-12-01

    Full Text Available Rho kinases (ROCKs have a crucial role in actin-cytoskeletal reorganization and thus are involved in broad aspects of cell motility, from smooth muscle contraction to neurite outgrowth. The first marketed ROCK inhibitor, called fasudil, has been used safely for treatment of cerebral vasospasm since 1995 in Japan. During the succeeding decades ROCK inhibitors have been applied in many pathological conditions from central nervous system disorders to cardiovascular disease as potential therapeutic agents or experimental tools to help understand the underlying (pathomechanisms. In 2014, a fasudil derivate named ripasudil was accepted for clinical use in glaucoma and ocular hypertension. Since ROCK kinases are widely expressed in ocular tissues, they have been implicated in the pathology of many ocular conditions such as corneal dysfunction, glaucoma, cataract, diabetic retinopathy, age-related macular degeneration, and retinal detachment. This paper aims to provide an overview of the most recent status/application of ROCK inhibitors in the field of eye disease.

  5. Drill-back studies examine fractured, heated rock

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Flexser, S.; Myer, L.R.

    1990-01-01

    To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences in compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs

  6. Prediction of massive bleeding. Shock index and modified shock index.

    Science.gov (United States)

    Terceros-Almanza, L J; García-Fuentes, C; Bermejo-Aznárez, S; Prieto-Del Portillo, I J; Mudarra-Reche, C; Sáez-de la Fuente, I; Chico-Fernández, M

    2017-12-01

    To determine the predictive value of the Shock Index and Modified Shock Index in patients with massive bleeding due to severe trauma. Retrospective cohort. Severe trauma patient's initial attention at the intensive care unit of a tertiary hospital. Patients older than 14 years that were admitted to the hospital with severe trauma (Injury Severity Score >15) form January 2014 to December 2015. We studied the sensitivity (Se), specificity (Sp), positive and negative predictive value (PV+ and PV-), positive and negative likelihood ratio (LR+ and LR-), ROC curves (Receiver Operating Characteristics) and the area under the same (AUROC) for prediction of massive hemorrhage. 287 patients were included, 76.31% (219) were male, mean age was 43,36 (±17.71) years and ISS was 26 (interquartile range [IQR]: 21-34). The overall frequency of massive bleeding was 8.71% (25). For Shock Index: AUROC was 0.89 (95% confidence intervals [CI] 0.84 to 0.94), with an optimal cutoff at 1.11, Se was 91.3% (95% CI: 73.2 to 97.58) and Sp was 79.69% (95% CI: 74.34 to 84.16). For the Modified Shock Index: AUROC was 0.90 (95% CI: 0.86 to 0.95), with an optimal cutoff at 1.46, Se was 95.65% (95% CI: 79.01 to 99.23) and Sp was 75.78% (95% CI: 70.18 to 80.62). Shock Index and Modified Shock Index are good predictors of massive bleeding and could be easily incorporated to the initial workup of patients with severe trauma. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  7. Electron heating at interplanetary shocks

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.; Zwickl, R.D.

    1982-01-01

    Data for 41 forward interplanetary shocks measured between August 1978 and December 1979 show that the ratio of downstream to upstream electron temperatures, T/sub e/(d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T/sub e/(d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T/sub p/(d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the earth's bow shock. Individual samples of T/sub e/(d/u) and T/sub p/(d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons relatively more efficiently than they heat the electrons

  8. Shock processing of interstellar grains

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1986-01-01

    Shock processing plays an important role in the life of a typical interstellar grain. Shocks of 100 km/s-l or greater can destroy about 50% of the grain material under appropriate preshock conditions of density and magnetic field. The destruction occurs by grain-grain collisions and nonthermal sputtering for steady state radiative shocks and by thermal sputtering for fast adiabatic shocks. The evaluation of the lifetime of grains against shock destruction depends on models of the interstellar medium (ISM) structure and on supernova remnants (SNR) evolution. Results from various authors give lifetimes between 10 to the 8th and 10 to the 9th power years, compared to typical injection times for new grains of a few times 10 to the 9th power years. These numbers require that a major portion of the interstellar silicon bearing grain material must be formed by grain growth in the ISM. At the same time, the presence of isotopic anomalies in some meteorites implies that at least some grains must survive from their formation in SNRs or red giant winds through incorporation into the solar system

  9. Geologic history of the Slick Rock district and vicinity, San Miguel and Dolores Counties, Colorado

    International Nuclear Information System (INIS)

    Shawe, D.R.

    1976-01-01

    This report is a narrative summary and interpretation, in the form of a geologic history of the Slick Rock district and vicinity, of four previously published chapters in this series dealing with stratigraphy of the Slick Rock district and vicinity, petrography of sedimentary rocks of the district, structure of the district and vicinity, and altered sedimentary rocks of the district, and of other previously published reports on the district. It forms the background, with the earlier reports, for presentation of a final report in the series describing the uranium-vanadium ore deposits. A review of the origin of sedimentary rocks and geologic history of the region indicates that formation of uranium-vanadium deposits was a natural result of the deposition of th rocks, the occurrence of intrastratal waters therein, and the post-depositional movement of the waters resulting from evolution of the sedimentary rock environment. 31 refs

  10. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M.S.; Kumar, S.; Babita, K. [Thapar Institute of Engineering and Technology, Patiala (India). School of Biotechnology; Reddy, M.S. [Auburn University, AL (United States). Department of Entomology and Plant Pathology

    2002-09-01

    Three isolates of Aspergillus tubingensis and two isolates of Aspergillus niger isolated from rhizospheric soils were tested on solubilization of different rock phosphates. All the isolates of Aspergillus were capable of solubilizing all the natural rock phosphates. A. tubingensis (AT1) showed maximum percent solubilization in all the rock phosphates tested in this study when compared to other isolates. This isolate also showed highest phosphorus (P) solubilization when grown in the presence of 2% of rock phosphate. A. tubingensis (AT1) seems to be more efficient in solubilization of rock phosphates compared to other isolates reported elsewhere. This is the first report of rock phosphate solubilization by A. tubingensis and might provide an efficient large scale biosolubilization of rock phosphates intended for P fertilizer. (author)

  11. Real-time noble gas release signaling rock deformation

    Science.gov (United States)

    Bauer, S. J.; Gardner, W. P.; Lee, H.

    2016-12-01

    We present empirical results/relationships of rock strain, microfracture density, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite and basalt. Noble gases are contained in most crustal rock at inter/intra granular sites, their release during natural and manmade stress and strain changes represents a signal of brittle/semi brittle deformation. The gas composition depends on lithology, geologic history and age, fluids present, and uranium, thorium and potassium-40 concentrations in the rocks that affect radiogenic noble gases (helium, argon) production. Noble gas emission and its relationship to crustal processes have been studied, including correlations to tectonic velocities and qualitative estimates of deep permeability from surface measurements, finger prints of nuclear weapon detonation, and as potential precursory signals to earthquakes attributed to gas release due to pre-seismic stress, dilatancy and/or rock fracturing. Helium emission has been shown as a precursor of volcanic activity. Real-time noble gas release is observed using an experimental system utilizing mass spectrometers to measure gases released during triaxial rock deformation. Noble gas release is shown to represent a sensitive precursor signal of rock deformation by relating real-time noble gas release to stress-strain state changes and acoustic emissions. We propose using noble gas release to also signal rock deformation in boreholes, mines and nuclear waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress/strain state, and or permanent deformation dependent. Such relationships, when calibrated, may be used to sense rock deformation and then develop predictive models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the US Dept. of Energy's National Nuclear Security Administration under

  12. Pressure Hull Analysis under Shock Loading

    Directory of Open Access Journals (Sweden)

    Ya-Jung Lee

    2008-01-01

    Full Text Available The hull of high performance submarines must resist underwater shock loading due to exploding torpedoes or depth bombs. An underwater shock involving an initial shock wave and successive bubble pulsating waves is so complex that a theoretical technique for deriving shock pressure distribution is required for improving simulation efficiency. Complete shock loading is obtained theoretically in this work, and responses of a submarine pressure hull are calculated using ABAQUS USA (Underwater Shock Analysis codes. In the long run, this deflection and stress data will assist in examining the structural arrangement of the submarine pressure hull.

  13. Heritage stones and their deterioration in rock-cut monuments in India

    Science.gov (United States)

    Sharma, Vinod K.

    2017-04-01

    India is dotted with thousands of rock- cut monuments of considerable antiquity having artwork of global importance. It is evident from the location of many of these monuments that knowledge of viable selection of site, geotechnical considerations and amenability to sculptures' chisel was vital for construction of rock-cut monuments and sculptures. These rock-cut structures also represent significant achievements of geotechnical and structural engineering and craftsmanship of contemporary period. The paper deals with some of the sites where natural rock-mass exposures were used to hew the monuments and highlight the deterioration owing to geological and climatic conditions. The Kailash temple in Ellora and Ajanta rock-cut caves are among the greatest architectural feats which owe their grandeur to amenability and consistency of basalt of Deccan Volcanic Province from which it is hewn. The Kailash Temple was created through a single, huge top-down excavation 100 feet deep down into the volcanic basaltic cliff rock. These ancient rock cut structures are amazing achievements of structural engineering and craftsmanship. The lava flows are nearly horizontal, competent rock medium facilitated the chiseling for the sculptures. The deterioration of these basalts are seen where the amygdule, vesicles and opening in rock discontinuity had the medium of construction or excavation. The monolithic rock- cut monuments of Mahabalipuram temples are constructed in the form of rathas or chriot and adjoining caves by excavating solid charnockite/granites. The large rock exposures are excavated and cut to perfection with wall decorations and sculptured art. The charnockites are the strongest and the most durable rock, yet quite amenable to fine dressing. These monolithic monuments in charnockite and are cut out of the hillock. The 7th Century monuments now exhibit somewhat rough surface probably due to weathering effect of salt laden winds from the sea side and alteration of feldspars

  14. Shock, diaschisis and von Monakow

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    2013-07-01

    Full Text Available The concept of shock apparently emerged in the middle of the 18th century (Whyett as an occurrence observed experimentally after spinal cord transection, and identified as "shock" phenomenon one century later (Hall. The concept was extended (Brown-Séquard and it was suggested that brain lesions caused functional rupture in regions distant from the injured one ("action à distance". The term "diaschisis" (von Monakow, proposed as a new modality of shock, had its concept broadened, underpinned by observations of patients, aiming at distinguishing between symptoms of focal brain lesions and transitory effects they produced, attributable to depression of distant parts of the brain connected to the injured area. Presently, diaschisis is related mainly to cerebrovascular lesions and classified according to the connection fibers involved, as proposed by von Monakow. Depression of metabolism and blood flow in regions anatomically separated, but related by connections with the lesion, allows observing diaschisis with neuroimaging.

  15. Geophysical methods for evaluation of plutonic rocks

    International Nuclear Information System (INIS)

    Gibb, R.A.; Scott, J.S.

    1986-04-01

    Geophysical methods are systematically described according to the physical principle and operational mode of each method, the type of information produced, limitations of a technical and/or economic nature, and the applicability of the method to rock-mass evaluation at Research Areas of the Nuclear Fuel Waste Management Program. The geophysical methods fall into three categories: (1) airborne and other reconnaissance surveys, (2) detailed or surface (ground) surveys, and (3) borehole or subsurface surveys. The possible roles of each method in the site-screening and site-evaluation processes of disposal vault site selection are summarized

  16. Fractures and Rock Mechanics, Phase 1

    DEFF Research Database (Denmark)

    Havmøller, Ole; Krogsbøll, Anette

    1997-01-01

    The main objectives of the project are to combine geological description of fractures, chalk types and rock mechanical properties, and to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. Five chalk types, representing two outcrop localities: Stevns...... and Hillerslev, and three reservoir zones: Tyra Maastrictian, Valhall Tor and Valhall Hod are investigated. Different test types are applied in small and large scale in order to investigate the influence on stiffness and strength from natural and induced fractures, stylolites, bedding planes and healed fractures...

  17. Uranium series, volcanic rocks

    Science.gov (United States)

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  18. They will rock you!

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    On 30 September, CERN will be the venue for one of the most prestigious events of the year: the concert for the Bosons&More event, the Organization’s celebration of the remarkable performance of the LHC and all its technical systems, as well as the recent fundamental discoveries. Topping the bill will be the Orchestre de la Suisse Romande, the CERN Choir, the Zürcher Sing-Akademie and the Alan Parsons Live Project rock group, who have joined forces to create an unforgettable evening’s entertainment.   The Orchestre de la Suisse Romande, directed by Maestro Neeme Järvi, artistic and musical director of the OSR. (Image: Grégory Maillot). >>> From the Orchestre de la Suisse Romande… Henk Swinnen, General Manager of the Orchestre de la Suisse Romande (OSR), answers some questions for the CERN Bulletin, just a few days before the event. How did this project come about? When CERN invited us to take part in the B...

  19. Modelling rock fragmentation of Extremely Energetic Rockfalls

    Science.gov (United States)

    De Blasio, Fabio; Dattola, Giuseppe; Battista Crosta, Giovanni

    2017-04-01

    Extremely energetic rockfalls (EER) are phenomena for which the combination of a large volume (at least some thousands of m ) and a free fall height of hundreds of metres, results in a large released energy. We fix a threshold value of around 1/50 of kilotons to define such a type of events. Documented examples include several events with dif-ferent size in the Alps (Dru, 2005, 2011, 265,000, 59,200 m3; val Fiscalina - Cima Una, 2007, 40,000 m3; Thurwieser 2004, ca 2 Mm3; Cengalo, 2011, 1.5*105 m3 in 2016, in Switzerland; Civetta, 2013, ca 50,000 m3;), in the Apennines (Gran Sasso, 2006, 30,000 m3), Rocky Mountains (Yosemite, Happy Isles, 38,000 m3), and Himalaya. EERs may become more frequent on steep and sharp mountain peaks as a consequence of permafrost thawing at higher altitudes. In contrast to low energy rockfalls where block disintegration is limited, in EERs the impact after free fall causes an immediate and efficient release of energy much like an explosion. The severe disintegration of the rock and the corresponding air blast are capable of snapping trees many hundreds of metres ahead of the fall area. Pulverized rock at high speed can abrade tree logs, and the resulting suspension flow may travel much further the impact zone, blanketing vast surrounding areas. Using both published accounts of some of these events and collecting direct data for some of them, we present some basic models to describe the involved processes based on analogies with explosions and explosive fragmentation. Of the initial energy, one part is used up in the rock disintegration, and the rest is shared between the shock wave and air blast. The fragmentation energy is calculated based on the fitting of the dust size spectrum by using different proba-bilistic distribution laws and the definition of a surface energy and by considering the involved strain rate. We find the fragmentation is around one third of the initial boulder energy. Finally, we evaluate the velocity of the

  20. Sepsis and Septic Shock Strategies.

    Science.gov (United States)

    Armstrong, Bracken A; Betzold, Richard D; May, Addison K

    2017-12-01

    Three therapeutic principles most substantially improve organ dysfunction and survival in sepsis: early, appropriate antimicrobial therapy; restoration of adequate cellular perfusion; timely source control. The new definitions of sepsis and septic shock reflect the inadequate sensitivity, specify, and lack of prognostication of systemic inflammatory response syndrome criteria. Sequential (sepsis-related) organ failure assessment more effectively prognosticates in sepsis and critical illness. Inadequate cellular perfusion accelerates injury and reestablishing perfusion limits injury. Multiple organ systems are affected by sepsis and septic shock and an evidence-based multipronged approach to systems-based therapy in critical illness results in improve outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Shock Wave Diffraction Phenomena around Slotted Splitters

    Directory of Open Access Journals (Sweden)

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  2. Fetus, fasting, and festival: the persistent effects of in utero social shocks.

    Science.gov (United States)

    Chen, Xi

    2014-09-01

    The Fetal Origins Hypothesis (FOH), put forward in the epidemiological literature and later flourished in the economics literature, suggests that the time in utero is a critical period for human development. However, much attention has been paid to the consequences of fetal exposures to more extreme natural shocks, while less is known about fetal exposures to milder but more commonly experienced social shocks. Using two examples of under-nutrition due to mild social shocks, i.e. Ramadan fasting and festival overspending, this paper summarizes our current knowledge, especially the contribution from economics, and key challenges in exploring fetal exposures to milder social shocks. I also discuss the salient added value of identifying milder versus more extreme fetal shocks. Finally, implications are drawn on individual decisions and public policy to improve children's well-being before they are born or even before their mothers realize that they are pregnant.

  3. Fetus, Fasting, and Festival: The Persistent Effects of In Utero Social Shocks

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2014-09-01

    Full Text Available The Fetal Origins Hypothesis (FOH, put forward in the epidemiological literature and later flourished in the economics literature, suggests that the time in utero is a critical period for human development. However, much attention has been paid to the consequences of fetal exposures to more extreme natural shocks, while less is known about fetal exposures to milder but more commonly experienced social shocks. Using two examples of under-nutrition due to mild social shocks, i.e. Ramadan fasting and festival overspending, this paper summarizes our current knowledge, especially the contribution from economics, and key challenges in exploring fetal exposures to milder social shocks. I also discuss the salient added value of identifying milder versus more extreme fetal shocks. Finally, implications are drawn on individual decisions and public policy to improve children’s well-being before they are born or even before their mothers realize that they are pregnant.

  4. Dynamics of rock varnish formation

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, R. Jr.; Reneau, S.L.; Guthrie, G.D. Jr.; Bish, D.L.; Harrington, C.D.

    1991-01-01

    Our studies of rock varnish from the southwestern United States suggest that the Mn-phase in rock varnish has neither the chemistry nor the crystal structure of birnessite. Rather, the Mn-rich phase is non-crystalline and contains Ba, Ca, Fe, Al, and P. Unknowns concerning the formation of this non-crystalline Mn phase must be resolved before researchers are able to define chemical parameters of rock varnish formation based upon conditions of formation of the Mn phase. 6 refs., 9 figs.

  5. Space Weathering of Lunar Rocks

    Science.gov (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  6. Multiverso: Rock'n'Astronomy

    Science.gov (United States)

    Caballero, J. A.

    2012-05-01

    In the last few years, there have been several projects involving astronomy and classical music. But have a rock band ever appeared at a science conference or an astronomer at a rock concert? We present a project, Multiverso, in which we mix rock and astronomy, together with poetry and video art (Caballero, 2010). The project started in late 2009 and has already reached tens of thousands people in Spain through the release of an album, several concert-talks, television, radio, newspapers and the internet.

  7. Mineral Detector for Igneous Rocks

    Science.gov (United States)

    Ishikawa, S. T.; Hart, S. D.; Gulick, V. C.

    2010-12-01

    We present a Raman spectral analysis tool that uses machine learning algorithms to classify pure minerals in igneous rocks. Experiments show greater than 90% accuracy classifying a test set of pure minerals against a database of similar reference minerals using an artificial neural network. Efforts are currently underway to improve this tool for use as a mineral detector in rock samples, an important milestone toward autonomously classifying rocks based on spectral, and previous imaging work. Although pure mineral classification has been widely successful, applying the same methods to rocks is difficult because the spectra may represent a combination of multiple, and often competing, mineral signatures. In such cases some minerals may appear with more intensity than others resulting in masking of weaker minerals. Furthermore, with our particular spectrometer (852 nm excitation, ~50 micron spot size), minerals such as potassium feldspar fluoresce, both obscuring its characteristic Raman features and suppressing those of weaker minerals. For example, plagioclase and quartz, two key minerals for determining the composition of igneous rocks, are often hidden by minerals such as potassium feldspar and pyroxene, and are consequently underrepresented in the spectral analysis. These technicalities tend to skew the perceived composition of a rock from its actual composition. Despite these obstacles, an experiment involving a training set of 26 minerals (plagioclase, potassium feldspar, pyroxene, olivine, quartz) and a test set of 57 igneous rocks (basalt, gabbro, andesite, diorite, dacite, granodiorite, rhyolite, granite) shows that generalizations derived from their spectral data are consistent with expected trends: as rock composition goes from felsic to mafic there is a marked increase in the detection of minerals such as plagioclase and pyroxene along with a decrease in the detection of minerals such as quartz and potassium feldspar. The results suggest that phaneritic

  8. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  9. Numerical Investigation of Rockburst Effect of Shock Wave on Underground Roadway

    Directory of Open Access Journals (Sweden)

    Cai-Ping Lu

    2015-01-01

    Full Text Available Using UDEC discrete element numerical simulation software and a cosine wave as vibration source, the whole process of rockburst failure and the propagation and attenuation characteristics of shock wave in coal-rock medium were investigated in detail based on the geological and mining conditions of 1111(1 working face at Zhuji coal mine. Simultaneously, by changing the thickness and strength of immediate roof overlying the mining coal seam, the whole process of rockburst failure of roadway and the attenuation properties of shock wave were understood clearly. The presented conclusions can provide some important references to prevent and control rockburst hazards triggered by shock wave interferences in deep coal mines.

  10. Rheological Characteristics of Cement Grout and its Effect on Mechanical Properties of a Rock Fracture

    Science.gov (United States)

    Liu, Quansheng; Lei, Guangfeng; Peng, Xingxin; Lu, Chaobo; Wei, Lai

    2018-02-01

    Grouting reinforcement, which has an obvious strengthening effect on fractured rock mass, has been widely used in various fields in geotechnical engineering. The rheological properties of grout will greatly affect its diffusion radius in rock fractures, and the water-cement ratio is an important factor in determining the grouting flow patterns. The relationship between shear stress and shear rate which could reflect the grout rheological properties, the effects of water-cement ratio, and temperature on the rheological properties of grouting was studied in the laboratory. Besides, a new method for producing fractured rock specimens was proposed and solved the problem of producing natural fractured rock specimens. To investigate the influences of grouting on mechanical properties of a rock fracture, the fractured rock specimens made using the new method were reinforced by grouting on the independent designed grouting platform, and then normal and tangential mechanical tests were carried out on fractured rock specimens. The results showed that the mechanical properties of fractured rock mass are significantly improved by grouting, the peak shear strength and residual strength of rock fractures are greatly improved, and the resistance to deformation is enhanced after grouting. Normal forces affect the tangential behavior of the rock fracture, and the tangential stress strength increases with normal forces. The strength and stability of fractured rock mass are increased by grouting reinforcement.

  11. Kinetic Simulations of Particle Acceleration at Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Caprioli, Damiano [Princeton University; Guo, Fan [Los Alamos National Laboratory

    2015-07-16

    Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shock drift acceleration; and electron DSA is efficient at oblique shocks.

  12. 29th International Symposium on Shock Waves

    CERN Document Server

    Ranjan, Devesh

    2015-01-01

    This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion,  Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...

  13. Shock and Vibration. Volume 1, Issue 1

    National Research Council Canada - National Science Library

    Pilkey, Walter D

    1994-01-01

    ..., and earthquake engineering. Among the specific areas to be covered are vibration testing and control, vibration condition monitoring and diagnostics, shock hardenings, modal technology, shock testing, data acquisition, fluid...

  14. Etiology of Shock in the Emergency Department

    DEFF Research Database (Denmark)

    Holler, Jon Gitz; Jensen, Helene Kildegaard; Henriksen, Daniel Pilsgaard

    2018-01-01

    were included. Discharge diagnoses defined the etiology and were grouped as; distributive septic shock (SS), distributive non-septic shock (NS)), cardiogenic shock (CS), hypovolemic shock (HS), obstructive shock (OS) and other conditions (OC). Outcomes were etiology-based characteristics, annual IR per......INTRODUCTION: The knowledge of the etiology and associated mortality of undifferentiated shock in the emergency department (ED) is limited. We aimed to describe the etiology based proportions and incidence rates (IR) of shock, as well as the associated mortality in the ED. METHODS: Population......-based cohort study at an University Hospital ED in Denmark from January 1, 2000, to December 31, 2011. Patients aged ≥18 years living in the ED-catchment area (N = 225,000) with a first time ED presentation with shock (n = 1,646) defined as hypotension (systolic blood pressure ≤100 mmHg)) and ≥1 organ failures...

  15. Shock dynamics in layered periodic media

    KAUST Repository

    Ketcheson, David I.

    2012-01-01

    Solutions of constant-coeffcient nonlinear hyperbolic PDEs generically develop shocks, even if the initial data is smooth. Solutions of hyperbolic PDEs with variable coeffcients can behave very differently. We investigate formation and stability of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation, no shock formation is detected even after times much greater than the time of shock formation in a homogeneous medium. Furthermore, weak shocks are observed to be dynamically unstable in the sense that they do not lead to significant long-term entropy decay. We propose a characteristic condition for admissibility of shocks in heterogeneous media that generalizes the classical Lax entropy condition and accurately predicts the formation or absence of shocks in these media.

  16. SHOCK WAVE IN IONOSPHERE DURING EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    V.V. Kuznetsov

    2016-11-01

    Full Text Available Fundamentally new model of the shock wave (SW generation in atmosphere and ionosphere during earthquake is proposed. The model proceeds from the idea of cooperative shock water crystallization in a cloud

  17. Shocked quartz and more: Impact signatures in K-T boundary clays and claystones

    Science.gov (United States)

    Bohor, Bruce F.

    1988-01-01

    Quartz grains displaying multiple sets of planar features are described from numerous Cretaceous-Tertiary (K-T) boundary clays and claystones at both marine and nonmarine depositional sites around the world. All these sites also show anomalously high amounts of iridium and enrichments of other siderophile elements in cosmic ratios within these boundary units. This combination of mineralogical and geochemical features are used in support of an impact hypothesis for the end-Cretaceous event. Recently, it was suggested that some combination of explosive and nonexplosive volcanism associated with the formation of the Deccan traps in India could be responsible for the mineralogy and geochemistry seen in the K-T boundary units. Besides the obvious contradition of simultaneous explosive and nonexplosive volcanism from one locality during an instant of geologic time, there remains the difficulty of spreading both iridium (and trace elements in cosmic proportions) and quartz grains around the world by volcanic (atmospheric) transport. In addition, the ability of volcanism to produce the type of shock metamorphism seen in minerals at the K-T boundary was not demonstrated. Multiple sets of shock lamellae in quartz are considered characteristic of shock metamorphism in rocks at the sites of known impact craters and are the type of deformation seen in quartz from K-T boundary clays and claystones. Single sets of poorly defined lamellae described from rare quartz grains in certain volcanic deposits are characteristic of tectonic deformation and do not correspond to the shock lamellae in quartz from K-T sediments and impact structures. So-called shock mosaicism in quartz and feldspar grains described from volcanic deposits can result from many processes other than shock metamorphism, and therefore is not considered to be an effect characteristic solely of shock. The mineralogy of shock-metamorphosed grains at the K-T boundary also argues against a volcanic origin.

  18. Experimental and numerical study of shock wave propagation in water generated by pulsed arc electrohydraulic discharges

    Science.gov (United States)

    Chen, Wen; Maurel, Olivier; La Borderie, Christian; Reess, Thierry; De Ferron, Antoine; Matallah, Mohammed; Pijaudier-Cabot, Gilles; Jacques, Antoine; Rey-Bethbeder, Frank

    2014-05-01

    The objective of this study is to simulate the propagation of the shock wave in water due to an explosion. The study is part of a global research program on the development of an alternative stimulation technique to conventional hydraulic fracturing in tight gas reservoirs aimed at inducing a distributed state of microcracking of rocks instead of localized fracture. We consider the possibility of increasing the permeability of rocks with dynamic blasts. The blast is a shock wave generated in water by pulsed arc electrohydraulic discharges. The amplitude of these shock waves is prescribed by the electrohydraulic discharges which generate high pressures of several kilobars within microseconds. A simplified method has been used to simulate the injected electrical energy as augmentation of enthalpy in water locally. The finite element code EUROPLEXUS is used to perform fluid fast dynamic computation. The predicted pressure is consistent with the experimental results. In addition, shock wave propagation characteristics predicted with simulation can be valuable reference for design of underwater structural elements and engineering of underwater explosion.

  19. Converging cylindrical shocks in ideal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  20. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  1. Electric shock and electrical fire specialty

    International Nuclear Information System (INIS)

    2011-02-01

    This book deals with electric shock and electrical fire, which is made up seven chapters. It describes of special measurement for electric shock and electrical fire. It mentions concretely about electrical fire analysis and precautionary measurement, electrical shock analysis cases, occurrence of static electricity and measurement, gas accident, analysis of equipment accident and precautionary measurement. The book is published to educate the measurement on electric shock and electrical fire by electrical safety technology education center in Korea Electrical Safety Corporation.

  2. Attenuation of Shock Waves using Perforated Plates

    Science.gov (United States)

    Pavan Kumar, CH V. L. C. S.; Hitesh Reddy, C.; Rahul Sai, L.; Dharani Kumar, K. S. S.; Nagaraja, S. R.

    2017-08-01

    The shock/blast waves generated due to explosions cause wide spread damage to the objects in its path. Different techniques have been used to attenuate shock wave over pressure, to reduce the catastrophic effects. Perforated plates can be used effectively to attenuate the shock wave pressure. In this paper shock wave interaction with perforated plates is simulated using COMSOL multiphysics software. The pressure drop varied from 43.75% to 26% for porosity varying from 10% to 40.

  3. Shock Melting of Permafrost on Mars: Water Ice Multiphase Equation of State for Numerical Modeling and Its Testing

    Science.gov (United States)

    Ivanov, B. A.

    2005-01-01

    The presence of water/ice/brine in upper layers of Martian crust affects many processes of impact cratering. Modeling of these effects promises better understanding of Martian cratering records. We present here the new ANEOS-based multiphase equation of state for water/ice constructed for usage in hydrocodes and first numerical experiments on permafrost shock melting. Preliminary results show that due to multiple shock compression of ice inclusions in rocks the entropy jump in shocked ice is smaller than in pure ice for the same shock pressure. Hence previous estimates of ice melting during impact cratering on Mars should be re-evaluated. Additional information is included in the original extended abstract.

  4. The Chronology of Rock Art

    Indian Academy of Sciences (India)

    Such phases are tentatively ascribed to different archaeological cultures on the basis of the contextual availability, stylistic similarities and so on. Ethnographic analogies are also attempted in the dating of rock art .

  5. Rock Art of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Majeed Khan

    2013-12-01

    Full Text Available It is not only oil in which Saudi Arabia is rich, but it is also among the four richest rock art regions of the world. Hundreds and thousands of petroglyphs, painted rock art, and ancient Arabian inscriptions sites are located all over the country, representing various cultural phases, from the Neolithic until the recent past. One can see the naturalistic, schematic, abstract, mythical, and mystical images representing ancient ideology, thoughts about the metaphysical world, religious entity, economy, environment, human activities, and variety of animal types, according to particular climatic and environmental conditions. The rock art of Saudi Arabia is the mirror of its rich cultural heritage of so-called Bedouin or desert dwellers that surprises the world with its 4000 archaeological and more than 1500 rock art sites.

  6. Chemical methods of rock analysis

    National Research Council Canada - National Science Library

    Jeffery, P. G; Hutchison, D

    1981-01-01

    A practical guide to the methods in general use for the complete analysis of silicate rock material and for the determination of all those elements present in major, minor or trace amounts in silicate...

  7. Suppressive and Facilitative Effects of Shock Intensity and Interresponse Times Followed by Shock

    Science.gov (United States)

    Everly, Jessica B.; Perone, Michael

    2012-01-01

    Although response-dependent shock often suppresses responding, response facilitation can occur. In two experiments, we examined the suppressive and facilitative effects of shock by manipulating shock intensity and the interresponse times that produced shock. Rats' lever presses were reinforced on a variable-interval 40-s schedule of food…

  8. Experts' recommendations for the management of cardiogenic shock in children.

    Science.gov (United States)

    Brissaud, Olivier; Botte, Astrid; Cambonie, Gilles; Dauger, Stéphane; de Saint Blanquat, Laure; Durand, Philippe; Gournay, Véronique; Guillet, Elodie; Laux, Daniela; Leclerc, Francis; Mauriat, Philippe; Boulain, Thierry; Kuteifan, Khaldoun

    2016-12-01

    Cardiogenic shock which corresponds to an acute state of circulatory failure due to impairment of myocardial contractility is a very rare disease in children, even more than in adults. To date, no international recommendations regarding its management in critically ill children are available. An experts' recommendations in adult population have recently been made (Levy et al. Ann Intensive Care 5(1):52, 2015; Levy et al. Ann Intensive Care 5(1):26, 2015). We present herein recommendations for the management of cardiogenic shock in children, developed with the grading of recommendations' assessment, development, and evaluation system by an expert group of the Groupe Francophone de Réanimation et Urgences Pédiatriques (French Group for Pediatric Intensive Care and Emergencies). The recommendations cover four major fields of application such as: recognition of early signs of shock and the patient pathway, management principles and therapeutic goals, monitoring hemodynamic and biological variables, and circulatory support (indications, techniques, organization, and transfer criteria). Major principle care for children with cardiogenic shock is primarily based on clinical and echocardiographic assessment. There are few drugs reported as effective in childhood in the medical literature. The use of circulatory support should be facilitated in terms of organization and reflected in the centers that support these children. Children with cardiogenic shock are vulnerable and should be followed regularly by intensivist cardiologists and pediatricians. The experts emphasize the multidisciplinary nature of management of children with cardiogenic shock and the importance of effective communication between emergency medical assistance teams (SAMU), mobile pediatric emergency units (SMUR), pediatric emergency departments, pediatric cardiology and cardiac surgery departments, and pediatric intensive care units.

  9. Shock Response of Silicon Nitride

    Science.gov (United States)

    Dandekar, D. P.; Casem, D. T.; Motoyashiki, Y.; Sato, E.

    2009-06-01

    Silicon nitride is suitable for varied applications. The properties of silicon nitride have been tailored through processing and doping. The current work presents shock response of silicon nitride marketed as SN282. The density of this material, 3.4 Mg/m^3, exceeds its single crystal density due to the presence of lutetium oxide as an additive in ca. 5% by weight in the material. While the average grain size is 3.4 microns, aspect ratio of the grains exceed 3. Preliminary results of shock wave experiments may be summarized as follows: (1) The Hugoniot Elastic Limit (HEL) of SN282 is 11.2 GPa. (2) The magnitude of the inelastic wave velocity just above the HEL is 8.73 km/s, suggesting that inelastic deformation above the HEL is due to shock induced plasticity in the material. (3) The estimated value of the spall strength is 0.5 GPa. The spall strength of SN282 remains unchanged even when shocked beyond the HEL. The non-vanishing spall strength suggests that doping plays a role in the retention of spall strength of SN282. The role of doping needs to be further investigated.

  10. Prenatal temperature shocks reduce cooperation

    NARCIS (Netherlands)

    Duchoslav, Jan

    2017-01-01

    Climate change has not only led to a sustained rise in mean global temperature over the past decades, but also increased the frequency of extreme weather events. This paper explores the effect of temperature shocks in utero on later-life taste for cooperation. Using historical climate data combined

  11. Nonlinearity, Conservation Law and Shocks

    Indian Academy of Sciences (India)

    Nonlinearity, Conservation Law and Shocks. Part I : Genuine Nonlinearity and Discontinuous Solutions. Phoolan Prasad is with the. Department of. Mathematics, Indian. Institute of Science and has been working in the area of nonlinear waves and hyperbolic partial differential equations. He is deeply interested in.

  12. EXTRACORPOREAL SHOCK WAVE LITHOTRIPSY AS ...

    African Journals Online (AJOL)

    Objective To evaluate extracorporeal shock wave lithotripsy (ESWL) as a monotherapy for urolithiasis in patients with solitary kidney and to determine the factors that may affect its results. Patients and Methods Using the Dornier MFL 5000 lithotriptor, 106 patients with solitary kidney (80 men and 26 women) were treated for ...

  13. Shock treatment of corn stover.

    Science.gov (United States)

    Bond, Austin; Rughoonundun, Hema; Petersen, Eric; Holtzapple, Carol; Holtzapple, Mark

    2017-05-01

    Corn stover digestibility was enhanced via shock treatment. A slurry of lime-treated corn stover was placed in a partially filled closed vessel. From the ullage space, either a shotgun shell was fired into the slurry, or a gas mixture was detonated. Various conditions were tested (i.e., pressures, depth, solids concentrations, gas mixtures). A high pressurization rate (108,000 MPa/s shotgun shells; 4,160,000 MPa/s hydrogen/oxygen detonation) was the only parameter that improved enzymatic digestibility. Stoichiometric propane/air deflagration had a low pressurization rate (37.2 MPa/s) and did not enhance enzymatic digestibility. Without shock, enzymatic conversion of lime-treated corn stover was 0.80 g glucan digested/g glucan fed with an enzyme loading of 46.7 mg protein/g glucan. With shock, the enzyme loading was reduced by ∼2× while maintaining the same conversion. Detonations are extraordinarily fast; rapidly cycling three small vessels (0.575 m 3 each) every 7.5 s enables commercially relevant shock treatment (2,000 tone/day). © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:815-823, 2017. © 2017 American Institute of Chemical Engineers.

  14. 33 CFR 183.584 - Shock test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Shock test. 183.584 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.584 Shock test. A fuel tank is tested by... surface of the tank. The duration of each vertical acceleration pulse is measured at the base of the shock...

  15. 33 CFR 159.105 - Shock test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Shock test. 159.105 Section 159... MARINE SANITATION DEVICES Design, Construction, and Testing § 159.105 Shock test. The device, with liquid... shocks that are ten times the force of gravity (10g) and have a duration of 20-25 milliseconds measured...

  16. Percutaneous mechanical circulatory support in cardiogenic shock

    NARCIS (Netherlands)

    Ouweneel, D.M.

    2017-01-01

    Cardiogenic shock is the most common cause of death in patients with acute myocardial infarction. Around 10% of the patients with an ST-segment elevation myocardial infarction develop cardiogenic shock. Mortality in cardiogenic shock has been reduced over the last few decades, but it still remains

  17. Streptococcus pyogenes toxic-shock syndrome

    OpenAIRE

    Antunes, R; Diogo, M; Carvalho, A; Pimentel, T; Oliveira, J

    2011-01-01

    Recently there has been an exponential increase in invasive infections caused by Streptococcus ß hemolyticcus group A. In about one third of cases they are complicated by toxic shock syndrome, characterized by septic shock and multiorgan failure. The authors, by their rarity, report a case of bacteraemia caused by Streptococcus pyogenes complicated by toxic shock syndrome.

  18. Folding and Fracturing of Rocks: the background

    Science.gov (United States)

    Ramsay, John G.

    2017-04-01

    This book was generated by structural geology teaching classes at Imperial College. I was appointed lecturer during 1957 and worked together with Dr Gilbert Wilson teaching basic structural geology at B.Sc level. I became convinced that the subject, being essentially based on geometric field observations, required a firm mathematical basis for its future development. In particular it seemed to me to require a very sound understanding of stress and strain. My field experience suggested that a knowledge of two- and three-demensional strain was critical in understanding natural tectonic processes. I found a rich confirmation for this in early publications of deformed fossils, oolitic limestones and spotted slates made by several geologists around the beginning of the 20th century (Sorby, Philips, Haughton, Harker) often using surprisingly sophisticated mathematical methods. These methods were discussed and elaborated in Folding and Fracturing of Rocks in a practical way. The geometric features of folds were related to folding mechanisms and the fold related small scale structures such as cleavage, schistosity and lineation explained in terms of rock strain. My work in the Scottish Highlands had shown just how repeated fold superposition could produce very complex geometric features, while further work in other localities suggested that such geometric complications are common in many orogenic zones. From the development of structural geological studies over the past decades it seems that the readers of this book have found many of the ideas set out are still of practical application. The mapping of these outcrop-scale structures should be emphasised in all field studies because they can be seen as ''fingerprints'' of regional scale tectonic processes. My own understanding of structural geology has been inspired by field work and I am of the opinion that future progress in understanding will be likewise based on careful observation and measurement of the features of

  19. Thermally induced rock stress increment and rock reinforcement response

    International Nuclear Information System (INIS)

    Hakala, M.; Stroem, J.; Nujiten, G.; Uotinen, L.; Siren, T.; Suikkanen, J.

    2014-07-01

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the brittle

  20. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.