WorldWideScience

Sample records for natural zr target

  1. Production of Zr-89 using sputtered yttrium coin targets 89Zr using sputtered yttrium coin targets.

    Science.gov (United States)

    Queern, Stacy Lee; Aweda, Tolulope Aramide; Massicano, Adriana Vidal Fernandes; Clanton, Nicholas Ashby; El Sayed, Retta; Sader, Jayden Andrew; Zyuzin, Alexander; Lapi, Suzanne Elizabeth

    2017-07-01

    An increasing interest in zirconium-89 ( 89 Zr) can be attributed to the isotope's half-life which is compatible with antibody imaging using positron emission tomography (PET). The goal of this work was to develop an efficient means of production for 89 Zr that provides this isotope with high radionuclidic purity and specific activity. We investigated the irradiation of yttrium sputtered niobium coins and compared the yields and separation efficiency to solid yttrium coins. The sputtered coins were irradiated with an incident beam energy of 17.5MeV or 17.8MeV providing a degraded transmitted energy through an aluminum degrader of 12.5MeV or 12.8MeV, respectively, with various currents to determine optimal cyclotron conditions for 89 Zr production. Dissolution of the solid yttrium coin took 2h with 50mL of 2M HCl and dissolution of the sputtered coin took 15-30min with 4mL of 2M HCl. During the separation of 89 Zr from the solid yttrium coins, 77.9 ± 11.2% of the activity was eluted off in an average of 7.3mL of 1M oxalic acid whereas for the sputtered coins, 91 ± 6% was eluted off in an average of 1.2mL of 1M oxalic acid with 100% radionuclidic purity. The effective specific activity determined via DFO-SCN titration from the sputtered coins was 108±7mCi/μmol as compared to 20.3mCi/μmol for the solid yttrium coin production. ICP-MS analysis of the yttrium coin and the sputtered coins showed 99.99% yttrium removed with 178μg of yttrium in the final solution and 99.93-100% of yttrium removed with remaining range of 0-42μg of yttrium in the final solution, respectively. The specific activity calculated for the solid coin and 3 different sputtered coins using the concentration of Zr found via ICP-MS was 140±2mCi/μmol, 300±30mCi/μmol, 410±60mCi/μmol and 1719±5mCi/μmol, respectively. Labeling yields of the 89 Zr produced via sputtered targets for 89 Zr- DFO-trastuzumab were >98%. Overall, these results show the irradiation of yttrium sputtered niobium coins

  2. Experimental cross section evaluation for innovative 99Mo production via the (α,n) reaction on 96Zr target

    International Nuclear Information System (INIS)

    Pupillo, Gaia; Gambaccini, M.; Esposito, J.; Haddad, F.; Michel, N.

    2014-01-01

    The recent crisis of 99 Mo production by nuclear reactors caused an unexpected worldwide 99m Tc shortening, forcing the international scientific community to find alternative production routes for these vital nuclides. One of the possibilities is to replace the current reactor-based method with the accelerator-based one. The aim of this work is the experimental evaluation of the 96 Zr(α,n) 99 Mo reaction, using the well known stacked foil technique with natural Zr targets, in the energy range 33-8 MeV. The results were compared with the published experimental values, finding good agreement in the trend of the cross section but at higher peak value. The results refer to 100% enriched 96 Zr target. The cross section values measured in the different irradiations show excellent agreement and indicate that the ideal energy range for 99 Mo production is 13-25 MeV. In comparison with the literature, there is good agreement in the trend of the cross section but at higher peak value. The 96 Zr(α,n) 99 Mo reaction is an interesting alternative production route of 99 Mo aimed at the realization of 99 Mo/ 99 mTc generators. Using enriched 96 Zr as target, 99 Mo is the only radioactive Mo-isotope produced, while using natural Zr as target, the resulting 99 Mo still has an high radioisotopic purity (only the radioactive 93 Mo is co-produced), but a lower specific activity. In both cases no Tc-nuclides are directly produced in target and the high purity 99m Tc results only from the decay of 99 Mo

  3. Optimized anion exchange column isolation of zirconium-89 ( 89 Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform

    Energy Technology Data Exchange (ETDEWEB)

    O’Hara, Matthew J.; Murray, Nathaniel J.; Carter, Jennifer C.; Morrison, Samuel S.

    2018-04-01

    Zirconium-89 (89Zr), produced by the (p,n) reaction from naturally monoisotopic yttrium (natY), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its ability to quantitatively capture Zr from a load solution that is high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>105) and has been shown to separate Fe, an abundant contaminant in Y foils, from the 89Zr elution fraction. Finally, the performance of the method was evaluated using cyclotron bombarded Y foil targets. The separation method was shown to achieve >95% recovery of the 89Zr present in the foils. The 89Zr eluent, however, was in a chemical matrix not immediately conducive to labeling onto proteins. The main intent of this study was to develop a tandem column 89Zr purification process, wherein the anion exchange column method described here is the first separation in a dual-column purification process.

  4. Glypican-3–Targeting F(ab′)2 for 89Zr PET of Hepatocellular Carcinoma

    OpenAIRE

    Sham, Jonathan G.; Kievit, Forrest M.; Grierson, John R.; Chiarelli, Peter A.; Miyaoka, Robert S.; Zhang, Miqin; Yeung, Raymond S.; Minoshima, Satoshi; Park, James O.

    2014-01-01

    Hepatocellular carcinoma (HCC) is an increasingly lethal malignancy for which management is critically dependent on accurate imaging. Glypican-3 (GPC3) is a cell surface receptor overexpressed in most HCCs and provides a unique target for molecular diagnostics. The use of monoclonal antibodies (mAbs) that target GPC3 (αGPC3) in PET imaging has shown promise but comes with inherent limitations associated with mAbs such as long circulation times. This study used 89Zr-conjugated F(ab′)2 fragment...

  5. Cyclic versus Noncyclic Chelating Scaffold for 89Zr-Labeled ZEGFR:2377 Affibody Bioconjugates Targeting Epidermal Growth Factor Receptor Overexpression.

    Science.gov (United States)

    Summer, Dominik; Garousi, Javad; Oroujeni, Maryam; Mitran, Bogdan; Andersson, Ken G; Vorobyeva, Anzhelika; Löfblom, John; Orlova, Anna; Tolmachev, Vladimir; Decristoforo, Clemens

    2018-01-02

    Zirconium-89 is an emerging radionuclide for positron emission tomography (PET) especially for biomolecules with slow pharmacokinetics as due to its longer half-life, in comparison to fluorine-18 and gallium-68, imaging at late time points is feasible. Desferrioxamine B (DFO), a linear bifunctional chelator (BFC) is mostly used for this radionuclide so far but shows limitations regarding stability. Our group recently reported on fusarinine C (FSC) with similar zirconium-89 complexing properties but potentially higher stability related to its cyclic structure. This study was designed to compare FSC and DFO head-to-head as bifunctional chelators for 89 Zr-radiolabeled EGFR-targeting ZEGFR:2377 affibody bioconjugates. 2377 and DFO-ZEGFR:2377 were evaluated regarding radiolabeling, in vitro stability, specificity, cell uptake, receptor affinity, biodistribution, and microPET-CT imaging. Both conjugates were efficiently labeled with zirconium-89 at room temperature but radiochemical yields increased substantially at elevated temperature, 85 °C. Both 89 Zr-FSC-ZEGFR:2377 and 89 Zr-DFO-ZEGFR:2377 revealed remarkable specificity, affinity and slow cell-line dependent internalization. Radiolabeling at 85 °C showed comparable results in A431 tumor xenografted mice with minor differences regarding blood clearance, tumor and liver uptake. In comparison 89 Zr-DFO-ZEGFR:2377, radiolabeled at room temperature, showed a significant difference regarding tumor-to-organ ratios. MicroPET-CT imaging studies of 89 Zr-FSC-ZEGFR:2377 as well as 89 Zr-DFO-ZEGFR:2377 confirmed these findings. In summary we were able to show that FSC is a suitable alternative to DFO for radiolabeling of biomolecules with zirconium-89. Furthermore, our findings indicate that 89 Zr-radiolabeling of DFO conjugates at higher temperature reduces off-chelate binding leading to significantly improved tumor-to-organ ratios and therefore enhancing image contrast.

  6. Epitaxial thin-film growth of Ruddlesden-Popper-type Ba{sub 3}Zr{sub 2}O{sub 7} from a BaZrO{sub 3} target by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Shariqa Hassan; Rafique, M.S.; Siraj, K.; Latif, A.; Afzal, Amina [University of Engineering and Technology, Laser and Optronics Centre, Department of Physics, Lahore (Pakistan); Awan, M.S. [Ibn-e-Sina Institute of Science and Technology (ISIT), Islamabad (Pakistan); Bashir, Shazia [Government College University, Centre for Advanced Studies in Physics, Lahore (Pakistan); Iqbal, Nida [Universiti Teknologi Malaysia, Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Johor Bahru, Johor (Malaysia)

    2016-07-15

    Ruddlesden-Popper Ba{sub 3}Zr{sub 2}O{sub 7} thin films have been synthesized via pulsed laser deposition (PLD) technique. The optimization of deposition parameters in PLD enables the formation of thin film of metastable Ba{sub 3}Zr{sub 2}O{sub 7} phase from BaZrO{sub 3} target. In order to see the post-annealing effects on the structural and optical properties, the deposited Ba{sub 3}Zr{sub 2}O{sub 7} thin films were annealed at 500, 600 and 800 C. X-ray diffraction (XRD) reveals the formation of Ba{sub 3}Zr{sub 2}O{sub 7} phase with tetragonal structure. The changes in the surface of the deposited films were analysed by FE-SEM and AFM. The thin film post-annealed at 500 C exhibited the best structural, optical and surface properties. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Zr and O exist mainly in the form of Ba{sub 3}Zr{sub 2}O{sub 7} Ruddlesden-Popper-type perovskite structure. (orig.)

  7. Synthesis of naturally cross-linked polycrystalline ZrO2 hollow nanowires using butterfly as templates

    International Nuclear Information System (INIS)

    Chen Yu; Gu Jiajun; Zhu Shenmin; Su Huilan; Zhang Di; Feng Chuanliang; Zhuang Leyan

    2012-01-01

    Highlights: ► Naturally cross-linked ZrO 2 nanotubes with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness was synthesized via the selection of suitable butterfly bio-templates followed by heat processing. ► The contractions, which are main defects of the former hard-template method based on butterflies, are well controlled with the help of the surface tension effect. ► The achieved hollow ZrO 2 nanowires suggest a new optional approach that uses bio-templates in fabricating and designing nano systems. - Abstract: Butterfly wing skeleton is a widely used hard-template in recent years for fabricating photonic crystal structures. However, the smallest construction units for the most species of butterflies are commonly larger than ∼50 nm, which greatly hinders their applications in designing much smaller functional parts down to real “nano scale”. This work indicates, however, that hollow ZrO 2 nanowires with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness can be synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Especially, the successful fabrication of these naturally cross-linked ZrO 2 nanotubes suggests a new optional approach in fabricating assembled nano systems.

  8. Synthesis of naturally cross-linked polycrystalline ZrO{sub 2} hollow nanowires using butterfly as templates

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yu, E-mail: chenyu_8323@csu.edu.cn [School of Physics Science and Electronics Central South University, Changsha, Hunan 410083 (China); Gu Jiajun, E-mail: gujiajun@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhu Shenmin; Su Huilan [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Di, E-mail: zhangdi@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Feng Chuanliang [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhuang Leyan [Measurement Center of Anti-Counterfeiting Technical Products, Shanghai (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Naturally cross-linked ZrO{sub 2} nanotubes with {approx}2.4 {mu}m in length, {approx}35 nm in diameter and {approx}12 nm in wall thickness was synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Black-Right-Pointing-Pointer The contractions, which are main defects of the former hard-template method based on butterflies, are well controlled with the help of the surface tension effect. Black-Right-Pointing-Pointer The achieved hollow ZrO{sub 2} nanowires suggest a new optional approach that uses bio-templates in fabricating and designing nano systems. - Abstract: Butterfly wing skeleton is a widely used hard-template in recent years for fabricating photonic crystal structures. However, the smallest construction units for the most species of butterflies are commonly larger than {approx}50 nm, which greatly hinders their applications in designing much smaller functional parts down to real 'nano scale'. This work indicates, however, that hollow ZrO{sub 2} nanowires with {approx}2.4 {mu}m in length, {approx}35 nm in diameter and {approx}12 nm in wall thickness can be synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Especially, the successful fabrication of these naturally cross-linked ZrO{sub 2} nanotubes suggests a new optional approach in fabricating assembled nano systems.

  9. Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases: data from targeting of nine genes using CompoZr or CoDA ZFNs.

    Directory of Open Access Journals (Sweden)

    Raman Sood

    Full Text Available Recently, it has been shown that targeted mutagenesis using zinc-finger nucleases (ZFNs and transcription activator-like effector nucleases (TALENs can be used to generate knockout zebrafish lines for analysis of their function and/or developing disease models. A number of different methods have been developed for the design and assembly of gene-specific ZFNs and TALENs, making them easily available to most zebrafish researchers. Regardless of the choice of targeting nuclease, the process of generating mutant fish is similar. It is a time-consuming and multi-step process that can benefit significantly from development of efficient high throughput methods. In this study, we used ZFNs assembled through either the CompoZr (Sigma-Aldrich or the CoDA (context-dependent assembly platforms to generate mutant zebrafish for nine genes. We report our improved high throughput methods for 1 evaluation of ZFNs activity by somatic lesion analysis using colony PCR, eliminating the need for plasmid DNA extractions from a large number of clones, and 2 a sensitive founder screening strategy using fluorescent PCR with PIG-tailed primers that eliminates the stutter bands and accurately identifies even single nucleotide insertions and deletions. Using these protocols, we have generated multiple mutant alleles for seven genes, five of which were targeted with CompoZr ZFNs and two with CoDA ZFNs. Our data also revealed that at least five-fold higher mRNA dose was required to achieve mutagenesis with CoDA ZFNs than with CompoZr ZFNs, and their somatic lesion frequency was lower (<5% when compared to CopmoZr ZFNs (9-98%. This work provides high throughput protocols for efficient generation of zebrafish mutants using ZFNs and TALENs.

  10. NATURAL BARRIERS TARGETED THRUST FY 2004 PROJECTS

    International Nuclear Information System (INIS)

    NA

    2005-01-01

    This booklet contains project descriptions of work performed by the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology and International's (OSTandI) Natural Barriers Targeted Thrust during Fiscal Year (FY) 2004. The Natural Barriers Targeted Thrust is part of OSTandI's Science and Technology Program which supports the OCRWM mission to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence. In general, the projects described will continue beyond FY 2004 assuming that the technical work remains relevant to the proposed Yucca Mountain Repository and sufficient funding is made available to the Science and Technology Program

  11. NATURAL BARRIERS TARGETED THRUST FY 2004 PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-07-27

    This booklet contains project descriptions of work performed by the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology and International's (OST&I) Natural Barriers Targeted Thrust during Fiscal Year (FY) 2004. The Natural Barriers Targeted Thrust is part of OST&I's Science and Technology Program which supports the OCRWM mission to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence. In general, the projects described will continue beyond FY 2004 assuming that the technical work remains relevant to the proposed Yucca Mountain Repository and sufficient funding is made available to the Science and Technology Program.

  12. Multipass Target Search in Natural Environments.

    Science.gov (United States)

    Kuhlman, Michael J; Otte, Michael W; Sofge, Donald; Gupta, Satyandra K

    2017-11-02

    Consider a disaster scenario where search and rescue workers must search difficult to access buildings during an earthquake or flood. Often, finding survivors a few hours sooner results in a dramatic increase in saved lives, suggesting the use of drones for expedient rescue operations. Entropy can be used to quantify the generation and resolution of uncertainty. When searching for targets, maximizing mutual information of future sensor observations will minimize expected target location uncertainty by minimizing the entropy of the future estimate. Motion planning for multi-target autonomous search requires planning over an area with an imperfect sensor and may require multiple passes, which is hindered by the submodularity property of mutual information. Further, mission duration constraints must be handled accordingly, requiring consideration of the vehicle's dynamics to generate feasible trajectories and must plan trajectories spanning the entire mission duration, something which most information gathering algorithms are incapable of doing. If unanticipated changes occur in an uncertain environment, new plans must be generated quickly. In addition, planning multipass trajectories requires evaluating path dependent rewards, requiring planning in the space of all previously selected actions, compounding the problem. We present an anytime algorithm for autonomous multipass target search in natural environments. The algorithm is capable of generating long duration dynamically feasible multipass coverage plans that maximize mutual information using a variety of techniques such as ϵ -admissible heuristics to speed up the search. To the authors' knowledge this is the first attempt at efficiently solving multipass target search problems of such long duration. The proposed algorithm is based on best first branch and bound and is benchmarked against state of the art algorithms adapted to the problem in natural Simplex environments, gathering the most information in the

  13. Multipass Target Search in Natural Environments

    Science.gov (United States)

    Otte, Michael W.; Sofge, Donald; Gupta, Satyandra K.

    2017-01-01

    Consider a disaster scenario where search and rescue workers must search difficult to access buildings during an earthquake or flood. Often, finding survivors a few hours sooner results in a dramatic increase in saved lives, suggesting the use of drones for expedient rescue operations. Entropy can be used to quantify the generation and resolution of uncertainty. When searching for targets, maximizing mutual information of future sensor observations will minimize expected target location uncertainty by minimizing the entropy of the future estimate. Motion planning for multi-target autonomous search requires planning over an area with an imperfect sensor and may require multiple passes, which is hindered by the submodularity property of mutual information. Further, mission duration constraints must be handled accordingly, requiring consideration of the vehicle’s dynamics to generate feasible trajectories and must plan trajectories spanning the entire mission duration, something which most information gathering algorithms are incapable of doing. If unanticipated changes occur in an uncertain environment, new plans must be generated quickly. In addition, planning multipass trajectories requires evaluating path dependent rewards, requiring planning in the space of all previously selected actions, compounding the problem. We present an anytime algorithm for autonomous multipass target search in natural environments. The algorithm is capable of generating long duration dynamically feasible multipass coverage plans that maximize mutual information using a variety of techniques such as ϵ-admissible heuristics to speed up the search. To the authors’ knowledge this is the first attempt at efficiently solving multipass target search problems of such long duration. The proposed algorithm is based on best first branch and bound and is benchmarked against state of the art algorithms adapted to the problem in natural Simplex environments, gathering the most information in the

  14. Hybrid Polymer/UiO-66(Zr) and Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas.

    Science.gov (United States)

    Chen, Grace; Koros, William J; Jones, Christopher W

    2016-04-20

    Zeolite NaY and metal organic frameworks MIL-53(Al) and UiO-66(Zr) are spun with cellulose acetate (CA) polymer to create hybrid porous composite fibers for the selective adsorption of sulfur odorant compounds from pipeline natural gas. Odorant removal is desirable to limit corrosion associated with sulfur oxide production, thereby increasing lifetime in gas turbines used for electricity generation. In line with these goals, the performance of the hybrid fibers is evaluated on the basis of sulfur sorption capacity and selectivity, as well as fiber stability and regenerability, compared to their polymer-free sorbent counterparts. The capacities of the powder sorbents are also measured using various desorption temperatures to evaluate the potential for lower temperature, energy, and cost-efficient system operation. Both NaY/CA and UiO-66(Zr)/CA hybrid fibers are prepared with high sorbent loadings, and both have high capacities and selectivities for t-butyl mercaptan (TBM) odorant sorption from a model natural gas (NG), while being stable to multiple regeneration cycles. The different advantages and disadvantages of both types of fibers relative are discussed, with both offering the potential advantages of low pressure drop, rapid heat and mass transfer, and low energy requirements over traditional sulfur removal technologies such as hydrodesulfurization (HDS) or adsorption in a pellet packed beds.

  15. Routine Production of 89Zr Using an Automated Module

    Directory of Open Access Journals (Sweden)

    Benjamin C. Lewis

    2013-07-01

    Full Text Available 89Zr has emerged as a useful radioisotope for targeted molecular imaging via positron emission tomography (PET in both animal models and humans. This isotope is particularly attractive for cancer research because its half-life (t1/2 = 3.27 days is well-suited for in vivo targeting of macromolecules and nanoparticles to cell surface antigens expressed by cancer cells. Furthermore, 89Zr emits a low-energy positron (Eβ+,mean = 0.40 MeV, which is favorable for high spatial resolution in PET, with an adequate branching ratio for positron emission (BR = 23%. The demand for 89Zr for research purposes is increasing; however, 89Zr also emits significant gamma radiation (Γ15 keV = 6.6 R×cm2/mCi×h, which makes producing large amounts of this isotope by hand unrealistic from a radiation safety standpoint. Fortunately, a straightforward method exists for production of 89Zr by bombarding a natural Y target in a biomedical cyclotron and then separation of 89Zr from the target material by column chromatography. The chemical separation in this method lends itself to remote processing using an automated module placed inside a hot cell. In this work, we have designed, built and commissioned a module that has performed the chemical separation of 89Zr safely and routinely, at activities in excess of 50 mCi, with radionuclidic purity > 99.9% and satisfactory effective specific activity (ESA.

  16. Direct flow separation strategy, to isolate no-carrier-added {sup 90}Nb from irradiated Mo or Zr targets

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, Valery; Roesch, Frank [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Filosofov, Dmitry V.; Dadakhanov, Jakhongir [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Karaivanov, Dimitar V. [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. for Nuclear Research and Nuclear Energy; Marinova, Atanaska [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Sofia Univ. (Bulgaria). Faculty of Chemistry and Pharmacy; Baimukhanova, Ayagoz [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty (Kazakhstan)

    2016-11-01

    {sup 90}Nb has an intermediate half-life of 14.6 h, a high positron branching of 53% and optimal β{sup +} emission energy of only E{sub mean} 0.35 MeV per decay. These favorable characteristics suggest it may be a potential candidate for application in immuno-PET. Our recent aim was to conduct studies on distribution coefficients for Zr{sup IV} and Nb{sup V} in mixtures of HCl/H{sub 2}O{sub 2} and HCl/oxalic acid for anion exchange resin (AG 1 x 8) and UTEVA resin to develop a ''direct flow'' separation strategy for {sup 90}Nb. The direct flow concept refers to a separation accomplished using a single eluent on multiple columns, effectively streamlining the separation process and increasing the time efficiency. Finally, we also demonstrated that this separation strategy is applicable to the production of the positron emitter {sup 90}Nb via the irradiation of molybdenum targets and isolation of {sup 90}Nb from the irradiated molybdenum target.

  17. Effect of natural ageing on microstructure and mechanical properties of Mg–10Gd–2Y–0.8Zr Alloy

    International Nuclear Information System (INIS)

    Yang, Z.; Duan, H.B.; Wang, Z.H.; Guo, Y.C.; Gao, P.H.; Li, J.P.

    2015-01-01

    The effect of natural aging on the microstructure and mechanical properties of Mg–10 wt%Gd–2 wt%Y–0.5 wt%Zn–0.5 wt%Zr alloy (GW102) was investigated via optical microscopy (OM), field emission gun scanning electron microscopy (FEGSEM), high-resolution transmission electron microscopy (HRTEM), and differential scanning calorimetry (DSC). The results indicated that the natural placement had a significant effect on the microstructure, mechanical properties, and subsequent artificial aging behaviors of the extruded GW102 alloy. The α(Mg) isometric crystal of the as-extruded alloy was composed entirely of deformation structures, formed by several types of cross-slip. However, the deformation structure within α(Mg) was significantly reduced by performing a 3-year natural aging treatment after extrusion. Many strain-free zones were observed near the grain boundary. Moreover, the β″ phase precipitated within the α(Mg) crystalline grains. The alloy was subjected to a 3-year natural aging treatment, followed by artificial aging at 200 °C; the resulting hardness and tensile strength were relatively high during the early stage, but decreased significantly at peak aging and the time required to reach peak aging was shortened. In addition, an aging peak platform (44–132 h) was observed. Moreover, the formation of β″ and the reduction of the deformation zone at natural aging process promoted the subsequent artificial aging process.

  18. Tumor-Shed Antigen Affects Antibody Tumor Targeting: Comparison of Two 89Zr-Labeled Antibodies Directed against Shed or Nonshed Antigens

    Directory of Open Access Journals (Sweden)

    Jae-Ho Lee

    2018-01-01

    Full Text Available We investigated the effect of shed antigen mesothelin on the tumor uptake of amatuximab, a therapeutic anti-mesothelin mAb clinically tested in mesothelioma patients. The B3 mAb targeting a nonshed antigen was also analyzed for comparison. The mouse model implanted with A431/H9 tumor, which expresses both shed mesothelin and nonshed Lewis-Y antigen, provided an ideal system to compare the biodistribution and PET imaging profiles of the two mAbs. Our study demonstrated that the tumor and organ uptakes of 89Zr-B3 were dose-independent when 3 doses, 2, 15, and 60 μg B3, were compared at 24 h after injection. In contrast, tumor and organ uptakes of 89Zr-amatuximab were dose-dependent, whereby a high dose (60 μg was needed to achieve tumor targeting comparable to the low dose (2 μg of 89Zr-B3, suggesting that shed mesothelin may affect amatuximab tumor targeting as well as serum half-life. The autoradiography analysis showed that the distribution of 89Zr-B3 was nonuniform with the radioactivity primarily localized at the tumor periphery independent of the B3 dose. However, the autoradiography analysis for 89Zr-amatuximab showed dose-dependent distribution profiles of the radiolabel; at 10 μg dose, the radiolabel penetrated toward the tumor core with its activity comparable to that at the tumor periphery, whereas at 60 μg dose, the distribution profile became similar to those of 89Zr-B3. These results suggest that shed antigen in blood may act as a decoy requiring higher doses of mAb to improve serum half-life as well as tumor targeting. Systemic mAb concentration should be at a severalfold molar excess to the shed Ag in blood to overcome the hepatic processing of mAb-Ag complexes. On the other hand, mAb concentration should remain lower than the shed Ag concentration in the tumor ECS to maximize tumor penetration by passing binding site barriers.

  19. Interferometric Calibration with Natural Distributed Targets

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    Cross-calibration is a fully automated algorithm for calibration of interferometric synthetic aperture radar (IFSAR) data. It has been developed for single-pass interferometry, but the principles may be applicable to multi-pass interferometry, too. The algorithm is based on natural distributed ta....... The algorithm appears to be fairly robust with respect to the terrain type. However, the result of the calibration may deteriorate if the terrain elevation, as measured with the SAR, changes systematically with the incidence angle or the aspect angle....

  20. A simple thick target for production of 89Zr using an 11MeV cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Krohn, Kenneth A.; O' Hara, Matthew J.

    2017-04-01

    The growing interest but limited availability of 89Zr for PET led us to test targets for the 89(p,n) reaction. The goal was an easily constructed target for an 11 MeV Siements cyclotron. Yttrium foils were tested at different thicknesses, angles and currents. A 90 degree foil tolerated 41 microAmp without damage and produced ~800 MBq/hr, >20 mCi, an amount adequate for radiochemistry research and human doses in a widely available accelerator. This method should translate to higher energy cyclotrons.

  1. Lattice constant changes leading to significant changes of the spin-gapless features and physical nature in a inverse Heusler compound Zr2MnGa

    Science.gov (United States)

    Wang, Xiaotian; Cheng, Zhenxiang; Khenata, Rabah; Wu, Yang; Wang, Liying; Liu, Guodong

    2017-12-01

    The spin-gapless semiconductors with parabolic energy dispersions [1-3] have been recently proposed as a new class of materials for potential applications in spintronic devices. In this work, according to the Slater-Pauling rule, we report the fully-compensated ferrimagnetic (FCF) behavior and spin-gapless semiconducting (SGS) properties for a new inverse Heusler compound Zr2MnGa by means of the plane-wave pseudo-potential method based on density functional theory. With the help of GGA-PBE, the electronic structures and the magnetism of Zr2MnGa compound at its equilibrium and strained lattice constants are systematically studied. The calculated results show that the Zr2MnGa is a new SGS at its equilibrium lattice constant: there is an energy gap between the conduction and valence bands for both the majority and minority electrons, while there is no gap between the majority electrons in the valence band and the minority electrons in the conduction band. Remarkably, not only a diverse physical nature transition, but also different types of spin-gapless features can be observed with the change of the lattice constants. Our calculated results of Zr2MnGa compound indicate that this material has great application potential in spintronic devices.

  2. Bevacizumab targeting diffuse intrinsic pontine glioma : Results of 89Zr-bevacizumab PET imaging in brain tumor models

    NARCIS (Netherlands)

    Jansen, Marc H A; Lagerweij, Tonny; Sewing, A. Charlotte P; Vugts, Danielle J.; Van Vuurden, Dannis G.; Molthoff, Carla F M; Caretti, Viola; Veringa, Susanna J E; Petersen, Naomi; Carcaboso, Angel M.; Noske, David P.; Vandertop, W. Peter; Wesseling, Pieter; Van Dongen, Guus A M S; Kaspers, Gertjan J L; Hulleman, Esther

    2016-01-01

    The role of the VEGF inhibitor bevacizumab in the treatment of diffuse intrinsic pontine glioma (DIPG) is unclear. We aim to study the biodistribution and uptake of zirconium-89 (89Zr)-labeled bevacizumab in DIPG mouse models. Human E98-FM, U251-FM glioma cells, and HSJD-DIPG-007-FLUC primary DIPG

  3. Bevacizumab Targeting Diffuse Intrinsic Pontine Glioma: Results of 89Zr-Bevacizumab PET Imaging in Brain Tumor Models

    NARCIS (Netherlands)

    Jansen, Marc H. A.; Lagerweij, Tonny; Sewing, A. Charlotte P.; Vugts, Danielle J.; van Vuurden, Dannis G.; Molthoff, Carla F. M.; Caretti, Viola; Veringa, Susanna J. E.; Petersen, Naomi; Carcaboso, Angel M.; Noske, David P.; Vandertop, W. Peter; Wesseling, Pieter; van Dongen, Guus A. M. S.; Kaspers, Gertjan J. L.; Hulleman, Esther

    2016-01-01

    The role of the VEGF inhibitor bevacizumab in the treatment of diffuse intrinsic pontine glioma (DIPG) is unclear. We aim to study the biodistribution and uptake of zirconium-89 ((89)Zr)-labeled bevacizumab in DIPG mouse models. Human E98-FM, U251-FM glioma cells, and HSJD-DIPG-007-FLUC primary DIPG

  4. Two-phase zirconium boride thin film obtained by ultra-short pulsed laser ablation of a ZrB{sub 12} target

    Energy Technology Data Exchange (ETDEWEB)

    De Bonis, A., E-mail: angela.debonis@unibas.it [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano, 10 -85100 Potenza (Italy); Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche, U.O.S. di Potenza, C.da Santa Loja, 85010 Tito Scalo, Potenza (Italy); Santagata, A. [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche, U.O.S. di Potenza, C.da Santa Loja, 85010 Tito Scalo, Potenza (Italy); Rau, J.V. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Latini, A. [Università di Roma “La Sapienza”, Dipartimento di Chimica, Piazzale Aldo Moro, 5 -00185 Rome (Italy); Mori, T. [National Institute for Materials Science (NIMS) WPI Materials Nanoarchitectonics Center (MANA), Namiki 1-1, Tsukuba 305-0044 (Japan); Medici, L. [Istituto di Metodologie per le Analisi Ambientali, Consiglio Nazionale delle Ricerche, U.O.S. di Potenza, C.da Santa Loja, 85010 Tito Scalo, Potenza (Italy); Teghil, R. [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano, 10 -85100 Potenza (Italy)

    2013-10-15

    Two-phase zirconium boride thin films have been obtained by ultra-short pulsed laser ablation (PLA) of a zirconium dodecaboride (ZrB{sub 12}) target performed in vacuum. The ablation source was a frequency doubled (λ = 527 nm) Nd:glass laser with a pulse duration of 250 fs. Laser induced plasma has been studied by ICCD imaging and time and space resolved optical emission spectroscopy (OES), whereas the deposited films have been characterized by atomic force microscopy, scanning electron microscopy, X-Ray diffraction and micro-Raman spectroscopy. The film morphology and composition have been interpreted on the basis of the laser ablation mechanism.

  5. Noninvasive 89Zr-Transferrin PET Shows Improved Tumor Targeting Compared with 18F-FDG PET in MYC-Overexpressing Human Triple-Negative Breast Cancer.

    Science.gov (United States)

    Henry, Kelly E; Dilling, Thomas R; Abdel-Atti, Dalya; Edwards, Kimberly J; Evans, Michael J; Lewis, Jason S

    2018-01-01

    The current standard for breast PET imaging is 18 F-FDG. The heterogeneity of 18 F-FDG uptake in breast cancer limits its utility, varying greatly among receptor status, histopathologic subtypes, and proliferation markers. 18 F-FDG PET often exhibits nonspecific internalization and low specificity and sensitivity, especially with tumors smaller than 1 cm 3 MYC is a protein involved in oncogenesis and is overexpressed in triple-negative breast cancer (TNBC). Increased surface expression of transferrin receptor (TfR) is a downstream event of MYC upregulation and has been validated as a clinically relevant target for molecular imaging. Transferrin labeled with 89 Zr has successfully identified MYC status in many cancer subtypes preclinically and been shown to predict response and changes in oncogene status via treatment with small-molecule inhibitors that target MYC and PI3K signaling pathways. We hypothesized that 89 Zr-transferrin PET will noninvasively detect MYC and TfR and improve upon the current standard of 18 F-FDG PET for MYC-overexpressing TNBC. Methods: In this study, 89 Zr-transferrin and 18 F-FDG imaging were compared in preclinical models of TNBC. TNBC cells (MDA-MB-157, MDA-MB-231, and Hs578T) were treated with bromodomain-containing protein 4 (BRD4) inhibitors JQ1 and OTX015 (0.5-1 μM). Cell proliferation, gene expression, and protein expression were assayed to explore the effects of these inhibitors on MYC and TfR. Results: Head-to-head comparison showed that 89 Zr-transferrin targets TNBC tumors significantly better ( P Myc and TfR gene expression was decreased upon treatment with BRD4 inhibitors and c-MYC small interfering RNA ( P MYC and TfR protein expression, along with receptor-mediated internalization of transferrin, was also significantly decreased upon drug treatment in MDA-MB-231 and MDA-MB-157 cells ( P MYC via TfR-targeted PET imaging in TNBC. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  6. Study of the neutron decays of giant resonances excited by the inelastic scattering of 36 Ar on 90 Zr and 94 Zr targets at 44 MeV/u: a signature of multiphonon states

    International Nuclear Information System (INIS)

    Pascalon-Rozier, V.

    1997-01-01

    In inelastic heavy ion scattering, to angles near to the grazing angle, giant resonances (GR) are excited with very large differential cross sections. It has been shown that multiphonon states, states built with several GR quanta, can also been excited. These states can be revealed through the measurement of their decay by light particle emission. In this thesis, we report on the study of inelastic scattering of 36 Ar at 44 MeV/u on target of 90 Zr and 94 Zr, measured in coincidence with neutrons detected with the EDEN multidetector. The analysis of the inelastic spectra show evidence for a structure at high excitation energy, exhibiting characteristics compatible with a two-photon excitation. The construction of missing energy spectra allows us to the study of the GR and the high energy structure. In both nuclei, the GR presents a direct decay branch of 8%, which yields informations on the microscopic structure of the resonance. A two phonon state, interpreted as two weakly coupled GR's, built on one top of the other, and each phonon is expected to exhibit the same direct decay pattern as the GR. Such a simple decay is observed in the data, proving that the structure observed is due to the excitation of the two phonon state in both nuclei studied. Finally, we present a theoretical development based on Random Phase Approximation calculation, predicting that the two phonon state should be very harmonic. This result is in agreement with experimental studies of double phonon states over a large range of nuclei (from A = 12 to 208) carried out with several different probes. (author)

  7. EFFECT OF TIME AND TEMPERATURE ON ISOMERIZATION REACTION OF ?-PINENEUSING CATALYST ZR 4+ Nanik Wijayati, Supartono, Nuni Widiarti, Tri Handayani /NATURAL ZEOLITE

    Directory of Open Access Journals (Sweden)

    Nanik Wijayati

    2016-03-01

    Full Text Available Effects of time and temperature on ?-pinene isomerization reaction using catalysts Zr/natural zeolitewas studied. Characterization of the catalysts include: crystallinity, observed using X-Ray Diffraction, count Zr 4+ carried observed using X-Ray Fluorescence, area and porosity catalyst was observed using the Surface Area Analyzer, and acidity catalyst observed through gravimetric method. Isomerization reaction carried out in a batch reactor with temperature variations 90, 120 and 150 C and reaction time variations of 60, 90, 120, 150 and 180 minutes. Best results of isomerisation in this study was obtained at 150 derajat C with a reaction time of 180 minutes. Kindsof isomer obtained was observed using GCMS. Catalyst characterization results indicate that modification of the catalyst by cation Zr increases the acidity from 2.76 to 6.64 mmol/g and does not damage the crystal structure significantly. The highest product conversion in this research is 9.24%, less than the maximum results caused by pre-treatment of the catalyst produces a low area. Thus, temperature and reaction time affect the concentration of ? pinene isomerization product in addition to the effect of the catalyst used.

  8. Mitosis-targeting natural products for cancer prevention and therapy.

    Science.gov (United States)

    Rao, Chinthalapally V; Kurkjian, Carla D; Yamada, Hiroshi Y

    2012-12-01

    Mitosis is a complex process resulting in division of a cell into two daughter cells, and its failure often results in the death of the daughter cells (via apoptotic, necrotic, or proliferative/senescent death). Many chemicals that inhibit the mitotic process (anti-mitotic drugs) have proven effective for killing cancer cells in vitro and in clinical settings. Among the most studied anti-mitotic drugs are plant-origin natural products including taxanes (e.g. paclitaxel, docetaxel) and vinca alkaloids (e.g. vincristine, vinblastine), whose validated target is the spindle microtubules. With the success of these agents, efforts have been made to develop other spindle poisons as well as to improve efficacy of existing spindle poisons with structural modifications. Novel drugs and natural products that inhibit other proteins involved in mitosis (nonmicrotubule targets) have been sought in hopes of expanding available cancer-directed therapies. Recently, significant advances have been made in the understanding of mitotic mechanisms in tumor cells as well as in normal epithelial cells. These advances help us to identify and develop potential natural agents for the prevention and treatment of cancer. This review will focus on natural products that target mitotic process and/or proteins involved in mitotic progression.

  9. The Nature of Magnetoelectric Coupling in Pb(Zr,Ti)O3-Pb(Fe,Ta)O3

    OpenAIRE

    Evans, Donald M.; Alexe, Marin; Schilling, Alina; Kumar, Ashok; Sanchez, Dilsom; Ortega, Nora; Katiyar, Ram S.; Scott, James F.; Gregg, James Marty

    2015-01-01

    The coupling between magnetization and polarization in a room temperature multiferroic (Pb(Zr,Ti)O3–Pb(Fe,Ta)O3) is explored by monitoring changes in capacitance that occur when a magnetic field is applied in each of three orthogonal directions. Magnetocapacitance effects, consistent with P2M2 coupling, are strongest when fields are applied in the plane of the single crystal sheet investigated.

  10. Targeting Reactive Carbonyl Species with Natural Sequestering Agents

    Directory of Open Access Journals (Sweden)

    Sung Won Hwang

    2016-02-01

    Full Text Available Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering agents for reactive carbonyl species, various analytical techniques such as spectrophotometry, high performance liquid chromatography, western blot, and mass spectrometry have been utilized. In particular, recent advances using a novel high resolution mass spectrometry approach allows screening of complex mixtures such as natural products for their sequestering ability of reactive carbonyl species. To overcome the limited bioavailability and bioefficacy of natural products, new techniques using nanoparticles and nanocarriers may offer a new attractive strategy for increased in vivo utilization and targeted delivery of bioactives.

  11. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  12. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  13. The potential of natural products for targeting PPARα

    Directory of Open Access Journals (Sweden)

    Daniela Rigano

    2017-07-01

    Full Text Available Peroxisome proliferator activated receptors (PPARs α, -γ and -β/δ are ligand-activated transcription factors and members of the superfamily of nuclear hormone receptor. These receptors play key roles in maintaining glucose and lipid homeostasis by modulating gene expression. PPARs constitute a recognized druggable target and indeed several classes of drugs used in the treatment of metabolic disease symptoms, such as dyslipidemia (fibrates, e.g. fenofibrate and gemfibrozil and diabetes (thiazolidinediones, e.g. rosiglitazone and pioglitazone are ligands for the various PPAR isoforms. More precisely, antidiabetic thiazolidinediones act on PPARγ, while PPARα is the main molecular target of antidyslipidemic fibrates. Over the past few years, our understanding of the mechanism underlying the PPAR modulation of gene expression has greatly increased. This review presents a survey on terrestrial and marine natural products modulating the PPARα system with the objective of highlighting how the incredible chemodiversity of natural products can provide innovative leads for this “hot” target.

  14. Natural convection cooling of the IFMIF target and test cell

    Energy Technology Data Exchange (ETDEWEB)

    Slobodchuk, V. [Institute for Reactor Safety, Research Centre of Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Stratmanns, E. [Institute for Reactor Safety, Research Centre of Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)], E-mail: stratmanns@irs.fzk.de; Gordeev, S.; Heinzel, V.; Leichtle, D. [Institute for Reactor Safety, Research Centre of Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Moeslang, A. [Institute for Material Research I, Research Centre of Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Simakov, S.P. [Institute for Reactor Safety, Research Centre of Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2007-10-15

    The present work summarizes efforts on the simulation of natural convection cooling within the IFMIF target and test cell. The simulations have been performed with the STAR-CD code using the k-{omega} high-Reynolds number turbulence model. A dedicated thermohydraulic model has been devised including Lithium loop components. Nuclear heat production has been calculated by the Monte-Carlo code McDeLicious for different parts of the target and test cell walls and was used as input for the STAR-CD simulations. Helium atmospheres at several pressures from 0.1 to 10{sup -5} MPa have been investigated. In order to limit the maximum temperature of the concrete walls to 80 deg. C it was necessary to add thermal insulation layers to the hot Lithium loop surfaces and a conceptual system of two cooling layers in different depths of the concrete walls.

  15. Influenza neuraminidase: a druggable target for natural products.

    Science.gov (United States)

    Grienke, Ulrike; Schmidtke, Michaela; von Grafenstein, Susanne; Kirchmair, Johannes; Liedl, Klaus R; Rollinger, Judith M

    2012-01-01

    The imminent threat of influenza pandemics and repeatedly reported emergence of new drug-resistant influenza virus strains demonstrate the urgent need for developing innovative and effective antiviral agents for prevention and treatment. At present, influenza neuraminidase (NA), a key enzyme in viral replication, spread, and pathogenesis, is considered to be one of the most promising targets for combating influenza. Despite the substantial medical potential of NA inhibitors (NAIs), only three of these drugs are currently on the market (zanamivir, oseltamivir, and peramivir). Moreover, sudden changes in NAI susceptibility revealed the urgent need in the discovery/identification of novel inhibitors. Nature offers an abundance of biosynthesized compounds comprising chemical scaffolds of high diversity, which present an infinite pool of chemical entities for target-oriented drug discovery in the battle against this highly contagious pathogen. This review illuminates the increasing research efforts of the past decade (2000-2011), focusing on the structure, function and druggability of influenza NA, as well as its inhibition by natural products. Following a critical discussion of publications describing some 150 secondary plant metabolites tested for their inhibitory potential against influenza NA, the impact of three different strategies to identify and develop novel NAIs is presented: (i) bioactivity screening of herbal extracts, (ii) exploitation of empirical knowledge, and (iii) computational approaches. This work addresses the latest developments in theoretical and experimental research on properties of NA that are and will be driving anti-influenza drug development now and in the near future.

  16. Targeting Malassezia species for Novel Synthetic and Natural Antidandruff Agents.

    Science.gov (United States)

    Angiolella, Letizia; Carradori, Simone; Maccallini, Cristina; Giusiano, Gustavo; Supuran, Claudiu T

    2017-01-01

    Malassezia spp. are lipophilic yeasts not only present in the normal skin microflora, but also responsible of skin-related diseases (pityriasis versicolor, seborrheic/atopic dermatitis and dandruff) as well as systemic fungal infections in humans and animals. Their treatment and eradication are mainly based on old azole drugs, which are characterized by poor compliance, unpredictable clinical efficacy, emerging resistance and several side effects. These drawbacks have prompted the research toward novel synthetic and natural derivatives/ nanomaterials targeting other pivotal enzymes/pathways such as carbonic anhydrase (MgCA) and lipases, alone or in combination, in order to improve the eradication rate of this fungus. This review accomplished an update on this important topic dealing with the latest discoveries of synthetic scaffolds and natural products for the treatment of Malassezia spp.-related diseases, thus suggesting new opportunities to design innovative and alternative anti-dandruff drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Immunotherapeutic strategies targeting Natural killer T cell responses in cancer

    Science.gov (United States)

    Shissler, Susannah C.; Bollino, Dominique R.; Tiper, Irina V.; Bates, Joshua; Derakhshandeh, Roshanak; Webb, Tonya J.

    2017-01-01

    Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T-cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where Type II cells generally suppress tumor immunity while Type I NKT cells can enhance antitumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell targeted therapies for the treatment of cancer. PMID:27393665

  18. Development of the Ni/Al{sub 2}O{sub 3}/ZrO{sub 2} catalyst to steam reforming of the natural gas process; Desenvolvimento do catalisador Ni/Al2O3/ZrO2 para o processo de reforma do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Neiva, Laedna Souto; Ramalho, Melanea A.F.; Costa, Ana Cristina Figueiredo de Melo; Gama, Lucianna [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Andrade, Heloysa M.C. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Kiminami, Ruth Herta G.A. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil)

    2008-07-01

    The aim of this work is to develop catalyst of the type Ni/{alpha}-Al{sub 2}O{sub 3} modified with 0.005 mol of ZrO{sub 2} and structural, morphologic and catalytic characterizations, aiming employ in the reforming process of the natural gas. The catalytic supports were obtained by synthesis method for combustion reaction according to the concepts of the propellants chemistry. The active species of the catalyst (nickel) was deposited over the support by humid impregnation method. The catalytic supports were characterized by XRD, morphologic analysis by SEM and TEM, textural analysis by BET method before and after of the impregnation with nickel and were done catalytic tests in laboratory. The catalytic supports shows structure without any secondary phase with crystallinity elevated degree and crystal size varying between 5.7 and 7.0 nm. The catalytic test shows that these catalysts promoted a conversion percentile considerable of the natural gas in syngas. (author)

  19. Radiation-induced effects on the mechanical properties of natural ZrSiO4: double cascade-overlap damage accumulation

    Science.gov (United States)

    Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.

    2017-11-01

    Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.

  20. Using the Dual-Target Cost to Explore the Nature of Search Target Representations

    Science.gov (United States)

    Stroud, Michael J.; Menneer, Tamaryn; Cave, Kyle R.; Donnelly, Nick

    2012-01-01

    Eye movements were monitored to examine search efficiency and infer how color is mentally represented to guide search for multiple targets. Observers located a single color target very efficiently by fixating colors similar to the target. However, simultaneous search for 2 colors produced a dual-target cost. In addition, as the similarity between…

  1. Influence of the electrical power applied to the target on the optical and structural properties of ZrON films produced via RF magnetron sputtering in a reactive atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pinzón, M.J. [Grupo de Ciencia de Materiales y Superficies, Departamento de Física, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Alfonso, J.E., E-mail: jealfonsoo@unal.edu.co [Grupo de Ciencia de Materiales y Superficies, Departamento de Física, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Olaya, J.J. [Grupo de Ciencia de Materiales y Superficies, Departamento de Física, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Cubillos, G.I.; Romero, E. [Grupo de Materiales y Procesos Químicos, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia)

    2014-12-01

    The influence of the variation of electrical power applied to the target on the morphology and optical properties of zirconium oxynitride - zirconium oxide (ZrON) films deposited via RF magnetron sputtering on common glass substrates in a reactive atmosphere of N{sub 2}/O{sub 2}, with a flow ratio ΦN{sub 2}/ΦO{sub 2} of 1.25 was investigated. The crystallographic structure of the films was established through X-ray diffraction (XRD), the morphology was evaluated through scanning electron microscopy (SEM) and atomic force microscopy (AFM), and the optical behavior was evaluated through transmittance measurements. The XRD analysis showed that the films grew with mixed crystalline structures: monoclinic (ZrO{sub 2}) and body-centered cubic (Zr{sub 2}ON{sub 2}). SEM analysis showed that the films grew with a homogeneous morphology, and AFM results established that as the electrical power applied to the target increased, there were changes in the grain size and the roughness of the films. The thickness, refractive index, and absorption coefficient of the films were calculated using the values of the transmittance through the Swanepoel method. Additionally, the energy band gap was determined via analysis of the free interference region. - Highlights: • We growth zirconium oxynitride films by RF magnetron sputtering in reactive atmosphere. • We determine the influence of the electrical power applied at the target in optical and structural properties. • We determine the crystallite size, grain size and roughness of the zirconium oxynitride films. • We determine the optical parameters such refractive index of the zirconium oxynitride films through Swanepoel method. • We calculated the absorption coefficient and optical band gap of the zirconium oxynitride films.

  2. Influence of the electrical power applied to the target on the optical and structural properties of ZrON films produced via RF magnetron sputtering in a reactive atmosphere

    International Nuclear Information System (INIS)

    Pinzón, M.J.; Alfonso, J.E.; Olaya, J.J.; Cubillos, G.I.; Romero, E.

    2014-01-01

    The influence of the variation of electrical power applied to the target on the morphology and optical properties of zirconium oxynitride - zirconium oxide (ZrON) films deposited via RF magnetron sputtering on common glass substrates in a reactive atmosphere of N 2 /O 2 , with a flow ratio ΦN 2 /ΦO 2 of 1.25 was investigated. The crystallographic structure of the films was established through X-ray diffraction (XRD), the morphology was evaluated through scanning electron microscopy (SEM) and atomic force microscopy (AFM), and the optical behavior was evaluated through transmittance measurements. The XRD analysis showed that the films grew with mixed crystalline structures: monoclinic (ZrO 2 ) and body-centered cubic (Zr 2 ON 2 ). SEM analysis showed that the films grew with a homogeneous morphology, and AFM results established that as the electrical power applied to the target increased, there were changes in the grain size and the roughness of the films. The thickness, refractive index, and absorption coefficient of the films were calculated using the values of the transmittance through the Swanepoel method. Additionally, the energy band gap was determined via analysis of the free interference region. - Highlights: • We growth zirconium oxynitride films by RF magnetron sputtering in reactive atmosphere. • We determine the influence of the electrical power applied at the target in optical and structural properties. • We determine the crystallite size, grain size and roughness of the zirconium oxynitride films. • We determine the optical parameters such refractive index of the zirconium oxynitride films through Swanepoel method. • We calculated the absorption coefficient and optical band gap of the zirconium oxynitride films

  3. Novel targets for natural killer/T-cell lymphoma immunotherapy.

    Science.gov (United States)

    Kumai, Takumi; Kobayashi, Hiroya; Harabuchi, Yasuaki

    2016-01-01

    Extranodal natural killer/T-cell lymphoma, nasal type (NKTL) is a rare but highly aggressive Epstein-Barr virus-related malignancy, which mainly occurs in nasopharyngeal and nasal/paranasal areas. In addition to its high prevalence in Asian, Central American and South American populations, its incidence rate has been gradually increasing in Western countries. The current mainstay of treatment is a combination of multiple chemotherapies and irradiation. Although chemoradiotherapy can cure NKTL, it often causes severe and fatal adverse events. Because a growing body of evidence suggests that immunotherapy is effective against hematological malignancies, this treatment could provide an alternative to chemoradiotherapy for treatment of NKTL. In this review, we focus on how recent findings could be used to develop efficient immunotherapies against NKTL.

  4. Targeting cancer cells with the natural compound obtusaquinone.

    Science.gov (United States)

    Badr, Christian E; Van Hoppe, Stephanie; Dumbuya, Hawasatu; Tjon-Kon-Fat, Lee-Ann; Tannous, Bakhos A

    2013-05-01

    Tumor cells present high levels of oxidative stress. Cancer therapeutics exploiting such biochemical changes by increasing reactive oxygen species (ROS) production or decreasing intracellular ROS scavengers could provide a powerful treatment strategy. To test the effect of our compound, obtusaquinone (OBT), we used several cell viability assays on seven different glioblastoma (GBM) cell lines and primary cells and on 12 different cell lines representing various cancer types in culture as well as on subcutaneous (n = 7 mice per group) and two intracranial GBM (n = 6-8 mice per group) and breast cancer (n = 6 mice per group) tumor models in vivo. Immunoblotting, immunostaining, flow cytometry, and biochemical assays were used to investigate the OBT mechanism of action. Histopathological analysis (n = 2 mice per group) and blood chemistry (n = 2 mice per group) were used to test for any compound-related toxicity. Statistical tests were two-sided. OBT induced rapid increase in intracellular ROS levels, downregulation of cellular glutathione levels and increase in its oxidized form, and activation of cellular stress pathways and DNA damage, subsequently leading to apoptosis. Oxidative stress is believed to be the main mechanism through which this compounds targets cancer cells. OBT was well tolerated in mice, slowed tumor growth, and statistically prolonged survival in GBM tumor models. The ratio of median survival in U251 intracranial model in OBT vs control was 1.367 (95% confidence interval [CI] of ratio = 1.031 to 1.367, P = .008). Tumor growth inhibition was also observed in a mouse breast cancer model (average tumor volume per mouse, OBT vs control: 36.3 vs 200.4mm(3), difference = 164.1mm(3), 95% CI =72.6 to 255.6mm(3), P = .005). Given its properties and efficacy in cancer killing, our results suggest that OBT is a promising cancer therapeutic.

  5. Expanding the range of 'druggable' targets with natural product-based libraries: an academic perspective.

    Science.gov (United States)

    Bauer, Renato A; Wurst, Jacqueline M; Tan, Derek S

    2010-06-01

    Existing drugs address a relatively narrow range of biological targets. As a result, libraries of drug-like molecules have proven ineffective against a variety of challenging targets, such as protein-protein interactions, nucleic acid complexes, and antibacterial modalities. In contrast, natural products are known to be effective at modulating such targets, and new libraries are being developed based on underrepresented scaffolds and regions of chemical space associated with natural products. This has led to several recent successes in identifying new chemical probes that address these challenging targets. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Ocular vergence under natural conditions. I. Continuous changes of target distance along the median plane

    NARCIS (Netherlands)

    1989-01-01

    textabstractHorizontal binocular eye movements of four subjects were recorded with the scleral sensor coil - revolving magnetic field technique while they fixated a natural target, whose distance was varied in a normally illuminated room. The distance of the target relative to the head of the

  7. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Raquel S Linheiro

    Full Text Available Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.

  8. Natural products used as a chemical library for protein-protein interaction targeted drug discovery.

    Science.gov (United States)

    Jin, Xuemei; Lee, Kyungro; Kim, Nam Hee; Kim, Hyun Sil; Yook, Jong In; Choi, Jiwon; No, Kyoung Tai

    2018-01-01

    Protein-protein interactions (PPIs), which are essential for cellular processes, have been recognized as attractive therapeutic targets. Therefore, the construction of a PPI-focused chemical library is an inevitable necessity for future drug discovery. Natural products have been used as traditional medicines to treat human diseases for millennia; in addition, their molecular scaffolds have been used in diverse approved drugs and drug candidates. The recent discovery of the ability of natural products to inhibit PPIs led us to use natural products as a chemical library for PPI-targeted drug discovery. In this study, we collected natural products (NPDB) from non-commercial and in-house databases to analyze their similarities to small-molecule PPI inhibitors (iPPIs) and FDA-approved drugs by using eight molecular descriptors. Then, we evaluated the distribution of NPDB and iPPIs in the chemical space, represented by the molecular fingerprint and molecular scaffolds, to identify the promising scaffolds, which could interfere with PPIs. To investigate the ability of natural products to inhibit PPI targets, molecular docking was used. Then, we predicted a set of high-potency natural products by using the iPPI-likeness score based on a docking score-weighted model. These selected natural products showed high binding affinities to the PPI target, namely XIAP, which were validated in an in vitro experiment. In addition, the natural products with novel scaffolds might provide a promising starting point for further medicinal chemistry developments. Overall, our study shows the potency of natural products in targeting PPIs, which might help in the design of a PPI-focused chemical library for future drug discovery. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data

    Directory of Open Access Journals (Sweden)

    Paula Litkey

    2009-04-01

    Full Text Available We have studied the possibility of calibrating airborne laser scanning (ALS intensity data, using land targets typically available in urban areas. For this purpose, a test area around Espoonlahti Harbor, Espoo, Finland, for which a long time series of ALS campaigns is available, was selected. Different target samples (beach sand, concrete, asphalt, different types of gravel were collected and measured in the laboratory. Using tarps, which have certain backscattering properties, the natural samples were calibrated and studied, taking into account the atmospheric effect, incidence angle and flying height. Using data from different flights and altitudes, a time series for the natural samples was generated. Studying the stability of the samples, we could obtain information on the most ideal types of natural targets for ALS radiometric calibration. Using the selected natural samples as reference, the ALS points of typical land targets were calibrated again and examined. Results showed the need for more accurate ground reference data, before using natural samples in ALS intensity data calibration. Also, the NIR camera-based field system was used for collecting ground reference data. This system proved to be a good means for collecting in situ reference data, especially for targets with inhomogeneous surface reflection properties.

  10. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches.

    Science.gov (United States)

    Wang, Jigang; Gao, Liqian; Lee, Yew Mun; Kalesh, Karunakaran A; Ong, Yong Siang; Lim, Jaehong; Jee, Joo-Eun; Sun, Hongyan; Lee, Su Seong; Hua, Zi-Chun; Lin, Qingsong

    2016-06-01

    Natural and traditional medicines, being a great source of drugs and drug leads, have regained wide interests due to the limited success of high-throughput screening of compound libraries in the past few decades and the recent technology advancement. Many drugs/bioactive compounds exert their functions through interaction with their protein targets, with more and more drugs showing their ability to target multiple proteins, thus target identification has an important role in drug discovery and biomedical research fields. Identifying drug targets not only furthers the understanding of the mechanism of action (MOA) of a drug but also reveals its potential therapeutic applications and adverse side effects. Chemical proteomics makes use of affinity chromatography approaches coupled with mass spectrometry to systematically identify small molecule-protein interactions. Although traditional affinity-based chemical proteomics approaches have made great progress in the identification of cellular targets and elucidation of MOAs of many bioactive molecules, nonspecific binding remains a major issue which may reduce the accuracy of target identification and may hamper the drug development process. Recently, quantitative proteomics approaches, namely, metabolic labeling, chemical labeling, or label-free approaches, have been implemented in target identification to overcome such limitations. In this review, we will summarize and discuss the recent advances in the application of various quantitative chemical proteomics approaches for the identification of targets of natural and traditional medicines. Copyright © 2016. Published by Elsevier Inc.

  11. [Progress of methodology for identifying target protein of natural active small molecules].

    Science.gov (United States)

    Tu, Peng-Fei; Zeng, Ke-Wu; Liao, Li-Xi; Song, Xiao-Min

    2016-01-01

    Drug targets are special molecules that can interact with drugs and exert pharmacological functions in human body. The natural active small molecules are the bioactive basis of traditional Chinese medicine, and the mechanism study is a hot topic now, especially for the identification of their target proteins. However, little progress has been made in this field until now. Here, we summarized the recent technologies and methods for the identification of target proteins of natural bioactive small molecules, and introduced the main research methods, principles and successful cases in this field. We also explored the applicability and discussed the advantages and disadvantages among different methods. We hope this review can be used as a reference for the researchers who engaged in natural pharmaceutical chemistry, pharmacology and chemical biology. Copyright© by the Chinese Pharmaceutical Association.

  12. Mechanisms of naturally acquired immunity to P. falciparum and approaches to identify merozoite antigen targets.

    Science.gov (United States)

    Healer, Julie; Chiu, Chris Y; Hansen, Diana S

    2017-11-16

    Malaria is one the most serious infectious diseases with over 200 million clinical cases annually. Most cases of the severe disease are caused by Plasmodium falciparum. The blood stage of Plasmodium parasite is entirely responsible for malaria-associated pathology. The population most susceptible to severe malaria are children under the age of 5, with low levels of immunity. It is only after many years of repeated exposure that individuals living in endemic areas develop clinical immunity. This form of protection prevents clinical episodes by substantially reducing parasite burden. Naturally acquired immunity predominantly targets blood-stage parasites with antibody responses being the main mediators of protection. The targets of clinical immunity are the extracellular merozoite and the infected erythrocyte surface, with the extremely diverse PfEMP1 proteins the main target here. This observation provides a strong rationale that an effective anti-malaria vaccine targeting blood-stage parasites is achievable. Thus the identification of antigenic targets of naturally acquired immunity remains an important step towards the formulation of novel vaccine combinations before testing their efficacy in clinical trials. This review summarizes the main findings to date defining antigenic targets present on the extracellular merozoite associated with naturally acquired immunity to P. falciparum malaria.

  13. Optimization of the Manufacturing Process of Zr-2.5Nb Pressure Tubes for CANDU Reactors for Extending Their Design Life to Over 30 years

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    Zr-2.5Nb pressure tubes are the most critical components that determine the design life of CANADU (CAnadian Natural Uranium) reactors. The initial design target for the Zr-2.5Nb pressure tubes is to suppress the diametral creep through a texture control which may trade off the other performances that can be overcome by introducing a change in the components design. To this end, they are made by the extrusion process at high temperatures to have a circumferential texture with most of the basal poles oriented towards their circumferential direction. However, this circumferential texture causes them to be very susceptible to delayed hydride cracking (DHC) and to have a higher axial elongation. Against the initial design target, their costly refurbishments are planned in several commercial CANDU reactors before their design life of 30 years, due to the unexpectedly faster creep rate and axial elongation. This fact casts a question over the validity of the design philosophy that the diametral creep of the Zr-2.5Nb pressure tube is governed by the texture. The aim of this work is to elucidate the governing factor of creep of the Zr-2.5Nb tubes and to find a way of making improved Zr-2.5Nb pressure tubes with a lower diametral creep and axial elongation. To this end, we scrutinized Holt's experiment where the in-reactor creep behaviors of the Zr-2.5Nb micro-pressure tube (MPT) with a circumferential texture was compared with that of the Zr-2.5Nb fuel sheath (FS) with a radial texture. Accounting for the fact that thermal creep of Zr-2.5Nb alloy is affected by the Nb concentration in the {beta}-Zr, we demonstrate that the reduced creep is not dictated by the circumferential texture but by the increased Nb concentration in the {alpha}-Zr. This study suggests that the optimized manufacturing procedure of the Zr-2.5Nb tube would improve their in-reactor performances, extending their design life to over 30 years when compared to that of the current design of the

  14. A First-Principles Study on the Vibrational and Electronic Properties of Zr-C MXenes

    Science.gov (United States)

    Wang, Chang-Ying; Guo, Yong-Liang; Zhao, Yuan-Yuan; Zeng, Guang-Li; Zhang, Wei; Ren, Cui-Lan; Han, Han; Huai, Ping

    2018-03-01

    Within the framework of density functional theory calculations, the structural, vibrational, and electronic properties of Zr n C n - 1 (n = 2, 3, and 4) and their functionalized MXenes have been investigated. We find that the most stable configurations for Zr-C MXene are the ones that the terminal groups F, O, and OH locate on the common hollow site of the superficial Zr layer and its adjacent C layer. F and OH-terminated Zr 3 C 2 and Zr 4 C 3 have small imaginary acoustic phonon branches around Γ point while the others have no negative phonon modes. The pristine MXenes (Zr 2 C, Zr 3 C 2 and Zr 4 C 3 ) are all metallic with large DOS contributed by the Zr atom at the Fermi energy. When functionalized by F, O and OH, new hybridization states appear and the DOS at the Fermi level are reduced. Moreover, we find that their metallic characteristic increases with an increase in n. For (Zr n C n - 1 )O 2, Zr 2 CO 2 is a semiconductor, Zr 3C2O2 is a semimetal, and Zr 4 C 3O2 becomes a metal. Supported by the National Natural Science Foundation of China under Grant Nos. 11605273, 21571185, U1404111, 11504089, 21501189, 21676291, the Shanghai Municipal Science and Technology Commission 16ZR1443100, the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA02040104)

  15. Virtual screening on natural products for discovering active compounds and target information.

    Science.gov (United States)

    Shen, Jianhua; Xu, Xiaoying; Cheng, Feng; Liu, Hong; Luo, Xiaomin; Shen, Jingkang; Chen, Kaixian; Zhao, Weimin; Shen, Xu; Jiang, Hualiang

    2003-11-01

    Natural products, containing inherently large-scale structural diversity than synthetic compounds, have been the major resources of bioactive agents and will continually play as protagonists for discovering new drugs. However, how to access this diverse chemical space efficiently and effectively is an exciting challenge for medicinal chemists and pharmacologists. While virtual screening, which has shown a great promise in drug discovery, will play an important role in digging out lead (active) compounds from natural products. This review focuses on the strategy of virtual screening based on molecular docking and, with successful examples from our laboratory, illustrates the efficiency of virtual screening in discovering active compounds from natural products. On the other hand, the sequencing of the human genome and numerous pathogen genomes has resulted in an unprecedented opportunity for discovering potential new drug targets. Chemogenomics has appeared as a new technology to initiate target discovery by using active compounds as probes to characterize proteome functions. Natural products are the ideal probes for such research. Binding affinity fingerprint is a powerful chemogenomic descriptor to characterize both small molecules and pharmacologically relevant proteins. Therefore, this review also discusses binding affinity fingerprint strategy for identifying target information from the genomic data by using natural products as the probes.

  16. Neutron capture by (94,96)Zr and the decays of (97)Zr and (97)Nb.

    Science.gov (United States)

    Krane, K S

    2014-12-01

    Cross sections for radiative neutron capture have been determined for (94)Zr and (96)Zr using the activation technique with samples of naturally occurring Zr metal. The sensitivity to the correction for epithermal neutrons in the determination of small thermal cross sections is discussed, particularly in view of the variation in the resonance integral at different sites in the reactor. Gamma-ray spectroscopic studies of the decays of (97)Zr and its daughter (97)Nb have been performed, leading to improved values of the energies and intensities of the emitted γ rays, and correspondingly improved values for the energy levels and β feedings of excited states populated in (97)Nb and (97)Mo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Chemical bonding in epitaxial ZrB 2 studied by X-ray spectroscopy

    Science.gov (United States)

    Magnuson, Martin; Tengdelius, Lina; Greczynski, Grzegorz; Hultman, Lars; Högberg, Hans

    2018-03-01

    The chemical bonding in an epitaxial ZrB2 film is investigated by Zr K-edge (1s) X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies and compared to the ZrB2 compound target from which the film was synthesized as well as a bulk {\\alpha}-Zr reference. Quantitative analysis of X-ray Photoelectron Spectroscopy spectra reveals at the surface: ~5% O in the epitaxial ZrB2 film, ~19% O in the ZrB2 compound target and ~22% O in the bulk {\\alpha}-Zr reference after completed sputter cleaning. For the ZrB2 compound target, X-ray diffraction (XRD) shows weak but visible -111, 111, and 220 peaks from monoclinic ZrO2 together with peaks from ZrB2 and where the intensity distribution for the ZrB2 peaks show a randomly oriented target material. For the bulk {\\alpha}-Zr reference no peaks from any crystalline oxide were visible in the diffractogram recorded from the 0001-oriented metal. The Zr K-edge absorption from the two ZrB2 samples demonstrate more pronounced oscillations for the epitaxial ZrB2 film than in the bulk ZrB2 attributed to the high atomic ordering within the columns of the film. The XANES exhibits no pre-peak due to lack of p-d hybridization in ZrB2, but with a chemical shift towards higher energy of 4 eV in the film and 6 eV for the bulk compared to {\\alpha}-Zr (17.993 keV) from the charge-transfer from Zr to B. The 2 eV larger shift in bulk ZrB2 material suggests higher oxygen content than in the epitaxial film, which is supported by XPS. In EXAFS, the modelled cell-edge in ZrB2 is slightly smaller in the thin film (a=3.165 {\\AA}, c=3.520 {\\AA}) in comparison to the bulk target material (a=3.175 {\\AA}, c=3.540 {\\AA}) while in hexagonal closest-packed metal ({\\alpha}-phase, a=3.254 {\\AA}, c=5.147 {\\AA}).

  18. Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics.

    Science.gov (United States)

    Sarkar, Fazlul H; Li, Yiwei

    2009-11-01

    Cancer cells exhibit deregulation in multiple cellular signaling pathways. Therefore, treatments using specific agents that target only one pathway usually fail in cancer therapy. The combination treatments using chemotherapeutic agents with distinct molecular mechanisms are considered more promising for higher efficacy; however, using multiple agents contributes to added toxicity. Emerging evidence has shown that some "natural products" such as isoflavones, indole-3-carbinol (I3C) and its in vivo dimeric product 3,3'-diindolylmethane (DIM), and curcumin among many others, have growth inhibitory and apoptosis inducing effects on human and animal cancer cells mediated by targeting multiple cellular signaling pathways in vitro without causing unwanted toxicity in normal cells. Therefore, these non-toxic "natural products" from natural resources could be useful in combination with conventional chemotherapeutic agents for the treatment of human malignancies with lower toxicity and higher efficacy. In fact, recently increasing evidence from pre-clinical in vivo studies and clinical trials have shown some success in support of the use of rational design of multi-targeted therapies for the treatment of cancers using conventional chemotherapeutic agents in combination with "natural products". These studies have provided promising results and further opened-up newer avenues for cancer therapy. In this review article, we have succinctly summarized the known effects of "natural products" especially by focusing on isoflavones, indole-3-carbinol (I3C) and its in vivo dimeric product 3,3'-diindolylmethane (DIM), and curcumin, and provided a comprehensive view on the molecular mechanisms underlying the principle of cancer therapy using combination of "natural products" with conventional therapeutics.

  19. Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV.

    Science.gov (United States)

    Vora, Jaykant; Patel, Shivani; Sinha, Sonam; Sharma, Sonal; Srivastava, Anshu; Chhabria, Mahesh; Shrivastava, Neeta

    2018-01-07

    AIDS is one of the multifaceted diseases and this underlying complexity hampers its complete cure. The toxicity of existing drugs and emergence of multidrug-resistant virus makes the treatment worse. Development of effective, safe and low-cost anti-HIV drugs is among the top global priority. Exploration of natural resources may give ray of hope to develop new anti-HIV leads. Among the various therapeutic targets for HIV treatment, reverse transcriptase, protease, integrase, GP120, and ribonuclease are the prime focus. In the present study, we predicted potential plant-derived natural molecules for HIV treatment using computational approach, i.e. molecular docking, quantitative structure activity relationship (QSAR), and ADMET studies. Receptor-ligand binding studies were performed using three different software for precise prediction - Discovery studio 4.0, Schrodinger and Molegrow virtual docker. Docking scores revealed that Mulberrosides, Anolignans, Curcumin and Chebulic acid are promising candidates that bind with multi targets of HIV, while Neo-andrographolide, Nimbolide and Punigluconin were target-specific candidates. Subsequently, QSAR was performed using biologically proved compounds which predicted the biological activity of compounds. We identified Anolignans, Curcumin, Mulberrosides, Chebulic acid and Neo-andrographolide as potential natural molecules for HIV treatment from results of molecular docking and 3D-QSAR. In silico ADMET studies showed drug-likeness of these lead molecules. Structure similarities of identified lead molecules were compared with identified marketed drugs by superimposing both the molecules. Using in silico studies, we have identified few best fit molecules of natural origin against identified targets which may give new drugs to combat HIV infection after wet lab validation.

  20. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database.

    Science.gov (United States)

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P S; Agarwal, Subhash M

    2013-01-01

    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC(50)/ED(50)/EC(50)/GI(50)), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients' Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI(50) data.

  1. Drug Target Identification and Elucidation of Natural Inhibitors for : An Study

    Directory of Open Access Journals (Sweden)

    Surya Narayan Rath

    2016-12-01

    Full Text Available Environmental microbes like Bordetella petrii has been established as a causative agent for various infectious diseases in human. Again, development of drug resistance in B. petrii challenged to combat against the infection. Identification of potential drug target and proposing a novel lead compound against the pathogen has a great aid and value. In this study, bioinformatics tools and technology have been applied to suggest a potential drug target by screening the proteome information of B. petrii DSM 12804 (accession No. PRJNA28135 from genome database of National Centre for Biotechnology information. In this regards, the inhibitory effect of nine natural compounds like ajoene (Allium sativum, allicin (A. sativum, cinnamaldehyde (Cinnamomum cassia, curcumin (Curcuma longa, gallotannin (active component of green tea and red wine, isoorientin (Anthopterus wardii, isovitexin (A. wardii, neral (Melissa officinalis, and vitexin (A. wardii have been acknowledged with anti-bacterial properties and hence tested against identified drug target of B. petrii by implicating computational approach. The in silico studies revealed the hypothesis that lpxD could be a potential drug target and with recommendation of a strong inhibitory effect of selected natural compounds against infection caused due to B. petrii, would be further validated through in vitro experiments.

  2. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Hu Y

    2017-11-01

    Full Text Available Yan Hu,1 Lei Ke,2 Hao Chen,1 Ma Zhuo,1 Xinzhou Yang,1 Dan Zhao,1 Suying Zeng,1 Xincai Xiao1 1Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities, 2Department of Medicinal Chemistry, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China Abstract: To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs, which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. Keywords: multifunctional, membrane-controlled, natural materials, mesoporous silica nanoparticles, targeted drug delivery

  3. The 91Zr(d,t)90Zr reaction

    International Nuclear Information System (INIS)

    Gomes, L.C.

    1975-01-01

    Sixteen levels populated in the 91 Zr(d,t) 90 Zr pick-up reaction were studied with 16 MeV deuterons. Distorted waves Born approximation calculations were compared to the data, and yielded spectroscopic factors and l values. Particle-hole states in 90 Zr were observed. Some significant errors were found in Zr(d,t) reactions Q values recently compiled [pt

  4. KORELASI KOMPOSISI UNSUR TERHADAP SIFAT TERMAL SERBUK BAHAN BAKAR U-ZrHX

    Directory of Open Access Journals (Sweden)

    Masrukan Masrukan

    2016-10-01

    yaitu kapasitas panas diperoleh nilai kapasitas panas tertinggi pada serbuk U-35ZrHx, sedangkan dari pengujian transisi perubahan fasa diperoleh bahwa pada U-45ZrHx mengalami dua tahapan reaksi disertai perubahan fasa. Terdapat pengaruh komposisi terhadap sifat termalnya, dimana semakin tinggi kandungan Zr maka nilai kapaistas panas hidrida uranium zirkonium semakin rendah. Kata kunci: komposisi, sifat termal, bahan bakar, U-ZrHx. ABSTRACT COMPOSITION CORRECTION ON THE THERMAL PROPERTIES OF U-ZrHX FUEL POWDERS. Analysis has been conducted to determine the composition correlation on the thermal properties of the powder fuel U-ZrHx. U-ZrHx powder made from the process hidriding U-Zr ingot, where the ingot is the result of U-Zr and Zr U metal melting. In this experiment made three variations of powders, namely U-35ZrHx, U-45ZrHx, and U-55ZrHx. Need for determination of the thermal properties of Zr was to determine the effect of the nature of the transformation of Zr levels of heat from the fuel. At first, U and Zr metal is melted in electric arc furnaces to produce ingot U-Zr. U-Zr ingot then made powder with hidridring-milling techniques to produce U-Zr powder. U-Zr powder composition analyzed using techniques sepectroscopy atomic absorption (AAS and UV-Vis spectroscopy. The results of composition analysis showed that the analysis to determine the content of U and Zr nearly all the test samples analyzed have quite a big difference between the content of U and Zr as determined by the results of the analysis of U and Zr exception analysis result in powder U-45Zr which differ only 0.609%. From the analysis of impurities obtained that nearly all the impurities that exist still meet the requirements for fuel unless the elements Fe, where elements of the existing Fe amounted to 382.912 g/g while the requirement of £ 250 mg /µg. Testing conducted heat capacity in the temperature range 35 ° C to 437 ° C showed that the capacity were greatest powder 35ZrHx U-with a value heat

  5. Natural healing-inspired collagen-targeting surgical protein glue for accelerated scarless skin regeneration.

    Science.gov (United States)

    Jeon, Eun Young; Choi, Bong-Hyuk; Jung, Dooyup; Hwang, Byeong Hee; Cha, Hyung Joon

    2017-07-01

    Skin scarring after deep dermal injuries is a major clinical problem due to the current therapies limited to established scars with poor understanding of healing mechanisms. From investigation of aberrations within the extracellular matrix involved in pathophysiologic scarring, it was revealed that one of the main factors responsible for impaired healing is abnormal collagen reorganization. Here, inspired by the fundamental roles of decorin, a collagen-targeting proteoglycan, in collagen remodeling, we created a scar-preventive collagen-targeting glue consisting of a newly designed collagen-binding mussel adhesive protein and a specific glycosaminoglycan. The collagen-targeting glue specifically bound to type I collagen in a dose-dependent manner and regulated the rate and the degree of fibrillogenesis. In a rat skin excisional model, the collagen-targeting glue successfully accelerated initial wound regeneration as defined by effective reepithelialization, neovascularization, and rapid collagen synthesis. Moreover, the improved dermal collagen architecture was demonstrated by uniform size of collagen fibrils, their regular packing, and a restoration of healthy tissue component. Collectively, our natural healing-inspired collagen-targeting glue may be a promising therapeutic option for improving the healing rate with high-quality and effective scar inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Identification of functional peptides from natural and synthetic products on their anticancer activities by tumor targeting.

    Science.gov (United States)

    Ko, Joshua K; Auyeung, Kathy K

    2014-01-01

    Cancer cells can express specific membrane proteins, which act as biomarkers for chemotherapeutic targeting. Functional peptides possess unique properties that will ensure efficacy, selectivity, specificity and low toxicity when used as therapeutic agents. Therapeutic peptides have been derived in treatment of cancers through improvement of cellular uptake, drug targeting and vaccine development. Peptides from natural source have been used for chemoprevention and therapy of various cancers. These include peptides derived from food, marine products, venom components and other animal constituents. Besides, chemically- and recombinantly-synthesized peptides have also been produced and extensively studied in contemporary applications. Improvement of tumor targeting is essential for chemotherapeutic development. This can be achieved through enhancement of intracellular delivery and/or increased specific binding affinity to cancer cells by pore-forming and cytotoxic peptides. Cytotoxic peptides such as the Bcl-2 family members can induce receptor-specific binding to tumor cells and promote apoptosis by targeting lipid membranes. This approach has some limitations in targeting, penetration and localization within tumors. Cell-penetrating peptides (CPPs) belong to a new class of tumor-targeting peptides that can facilitate internalization of tumor markers and/or chemotherapeutic drugs. In order to overcome the problem of serum instability in classical CPPs (e.g. Tat), newer classes of CPPs has been recently introduced. Nevertheless, some cyclized CPPs can further enhance cellular uptake and binding selectivity when compared to activities of their linear counterpart, especially when treating chemoresistant tumors. This review compiles the use of effective tumor-targeting peptides including novel CPPs that represents new therapeutic strategies for the treatment of cancers.

  7. Mining Natural-Products Screening Data for Target-Class Chemical Motifs.

    Science.gov (United States)

    Coma, Isabel; Bandyopadhyay, Deepak; Diez, Emilio; Ruiz, Emilio Alvarez; de los Frailes, Maria Teresa; Colmenarejo, Gonzalo

    2014-06-01

    In this article, we describe two complementary data-mining approaches used to characterize the GlaxoSmithKline (GSK) natural-products set (NPS) based on information from the high-throughput screening (HTS) databases. Both methods rely on the aggregation and analysis of a large set of single-shot screening data for a number of biological assays, with the goal to reveal natural-product chemical motifs. One of them is an established method based on the data-driven clustering of compounds using a wide range of descriptors,(1)whereas the other method partitions and hierarchically clusters the data to identify chemical cores.(2,3)Both methods successfully find structural scaffolds that significantly hit different groups of discrete drug targets, compared with their relative frequency of demonstrating inhibitory activity in a large number of screens. We describe how these methods can be applied to unveil hidden information in large single-shot HTS data sets. Applied prospectively, this type of information could contribute to the design of new chemical templates for drug-target classes and guide synthetic efforts for lead optimization of tractable hits that are based on natural-product chemical motifs. Relevant findings for 7TM receptors (7TMRs), ion channels, class-7 transferases (protein kinases), hydrolases, and oxidoreductases will be discussed. © 2014 Society for Laboratory Automation and Screening.

  8. Multi-potent Natural Scaffolds Targeting Amyloid Cascade: In Search of Alzheimer's Disease Therapeutics.

    Science.gov (United States)

    Chakraborty, Sandipan

    2017-01-01

    Alzheimer's Disease (AD) once considered a rare disorder emerges as a major health concern in recent times. The disease pathogenesis is very complex and yet to be understood completely. However, "Amyloid Cascade" is the central event in disease pathogenesis. Several proteins of the amyloid cascade are currently being considered as potential targets for AD therapeutics discovery. Many potential compounds are in clinical trials, but till now there is no known cure for the disease. Recent years have witnessed remarkable research interest in the search of novel concepts in drug designing for AD. Multi-targeted ligand design is a paradigm shift in conventional drug discovery. In this process rather than designing ligands targeting a single receptor, novel ligands have been designed/ synthesized that can simultaneously target many pathways involved in disease pathogenesis. Here, recent developments in computational drug designing protocols to identify multi-targeted ligand for AD have been discussed. Therapeutic potential of different multi-potent compounds also has been discussed briefly. Prime emphasis has been given to multi-potent ligand from natural resources. Polyphenols are an interesting group of compounds which show efficacy against a wide range of disease and have the property to exhibit multi-potency. Several groups attempted to identify novel multi-potent phytochemicals for AD therapy. Multi-potency of several polyphenols or compounds synthesized using the poly-phenolic scaffolds have been briefly discussed here. However, the multi-targeted drug designing for AD is still in early stages, more advancement in drug designing method/algorithm developments is urgently required to discover more efficient compounds for AD therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Multi-Target Screening and Experimental Validation of Natural Products from Selaginella Plants against Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Yin-Hua Deng

    2017-08-01

    Full Text Available Alzheimer's disease (AD is a progressive and irreversible neurodegenerative disorder which is considered to be the most common cause of dementia. It has a greater impact not only on the learning and memory disturbances but also on social and economy. Currently, there are mainly single-target drugs for AD treatment but the complexity and multiple etiologies of AD make them difficult to obtain desirable therapeutic effects. Therefore, the choice of multi-target drugs will be a potential effective strategy inAD treatment. To find multi-target active ingredients for AD treatment from Selaginella plants, we firstly explored the behaviors effects on AD mice of total extracts (TE from Selaginella doederleinii on by Morris water maze test and found that TE has a remarkable improvement on learning and memory function for AD mice. And then, multi-target SAR models associated with AD-related proteins were built based on Random Forest (RF and different descriptors to preliminarily screen potential active ingredients from Selaginella. Considering the prediction outputs and the quantity of existing compounds in our laboratory, 13 compounds were chosen to carry out the in vitro enzyme inhibitory experiments and 4 compounds with BACE1/MAO-B dual inhibitory activity were determined. Finally, the molecular docking was applied to verify the prediction results and enzyme inhibitory experiments. Based on these study and validation processes, we explored a new strategy to improve the efficiency of active ingredients screening based on trace amount of natural product and numbers of targets and found some multi-target compounds with biological activity for the development of novel drugs for AD treatment.

  10. Thermal conductivity of U-ZrHx and U-Th-Zr-H

    International Nuclear Information System (INIS)

    Tsuchiya, B.; Huang, J.; Konashi, K.; Teshigawara, M.; Yamawaki, M.

    1999-01-01

    Hydride fuels have been used in research reactors for many years. Recently, the transmutation method of nuclear wastes using actinide hydrides has been proposed. It was pointed out that one of the important research and development processes necessary to establish the transmutation method is to develop stable actinide hydrides in reactor irradiation conditions. Specifically, thermal conductivity of actinide hydride is necessary for the design of the hydride fuel pin. In this paper, the thermal conductivities of U-ZrH x and U-Th-Zr-H are evaluated. These hydrides have been tested in the Japan Material Testing Reactor (JMTR) in Japan as a simulated sample of an actinide transmutation target

  11. Seek and destroy: the use of natural compounds for targeting the molecular roots of cancer.

    Science.gov (United States)

    Souza, Ana C S; de Fatima, Angelo; da Silveira, Rafael B; Justo, Giselle Z

    2012-07-01

    One of the major issues facing anticancer research relies on the intrinsic inability of tumor cells to undergo apoptosis. Additionally, the development of cancer resistance to standard therapy and the great heterogeneity associated with frequent mutations and epigenetic changes make an ever increasing challenge to achieve treatment success. Thus, novel therapeutic approaches to induce cancer demise must be explored. Compelling evidence has shown the ability of naturally-occurring compounds to modulate signal transduction pathways, apoptosis and cell cycle progression, supporting their relevance to anticancer drug discovery. Moreover, millions of years of biological selection have led to an unlimited repertoire of chemical structures unmatched by any synthetic combinatorial library and recent advances in the fields of chemistry and biology are uncovering this still underexplored source of new promising natural agents, opening novel perspectives for the development of alternative strategies to fight cancer. This review presents the current status of natural products in modern oncology, illustrating the importance of some old and new agents, such as antimitotics and apoptosis inducers, as candidates of pharmacological interest in drug development and/or as chemical tools for the elucidation, as well as targeting, of deregulated cancer signaling pathways. Finally, some aspects of chemical modifications done in natural products core aiming to improve their activity and/or effectiveness will be discussed.

  12. Decaleside: a new class of natural insecticide targeting tarsal gustatory sites

    Science.gov (United States)

    Rajashekar, Yallappa; Rao, Lingamallu J. M.; Shivanandappa, Thimmappa

    2012-10-01

    Natural sources for novel insecticide molecules hold promise in view of their eco-friendly nature, selectivity, and mammalian safety. Recent progress in understanding the biology of insect olfaction and taste offers new strategies for developing selective pest control agents. We have isolated two natural insecticidal molecules from edible roots of Decalepis hamiltonii named Decalesides I and II, which are novel trisaccharides, highly toxic to household insect pests and stored-product insects. We have experimentally shown that insecticidal activity requires contact with tarsi on the legs but is not toxic orally. The insecticidal activity of molecules is lost by hydrolysis, and various sugars modify toxic response, showing that the insecticidal activity is via gustatory sites on the tarsi. Selective toxicity to insects by virtue of their gustatory site of action and the mammalian safety of the new insecticides is inherent in their chemical structure with 1-4 or 1-1 α linkage that is easily hydrolyzed by digestive enzymes of mammals. Decalesides represent a new chemical class of natural insecticides with a unique mode of action targeting tarsal chemosensory/gustatory system of insects.

  13. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining.

    Science.gov (United States)

    Skinnider, Michael A; Johnston, Chad W; Edgar, Robyn E; Dejong, Chris A; Merwin, Nishanth J; Rees, Philip N; Magarvey, Nathan A

    2016-10-18

    Microbial natural products are an evolved resource of bioactive small molecules, which form the foundation of many modern therapeutic regimes. Ribosomally synthesized and posttranslationally modified peptides (RiPPs) represent a class of natural products which have attracted extensive interest for their diverse chemical structures and potent biological activities. Genome sequencing has revealed that the vast majority of genetically encoded natural products remain unknown. Many bioinformatic resources have therefore been developed to predict the chemical structures of natural products, particularly nonribosomal peptides and polyketides, from sequence data. However, the diversity and complexity of RiPPs have challenged systematic investigation of RiPP diversity, and consequently the vast majority of genetically encoded RiPPs remain chemical "dark matter." Here, we introduce an algorithm to catalog RiPP biosynthetic gene clusters and chart genetically encoded RiPP chemical space. A global analysis of 65,421 prokaryotic genomes revealed 30,261 RiPP clusters, encoding 2,231 unique products. We further leverage the structure predictions generated by our algorithm to facilitate the genome-guided discovery of a molecule from a rare family of RiPPs. Our results provide the systematic investigation of RiPP genetic and chemical space, revealing the widespread distribution of RiPP biosynthesis throughout the prokaryotic tree of life, and provide a platform for the targeted discovery of RiPPs based on genome sequencing.

  14. Thermophysicochemical Reaction of ZrCo-Hydrogen-Helium System

    Science.gov (United States)

    Jung, Kwangjin; Kang, Hee-Seok; Yun, Sei-Hun; Chung, Hongsuk

    2017-11-01

    Nuclear fusion energy, which is clean and infinite, has been studied for more than half a century. Efforts are in progress worldwide for the demonstration and validation of nuclear fusion energy. Korea has been developing hydrogen isotope storage and delivery system (SDS) technologies including a basic scientific study on a hydrogen storage medium. An SDS bed, which is a key component of the SDS, is used for storing hydrogen isotopes in a metal hydride form and supplying them to a tokamak. Thermophysicochemical properties of the ZrCo-H2-He system are investigated for the practical utilization of a hydriding alloy system. The hydriding reaction, in which ZrCoHx is composed as ZrCo absorbing hydrogen, is exothermic. The dehydriding reaction, in which ZrCoHx decomposes into ZrCo and hydrogen, is endothermic. The heat generated through the hydriding reaction interrupts the hydriding progress. The heat loss by a dehydriding reaction impedes the dehydriding progress. The tritium decay product, helium-3, covers the ZrCo and keeps the hydrogen from contact with ZrCo in the SDS bed. In this study, we designed and fabricated a ZrCo bed and its performance test rig. The helium blanketing effect on a ZrCo hydrogen reaction with 0 % to 20 % helium content in a gaseous phase and a helium blanket removal method were studied experimentally. In addition, the volumetric flow rates and temperature at the beginning of a ZrCo hydrogen reaction in a hydrogen or helium atmosphere, and the cooling of the SDS bed by radiation only and by both radiation and natural convection related to the reuse cycle, were obtained.

  15. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    International Nuclear Information System (INIS)

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance

  16. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    Science.gov (United States)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Aziz, Ferhat; Permana, Sidik; Sekimoto, Hiroshi

    2014-02-01

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  17. Zirconium Zr and hafnium Hf

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for extracting and determining Zr(4) and Hf(4) are described. Diantipyrinemethane and its alkyl homologs selectively extract Zr and Hf from HNO 3 solutions in the presence of nitrates. Zr is selectively extracted with tetraethyldiamide of heptyl phosphoric acid (in benzene) as well as with 2-thenoyltrifluoroacetone (in an acid). The latter reagents is suitable for rapid determination of 95 Zr in a mixture with 95 Nb and other fragments. The complexometric determination of Zr is based on formation of a stable complex of Zr with EDTA. The titration is carried out in the presence of n-sulfobenzene-azo-pyrocatechol, eriochrome black T. The determination is hindered by Hf, fluoride-, phosphate-, oxalate- and tartrate-ions. The method is used for determining Zr in zircon and eudialyte ore. Zr is determined photometrically with the aid of xylenol orange, arsenazo 3 and pyrocatechol violet (in phosphorites). Hf is determined in the presence of Zr photometrically with the aid of xylenol orange or methyl-thymol blue. The method is based on Zr being masked with hydrogen peroxide in the presence of sulfate-ions

  18. Fragment-Based Screening of a Natural Product Library against 62 Potential Malaria Drug Targets Employing Native Mass Spectrometry.

    Science.gov (United States)

    Vu, Hoan; Pedro, Liliana; Mak, Tin; McCormick, Brendan; Rowley, Jessica; Liu, Miaomiao; Di Capua, Angela; Williams-Noonan, Billy; Pham, Ngoc B; Pouwer, Rebecca; Nguyen, Bao; Andrews, Katherine T; Skinner-Adams, Tina; Kim, Jessica; Hol, Wim G J; Hui, Raymond; Crowther, Gregory J; Van Voorhis, Wesley C; Quinn, Ronald J

    2018-03-03

    Natural products are well known for their biological relevance, high degree of three-dimensionality, and access to areas of largely unexplored chemical space. To shape our understanding of the interaction between natural products and protein targets in the postgenomic era, we have used native mass spectrometry to investigate 62 potential protein targets for malaria using a natural-product-based fragment library. We reveal here 96 low-molecular-weight natural products identified as binding partners of 32 of the putative malarial targets. Seventy-nine (79) fragments have direct growth inhibition on Plasmodium falciparum at concentrations that are promising for the development of fragment hits against these protein targets. This adds a fragment library to the published HTS active libraries in the public domain.

  19. Homology modelling and docking studies on Neuraminidase enzyme as a natural product target for combating influenza

    Directory of Open Access Journals (Sweden)

    Nisha Singh

    2017-10-01

    Full Text Available Influenza remains to be dreadful with yearly epidemics and sudden pandemic outbreaks causing significant mortality, even in nations with the most advanced health care systems. Thus, there has been a long-standing interest to develop effective and safe antiviral agents to treat infected individuals. Attempt to identify suitable molecular targets as antiviral compounds have focused recently on the influenza virus neuraminidase (NA, a key enzyme in viral replication [1]. In this research, virtual screening was done on a total of 600 natural compounds from 22 ethno medicinal Indian herbs for activity against neuraminidase enzyme exploiting representative protein conformations selected from molecular dynamics simulations. Neuraminidase enzyme sequences from different existing strains available on National Center of Biotechnology Information [2] (NCBI protein database were aligned using Clustal W [3] and CLC workbench 10 [4] to find the conserved residues. Neuraminidase protein sequence from H1N1 strain available on NCBI was used to structure 3D target model predicted against dataset from Protein data bank using modeller [5]. The target model was validated on different parameter at SAVES Server [6]. Using this target model a pharmacophore model was developed using ligand based strategy exploiting the three known inhibitors. The docking parameters were validated by redocking Zanamivir to its co-complex 2009 H1N1 NA crystal structure (PDB ID: 3TI5 generating best pose with a RMSD value of 0.7543 A°. This model was then used for in silico analysis of a library of natural compounds from 22 ethno medicinal Indian herbs known to have antiviral activity taken downloaded from PubChem database and selected on the basis of drug likeliness. All the compounds were docked in the binding pocket of neuraminidase. Top compounds having binding affinity better than or comparable to the control drug Zanamivir were selected and analyzed for their ADME and toxicity

  20. Profiling unauthorized natural resource users for better targeting of conservation interventions.

    Science.gov (United States)

    Harrison, Mariel; Baker, Julia; Twinamatsiko, Medard; Milner-Gulland, E J

    2015-12-01

    Unauthorized use of natural resources is a key threat to many protected areas. Approaches to reducing this threat include law enforcement and integrated conservation and development (ICD) projects, but for such ICDs to be targeted effectively, it is important to understand who is illegally using which natural resources and why. The nature of unauthorized behavior makes it difficult to ascertain this information through direct questioning. Bwindi Impenetrable National Park, Uganda, has many ICD projects, including authorizing some local people to use certain nontimber forest resources from the park. However, despite over 25 years of ICD, unauthorized resource use continues. We used household surveys, indirect questioning (unmatched count technique), and focus group discussions to generate profiles of authorized and unauthorized resource users and to explore motivations for unauthorized activity. Overall, unauthorized resource use was most common among people from poor households who lived closest to the park boundary and farthest from roads and trading centers. Other motivations for unauthorized resource use included crop raiding by wild animals, inequity of revenue sharing, and lack of employment, factors that created resentment among the poorest communities. In some communities, benefits obtained from ICD were reported to be the greatest deterrents against unauthorized activity, although law enforcement ranked highest overall. Despite the sensitive nature of exploring unauthorized resource use, management-relevant insights into the profiles and motivations of unauthorized resource users can be gained from a combination of survey techniques, as adopted here. To reduce unauthorized activity at Bwindi, we suggest ICD benefit the poorest people living in remote areas and near the park boundary by providing affordable alternative sources of forest products and addressing crop raiding. To prevent resentment from driving further unauthorized activity, ICDs should be

  1. Target motifs affecting natural immunity by a constitutive CRISPR-Cas system in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Cristóbal Almendros

    Full Text Available Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR and CRISPR associated (cas genes conform the CRISPR-Cas systems of various bacteria and archaea and produce degradation of invading nucleic acids containing sequences (protospacers that are complementary to repeat intervening spacers. It has been demonstrated that the base sequence identity of a protospacer with the cognate spacer and the presence of a protospacer adjacent motif (PAM influence CRISPR-mediated interference efficiency. By using an original transformation assay with plasmids targeted by a resident spacer here we show that natural CRISPR-mediated immunity against invading DNA occurs in wild type Escherichia coli. Unexpectedly, the strongest activity is observed with protospacer adjoining nucleotides (interference motifs that differ from the PAM both in sequence and location. Hence, our results document for the first time native CRISPR activity in E. coli and demonstrate that positions next to the PAM in invading DNA influence their recognition and degradation by these prokaryotic immune systems.

  2. Hes1-Binding Compounds Isolated by Target Protein Oriented Natural Products Isolation (TPO-NAPI).

    Science.gov (United States)

    Arai, Midori A; Tanaka, Mitsuha; Tanouchi, Kana; Ishikawa, Naoki; Ahmed, Firoj; Sadhu, Samir K; Ishibashi, Masami

    2017-02-24

    Hairy and enhancer of split 1 (Hes1) is a transcription factor that acts in neural stem cells to inhibit differentiation. We recently developed target protein oriented natural products isolation (TPO-NAPI) using Hes1-immobilized beads to identify activators of neural stem cells. Isomicromonolactam (1), staurosporin (2), and linarin (3) were isolated as Hes1-binding compounds using the TPO-NAPI method. Of these, compound 1 enhanced neural stem cell differentiation. Using truncated Hes1 proteins, the binding region of Hes1 for 1 was estimated to be in the C-terminal half that includes a TLE/Grg binding site. The differentiation-promoting activity of inohanamine (4) is also reported.

  3. CCR5 as a natural and modulated target for inhibition of HIV.

    Science.gov (United States)

    Burke, Bryan P; Boyd, Maureen P; Impey, Helen; Breton, Louis R; Bartlett, Jeffrey S; Symonds, Geoff P; Hütter, Gero

    2013-12-30

    Human immunodeficiency virus type 1 (HIV-1) infection of target cells requires CD4 and a co-receptor, predominantly the chemokine receptor CCR5. CCR5-delta32 homozygosity results in a truncated protein providing natural protection against HIV infection-this without detrimental effects to the host-and transplantation of CCR5-delta32 stem cells in a patient with HIV ("Berlin patient") achieved viral eradication. As a more feasible approach gene-modification strategies are being developed to engineer cellular resistance to HIV using autologous cells. We have developed a dual therapeutic anti-HIV lentiviral vector (LVsh5/C46) that down-regulates CCR5 and inhibits HIV-1 fusion via cell surface expression of the gp41-derived peptide, C46. This construct, effective against multiple strains of both R5- and X4-tropic HIV-1, is being tested in Phase I/II trials by engineering HIV-resistant hematopoietic cells.

  4. The inextricable axis of targeted diagnostic imaging and therapy: An immunological natural history approach

    International Nuclear Information System (INIS)

    Cope, Frederick O.; Abbruzzese, Bonnie; Sanders, James; Metz, Wendy; Sturms, Kristyn; Ralph, David; Blue, Michael; Zhang, Jane; Bracci, Paige; Bshara, Wiam; Behr, Spencer; Maurer, Toby; Williams, Kenneth; Walker, Joshua; Beverly, Allison; Blay, Brooke; Damughatla, Anirudh; Larsen, Mark; Mountain, Courtney; Neylon, Erin

    2016-01-01

    Summary: In considering the challenges of approaches to clinical imaging, we are faced with choices that sometimes are impacted by rather dogmatic notions about what is a better or worse technology to achieve the most useful diagnostic image for the patient. For example, is PET or SPECT most useful in imaging any particular disease dissemination? The dictatorial approach would be to choose PET, all other matters being equal. But is such a totalitarian attitude toward imaging selection still valid? In the face of new receptor targeted SPECT agents one must consider the remarkable specificity and sensitivity of these agents. 99m Tc-Tilmanocept is one of the newest of these agents, now approved for guiding sentinel node biopsy (SLNB) in several solid tumors. Tilmanocept has a K d of 3 × 10 −11 M, and it specificity for the CD206 receptor is unlike any other agent to date. This coupled with a number of facts, that specific disease-associated macrophages express this receptor (100 to 150 thousand receptors), that the receptor has multiple binding sites for tilmanocept (> 2 sites per receptor) and that these receptors are recycled every 15 min to bind more tilmanocept (acting as intracellular “drug compilers” of tilmanocept into non-degraded vesicles), gives serious pause as to how we select our approaches to diagnostic imaging. Clinically, the size of SLNs varies greatly, some, anatomically, below the machine resolution of SPECT. Yet, with tilmanocept targeting, the SLNs are highly visible with macrophages stably accruing adequate 99m Tc-tilmanocept counting statistics, as high target-to-background ratios can compensate for spatial resolution blurring. Importantly, it may be targeted imaging agents per se, again such as tilmanocept, which may significantly shrink any perceived chasm between the imaging technologies and anchor the diagnostic considerations in the targeting and specificity of the agent rather than any lingering dogma about the hardware as the basis

  5. The inextricable axis of targeted diagnostic imaging and therapy: An immunological natural history approach.

    Science.gov (United States)

    Cope, Frederick O; Abbruzzese, Bonnie; Sanders, James; Metz, Wendy; Sturms, Kristyn; Ralph, David; Blue, Michael; Zhang, Jane; Bracci, Paige; Bshara, Wiam; Behr, Spencer; Maurer, Toby; Williams, Kenneth; Walker, Joshua; Beverly, Allison; Blay, Brooke; Damughatla, Anirudh; Larsen, Mark; Mountain, Courtney; Neylon, Erin; Parcel, Kaeli; Raghuraman, Kapil; Ricks, Kevin; Rose, Lucas; Sivakumar, Akhilesh; Streck, Nicholas; Wang, Bryan; Wasco, Christopher; Williams, Amifred; McGrath, Michael

    2016-03-01

    In considering the challenges of approaches to clinical imaging, we are faced with choices that sometimes are impacted by rather dogmatic notions about what is a better or worse technology to achieve the most useful diagnostic image for the patient. For example, is PET or SPECT most useful in imaging any particular disease dissemination? The dictatorial approach would be to choose PET, all other matters being equal. But is such a totalitarian attitude toward imaging selection still valid? In the face of new receptor targeted SPECT agents one must consider the remarkable specificity and sensitivity of these agents. (99m)Tc-Tilmanocept is one of the newest of these agents, now approved for guiding sentinel node biopsy (SLNB) in several solid tumors. Tilmanocept has a Kd of 3×10(-11)M, and it specificity for the CD206 receptor is unlike any other agent to date. This coupled with a number of facts, that specific disease-associated macrophages express this receptor (100 to 150 thousand receptors), that the receptor has multiple binding sites for tilmanocept (>2 sites per receptor) and that these receptors are recycled every 15 min to bind more tilmanocept (acting as intracellular "drug compilers" of tilmanocept into non-degraded vesicles), gives serious pause as to how we select our approaches to diagnostic imaging. Clinically, the size of SLNs varies greatly, some, anatomically, below the machine resolution of SPECT. Yet, with tilmanocept targeting, the SLNs are highly visible with macrophages stably accruing adequate (99m)Tc-tilmanocept counting statistics, as high target-to-background ratios can compensate for spatial resolution blurring. Importantly, it may be targeted imaging agents per se, again such as tilmanocept, which may significantly shrink any perceived chasm between the imaging technologies and anchor the diagnostic considerations in the targeting and specificity of the agent rather than any lingering dogma about the hardware as the basis for imaging

  6. Phosphatidylinositol turnover is associated with human natural killer cell activation by tumor target cells

    International Nuclear Information System (INIS)

    Steele, T.A.; Brahmi, Z.

    1986-01-01

    Natural Killer (NK) cell activity has been shown to be a binding-dependent event leading to the destruction of various targets. This suggests a possible role for plasma membrane phospholipid turnover in coupling a receptor-mediated binding event with transduction of a intracellular signal to result in the activation of the effector cell. Currently, phosphatidylinositol (PI) turnover is implicated in several immune cell systems. Therefore, in this study, the authors examined phospholipid turnover in human NK cells upon exposure to a sensitive (K562) and a resistant (YAC-1) target cell (TC). NK cell membrane phospholipids were labelled with Phosphorus-32 ( 32 P) and, following stimulation, were extracted and run on silica gel thin-layer chromatography. Labelled phospholipids were visualized by autoradiography then scraped and counted in a liquid scintillation counter. A 2.5 fold increase in label incorporation into PI relative to controls was shown to occur when NK cells were stimulated by K562 for 2 hours. In contrast, no increased labelling of PI relative to controls was noted when NK cells were stimulated by YAC-1 for the same period of time. No change in incorporation of 32 P into phosphatidylcholine or phosphatidylethanolamine occurred in either set of conditions. These results suggest that PI turnover may be an early activation event in NK cells following binding of K562

  7. Targeted release of transcription factors for cell reprogramming by a natural micro-syringe.

    Science.gov (United States)

    Berthoin, Lionel; Toussaint, Bertrand; Garban, Frédéric; Le Gouellec, Audrey; Caulier, Benjamin; Polack, Benoît; Laurin, David

    2016-11-20

    Ectopic expression of defined transcription factors (TFs) for cell fate handling has proven high potential interest in reprogramming differentiated cells, in particular for regenerative medicine, ontogenesis study and cell based modelling. Pluripotency or transdifferentiation induction as TF mediated differentiation is commonly produced by transfer of genetic information with safety concerns. The direct delivery of proteins could represent a safer alternative but still needs significant advances to be efficient. We have successfully developed the direct delivery of proteins by an attenuated bacterium with a type 3 secretion system that does not require challenging and laborious steps for production and purification of recombinant molecules. Here we show that this natural micro-syringe is able to inject TFs to primary human fibroblasts and cord blood CD34 + hematopoietic stem cells. The signal sequence for vectorization of the TF Oct4 has no effect on DNA binding to its nucleic target. As soon as one hour after injection, vectorized TFs are detectable in the nucleus. The injection process is not associated with toxicity and the bacteria can be completely removed from cell cultures. A three days targeted release of Oct4 or Sox2 embryonic TFs results in the induction of the core pluripotency genes expression in fibroblasts and CD34 + hematopoietic stem cells. This micro-syringe vectorization represents a new strategy for TF delivery and has potential applications for cell fate reprogramming. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2 and Pt/CeZrO2 catalysts

    OpenAIRE

    Noronha, Fábio Bellot; Silva, Adriana Maria da; Lima, Sonia M. de; Mattos, Lisiane Veiga; Cruz, Ivna O. da; Jacobs, Gary; Davis, Burtron H

    2008-01-01

    The effect of the support nature and metal dispersion on the performance of Pt catalysts during steam reforming of ethanol was studied. H2 and CO production was facilitated over Pt/CeO2 and Pt/CeZrO2, whereas the acetaldehyde and ethene formation was favored on Pt/ZrO2.

  9. Evolutionary control: Targeted change of allele frequencies in natural populations using externally directed evolution.

    Science.gov (United States)

    Shafiey, Hassan; Gossmann, Toni I; Waxman, David

    2017-04-21

    Random processes in biology, in particular random genetic drift, often make it difficult to predict the fate of a particular mutation in a population. Using principles of theoretical population genetics, we present a form of biological control that ensures a focal allele's frequency, at a given locus, achieves a prescribed probability distribution at a given time. This control is in the form of an additional evolutionary force that acts on a population. We provide the mathematical framework that determines the additional force. Our analysis indicates that generally the additional force depends on the frequency of the focal allele, and it may also depend on the time. We argue that translating this additional force into an externally controlled process, which has the possibility of being implemented in a number of different ways corresponding to selection, migration, mutation, or a combination of these, may provide a flexible instrument for targeted change of traits of interest in natural populations. This framework may be applied, or used as an informed form of guidance, in a variety of different biological scenarios including: yield and pesticide optimisation in crop production, biofermentation, the local regulation of human-associated natural populations, such as parasitic animals, or bacterial communities in hospitals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Functions of flavonoids in the central nervous system: Astrocytes as targets for natural compounds.

    Science.gov (United States)

    Matias, Isadora; Buosi, Andrea Schmidt; Gomes, Flávia Carvalho Alcantara

    2016-05-01

    In the last decade, there have been major advances in the understanding of the role of glial cells as key elements in the formation, maintenance and refinement of synapses. Recently, the discovery of natural compounds capable of modulating nervous system function has revealed new perspectives on the restoration of the injured brain. Among these compounds, flavonoids stand out as molecules easily obtainable in the diet that have remarkable effects on cognitive performance and behavior. Nevertheless, little is known about the cellular and molecular mechanisms underlying the actions of flavonoids in the nervous system. The present review presents recent advances in the effects of natural compounds, particularly flavonoids, in the nervous system. We shed light on astrocytes as targets of flavonoids and discuss how this interaction might contribute to the effects of flavonoids on neuronal survival, differentiation and function. Finally, we discuss how the effects of flavonoids on astrocytes might contribute to the development of alternative therapeutic approaches to the treatment of neural diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Natural compounds targeting major cell signaling pathways: a novel paradigm for osteosarcoma therapy

    Directory of Open Access Journals (Sweden)

    Pablo Angulo

    2017-01-01

    Full Text Available Abstract Osteosarcoma is the most common primary bone cancer affecting children and adolescents worldwide. Despite an incidence of three cases per million annually, it accounts for an inordinate amount of morbidity and mortality. While the use of chemotherapy (cisplatin, doxorubicin, and methotrexate in the last century initially resulted in marginal improvement in survival over surgery alone, survival has not improved further in the past four decades. Patients with metastatic osteosarcoma have an especially poor prognosis, with only 30% overall survival. Hence, there is a substantial need for new therapies. The inability to control the metastatic progression of this localized cancer stems from a lack of complete knowledge of the biology of osteosarcoma. Consequently, there has been an aggressive undertaking of scientific investigation of various signaling pathways that could be instrumental in understanding the pathogenesis of osteosarcoma. Here, we review these cancer signaling pathways, including Notch, Wnt, Hedgehog, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K/AKT, and JAK/STAT, and their specific role in osteosarcoma. In addition, we highlight numerous natural compounds that have been documented to target these pathways effectively, including curcumin, diallyl trisulfide, resveratrol, apigenin, cyclopamine, and sulforaphane. We elucidate through references that these natural compounds can induce cancer signaling pathway manipulation and possibly facilitate new treatment modalities for osteosarcoma.

  12. Targeted natural product isolation guided by HPLC-SPE-NMR: constituents of Hubertia species.

    Science.gov (United States)

    Sprogøe, Kennett; Staerk, Dan; Jäger, Anna K; Adsersen, Anne; Hansen, Steen Honoré; Witt, Matthias; Landbo, Anne-Katrine R; Meyer, Anne S; Jaroszewski, Jerzy W

    2007-09-01

    The hyphenated technique, high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy (HPLC-SPE-NMR), has been applied for rapid identification of novel natural products in crude extracts of Hubertia ambavilla and Hubertia tomentosa. The technique allowed full or partial identification of all major extract constituents and demonstrated the presence of unusual quinic acid derivatives containing the (1-hydroxy-4-oxocyclohexa-2,5-dienyl)acetyl residue that exhibit strongly coupled ABXY patterns, the parameters of which were obtained by spin simulations. Using homo- and heteronuclear 2D NMR data acquired in the HPLC-SPE-NMR mode, complete structure determination of three new natural products, i.e., 3,5-di-O-caffeoyl-4-O-[(1-hydroxy-4-oxocyclohexa-2,5-dienyl)acetyl]quinic acid (1), its 2-hydroxy derivative (2), and 3,5-di-O-caffeoyl-4-O-[(4-hydroxyphenyl)acetyl]quinic acid (3), was performed. Finally, targeted isolation of 1 was achieved by SPE fractionation and preparative HPLC, followed by evaluation of its antioxidant and antimicrobial activity. In contrast to chlorogenic acid and 3,5-di-O-caffeoylquinic acid, which act as antioxidants, compound 1 proved at the same conditions to possess prooxidant activity in an assay evaluating the oxidation of human low-density lipoprotein induced by Cu(2+).

  13. Theoretical modeling of yields for proton-induced reactions on natural and enriched molybdenum targets

    Energy Technology Data Exchange (ETDEWEB)

    Celler, A; Hou, X [University of British Columbia, Vancouver, BC, Canada, (Canada); Benard, F; Ruth, T, E-mail: aceller@physics.ubc.ca, E-mail: xinchi@phas.ubc.ca, E-mail: fbenard@bccrc.ca, E-mail: truth@triumf.ca [BC Cancer Agency, Vancouver, BC (Canada)

    2011-09-07

    Recent acute shortage of medical radioisotopes prompted investigations into alternative methods of production and the use of a cyclotron and {sup 100}Mo(p,2n){sup 99m}Tc reaction has been considered. In this context, the production yields of {sup 99m}Tc and various other radioactive and stable isotopes which will be created in the process have to be investigated, as these may affect the diagnostic outcome and radiation dosimetry in human studies. Reaction conditions (beam and target characteristics, and irradiation and cooling times) need to be optimized in order to maximize the amount of {sup 99m}Tc and minimize impurities. Although ultimately careful experimental verification of these conditions must be performed, theoretical calculations can provide the initial guidance allowing for extensive investigations at little cost. We report the results of theoretically determined reaction yields for {sup 99m}Tc and other radioactive isotopes created when natural and enriched molybdenum targets are irradiated by protons. The cross-section calculations were performed using a computer program EMPIRE for the proton energy range 6-30 MeV. A computer graphical user interface for automatic calculation of production yields taking into account various reaction channels leading to the same final product has been created. The proposed approach allows us to theoretically estimate the amount of {sup 99m}Tc and its ratio relative to {sup 99g}Tc and other radioisotopes which must be considered reaction contaminants, potentially contributing to additional patient dose in diagnostic studies.

  14. A generic 89Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography.

    Science.gov (United States)

    Li, Nan; Yu, Zilin; Pham, Truc Thuy; Blower, Philip J; Yan, Ran

    2017-01-01

    Liposomal nanoparticles are versatile drug delivery vehicles that show great promise in cancer therapy. In an effort to quantitatively measure their in vivo pharmacokinetics, we developed a highly efficient 89 Zr liposome-labeling method based on a rapid ligand exchange reaction between the membrane-permeable 89 Zr(8-hydroxyquinolinate) 4 complex and the hydrophilic liposomal cavity-encapsulated deferoxamine (DFO). This novel 89 Zr-labeling strategy allowed us to prepare radiolabeled forms of a folic acid (FA)-decorated active targeting 89 Zr-FA-DFO-liposome, a thermosensitive 89 Zr-DFO-liposome, and a renal avid 89 Zr-PEG-DFO-liposome at room temperature with near-quantitative isolated radiochemical yields of 98%±1% (n=6), 98%±2% (n=5), and 97%±1% (n=3), respectively. These 89 Zr-labeled liposomal nanoparticles showed remarkable stability in phosphate-buffered saline and serum at 37°C without leakage of radioactivity for 48 h. The uptake of 89 Zr-FA-DFO-liposome by the folate receptor-overexpressing KB cells was almost 15-fold higher than the 89 Zr-DFO-liposome in vitro. Positron emission tomography imaging and ex vivo biodistribution studies enabled us to observe the heterogeneous distribution of the 89 Zr-FA-DFO-liposome and 89 Zr-DFO-liposome in the KB tumor xenografts, the extensive kidney accumulation of the 89 Zr-FA-DFO-liposome and 89 Zr-PEG-DFO-liposome, and the different metabolic fate of the free and liposome-encapsulated 89 Zr-DFO. It also unveiled the poor resistance of all three liposomes against endothelial uptake resulting in their catabolism and high uptake of free 89 Zr in the skeleton. Thus, this technically simple 89 Zr-labeling method would find widespread use to guide the development and clinical applications of novel liposomal nanomedicines.

  15. New results in low-energy fusion of 40Ca+Zr,9290

    Science.gov (United States)

    Stefanini, A. M.; Montagnoli, G.; Esbensen, H.; Čolović, P.; Corradi, L.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Soić, N.; Strano, E.; Szilner, S.

    2017-07-01

    Background: Near- and sub-barrier fusion of various Ca + Zr isotopic combinations have been widely investigated. A recent analysis of 40Ca+96Zr data has highlighted the importance of couplings to multiphonon excitations and to both neutron and proton transfer channels. Analogous studies of 40Ca+90Zr tend to exclude any role of transfer couplings. However, the lowest measured cross section for this system is rather high (840 μ b ). A rather complete data set is available for 40Ca+94Zr , while no measurement of 40Ca+92Zr fusion has been performed in the past. Purpose: Our aim is to measure the full excitation function of 40Ca+92Zr near the barrier and to extend downward the existing data on 40Ca+90Zr , in order to estimate the transfer couplings that should be used in coupled-channels calculations of the fusion of these two systems and of 40Ca+94Zr . Methods: 40Ca beams from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro were used, bombarding thin metallic 90Zr (50 μ g /cm2 ) and 92ZrO2 targets (same thickness) enriched to 99.36 % and 98.06 % in masses 90 and 92, respectively. An electrostatic beam deflector allowed the detection of fusion evaporation residues (ER) at very forward angles, and angular distributions of ER were measured. Results: The excitation function of 40Ca+92Zr has been measured down to the level of ≃60 μ b . Coupled-channels (CC) calculations using a standard Woods-Saxon (WS) potential and following the line of a previous analysis of 40Ca+96Zr fusion data give a good account of the new data, as well as of the existing data for 40Ca+94Zr . The previous excitation function of 40Ca+90Zr has been extended down to 40 μ b . Conclusions: Transfer couplings play an important role in explaining the fusion data for 40Ca+92Zr and 40Ca+94Zr . The strength of the pair-transfer coupling is deduced by applying a simple recipe based on the value obtained for 40Ca+96Zr . The logarithmic slopes and the S factors for fusion are reproduced

  16. Detecting Target Objects by Natural Language Instructions Using an RGB-D Camera

    Directory of Open Access Journals (Sweden)

    Jiatong Bao

    2016-12-01

    Full Text Available Controlling robots by natural language (NL is increasingly attracting attention for its versatility, convenience and no need of extensive training for users. Grounding is a crucial challenge of this problem to enable robots to understand NL instructions from humans. This paper mainly explores the object grounding problem and concretely studies how to detect target objects by the NL instructions using an RGB-D camera in robotic manipulation applications. In particular, a simple yet robust vision algorithm is applied to segment objects of interest. With the metric information of all segmented objects, the object attributes and relations between objects are further extracted. The NL instructions that incorporate multiple cues for object specifications are parsed into domain-specific annotations. The annotations from NL and extracted information from the RGB-D camera are matched in a computational state estimation framework to search all possible object grounding states. The final grounding is accomplished by selecting the states which have the maximum probabilities. An RGB-D scene dataset associated with different groups of NL instructions based on different cognition levels of the robot are collected. Quantitative evaluations on the dataset illustrate the advantages of the proposed method. The experiments of NL controlled object manipulation and NL-based task programming using a mobile manipulator show its effectiveness and practicability in robotic applications.

  17. CCR5 as a Natural and Modulated Target for Inhibition of HIV

    Directory of Open Access Journals (Sweden)

    Bryan P. Burke

    2013-12-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection of target cells requires CD4 and a co-receptor, predominantly the chemokine receptor CCR5. CCR5-delta32 homozygosity results in a truncated protein providing natural protection against HIV infection—this without detrimental effects to the host—and transplantation of CCR5-delta32 stem cells in a patient with HIV (“Berlin patient” achieved viral eradication. As a more feasible approach gene-modification strategies are being developed to engineer cellular resistance to HIV using autologous cells. We have developed a dual therapeutic anti-HIV lentiviral vector (LVsh5/C46 that down-regulates CCR5 and inhibits HIV-1 fusion via cell surface expression of the gp41-derived peptide, C46. This construct, effective against multiple strains of both R5- and X4-tropic HIV-1, is being tested in Phase I/II trials by engineering HIV-resistant hematopoietic cells.

  18. Gene expression levels are a target of recent natural selection in the human genome.

    Science.gov (United States)

    Kudaravalli, Sridhar; Veyrieras, Jean-Baptiste; Stranger, Barbara E; Dermitzakis, Emmanouil T; Pritchard, Jonathan K

    2009-03-01

    Changes in gene expression may represent an important mode of human adaptation. However, to date, there are relatively few known examples in which selection has been shown to act directly on levels or patterns of gene expression. In order to test whether single nucleotide polymorphisms (SNPs) that affect gene expression in cis are frequently targets of positive natural selection in humans, we analyzed genome-wide SNP and expression data from cell lines associated with the International HapMap Project. Using a haplotype-based test for selection that was designed to detect incomplete selective sweeps, we found that SNPs showing signals of selection are more likely than random SNPs to be associated with gene expression levels in cis. This signal is significant in the Yoruba (which is the population that shows the strongest signals of selection overall) and shows a trend in the same direction in the other HapMap populations. Our results argue that selection on gene expression levels is an important type of human adaptation. Finally, our work provides an analytical framework for tackling a more general problem that will become increasingly important: namely, testing whether selection signals overlap significantly with SNPs that are associated with phenotypes of interest.

  19. β-Lactone natural products and derivatives inactivate homoserine transacetylase, a target for antimicrobial agents.

    Science.gov (United States)

    De Pascale, Gianfranco; Nazi, Ishac; Harrison, Paul H M; Wright, Gerard D

    2011-07-01

    Homoserine transacetylase (HTA) catalyzes the transfer of an acetyl group from acetyl-CoA to the hydroxyl group of homoserine. This is the first committed step in the biosynthesis of methionine (Met) from aspartic acid in many fungi, Gram-positive and some Gram-negative bacteria. The enzyme is absent in higher eukaryotes and is important for microorganism growth in Met-poor environments, such as blood serum, making HTA an attractive target for new antimicrobial agents. HTA catalyzes acetyl transfer via a double displacement mechanism facilitated by a classic Ser-His-Asp catalytic triad located at the bottom of a narrow actives site tunnel. We explored the inhibitory activity of several β-lactones to block the activity of HTA. In particular, the natural product ebelactone A, a β-lactone with a hydrophobic tail was found to be a potent inactivator of HTA from Haemophilus influenzae. Synthetic analogs of ebelactone A demonstrated improved inactivation characteristics. Covalent modification of HTA was confirmed by mass spectrometry, and peptide mapping identified Ser143 as the modified residue, consistent with the known structure and mechanism of the enzyme. These results demonstrate that β-lactone inhibitors are excellent biochemical probes of HTA and potential leads for new antimicrobial agents.

  20. Targeting Sonic Hedgehog Signaling by Compounds and Derivatives from Natural Products

    Directory of Open Access Journals (Sweden)

    Yu-Chuen Huang

    2013-01-01

    Full Text Available Cancer stem cells (CSCs are a major cause of cancer treatment failure, relapse, and drug resistance and are known to be responsible for cancer cell invasion and metastasis. The Sonic hedgehog (Shh signaling pathway is crucial to embryonic development. Intriguingly, the aberrant activation of the Shh pathway plays critical roles in developing CSCs and leads to angiogenesis, migration, invasion, and metastasis. Natural compounds and chemical structure modified derivatives from complementary and alternative medicine have received increasing attention as cancer chemopreventives, and their antitumor effects have been demonstrated both in vitro and in vivo. However, reports for their bioactivity against CSCs and specifically targeting Shh signaling remain limited. In this review, we summarize investigations of the compounds cyclopamine, curcumin, epigallocatechin-3-gallate, genistein, resveratrol, zerumbone, norcantharidin, and arsenic trioxide, with a focus on Shh signaling blockade. Given that Shh signaling antagonism has been clinically proven as effective strategy against CSCs, this review may be exploitable for development of novel anticancer agents from complementary and alternative medicine.

  1. Natural Killer Cell-Based Cancer Immunotherapies: From Immune Evasion to Promising Targeted Cellular Therapies

    Directory of Open Access Journals (Sweden)

    Erhard Hofer

    2017-07-01

    Full Text Available Immunotherapies based on natural killer (NK cells are among the most promising therapies under development for the treatment of so far incurable forms of leukemia and other types of cancer. The importance of NK cells for the control of viral infections and cancer is supported among others by the findings that viruses and tumors use a multitude of mechanisms to subvert and evade the NK cell system. Infections and malignant diseases can further lead to the shaping of NK cell populations with altered reactivity. Counter measures of potential therapeutic impact include the blocking of inhibitory interactions between NK cell receptors and their cellular ligands, the enhancement of activating receptor signals, and the infusion of large numbers of ex vivo generated and selected NK cells. Moreover, the specific cross-linking of NK cells to their target cells using chimeric antigen receptors or therapeutic bi-/trispecific antibody reagents is a promising approach. In this context, NK cells stand out by their positive effects and safety demonstrated in most clinical trials so far. Based in part on results of the recent EC-sponsored project “NATURIMMUN” and considering additional published work in the field, we discuss below new developments and future directions that have the potential to further advance and establish NK cell-based therapies at the clinics on a broader scale.

  2. Natural Killer Cell-Based Cancer Immunotherapies: From Immune Evasion to Promising Targeted Cellular Therapies.

    Science.gov (United States)

    Hofer, Erhard; Koehl, Ulrike

    2017-01-01

    Immunotherapies based on natural killer (NK) cells are among the most promising therapies under development for the treatment of so far incurable forms of leukemia and other types of cancer. The importance of NK cells for the control of viral infections and cancer is supported among others by the findings that viruses and tumors use a multitude of mechanisms to subvert and evade the NK cell system. Infections and malignant diseases can further lead to the shaping of NK cell populations with altered reactivity. Counter measures of potential therapeutic impact include the blocking of inhibitory interactions between NK cell receptors and their cellular ligands, the enhancement of activating receptor signals, and the infusion of large numbers of ex vivo generated and selected NK cells. Moreover, the specific cross-linking of NK cells to their target cells using chimeric antigen receptors or therapeutic bi-/trispecific antibody reagents is a promising approach. In this context, NK cells stand out by their positive effects and safety demonstrated in most clinical trials so far. Based in part on results of the recent EC-sponsored project "NATURIMMUN" and considering additional published work in the field, we discuss below new developments and future directions that have the potential to further advance and establish NK cell-based therapies at the clinics on a broader scale.

  3. Stress corrosion of the alloy U-7.5 Nb-2.5 Zr

    International Nuclear Information System (INIS)

    Lepoutre, D.; Nomine, A.M.; Miannay, D.

    1983-09-01

    Oxide formed on U-7.5 Nb-2.5 Zr at room temperature during stress corrosion cracking in oxygen is identical to the natural oxide of the alloy. It is formed by UO 2 with Nb and Zr and is associated with an increased Nb content at the interface. This oxide would be responsible for cracking [fr

  4. Molecular and life-history effects of a natural toxin on herbivorous and non-target soil arthropods

    DEFF Research Database (Denmark)

    van Ommen Kloeke, A. E. Elaine; Gestel, Cornelis A. M. van; Styrishave, Bjarne

    2012-01-01

    -expression of especially stress-related genes and sugar metabolism. The regulation of a gene encoding a precursor of follistatin, furthermore, implied the inhibition of reproduction and may be an important molecular target that can be linked to the observed adverse effect of life-history traits.......Natural toxins, such as isothiocyanate (ITC), are harmful secondary metabolites produced by plants. Many natural toxins occur in commercial crops, yet their possible negative repercussions on especially non-target soil organisms are largely unknown. This study examined life-history and gene...

  5. Bone Degeneration, Inflammation and Secondary Complications of Arthritis: Potential Targets and their Natural Inhibitors.

    Science.gov (United States)

    Hemshekhar, Mahadevappa; Thushara, Ram M; Kumar, Somanathapura K Naveen; Paul, Manoj; Sundaram, Mahalingam S; Kemparaju, Kempaiah; Girish, Kesturu S

    2018-01-01

    Arthritis is marked by joint deterioration that affects articular cartilage and subchondral bone. Though cartilage degradation does the major damage during arthritis, subsequent bone degeneration cannot be neglected. Recent progress in arthritis research has identified the clinical importance of bone erosion in destructive arthritis. Studies have showed the key role played by osteoclasts and receptor activator of nuclear factor kappaB ligand (RANKL) signaling in bone erosion. Cathepsins and tartrate resistant acid phosphatase (TRAP) are considered key enzymatic factors contributing to bone erosion. Further, reactive oxygen species (ROS) formed at the ruffled border of osteoclasts also causes bone resorption and matrix degradation. Besides, severe inflammation during arthritis induces bone erosion by aiding in Ca2+ removal and activating osteoclastogenesis. The inflammatory cytokines and ROS influence osteoclast differentiation by regulating osteoclast-lineage cells or by acting on other cells to regulate the expression of RANKL and osteoprotegerin (OPG). The enhanced production of pro-inflammatory cytokines and ROS in arthritis stimulates tissue injury by means of oxidative damage leading to vital organ damage and synovial and circulatory cell apoptosis. Thus, blocking enzymatic and non-enzymatic factors responsible for bone erosion and inflammation is considered a prime strategy in the management of arthritis. In this review we provide an overview of the mechanisms of bone erosion, inflammation and associated oxidative stress/damage during arthritis perpetuation along with shedding light on potential targets. The article also describes the possible natural therapeutic agents that could prevent bone loss and inflammation, and related secondary complications of arthritis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. The effects of central bank independence and inflation targeting on macroeconomic performance: Evidence from natural experiments

    OpenAIRE

    Parkin, Michael

    2013-01-01

    I investigate the effects of central bank independence and inflation targeting on macroeconomic performance in 26 advanced economies during the period 1980 to 2011. I find that both improve macroeconomic performance but inflation targeting is the more effective arrangement. When a central bank becomes more independent, it lowers the inflation rate and the variability of inflation but has no effect on real GDP or unemployment. When a central bank becomes an inflation targeter, it lowers the in...

  7. Zr mesoporous molecular sieves as novel solid acid catalysts in synthesizing nitrile and caprolactam.

    Science.gov (United States)

    Nedumaran, D; Pandurangan, A

    2014-04-01

    Zr mesoporous materials with different Si/Zr ratio were synthesized by the surfactant-templated method involving cetyl trimethyl ammonium bromide (CTAB) as template and tetraethyl ortho silicate (TEOS) as organic source of silicon. The synthesized materials were labeled as SiZrMx (where x is Si/Zr = 10, 20 and 30). The BET analysis showed bimodal distribution of pores in SiZrMx structure. An attempt was made to generate super acidity on SiZrM20 by sulfation using sulfuric acid and ammonium sulfate (wt% = 4, 8 and 12). The NH3-TPD results revealed the presence of strong acidity in sulfated Zr-MCM-41. To understand the nature of acidity in Sulfated Zr-MCM-41, the efficiency of the materials is investigated in dehydration of Oximes. The industrially important materials caprolactam and intermediate nitrile were synthesized from their oximes in liquid phase system. Due to strong acidity in sulfated Zr-MCM-41, fast deactivation was observed during the synthesis of caprolactam but, the catalyst showed 96% nitrile selectivity. The strong acidity and medium strong acidity favoured the formation of nitrile and caprolactam respectively. This study revealed the molecular sieves were effective and eco-friendly solid acid catalysts for synthesizing caprolactam and nitrile.

  8. A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product.

    Science.gov (United States)

    Liberti, Maria V; Dai, Ziwei; Wardell, Suzanne E; Baccile, Joshua A; Liu, Xiaojing; Gao, Xia; Baldi, Robert; Mehrmohamadi, Mahya; Johnson, Marc O; Madhukar, Neel S; Shestov, Alexander A; Chio, Iok I Christine; Elemento, Olivier; Rathmell, Jeffrey C; Schroeder, Frank C; McDonnell, Donald P; Locasale, Jason W

    2017-10-03

    Targeted cancer therapies that use genetics are successful, but principles for selectively targeting tumor metabolism that is also dependent on the environment remain unknown. We now show that differences in rate-controlling enzymes during the Warburg effect (WE), the most prominent hallmark of cancer cell metabolism, can be used to predict a response to targeting glucose metabolism. We establish a natural product, koningic acid (KA), to be a selective inhibitor of GAPDH, an enzyme we characterize to have differential control properties over metabolism during the WE. With machine learning and integrated pharmacogenomics and metabolomics, we demonstrate that KA efficacy is not determined by the status of individual genes, but by the quantitative extent of the WE, leading to a therapeutic window in vivo. Thus, the basis of targeting the WE can be encoded by molecular principles that extend beyond the status of individual genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Magnetoelastic coupling in glassy Fe(91)-Zr(9)

    International Nuclear Information System (INIS)

    Balakrishnan, K.; Ganesan, V.; Srinivasan, R.; Babu, P.D.

    1996-01-01

    The study of elastic properties of amorphous magnetic materials of the type iron rich Fe-Zr is interesting both in fundamental as well in applied aspects. In basic research, it provides an opportunity to understand the mechanism of magnetism and to understand the nature of coupling between the magnetic energy with the elastic strain field

  10. Annotating MYC status with 89Zr-transferrin imaging.

    Science.gov (United States)

    Holland, Jason P; Evans, Michael J; Rice, Samuel L; Wongvipat, John; Sawyers, Charles L; Lewis, Jason S

    2012-10-01

    A noninvasive technology that quantitatively measures the activity of oncogenic signaling pathways could have a broad impact on cancer diagnosis and treatment with targeted therapies. Here we describe the development of (89)Zr-desferrioxamine-labeled transferrin ((89)Zr-transferrin), a new positron emission tomography (PET) radiotracer that binds the transferrin receptor 1 (TFRC, CD71) with high avidity. The use of (89)Zr-transferrin produces high-contrast PET images that quantitatively reflect treatment-induced changes in MYC-regulated TFRC expression in a MYC-driven prostate cancer xenograft model. Moreover, (89)Zr-transferrin imaging can detect the in situ development of prostate cancer in a transgenic MYC prostate cancer model, as well as in prostatic intraepithelial neoplasia (PIN) before histological or anatomic evidence of invasive cancer. These preclinical data establish (89)Zr-transferrin as a sensitive tool for noninvasive measurement of oncogene-driven TFRC expression in prostate and potentially other cancers, with prospective near-term clinical application.

  11. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H.H.; Liu, L.; Liu, X.Z.; Guo, Q.; Meng, T.X.; Wang, Z.X.; Yang, H.J.; Liu, X.P., E-mail: liuxiaoping@tyut.edu.cn

    2016-12-01

    Highlights: • A Zr/ZrC modified layer was formed on AISI 440B stainless steel using plasma surface Zr-alloying. • The thickness of the modified layer increases with alloying temperature and time. • Formation mechanism of the modified layer is dependent on the mutual diffusion of Zr and substrate elements. • The modified surface shows an improved wear resistance. - Abstract: The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  12. The activation of W and Zr by deuterons at energies up to 20 MeV

    Directory of Open Access Journals (Sweden)

    Šimečková Eva

    2017-01-01

    Full Text Available The proton and deuteron induced reactions are of a great interest for the assessment of induced radioactivity of accelerator components, target and beam stoppers. In order to investigate the important nuclides, we have carried up the irradiation experiments with the variable-energy cyclotron U-120 M of the NPI CAS Řež. The production cross sections of the nuclides 179,181,182m,182,183,184m,184,186Re and 187W from reaction on natural W were investigated by deuteron beams of 20 MeV energy. A part of preliminary results of deuteron activation of natural Zr is also shown. The stacked-foil technique was utilized. The comparison of present results to data of other authors and to predictions of evaluated data libraries is discussed.

  13. Determination of concentration of Zr in Cu-Cr-Zr alloy and Li and Ti in lithium titanate by CPAA using proton beam from VEC accelerator

    International Nuclear Information System (INIS)

    Dasgupta, S.; Datta, J.; Chowdhury, D.P.; Verma, R.

    2015-01-01

    It has recently been reported that copper exhibits advanced mechanical properties in several technological applications even at elevated temperatures while it still retains its usual excellent conducting properties for which it is recommended primarily. The addition of Zr inhibits chemical reaction of Cu at elevated temperatures. It also helps to retain the physical properties at elevated temperatures. The Zr content of 0.15% can increase the softening temperature (by 300°C) having no significant effect on electrical conductivity. Uses include heat sinks, electrical and mechanical power transmission devices, electrical switches and turbine generators. The concentration of Zr in Cu-Cr-Zr was determined by charged particle activation analysis (CPAA) through activation product 90g Nb (t 1/2 - 14.6 h, 141.2 keV (69 %) from 90 Zr(p, n) 90g Nb nuclear reaction using 13 MeV proton from VEC machine. The irradiation of sample and standard (pure Zr metal plate) were carried out with proton beam using ∼600 nA beam current for 15 - 30 min. 90 Zr was chosen as the preferred isotope due to its high abundance in nature, the availability of a suitable daughter product with a γ-energy having no other interfering γ-energies from the matrix elements. The counting measurements of active sample were performed with a high resolution γ-spectrometer using HPGe detector (Efficiency: 40%, Resolution: 2 keV at 1332 keV). The data analysis of the γ-spectra of samples of Cu-Cr-Zr and standard showed the concentration of Zr in Cu-Cr-Zr sample was 190±18 mg kg -1

  14. Hydrophobic surface functionalization of Philippine natural zeolite for a targeted oil remediation application

    Science.gov (United States)

    Osonio, Airah P.; Olegario-Sanchez, Eleanor M.

    2017-12-01

    The objective of this study is to modify and compare the oil sorption capacity on the surface of natural zeolite (NZ) and functionalized natural zeolite (FNZ) and to compare with activated charcoal samples. The NZ samples were surface modified via esterification process and characterized using XRD, SEM, and IR spectroscopy. The NZ, FNZ and activated charcoal were then tested using ASTM method F726-12 to validate the oil sorption capacity and TGA was used for the oil selectivity of the adsorbents. The results indicate that FNZ has an improved oil/water adsorption capacity than NZ when functionalized with ester and has a comparable capacity with activated charcoal.

  15. Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium

    Science.gov (United States)

    Peng, G. S.; Wang, Y.; Fan, Z.

    2018-04-01

    Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.

  16. Proton induced reactions on natural Pb targets. A potential new cyclotron method for 201Tl production

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.; Little, F.E.; Jungerman, J.A.

    1981-01-01

    The basis for a new cyclotron method for production of no-carrier-added 201 Tl, from its grandparent 201 Bi via the Pb(p,xn) 201 Bi → 201 Pb → 201 Tl reaction is presented here. Thick-target yields (μCi/μAh) for the 201 Pb and 200 Pb induced radioactivities were measured over the 65- to 43-MeV proton-energy range. The experimental data indicate that the 201 Tl yields could be optimized by using Pb targets enriched in 206 Pb, 207 Pb, and, or 208 Pb, which are expected to provide greater overall yields than current methods, as well as material of high-chemical, radiochemical and radionuclidic quality for radiopharmaceutical production. (author)

  17. Naturally Inspired Peptide Leads: Alanine Scanning Reveals an Actin-Targeting Thiazole Analogue of Bisebromoamide.

    Science.gov (United States)

    Johnston, Heather J; Boys, Sarah K; Makda, Ashraff; Carragher, Neil O; Hulme, Alison N

    2016-09-02

    Systematic alanine scanning of the linear peptide bisebromoamide (BBA), isolated from a marine cyanobacterium, was enabled by solid-phase peptide synthesis of thiazole analogues. The analogues have comparable cytotoxicity (nanomolar) to that of BBA, and cellular morphology assays indicated that they target the actin cytoskeleton. Pathway inhibition in human colon tumour (HCT116) cells was explored by reverse phase protein array (RPPA) analysis, which showed a dose-dependent response in IRS-1 expression. Alanine scanning reveals a structural dependence to the cytotoxicity, actin targeting and pathway inhibition, and allows a new readily synthesised lead to be proposed. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Radar target identification by natural resonances: Evaluation of signal processing algorithms

    Science.gov (United States)

    Lazarakos, Gregory A.

    1991-09-01

    When a radar pulse impinges upon a target, the resultant scattering process can be solved as a linear time-invariant (LTI) system problem. The system has a transfer function with poles and zeros. Previous work has shown that the poles are independent on the target's structure and geometry. This thesis evaluates the resonance estimation performance of two signal processing techniques: the Kumaresan-Tufts algorithm and the Cadzow-Solomon algorithm. Improvements are made to the Cadzow-Solomon algorithm. Both algorithms are programmed using MATLAB. Test data used to evaluate these algorithms includes synthetic and integral equation generated signals, with and without additive noise, in addition to new experimental scattering data from a thin wire, aluminum spheres, and scale model aircraft.

  19. Collision cascades in Zr3Fe

    International Nuclear Information System (INIS)

    Howe, L.M.; Rainville, M.H.; Phillips, D.; Plattner, H.H.; Bonnett, J.D.

    1994-11-01

    The objective of the present research is to understand better the processes that control irradiation-induced phase changes and solute segregation in zirconium alloys. Previously, it was found that 0.5 - 1.5 MeV 40 Ar ion irradiations resulted in the conversion of the crystalline Zr 3 Fe orthorhombic phase to the amorphous state. In the present investigation, 15 - 1500 keV 209 Bi ion irradiations (10 11 - 10 14 ions cm -2 ) were performed to provide more detailed information on collision cascades in Zr 3 Fe. Consecutive ion bombardments with 1.5, 1.0 and 0.5 MeV 209 Bi ions showed that complete amorphization occurred from 35 K to at least 600 K. Low fluence (10 11 - 101 12 ions cm -2 ) irradiations performed at 35 - 40 K with 15 - 350 keV 209 Bi ions provided information on the nature of the damage produced within individual damage cascades. At high values for the average deposited-energy density θυ in the cascade, which correspond to low-energy heavy-ion implants (e.g., 15-30 keV in Zr 3 Fe), the visible damage produced in a cascade consisted of single damaged region. With decreasing values of θυ (i.e., increasing ion implant energies), there was an increasing tendency for multiple damaged regions (subcascades) to form within a main cascade. The visible damaged regions appeared to be amorphous. It was also found that as the Bi ion energy increased (θυ decreased), the fraction of the theoretical collision-cascade volume that was occupied by the visible damage regions within a cascade decreased rapidly. The crystalline-to-amorphous transformation appeared to be the result of direct amorphization within the collision cascades and a critical defect concentration being reached in the cascade overlap regions, thus producing additional amorphous regions. (author). 30 refs., 2 tabs., 3 figs

  20. Perturbing dissimilar biomolecular targets from natural product scaffolds and focused chemical decoration

    DEFF Research Database (Denmark)

    Nielsen, John; Tung, Truong Thanh; Tim, Holm Jakobsen

    agents. On first attempt, by screening natural product sources we have successfully discovered that curcuminoids as potent inhibitors of p-type ATPases from diverse kingdoms of life including Pma1. On other attempt, the fungal metabolite fusaric acid was reported to reduce stomatal conductance in banana...

  1. Similarities between the target and the intruder in naturally-occurring repeated person naming errors

    Directory of Open Access Journals (Sweden)

    Serge eBredart

    2015-09-01

    Full Text Available The present study investigated an intriguing phenomenon that did not receive much attention so far: repeatedly calling a familiar person with someone else’s name. From participants’ responses to a questionnaire, these repeated naming errors were characterized with respect to a number of properties (e.g., type of names being substituted, error frequency, error longevity and different features of similarity (e.g., age, gender, type of relationship with the participant, face resemblance and similarity of the contexts of encounter between the bearer of the target name and the bearer of the wrong name. Moreover, it was evaluated whether the phonological similarity between names, the participants’ age, the difference of age between the two persons whose names were substituted, and face resemblance between the two persons predicted the frequency of error. Regression analyses indicated that phonological similarity between the target name and the wrong name predicted the frequency of repeated person naming errors. The age of the participant was also a significant predictor of error frequency: the older the participant the higher the frequency of errors. Consistent with previous research stressing the importance of the age of acquisition of words on lexical access in speech production, results indicated that bearer of the wrong name was on average known for longer than the bearer of the target name.

  2. Towards Integrating Soil Quality Monitoring Targets as Measures of Soil Natural Capital Stocks with the Provision of Ecosystem Services

    Science.gov (United States)

    Taylor, M. D.; Mackay, A. D.; Dominati, E.; Hill, R. B.

    2012-04-01

    This paper presents the process used to review soil quality monitoring in New Zealand to better align indicators and indicator target ranges with critical values of change in soil function. Since its inception in New Zealand 15 year ago, soil quality monitoring has become an important state of the environment reporting tool for Regional Councils. This tool assists councils to track the condition of soils resources, assess the impact of different land management practices, and provide timely warning of emerging issues to allow early intervention and avoid irreversible loss of natural capital stocks. Critical to the effectiveness of soil quality monitoring is setting relevant, validated thresholds or target ranges. Provisional Target Ranges were set in 2003 using expert knowledge available and data on production responses. Little information was available at that time for setting targets for soil natural capital stocks other than those for food production. The intention was to revise these provisional ranges as further information became available and extend target ranges to cover the regulating and cultural services provided by soils. A recently developed ecosystems service framework was used to explore the feasibility of linking soil natural capital stocks measured by the current suite of soil quality indicators to the provision of ecosystem services by soils. Importantly the new approach builds on and utilises the time series data sets collected by current suite of soil quality indicators, adding value to the current effort, and has the potential to set targets ranges based on the economic and environmental outcomes required for a given farm, catchment or region. It is now timely to develop a further group of environmental indicators for measuring specific soil issues. As with the soil quality indicators, these environmental indicators would be aligned with the provision of ecosystem services. The toolbox envisaged is a set of indicators for specific soil issues

  3. Differential CCR7 targeting in dendritic cells by three naturally occurring CC-chemokines

    Directory of Open Access Journals (Sweden)

    Gertrud Malene Hjortø

    2016-12-01

    Full Text Available The CCR7 ligands CCL19 and CCL21 are increasingly recognized as functionally different (biased. Using mature human dendritic cells (DCs, we show that CCL19 is more potent than CCL21 in inducing 3D chemotaxis. Intriguingly, CCL21 induces prolonged and more efficient ERK1/2 activation compared to CCL19 and to a C-terminal truncated (tailless CCL21 in DCs. In contrast, tailless-CCL21 displays increased potency in DC chemotaxis compared to native CCL21. Using a CCL21-specific antibody, we show that CCL21, but not tailless-CCL21, accumulates at the cell surface. In addition removal of sialic acid from the cell surface by neuraminidase treatment impairs ERK1/2 activation by CCL21, but not of CCL19 or tailless-CCL21. Using standard laboratory cell-lines, we observe low potency of both CCL21 and tailless-CCL21 in G protein activation and -arrestin recruitment compared to CCL19, indicating that the tail itself does not improve receptor interaction. Chemokines interact with their receptors in a stepwise manner with ultimate docking of their N-terminus into the main binding pocket. Employing site-directed mutagenesis we identify residues in this pocket of selective CCL21 importance. We also identify a molecular switch in the top of TM7 important for keeping CCR7 in an inactive conformation (Tyr312, as introduction of the chemokine receptor-conserved Glu (or Ala induces high constitutive activity. Summarized, we show that the interaction of the tail of CCL21 with polysialic acid is needed for strong ERK-signaling, whereas it impairs CCL21-mediated chemotaxis and has no impact on receptor docking consistent with the current model of chemokine:receptor interaction. This indicates that future selective pharmacological targeting of CCL19 versus CCL21 should focus on a differential targeting of the main receptor pocket, while selective targeting of tailless-CCL21 versus CCL21 and CCL19 requires targeting of the glycosaminoglycan (GAG interaction.

  4. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line

    International Nuclear Information System (INIS)

    Marcet-Palacios, Marcelo; Odemuyiwa, Solomon O.; Coughlin, Jason J.; Garofoli, Daniella; Ewen, Catherine; Davidson, Courtney E.; Ghaffari, Mazyar; Kane, Kevin P.; Lacy, Paige; Logan, Michael R.; Befus, A. Dean; Bleackley, R. Chris; Moqbel, Redwan

    2008-01-01

    Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Our data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 μg/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo

  5. Targeted natural product isolation guided by HPLC-SPE-NMR: Constituents of Hubertia species

    DEFF Research Database (Denmark)

    Sprogoe, K.; Staek, D.; Jager, A.K.

    2007-01-01

    The hyphenated technique, high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy (HPLC-SPE-NMR), has been applied for rapid identification of novel natural products in crude extracts of Hubertia ambavilla and Hubertia tomentosa. The technique allowed...... full or partial identification of all major extract constituents and demonstrated the presence of unusual quinic acid derivatives containing the (1-hydroxy-4-oxocyclohexa-2,5-dienyl)acetyl residue that exhibit strongly coupled ABXY patterns, the parameters of which were obtained by spin simulations...

  6. X-ray attenuation around K-edge of Zr, Nb, Mo and Pd: A ...

    Indian Academy of Sciences (India)

    Abstract. Mass attenuation coefficients (µ/ρ) for Zr, Nb, Mo and Pd elements around their K-edges are measured at 14 energies in the range 15.744–28.564 keV using secondary excitation from thin Zr, Nb, Mo, Rh, Pd, Cd and Sn foils. The measurements were carried out at the Kα and Kβ energy values of the target elements ...

  7. Multi-targeting Andrographolide and its Natural Analogs as Potential Therapeutic Agents.

    Science.gov (United States)

    Kishore, V; Yarla, Nagendra Sastry; Bishayee, Anupam; Putta, Swathi; Malla, Ramarao; Neelapu, Nageswara Rao Reddy; Challa, Surekha; Das, Subhasish; Shiralgi, Yallappa; Hegde, Gurumurthy; Dhananjaya, Bhadrapura Lakkappa

    2017-01-01

    Andrographis paniculata (A. paniculata) is a medicinal plant used in the Indian and Chinese traditional medicinal systems for its various beneficial properties of therapeutics. This is due to the presence of a diterpene lactone called 'andrographolide'. Several biological activities like antiinflammatory, antitumour, anti-hyperglycaemic, anti-fertility, antiviral, cardio protective and hepatoprotective properties are attributed to andrographolide and its natural analogs. The studies have shown that not only this diterpene lactone (andrographolide), but also other related terpenoid analogs from A. paniculata could be exploited for disease prevention due to their structural similarity with diverse pharmacological activities. Several scientific groups are trying to unveil the underlying mechanisms involved in these biological actions brough aout by andrographolide and its analogs. This review aims at giving an overview on the therapeutical and/or pharmacological activities of andrographolide and its derivatives and also exemplify the underlying mechanisms involved. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Simultaneous production of NCA copper-64 and gallium-66,67 by deuteron induced nuclear reactions on natural zinc target

    International Nuclear Information System (INIS)

    Bonardi, M.L.; Groppi, F.; Gini, L.; Manenti, S.

    2015-01-01

    Full text of publication follows. Copper-64 is a radionuclide suitable for labelling of a wide range of radiopharmaceuticals, for both PET imaging as well as systemic and radionuclide radioimmunotherapy (RIT) of tumours, in particular into hypoxic tissues. The uptake mechanism of Cu in cell tissues is based onto a redox reaction between Cu(II) and Cu(I). Amongst the possible methods for cyclotron production of NCA 64 Cu (together with the short-lived 61 Cu), we investigated the deuteron irradiation on natural and enriched Zn targets, via (d,xn) plus (d, 2pxn) nuclear reactions. In this paper we present the experimental thin-target excitation functions by deuteron irradiation on Zn targets of natural isotopic composition in the energy range up to 19 MeV, for: 61 Cu, 64 Cu, 66 Ga, 67 Ga, 65 Zn and 69m Zn. Calculated thick-target yields as a function of energy and energy loss into the target, irradiation and waiting times after the EOB are also presented. An extremely selective radiochemical separation of NCA 64 Cu from Zn target and Ga radionuclides - based on a two step combination of liquid-liquid extraction and anion exchange chromatography - is described in details, together with QC/QA tests carried out and the specific activity achievable in NCA conditions. The radiochemical separation allows a complete separation of the 24 Na co-produced as an impurity in the Al holder and foils. Apart 64 Cu, which can be easily purified by 61 Cu by simple decay, our method provides as a valuable by-product a large amount of the positron emitter 66 Ga for PET and the 'single' photon emitter 67 Ga for SPET. References: 1) M. L. Bonardi, F. Groppi, C. Birattari, L. Gini, C. Mainardi, A. Ghioni, E. Menapace, K. Abbas, U. Holzwarth, M.F. Stroosnijder, J. Radioanal. Nucl. Chem., 257 (2003) 229-241; 2) F. Groppi, M. Bonardi, C. Birattari, L. Gini, C. Mainardi, E. Menapace, K. Abbas, U. Holzwarth, R.M.F. Stroosnijder, Nucl. Instr. Meth. B, 213C (2004) 373-377; 3) M

  9. Diversity-oriented natural product platform identifies plant constituents targeting Plasmodium falciparum.

    Science.gov (United States)

    Zhang, Jin; Bowling, John J; Smithson, David; Clark, Julie; Jacob, Melissa R; Khan, Shabana I; Tekwani, Babu L; Connelly, Michele; Samoylenko, Vladimir; Ibrahim, Mohamed A; Zaki, Mohamed A; Wang, Mei; Hester, John P; Tu, Ying; Jeffries, Cynthia; Twarog, Nathaniel; Shelat, Anang A; Walker, Larry A; Muhammad, Ilias; Guy, R Kiplin

    2016-05-10

    A diverse library of pre-fractionated plant extracts, generated by an automated high-throughput system, was tested using an in vitro anti-malarial screening platform to identify known or new natural products for lead development. The platform identifies hits on the basis of in vitro growth inhibition of Plasmodium falciparum and counter-screens for cytotoxicity to human foreskin fibroblast or embryonic kidney cell lines. The physical library was supplemented by early-stage collection of analytical data for each fraction to aid rapid identification of the active components within each screening hit. A total of 16,177 fractions from 1300 plants were screened, identifying several P. falciparum inhibitory fractions from 35 plants. Although individual fractions were screened for bioactivity to ensure adequate signal in the analytical characterizations, fractions containing less than 2.0 mg of dry weight were combined to produce combined fractions (COMBIs). Fractions of active COMBIs had EC50 values of 0.21-50.28 and 0.08-20.04 µg/mL against chloroquine-sensitive and -resistant strains, respectively. In Berberis thunbergii, eight known alkaloids were dereplicated quickly from its COMBIs, but berberine was the most-active constituent against P. falciparum. The triterpenoids α-betulinic acid and β-betulinic acid of Eugenia rigida were also isolated as hits. Validation of the anti-malarial discovery platform was confirmed by these scaled isolations from B. thunbergii and E. rigida. These results demonstrate the value of curating and exploring a library of natural products for small molecule drug discovery. Attention given to the diversity of plant species represented in the library, focus on practical analytical data collection, and the use of counter-screens all facilitate the identification of anti-malarial compounds for lead development or new tools for chemical biology.

  10. How can local representations of changes of the availability in natural resources assist in targeting conservation?

    Science.gov (United States)

    Campos, Juliana Loureiro Almeida; de Lima Araújo, Elcida; Gaoue, Orou G; Albuquerque, Ulysses Paulino

    2018-02-14

    The use and appropriation of natural resources by human groups may be strongly related to the perception that these groups have of the abundance or scarcity of these resources. Researches on environmental representation can be useful to understand the criteria involved in the selection and use of natural resources, to verify if people realize changes in the availability of these resources and the possible causes of these changes and to elaborate conservation strategies, if necessary. However, if people are not realizing these changes, of if they do not perceive themselves as a cause of such scarcity, the developing of conservation strategies will be very difficult to implement. We investigated the drivers of sustainable harvest of Syagrus coronata (Mart.) Becc. (ouricuri palm) leaves by the Fulni-ô indigenous people in northeastern Brazil and accessed the representation of changes in the availability of the populations of this species over time. We obtained information about events that, from the point of view of the palm harvesters, pose threats to S. coronata populations. More experienced local harvesters tend to harvest leaves in a more sustainable manner than did young and inexperienced harvesters. The Fulni-ô reported a decline in S. coronata populations. However, they primarily associate such decline to the farming practices of non-indigenous people that lease lands in the area. Although the Fulni-ô people perceived a shortage of such resource, our findings indicate that the implementation of conservation strategies for the ouricuri palm may not be so easy to implement, once it affects one of their main income sources (land lease), which is recognize as the major threat for the species by harvesters. Ours results showed that the relationship between perception of scarcity and ease of implementation of conservation actions should be contextualized. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Targeting natural killer cell reactivity by employing antibody to NKp46: implications for type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Rami Yossef

    Full Text Available Natural killer (NK cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D. Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.

  12. Implication of Caspase-3 as a Common Therapeutic Target for Multineurodegenerative Disorders and Its Inhibition Using Nonpeptidyl Natural Compounds

    Directory of Open Access Journals (Sweden)

    Saif Khan

    2015-01-01

    Full Text Available Caspase-3 has been identified as a key mediator of neuronal apoptosis. The present study identifies caspase-3 as a common player involved in the regulation of multineurodegenerative disorders, namely, Alzheimer’s disease (AD, Parkinson’s disease (PD, Huntington’s disease (HD, and amyotrophic lateral sclerosis (ALS. The protein interaction network prepared using STRING database provides a strong evidence of caspase-3 interactions with the metabolic cascade of the said multineurodegenerative disorders, thus characterizing it as a potential therapeutic target for multiple neurodegenerative disorders. In silico molecular docking of selected nonpeptidyl natural compounds against caspase-3 exposed potent leads against this common therapeutic target. Rosmarinic acid and curcumin proved to be the most promising ligands (leads mimicking the inhibitory action of peptidyl inhibitors with the highest Gold fitness scores 57.38 and 53.51, respectively. These results were in close agreement with the fitness score predicted using X-score, a consensus based scoring function to calculate the binding affinity. Nonpeptidyl inhibitors of caspase-3 identified in the present study expeditiously mimic the inhibitory action of the previously identified peptidyl inhibitors. Since, nonpeptidyl inhibitors are preferred drug candidates, hence, discovery of natural compounds as nonpeptidyl inhibitors is a significant transition towards feasible drug development for neurodegenerative disorders.

  13. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  14. Augmentative biocontrol in natural marine habitats: persistence, spread and non-target effects of the sea urchin Evechinus chloroticus.

    Directory of Open Access Journals (Sweden)

    Javier Atalah

    Full Text Available Augmentative biocontrol aims to control established pest populations through enhancement of their indigenous enemies. To our knowledge, this approach has not been applied at an operational scale in natural marine habitats, in part because of the perceived risk of adverse non-target effects on native ecosystems. In this paper, we focus on the persistence, spread and non-target effects of the sea urchin Evechinus chloroticus when used as biocontrol agent to eradicate an invasive kelp from Fiordland, New Zealand. Rocky reef macrobenthic assemblages were monitored over 17 months in areas where the indigenous algal canopy was either removed or left intact prior to the translocation of a large number of urchins (>50 ind.·m(-2. Urchin densities in treated areas significantly declined ∼9 months after transplant, and began spreading to adjacent sites. At the end of the 17-month study, densities had declined to ∼5 ind.·m(-2. Compared to controls, treatment sites showed persistent shifts from kelp forest to urchin barrens, which were accompanied by significant reductions in taxa richness. Although these non-target effects were pronounced, they were considered to be localised and reversible, and arguably outweigh the irreversible and more profound ecological impacts associated with the establishment of an invasive species in a region of high conservation value. Augmentative biocontrol, used in conjunction with traditional control methods, represents a promising tool for the integrated management of marine pests.

  15. Synthesis of Defect Perovskites (He2-x□x)(CaZr)F6by Inserting Helium into the Negative Thermal Expansion Material CaZrF6.

    Science.gov (United States)

    Hester, Brett R; Dos Santos, António M; Molaison, Jamie J; Hancock, Justin C; Wilkinson, Angus P

    2017-09-27

    Defect perovskites (He 2-x □ x )(CaZr)F 6 can be prepared by inserting helium into CaZrF 6 at high pressure. They can be recovered to ambient pressure at low temperature. There are no prior examples of perovskites with noble gases on the A-sites. The insertion of helium gas into CaZrF 6 both elastically stiffens the material and reduces the magnitude of its negative thermal expansion. It also suppresses the onset of structural disorder, which is seen on compression in other media. Measurements of the gas released on warming to room temperature and Rietveld analyses of neutron diffraction data at low temperature indicate that exposure to helium gas at 500 MPa leads to a stoichiometry close to (He 1 □ 1 )(CaZr)F 6 . Helium has a much higher solubility in CaZrF 6 than silica glass or crystobalite. An analogue with composition (H 2 ) 2 (CaZr)F 6 would have a volumetric hydrogen storage capacity greater than current US DOE targets. We anticipate that other hybrid perovskites with small neutral molecules on the A-site can also be prepared and that they will display a rich structural chemistry.

  16. Clustered distribution of natural product leads of drugs in the chemical space as influenced by the privileged target-sites.

    Science.gov (United States)

    Tao, Lin; Zhu, Feng; Qin, Chu; Zhang, Cheng; Chen, Shangying; Zhang, Peng; Zhang, Cunlong; Tan, Chunyan; Gao, Chunmei; Chen, Zhe; Jiang, Yuyang; Chen, Yu Zong

    2015-03-20

    Some natural product leads of drugs (NPLDs) have been found to congregate in the chemical space. The extent, detailed patterns, and mechanisms of this congregation phenomenon have not been fully investigated and their usefulness for NPLD discovery needs to be more extensively tested. In this work, we generated and evaluated the distribution patterns of 442 NPLDs of 749 pre-2013 approved and 263 clinical trial small molecule drugs in the chemical space represented by the molecular scaffold and fingerprint trees of 137,836 non-redundant natural products. In the molecular scaffold trees, 62.7% approved and 37.4% clinical trial NPLDs congregate in 62 drug-productive scaffolds/scaffold-branches. In the molecular fingerprint tree, 82.5% approved and 63.0% clinical trial NPLDs are clustered in 60 drug-productive clusters (DCs) partly due to their preferential binding to 45 privileged target-site classes. The distribution patterns of the NPLDs are distinguished from those of the bioactive natural products. 11.7% of the NPLDs in these DCs have remote-similarity relationship with the nearest NPLD in their own DC. The majority of the new NPLDs emerge from preexisting DCs. The usefulness of the derived knowledge for NPLD discovery was demonstrated by the recognition of the new NPLDs of 2013-2014 approved drugs.

  17. Mycobacterium tuberculosis-Secreted Tyrosine Phosphatases as Targets Against Tuberculosis: Exploring Natural Sources in Searching for New Drugs.

    Science.gov (United States)

    Mascarello, Alessandra; Chiaradia-Delatorre, Louise Domeneghini; Mori, Mattia; Terenzi, Hernán; Botta, Bruno

    2016-01-01

    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which primarily affects the respiratory tract. Combinations of drugs are used for therapeutic synergism and to prevent the emergence of drug resistant strains, but even first- or secondchoice drugs present some disadvantages, such as significant side effects and the need for long duration of treatments. Thus, new strategies for TB control and treatment are highly demanded. In this context, protein tyrosine phosphatases (PtpA and PtpB) are secreted by Mtb within the host macrophage and they have been shown to contribute to Mtb pathogenicity. The understanding of the role of these PTPs has led to interesting anti-TB drugs discovery. Here, we review the current knowledge on these two proteins as targets for novel anti-TB therapies, with particular emphasis on their mechanism of action and current advancements in developing small molecule inhibitors from natural sources.

  18. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity

    Science.gov (United States)

    Kato, Shingo; Berzofsky, Jay A.; Terabe, Masaki

    2018-01-01

    Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from both the innate immune cells and T cells. There are at least two subsets of NKT cells, type I and type II. These two subsets of NKT cells have opposite functions in antitumor immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After summarizing their definition, experimental tools to study them, and subsets of them, we will discuss possible therapeutic applications of type II NKT cell pathway targeted therapies. PMID:29520281

  19. Reactive bipolar pulsed dual magnetron sputtering of ZrN films: The effect of duty cycle

    Science.gov (United States)

    Rizzo, A.; Valerini, D.; Capodieci, L.; Mirenghi, L.; Di Benedetto, F.; Protopapa, M. L.

    2018-01-01

    Zirconium nitride (ZrN) coatings, due to their inherent high hardness, wear and corrosion resistance, as well as the golden color, can be attractive for a wide range of applications, such as mechanical, optical, decorative and biomedical devices. Reactive Bipolar Pulsed Dual Magnetron Sputtering (BPDMS) operating in mid-frequency range is a powerful technique for the deposition of dense coatings, free from morphological defects, at high deposition rate. In fact, the use of mid-frequency voltage reversals allows suppressing arcs and, as a consequence, stabilizing the reactive sputtering process. Despite the success of the dual bipolar process, there are many aspects of this complex process that are not yet well understood, such as the influence of the target voltage waveforms and plasma parameters on the film growth. In order to fill this lack of knowledge, ZrN films were deposited by BPDMS with different voltage waveforms on the Zr targets and the influence of these deposition parameters on the films' stoichiometry as well as on their structural and mechanical properties is investigated in this paper. In particular, it was found that, for duty cycle values below 33%, the hardness of the coating increases up to 31 GPa. The analysis of the chemical composition, performed by XPS, detects an almost constant value of stoichiometry along the depth-profile of each film and the N:Zr ratio increases from 1.06 to 1.20 as the duty cycle decreases. Therefore, when the N:Zr ratio is 1.06 we got a stoichiometric ZrN compound, while for N:Zr equal to 1.20 we obtained a lack of Zr atoms with respect to N atoms. Raman spectroscopy confirms the results of XPS analyzes, since it showed some features related to the structural disorder in the sample grown with the lowest duty cycle.

  20. Corrosion Behaviour of New Zr Alloys

    DEFF Research Database (Denmark)

    Tolksdorf, E.

    1974-01-01

    Corrosion studies have indicated that the most promising replacements for Zicaloy-2 are ZrCrFe, ZrVFe and probably ZrNbTa, provided they are in their optimized condition. These alloys are conventionally manufactured alloys. An internally oxidized ZrMgO alloy is even superior, from the corrosion...... and hydrogen uptake points of view, to the above-mentioned alloys. This alloy is of particular interest because the addition of MgO leads to no neutron penalty and the dispersion-strengthening entails the possibility of tailoring an alloy with the desired mechanical properties....

  1. Structure of anodized Al–Zr sputter deposited coatings and effect on optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara

    2014-01-01

    The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al–Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result...... in the evolution of typical features in the anodized layer, which are investigated as a function of microstructure and correlated with its optical appearance. The Zr concentration in the coating was varied from 6 wt.% to 23 wt.%. Heat treatment of the coated samples was carried out at 550°C for 4 h in order...... to evolve Al–Zr based second phase precipitates in the microstructure. Anodizing was performed using 20 wt.% sulphuric acidat 18°C with an intention to study the effect of anodizing on the Al–Zr based precipitates in the coating.Detailed microstructural characterization of the coating and anodized layer...

  2. Design of colon targeting drug delivery systems using natural polymeric carriers and their evaluation by gamma scintigraphy technique

    International Nuclear Information System (INIS)

    Soni, P.S.; Sawarkar, S.P.; Deshpande, S.G.; Bajaj, A.N.

    2004-01-01

    Of late, there has been a great awareness in the concept of drug targeting and delivery to a specific site (organ, tissue or cell) in the body to maximize therapeutic effect and reduce toxicity. The various approaches of site-specific drug delivery are implantable pumps, adhesive patches impregnated with drugs, vesicle enclosed drugs and drug carriers. Colonic drug delivery is intended for local and systemic treatment in the diseases of colon like inflammatory bowel conditions. Several approaches using viz. pro-drugs, biodegradable polymers and pH sensitive polymer coatings have been used to achieve colonic delivery. Natural polysaccarides like guar gum and pectin are promising candidates because they are susceptible to degradation by colonic bacteria and thus can release the entrapped drug in the colonic region. These indigenous natural polymers are cheaply and readily available. They comprise of polygalactouronic acid and refractory to host enzymes present in the upper gastrointestinal tract and are degraded by the enzymes produced by the colonic microflora. They were evaluated as a colonic carrier using 5-amino salicylic acid (5-ASA) as a model drug. After successful in vitro testing, gamma scintigraphy technique was used to assess in-vivo behavior of the colon specific drug delivery after a coat of Guar gum and Pectin

  3. Natural Regeneration in a Multi-Layered Pinus sylvestris-Picea abies Forest after Target Diameter Harvest and Soil Scarification

    Directory of Open Access Journals (Sweden)

    Lars Drössler

    2017-01-01

    Full Text Available Forest management in Sweden can be characterized by even-aged silviculture heavily relying on three established harvest regimes: clearcutting, the seed-tree method, and the shelterwood system. Less intense, small-scale retention harvest systems such as single tree and group selection harvest are rarely used. In addition, natural regeneration dynamics without enrichment planting have barely been studied. Consequently, this study examined natural regeneration establishment in a multi-layered Pinus sylvestris-Picea abies forest stand in southwest Sweden after target diameter harvesting and soil scarification. The creation of forest canopy gaps had a positive effect on total seedling density five years after harvest, mainly due to a significantly higher number of Betula pendula individuals. Seedling density of more desirable tree species suitable for continuous cover forestry such as Fagus sylvatica, Quercus petraea and Picea abies also increased substantially in gaps when compared to pre-harvest conditions or the unharvested plots. In contrast, soil scarification did not increase the number of seedlings of desired tree species due to a significant decrease in Picea abies abundance. Soil moisture and gap size significantly improved Betula pendula seedling establishment while a larger number of Quercus petraea seedlings were observed in Vaccinium myrtillus patches. We conclude that canopy gaps are beneficial under the encountered stand conditions to initiate forest regeneration, and that soil scarification without the timely occurrence of a mast year of desired tree species is not effective in the type of forest studied.

  4. Physico-chemical characterization of terbium-161-chloride (161TbCl3) radioisotope from irradiated natural gadolinium oxide target

    International Nuclear Information System (INIS)

    Azmairit Aziz; Nana Suherman

    2015-01-01

    Currently cancer patients are increasing every year in Indonesia and become the third leading cause of death after heart disease and high blood pressure. Terbium-161 ( 161 Tb) is a low β- emitter (E β - = 0.155 MeV, T 1/2 = 6.9 d) and very similar to 177 Lu in terms of half-life, E β - energy and chemical properties.However, 161 Tb also ejects internal conversion electrons and Auger electrons which can provide a greater therapeutic effect than 177 Lu. Radioisotope of 161 Tb can be produced as a carrier-free for use in labeling of biomolecules as a targeted radiopharmaceutical for cancer therapy. 161 Tb was obtained through 160 Gd(n,γ) 161 Tb nuclear reaction by thermal neutron bombardment on 100 mg of natural gadolinium oxide target in RSG-G.A. Siwabessy at a thermal neutron flux of ~10 14 n.cm -2 .s -1 and followed by radiochemical separation of 161 Tb from Gd isotopes using extraction chromatography method. The physico-chemical characterization of 161 TbCl 3 solution was studied by determination of its radionuclide purity by means of a γ-rays spectrometry with HP-Ge detector coupled to a multichannel analyzer (MCA). Radiochemical purity was determined using paper chromatography and paper electrophoresis methods. The results showed that 161 TbCl 3 radioisotope has a pH of 2, radiochemical purity of 99.64 ± 0.34%, radionuclide purity of 99.69 ± 0.20%, specific activity and radioactive concentration at the end of irradiation (EOI) of 2.26 – 5.31 Ci/mg and 3.84 – 9.03 mCi/mL, respectively. 161 TbCl 3 solution stable for 3 weeks at room temperature with a radiochemical purity of 98.41 ± 0.42%. 161 TbCl 3 solution from irradiated natural gadolinium oxide target has the physico-chemical characteristic that meets the requirements for use as a precursor in preparation of radiopharmaceuticals. (author)

  5. Thermodynamic modeling of the Pt-Zr system

    International Nuclear Information System (INIS)

    Gao Yongliang; Guo Cuiping; Li Changrong; Du Zhenmin

    2010-01-01

    By means of the CALPHAD (CALculation of PHAse Diagram) technique, the Pt-Zr system was critically assessed. The solution phases (liquid, bcc, fcc and hcp) are described with the substitutional model. The intermetallic compounds Pt 4 Zr, Pt 4 Zr 3 , αPtZr and Pt 3 Zr 5 are treated as the formula (Pt,Zr) m (Pt,Zr) n by a two-sublattice model with the elements Pt and Zr on the first and the second sublattices, respectively. A two-sublattice model (Pt,Zr) 0.5 (Pt,Zr) 0.5 is applied to describe the compound βPtZr with CsCl-type structure (B2) in order to cope with the order-disorder transition between bcc solution (A2) and βPtZr (B2). Another two-sublattice model (Pt,Zr) 0.75 (Pt,Zr) 0.25 with Ni 3 Ti-type structure (D0 24 ) is applied to describe the compound Pt 3 Zr in order to cope with the order-disorder transition between hexagonal close-packed (A3) and Pt 3 Zr (D0 24 ). The compound Pt 10 Zr 7 is treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters of the Pt-Zr system was obtained. (orig.)

  6. PENGARUH KONSENTRASI ZrO2 TERHADAP KORELASI PERPINDAHAN PANAS NANOFLUIDA AIR-ZrO2 UNTUK PENDINGIN REAKTOR

    Directory of Open Access Journals (Sweden)

    K.A. Sudjatmi

    2015-03-01

    Full Text Available Sejalan dengan perkembangan konsep keselamatan pasif pada sistem keselamatan PLTN, maka sistem perpindahan panas konveksi alam memegang peranan penting. Pemakaian nanofluid sebagai fluida pendingin pada sistem keselamatan nuklir dapat digunakan pada Sistem Pendingin Teras Darurat dan Sistem Pendingin Pengungkung Luar Reaktor. Beberapa peneliti telah melakukan studi desain konseptual aplikasi nanofluid untuk meningkatkan keselamatan AP1000 dan sistem pendingin teras darurat pada reaktor daya eksperimen. Penerapan nanofluida juga mulai dikembangkan melalui hasil penelitian perpindahan panas konveksi alamiah pada sub-buluh dengan nanofluida sebagai fluida kerjanya sangat dibutuhkan. Penelitian ini bertujuan untuk menentukan pengaruh perubahan konsentrasi ZrO2 terhadap korelasi perpindahan panas konveksi alamiah dengan pendekatan eksperimental. Data eksperimental yang diperoleh digunakan untuk mengembangkan korelasi umum empirik perpindahan panas konveksi alamiah. Metode penelitian dengan menggunakan alat uji sub-buluh vertikal dengan geometri segitiga dan segiempat menggunakan air dan nanofluida air-ZrO2 sebagai fluida kerjanya. Konsentrasi nanopartikel dalam larutan yang digunakan sebesar 0,05 %, 0,10% dan 0,15 % dalam persen berat. Hasil penelitian menunjukan bahwa untuk bilangan Rayleigh yang sama, kemampuan pemindahan kalor oleh nanofluida air-ZrO2 lebih baik dari pada pemindahan kalor oleh air. Namun peningkatan konsentrasi nanofluida tidak selalu mendapatkan kemampuan pemindahan kalor yang lebih baik. Kata kunci: nanofluida air-ZrO2, konveksi alamiah, sub-buluh segitiga, sub-buluh segi segiempat   In line with the development of the passive safety concept for the safety systems of nuclear power plants, the natural convection heat transfer system plays an important role. The nanofluid as coolant fluid on nuclear safety system can be used in Emergency core cooling system and in reactor coolant system confinement. Several researchers have

  7. Colon-targeted delivery of piceatannol enhances anti-colitic effects of the natural product: potential molecular mechanisms for therapeutic enhancement.

    Science.gov (United States)

    Yum, Soohwan; Jeong, Seongkeun; Lee, Sunyoung; Nam, Joon; Kim, Wooseong; Yoo, Jin-Wook; Kim, Min-Soo; Lee, Bok Luel; Jung, Yunjin

    2015-01-01

    Piceatannol (PCT), an anti-colitic natural product, undergoes extensive Phase II hepatic metabolism, resulting in very low bioavailability. We investigated whether colon-targeted delivery of PCT could enhance anti-colitic effects and how therapeutic enhancement occurred at the molecular level. Molecular effects of PCT were examined in human colon carcinoma cells and inflamed colons. The anti-colitic effects of PCT in a colon-targeted capsule (colon-targeted PCT) were compared with PCT in a gelatin capsule (conventional PCT) in a trinitrobenzene sulfonic acid-induced rat colitis model. Colon-targeted PCT elicited greatly enhanced recovery of the colonic inflammation. In HCT116 cells, PCT inhibited nuclear factor kappaB while activating anti-colitic transcription factors, nuclear factor-erythroid 2 (NF-E2) p45-related factor 2, and hypoxia-inducible factor-1. Colon-targeted PCT, but not conventional PCT, modulated production of the target gene products of the transcription factors in the inflamed colonic tissues. Rectal administration of PCT, which simulates the therapeutic action of colon-targeted PCT, also ameliorated rat colitis and reproduced the molecular effects in the inflamed colonic tissues. Colon-targeted delivery increased therapeutic efficacy of PCT against colitis, likely resulting from multitargeted effects exerted by colon-targeted PCT. The drug delivery technique may be useful for therapeutic optimization of anti-colitic lead compounds including natural products.

  8. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Zhiping Zhang

    2017-11-01

    Full Text Available Zr2WP2O12/ZrO2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr2WP2O12/ZrO2 composites with different mass ratio. Relative densities of all the resulting Zr2WP2O12/ZrO2 samples were also tested by Archimedes' methods. The obtained Zr2WP2O12/ZrO2 composites were comprised of orthorhombic Zr2WP2O12 and monoclinic ZrO2. As the increase of the Zr2WP2O12, the relative densities of Zr2WP2O12/ZrO2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr2WP2O12/ZrO2 composites can be tailored from 4.1 × 10−6 K−1 to −3.3 × 10−6 K−1 by changing the content of Zr2WP2O12. The 2:1 Zr2WP2O12/ZrO2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of −0.09 × 10−6 K−1. These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  9. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    Science.gov (United States)

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  10. Zr partitioning and kinetics and mechanism

    Science.gov (United States)

    Taylor, L. A.

    1973-01-01

    The results of investigations concerning the cooling histories of lunar rocks are reported. Publications resulting from this research are listed. Studies discussed include the partitioning of Zr between FeTi03 and Fe2Ti04 in the presence of Fe + Zr02, and ulvospinel reduction.

  11. Oxidation behavior of Zr and its alloys

    International Nuclear Information System (INIS)

    Costa, I.; Ramanathan, L.V.

    1984-01-01

    The environment effect, material composition, thermal treatment and superficial treatment on the oxidation behavior of Zr, Zircaloy-4 and Zr - 2,5% Nb, in the temperature range of 400 - 900 0 C, by thermogravimetry were studied. (E.G.) [pt

  12. Structural and mechanical properties of ZrSiN thin films prepared by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, F.G.R.; Conceicao, A.G.S.; Vitoria, E.R.; Carvalho, R.G.; Tentardini, E.K. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Hübler, R. [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil); Soares, G., E-mail: flaviogus@hotmail.com, E-mail: etentardini@gmail.com, E-mail: hubler@pucrs.br, E-mail: gabriel.soares@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2014-07-01

    Zirconium silicon nitride (ZrSiN) thin films were deposited by reactive magnetron sputtering in order to verify the silicon influence on coating morphology and mechanical properties. The Si/(Zr+Si) ratio was adjusted between 0 to 14.5% just modifying the power applied on the silicon target. Only peaks associated to ZrN crystalline structure were observed in XRD analysis, since Si{sub 3}N{sub 4} phase was amorphous. All samples have (111) preferred orientation, but there is a peak intensity reduction and a broadening increase for the sample with the highest Si/(Zr+Si) ratio (14.5%), demonstrating a considerable loss of crystallinity or grain size reduction (about 8 nm calculated by Scherrer). It was also observed that the texture coefficient for (200) increases with silicon addition. Chemical composition and thickness of the coatings were determined by RBS analysis. No significant changes in nano hardness with increasing Si content were found. The thin film morphology observed by SEM presents columnar and non columnar characteristics. The set of results suggests that Si addition is restricting the columnar growth of ZrN thin films. This conclusion is justified by the fact that Si contributes to increase the ZrN grains nucleation during the sputtering process. (author)

  13. Structural and mechanical properties of ZrSiN thin films prepared by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Freitas, F.G.R.; Conceicao, A.G.S.; Vitoria, E.R.; Carvalho, R.G.; Tentardini, E.K.; Hübler, R.; Soares, G.

    2014-01-01

    Zirconium silicon nitride (ZrSiN) thin films were deposited by reactive magnetron sputtering in order to verify the silicon influence on coating morphology and mechanical properties. The Si/(Zr+Si) ratio was adjusted between 0 to 14.5% just modifying the power applied on the silicon target. Only peaks associated to ZrN crystalline structure were observed in XRD analysis, since Si 3 N 4 phase was amorphous. All samples have (111) preferred orientation, but there is a peak intensity reduction and a broadening increase for the sample with the highest Si/(Zr+Si) ratio (14.5%), demonstrating a considerable loss of crystallinity or grain size reduction (about 8 nm calculated by Scherrer). It was also observed that the texture coefficient for (200) increases with silicon addition. Chemical composition and thickness of the coatings were determined by RBS analysis. No significant changes in nano hardness with increasing Si content were found. The thin film morphology observed by SEM presents columnar and non columnar characteristics. The set of results suggests that Si addition is restricting the columnar growth of ZrN thin films. This conclusion is justified by the fact that Si contributes to increase the ZrN grains nucleation during the sputtering process. (author)

  14. Hydrogen trapping properties of Zr-based intermetallic compounds in the presence of CO contaminant gas

    Energy Technology Data Exchange (ETDEWEB)

    Prigent, Jocelyn [Chimie Metallurgie des Terres Rares, ICMPE-UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais (France); Latroche, Michel, E-mail: latroche@icmpe.cnrs.fr [Chimie Metallurgie des Terres Rares, ICMPE-UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais (France); Leoni, Elisa; Rohr, Valentin [AREVA NC, 1, rue des Herons, 78182 Montigny Le Bretonneux (France)

    2011-09-15

    Research highlights: > Hydrogen absorption in the presence of carbon monoxide is reported for several Zr rich intermetallic compounds. > Absorption rates have been determined and compared for pure and CO-containing hydrogen gases. > Using intermetallic compounds as getter materials in the presence of contaminant gases has been demonstrated. - Abstract: Intermetallic compounds, as hydrogen getters, are considered to control the quantity of hydrogen generated in radioactive waste packaging. The compounds ZrCo, Zr{sub 2}Fe and a Zr-rich Zr-Ti-V alloy have been chosen as they form very stable hydrides at ambient temperature. However, other gases are produced in the packaging such as carbon monoxide, a gas known to poison the surface of intermetallic compounds and to hinder the hydrogen sorption reaction. The three Zr-based compounds have been first characterized regarding their metallurgical state and their gas sorption properties toward pure hydrogen. Then, the sorption properties of the activated materials have been studied using a mixture of 5 vol.% CO + 95 vol.% H{sub 2}. We demonstrated that though the presence of CO sharply slows down the reaction rate the activated compounds still show significant sorption properties. Therefore, the presence of contaminant gases is not detrimental for the target application.

  15. Effect of germanium addition on the properties of reactively sputtered ZrN films

    Energy Technology Data Exchange (ETDEWEB)

    Pilloud, D. [Departement CREST, Institut FEMTO-ST (UMR CNRS 6174), Universite de Franche-Comte, Pole Universitaire, BP 71427, 25211 Montbeliard cedex (France); Pierson, J.F. [Departement CREST, Institut FEMTO-ST (UMR CNRS 6174), Universite de Franche-Comte, Pole Universitaire, BP 71427, 25211 Montbeliard cedex (France)]. E-mail: jean-francois.pierson@pu-pm.univ-fcomte.fr; Cavaleiro, A. [Departamento de Engenharia Mecanica, Universidade de Coimbra, Polo II, ICEMS, FCTUC, Pinhal de Marrocos, 3030 Coimbra (Portugal); Marco de Lucas, M.C. [Laboratoire de Recherches sur la Reactivite des Solides (UMR CNRS 5613), Universite de Bourgogne, 9 Av. Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2005-12-01

    For the first time, Zr-Ge-N films were deposited on silicon and steel substrates by sputtering a Zr-Ge composite target in reactive Ar-N{sub 2} mixture. The films were characterised by electron probe microanalysis, X-ray diffraction, micro-Raman spectroscopy and depth-sensing indentation. The effects of the Ge content and substrate bias voltage on the films' structure, internal stress, hardness and oxidation resistance were investigated. Substrate bias strongly influenced the chemical composition of the films being observed by means of a steep decrease in the Ge content for negative bias voltages higher than -80 V. In these cases, a significant hardness improvement was registered. For -100 V biased films, in the Ge concentrations range tested in this study, only ZrN grains were evidenced by X-ray diffraction. The film compressive stresses increased with the germanium concentration. An unexpected effect of the Ge content on the films' hardness was observed. In spite of the increase in the compressive stresses of the films with increasing Ge content, the hardness monotonously dropped from 38 GPa for pure ZrN down to 21.5 GPa for 4.6 at.% Ge. Addition of Ge into ZrN-based coatings induced an improvement of the oxidation resistance and it favoured the tetragonal form of zirconia in oxidised Zr-Ge-N coatings.

  16. natural

    Directory of Open Access Journals (Sweden)

    Elías Gómez Macías

    2006-01-01

    Full Text Available Partiendo de óxido de magnesio comercial se preparó una suspensión acuosa, la cual se secó y calcinó para conferirle estabilidad térmica. El material, tanto fresco como usado, se caracterizó mediante DRX, área superficial BET y SEM-EPMA. El catalizador mostró una matriz de MgO tipo periclasa con CaO en la superficie. Las pruebas de actividad catalítica se efectuaron en lecho fijo empacado con partículas obtenidas mediante prensado, trituración y clasificación del material. El flujo de reactivos consistió en mezclas gas natural-aire por debajo del límite inferior de inflamabilidad. Para diferentes flujos y temperaturas de entrada de la mezcla reactiva, se midieron las concentraciones de CH4, CO2 y CO en los gases de combustión con un analizador de gases tipo infrarrojo no dispersivo (NDIR. Para alcanzar conversión total de metano se requirió aumentar la temperatura de entrada al lecho a medida que se incrementó el flujo de gases reaccionantes. Los resultados obtenidos permiten desarrollar un sistema de combustión catalítica de bajo costo con un material térmicamente estable, que promueva la alta eficiencia en la combustión de gas natural y elimine los problemas de estabilidad, seguridad y de impacto ambiental negativo inherentes a los procesos de combustión térmica convencional.

  17. Plasmodium vivax Reticulocyte Binding Proteins Are Key Targets of Naturally Acquired Immunity in Young Papua New Guinean Children.

    Directory of Open Access Journals (Sweden)

    Camila T França

    2016-09-01

    Full Text Available Major gaps in our understanding of Plasmodium vivax biology and the acquisition of immunity to this parasite hinder vaccine development. P. vivax merozoites exclusively invade reticulocytes, making parasite proteins that mediate reticulocyte binding and/or invasion potential key vaccine or drug targets. While protein interactions that mediate invasion are still poorly understood, the P. vivax Reticulocyte-Binding Protein family (PvRBP is thought to be involved in P. vivax restricted host-cell selectivity.We assessed the binding specificity of five members of the PvRBP family (PvRBP1a, PvRBP1b, PvRBP2a, PvRBP2b, PvRBP2-P2 and a non-binding fragment of PvRBP2c to normocytes or reticulocytes. PvRBP2b was identified as the only reticulocyte-specific binder (P<0.001, whereas the others preferentially bound to normocytes (PvRBP1a/b P≤0.034, or showed comparable binding to both (PvRBP2a/2-P2, P = 0.38. Furthermore, we measured levels of total and IgG subclasses 1, 2, 3 and 4 to the six PvRBPs in a cohort of young Papua New Guinean children, and assessed their relationship with prospective risk of P. vivax malaria. Children had substantial, highly correlated (rho = 0.49-0.82, P<0.001 antibody levels to all six PvRBPs, with dominant IgG1 and IgG3 subclasses. Both total IgG (Incidence Rate Ratio [IRR] 0.63-0.73, P = 0.008-0.041 and IgG1 (IRR 0.56-0.69, P = 0.001-0.035 to PvRBP2b and PvRBP1a were strongly associated with reduced risk of vivax-malaria, independently of age and exposure.These results demonstrate a diversity of erythrocyte-binding phenotypes of PvRBPs, indicating binding to both reticulocyte-specific and normocyte-specific ligands. Our findings provide further insights into the naturally acquired immunity to P. vivax and highlight the importance of PvRBP proteins as targets of naturally acquired humoral immunity. In-depth studies of the role of PvRBPs in P. vivax invasion and functional validation of the role of anti-PvRBP antibodies in

  18. Targeted Metagenomics as a Tool to Tap Into Marine Natural Product Diversity for the Discovery and Production of Drug Candidates

    Directory of Open Access Journals (Sweden)

    Marla eTrindade

    2015-08-01

    Full Text Available Microbial natural products exhibit immense structural diversity and complexity and have captured the attention of researchers for several decades. They have been explored for a wide spectrum of applications, most noteworthy being their prominent role in medicine, and their versatility expands to application as drugs for many diseases. Accessing unexplored environments harboring unique microorganisms is expected to yield novel bioactive metabolites with distinguishing functionalities, which can be supplied to the starved pharmaceutical market. For this purpose the oceans have turned out to be an attractive and productive field. Owing to the enormous biodiversity of marine microorganisms, as well as the growing evidence that many metabolites previously isolated from marine invertebrates and algae are actually produced by their associated bacteria, the interest in marine microorganisms has intensified. Since the majority of the microorganisms are uncultured, metagenomic tools are required to exploit the untapped biochemistry. However, after years of employing metagenomics for marine drug discovery, new drugs are vastly under-represented. While a plethora of natural product biosynthetic genes and clusters are reported, only a minor number of potential therapeutic compounds have resulted through functional metagenomic screening. This review explores specific obstacles that have led to the low success rate. In addition to the typical problems encountered with traditional functional metagenomic-based screens for novel biocatalysts, there are enormous limitations which are particular to drug-like metabolites. We also present how targeted and function-guided strategies, employing modern and multi-disciplinary approaches have yielded some of the most exciting discoveries attributed to uncultured marine bacteria. These discoveries set the stage for progressing the production of drug candidates from uncultured bacteria for pre-clinical and clinical

  19. Giant magnetoresistance effect in CoZr/Cu/Co spin-valve films (abstract)

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Youssef, J. [CNRS-LMIMS, 92195 Meudon-Bellevue (France)]|[LPM Universite Mohammed V, Rabat (Morocco); Koshkina, O.; Le Gall, H. [CNRS-LMIMS, 92195 Meudon-Bellevue (France); Harfaoui, M.E. [LPMC Universite Ibn Tofail Kenitra (Morocco); Bouziane, K. [CNRS-LMIMS, 92195 Meudon-Bellevue (France); Yamani, M.E. [LPM Universite Mohammed V, Rabat (Morocco); Desvignes, J.M. [CNRS-LMIMS, 92195 Meudon-Bellevue (France)

    1997-04-01

    A high sensitivity of giant magnetoresistance (GMR) has been observed recently from soft magnetic layers such as NiFe, NiFeCo, and FeCoB. Amorphous CoZr alloys present ultrasoft properties compared to NiFe. GMR has been investigated for amorphous CoZr/Cu/Co thin films grown by rf diode sputtering using a target consisting of a Co disk partially covered with a Zr foil. The influence of the argon pressure on Cu layer deposition, Cu thickness, and Zr content on magnetic and transport properties was analyzed. The highest value of transverse GMR obtained along the easy axis is 3.6{percent} and the MR curve was saturated in a magnetic field of 100 Oe at room temperature. GMR shows scaling behavior with the sample composition. Very high sensitivity, around 1{endash}2{percent}/Oe was observed in a CoZr (3 nm)/Cu (3 nm)/Co (2 nm) sandwich. This study shows a large dependence of GMR on Cu thickness and the maximum of magnetoresistance strongly depending on the Ar pressure which modifies the interface roughness. The Zr content also influences the magnetotransport properties ({Delta}R/R and {Delta}R/R{Delta}H). The difference in coercivity between soft magnetic CoZr and hard magnetic Co layers induces antiferromagnetic alignment. Therefore a high MR ratio and field sensitivity are achieved by improving the magnetic properties of the CoZr layer.{copyright} {ital 1997 American Institute of Physics.}

  20. Changing Natural History of HER2-Positive Breast Cancer Metastatic to the Brain in the Era of New Targeted Therapies.

    Science.gov (United States)

    Mounsey, Louisa A; Deal, Allison M; Keith, Kevin C; Benbow, Julia M; Shachar, Shlomit S; Zagar, Timothy; Dees, E Claire; Carey, Lisa A; Ewend, Matthew G; Anders, Carey K

    2018-02-01

    Given the wide adoption of human epidermal growth factor receptor 2 (HER2)-targeted therapies for advanced HER2-positive breast cancer, we studied the natural history of patients with HER2-positive breast cancer brain metastases (BCBM) over time. Patients with HER2-positive BCBM identified from a prospectively maintained database at the University of North Carolina were divided into 3 cohorts by year of BCBM diagnosis. Cohorts were selected by year of HER2-targeted therapy US Food and Drug Administration approval. Overall survival (OS), time to first metastasis, time to BCBM, and BCBM survival were estimated by the Kaplan-Meier method. Associations between OS after BCBM and clinical variables were assessed by Cox proportional hazards regression models. One hundred twenty-three patients were identified. Median age was 51 years, and 58% were white and 31% African American. OS from initial breast cancer diagnosis improved over time: 3.6 years (95% confidence interval [CI], 2.8-6.1) in the 1998-2007 cohort, 6.6 years (95% CI, 4.5-8.6) in the 2008-2012 cohort, and 7.6 years (95% CI, 4.4-9.6) in the 2013-2015 cohort (P = .05). While time from initial diagnosis to first metastasis did not differ (P = .12), time to BCBM increased over time (2.6 years [95% CI, 1.3-3.5] for 1998-2007; 2.6 years [95% CI, 2.1-4.3] for 2008-2012, and 3.3 years [95% CI, 2.2-6] for 2013-2015; P = .05). Although OS from BCBM did not significantly differ by cohort, patients who received HER2-targeted therapy after BCBM had a prolonged OS (2.1 years [95% CI, 1.6-2.6] vs. 0.65 years [95% CI, 0.4-1.3]; P = .001). OS from initial breast cancer diagnosis significantly improved over time for patients with HER2-positive breast cancer who develop BCBM, now exceeding 7 years; survival from BCBM diagnosis may now exceed 2 years. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Effect of Ge Content on the Formation of Ge Nanoclusters in Magnetron-Sputtered GeZrOx-Based Structures

    OpenAIRE

    Khomenkova, L.; Lehninger, D.; Kondratenko, O.; Ponomaryov, S.; Gudymenko, O.; Tsybrii, Z.; Yukhymchuk, V.; Kladko, V.; von Borany, J.; Heitmann, J.

    2017-01-01

    Ge-rich ZrO2 films, fabricated by confocal RF magnetron sputtering of pure Ge and ZrO2 targets in Ar plasma, were studied by multi-angle laser ellipsometry, Raman scattering, Auger electron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction for varied deposition conditions and annealing treatments. It was found that as-deposited films are homogeneous for all Ge contents, thermal treatment stimulated a phase separation and a formation of crystalline Ge and ZrO2. The ?...

  2. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Charu Sharma

    2015-01-01

    Full Text Available The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2 which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.

  3. Use of natural and applied tracers to guide targeted remediation efforts in an acid mine drainage system, Colorado Rockies, USA

    Science.gov (United States)

    Cowie, Rory; Williams, Mark W.; Wireman, Mike; Runkel, Robert L.

    2014-01-01

    Stream water quality in areas of the western United States continues to be degraded by acid mine drainage (AMD), a legacy of hard-rock mining. The Rico-Argentine Mine in southwestern Colorado consists of complex multiple-level mine workings connected to a drainage tunnel discharging AMD to passive treatment ponds that discharge to the Dolores River. The mine workings are excavated into the hillslope on either side of a tributary stream with workings passing directly under the stream channel. There is a need to define hydrologic connections between surface water, groundwater, and mine workings to understand the source of both water and contaminants in the drainage tunnel discharge. Source identification will allow targeted remediation strategies to be developed. To identify hydrologic connections we employed a combination of natural and applied tracers including isotopes, ionic tracers, and fluorescent dyes. Stable water isotopes (δ18O/δD) show a well-mixed hydrological system, while tritium levels in mine waters indicate a fast flow-through system with mean residence times of years not decades or longer. Addition of multiple independent tracers indicated that water is traveling through mine workings with minimal obstructions. The results from a simultaneous salt and dye tracer application demonstrated that both tracer types can be successfully used in acidic mine water conditions.

  4. The impact of weakly bound 89Zr on preclinical studies: Non-specific accumulation in solid tumors and aspergillus infection

    International Nuclear Information System (INIS)

    Severin, Gregory W.; Jørgensen, Jesper T.; Wiehr, Stefan; Rolle, Anna-Maria; Hansen, Anders E.; Maurer, Andreas; Hasenberg, Mike; Pichler, Bernd; Kjær, Andreas; Jensen, Andreas I.

    2015-01-01

    Preclinical studies involving 89 Zr often report significant bone accumulation, which is associated with dissociation of the radiometal from the tracer. However, experiments determining the uptake of unbound 89 Zr in disease models are not performed as routine controls. The purpose of the present study was to investigate the impact of free or weakly bound 89 Zr on PET quantifications in disease models, in order to determine if such control experiments are warranted. Methods: Chemical studies were carried out to find a 89 Zr compound that would solubilize the 89 Zr as a weak chelate, thus mimicking free or weakly bound 89 Zr released in circulation. 89 Zr oxalate had the desired characteristics, and was injected into mice bearing FaDu and HT29 solid tumor xenografts, and mice infected in the lungs with the mold Aspergillus fumigatus, as well as in healthy controls (naïve). PET/CT or PET/MR imaging followed to quantify the distribution of the radionuclide in the disease models. Results: 89 Zr oxalate was found to have a plasma half-life of 5.1 ± 2.3 h, accumulating mainly in the bones of all animals. Both tumor types accumulated 89 Zr on the order of 2‐4 %ID/cm 3 , which is comparable to EPR-mediated accumulation of certain species. In the aspergillosis model, the concentration of 89 Zr in lung tissue of the naïve animals was 6.0 ± 1.1 %ID/g. This was significantly different from that of the animals with advanced disease, showing 11.6 ± 1.8 %ID/g. Conclusions: Given the high levels of 89 Zr accumulation in the disease sites in the present study, we recommend control experiments mapping the biodistribution of free 89 Zr in any preclinical study employing 89 Zr where bone uptake is observed. Aqueous 89 Zr oxalate appears to be a suitable compound for such studies. This is especially relevant in studies where the tracer accumulation is based upon passive targeting, such as EPR

  5. Aqueous corrosion behaviour of Zr-1 Nb and Zr-20 Nb with different heat treatments

    International Nuclear Information System (INIS)

    Jaime Solis, F.; Bordoni, Roberto; Olmedo, Ana M.; Villegas, Marina; Miyagusuku, Marcela

    2003-01-01

    The corrosion behaviour of Zr-1 Nb and Zr-20 Nb coupons annealed at 850 C degrees during 1 hour and afterwards aged at different temperatures and time periods was studied. The Zr-1 Nb samples were aged at 400 and 500 C degrees and the Zr-20 Nb samples at 265 and 550 C degrees. The results have shown that ageing increases the corrosion resistance because the aged microstructure is somewhat closer to the equilibrium one. This was not the case of Zr-1 Nb aged 72 hs at 400 C degrees. The presence of the ω-phase does not have a deleterious effect in the corrosion behaviour of Zr-20 Nb. Also, an ageing of 2200 h at 265 C degrees induced a relevant decrease in the corrosion rate of Zr-20 Nb indicating a decomposition of the β- Zr phase. This effect was observed at the inlet of pressure tubes in CANDU reactors. The results obtained will be used to establish the relative importance of the α-Zr and β-Zr phases in the corrosion behaviour of pressure tubes. (author)

  6. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    International Nuclear Information System (INIS)

    Witusiewicz, V.T.; Sommer, F.

    2000-01-01

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni 26 Zr 74 . In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys

  7. Phase equilibria in the Zr-Si-B ternary system (Zr-Si-ZrB{sub 2} region) at 1 173 K

    Energy Technology Data Exchange (ETDEWEB)

    Han, Feng; Luo, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Lab. of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Lab. of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-10-15

    The isothermal section of the Zr-Si-B ternary system (Zr-Si-ZrB{sub 2} region) at 1 173 K has been experimentally determined. All equilibrated alloys were characterized via X-ray powder diffraction and scanning electron microscopy equipped with energy-dispersive X-ray analysis. A ternary phase Zr{sub 5}(Si{sub 0.86}B{sub 0.14}){sub 3} was found at 1 173 K. The experimental results show that the isothermal section consists of 11 single-phase regions, 26 two-phase regions and 13 three-phase regions. The existence of eight compounds, i.e. ZrSi{sub 2}, ZrSi, Zr{sub 5}Si{sub 4}, Zr{sub 3}Si{sub 2}, Zr{sub 2}Si, ZrB, ZrB{sub 2} and Zr{sub 5}(Si{sub 0.86}B{sub 0.14}){sub 3} in this system has been confirmed in the Zr-Si-ZrB{sub 2} region at 1 173 K.

  8. Determination of 93Zr in nuclear power plant wastes

    DEFF Research Database (Denmark)

    Osváth, Szabolcs; Vajda, Nora; Molnar, Zsuzsa

    2017-01-01

    A radioanalytical method (based on separation using UTEVA columns and ICP-MS measurement) has been used for determination of 93Zr in 37 nuclear power plant samples. As 93Nb might affect the detection of 93Zr, Monte Carlo activation model was used to calculate the expected 93Zr/natZr mass ratio...

  9. Electrodeposition and characterization of Ni–W/ZrO2 ...

    Indian Academy of Sciences (India)

    Ni–W/ZrO2 nanocomposite coatings were prepared by electrodeposition in Ni–W plating bath containing ZrO2 nanoparticles. The influences of preparation parameter, such as ZrO2 nanoparticles concentration, current density and stirring rate, on weight percentage of codeposited ZrO2 nanoparticles in the nanocomposite ...

  10. Interdiffusion and reaction between U and Zr

    Science.gov (United States)

    Park, Y.; Newell, R.; Mehta, A.; Keiser, D. D.; Sohn, Y. H.

    2018-04-01

    The microstructural development and diffusion kinetics were examined for the binary U vs. Zr system using solid-to-solid diffusion couples, U vs. Zr, annealed at 580 °C for 960 h, 650 °C for 480 h, 680 °C for 240 h, and 710 °C for 96 h. Scanning and transmission electron microscopies with X-ray energy dispersive spectroscopy were employed for detailed microstructural and compositional analyses. Interdiffusion and reaction in U vs. Zr diffusion couples primarily produced: δ-UZr2 solid solution (hP3) and α‧-U at 580 °C; and (γU,βZr) solid solution (cI2) and α‧-U at 650°, 680° and 710 °C. The α‧-phase was confirmed as a reduced variant of the α-U orthorhombic structure with lattice parameters, a × b × c = 2.65 × 5.40 × 4.75 (Å) with a negligible solubility for Zr at room temperature. Concentration profiles were examined to determine interdiffusion coefficients, integrated interdiffusion coefficients, and intrinsic diffusion coefficients using Boltzmann-Matano, Wagner, and Heumann analyses, respectively. Composition-dependence of interdiffusion coefficients were documented for α-U, δ-UZr2 (at 580 °C) and (γU,βZr) solid solution (at 650°, 680° and 710 °C). U was determined to intrinsically diffuse faster than Zr, approximately by an order of magnitude, in the δ-UZr2 at 580 °C, and (γU,βZr) phases at 650°, 680° and 710 °C. Based on Darken's approach, thermodynamic data available in literature were coupled to estimate the tracer diffusion coefficients and atomic mobilities of U and Zr.

  11. Multiple superdeformed bands in Sr, Y, and Zr nuclei

    International Nuclear Information System (INIS)

    Reviol, W.; Sarantites, D.G.; Lerma, F.; Devlin, M.; LaFosse, D.R.; Chiara, C.J.; Wyss, R.; Baktash, C.; Jin, H.-Q.; Tabor, S.L.; Soltysik, D.; Clark, R.M.; Lee, I.Y.; Macchiavelli, A.O.; MacLeod, R.W.

    2003-01-01

    Multiple superdeformed bands in the nuclei 80-83Sr, 82-84Y, and 83,84Zr have been studied in a backed-target experiment using the Gammasphere and Microball detector arrays. For 15 bands in these nuclei, average transition quadrupole moments (Qt) have been measured accurately. Among those are two pairs of 'isospectral' bands and the Qt values obtained in each case are nearly identical. The measured Qt values and dynamical moments of inertia place stringent conditions on configuration assignments for the bands obtained from mean field calculations

  12. Targeted and non-targeted boron complex formation followed by electrospray Fourier transform ion cyclotron mass spectrometry: a novel approach for identifying boron esters with natural organic matter.

    Science.gov (United States)

    Gaspar, Andras; Lucio, Marianna; Harir, Mourad; Schmitt-Kopplin, Philippe

    2011-01-01

    The formation of boron esters was investigated in peat-soluble humified materials with a detailed molecular-level description of boron-organic interactions. Thousands of individually baseline separated signals were obtained from the analysis of natural organic matter of peat samples, using Fourier transform ion cyclotron resonance mass spectrometry. This technique offers unsurpassed isotope-specific mass resolution that can lead to precise molecular formula assignments by means of mathematical data analysis and visualisation techniques, such as mass defect (Kendrick) or elemental ratio (van Krevelen) plots. The analysis of potential boron binding structures within the sample of natural organic matter was described based on prior results. Herein, we describe an algorithm that can be used to effectively distinguish and filter complexes through data obtained from boron-enriched systems with highly intricate mass spectra, such as natural organic matter.

  13. Synthetic of Zr2Al3C5 material

    International Nuclear Information System (INIS)

    Leela-Adisorn, U.; Yamaguchi, A.

    2005-01-01

    Synthesis method of Zr 2 Al 3 C 5 via solid state reaction between Al, ZrC and carbon powder was studied. Al-ZrC-C compact with equivalent mol ratio of Zr 2 Al 3 C 5 was heated up to 1600 C in Ar atmosphere for 1 h and 4 h but ZrC phase still existed as major phase with very small amount of Zr 2 Al 3 C 5 . Because ZrC started to oxidize at low temperature under very low oxygen partial pressure, the same mol ratio of Al-ZrC-C compact was heated at 1600 C in vacuum for 1 h as parallel test. After firing in vacuum, some carbon still exist with small amount of AlZrC 2 occurred with Zr 2 Al 3 C 5 as a main phase, but no ZrC was found. Different result from firing in Ar atmosphere and in vacuum had been discussed here. It was believed that very small amount of impurities in Ar had some effect on the formation of Al-Zr-C compound. The effect of very small amount of impurities in Ar was studied by thermal analysis (DTA/TG) and XRD. It was found that very small amount of impurities in Ar has effect on the reaction between Al, ZrC and carbon by diffusion through the surface and form Zr-C-O-N solid solution. This solid solution cannot differentiate from ZrC by XRD. With help of thermal analysis method (DTA/TG), Zr-C-O-N solid solution can be differentiated from ZrC. Therefore, synthesis of Al-Zr-C compound should be done in vacuum. Zr 2 Al 3 C 5 can be prepared from mixture of Al-ZrC-C with excess amount of Al at 1600 C for 1 h. (orig.)

  14. Pb(Zr,TiO3 (PZT Thin Film Sensors for Fully-Integrated, Passive Telemetric Transponders

    Directory of Open Access Journals (Sweden)

    Richard X. FU

    2011-04-01

    Full Text Available The great potential of taking advantages of PZT in a single chip to achieve inexpensive, fully-integrated, passive telemetric transponders has been shown in this paper. The processes for the sputter deposition of Pb(Zr,TiO3 (PZT thin films from two different composite targets on both Si and c-plane sapphire substrates have been demonstrated. PZT thin films have been deposited by sputter technique. PZT films were deposited onto substrates (Si [(100 Cz wafer] and c-plane sapphire (0001//Ti//Pt followed by sputter-deposited Pt top electrodes. X-ray diffraction results showed that both sputtered PZT films were textured along the [110] direction. The degree of preference for the [110] direction was greater on sapphire substrate where the intensity of that peak is seen to be larger compared to the intensity one Si substrate. TEM data revealed that both sputtered PZT films were polycrystalline in nature. Selected area diffraction (SAD pattern showed that the degree of disorientation between the crystallites was smaller on sapphire substrate compared to on Si substrate, which confirmed the results from the XRD. The remnant polarization Pr on sapphire substrate was larger than on Si’s. The leakage current for the 11 % Pb target sputtered film was much less than 22 % Pb target sputtered film. The breakdown voltage on sapphire substrate was the best. However, for the 11 % Pb target sputtered film’s breakdown voltage was much higher than 22 % Pb target sputtered film.

  15. Antibacterial activity and cell compatibility of TiZrN, TiZrCN, and TiZr-amorphous carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Heng-Li [School of Dentistry, China Medical University, Taichung 404, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@nfu.edu.tw [Department of Mechanical and Computer-aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Liu, Jia-Xu [Department of Mechanical and Computer-aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Tsai, Ming-Tzu [Department of Biomedical Engineering, Hungkuang University, Taichung 433, Taiwan (China); Lai, Chih-Ho [Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan (China)

    2015-12-01

    A cathodic-arc evaporation system with plasma-enhanced duct equipment was used to deposit TiZrN, TiZrCN, and TiZr/a-C coatings. Reactive gases (N{sub 2} and C{sub 2}H{sub 2}) activated by the Ti and Zr plasma in the evaporation process was used to deposit the TiZrCN and TiZr/a-C coatings with different C and nitrogen contents. The crystalline structures and bonding states of coatings were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. The microbial activity of the coatings was evaluated against Staphylococcus aureus (Gram-positive bacteria) and Actinobacillus actinomycetemcomitans (Gram-negative bacteria) by in vitro antibacterial analysis using a fluorescence staining method employing SYTO9 and a bacterial-viability test on an agar plate. The cell compatibility and morphology related to CCD-966SK cell-line human skin fibroblast cells on the coated samples were also determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, reverse-transcriptase-polymerase chain reaction, and scanning electron microscopy. The results suggest that the TiZrCN coatings not only possess better antibacterial performance than TiZrN and TiZr/a-C coatings but also maintain good compatibility with human skin fibroblast cells. - Highlights: • TiZrN, TiZrCN, and TiZr/a-C coatings were deposited using cathodic arc evaporation. • The TiZrCN showed a composite structure containing TiN, ZrN, and a-C. • The TiZrCN-coated Ti showed the least hydrophobicity among the samples. • The TiZrCN-coated Ti showed good human skin fibroblast cell viability. • The TiZrCN-coated Ti exhibited good antibacterial performance.

  16. Application of Combination High-Throughput Phenotypic Screening and Target Identification Methods for the Discovery of Natural Product-Based Combination Drugs.

    Science.gov (United States)

    Isgut, Monica; Rao, Mukkavilli; Yang, Chunhua; Subrahmanyam, Vangala; Rida, Padmashree C G; Aneja, Ritu

    2018-03-01

    Modern drug discovery efforts have had mediocre success rates with increasing developmental costs, and this has encouraged pharmaceutical scientists to seek innovative approaches. Recently with the rise of the fields of systems biology and metabolomics, network pharmacology (NP) has begun to emerge as a new paradigm in drug discovery, with a focus on multiple targets and drug combinations for treating disease. Studies on the benefits of drug combinations lay the groundwork for a renewed focus on natural products in drug discovery. Natural products consist of a multitude of constituents that can act on a variety of targets in the body to induce pharmacodynamic responses that may together culminate in an additive or synergistic therapeutic effect. Although natural products cannot be patented, they can be used as starting points in the discovery of potent combination therapeutics. The optimal mix of bioactive ingredients in natural products can be determined via phenotypic screening. The targets and molecular mechanisms of action of these active ingredients can then be determined using chemical proteomics, and by implementing a reverse pharmacokinetics approach. This review article provides evidence supporting the potential benefits of natural product-based combination drugs, and summarizes drug discovery methods that can be applied to this class of drugs. © 2017 Wiley Periodicals, Inc.

  17. Creep behavior of Zr-Nb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Yong Chan; Kim, Young Suk; Cheong, Yong Mu; Kwon, Sang Chul; Kim, Sung Soo; Choo, Ki Nam [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    The creep characteristics of Zirconium alloy is affected by several parameters. Out-reactor creep increases both with an increasing amount of Nb, Sn and S contained in alpha-Zr and decreases with the increasing volume of alpha-Zr. Especially, the creep of Zr-2.5Nb alloy depends on the solubility of Nb in alpha-Zr, which is associated with the decomposition of beta-Zr. Since Zr of the hcp structure is strongly anisotropic, it shows the characteristics of texture and results in the anisotropy of creep. Due to the circumferential texture of Zr-2.5%Nb alloy (CANDU Pressure tube), the longitudinal slip is easier than the circumferential one, resulting in the high creep rate. The irradiation creep also increases with increasing neutron fluence. The neutron irradiation increases the strength of the zirconium alloys but decreases their creep strength. In contrast to the out-reactor creep, the irradiation creep is little sensitive to temperature, resulting in the lower activation energy. The most important factor to affect the in-reactor and out-reactor creep of niobium containing alloys seems to be the solution hardening by Nb or Sn which is soluble in alpha-zirconium and the texture as well. Irradiation growth is the mechanism which is caused only by the irradiation. It becomes saturated at lower fluence than the critical fluence but beyond it, shows the break-away growth. The onset of accelerated irradiation growth corresponds with the c-dislocation loop formation, though its mechanism needs better understanding. Generally, the irradiation growth of Zr-Nb alloys increases with an increase in fluence, cold working, dislocation, density and temperature, and with a decrease in the grain size. 141 refs., 59 figs., 10 tabs. (Author)

  18. Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy

    International Nuclear Information System (INIS)

    Sha, G.; Cerezo, A.

    2004-01-01

    Full text: For high strength 7xxx series Al alloys, Zr is an important trace alloy element which is often added to optimise properties, having effects such as refining grain size, inhibiting recrystallization, and improving stress corrosion cracking resistance and quench sensitivity. In addition, it has been reported recently that Zr addition also has a significant influence on early stage ageing behaviour of a 7xxx series Al alloy. Zr equilibrium solubility in solid Al is extremely low. After solution or ageing treatment, most Zr is present as small spherical Ai 3 Zr dispersoids approximately 20 nm in diameter, distributed at grain boundaries as well as within the Al matrix. The crystallographic nature of intermetallic phase Al 3 Zr has been well studied in the literatures. So far, no direct measurement of the chemistry of the Al 3 Zr particles in 7xxx series Al alloys has been published. It is unclear if there is significant Zn, Mg or Cu included in the particles. In this research, 3DAP has been employed for the first time to investigate ionisation behaviour of Al 3 Zr particles and determine the chemistry of the particles in 7050 Al alloy. Using field ion microscopy, the local evaporation radius of the Al 3 Zr particle has been measured to be equivalent to 36 nm for a 10 kV tip, less than the equivalent tip radius for the Al matrix of ∼68 nm. Using the matrix Al evaporation field (19 V/nm) as a reference, this allows the evaporation field of Al 3 Zr to be calculated as 35 V/nm, the same as the field calculated for evaporation of Al as Al 2+ (35 V/nm), and that of Zr as Zr 3+ (35 V/nm). This result is consistent with Al 2+ and Zr 3+ being the main species observed in the mass spectrum during analysis of Al 3 Zr particles. Using 3DAP, the chemical compositions of Al 3 Zr particles are determined to be 64.8∼67.7 at% Al, 23.6∼24.8 at% Zr, 6.9∼9.1 at% Zn, 0.4∼0.7 at% Cu, 0.5∼1.2 at% Mg, with a (Al+Zn)/Zr ratio close to 3. Choice of specimen temperature of

  19. Targeting druggable enzymome by exploiting natural medicines: An in silico-in vitro integrated approach to combating multidrug resistance in bacterial infection.

    Science.gov (United States)

    Zang, Ping; Gong, Aijie; Zhang, Peirong; Yu, Jinling

    2016-01-01

    Antibiotic resistance is a major clinical and public health problem. Development of new therapeutic approaches to prevent bacterial multidrug resistance during antimicrobial chemotherapy has thus been becoming a primary consideration in the medicinal chemistry community. We described a new strategy that combats multidrug resistance by using natural medicines to target the druggable enzymome (i.e., enzymatic proteome) of Staphylococcus aureus. A pipeline of integrating in silico analysis and in vitro assay was purposed to identify antibacterial agents from a large library of natural products with diverse structures, high drug-likeness, and relatively low flexibility, with which a systematic interactome of 826 natural product candidates with 125 functionally essential S. aureus enzymes was constructed via a high-throughput cross-docking approach. The obtained docking score matrix was then converted into an array of synthetic scores; each corresponds to a natural product candidate. By systematically examining the docking results, a number of highly promising candidates with potent antibacterial activity were suggested. Three natural products, i.e., radicicol, jorumycin, and amygdalin, have been determined to possess strong broad-spectrum potency combating both the drug-resistant and drug-sensitive strains (MIC value <10 μg/ml). In addition, some natural products such as tetrandrine, bilobalide, and arbutin exhibited selective inhibition on different strains. Combined quantum mechanics/molecular mechanics analysis revealed diverse non-bonded interactions across the complex interfaces of newly identified antibacterial agents with their putative targets GyrB ATPase and tyrosyl-tRNA synthetase.

  20. Zr N and Zr O{sub 2} production by zirconium carbon nitridation (Zr Si O{sub 4}); Obtencion de Zr N y Zr O{sub 2} por carbonitruration de circon (Zr Si O{sub 4})

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoni, A.D.; Aglietti, E.F. [Centro de Tecnologia de Recursos Minerales y Ceramica, Buenos Aires (Argentina)

    1997-12-31

    Structural ceramics based on nitrides, oxynitrides like, Zr N-Si{sub 3} N{sub 4} and Zr O{sub 2} Si{sub 2} O N{sub 2} have good thermal and mechanical properties, with curves in technological applications. Many obtention methods are propose, but carbonitriding reactions (carbon reduction and simultaneous nitriding) of zircon (Zr O{sub 2} Si O{sub 2}) may be interest because a low cost raw material is used. In this work the carbonitriding of zircon and the principal reaction conditions: carbon quantity, N{sub 2} flow, temperature and reaction time are studied. The phases formed were followed using XRD and the weight loss of the samples. The final products were: Zr N with low content of Si C and/or Si{sub 3} N{sub 4} or the monoclinic form of Zr O{sub 2}. The products be obtained can be predicted according to the reaction conditions employed. During the reaction Si O{sub (}g{sub )} loss is observed and silica can be completely eliminated if reaction conditions are adjusted. (author) 4 refs., 2 figs.

  1. Targeted drug delivery into reversibly injured myocardium with silica nanoparticles: surface functionalization,  natural biodistribution, and acute toxicity

    Directory of Open Access Journals (Sweden)

    Michael M Galagudza

    2010-03-01

    Full Text Available Michael M Galagudza1, Dmitry V Korolev1, Dmitry L Sonin1, Viktor N Postnov2, Garry V Papayan3, Ivan S Uskov1, Anastasia V Belozertseva1, Eugene V Shlyakhto11Institute of Experimental Medicine, VA. Almazov Federal Heart, Blood and Endocrinology Center, St-Petersburg, Russian Federation; 2Chemical Faculty, St-Petersburg State University, St-Petersburg, Russian Federation;  3Department of Pathophysiology, IP. Pavlov State Medical University, St-Petersburg, Russian FederationAbstract: The clinical outcome of patients with ischemic heart disease can be significantly improved with the implementation of targeted drug delivery into the ischemic myocardium. In this paper, we present our original findings relevant to the problem of therapeutic heart targeting with use of nanoparticles. Experimental approaches included fabrication of carbon and silica nanoparticles, their characterization and surface modification. The acute hemodynamic effects of nanoparticle formulation as well as nanoparticle biodistribution were studied in male Wistar rats. Carbon and silica nanoparticles are non-toxic materials that can be used as carriers for heart-targeted drug delivery. Concepts of passive and active targeting can be applied to the development of targeted drug delivery to the ischemic myocardial cells. Provided that ischemic heart-targeted drug delivery can be proved to be safe and efficient, the results of this research may contribute to the development of new technologies in the pharmaceutical industry.Keywords: nanocarriers, targeted drug delivery, myocardial ischemia

  2. The plasticity of highly oriented nano-layered Zr/Nb composites

    International Nuclear Information System (INIS)

    Ardeljan, Milan; Savage, Daniel J.; Kumar, Anil; Beyerlein, Irene J.; Knezevic, Marko

    2016-01-01

    In prior work, bulk lamellar composites of pure zirconium and niobium (Zr/Nb) were manufactured by accumulative roll bonding (ARB). After the substantial amounts of straining required to refine the layers to nanoscale dimensions, formation of highly oriented Zr crystals was observed. In this work, we employ a spatially resolved multiscale crystal plasticity based model in 3D to study the orientational stability of Zr single crystals and Zr/Nb bicrystals during rolling deformation. The analysis reveals that predominant texture components arise due to substantially reduced ratios of slip resistances among the prismatic, pyramidal I , and basal slip systems. In support, density functional theory (DFT) calculations of generalized stacking fault energy curves on these three slip systems suggest that the ratio of critical stresses to form these dislocations are within 2.5 times. This finding of reduced anisotropy in Zr at the nanoscale can provide insight into the design of nano-structuring processes for target textures, such as those containing highly oriented grains.

  3. A Novel, Multi-Target Natural Drug Candidate, Matrine, Improves Cognitive Deficits in Alzheimer's Disease Transgenic Mice by Inhibiting Aβ Aggregation and Blocking the RAGE/Aβ Axis.

    Science.gov (United States)

    Cui, Lili; Cai, Yujie; Cheng, Wanwen; Liu, Gen; Zhao, Jianghao; Cao, Hao; Tao, Hua; Wang, Yan; Yin, Mingkang; Liu, Tingting; Liu, Yu; Huang, Pengru; Liu, Zhou; Li, Keshen; Zhao, Bin

    2017-04-01

    The treatment of AD is a topic that has puzzled researchers for many years. Current mainstream theories still consider Aβ to be the most important target for the cure of AD. In this study, we attempted to explore multiple targets for AD treatments with the aim of identifying a qualified compound that could both inhibit the aggregation of Aβ and block the RAGE/Aβ axis. We believed that a compound that targets both Aβ and RAGE may be a feasible strategy for AD treatment. A novel and small natural compound, Matrine (Mat), was identified by high-throughput screening of the main components of traditional Chinese herbs used to treat dementia. Various experimental techniques were used to evaluate the effect of Mat on these two targets both in vitro and in AD mouse model. Mat could inhibit Aβ42-induced cytotoxicity and suppress the Aβ/RAGE signaling pathway in vitro. Additionally, the results of in vivo evaluations of the effects of Mat on the two targets were consistent with the results of our in vitro studies. Furthermore, Mat reduced proinflammatory cytokines and Aβ deposition and attenuated the memory deficits of AD transgenic mice. We believe that this novel, multi-target strategy to inhibit both Aβ and RAGE, is worthy of further exploration. Therefore, our future studies will focus on identifying even more effective multi-target compounds for the treatment of AD based on the molecular structure of Mat.

  4. Morphology evolution of ZrB2 nanoparticles synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Zhang Yun; Li Ruixing; Jiang Yanshan; Zhao Bin; Duan Huiping; Li Junping; Feng Zhihai

    2011-01-01

    Zirconium diboride (ZrB 2 ) nanoparticles were synthesized by sol-gel method using zirconium n-propoxide (Zr(OPr) 4 ), boric acid (H 3 BO 3 ), sucrose (C 12 H 22 O 11 ), and acetic acid (AcOH). Clearly, it was a non-aqueous solution system at the very beginning of the reactions. Here, AcOH was used as both chemical modifier and solvent to control Zr(OPr) 4 hydrolysis. Actually, AcOH could dominate the hydrolysis by self-produced water of the chemical propulsion, rather than the help of outer water. C 12 H 22 O 11 was selected, since it can be completely decomposed to carbon. Thus, carbon might be accounted precisely for the carbothermal reduction reaction. Furthermore, we investigated the influence of the gelation temperature on the morphology of ZrB 2 particles. Increasing the gelation temperature, the particle shapes changed from sphere-like particles at 65 deg. C to a particle chain at 75 deg. C, and then form rod-like particles at 85 deg. C. An in-depth HRTEM observation revealed that the nanoparticles of ZrB 2 were gradually fused together to evolve into a particle chain, finally into a rod-like shape. These crystalline nature of ZrB 2 related to the gelation temperature obeyed the 'oriented attachment mechanism' of crystallography. - Graphical Abstract: Increasing the gelation temperature, the particle shapes changed from sphere-like particles at 65 deg. C to a particle chain at 75 deg. C, and then form rod-like particles at 85 deg. C. Highlights: → ZrB 2 nanoparticles were synthesized by sol-gel method in an non-aqueous solution system. → AcOH was used as both chemical modifier and solvent to control Zr(OPr) 4 hydrolysis. → C 12 H 22 O 11 was selected since it can be completely decomposed to carbon. → Increasing the gelation temperature, the particles changed from sphere-like to rod-like ones. → Crystalline nature of ZrB 2 obeyed the 'oriented attachment mechanism' of crystallography.

  5. Nanostructured multilayers of TiN/ZrN obtained by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo A., J.C. [CDT ASTIN, SENA Regional Valle, Cali (Colombia); Grupo de Peliculas Delgadas, Universidad del Valle (Colombia); Centro de Excelencia en Nuevos Materiales, CENM, Universidad del Valle (Colombia); Bejarano G., G. [CDT ASTIN, SENA Regional Valle, Cali (Colombia); Group of Corrosion and Protection, Antioquia University, Medellin (Colombia); Gomez, M.E. [Grupo de Peliculas Delgadas, Universidad del Valle (Colombia); Centro de Excelencia en Nuevos Materiales, CENM, Universidad del Valle (Colombia); Prieto, P. [Centro de Excelencia en Nuevos Materiales, CENM, Universidad del Valle (Colombia); Cortez, C.; Munoz, J. [Centro de Investigacion y Estudios Avanzados del CINVESTAV-IPN, Queretaro (Mexico)

    2007-07-01

    In order to find an industrial application for thin films of TiN and ZrN monolayers, as well as TiN/ZrN multilayers were deposited onto silicon (100) and AISI 5160 steel substrates by r.f. (13.56 MHz) multi-target magnetron sputtering from high-purity (99.5%) Ti and (99.5%) Zr targets in an Ar (93%)/N{sub 2} (7%) gas mixture. For their deposition, we applied a substrate bias voltage of -100 V and a target power of 350 W. The films were deposited at a pressure of 6x10{sup -3} mbar and a temperature of 250 C. The structure, composition, morphology, and topography were characterized by, XRD, FTIR, SEM, AFM, and optical microscopy. Mechanical properties like hardness and elastic modulus were determined by Nanoindentation. Hardness and elastic modulus of the films increased proportionally to the number of bilayers. Finally, cutting tools were coated with 1, 2, 3, 4, 5, 6, 7, and 8 bilayers of TiN/ZrN. Cutting tests on paper blades were conducted. Increased cut quality performance was observed for cutting tools coated with 8 bilayers, as compared to uncoated tools. This work opens the possibility to use coated AISI 5160 as cutting tools for the paper industry, reducing the import of expensive high-quality tool steel. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Nanostructured multilayers of TiN/ZrN obtained by magnetron sputtering

    International Nuclear Information System (INIS)

    Caicedo A, J.C.; Bejarano G, G.; Gomez, M.E.; Prieto, P.; Cortez, C.; Munoz, J.

    2007-01-01

    In order to find an industrial application for thin films of TiN and ZrN monolayers, as well as TiN/ZrN multilayers were deposited onto silicon (100) and AISI 5160 steel substrates by r.f. (13.56 MHz) multi-target magnetron sputtering from high-purity (99.5%) Ti and (99.5%) Zr targets in an Ar (93%)/N 2 (7%) gas mixture. For their deposition, we applied a substrate bias voltage of -100 V and a target power of 350 W. The films were deposited at a pressure of 6x10 -3 mbar and a temperature of 250 C. The structure, composition, morphology, and topography were characterized by, XRD, FTIR, SEM, AFM, and optical microscopy. Mechanical properties like hardness and elastic modulus were determined by Nanoindentation. Hardness and elastic modulus of the films increased proportionally to the number of bilayers. Finally, cutting tools were coated with 1, 2, 3, 4, 5, 6, 7, and 8 bilayers of TiN/ZrN. Cutting tests on paper blades were conducted. Increased cut quality performance was observed for cutting tools coated with 8 bilayers, as compared to uncoated tools. This work opens the possibility to use coated AISI 5160 as cutting tools for the paper industry, reducing the import of expensive high-quality tool steel. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. {sup 89}Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    England, Christopher G.; Ehlerding, Emily B.; Ellison, Paul A.; Hernandez, Reinier; Barnhart, Todd E. [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Jiang, Dawei [Health Science Center, Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangzhou (China); University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Rekoske, Brian T. [University of Wisconsin - Madison, Department of Medicine, Madison, WI (United States); McNeel, Douglas G. [University of Wisconsin - Madison, Department of Medicine, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); Huang, Peng [Health Science Center, Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangzhou (China); Cai, Weibo [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States)

    2018-01-15

    Nivolumab is a human monoclonal antibody specific for programmed cell death-1 (PD-1), a negative regulator of T-cell activation and response. Acting as an immune checkpoint inhibitor, nivolumab binds to PD-1 expressed on the surface of many immune cells and prevents ligation by its natural ligands. Nivolumab is only effective in a subset of patients, and there is limited evidence supporting its use for diagnostic, monitoring, or stratification purposes. {sup 89}Zr-Df-nivolumab was synthesized to map the biodistribution of PD-1-expressing tumor infiltrating T-cells in vivo using a humanized murine model of lung cancer. The tracer was developed by radiolabeling the antibody with the positron emitter zirconium-89 ({sup 89}Zr). Imaging results were validated by ex vivo biodistribution studies, and PD-1 expression was validated by immunohistochemistry. Data obtained from PET imaging were used to determine human dosimetry estimations. The tracer showed elevated binding to stimulated PD-1 expressing T-cells in vitro and in vivo. PET imaging of {sup 89}Zr-Df-nivolumab allowed for clear delineation of subcutaneous tumors through targeting of localized activated T-cells expressing PD-1 in the tumors and salivary glands of humanized A549 tumor-bearing mice. In addition to tumor uptake, salivary and lacrimal gland infiltration of T-cells was noticeably visible and confirmed via histological analysis. These data support our claim that PD-1-targeted agents allow for tumor imaging in vivo, which may assist in the design and development of new immunotherapies. In the future, noninvasive imaging of immunotherapy biomarkers may assist in disease diagnostics, disease monitoring, and patient stratification. (orig.)

  8. First-principles appraisal of solute ultra-fast diffusion in hcp Zr and Ti

    Energy Technology Data Exchange (ETDEWEB)

    Pasianot, R.C., E-mail: pasianot@cnea.gov.ar [Gerencia Materiales, CAC, CNEA, Avda. Gral. Paz 1499, 1650 San Martín (Argentina); CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); Instituto Sabato, UNSAM/CNEA, Avda. Gral. Paz 1499, 1650 San Martín (Argentina); Pérez, R.A. [Gerencia Materiales, CAC, CNEA, Avda. Gral. Paz 1499, 1650 San Martín (Argentina); CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); Instituto Sabato, UNSAM/CNEA, Avda. Gral. Paz 1499, 1650 San Martín (Argentina)

    2013-03-15

    We revisit the ultra-fast diffusion characteristics of Fe, Co, Ni, and Cu solutes, in the hcp hosts Ti and Zr, by using Density Functional Theory. The energetics of several point defect configurations, deemed relevant for solute diffusion, is evaluated. The results support the long standing beliefs that the diffusing species is interstitial in nature, and that some kind of complexing is involved at low temperatures. Though quantitative agreement with experiment is difficult to assess, we show that a rather simple dissociative model is able to rationalize the observed trends, in particular, why the Arrhenius graphs are straight for Ti whereas, generally, they are curved downwards for Zr.

  9. Thermoactivation processes in PbI2:Zr and PbI2 crystals

    International Nuclear Information System (INIS)

    Panasyuk, M.R.; Kapustyanik, V.B.; Tsibul's'kij, V.S.; Dubov, Yu.G.; Pasternak, R.M.

    2007-01-01

    The X-ray luminescence, thermal emission and thermally stimulated depolarisation spectra as well as the influence of IR-illumination on the thermal emission and thermally stimulated depolarisation spectra of the PbI 2 :Zr and PbI 2 crystals have been studied. There were found the hole traps in the PbI 2 :Zr crystals that are absent in PbI 2 . For the observed traps the activation energy has been calculated. The mechanisms describing the traps' nature and that of thermally stimulated depolarisation currents have been proposed

  10. Thermodynamic signature of Dirac electrons across a possible topological transition in ZrTe5

    Science.gov (United States)

    Nair, Nityan L.; Dumitrescu, Philipp T.; Channa, Sanyum; Griffin, Sinéad M.; Neaton, Jeffrey B.; Potter, Andrew C.; Analytis, James G.

    2018-01-01

    We combine transport, magnetization, and torque magnetometry measurements to investigate the electronic structure of ZrTe5, a system that is thought to be near a topological phase transition. At fields beyond the quantum limit, we observe a magnetization reversal from paramagnetic to diamagnetic response, which is characteristic of a Dirac semimetal. However, on increasing temperature across a corresponding transport anomaly, all signatures of this Dirac-like nature are completely suppressed, providing the first thermodynamic evidence of a possible topological phase transition in this compound. ZrTe5 may thus provide a rare, experimentally accessible example in which such phase transitions can be studied directly.

  11. Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr 65 ...

    Indian Academy of Sciences (India)

    The oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 has been studied in air environment at various temperatures in the temperature range 591–684 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy in the amorphous phase obeys the parabolic rate law for oxidation ...

  12. Promoting effect of vanadium on catalytic activity of Pt/Ce-Zr-O diesel oxidation catalysts.

    Science.gov (United States)

    Huang, Haifeng; Jiang, Bo; Gu, Lei; Qi, Zhonghua; Lu, Hanfeng

    2015-07-01

    A series of Pt-V/Ce-Zr-O diesel oxidation catalysts was prepared using the impregnation method. The catalytic activity and sulfur resistance of Pt-V/Ce-Zr-O were investigated in the presence of simulated diesel exhaust. The effect of vanadium on the structure and redox properties of the catalysts was also investigated using the Brunauer-Emmett-Teller method, X-ray diffraction, H2 temperature-programmed reduction, CO temperature-programmed desorption, X-ray photoelectron spectroscopy, and Energy Dispersive Spectroscopy. Results showed that the Pt particles were well dispersed on the Ce-Zr-O carrier through the vanadium isolation effect, which significantly improved the oxidation activity toward CO and hydrocarbons. An electron-withdrawing phenomenon occurred from V to Pt, resulting in an increase in the metallic nature of platinum, which was beneficial to hydrocarbon molecular activation. Copyright © 2015. Published by Elsevier B.V.

  13. ZrTiO4 nanowire growth using membrane-assisted Pechini route

    Directory of Open Access Journals (Sweden)

    P. R. de Lucena

    2014-11-01

    Full Text Available The high surface-to-volume ratio of nanowires makes them natural competitors as new device components. In this regard, a current major challenge is to produce quasi-one-dimensional nanostructures composed of well established oxide-based materials. This article reports the synthesis of ZrTiO4 nanowires on a silicon (100 wafer in a single-step deposition/thermal treatment. The template-directed membrane synthesis strategy was associated with the Pechini route and spin-coating deposition technique. ZrTiO4 nanowires were obtained at 700 ˚C with diameters in the range of 80-100 nm. FEG- SEM images were obtained to investigate ZrTiO4 nanowire formation on the silicon surface and energy dispersive x-ray detection (EDS and x-ray diffraction (XRD analyses were performed to confirm the oxide composition and structure.

  14. Direct observation of covalency between O and disordered Pb in cubic PbZrO sub 3

    CERN Document Server

    Aoyagi, S; Sawada, A; Tanaka, H; Harada, J; Nishibori, E; Takata, M; Sakata, M

    2002-01-01

    In cubic PbZrO sub 3 , which undergoes an antiferroelectric phase transition, the distinct disorder of Pb at twelve sites toward the neighboring O is detected for the first time by analyzing high-energy X-ray powder diffraction data. In the charge density distributions, the covalent nature of the Pb-O bond is also revealed, which proves the existence of electron hybridization between O and disordered Pb in cubic PbZrO sub 3. None of these structural characteristics of PbZrO sub 3 were found in the previously studied cubic PbTiO sub 3 structure [Y. Kuroiwa et al.: Phys. Rev. Lett. 87 (2001) 217601], which undergoes a ferroelectric phase transition. This may be a clue to understanding why PbTiO sub 3 and PbZrO sub 3 respectively show ferroelectric and antiferroelectric phase transitions.

  15. Simulation of the Atomic and Electronic Structure of Oxygen Vacancies and Polyvacancies in ZrO2

    Science.gov (United States)

    Perevalov, T. V.

    2018-03-01

    Cubic, tetragonal, and monoclinic phases of zirconium oxide with oxygen vacancies and polyvacancies are studied by quantum chemical modeling of the atomic and electronic structure. It is demonstrated that an oxygen vacancy in ZrO2 may act as both an electron trap and a hole one. An electron added to the ZrO2 structure with an oxygen vacancy is distributed between two neighboring Zr atoms and is a bonding orbital by nature. It is advantageous for each subsequent O vacancy to form close to the already existing ones; notably, one Zr atom has no more than two removed O atoms related to it. Defect levels from oxygen polyvacancies are distributed in the bandgap with preferential localization in the vicinity of the oxygen monovacancy level.

  16. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-xThin Films.

    Science.gov (United States)

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  17. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    Energy Technology Data Exchange (ETDEWEB)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  18. Mono- and dual-targeting triplebodies activate natural killer cells and have anti-tumor activity in vitro and in vivo against chronic lymphocytic leukemia

    OpenAIRE

    Vyas, Maulik; Schneider, Ann-Charlott; Shatnyeva, Olga; Reiners, Katrin S.; Tawadros, Samir; Kloess, Stephan; K?hl, Ulrike; Hallek, Michael; Hansen, Hinrich P.; Pogge von Strandmann, Elke

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is the most common form of leukemia that affects B lymphocytes in adults. Natural killer (NK) cells in CLL patients are intrinsically potent but display poor in situ effector functions. NKG2D is an activating receptor found on NK and CD8+ T cells and plays a role in immunosurveillance of CLL. In this study, we developed mono- and dual-targeting triplebodies utilizing a natural ligand for human NKG2D receptor (ULBP2) to retarget NK cells against tumor cells. ...

  19. Molecular Drug Imaging: 89Zr-Bevacizumab PET in Children with Diffuse Intrinsic Pontine Glioma.

    Science.gov (United States)

    Jansen, Marc H; Veldhuijzen van Zanten, Sophie E M; van Vuurden, Dannis G; Huisman, Marc C; Vugts, Danielle J; Hoekstra, Otto S; van Dongen, Guus A; Kaspers, Gert-Jan L

    2017-05-01

    Predictive tools for guiding therapy in children with brain tumors are urgently needed. In this first molecular drug imaging study in children, we investigated whether bevacizumab can reach tumors in children with diffuse intrinsic pontine glioma (DIPG) by measuring the tumor uptake of 89 Zr-labeled bevacizumab by PET. In addition, we evaluated the safety of the procedure in children and determined the optimal time for imaging. Methods: Patients received 89 Zr-bevacizumab (0.1 mg/kg; 0.9 MBq/kg) at least 2 wk after completing radiotherapy. Whole-body PET/CT scans were obtained 1, 72, and 144 h after injection. All patients underwent contrast (gadolinium)-enhanced MRI. The biodistribution of 89 Zr-bevacizumab was quantified as SUVs. Results: Seven DIPG patients (4 boys; 6-17 y old) were scanned without anesthesia. No adverse events occurred. Five of 7 primary tumors showed focal 89 Zr-bevacizumab uptake (SUVs at 144 h after injection were 1.0-6.7), whereas no significant uptake was seen in the healthy brain. In 1 patient, multiple metastases all showed positive PET results. We observed inter- and intratumoral heterogeneity of uptake, and 89 Zr-bevacizumab uptake was present predominantly (in 4/5 patients) within MRI contrast-enhanced areas, although 89 Zr-bevacizumab uptake in these areas was variable. Tumor targeting results were quantitatively similar at 72 and 144 h after injection, but tumor-to-blood-pool SUV ratios increased with time after injection ( P = 0.045). The mean effective dose per patient was 0.9 mSv/MBq (SD, 0.3 mSv/MBq). Conclusion: 89 Zr-bevacizumab PET studies are feasible in children with DIPG. The data suggest considerable heterogeneity in drug delivery among patients and within DIPG tumors and a positive, but not 1:1, correlation between MRI contrast enhancement and 89 Zr-bevacizumab uptake. The optimal time for scanning is 144 h after injection. Tumor 89 Zr-bevacizumab accumulation assessed by PET scanning may help in the selection of

  20. Semi-automated production of ⁸⁹Zr-oxalate/⁸⁹Zr-chloride and the potential of ⁸⁹Zr-chloride in radiopharmaceutical compounding.

    Science.gov (United States)

    Lin, Mai; Mukhopadhyay, Uday; Waligorski, Gregory J; Balatoni, Julius A; González-Lepera, Carlos

    2016-01-01

    Interest in using (89)Zr is rapidly increasing for immuno-PET applications due to its unique characteristics and increased availability. The focus of this study was to develop an optimized semi-automated methodology for producing (89)Zr-oxalate/(89)Zr-chloride, and evaluate the potential application of (89)Zr-chloride for radiopharmaceutical compounding. The data presented herein will be useful for the production of (89)Zr-labeled radiopharmaceuticals and their compliance with regulatory issues for both preclinical and clinical use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Naturally acquired antibodies target the glutamate-rich protein on intact merozoites and predict protection against febrile malaria

    DEFF Research Database (Denmark)

    Kana, Ikhlaq Hussain; Adu, Bright; Tiendrebeogo, Régis Wendpayangde

    2017-01-01

    Background.: Plasmodium species antigens accessible at the time of merozoite release are likely targets of biologically functional antibodies. Methods.: Immunoglobulin G (IgG) antibodies against intact merozoites were quantified in the plasma of Ghanaian children from a longitudinal cohort using...... support previous studies that found OP of merozoites to be associated with protection against malaria and further shows IgG3 and GLURP antibodies are key in the OP mechanism, thus giving further impetus for the development of malaria vaccines targeting GLURP....

  2. Mono- and dual-targeting triplebodies activate natural killer cells and have anti-tumor activityin vitroandin vivoagainst chronic lymphocytic leukemia.

    Science.gov (United States)

    Vyas, Maulik; Schneider, Ann-Charlott; Shatnyeva, Olga; Reiners, Katrin S; Tawadros, Samir; Kloess, Stephan; Köhl, Ulrike; Hallek, Michael; Hansen, Hinrich P; Pogge von Strandmann, Elke

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is the most common form of leukemia that affects B lymphocytes in adults. Natural killer (NK) cells in CLL patients are intrinsically potent but display poor in situ effector functions. NKG2D is an activating receptor found on NK and CD8 + T cells and plays a role in immunosurveillance of CLL. In this study, we developed mono- and dual-targeting triplebodies utilizing a natural ligand for human NKG2D receptor (ULBP2) to retarget NK cells against tumor cells. Triplebodies in both formats showed better ability to induce NK-cell-dependent killing of target cells compared to bispecific counterparts. A mono-targeting triplebody ULBP2-aCD19-aCD19 successfully triggered NK cell effector functions against CLL cell line MEC1 and primary tumor cells in allogenic and autologous settings. Additionally, a dual-targeting triplebody ULBP2-aCD19-aCD33 specific for two distinct tumor-associated antigens was developed to target antigen loss variants, such as mixed lineage leukemia (MLL). Of note, this triplebody exhibited cytotoxic activity against CD19/CD33 double positive cells and retained its binding features even in the absence of one of the tumor antigens. Further, ULBP2-aCD19-aCD19 showed significant in vivo activity in immune-deficient (NSG) mouse model transplanted with CLL cell line as target cells and human immune cells as an effector population providing a proof-of-principle for this therapeutic concept.

  3. Zr-ZrO sub 2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    CERN Document Server

    Zhang Qi Chu; Lee, K D; Shen, Y G

    2003-01-01

    High solar performance Zr-ZrO sub 2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO sub 2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO sub 2 or Al sub 2 O sub 3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80 deg. C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO sub 2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coating film w...

  4. Local atomic structure in (Zr1-xUx)N

    International Nuclear Information System (INIS)

    Walter, M.; Somers, J.; Fernandez-Carretero, A.; Rothe, J.

    2008-01-01

    (Zr 1-x U x )N solid solutions were prepared for EXAFS measurements by a sol-gel route combined with infiltration and carbothermic reduction. The lattice parameter and the more distant coordination shells (Me 2 and Me 3 ) around the Zr and U atoms follow the Vegard law. In the first coordination shell, the U-N distance also follows the Vegard law. Though the Zr-N bond distance increases with the lattice expansion caused by increasing U content, it remains constant at 232-235 pm in U-rich (Zr 1-x U x )N (x > 0.6). The measurements indicate that U accommodates the lattice contraction with increasing Zr content, whereas Zr is able to expand its Zr-N bond only at lower U content. In the composition range of transmutation fuels, (Zr 1-x U x )N is homogeneous at the local atomic scale

  5. Evolution of Zr/Hf/Zr trilayers during annealing studied by RBS

    International Nuclear Information System (INIS)

    Kling, A.; Soares, J.C.

    2010-01-01

    The Zr/Hf system is highly interesting due its various applications, e.g. formation of amorphous ternary alloys, superconductive properties and production of gate oxide layers with high dielectric coefficients by oxidation of Zr/Hf multilayers. In this work Zr/Hf/Zr trilayers with an individual layer thickness of approximately 50 nm were deposited by electron gun evaporation on a substrate consisting of silicon covered by a micrometer thick thermal oxide layer. Samples were subjected to annealing procedures at 500 and 1200 o C in flowing air atmosphere to promote oxidation and Zr/Hf interdiffusion effects. RBS studies of the as-deposited and annealed samples were performed at the van-de-Graaff accelerator of ITN using He + and H + beams with energies between 2.0 and 2.525 MeV in order to study compositional changes induced by the heat treatment. In the case of low-temperature annealing the layer system appears, besides the oxidation process starting from the surface, to be stable. On the other hand, high-temperature annealing leads to an asymmetric Hf-diffusion into the surface and interior Zr-layer provoked by anomalous diffusion due to a phase transition in Zr accompanied by an almost complete oxidation of the layer structure Oxygen and metal depth distributions obtained by RBS in the as-deposited and treated samples are provided.

  6. Microstructural evolution and structure property correlation in Zr-1Nb and Zr-1Nb-1Sn-0.1Fe alloys

    International Nuclear Information System (INIS)

    Neogy, S.; Srivastava, D.; Chakravartty, J.K.; Dey, G.K.

    2005-01-01

    This study summarizes the evolution of microstructure and precipitation behavior in binary Zr-1Nb and quaternary Zr-1Nb-1Sn-0.1Fe alloys after different thermo mechanical processing. The processed microstructure and morphology of constituent phases and precipitates have been studied in detail using transmission electron microscopy (TEM). Microstructural studies have revealed the shape, size, size distribution and the nature of precipitate phases. Martensite formation and its tempering behavior have been studied in detail in both the alloys. Recrystallization studies on these alloys have been carried out with a view to understand the recrystallization mechanism. In case of the binary alloy the second phase recipitates were of the β type having composition varying from β I (20 wt% Nb) to β II (85 wt% Nb) depending on the heat treatment temperature and time. The second phase precipitates in the quaternary alloy were intermetallic Zr-Nb-Fe type and also β type rich in Zr. The orientation relationship existing between the precipitating phases and the a matrix were established in case of both the alloys. High resolution electron microscopy (HREM) of the martensitic microstructure and the recrystallized microstructure has revealed the internal structure and the interface structure of the martensite and the precipitating phases respectively. Structure-property correlation studies have been carried out on the heat-treated samples to evaluate the effect of the thermo mechanical processing on the microstructures and hence mechanical properties. (author)

  7. Natural Compounds for the Treatment of Psoriatic Arthritis: A Proposal Based on Multi-Targeted Osteoclastic Regulation and on a Preclinical Study.

    Science.gov (United States)

    Deng, Shiqiang; Cheng, Jianwen; Zhao, Jinmin; Yao, Felix; Xu, Jiake

    2017-07-11

    Psoriatic arthritis (PsA) is a chronic inflammatory arthritis affecting approximately 2% to 3% of the population globally, and is characterized by both peripheral articular manifestations and axial skeletal involvement. Conventional therapies for PsA have not been fully satisfactory, though natural products (NPs) have been shown to be highly effective and represent important treatment options for psoriasis. PsA is a multigenic autoimmune disease with both environmental and genetic factors contributing to its pathogenesis. Accordingly, it is likely that the use of natural compounds with a multi-targeted approach will enable us to develop better therapies for PsA and related disorders. PsA, either on joint damage or on bone erosion, has been shown to respond to anti-psoriatic pharmacotherapy (APP), APP-like NPs, and their natural compounds. This study aims to uncover specific natural compounds for improved PsA remedies. Specifically, by targeting bone erosion caused by increased osteoclastic bone resorption, we aim to predict the key signaling pathways affected by natural compounds. Further, the study will explore their anti-arthritis effects using an in silico, in vitro, and in vivo approach. Following the signaling pathway prediction, a preclinical efficacy study on animal models will be undertaken. Collectively, this work will discover lead compounds with improved therapeutic effects on PsA. We hypothesize that 9 potential APP-like NPs will have therapeutic effects on arthritis via the modulation of osteoclast bone resorption and signaling pathways. For in silico identification, the Latin name of each NP will be identified using the Encyclopedia of Traditional Chinese Medicine (Encyclopedia of TCM). The biological targets of NPs will be predicted or screened using the Herbal Ingredients' Targets (HIT) database. With the designed search terms, DrugBank will be used to further filter the above biological targets. Protein ANnotation THrough Evolutionary Relationship

  8. Photon strength function of 97Zr

    Science.gov (United States)

    Mosby, Shea; Couture, Aaron; Lee, Hye Young

    2015-10-01

    Some of the major questions in stockpile stewardship require nuclear reaction rates on fission fragments where there are few or no experimental constraints. Theoretical calculations are an alternative, but their reliability is ultimately limited by our incomplete understanding of such physics inputs as the photon strength function. 96Zr lies near the light mass peak for 239Pu fission, and neutron capture on and near this nucleus is of great importance for applications. The DANCE array at LANSCE and the Apollo array coupled to HELIOS at Argonne National Laboratory offer complementary probes into the neutron capture reaction, and an experimental campaign is underway to study 96Zr(n, γ) and 96Zr(d , p) with these instruments. The status of these reaction studies will be presented.

  9. Nanotube morphology changes for Ti-Zr alloys as Zr content increases

    International Nuclear Information System (INIS)

    Kim, Won-Gi; Choe, Han-Cheol; Ko, Yeong-Mu; Brantley, William A.

    2009-01-01

    Nanotube morphology changes in Ti-Zr alloys as Zr content increases have been investigated. Ti-Zr (10, 20, 30 and 40 wt.%) alloys were prepared by arc melting and heat treated for 24 h at 1000 o C in an argon atmosphere. TiO 2 nanotubes were formed on the Ti-Zr alloys by anodization in H 3 PO 4 containing 0.5 wt.% NaF. Electrochemical experiments were performed using a conventional three-electrode configuration with a platinum counter electrode and a saturated calomel reference electrode. Samples were embedded in epoxy resin, leaving an area of 10 mm 2 exposed to the electrolyte. Anodization was carried out using a scanning potentiostat, and all experiments were conducted at room temperature. Microstructures of the alloys were examined by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). The Ti-Zr alloy microstructures observed by OM and FE-SEM changed from a lamellar structure to a needle-like structure with increasing Zr content. The microstructures also changed from β phase to increasing amounts of α phase as the Zr content increased. The number of large nanotubes formed by anodization decreased, and the number of small nanotubes increased, as the Zr content increased. The mean inner diameter ranged from approximately 150 to 200 nm with a tube-wall thickness of about 20 nm. The interspace between the nanotubes was approximately 60, 70, 100 and 130 nm for Zr contents of 10, 20, 30 and 40 wt.%, respectively.

  10. KARAKTERISASI TEBAL LAPISAN BATAS FLUIDA NANO ZrO2 DI PERMUKAAN PEMANAS PADA PROSES KONVEKSI ALAMIAH

    Directory of Open Access Journals (Sweden)

    V. Indriati Sri Wardhani

    2015-10-01

    nano ZrO2, konveksi alamiah.   ABSTRACT CHARACTERIZATION of boundary layer thickness OF nano FLUID ZrO2 on natural convection process. Cooling system is highly influenced by the process of convection heat transfer from the heat source to the cooling fluid. The cooling fluid usually used conventional fluid such as water. Cooling system performance can be improved by using fluids other than water such as nano fluid that is made from a mixture of water and nano-sized particles. Researchers at Batan Bandung have made nano fluid ZrO2 from local materials, as well as experimental equipment for studying the thermohidraulic characteristics of nano fluid as the cooling fluid. In this study, thermohidraulic characteristics of nano fluid ZrO2 are observed through experimentation.  Nano fluid ZrO2 is made from a mixture of water with ZrO2 nano-sized particles of 10-7-10-9 nm whose concentration is 1 g/ltr. This nano fluid is used as coolant in the cooling process of natural convection. The natural convection process depends on the temperature difference between heat source and the cooling fluid, which occur in the thermal boundary layer. Therefore it is necessary to study the thermal boundary layer thickness of nano fluid ZrO2, which is also able to determine the local velocity. Experimentations are done with several variation of the heater power and then the temperature are measured at several horizontal points to see the distribution of the temperatures. The temperature distribution measurement results can be used to determine the boundary layer thickness and flow rate. It is obtained that thermal boundary layer thickness and velocity of nano fluid ZrO2 is not much different from the conventional fluid water. Keywords: Boundary layer, nanofluid ZrO2, natural convection.

  11. Structure of zirconium-93 and zirconium-91 as shown by the reactions Zr-92(d,p)Zr-93 and Zr-92(d,t)Zr-91

    Science.gov (United States)

    Baron, N.; Leonard, R. F.; Stewart, W. M.; Fink, C. L.; Christensen, P. R.; Nickles, J.; Thorsteinsen, T. F.

    1972-01-01

    Deuterons of 13-MeV incident energy were scattered from Zr-92(d,p)Zr-93. The Zr-92(d,p)Zr-93 data analysis resulted in the location of 47 levels up to an excitation energy of 4.84 MeV, and the spins of 43 of these levels were identified. Essentially all the strength of the 2d5/2, 3s1/2, 2d3/2, and 1g7/2 shells was observed; and the excitation energy of their centroids was computed to be 0.00, 1.21, 2.23, and 2.37 MeV, respectively. Also, 43 percent of the 1h11/2 strength, 21 percent of the 2f7/2 strength, and 3 percent of the 3p3/2 strength were observed. In addition, the Zr-92(d,t)Zr-91 data analysis resulted in the location of 26 levels up to an excitation energy of 4.01 MeV, and the spins of 21 of these levels were identified. Most of the expected strength of the 2d5/2 and 1g9/2 shells was obtained, and the excitation energy of their centroids was computed to be 0.31 and 3.19 MeV, respectively. In addition, six l=1 states are populated belonging to either the 2p1/2 or 2p3/2 shells.

  12. Annotating STEAP1 regulation in prostate cancer with 89Zr immuno-PET.

    Science.gov (United States)

    Doran, Michael G; Watson, Philip A; Cheal, Sarah M; Spratt, Daniel E; Wongvipat, John; Steckler, Jeffrey M; Carrasquillo, Jorge A; Evans, Michael J; Lewis, Jason S

    2014-12-01

    Antibodies and antibody-drug conjugates targeting the cell surface protein 6 transmembrane epithelial antigen of prostate 1 (STEAP1) are in early clinical development for the treatment of castration-resistant prostate cancer (PCa). In general, antigen expression directly affects the bioactivity of therapeutic antibodies, and the biologic regulation of STEAP1 is unusually complicated in PCa. Paradoxically, STEAP1 can be induced or repressed by the androgen receptor (AR) in different human PCa models, while also expressed in AR-null PCa. Consequently, there is an urgent need to translate diagnostic strategies to establish which regulatory mechanism predominates in patients to situate the appropriate therapy within standard of care therapies inhibiting AR. To this end, we prepared and evaluated (89)Zr-labeled MSTP2109A ((89)Zr-2109A), a radiotracer for PET derived from a fully humanized monoclonal antibody to STEAP1 in preclinical PCa models. (89)Zr-2109A specifically localized to the STEAP1-positive human PCa models CWR22Pc, 22Rv1, and PC3. Moreover, (89)Zr-2109A sensitively measured treatment-induced changes (∼66% decline) in STEAP1 expression in CWR22PC in vitro and in vivo, a model we showed to express STEAP1 in an AR-dependent manner. These findings highlight the ability of immuno-PET with (89)Zr-2109A to detect acute changes in STEAP1 expression and argue for an expansion of ongoing efforts to image PCa patients with (89)Zr-2109A to maximize the clinical benefit associated with antibodies or antibody-drug conjugates to STEAP1. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. Al2TiO5-ZrTiO4-ZrO2 composites

    International Nuclear Information System (INIS)

    Parker, F.J.

    1990-01-01

    The characterization and properties of ceramic composites containing the phases Al 2 TiO 5 , ZrTiO 4 , and ZrO 2 are described. The low thermal expansions are apparently due to a combination of microcracking by the titanate phases and a contractive phase transformation by the ZrO 2 . The crystal chemistry and microstructure of the product are processing dependent. Although the composites represent a complex microcracking system, the low thermal expansions and high-temperature stability make them potential candidates for commercial application requiring thermal shock resistance

  14. Structure-Activity Relationship Studies of the Cyclic Depsipeptide Natural Product YM-254890, Targeting the Gq Protein

    DEFF Research Database (Denmark)

    Zhang, Hang; Xiong, Xiao-feng; Boesgaard, Michael W

    2017-01-01

    Extracellular signals perceived by G protein-coupled receptors are transmitted via G proteins, and subsequent intracellular signaling cascades result in a plethora of physiological responses. The natural product cyclic depsipeptides YM-254890 and FR900359 are the only known compounds...

  15. Explicitly Targeting Pre-Service Teacher Scientific Reasoning Abilities and Understanding of Nature of Science through an Introductory Science Course

    Science.gov (United States)

    Koenig, Kathleen; Schen, Melissa; Bao, Lei

    2012-01-01

    Development of a scientifically literate citizenry has become a national focus and highlights the need for K-12 students to develop a solid foundation of scientific reasoning abilities and an understanding of nature of science, along with appropriate content knowledge. This implies that teachers must also be competent in these areas; but…

  16. Local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys investigated by EXAFS method

    International Nuclear Information System (INIS)

    Antonowicz, J.; Pietnoczka, A.; Zalewski, W.; Bacewicz, R.; Stoica, M.; Georgarakis, K.; Yavari, A.R.

    2011-01-01

    Research highlights: → Coordination number, interatomic distances and mean square atomic displacement in Zr-Cu and Zr-Cu-Al glasses. → Icosahedral symmetry in local atomic structure. → Deviation from random mixing behavior resulting from Al addition. - Abstract: We report on extended X-ray absorption fine structure (EXAFS) study of rapidly quenched Zr-Cu and Zr-Cu-Al glassy alloys. The local atomic order around Zr and Cu atoms was investigated. From the EXAFS data fitting the values of coordination number, interatomic distances and mean square atomic displacement were obtained for wide range of compositions. It was found that icosahedral symmetry rather than that of corresponding crystalline analogs dominates in the local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys. Judging from bonding preferences we conclude that addition of Al as an alloying element results in considerable deviation from random mixing behavior observed in binary Zr-Cu alloys.

  17. A peristaltic pump driven 89Zr separation module

    DEFF Research Database (Denmark)

    Siikanen, J.; Peterson, M.; Tran, T.

    2012-01-01

    To facilitate the separation of 89Zr produced in yttrium foils, an automated separation module was designed and assembled. The module separates more than 85% of produced 89Zr - activity in 3 g foils in less than 90 min. About 10 % remains in the dissolving vial. The quality of the separated 89Zr...

  18. Site preference of Zr in Ti3Al and phase stability of Ti2ZrAl

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The site preference of Zr atoms in Ti3Al and the phase stability of Ti2ZrAl are examined using first-principles electronic structure total energy calculations. Of the sixteen possible ways in which Ti, Zr and. Al atoms can be arranged, in the lattice sites corresponding to D019 structure of Ti3Al, to obtain Ti2ZrAl, it is.

  19. Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations

    Science.gov (United States)

    Yuan, Junhui; Yu, Niannian; Wang, Jiafu; Xue, Kan-Hao; Miao, Xiangshui

    2018-04-01

    The successful fabrication of two-dimensional lateral heterostructures (LHS's) has opened up unprecedented opportunities in material science and device physics. It is therefore highly desirable to search for more suitable materials to create such heterostructures for next-generation devices. Here, we investigate a novel lateral heterostructure composed of monolayer ZrS2 and HfS2 based on density functional theory. The phonon dispersion and ab initio molecular dynamics analysis indicate its good kinetic and thermodynamic stability. Remarkably, we find that these lateral heterostructures exhibit an indirect to direct bandgap transition, in contrast to the intrinsic indirect bandgap nature of ZrS2 and HfS2. The type-II alignment and chemical bonding across the interline have also been revealed. The tensile strain is proved to be an efficient way to modulate the band structure. Finally, we further discuss other three stable lateral heterostructures: (ZrSe2)2(HfSe2)2 LHS, (ZrS2)2(ZrSe2)2 LHS and (HfS2)2(HfSe2)2 LHS. Generally, the lateral heterostructures of monolayer ZrS2 and HfS2 are of excellent electrical properties, and may find potential applications for future electronic devices.

  20. Temperature effect on uranium retention onto Zr2O(PO4)2 surface

    International Nuclear Information System (INIS)

    Almazan Torres, M.G.

    2007-03-01

    Uranium sorption onto Zr 2 O(PO 4 ) 2 has been studied between 298 K and 363 K, in 0.1 M NaClO 4 medium. Potentiometric titrations were realized to determine temperature dependency of the acid-base properties (pH(pcn), acidity constants). Classical batch experiments were performed at different temperatures. The sorption experiments revealed that the uranium sorption onto Zr 2 O(PO 4 ) 2 is favoured with the temperature. Structural characterization of the surface complexes was performed by both Time-Resolved Laser-Induced Fluorescence (TRLIF) and EXAFS spectroscopy. The TRLIF measurements vs. temperature revealed two uranyl surface complexes. No influence of the temperature onto the nature surface complex was observed. The EXAFS analysis showed a splitting of the equatorial oxygen atoms in two shells, corresponding to uranyl bidentate, inner-sphere complexes. The obtained structural uranyl surface complex information was used to simulate (using a constant capacitance model) the sorption edges. The proposed complexes equilibrium model consists of the following surface complexes: (ZrOH) 2 UO 2 2+ and (PO) 2 UO 2 . Besides the stability constants for the surface complexes, the thermodynamic parameters ΔH 0 and ΔS 0 were determined using the van't Hoff equation. The enthalpy values associated to the U(VI) retention onto Zr 2 O(PO 4 ) 2 , determined by the temperature dependence of the stability constants, testify that the formation of the complex (PO) 2 UO 2 (55 kJ/mol) is endothermic, while no influence of the temperature was observed for the formation of the complex (ZrOH) 2 UO 2 2+ . The adsorption reaction of the last complex is then driven by entropy. In addition, calorimetric measurements of uranium sorption onto Zr 2 O(PO 4 ) 2 were carried out to directly quantify the enthalpy associated to the retention processes. (author)

  1. Clustered Distribution of Natural Product Leads of Drugs in the Chemical Space as Influenced by the Privileged Target-Sites

    OpenAIRE

    Tao, Lin; Zhu, Feng; Qin, Chu; Zhang, Cheng; Chen, Shangying; Zhang, Peng; Zhang, Cunlong; Tan, Chunyan; Gao, Chunmei; Chen, Zhe; Jiang, Yuyang; Chen, Yu Zong

    2015-01-01

    Some natural product leads of drugs (NPLDs) have been found to congregate in the chemical space. The extent, detailed patterns, and mechanisms of this congregation phenomenon have not been fully investigated and their usefulness for NPLD discovery needs to be more extensively tested. In this work, we generated and evaluated the distribution patterns of 442?NPLDs of 749 pre-2013 approved and 263 clinical trial small molecule drugs in the chemical space represented by the molecular scaffold and...

  2. Site preference of Zr in Ti 3 Al and phase stability of Ti 2 ZrAl

    Indian Academy of Sciences (India)

    Calculated values of equilibrium lattice parameters, heat of formation and bulk modulus of Ti2ZrAl are presented. The basis for the structural stability and bonding are analysed in terms of the density of states. Between the two possible 2-like structures, Ti2ZrAl shows enhanced stability for the one where Zr is substituted in ...

  3. Natural products as starting materials for development of second-generation SERCA inhibitors targeted towards prostate cancer cells

    DEFF Research Database (Denmark)

    Nissen, Poul; Jensen, Anne-Marie Lund; Møller, Jesper Vuust

    2006-01-01

    An analysis of the binding of the 8-O-N-tert-butoxycarbonyl-12-aminododecanoyl derivative of 8-O-debutanoylthapsigargin to the target molecule, the SERCA pump, has revealed the importance of the length and flexibility of the side chain attached to O-8. Based on the analysis a series of analogues ...... to the 2-unsubstituted analogue trilobolide has been constructed and shown to be equipotent with thapsigargin as SERCA inhibitors. Only the 12-Boc-aminododecaonoyl derivative, however, was found to be apoptotic...

  4. Screening of mammalian target of rapamycin inhibitors in natural product extracts by capillary electrophoresis in combination with high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Yanmei; Li, Feng; Li, Mingxia; Kang, Jingwu

    2015-04-03

    In this study, capillary electrophoresis (CE) combined with HPLC-MS/MS were used as a powerful platform for screening of inhibitors of mammalian target of rapamycin (mTOR) in natural product extracts. The screening system has been established by using 5-carboxyfluorescein labeled substrate peptide F-4EBP1, a known mTOR inhibitor AZD8055, and a small chemical library consisted of 18 natural product extracts. Biochemical screening of natural product extracts was performed by CE with laser induced fluorescence detection. The CE separation allowed a quantitative measurement of the phosphorylated product, hence the quantitation of enzymatic inhibition as well as inhibition kinetics. The hits are readily identified as long as the peak area of the phosphorylated product is reduced in comparison with the negative control. Subsequent assay-guided isolation of the active natural product extract was performed with HPLC-MS/MS to track the particular active components. The structures of the identified active components were elucidated by the molecular ions and fragmentation information provided by MS/MS analysis. The CE-based assay method only requires minute pure compounds, which can be readily purified by HPLC. Therefore, the combination of CE and HPLC-MS/MS provides a high-throughput platform for screening bioactive compounds from the crude nature extracts. By taking the advantage of the screening system, salvianolic acid A and C in extract of Salvia miltiorrhiza were discovered as the new mTOR inhibitors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Environmental Modeling, The Natural Filter Buffer Targeting layers identify riparian forest and grass buffer opportunities by county. Land use and hydrology characteristics were used to identify potential riparian buffer locations., Published in 2014, Smaller than 1:100000 scale, Maryland Department of Natural Resources (DNR).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Environmental Modeling dataset current as of 2014. The Natural Filter Buffer Targeting layers identify riparian forest and grass buffer opportunities by county. Land...

  6. Mechanical testings on hydrurated Zr, Zry-4 and Zr-2.5 Nb under neutronic irradiation

    International Nuclear Information System (INIS)

    Vazquez, Carolina A.; Fortis, Ana M.

    2007-01-01

    In this work the measurements of irradiation hardening made on hydrurated and irradiated Zr and Zr alloys are presented. The irradiations were carried out in the RA-1 reactor at neutron fluences below those were the inhomogeneities of the deformation occur. It is observed an important difference in the mechanical behavior between the alloys according to the thermal treatments and the hydrogen contents. (author) [es

  7. Phase diagram of the ternary Zr-Ti-Sn system

    International Nuclear Information System (INIS)

    Arias, D.; Gonzalez Camus, M.

    1987-01-01

    It is well known that Ti stabilizes the high temperature cubic phase of Zr and that Sn stabilizes the low temperature hexagonal phase of Zr. The effect of Sn on the Zr-Ti diagram has been studied in the present paper. Using high purity metals, nine different alloys have been prepared, with 4-32 at % Ti, 0.7-2.2 at % Sn and Zr till 100%. Resistivity and optical and SEM metallography techniques have been employed. Effect of some impurities have been analyzed. The results are discussed and different isothermic sections of the ternary Zr-Ti-Sn diagram are presented. (Author) [es

  8. The preparation of Zr-deuteride and phase stability studies of the Zr-D system

    Science.gov (United States)

    Maimaitiyili, T.; Steuwer, A.; Bjerkén, C.; Blomqvist, J.; Hoelzel, M.; Ion, J. C.; Zanellato, O.

    2017-03-01

    Deuteride phases in the zirconium-deuterium system in the temperature range 25-286 °C have been studied in-situ by high resolution neutron diffraction. The study primarily focused on observations of δ→γ transformation at 180 °C, and the peritectoid reaction α + δ ↔ γ at 255 °C in commercial grade Zr powder that was deuterated to a deuterium/Zr ratio of one to one. A detailed description of the zirconium deuteride preparation route by high temperature gas loading is also described. The lattice parameters of α-Zr, δ-ZrDx and ε-ZrDx were determined by whole pattern crystal structure analysis, using Rietveld and Pawley refinements, and are in good agreement with values reported in the literature. The controversial γ-hydride phase was observed both in-situ and ex-situ in deuterated Zr powder after a heat treatment at 286 °C and slow cooling.

  9. Influence of Temperature to Thermal Properties of U-Zr Alloy With The Zr Content Variation

    International Nuclear Information System (INIS)

    Aslina-Br-Ginting; Masrukan; M-Husna-Al-Hasa

    2007-01-01

    Have been done thermal of characteristic covering heat stability, heat capacities, enthalpy and also phase changes from uranium, zirkonium and U-Zr alloy with the Zr content variation of Zr 2 %, 6 %, 10% and 14% weight. Change of the temperature and composition anticipated will cause the characteristic of thermal to uranium metal, zirkonium and also U-Zr alloy. Therefore at this research was conducted using analysis influence of temperature to thermal of characteristic of uranium, zirkonium and U-Zr alloy with the Zr content variation by using DTA and DSC. Result of analysis indicate that the uranium metal at temperature 662 o C stable in phase α. Above at temperature, uranium metal experience of the phase change indicated by formed the thermochemical reaction as much 3 endothermic peak. At temperature 667.16 o C, happened by the phase change of α become the phase β with the enthalpy 2,3034 cal/g, at temperature 773.05 o C happened by the phase change β becoming phase γ 2,8725 cal/g and also at temperature 1125.26 the o C uranium metal experience the phenomenon become to melt with the enthalpy 2,1316 cal/g. (author)

  10. Anodic Fabrication of Ti-Nb-Zr-O Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2014-01-01

    Full Text Available Highly ordered Ti-Nb-Zr-O nanotube arrays were fabricated through pulse anodic oxidation of Ti-Nb-Zr alloy in 1 M NaH2PO4 containing 0.5 wt% HF electrolytes. The effect of anodization parameters and Zr content on the microstructure and composition of Ti-Nb-Zr-O nanotubes was investigated using a scanning electron microscope equipped with energy dispersive X-ray analysis. It was found that length of the Ti-Nb-Zr-O nanotubes increased with increase of Zr contents. The diameter and the length of Ti-Nb-Zr-O nanotubes could be controlled by pulse voltage. XRD analysis of Ti-Nb-Zr-O samples annealed at 500°C in air indicated that the (101 diffraction peaks shifted from 25.78° to 25.05° for annealed Ti-Nb-Zr-O samples with different Zr contents because of larger lattice parameter of Ti-Nb-Zr-O compared to that of undoped TiO2.

  11. Effects of herbicides on non-target plants: How do effects in standard plant tests relate to effects in natural habitats?

    DEFF Research Database (Denmark)

    Strandberg, Beate; Bruus, Marianne; Kjær, Christian

    The report presents the results on effects of herbicides on plants found in natural habitats within the agricultural land. Furthermore, it evaluates whether the current risk assessment of herbicides represents an adequate safeguard for protection of these species and habitats. We found several...... areas where risk assessment seems to be insufficient. The most extensive conclusion is that seed production is a more sensible end-point for risk assessment of herbicides than the currently used end-point biomass. Crop species, in general, were not less sensitive to herbicides than non-target species...

  12. Structure-Activity Relationship Studies of the Cyclic Depsipeptide Natural Product YM-254890, Targeting the Gq Protein.

    Science.gov (United States)

    Zhang, Hang; Xiong, Xiao-Feng; Boesgaard, Michael W; Underwood, Christina R; Bräuner-Osborne, Hans; Strømgaard, Kristian

    2017-06-07

    Extracellular signals perceived by G protein-coupled receptors are transmitted via G proteins, and subsequent intracellular signaling cascades result in a plethora of physiological responses. The natural product cyclic depsipeptides YM-254890 and FR900359 are the only known compounds that specifically inhibit signaling mediated by the G q subfamily. In this study we exploit a newly developed synthetic strategy for this compound class in the design, synthesis, and pharmacological evaluation of eight new analogues of YM-254890. These structure-activity relationship studies led to the discovery of three new analogues, YM-13, YM-14, and YM-18, which displayed potent and selective G q inhibitory activity. This provides pertinent information for the understanding of the G q inhibitory mechanism by this class of compounds and importantly provides a pathway for the development of labeled YM-254890 analogues. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Study on technology for laboratory scale production of Zirconium Chloride (ZrCl4) by chlorinating Zirconium dioxide (ZrO2)

    International Nuclear Information System (INIS)

    Nguyen Van Sinh

    2007-01-01

    ZrCl 4 is used as a main material for producing metallic zirconium. There are four methods for obtaining ZrCl 4 . The method of chlorination of ZrO 2 was selected and some instruments have been made for the study (to produce ZrCl 4 in laboratory scale). A procedure of preparing ZrCl 4 on the obtained instruments was set up and a small amount of ZrCl 4 was successfully obtained. (author)

  14. Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor

    Directory of Open Access Journals (Sweden)

    Vasyl Eisenberg

    2017-09-01

    Full Text Available Recent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR continues to show promise for the treatment of hematological malignancies. Still, there is a crucial need to develop efficient CAR-T cell approaches for the treatment of solid tumors. It has been shown that other lymphocytes such as natural killer (NK cells can demonstrate potent antitumor function—nonetheless, their use in immunotherapy is rather limited due to difficulties in expanding these cells to therapeutically relevant numbers and to suppression by endogenous inhibitory mechanisms. Cancer recognition by NK cells is partly mediated by molecules termed natural cytotoxicity receptors (NCRs. In the present study, we hypothesize that it is possible to endow T-cells with an NK recognition pattern, providing them with a mean to recognize tumor cells, in a non-MHC restricted way. To test this, we genetically modified human T-cells with different chimeric receptors based on the human NCR2 molecule and then assessed their antitumor activity in vitro and in vivo. Our results show that expression in primary lymphocytes of an NCR2-derived CAR, termed s4428z, confers T-cells with the ability to specifically recognize heterogeneous tumors and to mediate tumor cytotoxicity in a mouse model. This study demonstrates the benefit of combining tumor recognition capability of NK cells with T cell effectiveness to improve cancer immunotherapy.

  15. Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics

    International Nuclear Information System (INIS)

    Lin, Z.J.; Zhuo, M.J.; He, L.F.; Zhou, Y.C.; Li, M.S.; Wang, J.Y.

    2006-01-01

    The microstructures of bulk Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 ceramics have been investigated using transmission electron microscopy and scanning transmission electron microscopy. These two carbides were determined to have a point group 6/mmm and a space group P6 3 /mmc using selected-area electron diffraction and convergent beam electron diffraction. The atomic-scale microstructures of Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 were investigated through high-resolution imaging and Z-contrast imaging. Furthermore, intergrowth between Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 was identified. Stacking faults in Zr 3 Al 3 C 5 were found to result from the insertion of an additional Zr-C layer. Cubic ZrC was occasionally identified to be incorporated in elongated Zr 3 Al 3 C 5 grains. In addition, Al may induce a twinned ZrC structure and lead to the formation of ternary zirconium aluminum carbides

  16. Separation of cyclotron-produced44Sc from a natural calcium target using a dipentyl pentylphosphonate functionalized extraction resin.

    Science.gov (United States)

    Valdovinos, H F; Hernandez, R; Barnhart, T E; Graves, S; Cai, W; Nickles, R J

    2014-10-08

    Significant interest in 44 Sc as a radioactive synthon to label small molecules for positron emission tomography (PET) imaging has been recently observed. Despite the efforts of several research groups, the ideal 44 Sc production and separation method remains elusive. Herein, we propose a novel separation method to obtain 44 Sc from the proton irradiation of calcium targets based on extraction chromatography, which promises to greatly simplify current production methodologies. Using the commercially available Uranium and Tetravalent Actinides (UTEVA) extraction resin we were able to rapidly (80% of the activity generated at end of bombardment (EoB) in small ~1M HCl fractions (400μL). The chemical purity of the 44 Sc eluates was evaluated through chelation with DOTA and DTPA, and by trace metal analysis using microwave induced plasma atomic emission spectrometry. The distribution coefficients (K d ) of Sc(III) and Ca(II) in UTEVA were determined in HCl medium in a range of concentrations from zero to 12.1M. The 44 Sc obtained with our method proved to be suitable for the direct labeling of small biomolecules for PET imaging, with excellent specific activities and radiochemical purity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Real-time PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments.

    Science.gov (United States)

    Xu, Kewei; Liu, He; Du, Guocheng; Chen, Jian

    2009-10-01

    Acetogens are ubiquitous in many anaerobic habitats and play a very important role in bioconversion and biodegradation of organic compounds. Methods for rapid detection and quantification of acetogens in different environments are urgently needed to understand the in situ activities in complicated microbial communities. To overcome the limitations of culture-dependent methods and provide enhanced diagnostic tools for determination of the ecological roles of acetogens in different habitats, a quantitative real-time PCR (qrt-PCR) approach targeting functional FTHFS (fhs) gene encoding the formyltetrahydrofolate synthetase was developed. Novel primers flanking the FTHFS fragment were designed and tested. High specificity and sensitivity for estimation of the abundance of acetogens were confirmed analysis of a collection of acetogens, clone libraries and melting curves. The utility of the assay was validated and used in quantifying the FTHFS gene present in different anoxic and oxic habitats, including anoxic and oxic sludges, lake sediment, sewage sullage as well as flooded rice field soils. The abundance of FTHFS gene recovered by fhs1 assay was in the order of magnitude of 10(5) up to 10(7) copies per gram of dry weight sample, and the maximum calculated abundance of acetogens relative to Eubacteria was 0.6-0.9%, confirming the low proportion of acetogens to total bacteria in environments.

  18. Role of anionic and cationic surfactants on the structural and dielectric properties of ZrO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, Gaganpreet Kaur; Kumar, Rajesh, E-mail: rajeshbaboria@gmail.com

    2017-01-15

    Highlights: • Synthesis of Zirconia nanoparticles with and without surfactants by co- precipitation method. • Surface modification of ZrO{sub 2} nanoparticles. • Phase transition with different concentration of surfactants. • Dielectric behavior of bare, CTAB assisted and SDS assisted ZrO{sub 2} nanoparticles. - Abstract: In the present paper, we report the synthesis of Cetyltrimethylammonium Bromide (CTAB) and Sodium dodecyl sulfate (SDS) assisted Zirconia (ZrO{sub 2}) nanoparticles by co-precipitation method. The effect of surfactant concentration on the structural and dielectric properties has been extensively studied. X-ray diffraction studies reveal the formation of tetragonal phase in the ZrO{sub 2} nanoparticles prepared by lower CTAB concentration. However, for higher concentration of CTAB some traces of monoclinic phase appeared along with tetragonal phase. SDS assisted nanoparticles shows crystalline tetragonal phase with lower concentration of SDS and amorphous nature with higher concentrations of SDS. FTIR results show the presence of Zr–O symmetrical stretching vibrations at tetrahedral site. The dielectric properties of all samples have been studied from 10 Hz to 1 MHz, revealing the low value of dielectric constant with CTAB and very high value with SDS as compared to bare ZrO{sub 2} nanoparticles. The dielectric behaviour of the bare and surfactant assisted nanoparticles has been correlated with the phase transition, size of nanoparticles and the nature of surfactants.

  19. Investigation of electronic, magnetic and thermoelectric properties of Zr{sub 2}NiZ (Z = Al,Ga) ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Yousuf, Saleem, E-mail: nengroosaleem17@gmail.com; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2017-05-01

    Systematic investigation of impact of electronic structure and magnetism, on the thermoelectric properties of new Zr{sub 2}NiZ (Z = Al, Ga) Heusler alloys are determined using density functional theory calculations. Half-metallicity with ferromagnetic character is supported by their 100% spin polarizations at the Fermi level. Magnetic moment of ∼3 μ{sub B} is according to the Slater-Puling rule, enables their practical applications. Electron density plots are used to analyse the nature of bonding and chemical composition. Boltzmann's theory is conveniently employed to investigate the thermoelectric properties of these compounds. The analysis of the thermal transport properties specifies the Seebeck coefficient as 25.6 μV/K and 18.6 μV/K at room temperature for Zr{sub 2}NiAl and Zr{sub 2}NiGa, respectively. The half-metallic nature with efficient thermoelectric coefficients suggests the likelihood of these materials to have application in designing spintronic devices and imminent thermoelectric materials. - Highlights: • The compounds are half-metallic ferromagnets. • 100% spin-polarized compounds for spintronics. • Increasing Seebeck coefficient over a wide temperature range. • Zr{sub 2}NiAl is efficient thermoelectric material than Zr{sub 2}NiGa.

  20. Development of Colorectal-Targeted Dietary Supplement Tablets Containing Natural Purple Rice Bran Oil as a Colorectal Chemopreventive

    Directory of Open Access Journals (Sweden)

    Busaban Sirithunyalug

    2018-04-01

    Full Text Available Colorectal cancer occurs due to various factors. The important risks are dietary lifestyle and inflammatory bowel diseases, such as Crohn’s disease and ulcerative colitis. It has been found that the inhibitory enzyme cyclooxygenase-2 (COX-2 in the colorectal region can potentially reduce the risk of colorectal cancer. The present study investigated rice bran oil from natural purple rice bran, which exhibits antioxidant and anti-inflammatory activity. This study aimed to evaluate the bioactive compound content of natural purple rice bran oil (NPRBO derived from native Thai purple rice and the anti-inflammatory activity of NPRBO in colorectal cancer cells, and to develop a colorectal delivery platform in the form of film-coated tablets. NPRBO from the rice bran of five different Thai purple rice cultivars, namely Khao’ Gam Leum-Phua (KGLP, Khao’ Gam Boung (KGB, Khao’ Gam Thor (KGT, Khao’ Gam Pah E-Kaw (KGPEK, and Khao’ Niaw Dam (KND, were extracted using the supercritical carbon dioxide extraction technique. The amount of γ-oryzanol (ORY, tocotrienols, and tocopherols present in NPRBOs and the in vitro anti-inflammatory activity of NPRBO were investigated. The highest anti-inflammatory NPRBO was transformed into a dry and free-flowing powder by liquisolid techniques. Then, it was compressed into core tablets and coated with Eudragit®L100 and Eudragit® NE30D. The in vitro release study of the film-coated NPRBO tablets was performed in three-phase simulated gastrointestinal media. The cultivar KGLP was superior to the other samples in terms of the ORY, tocotrienol and tocopherol contents and anti-inflammatory activity. Aerosil® was the most suitable absorbent for transforming NPRBO into a free-flowing powder and was used to prepare the NPRBO core tablets. The in vitro KGLP-NPRBO film-coated tablet release profile showed that no ORY was released at gastric pH while 85% of ORY was released at pH 7.4 after 6 h; this would be expected to

  1. Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems.

    Science.gov (United States)

    Palmero, Paola; Lemmens, Lien; Ribas-Agustí, Albert; Sosa, Carola; Met, Kristof; de Dieu Umutoni, Jean; Hendrickx, Marc; Van Loey, Ann

    2013-12-01

    An experimental approach, allowing us to understand the effect of natural structural barriers (cell walls, chromoplast substructures) on carotenoid bioaccessibility, was developed. Different fractions with different levels of carotenoid bio-encapsulation (carotenoid-enriched oil, chromoplasts, small cell clusters, and large cell clusters) were isolated from different types of carrots and tomatoes. An in vitro method was used to determine carotenoid bioaccessibility. In the present work, a significant decrease in carotenoid in vitro bioaccessibility could be observed with an increasing level of bio-encapsulation. Differences in cell wall material and chromoplast substructure between matrices influenced carotenoid release and inclusion in micelles. For carrots, cell walls and chromoplast substructure were important barriers for carotenoid bioaccessibility while, in tomatoes, the chromoplast substructure represented the most important barrier governing bioaccessibility. The highest increase in carotenoid bioaccessibility, for all matrices, was obtained after transferring carotenoids into the oil phase, a system lacking cell walls and chromoplast substructures that could hamper carotenoid release. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4(+) T cells

    DEFF Research Database (Denmark)

    Munir, Shamaila; Andersen, Gitte Holmen; Svane, Inge Marie

    2013-01-01

    to a long PD-L1-derived peptide. Furthermore, we demonstrate that the specific recognition of PD-L1 by CD4(+) T cells is MHC class II-restricted. Natural T-cell responses against PD-L1 are noteworthy as they may play a prominent role in the regulation of the immune system. Thus, cytokine release from PD-L1......Programmed cell death 1 ligand 1 (PD-L1) is an important regulator of T-cell responses and may consequently limit anticancer immunity. We have recently identified PD-L1-specific, cytotoxic CD8(+) T cells. In the present study, we develop these findings and report that CD4(+) helper T cells......-specific CD4(+) T cells may surmount the overall immunosuppressive actions of this immune checkpoint regulator. Moreover, PD-L1-specific T cells might be useful for anticancer immunotherapy, as they may counteract common mechanisms of immune escape mediated by the PD-L1/PD-1 pathway....

  3. Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics.

    Science.gov (United States)

    Rocco, C J; Davey, M E; Bakaletz, L O; Goodman, S D

    2017-04-01

    Bacteria that persist in the oral cavity exist within complex biofilm communities. A hallmark of biofilms is the presence of an extracellular polymeric substance (EPS), which consists of polysaccharides, extracellular DNA (eDNA), and proteins, including the DNABII family of proteins. The removal of DNABII proteins from a biofilm results in the loss of structural integrity of the eDNA and the collapse of the biofilm structure. We examined the role of DNABII proteins in the biofilm structure of the periodontal pathogen Porphyromonas gingivalis and the oral commensal Streptococcus gordonii. Co-aggregation with oral streptococci is thought to facilitate the establishment of P. gingivalis within the biofilm community. We demonstrate that DNABII proteins are present in the EPS of both S. gordonii and P. gingivalis biofilms, and that these biofilms can be disrupted through the addition of antisera derived against their respective DNABII proteins. We provide evidence that both eDNA and DNABII proteins are limiting in S. gordonii but not in P. gingivalis biofilms. In addition, these proteins are capable of complementing one another functionally. We also found that whereas antisera derived against most DNABII proteins are capable of binding a wide variety of DNABII proteins, the P. gingivalis DNABII proteins are antigenically distinct. The presence of DNABII proteins in the EPS of these biofilms and the antigenic uniqueness of the P. gingivalis proteins provide an opportunity to develop therapies that are targeted to remove P. gingivalis and biofilms that contain P. gingivalis from the oral cavity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Generation of an affinity matrix useful in the purification of natural inhibitors of plasmepsin II, an antimalarial-drug target.

    Science.gov (United States)

    Ramírez, Angel R; Guerra, Yasel; Otero, Anabel; García, Beatriz; Berry, Colin; Mendiola, Judith; Hernández-Zanui, Aida; Chávez, María de Los A

    2009-02-01

    An affinity matrix containing the antimalarial drug target Plm II (plasmepsin II) as ligand was generated. This enzyme belongs to the family of Plasmodium (malarial parasite) aspartic proteinases, known as Plms (plasmepsins). The procedure established to obtain the support has two steps: the immobilization of the recombinant proenzyme of Plm II to NHS (N-hydroxysuccinimide)-activated Sepharose and the activation of the immobilized enzyme by incubation at pH 4.4 and 37 degrees C. The coupling reaction resulted in a high percentage immobilization (95.5%), and the matrices obtained had an average of 4.3 mg of protein/ml of gel. The activated matrices, but not the inactive ones, were able to hydrolyse two different chromogenic peptide substrates and haemoglobin. This ability was completely blocked by the addition of the general aspartic-proteinase inhibitor, pepstatin A, to the reaction mixture. The matrices were useful in the affinity purification of the Plm II inhibitory activity detected in marine invertebrates, such as Xestospongia muta (giant barrel sponge) and the gorgonian (sea-fan coral) Plexaura homomalla (black sea rod), with increases of 10.2- and 5.9-fold in the specific inhibitory activity respectively. The preliminary K(i) values obtained, 46.4 nM (X. muta) and 1.9 nM (P. homomalla), and the concave shapes of the inhibition curves reveal that molecules are reversible tight-binding inhibitors of Plm II. These results validated the use of the affinity matrix for the purification of Plm II inhibitors from complex mixtures and established the presence of Plm II inhibitors in some marine invertebrates.

  5. The role of natural selection in shaping genetic variation in a promising Chagas disease drug target: Trypanosoma cruzi trans-sialidase.

    Science.gov (United States)

    Gallant, Joseph P; Lima-Cordón, Raquel Asunción; Justi, Silvia A; Monroy, Maria Carlota; Viola, Toni; Stevens, Lori

    2018-04-21

    Rational drug design creates innovative therapeutics based on knowledge of the biological target to provide more effective and responsible therapeutics. Chagas disease, endemic throughout Latin America, is caused by Trypanosoma cruzi, a protozoan parasite. Current therapeutics are problematic with widespread calls for new approaches. Researchers are using rational drug design for Chagas disease and one target receiving considerable attention is the T. cruzi trans-sialidase protein (TcTS). In T. cruzi, trans-sialidase catalyzes the transfer of sialic acid from a mammalian host to coat the parasite surface membrane and avoid immuno-detection. However, the role of TcTS in pathology variance among and within genetic variants of the parasite is not well understood despite numerous studies. Previous studies reported the crystalline structure of TcTS and the TS protein structure in other trypanosomes where the enzyme is often inactive. However, no study has examined the role of natural selection in genetic variation in TcTS. To understand the role of natural selection in TcTS DNA sequence and protein variation, we examined a 471 bp portion of the TcTS gene from 48 T. cruzi samples isolated from insect vectors. Because there may be multiple parasite genotypes infecting one insect and there are multiple copies of TcTS per parasite genome, all 48 sequences had multiple polymorphic bases. To resolve these polymorphisms, we examined cloned sequences from two insect vectors. The data are analyzed to understand the role of natural selection in shaping genetic variation in TcTS and interpreted in light of the possible role of TcTS as a drug target. The analysis highlights negative or purifying selection on three amino acids previously shown to be important in TcTS transfer activity. One amino acid in particular, Tyr342, is a strong candidate for a drug target because it is under negative selection and amino acid substitutions inactivate TcTS transfer activity. Chagas disease

  6. Targeted lysis of HIV-infected cells by natural killer cells armed and triggered by a recombinant immunoglobulin fusion protein: implications for immunotherapy

    International Nuclear Information System (INIS)

    Gupta, Neil; Arthos, James; Khazanie, Prateeti; Steenbeke, Tavis D.; Censoplano, Nina M.; Chung, Eva A.; Cruz, Catherine C.; Chaikin, Margery A.; Daucher, Marybeth; Kottilil, Shyam; Mavilio, Domenico; Schuck, Peter; Sun, Peter D.; Rabin, Ronald L.; Radaev, Sergei; Van Ryk, Donald; Cicala, Claudia; Fauci, Anthony S.

    2005-01-01

    Natural killer (NK) cells play an important role in both innate and adaptive antiviral immune responses. The adaptive response typically requires that virus-specific antibodies decorate infected cells which then direct NK cell lysis through a CD16 mediated process termed antibody-dependent cellular cytotoxicity (ADCC). In this report, we employ a highly polymerized chimeric IgG1/IgA immunoglobulin (Ig) fusion protein that, by virtue of its capacity to extensively crosslink CD16, activates NK cells while directing the lysis of infected target cells. We employ HIV as a model system, and demonstrate that freshly isolated NK cells preloaded with an HIV gp120-specific chimeric IgG1/IgA fusion protein efficiently lyse HIV-infected target cells at picomolar concentrations. NK cells pre-armed in this manner retain the capacity to kill targets over an extended period of time. This strategy may have application to other disease states including various viral infections and cancers

  7. Shielding problems set by the use of a natural uranium target with a linear electron accelerator. Shielding and safety systems necessary

    International Nuclear Information System (INIS)

    Vialettes, Henry; Rocchesani, Jean; Lemure, Pierre

    1971-06-01

    The use of a natural uranium target for neutron production with a linear electron accelerator set special shielding problems due to the fact that, to standard photonuclear reactions, are added photoneutron induced photofission reactions giving rise to fission products of which the untimely liberation could cause very serious contamination problems. On the occasion of a recent accident on the target used with the Saclay 60 MeV linear accelerator, activity measurements were carried out on a certain number of samples taken. This revealed the presence of some twenty radionuclides of hall-lives between 30 minutes and 30 years and of activities such that the combustion of 1 g of target would release about 30 mCi of fission products of medium and short half-life (over 1 hour), This figure shows the magnitude of a contamination accident on a unit of this type, which is why the present report describes the systems to be employed in order on the one hand to detect the appearance of contamination as quickly as possible, and on the other hand to channel and retain this contamination so as to avoid a personnel contamination accident and/or the spread of contamination towards the outside [fr

  8. Phase diagram for Zr-Fe(0-66,6 at.%Fe)

    International Nuclear Information System (INIS)

    Malakhova, T.O.; Kobylkin, A.N.

    1982-01-01

    The Zr-Fe alloy system is investigated by the methods of X-ray diffraction and microstructure analyses. The existence of Zr 3 Fe compound is confirmed which is resulted from a peritectic reaction β+Zr 2 Fe reversible Zr 3 Fe; the formation temperature (approximately 885 deg C) is determined for Zr 3 Fe. It is found that Zr 2 Fe compound (tetragonal structure, a=6.384 A, c=5.598 A, c/a=0.877) decomposes according to an eutectoid reaction Zr 2 Fe reversible Zr 3 Fe+ZrFe 3 at 775 deg C. Using differential thermal analysis α reversible β transformation temperatures are determined; temperatures of eutectic L reversible β+Zr 2 Fe and peritectic L+ZrFe 2 reversible Zr 2 Fe equilibria are found to be 928 and 974 deg C respectively. The Zr-Fe (0-66.6 at.%Fe) phase diagram is constructed [ru

  9. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO2for bone tissue applications.

    Science.gov (United States)

    Sa, Min-Woo; Nguyen, Bao-Ngoc B; Moriarty, Rebecca A; Kamalitdinov, Timur; Fisher, John P; Kim, Jong Young

    2018-04-01

    Fused deposition modeling (FDM) is a promising 3D printing and manufacturing step to create well interconnected porous scaffold designs from the computer-aided design (CAD) models for the next generation of bone scaffolds. The purpose of this study was to fabricate and evaluate a new biphasic calcium phosphate (BCP) scaffold reinforced with zirconia (ZrO 2 ) by a FDM system for bone tissue engineering. The 3D slurry foams with blending agents were successfully fabricated by a FDM system. Blending materials were then removed after the sintering process at high temperature to obtain a targeted BCP/ZrO 2 scaffold with the desired pore characteristics, porosity, and dimension. Morphology of the sintered scaffold was investigated with SEM/EDS mapping. A cell proliferation test was carried out and evaluated with osteosarcoma MG-63 cells. Mechanical testing and cell proliferation evaluation demonstrated that 90% BCP and 10% ZrO 2 scaffold had a significant effect on the mechanical properties maintaining a structure compared that of only 100% BCP with no ZrO 2 . Additionally, differentiation studies of human mesenchymal stem cells (hMSCs) on BCP/ZrO 2 scaffolds in static and dynamic culture conditions showed increased expression of bone morphogenic protein-2 (BMP-2) when cultured on BCP/ZrO 2 scaffolds under dynamic conditions compared to on BCP control scaffolds. The manufacturing of BCP/ZrO 2 scaffolds through this innovative technique of a FDM may provide applications for various types of tissue regeneration, including bone and cartilage. © 2017 Wiley Periodicals, Inc.

  10. Microwave sintering and in vitro study of defect-free stable porous multilayered HAp-ZrO2 artificial bone scaffold

    Science.gov (United States)

    Jang, Dong-Woo; Nguyen, Thi-Hiep; Sarkar, Swapan Kumar; Lee, Byong-Taek

    2012-06-01

    Continuously porous hydroxyapatite (HAp)/t-ZrO2 composites containing concentric laminated frames and microchanneled bodies were fabricated by an extrusion process. To investigate the mechanical properties of HAp/t-ZrO2 composites, the porous composites were sintered at different temperatures using a microwave furnace. The microstructure was designed to imitate that of natural bone, particularly small bone, with both cortical and spongy bone sections. Each microchannel was separated by alternating lamina of HAp, HAp-(t-ZrO2) and t-ZrO2. HAp and ZrO2 phases existed on the surface of the microchannel and the core zone to increase the biocompatibility and mechanical properties of the HAp-ZrO2 artificial bone. The sintering behavior was evaluated and the optimum sintering temperature was found to be 1400 °C, which produced a stable scaffold. The material characteristics, such as the microstructure, crystal structure and compressive strength, were evaluated in detail for different sintering temperatures. A detailed in vitro study was carried out using MTT assay, western blot analysis, gene expression by polymerase chain reaction and laser confocal image analysis of cell proliferation. The results confirmed that HAp-ZrO2 performs as an artificial bone, showing excellent cell growth, attachment and proliferation behavior using osteoblast-like MG63 cells.

  11. Microwave sintering and in vitro study of defect-free stable porous multilayered HAp–ZrO2 artificial bone scaffold

    Directory of Open Access Journals (Sweden)

    Dong-Woo Jang, Thi-Hiep Nguyen, Swapan Kumar Sarkar and Byong-Taek Lee

    2012-01-01

    Full Text Available Continuously porous hydroxyapatite (HAp/t-ZrO2 composites containing concentric laminated frames and microchanneled bodies were fabricated by an extrusion process. To investigate the mechanical properties of HAp/t-ZrO2 composites, the porous composites were sintered at different temperatures using a microwave furnace. The microstructure was designed to imitate that of natural bone, particularly small bone, with both cortical and spongy bone sections. Each microchannel was separated by alternating lamina of HAp, HAp–(t-ZrO2 and t-ZrO2. HAp and ZrO2 phases existed on the surface of the microchannel and the core zone to increase the biocompatibility and mechanical properties of the HAp-ZrO2 artificial bone. The sintering behavior was evaluated and the optimum sintering temperature was found to be 1400 °C, which produced a stable scaffold. The material characteristics, such as the microstructure, crystal structure and compressive strength, were evaluated in detail for different sintering temperatures. A detailed in vitro study was carried out using MTT assay, western blot analysis, gene expression by polymerase chain reaction and laser confocal image analysis of cell proliferation. The results confirmed that HAp-ZrO2 performs as an artificial bone, showing excellent cell growth, attachment and proliferation behavior using osteoblast-like MG63 cells.

  12. Diffusion and chemical activity of Zr-Sn and Zr-Ti systems

    International Nuclear Information System (INIS)

    Zee, R.H.; Watters, J.F.; Davidson, R.D.

    1986-01-01

    A modified evaporation method was used to determine the diffusion coefficients and the emission rates of Sn and Ti in Zr-Sn and Zr-Ti, respectively, at temperatures between 1605 and 1970 K. Results show that both Sn and Ti diffuse in their respective alloys via a vacancy mechanism. Comparison with data in the literature reveals that the activation energy for diffusion of Sn in Zr-Sn, with Sn content between 3 and 5 at.X is relatively constant from 1200 to 1970 K. From the measured emission rates, values of 103 and 98 kcal/mol were obtained for the enthalpies of sublimation for Sn and Ti in their alloys. With a comparison of the solute vapor pressures with those of the pure elements, partial molar free energies, entropies, and enthalpies for the two systems were determined in the temperature range investigated. The Zr-Sn system shows a very large negative heat of formation (-33 kcal/mol) whereas the Zr-Ti system behaves quite ideally, in agreement with phase-diagram predictions

  13. Synthesis and characterization of a polyborosilazane/Cp2ZrCl2 hybrid precursor for the Si-B-C-N-Zr multinary ceramic.

    Science.gov (United States)

    Long, Xin; Shao, Changwei; Wang, Hao; Wang, Jun

    2015-09-21

    A novel zirconium-contained polyborosilazane (PBSZ-Zr) was synthesized by chemical modification of a liquid polyborosilazane (LPBSZ) with Cp2ZrCl2. A Si-B-C-N-Zr multinary ceramic was prepared via pyrolysis of PBSZ-Zr. The properties and the ceramization process of PBSZ-Zr, as well as the microstructural development and properties of the derived SiBCN-Zr ceramic, were well studied. The active Si-H and N-H groups in LPBSZ react with Zr-Cl in Cp2ZrCl2 to form PBSZ-Zr polymers. The Zr content of the SiBCN-Zr ceramic was 3.39 wt% when the weight ratio of Cp2ZrCl2 to LPBSZ was 20 : 100. The SiBCN-Zr ceramic remains amorphous when pyrolyzed below 1600 °C, but the crystal phases of Zr2CN, ZrC, BN, SiC, and Si3N4 were detected from a 1600 °C treated sample. Due to the low activity of free carbon at the interface of the SiBCN-Zr ceramic, the oxidation resistance of the SiBCN-Zr ceramic under air was improved compared with the SiBCN ceramic.

  14. PEMISAHAN Zr – Hf SECARA SINAMBUNG MENGGUNAKAN MIXER SETTLER

    Directory of Open Access Journals (Sweden)

    Dwi Biyantoro

    2017-01-01

    Full Text Available ABSTRAK PEMISAHAN Zr – Hf SECARA SINAMBUNG MENGGUNAKANMIXER SETTLER. Telah dilakukan pemisahanZr – Hf secara sinambung menggunakan pengaduk pengenap (mixer settler 16 stage. Larutan umpan adalah zirkon nitrat dengan kadar Zr = 30786 ppm dan Hf = 499 ppm. Ekstraktan dipakai adalah solven 60 % TBP dalam kerosen dan larutan scrubbingyang dipakai adalah asam nitrat 1 M. Umpan masuk pada stageke 5 dikontakkan secara berlawanan arah dengan solven masuk pada stage ke 16 dan larutan scrubbing masuk pada stage ke 1. Tujuan penelitian ini adalah memisahkan unsur Zr dan Hf dari hasil olah pasir zirkon menggunakan solven TBP dengan alat mixer settler16 stage. Analisis umpan dan hasil proses pemisahan untuk zirkonium (Zr dilakukan dengan menggunakan alat pendar sinar-X, sedangkananalisis unsur hafnium (Hf menggunakan Analisis Pengaktifan Neutron (APN. Parameter penelitian dilakukan dengan variasi keasaman asam nitrat dalam umpan dan variasi waktu pada berbagai laju pengadukan. Hasil penelitian pemisahan unsur Zr dengan Hf diperolehkondisi optimum pada keasaman umpan 4 N HNO3, keseimbangan dicapai setelah 3jam dan laju pengadukan 3300 rpm. Hasil ekstrak  unsur zirkon (Zr diperoleh kadar sebesar 28577 ppm dengan efisiensi 92,76 % serta kadar pengotor hafnium (Hf sebesar 95 ppm. Kata Kunci: pemisahan Zr, Hf, ekstraksi, mixer settler, alat pendar sinar-X, APN. ABSTRACT SEPARATION of Zr - Hf CONTINUOUSLY USE THE MIXER SETTLER. Separation of Zr - Hf continuously using mixer settler 16 stage has been done. The feed solution is zircon nitrate concentration of Zr = 30786 ppm  and Hf = 499 ppm. As the solvent used extractant 60 % TBP in 40 % kerosene. Nitric acid solution used srubbing 1 M. The feed entered into stage to 5 is contacted with solvents direction on the stage to 16 and the scrubbing solution enter the stage to 1. The purpose of this study is to separate Zr and Hf of the results from the process of zircon sand using solvent TBP using 16 stage

  15. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2.

    Science.gov (United States)

    Zhang, Qingrui; Pan, Bingcai; Pan, Bingjun; Zhang, Weiming; Jia, Kun; Zhang, Quanxing

    2008-06-01

    A novel polymeric hybrid sorbent, namely ZrPS-001, was fabricated for enhanced sorption of heavy metal ions by impregnating Zr(HPO3S)2 (i.e., ZrPS) nanoparticles within a porous polymeric cation exchanger D-001. The immobilized negatively charged groups bound to the polymeric matrix D-001 would result in preconcentration and permeation enhancement of target metal ions prior to sequestration, and ZrPS nanoparticles are expected to sequester heavy metals selectively through an ion-exchange process. Highly effective sequestration of lead, cadmium, and zinc ions from aqueous solution can be achieved by ZrPS-001 even in the presence of competing calcium ion at concentration several orders of magnitude greater than the target species. The exhausted ZrPS-001 beads are amenable to regeneration with 6 M HCI solution for repeated use without any significant capacity loss. Fixed-bed column treatment of simulated waters containing heavy metals at high or trace levels was also performed. The content of heavy metals in treated effluent approached or met the WHO drinking water standard.

  16. Synthesis and characterization of a binary oxide ZrO2–TiO2 and its ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Natural dyes have been used to sensitize TiO2 nanocrystalline solar cells, but they still require pigment purification and co-adsorption of other compounds. In this study, nanocrystalline ZrO2–TiO2 films sensitized with the bioorganic dye, chlorophyll extracted from green leaves of Chromolaena odorata were.

  17. Synthesis and characterization of a binary oxide ZrO2–TiO2 and its ...

    Indian Academy of Sciences (India)

    Natural dyes have been used to sensitize TiO2 nanocrystalline solar cells, but they still require pigment purification and co-adsorption of other compounds. In this study, nanocrystalline ZrO2–TiO2 films sensitized with the bioorganic dye, chlorophyll extracted from green leaves of Chromolaena odorata were investigated.

  18. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Chen, Y; Shi, T; Liu, Y; Khatri, ND; Liu, J; Yao, Y; Xiong, X; Lei, C; Soloveichik, S; Galstyan, E; Majkic, G

    2013-01-21

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process,enhanced critical current densities have been achieved with high levels of Zr addition,including 3.83 MA cm(-2) in 15 at.% Zr- added 1.1 mu m thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/ 12 mm have been reached in (Gd,Y) BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape,corresponding to a pinning force value of 268 GN m(-3). The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second- phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.

  19. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    International Nuclear Information System (INIS)

    Selvamanickam, V; Shi, T; Liu, Y; Khatri, N D; Liu, J; Yao, Y; Galstyan, E; Majkic, G; Chen, Y; Xiong, X; Lei, C; Soloveichik, S

    2013-01-01

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba 2 Cu 3 O x film. By a modified MOCVD process, enhanced critical current densities have been achieved with high levels of Zr addition, including 3.83 MA cm −2 in 15 at.% Zr-added 1.1 μm thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/12 mm have been reached in (Gd,Y)BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape, corresponding to a pinning force value of 268 GN m −3 . The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second-phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met. (paper)

  20. Effect of Ge Content on the Formation of Ge Nanoclusters in Magnetron-Sputtered GeZrOx-Based Structures.

    Science.gov (United States)

    Khomenkova, L; Lehninger, D; Kondratenko, O; Ponomaryov, S; Gudymenko, O; Tsybrii, Z; Yukhymchuk, V; Kladko, V; von Borany, J; Heitmann, J

    2017-12-01

    Ge-rich ZrO 2 films, fabricated by confocal RF magnetron sputtering of pure Ge and ZrO 2 targets in Ar plasma, were studied by multi-angle laser ellipsometry, Raman scattering, Auger electron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction for varied deposition conditions and annealing treatments. It was found that as-deposited films are homogeneous for all Ge contents, thermal treatment stimulated a phase separation and a formation of crystalline Ge and ZrO 2 . The "start point" of this process is in the range of 640-700 °C depending on the Ge content. The higher the Ge content, the lower is the temperature necessary for phase separation, nucleation of Ge nanoclusters, and crystallization. Along with this, the crystallization temperature of the tetragonal ZrO 2 exceeds that of the Ge phase, which results in the formation of Ge crystallites in an amorphous ZrO 2 matrix. The mechanism of phase separation is discussed in detail.

  1. Zn{sub x}Zr{sub y}O{sub z} thin films grown by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, O. [Instituto de Ciencia de Materiales de Madrid (CSIC), Madrid (Spain); Hernandez-Velez, M. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid (Spain)

    2017-10-15

    The structural and optical properties of thin films deposited by DC reactive magnetron co-sputtering using Zn and Zr targets in argon and oxygen gas mixtures at room temperature are reported. The power applied to the Zr cathode was kept constant, while that applied to the Zn cathode was varied between 0 and 150 W to produce very different Zn{sub x}Zr{sub y}O{sub z} ternary compounds with Zn/Zr atomic ratios in the range of 0.1-10. The composition, crystalline structure, and optical properties of the samples were determined by EDX, XRD, FTIR, and UV-visible spectroscopies. The grown films are polycrystalline, and the preferred crystallographic orientation depends on the Zn atomic concentration in the film. The optical transmission in the UV-visible range is approximately 80% in all cases, and as the Zn atomic content increases, the absorption edge shifts to longer wavelengths. The optical band gap, E{sub g}, shifted from 5.5 to 3.5 eV when the Zn/Zr atomic ratio was increased. The results indicate the potential use of these materials in optoelectronic applications. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Development of AMS procedure for measurement of 93Zr

    Science.gov (United States)

    Lu, Wenting; Collon, Philippe; Kashiv, Yoav; Bowers, Matthew; Robertson, Daniel; Schmitt, Christopher

    2011-10-01

    The procedure for measuring 93Zr (t1/2 = 1.5 Ma) by AMS is currently being developed at the Nuclear Science Lab at the University of Notre Dame and we report on first experiments performed in this direction. AMS detection of 93Zr can potentially be applied to address astrophysical and environmental issues: (1) the measurement of the 92Zr(n,γ)93Zr reaction cross-section at nucleosynthesis s-process relevant temperatures, (2) the search for potential live 93Zr from a supernova in deep sea sediments, (3) hydrological and radioactive waste tracing. The measurement of 93Zr requires adequate separation from its stable isobar 93Nb. We are currently working on optimizing this separation by using the GasFilled Magnet technique with additional multiple dE measurements in a focal plane ionization chamber.

  3. Thermophysical Properties of ZrB2-Based Ceramics

    International Nuclear Information System (INIS)

    Zimmermann, James W.; Hilmas, Gregory E.; Fahrenholtz, William G.; Buchheit, Andrew A; Dinwiddie, Ralph Barton; Porter, Wallace D; Wang, Hsin

    2008-01-01

    Thermophysical properties were investigated for ZrB2 and ZrB2-30vol% SiC ceramics. Thermal conductivities were calculated from measured thermal diffusivities, heat capacities, and thermal expansions. The thermal conductivity of ZrB2 increased from 58.7 W/m K at room temperature to 62.0 W/m K at 1675 K, whereas the thermal conductivity of ZrB2-SiC decreased from 62.0 W/m K to 56 W/m K over the same temperature range. Electron and phonon contributions to thermal conductivity were determined using electrical resistivity measurements and were used, along with grain size models, to explain the observed trends. The results are compared to previously reported thermal conductivities for ZrB2 and ZrB2-SiC

  4. Diffusion studies in amorphous NiZr alloys

    International Nuclear Information System (INIS)

    Hahn, H.; Averback, R.S.; Hoshino, K.; Rothman, S.J.

    1987-06-01

    Tracer impurity and self diffusion measurements have been made on amorphous (a-) NiZr alloys using radioactive tracer, Secondary Ion Mass Spectrometry and Rutherford backscattering techniques. The temperature dependence of diffusion in a-NiZr can be represented in the form D = D 0 exp(-Q/kT), with no structural relaxation effects being observed. The mobility of an atom in a-NiZr increased dramatically with decreasing atomic radius of the diffusing atom and also with decreasing Ni content for Ni concentrations below ≅40 at. %. These diffusion characteristics in a-NiZr are remarkably similar to those in α-Zr and α-Ti. These mechanisms assume that Zr and Ti provide a close packed structure, either crystalline or amorphous, through which small atoms diffuse by an interstitial mechanism and large atoms diffuse by a vacancy mechanism. 12 refs., 2 figs., 2 tabs

  5. Introduction of Zr in nanometric periodic Mg/Co multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, K.; Hu, M.H.; Andre, J.M.; Jonnard, P. [UPMC Univ Paris 06, CNRS UMR 7614, Laboratoire de Chimie Physique - Matiere Rayonnement, Paris cedex 05 (France); Zhou, S.K.; Li, H.C.; Zhu, J.T.; Wang, Z.S. [Tongji University, Institute of Precision Optical Engineering, Department of Physics, Shanghai (China); Mahne, N.; Giglia, A.; Nannarone, S. [Istituto Officina dei Materiali IOM-CNR Laboratorio TASC, Trieste (Italy)

    2011-01-15

    We study the introduction of a third material, namely Zr, within a nanometric periodic Mg/Co structure designed to work as optical component in the extreme UV (EUV) spectral range. Mg/Co, Mg/Zr/Co, Mg/Co/Zr and Mg/Zr/Co/Zr multilayers are designed, and then characterized in terms of structural quality and optical performances through X-ray and EUV reflectometry measurements, respectively. For the Mg/Co/Zr structure, the reflectance value is equal to 50% at 25.1 nm and 45 of grazing incidence and reaches 51.3% upon annealing at 200 C. Measured EUV reflectivity values of tri-layered systems are discussed in terms of material order within a period and compared to the predictions of the theoretical model of Larruquert. Possible applications are pointed out. (orig.)

  6. Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation

    KAUST Repository

    Vlach, Martin

    2015-01-29

    Thermal effects on the precipitation stages in as-cast Al-0.70 at. pct Mn-0.15 at. pct Sc-0.05 at. pct Zr alloy were studied. The role of lattice defects was elucidated by positron annihilation spectroscopy (lifetime and coincidence Doppler broadening) enabling investigation of solutes clustering at the atomic scale. This technique has never been used in the Al-Sc- and/or Al-Zr-based alloys so far. Studies by positron annihilation were combined with resistometry, hardness measurements, and microstructure observations. Positrons trapped at defects are preferentially annihilated by Sc electrons. Lifetime of trapped positrons indicates that Sc atoms segregate at dislocations. Maximum fraction of positrons annihilated by Sc electrons occurring at 453 K (180 °C) suggests that clustering of Sc bound with vacancies takes place. It is followed by peak of this fraction at 573 K (300 °C). A rise of the contribution of trapped positrons annihilated by Zr electrons starting at 513 K (240 °C) and attaining maximum also at 573 K (300 °C) confirms that Zr participates in precipitation of the Al3Sc particles already at these temperatures. The pronounced hardening at 573 K (300 °C) has its nature in the precipitation of the Al3Sc particles with a Zr-rich shell. The contribution of trapped positrons annihilated by Mn electrons was found to be negligible. © 2015, The Minerals, Metals & Materials Society and ASM International.

  7. Isobar separation of 93Zr and 93Nb at 24 MeV with a new multi-anode ionization chamber

    International Nuclear Information System (INIS)

    Martschini, Martin; Buchriegler, Josef; Collon, Philippe; Kutschera, Walter; Lachner, Johannes; Lu, Wenting; Priller, Alfred; Steier, Peter; Golser, Robin

    2015-01-01

    93 Zr with a half-life of 1.6 Ma is produced with high yield in nuclear fission, and thus should be present as a natural or anthropogenic trace isotope in all compartments of the general environment. Sensitive measurements of this isotope would immediately find numerous applications, however, its detection at sufficiently low levels has not yet been achieved. AMS measurements of 93 Zr suffer from the interference of the stable isobar 93 Nb. At the Vienna Environmental Research Accelerator VERA a new multi-anode ionization chamber was built. It is optimized for isobar separation in the medium mass range and is based on the experience from AMS experiments of 36 Cl at our 3-MV tandem accelerator facility. The design provides high flexibility in anode configuration and detector geometry. After validating the excellent energy resolution of the detector with 36 S, it was recently used to study iron–nickel and zirconium–niobium–molybdenum isobar separation. To our surprise, the separation of 94 Zr (Z = 40) from 94 Mo (Z = 42) was found to be much better than that of 58 Fe (Z = 26) from 58 Ni (Z = 28), despite the significantly larger ΔZ/Z of the latter pair. This clearly contradicts results from SRIM-simulations and suggests that differences in the stopping behavior may unexpectedly favor identification of 93 Zr. At 24 MeV particle energy, a 93 Nb (Z = 41) suppression factor of 1000 is expected based on a synthetic 93 Zr spectrum obtained by interpolation between experimental spectra from the two neighboring stable isotopes 92 Zr and 94 Zr. Assuming realistic numbers for chemical niobium reduction, a detection level of 93 Zr/Zr below 10 −9 seems feasible.

  8. On the densification of cubic ZrO{sub 2} nanocondensates by capillarity force and turbostratic C–Si–H multiple shell

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chao-Hsien [Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC (China); Chen, Shuei-Yuan [Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung 84001, Taiwan, ROC (China); Shen, Pouyan, E-mail: pshen@mail.nsysu.edu.tw [Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC (China)

    2013-04-15

    A turbostratic C–Si–H lamellar phase with 0.35–0.39 nm interspacing and ZrO{sub 2} condensates having cubic (c), tetragonal and monoclinic structures stabilized by increasing particle size were synthesized by pulsed laser ablation on Zr plate in TEOS and characterized by X-ray/electron diffraction and optical spectroscopy. The c-ZrO{sub 2} phase ca. 10% denser than the ambient lattice was stabilized as 3–10 nm sized cubo-octahedral nanoparticles but as abnormal large-sized (up to 30 nm) ones when encapsulated by the C{sub 1−x}Si{sub x}:H multiple shell with defective graphite-like structure units to exert an effective compressive stress. The potential application of such core–shell nanostructure with enhanced binding of Zr and O ions and implication for natural dynamic occurrence of the C{sub 1−x}Si{sub x}:H phase are addressed. - Graphical abstract: Lattice image of a typical cubic-ZrO{sub 2} particle densified by the turbostratic Si{sub x}C{sub 1−x}:H shell. Highlights: ► Turbostratic C–Si–H lamellar phase and ZrO{sub 2} condensates were synthesized by PLA. ► The c-ZrO{sub 2} phase ca. 10% denser than the ambient lattice was stabilized as 3–10 nm. ► The c-ZrO{sub 2} particles up to 30 nm were densified when encapsulated by the C{sub 1−x}Si{sub x}:H multiple shell. ► Tight ion binding of the c-ZrO{sub 2} due to capillarity force and turbostratic shell.

  9. Thermally induced structural modification in the Al/Zr multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Qi; Zhang, Zhong; Ma, Shuang; Qi, Runze; Li, Jia [MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering, Department of Physics, Tongji University, Shanghai 200092 (China); Wang, Zhanshan, E-mail: wangzs@tongji.edu.cn [MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering, Department of Physics, Tongji University, Shanghai 200092 (China); Jonnard, Philippe; Le Guen, Karine; André, Jean-Michel [Laboratoire de Chimie Physique – Matière Rayonnement, UPMC Univ Paris 06, CNRS UMR 7614, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05 (France)

    2013-08-15

    The effect of increasing temperature on the structural stability and interactions of two kinds of Al/Zr (Al(1%wtSi)/Zr and Al(Pure)/Zr) multilayer mirrors are investigated. All Al/Zr multilayers annealed from 200 °C to 500 °C were deposited on Si wafers by using direct-current magnetron sputtering technology. A detailed and consistent picture of the thermally induced changes in the microstructure is obtained using an array of complementary measurements including grazing incidence X-ray reflectometry, atomic force microscopy, X-ray diffraction and high-resolution transmission electron microscopy. The first significant structural changes of two systems are observed at 250 °C, characterized by asymmetrical interlayers appearing at interface. At 290 °C, the interface consisting of amorphous Al–Zr alloy is transformed to amorphous Al–Zr alloy and cubic ZrAl{sub 3} in both systems. At 298 °C for Al(1%wtSi)/Zr and 295 °C for Al(Pure)/Zr multilayers, the interfacial phases of Al–Zr alloy transform into polycrystalline mixtures of hcp-ZrAl{sub 2} and cubic-ZrAl{sub 3}, which smooth the interface boundary and lower the surface roughness in the multilayers. Up to 500 °C, the multilayer structure still exists in both systems, and the differences between the asymmetrical interlayers are much larger in the multilayers. Finally, we discuss the transformation from symmetrical to asymmetrical in the annealing process for other multilayer systems.

  10. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

  11. First-principles study of structural stability, electronic, optical and elastic properties of binary intermetallic: PtZr

    Energy Technology Data Exchange (ETDEWEB)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in [Department of Physics, Sarojini Naidu Government Girls P. G. Autonomous College, Bhopal-462016 (India); Jain, Ekta, E-mail: jainekta05@gmail.com [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Sanyal, S. P., E-mail: sps.physicsbu@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2016-05-06

    Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time. Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.

  12. Decay of 02+ states in 88,92,94Zr and E0 systematics of Zr isotopes

    International Nuclear Information System (INIS)

    Julin, R.; Kantele, J.; Luontama, M.; Passoja, A.

    1981-07-01

    Branching ratios of E0 and E2 transitions depopulating the 0 2 + states of 88 , 92 , 94 Zr) have been determined using conversion-electron and γ-ray spectroscopy. Two different lifetime-measurement methods were applied in the remeasurement of the half-lives of the 0 2 + states in 92 , 94 Zr, yielding consistent results of Tsub(1/2)(0 2 + , 92 Zr = 85(15) ps and Tsub(1/2)(0 2 + , 94 Zr) = 280(40) ps. The monopole strengths extracted are rho 2 ( 92 Zr) = 8.4(17)x10 -3 and rho 2 ( 294 Zr) = 11.9(20)x10 -3 . The proton configurations of the 0 2 + states are discussed in view of these values and proton transfer data. (author)

  13. INTEGRAL ESTIMATE OF THE EFFECTIVENESS OF PERFORMANCE OF INDICES OF STATE TARGET PROGRAMS FOR THE PROTECTION OF THE NATURAL ENVIRONMENT IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Oksana Senyshyn

    2017-12-01

    Full Text Available This scientific article deals with the integral estimate of the effectiveness of performance of indices of the state target programs for protection of the natural environment in Ukraine, namely – the subject of the research is quantitative indices of the State target program “Forests of Ukraine” for 2010–2015 and their estimate. Methodology. The methodological basis of the study is the system of indices for the estimate of effectiveness and performance of the state target programs for the protection of the natural environment that include the following indices (indicators: an integrated index of financing the program actions and indicators of co-financing. The author applies integrated indicator of financing the program tasks and actions to assess the actual level of financing the program from various sources through the entire period of the program implementation and to carry out a comparative analysis of financial support for various programs implemented at the expense of the budgetary funds and other sources. The author uses indicator of co-financing for calculating the ratio of actual and planned indicators of the attraction of the funds from other sources (public borrowings, extrabudgetary funds per 1 UAH of the budget funds. Results. Proceeding from the analysis of quantitative indices of the State target program “Forests of Ukraine” for 2010–2015, it was established that for all 5 years of activity, the planned level of budget financing of the Program has not been achieved. In particular, in 2010–2011, operations and tasks of the Program had been financed from the budget funds by 77% and in 2014–2015 by 33% and 27% respectively. During the entire period of the Program implementation, the average annual rate of actual financing from all sources attained 147%, including 53% from the state budget and 206% from other sources of financing. The author has proved that the said indices of the performance of the Program

  14. Electrical Conductivities of Low-Temperature KCl-ZrCl4 and CsCl-ZrCl4 Molten Mixtures

    Science.gov (United States)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2018-02-01

    The electrical conductivities of molten KCl-ZrCl4 and CsCl-ZrCl4 mixtures, including their heterogeneous (melt+crystals) ranges, were measured for the first time. The concentration ranges were 65-72 and 66-75 mol.% of ZrCl4, and the temperature ranges were 482-711 and 548-735 K, respectively. The measurements were carried out in cells of an original design.

  15. Structures, morphologies, and chemical states of sputter-deposited CrZrN thin films with various Zr contents

    Energy Technology Data Exchange (ETDEWEB)

    Chantharangsi, C., E-mail: jiphysics@gmail.com [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Denchitcharoen, S. [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Chaiyakun, S. [Vacuum Technology and Thin Film Research Laboratory, Department of Physics, Faculty of Science, Burapha University, Chonburi 20131 (Thailand); Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Limsuwan, P. [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand)

    2015-08-31

    Chromium zirconium nitride (CrZrN) thin films were prepared on Si wafers and glasses at various Zr contents by reactive DC magnetron co-sputtering of Cr and Zr metals in Ar and N{sub 2} mixture without voltage biasing and external heating. Influences of the Zr contents on crystal structure, cross-section morphology, surface morphology, and chemical composition and chemical state were investigated by X-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy, respectively. The results showed that N content in the films was increased when Zr content increased. Film microstructure changed from coarse columnar to finer-grain morphology and film surface became smooth caused by grain refinement. Zr–metal and Zr–N bonding fractions were increased with the increasing Zr content, whereas Cr–N was decreased due to being substituted by Zr of Cr atoms in the fcc B1 type crystal structure of (Cr, Zr)N. In addition to an increase in lattice parameter, the substitution of Zr could lead to an increase in interatomic distances which affected bonding length between metals and nitrogen atoms. According to the charge potential model, the increase in bonding distances between atoms resulted in negative shifts in binding energy of electrons of all elements that led to observation of lowering in the separation between photoelectron lines of Cr, Zr, and N elements. The lower separation with the increase of Zr content suggested that bonding between metals and nitrogen became stronger due to the dominance of the covalent character as evidenced by the enhanced hardness of the CrZrN materials. - Highlights: • An increase of Zr in chromium zirconium nitrides induced the N content to increase. • Addition of Zr resulted in the film structure to become a finer-grain morphology. • Increasing Zr content resulted in the reduction of electron binding energy of atoms. • The Zr addition led to the increase of covalent

  16. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xishan [Northwestern Polytechnical University, School of Astronautics, Xi' an (China); AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Aeronautical Key Laboratory for Welding and Joining Technology, Beijing (China); Xie, Zonghong [Northwestern Polytechnical University, School of Astronautics, Xi' an (China); Jing, Yongjuan [AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Aeronautical Key Laboratory for Welding and Joining Technology, Beijing (China)

    2017-07-15

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell (n{sub A}{sup u-v}) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n{sub A}{sup u-v} represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5 ∝ 45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2 ∝ 10 wt%. Thus, Ti-based filler metal with Zr content being 2 ∝ 10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n{sub A}{sup u-v} showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface. (orig.)

  17. Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Science.gov (United States)

    Amin, A.R.M. Ruhul; Karpowicz, Phillip A.; Carey, Thomas E.; Arbiser, Jack; Nahta, Rita; Chen, Zhuo G.; Dong, Jin-Tang; Kucuk, Omer; Khan, Gazala N.; Huang, Gloria S.; Mi, Shijun; Lee, Ho-Young; Reichrath, Joerg; Honoki, Kanya; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S.; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I.; Azmi, Asfar S.; Keith, W Nicol; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Fujii, Hiromasa; Aquilano, Katia; Ashraf, S. Salman; Nowsheen, Somaira; Yang, Xujuan; Bilsland, Alan; Shin, Dong M.

    2015-01-01

    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting. PMID:25749195

  18. Study of the effect of the silver content on the structural and mechanical behavior of Ag–ZrCN coatings for orthopedic prostheses

    International Nuclear Information System (INIS)

    Ferreri, I.; Lopes, V.; Calderon V, S.; Tavares, C.J.; Cavaleiro, A.; Carvalho, S.

    2014-01-01

    With the increase of elderly population and health problems that are arising nowadays, hip joint prostheses are being widely used. However, it is estimated that 20% of hip replacement surgeries simply fails after few years, mainly due to wear fatigue. Bearing this in mind, this work reports on the development of new coatings that are able to sustain long and innocuous life inside the patient, which will confer to the usual biomaterials improved physical, mechanical and tribological properties. In particular, the development of multifunctional coatings based on Ag-ZrCN, prepared by DC reactive magnetron sputtering using two targets, Zr and a modified Zr target, in an Ar + C 2 H 2 + N 2 atmosphere. Silver pellets were placed in the erosion area of the alloyed Zr target in order to obtain a silver content up to 8 at.%. The structural results obtained by x-ray diffraction show that the coatings crystallize in a NaCl crystal structure typical of ZrC 1-x N x . The increase of Ag content promoted the formation of an additional a-CN x amorphous phase, besides a silver crystalline phase. Hardness is decreasing, as increasing silver content. Despite the low thicknesses, adhesion values (L C3 ) can be considered as good. Dynamic fatigue results suggest that these coatings system can be a real asset in terms of mechanical properties, by improving the performance of usual Stainless Steel 316 L biomaterials. - Highlights: • ZrCN, silver and carbon based amorphous phases, form the structure of the coatings. • Ag–ZrCN coatings have a high capacity to withstand an impact load without fracturing. • Silver incorporation reduces the fatigue failures of the coatings. • The films possess mechanical resistance and biocompatibility, required in prostheses

  19. Synthesis of (U,Zr)C solid solutions under exothermic conditions

    International Nuclear Information System (INIS)

    Wang, L.L.; Moore, H.G.; Gladson, J.W.

    1993-01-01

    The reactions of forming (U,Zr)C solid solutions from their elemental components or similarly less stable reactants such as UC 2 are strongly exothermic due to the high stability of these solid solutions. A simple approach of utilizing this heat of formation energy to assist the solid solution reaction process is to intimately mix the less stable reactant powders and then pressed them into a compact. The compact is then heated to the ignition temperature of the reaction. The feasibility of this reaction method to synthesize (U,Zr)C solid solutions has been demonstrated in this study. The preliminary results also show that both the initial composition and the heating rate have a significant effect on the nature of the reaction process. As expected the degree of powder mixing was also found to affect the completeness of the reaction

  20. A quantum mechanical study of La-doped Pb(Zr,Ti)O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids [Grupo de Fisica de Cristales, Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)]. E-mail: arvids@utpl.edu.ec; Maldonado, Frank [Grupo de Fisica de Cristales, Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)

    2007-04-15

    Lanthanum-modified Pb(Zr,Ti)O{sub 3} (PZT) crystals have been investigated applying a quantum-mechanical approach based on the Hartree-Fock theory. A morphotropic phase boundary (MPB), PbZr{sub 0.53}Ti{sub 0.47}O{sub 3}, of the crystal was considered throughout the study. The obtained results show the outward atomic displacements with respect to the La impurity within the defective region and also the increase of covalent nature in the chemical bonding of the material. These outcomes are discussed and analyzed in light of the available experimental data. The occurrence of Jahn-Teller self-trapped electron polarons is predicted in the present report.

  1. Neutron capture cross section of $^{93}$Zr

    CERN Multimedia

    We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.

  2. ZrO2-ZrW2O8 Composites with tailor-made thermal expansion

    Directory of Open Access Journals (Sweden)

    K. De Buysser

    2004-12-01

    Full Text Available Most of the materials expand upon heating. There are a few families of materials which exhibit negative thermal expansion (NTE. ZrW2O8 is an example which gained a lot of interest in international literature recently. This cubic material has an exceptionally large and isotropic negative thermal expansion over its entire stability range (0.5 to 1050 K. At 430 K a phase transition occurs from a-ZrW2O8 (a = -9.1 x 10-6 K-1 to b-ZrW2O8 (b = -5.4 x 10-6 K-1. At high pressures an orthorhombic phase is formed, g-ZrW2O8, which possesses a small negative expansion coefficient. A broad range of applications have been suggested for these NTE materials. In composites, their thermal expansion coefficient can be tailor-made by combining a NTE material with a positive expansion material. Adjusting the volume fraction of the different phases results in a positive, negative or even zero thermal expansion. The ZrW2O8 - ZrO2 - composites studied in this paper were prepared in two ways. The first synthesis method applied, started from off-stoichiometry mixtures of the pure oxide powders of ZrO2 and WO3. This novel in situ process included a heating step up to 1450 K which combines the formation and sintering of ZrW2O8. In the conventional synthesis the starting materials were ZrO2 and ZrW2O8. ZrW2O8 was first obtained using an optimised spray drying technique. Obviously, our "in situ" method does not require such an additional step. The crystal structure, morphology, thermal expansion behaviour and mechanical properties of these composites were tested and compared.

  3. Structural, dielectric and piezoelectric study of Ca-, Zr-modified ...

    Indian Academy of Sciences (India)

    2017-08-22

    Aug 22, 2017 ... Structural, dielectric and piezoelectric study of Ca-, Zr-modified. BaTiO3 lead-free ceramics ... small amounts of Zr4+ can affect the crystal structure and microstructure as well as dielectric and piezoelectric properties of BaTiO3. ..... We would like to thank PHC Toubkal for the financial support. References.

  4. Facile combustion synthesis of novel CaZrO 3

    Indian Academy of Sciences (India)

    Abstract. A facile sol–gel combustion route was reported for the direct preparation of CaZrO3:Eu3+ and CaZrO3:Eu3+, Gd3+. The obtained deposits were characterized by XRD, TGA-DSC, SEM, EDS, PL measurements and microscope fluorescence. When the Gd3+ ions were introduced in this compound, the emissions of ...

  5. Band gap tuning of amorphous Al oxides by Zr alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Jones, N. C.; Borca, C. N.

    2016-01-01

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides, with Zr content ranging from4.8 to 21.9% were determined using vacuum ultraviolet (VUV) and X-ray absorption spectroscopy (XAS). Thelight scattering by the nano-porous structure of alumina at low wavelengths was estima...

  6. Zr-based conversion coatings for multi-metal substrates

    NARCIS (Netherlands)

    Cerezo Palacios, J.M.

    2015-01-01

    In this PhD work, a new surface treatment based on the application of Zr-based conversion coatings by immersion in a Cu containing Zr-based conversion solution was investigated as a replacement of the traditional phosphating process for the automotive industry. Nowadays most of the cars are made of

  7. Effect of Zr on dielectric, ferroelectric and impedance properties of ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. A polycrystalline sample of Zr-doped barium titanate (BaTiO3) was prepared by conventional solid state reaction method. The effect of Zr (0⋅15) on the structural and microstructural properties of BaTiO3 was investigated by XRD and SEM. The electrical properties (dielectric, ferroelectric and impedance spectro-.

  8. Band gap tuning of amorphous Al oxides by Zr alloying

    Energy Technology Data Exchange (ETDEWEB)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J. [Department of Photonics Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark); Borca, C. N.; Piamonteze, C. [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Rechendorff, K.; Nielsen, L. P.; Almtoft, K. P. [Danish Technological Institute, Kongsvang Alle 29, 8000 Aarhus (Denmark); Gudla, V. C.; Bordo, K.; Ambat, R. [Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs-Lyngby (Denmark)

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearly as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.

  9. Effect of Zr on dielectric, ferroelectric and impedance properties of ...

    Indian Academy of Sciences (India)

    A polycrystalline sample of Zr-doped barium titanate (BaTiO3) was prepared by conventional solid state reaction method. The effect of Zr (0.15) on the structural and microstructural properties of BaTiO3 was investigated by XRD and SEM. The electrical properties (dielectric, ferroelectric and impedance spectroscopy) were ...

  10. Mechanical and thermal properties of bulk ZrB2

    International Nuclear Information System (INIS)

    Nakamori, Fumihiro; Ohishi, Yuji; Muta, Hiroaki; Kurosaki, Ken; Fukumoto, Ken-ichi; Yamanaka, Shinsuke

    2015-01-01

    ZrB 2 appears to have formed in the fuel debris at the Fukushima Daiichi nuclear disaster site, through the reaction between Zircaloy cladding materials and the control rod material B 4 C. Since ZrB 2 has a high melting point of 3518 K, the ceramic has been widely studied as a heat-resistant material. Although various studies on the thermochemical and thermophysical properties have been performed for ZrB 2 , significant differences exist in the data, possibly due to impurities or the porosity within the studied samples. In the present study, we have prepared a ZrB 2 bulk sample with 93.1% theoretical density by sintering ZrB 2 powder. On this sample, we have comprehensively examined the thermal and mechanical properties of ZrB 2 by the measurement of specific heat, ultrasonic sound velocities, thermal diffusivity, and thermal expansion. Vickers hardness and fracture toughness were also measured and found to be 13–23 GPa and 1.8–2.8 MPa m 0.5 , respectively. The relationships between these properties were carefully examined in the present study. - Highlights: • A ZrB 2 bulk sample with 93.1% theoretical density was prepared by sintering ZrB 2 powder. • We have evaluated mechanical and thermal properties such as Vickers hardness, fracture toughness and thermal conductivity. • The relationships between these properties were carefully examined.

  11. Electrodeposition and characterization of Ni–W/ZrO2 ...

    Indian Academy of Sciences (India)

    Administrator

    site coatings and a reduction in the wear weight loss. The corrosion behaviour of Ni–W/ZrO2 nanocomposite coatings was evaluated by the anodic polarization curves and weight loss measurements. The results revealed that Ni–W/ZrO2 nanocomposite coating has better corrosion resistance than the Ni–W alloy coating.

  12. Anodic oxide growth on Zr in neutral aqueous solution

    Indian Academy of Sciences (India)

    Abstract. Anodization and subsequent cathodic reactions on a thin-film sample of Zr were studied with in-situ neutron reflectometry (NR) and electrochemical impedance spec- troscopy (EIS). The NR results during anodization showed the originally 485 Å thick Zr film generally behaved similar to a bulk electrode in neutral ...

  13. The corrosion behaviour of Zr3Al-based alloys

    International Nuclear Information System (INIS)

    Murphy, E.V.; Wieler, R.

    1977-07-01

    The corrosion resistance of several zirconium-aluminum alloys with aluminum contents ranging from 7.6 to 9.6 wt% was examined in 300 deg C and 325 deg C water, 350 deg C and 400 deg C steam and in air and wet CO 2 at 325 deg C and 400 deg C. In the transformed alloys there are three phases present, αZr, Zr 2 Al and Zr 3 Al of which the αZr phase is the least corrosion resistant. The most important factor controlling the corrosion behaviour of these alloys was found to be the size, distribution and amount of the αZr phase in the transformed alloys, which in turn was dependent upon the microstructural scale of the untransformed alloys

  14. Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class i molecules

    KAUST Repository

    Tallerico, Rossana

    2013-01-23

    Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the "differentiated" cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma- derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the "differentiated" tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors. Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved.

  15. ZrC zone structure and features of electronic structure of solid solutions on the base ZrC, ZrN, TiC and TiN

    International Nuclear Information System (INIS)

    Mokhracheva, L.P.; Gel'd, P.V.; Tskhaj, V.A.

    1983-01-01

    The results of ZrC zone structure calculation conducted using the strong bond method in the three-centre variant are given. Essentially higher degree of M-C chemical bond ionicity than in TiC is shown to take place for it. Solid solution formation in TiC-ZrC, TiN-ZrC and ZrC-ZrN systems differing from TiC-TiN, TiN-ZrN and TiC-TiN is stated to be followed by essential deformation of component zone structures that, obviously, should prevent formation of solid solutions without vacancies in sublatices in these systems

  16. Romidepsin alone or in combination with anti-CD20 chimeric antigen receptor expanded natural killer cells targeting Burkitt lymphomain vitroand in immunodeficient mice.

    Science.gov (United States)

    Chu, Yaya; Yahr, Ashlin; Huang, Brian; Ayello, Janet; Barth, Matthew; S Cairo, Mitchell

    2017-01-01

    Facilitating the development of alternative targeted therapeutic strategies is urgently required to improve outcome or circumvent chemotherapy resistance in children, adolescents, and adults with recurrent/refractory de novo mature B-cell (CD20) non-Hodgkin lymphoma, including Burkitt lymphoma (BL). Romidepsin, a histone deacetylase inhibitor (HDACi), has been used to treat cutaneous T-cell lymphoma. We have demonstrated the significant anti-tumor effect of anti-CD20 chimeric antigen receptor (CAR) modified expanded peripheral blood natural killer (exPBNK) against rituximab-sensitive and -resistant BL. This study examined the anti-tumor activity of romidepsin alone and in combination with anti-CD20 CAR exPBNKs against rituximab-sensitive and -resistant BL in vitro and in vivo . We found that romidepsin significantly inhibited both rituximab-sensitive and -resistant BL cell proliferation in vitro (P cell death in rituximab-sensitive Raji (P cell cycle arrest in rituximab-resistant Raji-2R and Raji-4RH (P NSG mice. We also demonstrated that romidpesin significantly induced the expression of Natural Killer Group 2, Member D (NKG2D) ligands MICA/B in both rituximab-sensitive and -resistant BL cells (P cell death in BL cells in vitro , reduced tumor burden and enhanced survival in humanized BL xenografted NSG mice (p < 0.05). Our data suggests that romidepsin is an active HDAC inhibitor that also potentiates expanded NK and anti-CD20 CAR exPBNK activity against rituximab-sensitive and -resistant BL.

  17. Effect of Nb aggregates on Zr2Fe

    International Nuclear Information System (INIS)

    Ramos, Cinthia P.

    2001-01-01

    The binary Zr-Fe phase diagram revision, performed by Arias et al., accepted the intermetallic Zr 2 Fe crystalline structure as tetragonal and determined that the presence of a third element like oxygen, nitrogen or carbon, stabilizes a cubic phase. Nevitt et al. studying Ti, Zr and Hf alloys with transition metals as second or third element and ternary systems with oxygen as third element, systematized the occurrence of phases with a cubic Ti 2 Ni type crystalline structure. From previous studies in the Zr-Nb-Fe system, it is an agreed fact that Nb presence in the Zr 2 Fe intermetallic stabilizes a cubic Ti 2 Ni type phase. The purpose of the present work is to determine the stability range of the Zr 2 Fe intermetallic with Nb contents, the existence range of the ternary cubic Ti 2 Ni type phase (designated Λ) and the corresponding two-phase region. We analyze as cast and heat treated (800 C degrees) Zr-Nb-Fe alloys with 35 atomic % Fe and Nb contents between 0.5 and 15 atomic %. The determination and characterization of the phases is made by optical and scanning electron microscopy, X-ray diffraction microprobe analysis and Moessbauer Spectroscopy. Joining these techniques together it is found, among many other things, that the Zr 2 Fe phase would accept up to around 0.5 atomic % Nb in solution and that the two-phase region Zr 2 Fe+Λ would be stable in the (0.5 - 3.5) Nb atomic % range. It is proposed as well a 800 C degrees section of the ternary (Zr-Nb-Fe) in the studied region. (author) [es

  18. Fabrication of multilayer ZrO₂-biphasic calcium phosphate-poly-caprolactone unidirectional channeled scaffold for bone tissue formation.

    Science.gov (United States)

    Mondal, Dibakar; So-Ra, Son; Sarkar, Swapan Kumar; Min, Young Ki; Yang, Hun Mo; Lee, Byong Taek

    2013-09-01

    We developed a continuously porous scaffold with laminated matrix and bone-like microstructure by a multi-pass extrusion process. In this scaffold, tetragonal ZrO₂, biphasic calcium phosphate and poly-caprolactone layers were arranged in a co-axially laminated unit cell with a channel in the center. The entire matrix phase had a laminated microstructure of alternate lamina of tetragonal ZrO₂, biphasic calcium phosphate and poly-caprolactone--biphasic calcium phosphate with optimized designed thickness and channeled porosity. Each of the continuous pores was coaxially encircled by the poly-caprolactone--biphasic calcium phosphate layer, biphasic calcium phosphate layer and finally tetragonal ZrO₂ layer, one after the other. Before extrusion, 5 vol% graphite powder was mixed with tetragonal ZrO₂ to ensure pores in the outer layer and connectivity among the lamellas. The design strategy is aimed to incorporate a lamellar microstructure like the natural bone in the macro-scaled ceramic body to investigate the strengthening phenomenon and pave the way for fabricating complex microstructure of natural bone could be applied for whole bone replacement. The final fabricated scaffold had a compressive strength of 12.7 MPa and porosity of 78 vol% with excellent cell viability, cell attachment and osteocalcin and collagen expression from cultured MG63 cells on scaffold.

  19. Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region.

    Science.gov (United States)

    Huang, C H; Lai, J J; Wei, T Y; Chen, Y H; Wang, X; Kuan, S Y; Huang, J C

    2015-01-01

    The effects of the nanocrystalline phases on the bio-corrosion behavior of highly bio-friendly Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid were investigated, and the findings are compared with our previous observations from the Zr53Cu30Ni9Al8 metallic glasses. The Ti42Zr40Si15Ta3 metallic glasses were annealed at temperatures above the glass transition temperature, Tg, with different time periods to result in different degrees of α-Ti nano-phases in the amorphous matrix. The nanocrystallized Ti42Zr40Si15Ta3 metallic glasses containing corrosion resistant α-Ti phases exhibited more promising bio-corrosion resistance, due to the superior pitting resistance. This is distinctly different from the previous case of the Zr53Cu30Ni9Al8 metallic glasses with the reactive Zr2Cu phases inducing serious galvanic corrosion and lower bio-corrosion resistance. Thus, whether the fully amorphous or partially crystallized metallic glass would exhibit better bio-corrosion resistance, the answer would depend on the crystallized phase nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Production of Y-86 and other radiometals for research purposes using a solution target system

    International Nuclear Information System (INIS)

    Oehlke, Elisabeth; Hoehr, Cornelia; Hou, Xinchi; Hanemaayer, Victoire; Zeisler, Stefan; Adam, Michael J.; Ruth, Thomas J.; Celler, Anna; Buckley, Ken; Benard, Francois; Schaffer, Paul

    2015-01-01

    Introduction: Diagnostic radiometals are typically obtained from cyclotrons by irradiating solid targets or from radioisotope generators. These methods have the advantage of high production yields, but require additional solid target handling infrastructure that is not readily available to many cyclotron facilities. Herein, we provide an overview of our results regarding the production of various positron-emitting radiometals using a liquid target system installed on a 13 MeV cyclotron at TRIUMF. Details about the production, purification and quality control of 89 Zr, 68 Ga and for the first time 86 Y are discussed. Methods: Aqueous solutions containing 1.35–1.65 g/mL of natural-abundance zinc nitrate, yttrium nitrate, and strontium nitrate were irradiated on a 13 MeV cyclotron using a standard liquid target. Different target body and foil materials were investigated for corrosion. Production yields were calculated using theoretical cross-sections from the EMPIRE code and compared with experimental results. The radioisotopes were extracted from irradiated target material using solid phase extraction methods adapted from previously reported methods, and used for radiolabelling experiments. Results: We demonstrated production quantities that are sufficient for chemical and biological studies for three separate radiometals, 89 Zr (A sat = 360 MBq/μA and yield = 3.17 MBq/μA), 86 Y (A sat = 31 MBq/μA and yield = 1.44 MBq/μA), and 68 Ga (A sat = 141 MBq/μA and yield = 64 MBq/μA) from one hour long irradiations on a typical medical cyclotron. 68 Ga yields were sufficient for potential clinical applications. In order to avoid corrosion of the target body and target foil, nitrate solutions were chosen as well as niobium as target-body material. An automatic loading system enabled up to three production runs per day. The separation efficiency ranged from 82 to 99%. Subsequently, 68 Ga and 86 Y were successfully used to radiolabel DOTA-based chelators while

  1. Skin effect suppression for Cu/CoZrNb multilayered inductor

    Science.gov (United States)

    Sato, Noriyuki; Endo, Yasushi; Yamaguchi, Masahiro

    2012-04-01

    The Cu/Co85Zr3Nb12 multilayer is studied as a conductor of a spiral inductor to suppress the skin effect at the 5 GHz range (matches IEEE 802.11 a standard) using negative-permeability in CoZrNb films beyond the ferromagnetic resonance frequency. The skin effect suppression becomes remarkable when the thickness of Cu in each period of the multilayer, tCu, is less than the skin depth of Cu at the targeting frequency. For the 5 GHz operation, tCu ≤ 750 nm. The resistance of the Cu/CoZrNb multilayered spiral inductor decreases as much as 8.7%, while keeping the same inductance of 1.1 nH as that of a similar air core. Accordingly, Q = 16. Therefore, the proposed method can contribute to realize a high-Q spiral inductor. We also study the potentially applicable frequency of this method. Given a soft magnetic material with Ms = 105 emu/cc and Hk = 5 Oe, the method can be applied at 700 MHz, the lowermost carrier frequency band for the 4th generation cellular phone system.

  2. Neutron diffraction studies of the cubic ZrCr2Dsub(x) and ZrV2Dsub(x)(Hsub(x)) phases

    International Nuclear Information System (INIS)

    Fruchart, D.; Shoemaker, C.B.; Shoemaker, D.P.

    1980-01-01

    Deuterides of ZrCr 2 and both hydrides and deuterides of ZrV 2 were studied by neutron diffraction in order to determine the relative occupancies of the different types of tetrahedral sites existing in the C15 Friauf-Laves phases. In ZrV 2 , within the range of stoichiometry used, both Zr 2 V 2 and ZrV 3 sites are occupied by deuterium with the relative occupancies depending on the total absorption. In ZrCr 2 only the Zr 2 Cr 2 site is progressively filled until the formula approaches ZrCr 2 Dsub(3.5), near the experimental limit of absorption, at which point a minor amount of deuterium may enter ZrCr 3 sites. (Auth.)

  3. Proximity phenomena in double-barrier structure NbZr/NbOx/Al/AlOy/NbZr

    International Nuclear Information System (INIS)

    Plecenik, A.; Gasi, S.; Zuzcak, M.; Benacka, S.

    1999-01-01

    A tunneling structures NbZr/NbO x /Al/AlO y /NbZr with a thin barrier in the NbZr/NbO x /Al junction and 4 to 6-nm-thick Al interlayer were prepared and studied experimentally. A proximity effect between NbZr and Al through NbO x barrier has been observed. An electrical voltage was generated in the NbO x barrier and a coexistence of the proximity effect and applied voltage in the junction NbZr/NbO x /Al has been observed. This experiment could be described on the basis of a model for coherent charge transport in superconducting/normal proximity structures

  4. Hydrogenation of carbon dioxide towards synthetic natural gas. A route to effective future energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schoder, M. [Hochschule Lausitz, Cottbus (Germany); Armbruster, U.; Martin, A. [Rostock Univ. (Germany). Leibniz Institute for Catalysis

    2012-07-01

    Ni- and Ru-based catalysts are best suited for the so-called Sabatier reaction, i.e., the hydrogenation of CO{sub 2} to synthetic natural gas (SNG). Besides using commercial materials, catalyst syntheses (5 wt% Ru or Ni) were carried out by incipient wetness impregnation of four carriers (TiO{sub 2}, SiO{sub 2}, ZrO{sub 2} and {gamma}-Al{sub 2}O{sub 3}). Some pre-tests revealed that catalysts supported on TiO{sub 2} and SiO{sub 2} mostly produced CO, and therefore, they were not studied in detail. The catalyst tests were carried out in a continuously operated tube reactor at 623-723 K and 1-20 bar. Ru/ZrO{sub 2} and Ni/{gamma}-Al{sub 2}O{sub 3} revealed best catalytic performance at ambient pressure. Methane selectivities of 99.9% at 81.2% CO{sub 2} conversion for Ru/ZrO{sub 2} (623 K) and of 98.9% at 73.8% CO{sub 2} conversion for Ni/{gamma}-Al{sub 2}O{sub 3} (673 K) were obtained. The conversion increased significantly with raising reaction pressure above 10 bar to reach more than 93% for the Ni-containing catalyst and more than 96% for the Zr catalysts. Methane as the target product was formed with a selectivity of 100%. In addition, the catalysts were characterized by various solid-state techniques such as BET, TPR, ICP-OES, XRD, XPS and TEM. (orig.)

  5. Development of in-situ ZrC reinforced iron based composites for wear resistance applications

    International Nuclear Information System (INIS)

    Bandyopadhyay, T.K.; Das, K.

    2002-01-01

    A common objective behind the processing of iron-based composites is to improve the wear resistance of steels by incorporating some reinforcing phases, e.g., carbides and oxides. In the present investigation, iron-based zirconium carbide reinforced composite is produced by the aluminothermic reduction of zircon sand (ZrSiO 4 ) and blue dust (Fe 2 O 3 ) in the presence of carbon. Aluminothermic reduction of blue dust and zircon sand, being highly exothermic in nature, essentially leads to a self-propagating high-temperature synthesis (SHS) of the Fe-ZrC composite. The as-cast composite is characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties of the composite and the effect of heat treatment on the microstructure are evaluated. The composite possess sufficient hardness and promising abrasive wear resistance property. The abrasive wear resistance property of the Fe-ZrC composite is compared with that of a M2 grade tool material and it is found to be better than the tool material. The composite also possess good high temperature stability. (author)

  6. Analysis of the thermoluminescent properties of the ZrO2-Eu system

    International Nuclear Information System (INIS)

    Palma P, H. E.

    2012-01-01

    The zirconia (ZrO 2 ) is one of the ceramic materials more important to industrial and scientific level due to its refractory nature, good mechanical properties, resistance to the heat and oxidation. An application of the ZrO 2 is given in the radiation physics, where has been observed that it presents an optic response when being exposed to an ionizing radiations field (beta and gamma radiation) and non ionizing (UV). Moreover, the studies have shown that this response can be quantified through the thermoluminescent signal emitted by the material after being exposed to a radiation field. And that is possible to modify the sensibility incorporating it dopants such as Eu, Co, Ag, etc. of controlled way. The objective of the present work was to synthesize the systems: ZrO 2 pure and with Eu impurities in controlled concentrations 0, 05, 1.0, 2.0 and 4.0 % in weight through the Sol-gel method. After the synthesis these were analyzed by means of scanning electron microscopy, spectroscopy by X-rays energy dispersion and X-rays diffraction, allowing this way to know the micro-structural and crystalline characteristics which will be decisive in the dosimetric properties of these systems. (Author)

  7. Mechanism and deuterium pickup in Zr-2.5Nb alloy

    International Nuclear Information System (INIS)

    Ploc, R.A.

    1999-12-01

    There are approximately 400 Zr-2.5Nb pressure tubes in a CANDU reactor. During operation, the pressure tubes contain heavy water at about 300 deg C, 10.3 NPa with a room-temperature pD of 10.5. Operation of the pressure tube in the environment leads to oxide formation and absorption of deuterium. Excess deuterium absorption leads to precipitation of zirconium deuterides in the metal. A knowledge of how the deuterium passes through the oxide film to enter into the metal is an important step in gaining control over ingress rates. Fresnel fringe imaging of cross-sectioned oxides grown on pressure tubes, combined with tilting in the electron microscope, has revealed the three-dimensional nature of porosity in the oxide films. Two primary types exist, flake and ribbon. The main route for deuterium ingress is via ribbon porosity, as shown by electrochemical impedance spectroscopy. The location of the ribbon porosity is along the boundary between the oxidized α-Zr and β-Zr phases. Modifications to reduce ribbon porosity are possible and this, in turn, leads to significantly lower rates of deuterium absorption and extension of pressure-tube lifetime. (author)

  8. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS.

    Science.gov (United States)

    Singha, Ratnadwip; Pariari, Arnab Kumar; Satpati, Biswarup; Mandal, Prabhat

    2017-03-07

    Whereas the discovery of Dirac- and Weyl-type excitations in electronic systems is a major breakthrough in recent condensed matter physics, finding appropriate materials for fundamental physics and technological applications is an experimental challenge. In all of the reported materials, linear dispersion survives only up to a few hundred millielectronvolts from the Dirac or Weyl nodes. On the other hand, real materials are subject to uncontrolled doping during preparation and thermal effect near room temperature can hinder the rich physics. In ZrSiS, angle-resolved photoemission spectroscopy measurements have shown an unusually robust linear dispersion (up to [Formula: see text]2 eV) with multiple nondegenerate Dirac nodes. In this context, we present the magnetotransport study on ZrSiS crystal, which represents a large family of materials ( WHM with W = Zr, Hf; H = Si, Ge, Sn; M = O, S, Se, Te) with identical band topology. Along with extremely large and nonsaturating magnetoresistance (MR), [Formula: see text]1.4 [Formula: see text] 10 5 % at 2 K and 9 T, it shows strong anisotropy, depending on the direction of the magnetic field. Quantum oscillation and Hall effect measurements have revealed large hole and small electron Fermi pockets. A nontrivial [Formula: see text] Berry phase confirms the Dirac fermionic nature for both types of charge carriers. The long-sought relativistic phenomenon of massless Dirac fermions, known as the Adler-Bell-Jackiw chiral anomaly, has also been observed.

  9. Effect of the Zr elements with thermal properties changes of U-7Mo-xZr/Al dispersion fuel

    International Nuclear Information System (INIS)

    Supardjo; Agoeng Kadarjono; Boybul; Aslina Br Ginting

    2016-01-01

    Thermal properties data of nuclear fuel is required as input data to predict material properties change phenomenon during the fabrication process and irradiated in a nuclear reactor. Study the influence of Zr element in the U-7Mo-xZr/Al (x = 1%, 2% and 3%) fuel dispersion to changes in the thermal properties at various temperatures have been stiffened. Thermal analysis includes determining the melting temperature, enthalpy, and phase changes made using Differential Thermal Analysis (DTA) in the temperature range between 30 °C up to 1400 °C, while the heat capacity of U-7Mo-xZr alloy and U-7Mo-xZr/Al dispersion fuel using Differential Scanning Calorimeter (DSC) at room temperature up to 450 °C. Thermal analyst data DTA shows that Zr levels of all three compositions showed a similar phenomenon. At temperatures between 565.60 °C - 584.98 °C change becomes α + δ to α + γ phase and at 649.22 °C – 650.13 °C happen smelting Al matrix Occur followed by a reaction between Al matrix with U-7Mo-xZr on 670.38 °C - 673.38 °C form U (Al, Mo)x Zr. Furthermore a phase change α + β becomes β + γ Occurs at temperatures 762.08 °C - 776.33 °C and diffusion between the matrix by U-7Mo-xZr/Al on 853.55 °C - 875.20 °C. Every phenomenon that Occurs, enthalpy posed a relative stable. Consolidation of uranium Occur in 1052.42 °C - 1104.99 °C and decomposition reaction of U (Al, Mo)x and U (Al, Zr) x becomes (UAl 4 , UAl 3 , UAl 2 ), U-Mo, and UZr on 1328,34 °C - 1332,06 °C , The existence of Zr in U-Mo alloy increases the heat capacity of the U-7Mo-xZr/Al, dispersion fuel and the higher heat capacity of Zr levels increased due to interactions between the atoms of Zr with Al matrix so that the heat absorbed by the fuel increase. (author)

  10. Novel Processing of Infrared Transmitting ZrO2-ZrW2O8 Nanocomposites

    Science.gov (United States)

    2013-09-01

    stability regime and times from 5 min to 2 h. So far, density up to a maximum of about 92% (as estimated from Archimedes ’ principle ) was achieved at 1175...subtitle with volume number and part number, if applicable . On classified documents, enter the title classification in parentheses. 5a. CONTRACT...coefficient in the potential application temperature range. High temperature stability of nanocrystalline ZrWYsMoeOg powders was studied. Substitution of

  11. Superconductivity and spin fluctuations in M-Zr metallic glasses (M = Cu, Ni, Co, and Fe)

    International Nuclear Information System (INIS)

    Altounian, Z.; Strom-Olsen, J.O.

    1983-01-01

    The superconducting transition temperature, upper critical field, and magnetic susceptibility have been measured in four binary metallic glass systems: Cu-Zr, Ni-Zr, Co-Zr, and Fe-Zr. For each alloy system, a full and continuous range of Zr-rich compositions accessible by melt spinning has been examined. For Cu-Zr, the range is 0.75>x>0.30; for Ni-Zr, 0.80>x>0.30; for Co-Zr, 0.80>x>0.48, and for Fe-Zr, 0.80>x>0.55 (x being the concentration of Zr in at. %). The results show clearly the influence of spin fluctuations in reducing the superconducting transition temperature. The data have been successfully analyzed using a modified form of the McMillan equation together with expressions for the Stoner enhanced magnetic susceptibility and the Ginsburg-Landau-Abrikosov-Gor'kov expression for the upper critical field

  12. ImmunoPET imaging of tissue factor expression in pancreatic cancer with89Zr-Df-ALT-836.

    Science.gov (United States)

    Hernandez, Reinier; England, Christopher G; Yang, Yunan; Valdovinos, Hector F; Liu, Bai; Wong, Hing C; Barnhart, Todd E; Cai, Weibo

    2017-10-28

    Overexpression of tissue factor (TF) has been associated with increased tumor growth, tumor angiogenesis, and metastatic potential in many malignancies, including pancreatic cancer. Additionally, high TF expression was shown to strongly correlate with poor prognoses and decreased survival in pancreatic cancer patients. Herein, we exploited the potential targeting of TF for positron emission tomography (PET) imaging of pancreatic cancer. The TF-targeted tracer was developed through radiolabeling of the anti-human TF monoclonal antibody (ALT-836) with 89 Zr. The tracer was characterized by fluorescence microscopy and flow cytometry assays in BXPC-3 and PANC-1 cells, two pancreatic cancer cell lines with high and low TF expression levels, respectively. Non-invasive PET scans were acquired in tumor-bearing mice injected with 89 Zr-Df-ALT-836. Additionally, ex vivo biodistribution, blocking, and histological studies were performed to establish the affinity and specificity of 89 Zr-Df-ALT-836 for TF in vivo. 89 Zr-labeling of Df-ALT-836 was achieved in high yield and good specific activity. Flow cytometry and microscopy studies revealed no detectable difference in TF-binding affinity between ALT-836 and Df-ALT-836 in vitro. Longitudinal PET scans unveiled a lasting and prominent 89 Zr-Df-ALT-836 uptake in BXPC-3 tumors (peak at 31.5±6.0%ID/g at 48h post-injection; n=3), which was significantly abrogated (2.3±0.5%ID/g at 48h post-injection; n=3) when mice were pre-injected with a blocking dose (50mg/kg) of unlabeled ALT-836. Ex vivo biodistribution data confirmed the accuracy of the PET results, and histological analysis correlated high tumor uptake with in situ TF expression. Taken together, these results attest to the excellent affinity and TF-specificity of 89 Zr-Df-ALT-836. With elevated, persistent, and specific accumulation in TF-positive BXPC-3 tumors, PET imaging using 89 Zr-Df-ALT-836 promises to open new avenues for improving future diagnosis, stratification

  13. Zero added oxygen for high quality sputtered ITO: A data science investigation of reduced Sn-content and added Zr

    International Nuclear Information System (INIS)

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.; Gessert, Timothy A.

    2016-01-01

    The authors demonstrate mobilities of >45 cm 2 /V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO 2 , instead of the more conventional 8–10 wt. %, and had varying ZrO 2 content from 0 to 3 wt. %, with a subsequent reduction in In 2 O 3 content. These films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discovered for nominally similar growth conditions. However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. This result is attributed to the reduced concentration of SnO 2 . The addition of ZrO 2 yielded the highest mobilities at >55 cm 2 /V s and the films showed a modest increase in optical transmission with increasing Zr-content

  14. Preparation and sintering of Zr(C,N,O) phases

    International Nuclear Information System (INIS)

    Tamborenea, S.; Mazzoni, A.D.; Aglietti, E.F.

    2003-01-01

    The Zr(C,O,N) compounds form a great mono-phase zone belonging to the pseudoternary ZrO-ZrN-ZrC system.Theses phases have cubic crystalline structure with a o parameter depending on the C, O 2 and N 2 content.These phases have many potential applications in the manufacture of ceramic pieces utilizable as electronic conductors.The Zr (C,O,N) phases can be obtained from ZrO 2 by carbonitriding reactions: that is carbothermal reduction and simultaneous nitriding.In this work a series of experiences of carbonitriding of zirconia under different conditions (temperatures between 1400 and 1600degC, times of 120 min, carbon content between 20 and 40%) in order to obtain suitable powders to be sintered.The XRD analysis shows the Zr(C,O,N) as the main products and β -ZrON as the only secondary product in proportions depending on the obtaining conditions.The variables employed were the C content and the reaction temperature.The Zr(C,O,N) content varies between 40 and 90% and tends to increase with the temperature and the carbon content whereas the β -ZrON phase varies between the 40 and 10 % decreasing its proportion with temperature and the carbon content.The oxidation resistance of these phases was studied by DTA-TG tests in air.Results show complete oxidation reaction at ∼500degC in air.The sintering of these materials was made on disks obtained by pressing of powders of Zr(C,N,O) contents higher than 90%.Sintering was performed in nitrogen atmosphere and temperatures between 1450 and 1620degC.Disks were characterized by pycnometry and Hg volumeter.The densities obtained were between 5 and 6,6g/cm 3 with a tendency to increase with the Zr(C,N,O) phase content, the temperature and the sintering time.Sintered disks were characterized by dilatometry in N 2

  15. Regularities of recrystallization in rolled Zr single crystals

    International Nuclear Information System (INIS)

    Isaenkova, M; Perlovich, Yu; Fesenko, V; Krymskaya, O; Krapivka, N; Thu, S S

    2015-01-01

    Experiments by rolled single crystals give a more visible conception of the operating mechanisms of plastic deformation and the following recrystallization, than experiments by polycrystals. Studies by usage of X-ray diffraction methods were conducted by Zr single crystals. It was revealed, that regions of the α-Zr matrix, deformed mainly by twinning, are characterized with decreased tendency to recrystallization. Orientations of recrystallized α-Zr grains correspond to “slopes” of maxima in the rolling texture, where the level of crystalline lattice distortion is maximal and the number of recrystallization nuclei is most of all. (paper)

  16. Zr doping on lithium niobate crystals: Raman spectroscopy and chemometrics

    Science.gov (United States)

    Kokanyan, Ninel; Chapron, David; Kokanyan, Edvard; Fontana, Marc D.

    2017-03-01

    Raman measurements were investigated on Zr-doped lithium niobate LiNbO3 crystals with different concentrations. Spectra were treated by fitting procedure and principal component analysis which both provide results consistent with each other. The concentration dependence of the frequency on the main low-frequency optical phonons provides an insight of site incorporation of Zr ions in the host lattice. The threshold concentration of about 2% is evidenced, confirming the interest of Zr doping as an alternative to Mg doping for the reduction of the optical damage in lithium niobate.

  17. Deuterium absorption and material phase characteristics of Zr2Fe

    International Nuclear Information System (INIS)

    Nobile, A.; Mosley, W.C.; Holder, J.S.; Brooks, K.N.

    1992-01-01

    Scanning electron microscope (SEM) images of polished surfaces, electron probe microanalysis, and X-ray powder diffractometry indicated the presence of a continuous Zr 2 Fe phase with secondary phases of ZrFe 2 , Zr 5 FeSn, α-Zr, and Zr 6 Fe 3 O. A statistically-designed experiment to determine the effects of temperature, time, and vacuum quality On activation of St 198 revealed that when activated at low temperature (350 degrees C) deuterium absorption rate was slower when the vacuum quality was pwr (2.5 Pa vs. 3x10 -4 Pa). However, at higher activation temperature (500 degrees C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200--500 degrees C. The P-C-T data over the full range of deuterium loading and at temperatures of 350 degrees C and below is described by: K 0e -(ΔH α /RT)=PD 2 q 2 /(q*-q) 2 where ΔHα and K 0 have values of 101.8 kJ·mole -1 and 3.24x10 -8 Pa -1 , and q* is 15.998 kPa·L -1 ·g -1 . At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D 2 from the gas phase. XRD suggests these reactions to be: 2 Zr 2 FeD x → x ZrD 2 + x/3 ZrFe 2 + (2 - 2/3x) Zr 2 Fe and Zr 2 FeD x + (2 -1/2x) D 2 → ZrD 2 + Fe, where 0 < x < 3. Reaction between gas phase deuterium and Zr2FC formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction

  18. Synthesis of Defect Perovskites (He2–xx)(CaZr)F6 by Inserting Helium into the Negative Thermal Expansion Material CaZrF6

    Energy Technology Data Exchange (ETDEWEB)

    Hester, Brett R. [Georgia Inst. of Technology, Atlanta, GA (United States); dos Santos, António M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molaison, Jamie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hancock, Justin C. [Georgia Inst. of Technology, Atlanta, GA (United States); Wilkinson, Angus P. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-09-11

    Defect perovskites (He2–xx)(CaZr)F6 can be prepared by inserting helium into CaZrF6 at high pressure. They can be recovered to ambient pressure at low temperature. There are no prior examples of perovskites with noble gases on the A-sites. The insertion of helium gas into CaZrF6 both elastically stiffens the material and reduces the magnitude of its negative thermal expansion. It also suppresses the onset of structural disorder, which is seen on compression in other media. Measurements of the gas released on warming to room temperature and Rietveld analyses of neutron diffraction data at low temperature indicate that exposure to helium gas at 500 MPa leads to a stoichiometry close to (He11)(CaZr)F6. Helium has a much higher solubility in CaZrF6 than silica glass or crystobalite. An analogue with composition (H2)2(CaZr)F6 would have a volumetric hydrogen storage capacity greater than current US DOE targets. We anticipate that other hybrid perovskites with small neutral molecules on the A-site can also be prepared and that they will display a rich structural chemistry.

  19. Ni-free Zr-Cu-Al-Nb-Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications.

    Science.gov (United States)

    Huang, Lu; Yokoyama, Yoshihiko; Wu, Wei; Liaw, Peter K; Pang, Shujie; Inoue, Akihisa; Zhang, Tao; He, Wei

    2012-08-01

    Zr-based bulk metallic glasses (BMGs) possess attractive properties for prospective biomedical applications. The present study designs Ni-free Zr-Cu-Al-Nb-Pd BMGs and investigates their in vitro biocompatibility by studying mechanical properties, bio-corrosion resistance, and cellular responses. The Ti-6Al-4V alloy is used as a reference material. It is found that the Zr-based BMGs exhibit good mechanical properties, including high strengths above 1600 MPa, high hardness over 4700 MPa, and low elastic moduli of 85-90 GPa. The Zr-based BMGs are corrosion resistant in a simulated body environment, as revealed by wide passive regions, low passive current densities, and high pitting overpotentials. The formation of ZrO(2)-rich surface passive films of the Zr-based BMGs contributes to their high corrosion resistance, whereas their pitting corrosion in the phosphate buffered saline solution can be attributed to the sensitivity of the ZrO(2) films to the chloride ion. The general biosafety of the Zr-based BMGs is revealed by normal cell adhesions and cell morphologies. Moreover, the Zr/Cu content ratio in the alloy composition affects the biocompatibility of the Zr-based BMGs, by increasing their corrosion resistance and surface wettability with the increase of the Zr/Cu ratio. Effects of Zr/Cu ratios can be used to guide the future design of biocompatible Zr-based BMGs. Copyright © 2012 Wiley Periodicals, Inc.

  20. Complex investigation of several silver-less brazed Be/CuCrZr joints

    International Nuclear Information System (INIS)

    Komarov, A.; Gervash, A.; Komarov, V.; Mazul, I.; Litounovski, N.; Fedotov, V.; Sevrukov, O.; Ganenko, A.

    1998-01-01

    One of the main problems for ITER divertor target technology is to provide a reliable joint between Be as armour material and copper alloy as heat-sink structure. Such joints should satisfy the different requirements. In particular, these joints should successfully withstand cyclic heat fluxes and should have good properties under neutron irradiation. To study such complex of problems several investigation stages were planned in Russia. This paper presents the results of complex investigation of several silver-less brazed Be/CuCrZr joint candidates. (author)

  1. Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model

    International Nuclear Information System (INIS)

    Li, H.Q.; Yang, Y.S.; Tong, W.H.; Wang, Z.Y.

    2007-01-01

    With the effects of electronic structure and atomic size being introduced, the mixing enthalpy as well as the Gibbs energy of the ternary Zr-Al-Cu, Ni-Al-Cu, Zr-Ni-Al and quaternary Zr-Al-Ni-Cu systems are calculated based on quasiregular solution model. The computed results agree well with the experimental data. The sequence of Gibbs energies of different systems is: G Zr-Al-Ni-Cu Zr-Al-Ni Zr-Al-Cu Cu-Al-Ni . To Zr-Al-Cu, Ni-Al-Cu and Zr-Ni-Al, the lowest Gibbs energy locates in the composition range of X Zr 0.39-0.61, X Al = 0.38-0.61; X Ni = 0.39-0.61, X Al = 0.38-0.60 and X Zr = 0.32-0.67, X Al = 0.32-0.66, respectively. And to the Zr-Ni-Al-Cu system with 66.67% Zr, the lowest Gibbs energy is obtained in the region of X Al = 0.63-0.80, X Ni = 0.14-0.24

  2. Effect of Si and Zr on the Microstructure and Properties of Al-Fe-Si-Zr Alloys

    Directory of Open Access Journals (Sweden)

    Anna Morozova

    2017-11-01

    Full Text Available The effects of Si and Zr on the microstructure, microhardness and electrical conductivity of Al-Fe-Si-Zr alloys were studied. An increase in the Zr content over 0.3 wt. % leads to the formation of primary Al3Zr inclusions and also decreases mechanical properties. Therefore, the Zr content should not be more than 0.3 wt. %, although the smaller content is insufficient for the strengthening by the secondary Al3Zr precipitates. The present results indicate that high content of Si significantly affects the hardness and electrical conductivity of the investigated alloys. However, the absence of Si led to the formation of harmful needle-shaped Al3Fe particles in the microstructure of the investigated alloys after annealing. Therefore, the optimum amount of Si was 0.25–0.50 wt. % due to the formation of the Al8Fe2Si phase with the preferable platelet morphology. The maximum microhardness and strengthening effects in Al-1% Fe-0.25% Si-0.3% Zr were observed after annealing at 400–450 °C due to the formation of nanosized coherent Al3Zr (L12 dispersoids. The effect of the increasing of the electrical conductivity can be explained by the decomposition of the solid solution. Thus, Al-1% Fe-0.25% Si-0.3% Zr alloy annealed at 450 °C has been studied in detail as the most attractive with respect to the special focus on transmission line applications.

  3. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice.

    NARCIS (Netherlands)

    Verel, I.; Visser, G.W.; Boellaard, R.; Boerman, O.C.; Eerd-Vismale, J.E.M. van; Snow, G.B.; Lammertsma, A.A.; Dongen, G.A.M.S. van

    2003-01-01

    Immuno-PET as a scouting procedure before radioimmunotherapy (RIT) aims at the confirmation of tumor targeting and the accurate estimation of radiation dose delivery to both tumor and normal tissues. Immuno-PET with (89)Zr-labeled monoclonal antibodies (mAbs) and (90)Y-mAb RIT might form such a

  4. Highly resolving Rutherford-scattering spectrometry for the study of ZrO{sub 2} layer growth in the beginning stage; Hochaufloesende Rutherford-Streuspektrometrie zur Untersuchung von ZrO{sub 2}-Schichtwachstum im Anfangsstadium

    Energy Technology Data Exchange (ETDEWEB)

    Vieluf, Maik

    2010-06-15

    By means of High Resolution Rutherford Backscattering Spectrometry (HR-RBS) the diffusion behaviour and layer growth of ZrO{sub 2} on SiO{sub 2} and TiN in the initial regime were investigated. The analysis of concentration profiles in ultrathin layers and interfaces was the focus of this work, made possible by the excellent depth resolution of less than 0.3 nm near the surface. For the first time a two-dimensional position sensitive semiconductor detector was implemented and characterized in the setup of the HR-RBS for the improvement of the quality of the measurement results. Furthermore, a measurement procedure was put into operation that allowed the reduction of ion induced damage. Through the optimization of the experimental conditions and the development of a program package for the support of the analyst, an efficient measurement procedure could be routinely ensured. At the time of a binary collision between the incident ion and the target element with a small impact factor, the charge state changes frequently, especially due to the abruptly decreasing ion velocity of the projectile and the overlapping of the electron clouds. For HR-RBS with an energy-separating dipole magnet, the charge state distribution of the scattered ions must be known for the interpretation of the measured spectra. For the first time a significant dependence of the charge state distribution of the scattered C ions on the layer thickness as well as atomic number of the detected target elements, here from the fourth subgroup, was demonstrated. This new knowledge allowed systematic investigations of the ZrO{sub 2} layer growth in the initial regime. The ZrO{sub 2} layers were produced by means of the atomic layer deposition (ALD). Based on the evidence for agglomeration of ZrO{sub 2} on SiO{sub 2} a method was introduced, which takes local thickness variations into account during the simulation of the HR-RBS spectra. An accurate statement about the ZrO{sub 2}/SiO{sub 2} interface was

  5. ZrFsy1, a high-affinity fructose/H+ symporter from fructophilic yeast Zygosaccharomyces rouxii.

    Directory of Open Access Journals (Sweden)

    Maria José Leandro

    Full Text Available Zygosaccharomyces rouxii is a fructophilic yeast than can grow at very high sugar concentrations. We have identified an ORF encoding a putative fructose/H(+ symporter in the Z. rouxii CBS 732 genome database. Heterologous expression of this ORF in a S. cerevisiae strain lacking its own hexose transporters (hxt-null and subsequent kinetic characterization of its sugar transport activity showed it is a high-affinity low-capacity fructose/H(+ symporter, with Km 0.45 ± 0.07 mM and Vmax 0.57 ± 0.02 mmol h(-1 (gdw(-1. We named it ZrFsy1. This protein also weakly transports xylitol and sorbose, but not glucose or other hexoses. The expression of ZrFSY1 in Z. rouxii is higher when the cells are cultivated at extremely low fructose concentrations (<0.2% and on non-fermentable carbon sources such as mannitol and xylitol, where the cells have a prolonged lag phase, longer duplication times and change their microscopic morphology. A clear phenotype was determined for the first time for the deletion of a fructose/H(+ symporter in the genome where it occurs naturally. The effect of the deletion of ZrFSY1 in Z. rouxii cells is only evident when the cells are cultivated at very low fructose concentrations, when the ZrFsy1 fructose symporter is the main active fructose transporter system.

  6. Terbium content affects the luminescence properties of ZrO2:Tb nanoparticles for mammary cancer imaging in mice

    Science.gov (United States)

    Kaszewski, Jarosław; Borgstrom, Emanuel; Witkowski, Bartłomiej S.; Wachnicki, Łukasz; Kiełbik, Paula; Slonska, Anna; Domino, Malgorzata A.; Narkiewicz, Urszula; Gajewski, Zdzislaw; Hochepied, Jean-François; Godlewski, Michał M.; Godlewski, Marek

    2017-12-01

    The use of nanoparticles in medicine is a rapidly growing research field with numerous potential applications, especially in the field of cancer diagnosis and therapy. Nanoparticles can be intrinsically diagnostic of therapeutic, or they can be conjugated with diagnostic or therapeutic compounds. Nanoparticles may also passively or actively target tumor cells specifically using the enhanced permeation and retention (EPR) effect, or the addition of targeting ligands to their surface. This may provide a diagnostic or/and therapeutic tools to target primary as well as metastatic tumors. The transport, distribution and toxicity of nanoparticles depends greatly on their size and composition, thus every new formulation needs to be extensively researched. This work was focused on the development of Tb-doped ZrO2 nanoparticles (NPs) for application in cancer imaging. Obtained nanoparticles were below 10 nm with very low influence of Tb concentration on size. Terbium stabilization of ZrO2 had influence on the luminescence properties of obtained material. Partially stabilized zirconium dioxide exhibited broad host related emission peaking at 500 nm, disappearing with the terbium content. We confirmed alimentary absorption and wide distribution of luminescent ZrO2:Tb nanoparticles in mice with their gradual accumulation in the experimentally induced mammary cancers. Furthermore, a high concentration of NPs was found within the lung metastases as opposed to healthy lung tissue, where no NPs-related signal was observed.

  7. Transformations of intermetallic compounds in Zr alloys at room temperature

    International Nuclear Information System (INIS)

    Filippov, V.P.; Shikanova, Yu.A.

    2004-01-01

    The formation of intermetallic compound Zr 3 Fe is shown to take place in a quaternary Zr-Fe-Sn-Cr alloy on long-term holding at room temperature. Alloys of Zr-1.0% Fe-1.27% Sn-0.51% Cr are melted in an arc furnace, quenched, hot and cold rolled. Final heat treatment is performed at 873 K for 3 h. It is assumed that the formation of intermetallic particles at low temperature is due to rearrangement of pre-precipitate structure by way of iron atom transitions at small distances. No noticeable change is found out in values of quadrupole splitting and isomer shift of Zr(Fe , Cr) 2 particles after a two-year holding at room temperature [ru

  8. DFT STUDY REVISES INTERSTITIAL CONFIGURATIONS IN HCP Zr

    Energy Technology Data Exchange (ETDEWEB)

    Samolyuk, German D [ORNL; Golubov, Stanislav I [ORNL; Osetskiy, Yury N [ORNL; Stoller, Roger E [ORNL

    2012-06-01

    Analysis of experimental result on microstructure evolution in irradiated Zr and alloys has demonstrated that available knowledge on self-interstitial defects in Zr is in contradiction. We therefore have initiated an extensive theoretical and modeling program to clarify this issue. In this report we present first ab initio calculations results of single SIA configurations in Zr. We demonstrate importance of simulations cell size, applied exchange-correlation functional and simulated c/a ratio. The results obtained demonstrate clearly that the most stable configurations are in basal plane and provide some evidences for enhanced interstitial transport along basal planes. The results obtained will be used in generation a new interatomic potential for Zr to be used in large-scale atomistic modeling of mechanisms relevant for radiation-induced microstructure evolution.

  9. Highly resolving Rutherford-scattering spectrometry for the study of ZrO2 layer growth in the beginning stage

    International Nuclear Information System (INIS)

    Vieluf, Maik

    2010-06-01

    By means of High Resolution Rutherford Backscattering Spectrometry (HR-RBS) the diffusion behaviour and layer growth of ZrO 2 on SiO 2 and TiN in the initial regime were investigated. The analysis of concentration profiles in ultrathin layers and interfaces was the focus of this work, made possible by the excellent depth resolution of less than 0.3 nm near the surface. For the first time a two-dimensional position sensitive semiconductor detector was implemented and characterized in the setup of the HR-RBS for the improvement of the quality of the measurement results. Furthermore, a measurement procedure was put into operation that allowed the reduction of ion induced damage. Through the optimization of the experimental conditions and the development of a program package for the support of the analyst, an efficient measurement procedure could be routinely ensured. At the time of a binary collision between the incident ion and the target element with a small impact factor, the charge state changes frequently, especially due to the abruptly decreasing ion velocity of the projectile and the overlapping of the electron clouds. For HR-RBS with an energy-separating dipole magnet, the charge state distribution of the scattered ions must be known for the interpretation of the measured spectra. For the first time a significant dependence of the charge state distribution of the scattered C ions on the layer thickness as well as atomic number of the detected target elements, here from the fourth subgroup, was demonstrated. This new knowledge allowed systematic investigations of the ZrO 2 layer growth in the initial regime. The ZrO 2 layers were produced by means of the atomic layer deposition (ALD). Based on the evidence for agglomeration of ZrO 2 on SiO 2 a method was introduced, which takes local thickness variations into account during the simulation of the HR-RBS spectra. An accurate statement about the ZrO 2 /SiO 2 interface was possible due to the extraction of the

  10. A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic Compounds in Methanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Norbert Köpfle

    2017-02-01

    Full Text Available The activation and catalytic performance of two representative Zr-containing intermetallic systems, namely Cu-Zr and Pd-Zr, have been comparatively studied operando using methanol steam reforming (MSR as test reaction. Using an inverse surface science and bulk model catalyst approach, we monitored the transition of the initial metal/intermetallic compound structures into the eventual active and CO2-selective states upon contact to the methanol steam reforming mixture. For Cu-Zr, selected nominal stoichiometries ranging from Cu:Zr = 9:2 over 2:1 to 1:2 have been prepared by mixing the respective amounts of metallic Cu and Zr to yield different Cu-Zr bulk phases as initial catalyst structures. In addition, the methanol steam reforming performance of two Pd-Zr systems, that is, a bulk system with a nominal Pd:Zr = 2:1 stoichiometry and an inverse model system consisting of CVD-grown ZrOxHy layers on a polycrystalline Pd foil, has been comparatively assessed. While the CO2-selectivity and the overall catalytic performance of the Cu-Zr system is promising due to operando formation of a catalytically beneficial Cu-ZrO2 interface, the case for Pd-Zr is different. For both Pd-Zr systems, the low-temperature coking tendency, the high water-activation temperature and the CO2-selectivity spoiling inverse WGS reaction limit the use of the Pd-Zr systems for selective MSR applications, although alloying of Pd with Zr opens water activation channels to increase the CO2 selectivity.

  11. Porous composite materials ZrO{sub 2}(MgO)-MgO for osteoimplantology

    Energy Technology Data Exchange (ETDEWEB)

    Buyakov, Ales, E-mail: alesbuyakov@gmail.com [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Litvinova, Larisa, E-mail: larisalitvinova@yandex.ru; Shupletsova, Valeria, E-mail: vshupletsova@mail.ru [Immanuel Kant Baltic Federal University, Kaliningrad (Russian Federation); Kulbakin, Denis, E-mail: kulbakin2012@gmail.com [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Kulkov, Sergey, E-mail: kulkov@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The pore structure and phase composition of ceramic composite material ZrO{sub 2}(Mg)-MgO at different sintering temperatures were studied. The main mechanical characteristics of the material were determined and it was shown that they are close to the characteristics of natural bone tissues. It was shown that material structure has a positive effect on the pre-osteoblast cells proliferation. In-vitro studies of pre-osteoblast cells, cultivation on material surface showed a good cell adhesion, proliferation and differentiation of MMSC by osteogenic type.

  12. Porous composite materials ZrO2(MgO)-MgO for osteoimplantology

    International Nuclear Information System (INIS)

    Buyakov, Ales; Litvinova, Larisa; Shupletsova, Valeria; Kulbakin, Denis; Kulkov, Sergey

    2016-01-01

    The pore structure and phase composition of ceramic composite material ZrO 2 (Mg)-MgO at different sintering temperatures were studied. The main mechanical characteristics of the material were determined and it was shown that they are close to the characteristics of natural bone tissues. It was shown that material structure has a positive effect on the pre-osteoblast cells proliferation. In-vitro studies of pre-osteoblast cells, cultivation on material surface showed a good cell adhesion, proliferation and differentiation of MMSC by osteogenic type.

  13. Rhyolitic glasses - natural analogues for high-silica nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abdelouas, A.; Gong, W. [New Mexico Univ., Center for Radioactive Waste Management, Albuquerque, NM (United States); Lutze, W. [New Mexico Univ., Dept. of Chemical and Nuclear Engineering, Albuquerque, NM (United States)

    1997-07-01

    The long-term chemical durability of sintered high-silica waste glasses is expected to be high. This expectation is supported by the observation that natural rhyolitic glasses show only little alteration over geological periods of time. Rhyolitic glasses do not contain appreciable amounts of Zr but they do contain Al. Both Al and Zr enhance the chemical durability of a glass, Zr more than Al. Except for ZrO{sub 2}, rhyolitic glasses, e.g., obsidian, appear to be suitable natural analogues. The chemical composition and hydration energies of rhyolitic glasses and of sintered high-silica glasses are compared. The author presents a reasoning based on the contribution of silica, Zr and Na to hydration energy to support the hypothesis of analogue long-term behaviour. (A.C.)

  14. Deuterium absorption property of Al/Zr-V/Mo multifilms

    International Nuclear Information System (INIS)

    Wang Haifeng; Peng Shuming; Zhang Xiaohong; Long Xinggui; Yang Benfu

    2005-01-01

    Deuterium absorption property of Al/Zr-V/Mo multifilms was studied experimentally to explore the effect of Al film. There is only one desorption peak at 320 degree C for Al film, two desorption peaks at 220 degree C and 350 degree C for Zr-V film. When the average thickness of Al film is less than 0.6 μm, the desorption property of Al/Zr-V multifilms is just as Zr-V film, when it is more than 0.6 μm, just as Al film. Deuterium absorption by Al/Zr-V multifilms decreases as the thickness of Al film increases until 0.7 μm, then the deuterium absorption no longer changes significantly. The Al film of multifilms cracks on desorbing, so the absorption rate varies as Zr-V film when the thickness of Al film is less than 0.6 μ. When the thickness of Al film is more than 0.6 μm, the deuterium absorption rate of multifilm does not change with the thickness of Al film. (author)

  15. Electronic structure of ZrX2 (X = Se, Te)

    Science.gov (United States)

    Shkvarin, A. S.; Merentsov, A. I.; Shkvarina, E. G.; Yarmoshenko, Yu. M.; Píš, I.; Nappini, S.; Titov, A. N.

    2018-03-01

    The electronic structure of the ZrX2 (X = Se, Te) compounds has been studied using photoelectron, resonant photoelectron and X-ray absorption spectroscopy, theoretical calculations of the X-ray absorption spectra, and density of electronic states. It was found that the absorption spectra and valence band spectra are influenced by the chalcogen type. The results of the multiplet calculation of the Zr4+ atom show that the change in the splitting in the crystal field, which is described by the 10Dq parameter, is due to the change in the ratio of covalent and ionic contributions to the chemical bond. The resonance band near the Fermi level in the valence band spectra is observed for ZrTe2 in the Zr 3p-4d resonant excitation mode. The extent of photon energy indicates the charge localization on the Zr atom. Similar resonance band for ZrSe2 is absent; it indicates the presence of a gap at the Fermi level.

  16. Plan of development of ZrC-TRISO coated fuel particle and construction of ZrC coater

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, Shohei; Ino, Hiroichi; Sawa, Kazuhiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tobita, Tsutomu [Nuclear Engineering Company, Ltd., Tokai, Ibaraki (Japan); Takahashi, Masashi [Nuclear Fuel Industries, Ltd., Tokyo (Japan)

    2002-11-01

    In order to use coated fuel particle under higher temperature condition, more refractory coating material, which is more refractory than conventional silicon carbide (SiC), should be applied. Zirconium carbide (ZrC) is considered to be one of the promising materials, which is proposed as candidate for VHTR fuel material in GENERATION-IV, because of its intactness under high temperature of around 2000degC and its higher stability against kernel migration (amoeba effect) and fission product corrosion under normal operating condition. In order to develop ZrC coated particle for commercial use, research and development items were extracted based on review of the previous works. Research and development plan was determined. Based on the plan, a new ZrC coater of 100g batch size, which applies bromine process, was constructed. This report describes the review of precious works, extracted research and develop items and plan, and specifications of the ZrC coater. (author)

  17. Tuning of optical mode magnetic resonance in CoZr/Ru/CoZr synthetic antiferromagnetic trilayers by oblique sputtering

    Science.gov (United States)

    Wang, Wenqiang; Wang, Fenglong; Cao, Cuimei; Li, Pingping; Yao, Jinli; Jiang, Changjun

    2018-04-01

    CoZr/Ru/CoZr synthetic antiferromagnetic trilayers with strong antiferromagnetic interlayer coupling were fabricated by an oblique sputtering method that induced in-plane uniaxial magnetic anisotropy. A microstrip method using a vector network analyzer was applied to investigate the magnetic resonance modes of the trilayers, including the acoustic modes (AMs) and the optical modes (OMs). At zero magnetic field, the CoZr/Ru/CoZr trilayers showed OMs with resonance frequencies of up to 7.1 GHz. By increasing the applied external magnetic field, the magnetic resonance mode can be tuned to various OMs, mixed modes, and AMs. Additionally, the magnetic resonance mode showed an angular dependence between the magnetization and the microwave field, which showed similar switching of the magnetic modes with variation of the angle. Our results provide important information that will be helpful in the design of multifunctional microwave devices.

  18. Synthesis and characterization of nanostructured CaZrO{sub 3} and BaZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ibiapino, Amanda Laura; Figueiredo, Laysa Pires de [Departamento de Quimica, Instituto de Ciencias Exatas e da Terra, Universidade Federal do Mato Grosso, MT (Brazil); Lascalea, Gustavo E. [LISAMEN/CONICET, Ciudad de Mendoza (Argentina); Prado, Rogerio Junqueira, E-mail: rjprado@ufmt.br [Instituto de Fisica, Universidade Federal do Mato Grosso, Cuiaba - MT (Brazil)

    2013-09-01

    In this work, nanostructured samples of barium zirconate (BaZrO{sub 3}) and calcium zirconate (CaZrO{sub 3}) were synthesized by the gel-combustion method, using glycine as fuel. The ceramic powders were calcined at 550 Degree-Sign C for 2 h and subsequently heat treated at 1350 Degree-Sign C for 10 min (fast-firing). The X-ray diffraction technique was employed to identify and characterize the crystalline phases present in the synthesized powders, using the Rietveld method. Monophasic nanostructured samples of BaZrO{sub 3} and CaZrO{sub 3} presenting average crystallite sizes of around 8.5 and 10.3 nm, respectively, were found after fast-firing. (author)

  19. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    International Nuclear Information System (INIS)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun

    2017-01-01

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr 7 Ni 10 , ZrNi, ZrNi 5 , Zr 14 Cu 51 , and Zr 2 Cu 9 , show a remarkable ternary solubility. A new ternary compound named τ 3 (Zr 31.1-30.7 . Cu 28.5-40.3 Ni 40.4-29.0 ) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  20. Low-temperature phases in PbZr0.52Ti0.48O3 : A neutron powder diffraction study

    NARCIS (Netherlands)

    Cox, D.E.; Noheda, B.; Shirane, G.

    2005-01-01

    A neutron powder diffraction study has been carried out on PbZr0.52Ti0.48O3 in order to resolve an ongoing controversy about the nature of the low-temperature structure of this strongly piezoelectric and technologically important material. The results of a detailed and systematic Rietveld analysis

  1. Corrosion behavior of Zr-x(Nb, Sn and Cu) binary alloys

    International Nuclear Information System (INIS)

    Kim, M. H.; Lee, M. H.; Park, S. Y.; Jung, Y. H.; We, M. Y.

    1999-01-01

    For the development of advanced zirconium alloys for nuclear fuel cladding, the corrosion behaviors of zirconium binary alloys were studied on the Zr-xNb, Zr-xSn, and Zr-xCu alloys. The corrosion test were performed in water at 360 deg C, steam at 400 deg C and LiOH at 360 deg C for 45 days. The corrosion behaviors of Zr-xNb was similar to that of Zr-xCu alloys. However, the corrosion behavior of Zr-xSn was different from Zr-xNb and Zr-xCu. The weight gain of Zr-xNb and Zr-xCu was increased with addition of alloying elements. When Sn is added to Zr matrix in range below the solubility limit, the corrosion resistance decrease with increasing Sn-content, while in the range over solubility limit, Sn has an adverse effect on the corrosion resistance. Especially, Zr-xSn alloys showed higher corrosion resistance than Zr-xNb and Zr-xCu alloys in LiOH solution

  2. Annealing induced oxidation and transformation of Zr thin film prepared by ion beam sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, S.-W. [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Hsieh, T.-Y. [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Huang, H.-L. [Department of Mechanical Engineering, Chinese Military Academy, Kaohsiung, Taiwan (China); Gan Dershin [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China)], E-Mail: dgan@mail.nsysu.edu.tw; Shen Pouyan [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2007-04-15

    Nanocrystalline {alpha}-Zr condensates deposited by ion beam sputtering on the NaCl (1 0 0) surfaces and then annealed at 100-750 deg. C in air. The phases present were identified by transmission electron microscopy to be nanometer-size {alpha}-Zr + ZrO, {alpha}-Zr + ZrO + c-ZrO{sub 2}, c-ZrO{sub 2}, c- + t-ZrO{sub 2}, t-ZrO{sub 2}, and t- + m-ZrO{sub 2} phase assemblages with increasing annealing temperature. The ZrO{sub 2} showed strong {l_brace}1 0 0{r_brace} preferred orientation due to parallel epitaxy with NaCl (1 0 0) when annealed between 150 and 500 deg. C in air. The c- and t-ZrO{sub 2} condensates also showed (1 1 1)-specific coalescence among themselves. The c- and/or t-ZrO{sub 2} formation can be accounted for by the small grain size, the presence of low-valence Zr cation and the lateral constraint of the neighboring grains.

  3. Structures of layered superconductor Li0.19ZrNBr and the parent compound β-ZrNBr

    International Nuclear Information System (INIS)

    Shamoto, Shin-ichi; Kato, Yoichi; Kajitani, Tsuyoshi; Oikawa, Kenichi

    2001-01-01

    The structures of a double honeycomb lattice superconductor, Li 0.19 ZrNBr(T c onset =14.5 K), and the parent compound, β-ZrNBr, have been studied by Rietveld analysis using powder neutron diffraction data at the incident wave length λ=1.1636 A. In this system, expected sliding of [ZrNBr] 2 blocks by Li intercalation has not taken place in contrast to the other isostructural compounds, such as Na x HfNCl or Li x ZrNCl. The ratio of electronic density of states at the Fermi surface for three superconductors, Li 0.19 ZrNBr, Li 0.16 ZrNCl and Na 0.29 HfNCl, has been estimated to be 1.00(1):0.98(2):1.15(3) from bond length between the nearest neighbor transition metals. It corresponds to the ratio of their superconducting onset transition temperatures T c onset , i.e., 1.00:1.07:1.62 (14.5,15.5 and 23.5 K, respectively), indicating common mechanism of superconductivity in the double honeycomb lattice superconductors. (author)

  4. New perspectives on the fluorite-pyrochlore phase transition in La2Zr2O7 and the importance of local oxygen-related disordered states

    OpenAIRE

    Paul, Barnita; Singh, Kushal; Jaron, Tomasz; Roy, Anushree; Chowdhury, Anirban

    2016-01-01

    The fluorite to pyrochlore phase transition in La2Zr2O7 has been studied in the literature for decades in the context of thermal barrier coatings and reinforcement materials. However, the nature of the phase transition in this system is still not well understood. In this article we have investigated the phase transition in La2Zr2O7, calcined at different temperatures, using powder x-ray diffraction and Raman measurements. Rietveld analyses of the x-ray data suggest a fluorite to pyrochlore ph...

  5. Enhanced magnetization and reduced leakage current by Zr substitution in multiferroic ScMnO3

    Science.gov (United States)

    Sarkar, Tanushree; Elizabeth, Suja; Anil Kumar, P. S.

    2018-02-01

    Despite numerous attempts of electron doping in different manganites (RMnO3, R = rare earth), successful reports are scarce in the literature till date. In this paper, we have synthesized a series of phase-pure electron doped multiferroic compound Sc1-xZrxMnO3 (x = 0, 0.05, 0.1, and 0.2) and evaluated the effect of doping on structural properties, oxidation states of cations, DC magnetization, heat capacity, resistivity, dielectric behaviour and ferroelectricity in the material. The presence of Zr4+ and mixed valence state of Mn comprising of Mn2+ and Mn3+ ions are confirmed using X-ray photoelectron spectroscopy. All these samples exhibit antiferromagnetic ordering; as Zr4+ content increases, antiferromagnetic ordering gradually diminishes while shifting to low temperatures. Additionally, ferromagnetic-like interaction develops in doped systems which gives rise to hysteresis in isothermal magnetization loops with greatly enhanced magnetization in comparison to pure antiferromagnetic nature of x = 0 i.e. ScMnO3. Interestingly, even with zero magnetic moment of Sc3+, Schottky-like anomaly is observed at 5 K in heat capacity data of samples with x = 0.1 and 0.2, a result that we attribute to the highly resistive nature of doped samples. Moreover, while measuring ferroelectric hysteresis loops, we observe a significant reduction of leakage current in doped sample (x = 0.2) compared to pure ScMnO3. Additionally, the compound x = 0.2 shows improved dielectric and ferroelectric behaviour. It is proposed that doping of Zr4+ compensates for the cation deficiency and consequently eliminates the inherent oxygen vacancies by charge compensation.

  6. Microstructure and mechanical properties of Zr-Si-N films prepared by rf-reactive sputtering

    CERN Document Server

    Nose, M; Zhou, M; Mae, T; Meshii, M

    2002-01-01

    ZrN and ZrSiN films were prepared in an rf sputtering apparatus that has a pair of targets facing each other (referred to as the facing target--type rf sputtering). Films were deposited on silicon wafers without bias application or substrate heating in order to examine only the effect of silicon addition to the transition metal nitride films. The contents of zirconium, nitrogen, and silicon of the films were determined with an electron probe microanalyzer. The transmission electron microscopy studies were carried out in addition to x-ray diffraction. For the high resolution transmission electron microscopy observation, the field emission type transmission electron microscope was used, which provides a point-to-point resolution of 0.1 nm. The samples were observed both parallel and perpendicular to the film surface, which were plane and cross sectional views, respectively. In order to investigate the relationship between the mechanical properties and microstructure of films, the hardness was measured by a nano...

  7. Optical and structural characterization of Ge clusters embedded in ZrO2

    OpenAIRE

    Agocs, E; Zolnai, Z.; Rossall, A. K.; Van den Berg, Jakob; Fodor, B.; Lehninger, D.; Khomenkova, L.; Ponomaryov, S.; Gudymenko, O.; Yukhymchuk, V.; Kalas, B.; Heitmann, J.; Petrik, P.

    2017-01-01

    The change of optical and structural properties of Ge nanoclusters in ZrO2 matrix have been investigated by spectroscopic ellipsometry versus annealing temperatures. Radio-frequency top-down magnetron sputtering approach was used to produce the samples of different types, i.e. single-layers of pure Ge, pure ZrO2 and Ge-rich-ZrO2 as well as multi-layers stacked of 40 periods of 5-nm-Ge-rich-ZrO2 layers alternated by 5-nm-ZrO2 ones. Germanium nanoclusters in ZrO2 host were formed by rapid-therm...

  8. MHC class I target recognition, immunophenotypes and proteomic profiles of natural killer cells within the spleens of day-14 chick embryos

    Science.gov (United States)

    Chicken natural killer (NK) cells are not well defined, so little is known about the molecular interactions controlling their activity. At day 14 of embryonic development, chick spleens are a rich source of T-cellfree CD8aa+, CD3_ cells with natural killing activity. Cell-mediated cytotoxicity assay...

  9. Microstructure and morphology of Cu-Zr-Ti coatings produced by thermal spray and treated by surface mechanical attrition

    International Nuclear Information System (INIS)

    Revesz, A.; Szommer, P.; Szabo, P.J.; Varga, L.K.

    2011-01-01

    Research highlights: → Cu-Zr-Ti powders were deposited onto Cu plate by thermal spray. → The coatings then were subjected to severe plastic deformation using surface mechanical attrition treatment in a high energy SPEX 8000 shaker mill. → Partial amorphization takes place in the surface layer. → Hardness increases significantly due to severe plastic deformation. - Abstract: Cu-Zr-Ti powders were deposited onto Cu plates by thermal spray. Upon impact onto the substrate, the particles spread out and bond well to the substrate, yielding a well adhered surface layer. The coatings then were subjected to severe plastic deformation using surface mechanical attrition treatment in a high energy SPEX 8000 shaker mill by replacing the end cap of the milling vial with the coated targets. It is demonstrated that different mechanical treatments influence the microstructural and mechanical behavior of the Cu-Zr-Ti coating, moreover, a partial solid state amorphization takes place. Roughening of the interface between target and coating ensures strong bonding while the free surface is hard and smooth. Experiments were carried out using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and hardness measurements.

  10. Nanoscopic characterization of Pr2Zr2O7 at Zr sites

    International Nuclear Information System (INIS)

    Martinez, J.A.; Caracoche, M.C.; Rodriguez, A.M.; Rivas, P.C.; Bondioli, F.; Manfredini, T.; Ferrari, A.M.

    2005-01-01

    By using Perturbed Angular Correlation Spectroscopy, a suitable technique to explore internal fields at nanoscopic scale, the electric field gradients at Zr 4+ sites in the Pr 2 Zr 2 O 7 compound have been determined as a function of temperature. Three nonequivalent nanoconfigurations are present, which have been interpreted with the aid of point charge model calculations. Two of them correspond to pyrochlore - oxygen defective and perfect structures -, and the third one to the pyrochlore-related defect fluorite structure. The most abundant interaction is a disordered and fluctuating electric field gradient, which describes the oxygen defective pyrochlore. As temperature increases, its gradual and reversible transformation towards the perfect form is observed. Below 750 C the oxygen vacancies movement, which exhibits an activation energy of 0.14 eV, is assumed to be due to vacancies jumping among 48f equivalent sites. At higher temperatures the movement is interpreted as the fast diffusion of oxygen vacancies involving 48f and 8b sites, thus giving place to anionic disorder. The activation energy for this movement has been determined to be of 0.85 eV. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. {sup 89}Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pandit-Taskar, Neeta; Solomon, Stephen B.; Durack, Jeremy C.; Carrasquillo, Jorge A.; Lefkowitz, Robert A.; Osborne, Joseph R. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); O' Donoghue, Joseph A. [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Beylergil, Volkan; Ruan, Shutian; Cheal, Sarah M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Lyashchenko, Serge [Memorial Sloan Kettering Cancer Center, Department of Radiochemistry and Molecular Imaging Probes Core, New York, NY (United States); Gonen, Mithat [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Lewis, Jason S. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Department of Radiochemistry and Molecular Imaging Probes Core, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Program in Molecular Pharmacology and Chemistry, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Holland, Jason P. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Harvard Medical School, Department of Radiology of Massachusetts General Hospital, Boston, MA (United States); Reuter, Victor E. [Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, NY (United States); Weill Cornell Medical College, Department of Pathology, New York, NY (United States); Loda, Massimo F. [Dana-Farber Cancer Institute, Boston, MA (United States); Broad Institute of Harvard and MIT, Cambridge, MA (United States); Smith-Jones, Peter M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Department of Psychiatry and Behavioral Science of Stony Brook University, Stony Brook, NY (United States); Weber, Wolfgang A.; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Program in Molecular Pharmacology and Chemistry, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Bander, Neil H. [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States); Weill Cornell Medical College, Department of Urology, New York, NY (United States); Scher, Howard I.; Morris, Michael J. [Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY (United States); Weill Cornell Medical College, Department of Medicine, New York, NY (United States)

    2014-11-15

    Given the bone tropism of prostate cancer, conventional imaging modalities poorly identify or quantify metastatic disease. {sup 89}Zr-huJ591 positron emission tomography (PET) imaging was performed in patients with metastatic prostate cancer to analyze and validate this as an imaging biomarker for metastatic disease. The purpose of this initial study was to assess safety, biodistribution, normal organ dosimetry, and optimal imaging time post-injection for lesion detection. Ten patients with metastatic prostate cancer received 5 mCi of {sup 89}Zr-huJ591. Four whole-body scans with multiple whole-body count rate measurements and serum activity concentration measurements were obtained in all patients. Biodistribution, clearance, and lesion uptake by {sup 89}Zr-huJ591 immuno-PET imaging was analyzed and dosimetry was estimated using MIRD techniques. Initial assessment of lesion targeting of {sup 89}Zr-huJ591 was done. Optimal time for imaging post-injection was determined. The dose was well tolerated with mild chills and rigors seen in two patients. The clearance of {sup 89}Zr-huJ591 from serum was bi-exponential with biological half-lives of 7 ± 4.5 h (range 1.1-14 h) and 62 ± 13 h (range 51-89 h) for initial rapid and later slow phase. Whole-body biological clearance was 219 ± 48 h (range 153-317 h). The mean whole-body and liver residence time was 78.7 and 25.6 h, respectively. Dosimetric estimates to critical organs included liver 7.7 ± 1.5 cGy/mCi, renal cortex 3.5 ± 0.4 cGy/mCi, and bone marrow 1.2 ± 0.2 cGy/mCi. Optimal time for patient imaging after injection was 7 ± 1 days. Lesion targeting of bone or soft tissue was seen in all patients. Biopsies were performed in 8 patients for a total 12 lesions, all of which were histologically confirmed as metastatic prostate cancer. One biopsy-proven lesion was not positive on {sup 89}Zr-huJ591, while the remaining 11 lesions were {sup 89}Zr-huJ591 positive. Two biopsy-positive nodal lesions were noted only on

  12. Experimental determination of the phase equilibria in the Co-Fe-Zr ternary system

    International Nuclear Information System (INIS)

    Wang, C.P.; Yu, Y.; Zhang, H.H.; Hu, H.F.; Liu, X.J.

    2011-01-01

    Research highlights: → We determined four isothermal sections of the Co-Fe-Zr system from 1000 o C to 1300 o C. → No ternary compound was found in the Co-Fe-Zr ternary system. → The solubility of Fe in the liquid phase at 1300 o C is extremely large. → The (Co, Fe) 2 Zr phase form the continuous solution from Co-Zr side to Fe-Zr side. → The solubility of Zr in the fcc (Co, Fe) phase is extremely small. - Abstract: The phase equilibria in the Co-Fe-Zr ternary system were investigated by means of optical microscopy (OM), electron probe microanalysis (EPMA), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) on equilibrated ternary alloys. Four isothermal sections of the Co-Fe-Zr ternary system at 1300 o C, 1200 o C, 1100 o C and 1000 o C were experimentally established. The experimental results indicate that (1) no ternary compound was found in this system; (2) the solubility of Fe in the liquid phase of the Co-rich corner at 1300 o C is extremely large; (3) the liquid phase in the Zr-rich corner and the (Co,Fe) 2 Zr phase form the continuous solid solutions from the Co-Zr side to the Fe-Zr side; (4) the solubility of Zr in the fcc (Co, Fe) phase is extremely small.

  13. Microstructure and discharge properties of Mg-Zr-O protective films in plasma display panel

    International Nuclear Information System (INIS)

    Wang Jianfeng; Wu Huiyan; Song Zhongxiao; Xu Kewei; Liu Chunliang

    2009-01-01

    Mg-Zr-O protective films for plasma display panels (PDPs) were deposited on soda-lime glass substrates by magnetron sputtering method. The effects of Zr doping on both the discharge properties (firing voltage, V f and the minimum sustaining voltage, V s ) and the microstructure of the Mg-Zr-O films were investigated. The results show that the deposited Mg-Zr-O films retain the NaCl-type structure as the pure MgO crystal. The doped Zr exists in the form of Zr 4+ substitution solution in MgO crystal and an appropriate amount of Zr can improve the surface characteristics of the Mg-Zr-O films effectively. When the Zr atomic concentration is about 2%, the Mg-Zr-O films have the strongest (2 0 0) preferred orientation and the minimum surface roughness. The firing voltage and the minimum sustaining voltage of Mg-Zr-O protective layer are reduced at most by about 25 V and 15 V, respectively, compared with those of the pure MgO film. Mg-Zr-O protective layers with an appropriate amount of Zr are promising to meet the demands of advanced high-vision PDPs.

  14. On the significance of natural gas with regard to tomorrow's customer target group; Zur Bedeutung von Erdgas in der Kundenzielgruppe von morgen

    Energy Technology Data Exchange (ETDEWEB)

    Halstrup, Dominik [Hochschule Osnabrueck (Germany). Professur fuer BWL und Strategisches Management; Groeblinghoff, Sebastian [EVU, Essen (Germany); Walsh, Gianfranco [Koblenz Univ. (Germany). Inst. fuer Management

    2011-10-15

    Competition between the energy carriers in Germany's heating market has become harsher over the past years and is expected to grow still further. Successful customer acquisition and long-term customer retention will become increasingly important for natural gas supply companies. For this reason decision makers at public utilities that have a significant share of natural gas in their sales portfolio should have the foresight to ask themselves what sentiment tomorrow's home and house owners will have towards natural gas as an energy product as well as towards their company.

  15. Creep properties of annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe cladding tubes and their performance comparison

    International Nuclear Information System (INIS)

    Ko, S.; Hong, S.I.; Kim, K.T.

    2010-01-01

    Creep properties of annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe cladding tubes were studied and compared. The creep rates of the annealed Zr-Nb-O alloy were found to be greater than those of the stress-relieved Zr-Nb-Sn-Fe alloy. Zr-Nb-O alloy was found to have stress exponents of 5-7 independent of stress level whereas Zr-Nb-Sn-Fe alloy exhibited the transition of the stress exponent from 6.5 to 7.5 in the lower stress region to ∼4.2 in the higher stress region. The reduction of stress exponent at high stresses in Zr-Nb-Sn-Fe can be explained in terms of the dynamic solute-dislocation effect caused by Sn atoms. The constancy of stress exponent without the transition was observed in Zr-Nb-O alloy, supporting that the decrease of the stress exponent with increasing stress in Zr-Nb-Sn-Fe is associated with Sn atoms. The difference of creep life between annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe is not large considering the large difference of strength level between annealed Zr-Nb-O and annealed stress-relieved Zr-Nb-Sn-Fe. The better-than-expected creep life of annealed Zr-Nb-O alloy can be attributable to the combined effects of creep ductility enhancement associated with softening and the decreased contribution of grain boundary diffusion due to the increased grain size.

  16. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Elastic and transport properties of topological semimetal ZrTe

    Science.gov (United States)

    Guo, San-Dong; Wang, Yue-Hua; Lu, Wan-Li

    2017-11-01

    Topological semimetals may have substantial applications in electronics, spintronics, and quantum computation. Recently, ZrTe was predicted as a new type of topological semimetal due to the coexistence of Weyl fermions and massless triply degenerate nodal points. In this work, the elastic and transport properties of ZrTe are investigated by combining the first-principles calculations and semiclassical Boltzmann transport theory. Calculated elastic constants prove the mechanical stability of ZrTe, and the bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio also are calculated. It is found that spin-orbit coupling (SOC) has slightly enhanced effects on the Seebeck coefficient, which along the a(b) and c directions for pristine ZrTe at 300 K is 46.26 μVK-1 and 80.20 μVK-1, respectively. By comparing the experimental electrical conductivity of ZrTe (300 K) with the calculated value, the scattering time is determined as 1.59 × 10-14 s. The predicted room-temperature electronic thermal conductivity along the a(b) and c directions is 2.37 {{Wm}}-1{{{K}}}-1 and 2.90 {{Wm}}-1{{{K}}}-1, respectively. The room-temperature lattice thermal conductivity is predicted as 17.56 {{Wm}}-1{{{K}}}-1 and 43.08 {{Wm}}-1{{{K}}}-1 along the a(b) and c directions, showing very strong anisotropy. Calculated results show that isotope scattering produces an observable effect on lattice thermal conductivity. To observably reduce lattice thermal conductivity by nanostructures, the characteristic length should be smaller than 70 nm, based on cumulative lattice thermal conductivity with respect to the phonon mean free path (MFP) at 300 K. It is noted that the average room-temperature lattice thermal conductivity of ZrTe is slightly higher than that of isostructural MoP, which is due to larger phonon lifetimes and smaller Grüneisen parameters. Finally, the total thermal conductivity as a function of temperature is predicted for pristine ZrTe. Our works provide valuable

  18. Electrochemical Behaviors of Binary Ti-Zr Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Oh, M. Y.; Kim, W. G.; Choe, H. C.; Ko, Y. M. [Chosun University, Gwnagju (Korea, Republic of)

    2009-04-15

    Pure Ti as well as Ti-6Al-4V alloy exhibit excellent properties for dental implant applications. However, for a better biocompatibility it seems important to avoid in the composition the presence of V due to the toxic effects of V ion release. Thus Al and V free and composed of non-toxic element such as Nb, Zr alloys as biomaterials have been developed. Especially, Zr contains to same family in periodic table as Ti. The addition of Zr to Ti alloy has an excellent mechanical properties, good corrosion resistance, and biocompatibility. In this study, the electrochemical characteristics of Ti-Zr alloys for biomaterials have been investigated using by electrochemical methods. Methods: Ti-Zr(10, 20, 30 and 40 wt%) alloys were prepared by are melting and homogenized for 24 hr at 1000 .deg. C in argon atmosphere. Phase constitutions and microstructure of the specimens were characterized by XRD, OM and SEM. The corrosion properties of the specimens were examined through potentiodynamic test (potential range of - 1500 {approx} 2000 mV), potentiostatic test (const, potential of 300 mV) in artificial saliva solution by potentiostat (EG and G Co, PARSTAT 2273. USA)

  19. Diffusion behavior for Se and Zr in sodium-bentonite

    International Nuclear Information System (INIS)

    Sato, Haruo; Yui, Mikazu; Yoshikawa, Hideki

    1995-01-01

    Apparent diffusion coefficients for Se and Zr in bentonite were measured by in-diffusion method at room temperature using water-saturated sodium-bentonite, Kunigel V1 reg-sign containing 50wt% Na-smectite as a major mineral was used as the bentonite material. The experiments were carried out in the dry density range of 400--1,800 kg/m 3 . Bentonite samples were immersed with distilled water and saturated before the experiments. The experiments for Se were carried out under N 2 atmospheric condition (O 2 : 2.5ppm). Those for Zr were carried out under aerobic condition. The apparent diffusion coefficients decrease with increasing density of the bentonite. Since dominant species of Se in the pore water is predicted to be SeO 3 2- , Se may be retarded by anion-exclusion because of negative charge on the surface of the bentonite and little sorption. The dominant species of Zr in the porewater is predicted to be Zr(OH) 5 - or HZrO 3 - . Distribution coefficient measured for Zr on the bentonite was about 1.0 m 3 /kg from batch experiments. Therefore, the retardation may be caused by combination of the sorption and the anion-exclusion. A modeling for the diffusion mechanisms in the bentonite were discussed based on an electric double layer theory. Comparison between the apparent diffusion coefficients predicted by the model and the measured ones shows a good agreement

  20. Electrodic behaviour of RuZr in acid

    International Nuclear Information System (INIS)

    Manoharan, Ramasamy; Goodenough, John B.

    1998-01-01

    The electrochemical properties of RuZr alloy in acidic solution have been investigated by means of steady-state polarization measurements and cyclic voltammetry. The current potential profiles for the formation/reduction of surface oxides and the deposition/dissolution of hydrogen at a virgin RuZr electrode are basically similar to those at an elemental Ru electrode. The onset of the oxygen evolution reaction and Ru-corrosion reactions are well resolved on RuZr alloy; the Ru-corrosion reaction is shifted positively by about 1.12 V. This is attributed to the presence of more basic Zr-O-Ru bonds in the gelatinous oxyhydroxide film that is formed during the anodic polarization. The film thus formed exists permanently on the surface, and it plays a vital role in catalysing the electrochemical reaction by virtue of its ability to exhibit three redox couples. The film is capable of catalysing the hydrogen evolution reaction. RuZr does not catalyse the methanol- oxidation reaction. (author)

  1. Refining U-Zr-Nb alloys by remelting

    International Nuclear Information System (INIS)

    Aguiar, B.M.; Kniess, C.T.; Riella, H.G.; Ferraz, W.B.

    2011-01-01

    The high density U-Zr-Nb and U-Nb uranium-based alloys can be employed as nuclear fuel in a PWR reactor due to their high density and nuclear properties. These alloys can stabilize the gamma phase, however, according to TTT diagrams, at the working temperature of a PWR reactor, all gamma phase transforms to α'' phase in a few hours. To avoid this kind of transformation during the nuclear reactor operation, the U-Zr-Nb alloy and U-Nn are used in α'' phase. The stability of α'' phase depends on the alloy composition and cooling rate. The alloy homogenization has to be very effective to eliminate precipitates rich in Zr and Nb to avoid changes in the alloying elements contents in the matrix. The homogenization was obtained by remelting the alloy and keeping it in the liquid state for enough time to promote floating of the precipitates (usually carbides, less dense) and leaving the matrix free of precipitates. However, this floating by density difference may result in segregation between the alloying elements (Nb and Zr, at the top) and uranium (at the bottom). The homogenized alloys were characterized in terms of metallographic techniques, optical microscopy, scanning electronic microscopy, EDS and X-ray diffraction. In this paper, it is shown that the contents of Zr and Nb at the bottom and at the top of the matrix are constant. (author)

  2. Dilatometry of the Zr-H system

    International Nuclear Information System (INIS)

    Fagundez, Cintia P.

    2005-01-01

    The zirconium-based alloys are the reference materials for the fabrication of the structural components for the nuclear power reactors. That is because zirconium has a very low neutron absorption coefficient for thermal neutrons, good corrosion resistance to water at high temperature and an acceptable mechanical strength. However, as the operation time increases those material properties gradually degrades. With the operation time the accumulated neutron flux reduces the zirconium ductility and changes the shape of the component and its dimensions. In addition, the corrosion reaction between the metal and the aqueous media release hydrogen atoms, part of which is incorporated into the metal matrix, adding to the increase of dimensions and the chances for hydrogen embrittlement. As part of the post-evaluation program of the degradation effects of the Zr based components of the CNA-1 cooling channels, the objective of the present thesis work was to determine the dissolution and precipitation curves of hydrogen in Zircaloy-4. This task was carried on using a differential dilatometric technique, which was particularly convenient to reach a second technologically like objective: knowing the effects of the hydrogen pick up and hydride precipitation on the dimensional changes in which undergo the CNA-1 cooling channels. For comparison purposes and with the aim of obtaining a good calibration reference for the technique, the dissolution and precipitation curves were determined also by differential scanning calorimetry (DSC). The measurements were made in a concentration range from 50 to 650 ppm. The data obtained with these techniques shown a good self-agreement and with the data reported in the literature, being a good contribution to the accurate knowledge of the solvus region and the precipitation process throughout the modern thermal analytical techniques. On the other hand, dilatometry allows the differentiation of the dimensional changes produced by the hydrogen in

  3. Chemical Potential Evaluation of Thermoelectric and Mechanical Properties of Zr2CoZ (Z = Si, Ge) Heusler Alloys

    Science.gov (United States)

    Yousuf, Saleem; Gupta, Dinesh C.

    2018-04-01

    The electronic, mechanical and thermoelectric properties of Zr2CoZ (Z = Si, Ge) Heusler alloys are investigated by the full-potential linearized augmented plane wave method. Using the Voigt-Reuss approximation, we calculated the various elastic constants, the shear and Young's moduli, and Poisson's ratio which predict the ductile nature of the alloys. Thermoelectric coefficients viz., Seebeck, electrical conductivity and figure of merit show Zr2CoZ alloys as n-type thermoelectric materials showing a linearly increasing Seebeck coefficient with temperature mainly because of the existence of almost flat conduction bands along L to D directions of a high symmetry Brillouin zone. The efficiency of conversion was measured as the figure of merit by taking into effect the lattice thermal part that achieves an upper-limit of 0.14 at 1200 K which may favour their use for waste heat recovery at higher temperatures.

  4. Synthesis of Carboxylate Cp*Zr(IV) Species: Toward the Formation of Novel Metallocavitands.

    Science.gov (United States)

    Daigle, Maxime; Bi, Wenhua; Légaré, Marc-André; Morin, Jean-François; Fontaine, Frédéric-Georges

    2015-06-01

    With the intent of generating metallocavitands isostructural to species [(CpZr)3(μ(3)-O)(μ(2)-OH)3(κO,O,μ(2)-O2C(R))3](+), the reaction of Cp*2ZrCl2 and Cp*ZrCl3 with phenylcarboxylic acids was carried out. Depending on the reaction conditions, five new complexes were obtained, which consisted of Cp*2ZrCl(κ(2)-OOCPh) (1), (Cp*ZrCl(κ(2)-OOCPh))2(μ-κ(2)-OOCPh)2 (2), [(Cp*Zr(κ(2)-OOCPh))2(μ-κ(2)-OOCPh)2(μ(2)-OH)2]·Et2O (3·Et2O), [[Cp*ZrCl2](μ-Cl)(μ-OH)(μ-O2CC6H5)[Cp*Zr

  5. Fast diffusion and nucleation of the amorphous phase in Ni--Zr films

    International Nuclear Information System (INIS)

    Ehrhart, P.; Averback, R.S.; Hahn, H.; Yadavalli, S.; Flynn, C.P.

    1988-01-01

    The nucleation of the amorphous phase by solid-state reactions has been investigated on single-crystal Zr films grown by molecular beam epitaxy and covered in situ with either polycrystalline Ni, amorphous (a-) NiZr, or single-crystalline Zr 99 N 01 films. Interfacial reactions were investigated by backscattering analysis or secondary ion mass spectroscopy. The amorphizing reaction occurred only in the specimen with the a-NiZr overlayer, although fast Ni diffusion through the single-crystalline Zr layer was observed in all three specimens. The nucleation behavior of a-NiZr is attributed to the combination of high-Ni and low-Zr mobility in crystalline Zr

  6. Atomistic studies of cation transport in tetragonal ZrO2 during zirconium corrosion

    International Nuclear Information System (INIS)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-01-01

    Zirconium alloys are the major fuel cladding materials in current reactors. The water-side corrosion is a significant degradation mechanism of these alloys. During corrosion, the transport of oxidizing species in zirconium dioxide (ZrO 2 ) determines the corrosion kinetics. Previously, it has been argued that the outward diffusion of cations is important for forming protective oxides. In this work, the migration of Zr defects in tetragonal ZrO 2 is studied with temperature accelerated dynamics and molecular dynamics simulations. The results show that Zr interstitials have anisotropic diffusion and migrate preferentially along the [001] or c direction in tetragonal ZrO 2 . The compressive stresses can increase the Zr interstitial migration barrier significantly. The migration of Zr interstitials at a grain boundary is much slower than in a bulk oxide. The implications of these atomistic simulation results in the Zr corrosion are discussed. (authors)

  7. Influence of air and vacuum environment on fatigue behavior of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang, G.Y.; Liaw, P.K.; Yokoyama, Y.; Peter, W.H.; Yang, B.; Freels, M.; Buchanan, R.A.; Liu, C.T.; Brooks, C.R.

    2007-01-01

    High-cycle fatigue (HCF) experiments in air and vacuum at room temperature were conducted on zirconium (Zr)-based bulk-metallic glasses (BMGs): Zr 50 Cu 40 Al 10 , Zr 50 Cu 30 Al 10 Ni 10 , and Zr 50 Cu 37 Al 10 Pd 3 in atomic percent. The fatigue-endurance limit of Zr 50 Cu 37 Al 10 Pd 3 was found to be significantly greater than those of Zr 50 Cu 40 Al 10 and Zr 50 Cu 30 Al 10 Ni 10 , which indicates that the inclusions of Pd and the resulting nano structures improve the fatigue resistances of the Zr-based BMGs. The fatigue lives in vacuum and air were generally found to be comparable

  8. Lanthanides migration and immobilization in U-Zr nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bozzolo, G., E-mail: guille_bozzolo@yahoo.com [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Hofman, G.L.; Yacout, A.M. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Mosca, H.O. [Gerencia de Investigaciones y Aplicaciones, CNEA, Av. Gral Paz 1499, B165KNA, San Martin, Buenos Aires (Argentina)

    2012-06-15

    Redistribution of lanthanides fission products during irradiation and migration to the surface of U-Zr based metallic fuels is a concern due to their interaction with the cladding. The existing remedy for preventing this effect is the introduction of diffusion barriers on the cladding inner surface or by adding thermodynamically stable compound-forming elements to the fuel. Exploring this second option, in this work atomistic modeling with the Bozzolo-Ferrante-Smith (BFS) method for alloys is used to study the formation of lanthanide-rich precipitates in U-Zr fuel and the segregation patterns of all constituents to the surface. Surface energies for all elements were computed and, together with the underlying concepts of the computational methodology and large scale simulations, the migration of lanthanides to the surface region in U-Zr fuels is explained. The role of additions to the fuel such as In, Ga, and Tl for immobilization of lanthanides is discussed.

  9. Experimental determination of U diffusion in α-Zr

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, Jorge A. [Gerencia de Materiales, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA San Martín, Pcia. de Buenos Aires (Argentina); Perez, Rodolfo A., E-mail: rodperez@cnea.gov.ar [Gerencia de Materiales, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA San Martín, Pcia. de Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET, Avda. Rivadavia 1917, 1033 CABA (Argentina); Instituto Sabato-UNSAM/CNEA, Avda. Gral. Paz 1499, 1650 San Martín (Argentina); Iribarren, Manuel [Gerencia de Materiales, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA San Martín, Pcia. de Buenos Aires (Argentina); Instituto Sabato-UNSAM/CNEA, Avda. Gral. Paz 1499, 1650 San Martín (Argentina); Di Lalla, N. [Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET, Avda. Rivadavia 1917, 1033 CABA (Argentina)

    2015-07-15

    Highlights: • Diffusion of U in α-Zr was measured for the first time. • The used technique was α-spectrometry. • An extended temperature range was studied 763–1123 K. • A downward curvature in the Arrhenius plot was observed. • The non-Arrhenius behaviour is similar to self-diffusion one. - Abstract: U bulk diffusion in α-Zr was measured by mean α-spectrometry in the temperature range 763–1123 K (540–850 °C). A deviation from the Arrhenius law consistent in a downward curvature was observed; such anomaly is similar to the self and hetero substitutional diffusion previously measured in α-Zr matrix. The measurements are compatible with the existences of migrating Fe–vacancy complex that could be competitive with a simplest single vacancy mechanism for substitutional diffusers. The possibility that this could be the reason for the non Arrhenius behaviour is discussed.

  10. Method of treating Ti--Nb--Zr--Ta superconducting alloys

    International Nuclear Information System (INIS)

    Horiuchi, T.; Monju, Y.; Tatara, I.; Nagai, N.; Hisata, M.; Matsumoto, K.

    1975-01-01

    A superconducting alloy is formulated from 10 to 50 at. percent Ti, 20 to 50 at. percent Nb, 10 to 40 at. percent Zr, and 5 to 12 at. percent Ta. A Ti--Nb--Zr--Ta superconducting alloy with a fine, non-homogeneous structure is obtained by forming a β solid solution of Ti--Nb--Zr--Ta alloy by heating to a temperature within the β solid solution range, cooling, and then cold working the heated alloy. The cold worked alloy is heated to a temperature within the (β' + β'') alloy to maintain the peritectoid structure, cold worked, then heated to a temperature within the eutectoid range to form a multiphase alloy structure and then cooled and finally cold worked. (U.S.)

  11. Electron bombardment of water adsorbed on Zr(0001) surfaces

    CERN Document Server

    Ankrah, S; Ramsier, R D

    2003-01-01

    A study of the effects of electron bombardment on water adsorbed on Zr(0001) is reported. Zirconium surfaces are dosed with isotopic water mixtures at 160 K followed by electron bombardment (485 eV). The system is then probed by low energy electron diffraction, temperature programmed desorption (TPD) and Auger electron spectroscopy (AES). No evidence is found that would indicate preferential mixing of hydrogen from the bulk with isotopic water dissociation products during TPD. However, electron bombardment results in the sharpening of a hydrogen/deuterium desorption peak near 320 K and the production of water near 730 K at low water exposures. In addition, although water does not oxidize Zr(0001) thermally, electron bombardment of adsorbed water induces a shift of about 2 eV in the Zr AES features indicating that the surface is partially oxidized by electron bombardment.

  12. Atomic structure of nanoscale quasicrystal-forming Zr-noble metal binary metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Saida, J., E-mail: jsaida@cir.tohoku.ac.jp [Center for Interdisciplinary Research, Tohoku University, Aramaki Aoba, Aoba-ku, Sendai 980-8578 (Japan); Itoh, K. [Graduate School of Education, Okayama University, Tsushimanaka, Kita-ku, Okayama 700-8530 (Japan); Sanada, T. [Research Department, Nissan ARC Ltd., Natsushima, Yokosuka 237-0061 (Japan); Sato, S. [Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577 (Japan); Imafuku, M. [Faculty of Engineering, Tokyo City University, Setagaya-ku, Tokyo 158-8557 (Japan); Ohnuma, M. [National Institute of Materials Science (NIMS), Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Inoue, A. [WPI-AIMR, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2011-06-15

    Research highlights: > Zr{sub 70}Pd{sub 30} and Zr{sub 80}Pt{sub 20} are the quasicrystal (QC)-forming glassy alloys. > The QC phase precipitates by a cooperative motion of atoms or clusters. > Relatively perfect icosahedrons frequently exist around Zr in Zr{sub 70}Pd{sub 30}, however, distorted icosahedral-like clusters are formed around Zr and Pt in Zr{sub 80}Pt{sub 20}. > The QC phase formation originates from a different mechanism in the two alloys. - Abstract: We report the results of the local structural evaluation and mechanism of QC formation in the Zr{sub 70}Pd{sub 30} and Zr{sub 80}Pt{sub 20} glassy alloys. Voronoi analysis indicates the difference of local environment between two alloys. The perfect icosahedron frequently exists around Zr atom and major polyhedra have prism-like structure around Pd in Zr{sub 70}Pd{sub 30}. In contrast, icosahedral-like distorted polyhedra formation is favorable around Pt as well as Zr in Zr{sub 80}Pt{sub 20}. It is therefore, concluded that the quasicrystallization originates from the medium-range order based on the Zr-centered perfect icosahedron and the Pd-centered prism-like ones remain during the QC phase formation in Zr{sub 70}Pd{sub 30}. Icosahedral-like local structure around Zr and Pt might contribute together to the nucleation of QC phase in Zr{sub 80}Pt{sub 20}. This feature with a different mechanism of QC formation in the two alloys may correlate to the difference of solute concentration and the structure of stable crystalline phase after the decomposition of QC phase.

  13. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ning Congqin; Zhai Wanyin; Chen Lei [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Ding Dongyan [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Dai Kerong, E-mail: cqning@mail.sic.ac.c [Department of Orthopaedics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China)

    2010-08-01

    {beta}-type low elastic modulus alloys of the Ti-Nb-Zr system have recently attracted much attention for both orthopedic and dental applications. In the present study, meta-stable {beta} alloys of Ti-35Nb-xZr with different Zr contents were developed. The effect of Zr content on the microstructure, mechanical properties and cell attachment was investigated. It was found that the addition of Zr improved the tensile strength and elongation of Ti-35Nb-xZr alloys, and simultaneously reduced the elastic modulus. Moreover, the Zr element helped to stabilize the {beta} phase. Cell culture work indicated that the addition of Zr enhanced the attachment and spreading of bone marrow stem cells. Cell attachment and spreading on the surface of titanium alloys were dominated not only by the wettability but also by the inherent biocompatibility of alloying elements. The peak-aged alloy with 5 wt% Zr had a highest tensile strength of 874 MPa, while its elastic modulus was only 65 GPa, presenting a much higher strength/modulus ratio than Ti-6Al-4V. The Ti-35Nb-5Zr alloy exhibited a great potential for orthopedic and dental applications.

  14. Dimensionality variations in new zirconium iodates: hydrothermal syntheses, structural determination, and characterization of BaZr(IO₃)₆ and K₂Zr(IO₃)₆.

    Science.gov (United States)

    Ahn, Hyun Sun; Lee, Dong Woo; Ok, Kang Min

    2014-07-21

    Two new quaternary zirconium iodates, BaZr(IO3)6 and K2Zr(IO3)6, have been synthesized through hydrothermal reactions using BaCO3 (or K2CO3), ZrO2, and HIO3 as reagents. Single crystal and powder X-ray diffraction were used to determine crystal structures of the compounds. BaZr(IO3)6 exhibits infinite bands that are composed of ZrO7 pentagonal bipyramids and IO3 trigonal pyramids, in which Ba(2+) cations are sandwiched by the bands. K2Zr(IO3)6 exhibits a molecular structure that is composed of ZrO6 octahedra and IO3 groups. The dimensionality variations seem to be attributable to the flexible coordination numbers of Zr(4+) cations with large ionic radii as well as the number of counter cations. Both of the materials are thermally stable up to approximately 440-450 °C and decompose to the corresponding metal zirconium oxides above these temperatures. The band gaps for BaZr(IO3)6 and K2Zr(IO3)6 are calculated to be 3.1 and 3.0 eV, respectively, using the (K/S)-versus-E plots obtained from the UV-vis diffuse reflectance spectra. Infrared spectra and local dipole moment calculations are also presented.

  15. Thermoluminescent characteristics of ZrO2:Nd films

    International Nuclear Information System (INIS)

    Vera B, G.; Rivera M, T.; Azorin N, J.; Falcony G, C.; Garcia H, M.; Martinez S, E.

    2002-01-01

    In this work it is exposed the obtained results after analysing the photo luminescent and thermoluminescent characteristics of activated zirconium oxide with neodymium (ZrO 2 :Nd) and its possible application in the UV radiation dosimetry. The realized experiments had as objective to study the characteristics such as the optimum thermal erased treatment, the influence of light on the response, the response depending on the wavelength, the fadeout of the information, the temperature effect, the response depending on the time and the recurring of the response. The results show that the ZrO 2 :Nd is a promising material to be used as Tl dosemeter for the UV radiation. (Author)

  16. CeO2-ZrO2 ceramic compounds

    International Nuclear Information System (INIS)

    Melo, F.C.L.; Cairo, C.A.C.; Devezas, T.C.; Nono, M.C.A.

    1988-01-01

    In order to study the mechanical properties of tetragonal polycrystal zirconia stabilized with ceria various powder compositions with different CeO 2 content were made. Modulus of rupture for those compounds was measured. Tetragonal retained phase was determined for samples of CeO 2 -ZrO 2 ceramics with and without superficial mechanical treatment. The experimental results allowed us to evaluate the effects of CeO 2 content and sintering temperature in the mechanical properties and tetragonal transformed phase (t→ m) in ceramics of CeO 2 -ZrO 2 systems. (author) [pt

  17. Fabrication and characterization of Ni–Zr composite coatings using electrodepositing technique

    International Nuclear Information System (INIS)

    Cai, Fei; Jiang, Chuanhai; Zhang, Zhongquan; Muttini, Enzo; Fu, Peng; Zhao, Yuantao; Ji, Vincent

    2015-01-01

    Highlights: • A novel Ni–Zr coatings with higher Zr content were fabricated. • Increasing Zr content resulted in the (1 1 1) preferred orientation. • The (1 1 1) preferred orientation increased the corrosion resistance. • Relationship between corrosion and Zr content, grain and texture was discussed. - Abstract: The main goal of this research is to prepare Ni–Zr composite coatings with different amounts of Zr micro-particles by using electrodeposition technology. Different characterization techniques including X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM) and Energy Dispersive X-ray Spectroscopy (EDX) were used to investigate the effects of Zr micro-particle contents on the surface morphology, texture, grain size, residual stress and hardness of the Ni–Zr composite coatings. The electrochemical impedance and potentiodynamic polarization measurements were also used to examine the corrosion resistance. As the Zr contents in the Ni–Zr composite coating increased, the (2 0 0) texture changed to the (1 1 1) texture, the grain size decreased, the residual stress and hardness increased. The anti-corrosion properties of the Ni–Zr composite coatings could be linked to several reasons such as the amount of Zr micro-particles in the deposits, a decrease in grain size, and a change in the texture of the deposits

  18. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2014-01-01

    Full Text Available A modulated synthesis of Zr-metal organic framework (Zr-MOF) with improved ease of handling and decreased reaction time is reported to yield highly crystalline Zr-MOF with well-defined octahedral shaped crystals for practical hydrogen storage...

  19. Amorphization of Zr3Al by hydrogenation and subsequent electron irradiation

    International Nuclear Information System (INIS)

    Meng, W.J.; Koike, J.; Okamoto, P.R.; Rehn, L.E.

    1988-12-01

    1-MeV electron irradiation of hydrogenated Zr 3 Al (Zr 3 AlH/sub 0.96/) at 10K is studied. A more than 20 fold reduction in the critical dose required for complete amorphization is observed for the hydrogenated specimen as compared to the un-hydrogenated Zr 3 Al under identical irradiation conditions. 11 refs., 4 figs

  20. Synthesis and thermal decomposition of a novel zirconium acetato-propionate cluster: [Zr12

    Science.gov (United States)

    Petit, Sarah; Morlens, Stéphanie; Yu, Zeming; Luneau, Dominique; Pilet, Guillaume; Soubeyroux, Jean-Louis; Odier, Philippe

    2011-03-01

    This work reports a novel Zirconium acetato-propionate complex herein called [Zr12] obtained by reaction of zirconium acetylacetonate Zr(acac) 4 with propionic acid. The molecular structure has been determined by X-ray diffraction on single crystals and proposed to be [Zr 12(μ 3-O) 16(CH 3CH 2CO 2) 12(CH 3CO 2) 8(μ 2-CH 3CH 2CO 2) 4]. This cluster involves oxo/hydroxo bonds in the direct surrounding of the metallic center. The decomposition of [Zr12] has been studied by thermal analysis and compared to Zr(acac) 4. Its temperature of decomposition is much lower than for acetylacetonate derivative. In consequence, the formation of ZrO 2 is easier from [Zr12] than from Zr(acac) 4. This phenomenon highlights the influence of the molecular structure on the process of decomposition. The local surrounding of Zr in [Zr12] and in ZrO 2 are very close, while it is markedly different in Zr(acac) 4.This difference of environment of the metallic ions is at the origin of the huge difference of thermal behavior of both compounds.

  1. Ion conductivities of ZrF4-BaF2-CsF glasses

    International Nuclear Information System (INIS)

    Kawamoto, Yoji; Nohara, Ichiro

    1987-01-01

    The glass-forming region in the ZrF 4 -BaF 2 -CsF glass system has been determined and the ac conductivity and the transport number of fluoride ions have been measured. The conductivities of compounds β-Cs 2 ZrF 6 , α-SrZrF 6 , α-BaZrF 6 , β-BaZrF 6 and α-PbZrF 6 have also been measured. These results and a previous study of ZrF 4 -BaF 2 -MF n (M: the groups I-IV metals) glasses revealed the following: (1) the ZrF 4 -BaF 2 -CsF glasses are exclusively fluoride-ion conductors; (2) the ionic conductivities of ZrF 4 -based glasses are predominantly determined by the activation energies for conduction; (3) the activation energy for conduction decreases with an increase in the average polarizability of glass-constituting cations; (4) a decrease in average Zr-F bond length and a lowering of the average F coordination number of Zr are presumed to increase the activation energy for conduction. Principles of developing ZrF 4 -based glasses with higher conductivities have also been proposed. (Auth.)

  2. Evaluation of corrosion resistance of implant-use Ti-Zr binary alloys with a range of compositions.

    Science.gov (United States)

    Akimoto, Teisuke; Ueno, Takeshi; Tsutsumi, Yusuke; Doi, Hisashi; Hanawa, Takao; Wakabayashi, Noriyuki

    2018-01-01

    Although titanium-zirconium (Ti-Zr) alloy has been adopted for clinical applications, the ideal proportion of Zr in the alloy has not been identified. In this study, we investigated the biocompatibility of Ti-Zr alloy by evaluating its corrosion resistance to better understand whether there is an optimal range or value of Zr proportion in the alloy. We prepared pure Ti, Ti-30Zr, Ti-50Zr, Ti-70Zr, and pure Zr (mol% of Zr) samples and subjected them to anodic polarization and immersion tests in a lactic acid + sodium chloride (NaCl) solution and artificial saliva. We observed pitting corrosion in the Ti-70Zr and Zr after exposure to both solutions. After the immersion test, we found that pure Ti exhibited the greatest degree of dissolution in the lactic acid + NaCl solution, with the addition of Zr dramatically reducing Ti ion dissolution, with the reduction ultimately exceeding 90% in the case of the Ti-30Zr. Hence, although the localized corrosion resistance under severe conditions was compromised when the Zr content was more than 70%, metal ion release reduced owing to Zr addition and the corresponding formation of a stable passive layer. The results suggest that Ti-30Zr or a Zr proportion of less than 50% would offer an ideal level of corrosion resistance for clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 73-79, 2018. © 2016 Wiley Periodicals, Inc.

  3. Zr-SBA-15 Lewis Acid Catalyst: Activity in Meerwein Ponndorf Verley Reduction

    Directory of Open Access Journals (Sweden)

    Jose Iglesias

    2015-11-01

    Full Text Available Zr-SBA-15 Lewis acid catalyst has demonstrated an outstanding catalytic activity in the reduction of several carbonyl compounds by means of Meerwein Ponndorf Verley (MPV reaction, using several secondary alcohols, and showing a very high selectivity towards the desired products. Special focus was addressed in the catalytic activity of Zr-SBA-15 material in the production of furfuryl alcohol from furfural, which is an important reaction for the lignocellulosic biomass valorization. In this transformation, both the reaction temperature and the i-PrOH:Furfural molar ratio exert a positive influence on the rate of the MPV transformation, with the influence of the former being much higher. i-propyl-furfuryl ether, a by-product resulting from the etherification of the target product with the sacrificing alcohol, is also found together with the main product. The production of this side-product is highly influenced by the reaction temperature, so that low temperatures and high sacrificing alcohol to substrate molar ratios have to be applied to keep its production at low levels.

  4. Amorphous-to-Cu51Zr14 phase transformation in Cu60Ti20Zr20 alloy

    International Nuclear Information System (INIS)

    Cao, Q P; Zhou, Y H; Horsewell, A; Jiang, J Z

    2003-01-01

    The kinetics of an amorphous-to-Cu 51 Zr 14 phase transformation in an as-cast Cu 60 Ti 20 Zr 20 rod have been investigated by differential scanning calorimetry. The relative volume fractions of the transferred crystalline phase as a function of annealing time, obtained at 713, 716, 723, 728, and 733 K, have been analysed in detail using 14 nucleation and growth models together with the JMA model. A time-dependent nucleation process is revealed. A steady-state nucleation rate of the order of 10 22 - 10 23 nuclei m -3 s -1 in the temperature range 713-733 K and an activation energy of the order of 550 kJmol -1 for the phase transformation in the as-cast Cu 60 Ti 20 Zr 20 rod were detected, for which some possible reasons are suggested

  5. University of Texas Southwestern Medical Center: Lung Cancer Oncogenotype-Selective Drug Target Discovery (Natural Products Focus) | Office of Cancer Genomics

    Science.gov (United States)

    The goal of this project is to use small molecules and RNAi to functionally define subtypes of non-small cell lung cancer (NSCLC) using a panel of cell lines prepared and molecularly annotated by Drs. John Minna and Adi Gazdar. Experimental Approaches Lung Cancer Natural Products Screening/Chemical Library Screening

  6. PDK1/Akt/PDE4D axis identified as a target for asthma remedy synergistic with β2 AR agonists by a natural agent arctigenin.

    Science.gov (United States)

    Fang, R; Cui, Q; Sun, J; Duan, X; Ma, X; Wang, W; Cheng, B; Liu, Y; Hou, Y; Bai, G

    2015-12-01

    Asthma is a heterogenetic disorder characterized by chronic inflammation with variable airflow obstruction and airway hyper-responsiveness. As the most potent and popular bronchodilators, β2 adrenergic receptor (β2 AR) agonists bind to the β2 ARs that are coupled via a stimulatory G protein to adenylyl cyclase, thereby improving cAMP accumulation and resulting in airway smooth muscle relaxation. We previously demonstrated arctigenin had a synergistic function with the β2 AR agonist, but the target for this remained elusive. Chemical proteomics capturing was used to enrich and uncover the target of arctigenin in human bronchial smooth muscle cells, and reverse docking and molecular dynamic stimulation were performed to evaluate the binding of arctigenin and its target. In vitro enzyme activities and protein levels were demonstrated with special kits and Western blotting. Finally, guinea pig tracheal muscle segregation and ex vivo function were analysed. Arctigenin bound to PDK1 with an ideal binding free energy -25.45 kcal/mol and inhibited PDK1 kinase activity without changing its protein level. Additionally, arctigenin reduced PKB/Akt-induced phosphorylation of PDE4D, which was first identified in this study. Attenuation of PDE4D resulted in cAMP accumulation in human bronchial smooth muscle. The inhibition of PDK1 showed a synergistic function with β2 AR agonists and relaxed the constriction of segregated guinea pig tracheal muscle. The PDK1/Akt/PDE4D axis serves as a novel asthma target, which may benefit airflow obstruction. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The natural human IgM antibody PAT-SM6 induces apoptosis in primary human multiple myeloma cells by targeting heat shock protein GRP78.

    Directory of Open Access Journals (Sweden)

    Leo Rasche

    Full Text Available In contrast to other haematological malignancies, targeted immunotherapy has not entered standard treatment regimens for de novo or relapsed multiple myeloma (MM yet. While a number of IgG-formatted monoclonal antibodies are currently being evaluated in clinical trials in MM, our study aimed to investigate whether the fully human IgM monoclonal antibody PAT-SM6 that targets a tumour-specific variant of the heat shock protein GRP78 might be an attractive candidate for future immunotherapeutic approaches. We here show that GRP78 is stably and consistently expressed on the surface on tumour cells from patients with de novo, but also relapsed MM and that binding of PAT-SM6 to MM cells can specifically exert cytotoxic effects on malignant plasma cells, whereas non-malignant cells are not targeted. We demonstrate that the induction of apoptosis and, to a lesser extent, complement dependent cytotoxicity is the main mode of action of PAT-SM6, whereas antibody dependent cellular cytotoxicity does not appear to contribute to the cytotoxic properties of this antibody. Given the favourable safety profile of PAT-SM6 in monkeys, but also in a recent phase I trial in patients with malignant melanoma, our results form the basis for a planned phase I study in patients with relapsed MM.

  8. Interdiffusion and Reaction between Zr and Al Alloys from 425 degrees to 625 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    J. Dickson; L. Zhou; A. Ewh; M. Fu; D. D. Keiser, Jr.; Y. H. Sohn; A. Paz y Puente

    2014-06-01

    Zirconium has recently garnered attention for use as a diffusion barrier between U–Mo nuclear fuels and Al cladding alloys. Interdiffusion and reactions between Zr and Al, Al-2 wt.% Si, Al-5 wt.% Si or AA6061 were investigated using solid-to-solid diffusion couples annealed in the temperature range of 425 degrees to 625 degrees C. In the binary Al and Zr system, the Al3Zr and Al2Zr phases were identified, and the activation energy for the growth of the Al3Zr phase was determined to be 347 kJ/mol. Negligible diffusional interactions were observed for diffusion couples between Zr vs. Al-2 wt.% Si, Al-5 wt.% Si and AA6061 annealed at or below 475 degrees C. In diffusion couples with the binary Al–Si alloys at 560 degrees C, a significant variation in the development of the phase constituents was observed including the thick t1 (Al5SiZr2) with Si content up to 12 at.%, and thin layers of (Si,Al)2Zr, (Al,Si)3Zr, Al3SiZr2 and Al2Zr phases. The use of AA6061 as a terminal alloy resulted in the development of both T1 (Al5SiZr2) and (Al,Si)3Zr phases with a very thin layer of (Al,Si)2Zr. At 560 degrees C, with increasing Si content in the Al–Si alloy, an increase in the overall rate of diffusional interaction was observed; however, the diffusional interaction of Zr in contact with multicomponent AA6061 with 0.4–0.8 wt.% Si was most rapid.

  9. Theoretical study of PbZrTiO3 and PbSnZrTiO3 using a total-energy planewave-pseudopotential method

    Science.gov (United States)

    Hussin, N. H.; Taib, M. F. M.; Hassan, O. H.; Yahya, M. Z. A.

    2017-07-01

    The structural, electronic and optical properties of PbZrTiO3 (PZT) and PbSnZrTiO3 (PSnZT) have been studied by a quantum-mechanical calculation using a total-energy pseudopotential code. This compound has a tetragonal crystal structure with space group P4mm of a ferroelectric phase. Different compositions of titanium (Ti) and zirconium (Zr) in PZT and PSnZT were varied with Ti/Zr composition of 33/66, 50/50, and 66/33. It is found that the different compositions of Ti/Zr have changed the lattices and the band structure of both materials. The cohesive energy was calculated to predict the most suitable composition for modification in PZT and PSnZT. The refractive index under the change of Ti/Zr composition was also investigated. The PZT and PSnZT compounds may be promising materials for future ferroelectric and piezoelectric applications.

  10. Proposal of guideline for bonding to prevention of hydrogen embrittlement at Ta/Zr bond interface. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Fujimoto, Tetsuya; Nishimoto, Kazutoshi

    2010-01-01

    The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was investigated with respect to the hydrogen content and applied stress in order to propose a guideline for the explosive bonding procedure to prevention of hydrogen embrittlement. Hydrogen charging test was conducted for SUS304ULC/Ta/Zr explosive bonded joints applied the different flexural strains. A hydrogen embrittlement crack occurred in the Zr substrate at Ta/Zr bond interface after hydrogen charging, and it was initiated at shorter charging times when the augmented strain was increased. The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was shifted to lower stress and hydrogen content with an increase in the amount of explosive during bonding. It was suggested that hydrogen embrittlement in Ta/Zr explosive bonded joint could be inhibited by reducing the initial hydrogen content in Ta substrate less than approx. 5 ppm. (author)

  11. Thermoluminescence on ZrO{sub 2} films with different dopants; Termoluminiscencia en peliculas de ZrO{sub 2} con distintos impurificantes

    Energy Technology Data Exchange (ETDEWEB)

    Ceron R, P. V.; Rivera M, T.; Ramos G, A. I.; Guzman M, J.; Montes R, E., E-mail: victceronr@hotmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: The metal oxides doped with rare earths have presented good thermoluminescent properties for certain wavelengths in the UV. With respect to zirconium oxide exist several studies in which were incorporated impurities and their properties as dosimeter in several regions of the electromagnetic spectrum were analyzed. Because of this background, in this material thermoluminescent glow curves induced by UV in films of ZrO{sub 2}:Eu and ZrO{sub 2}:Tb were studied for comparison with the response of the material doped with two rare earths (ZrO{sub 2}:Eu + Tb). Samples were deposited on glass by ultrasonic spray pyrolysis technique with different synthesis parameters. It was found that the strongest Tl response was to ZrO{sub 2} film doped with terbium (14 times more intense than the film of ZrO{sub 2}:Eu and 6 times the response of ZrO{sub 2}:Eu + Tb). (Author)

  12. Targeted capture and heterologous expression of the Pseudoalteromonas alterochromide gene cluster in Escherichia coli represents a promising natural product exploratory platform.

    Science.gov (United States)

    Ross, Avena C; Gulland, Lauren E S; Dorrestein, Pieter C; Moore, Bradley S

    2015-04-17

    Marine pseudoalteromonads represent a very promising source of biologically important natural product molecules. To access and exploit the full chemical capacity of these cosmopolitan Gram-(-) bacteria, we sought to apply universal synthetic biology tools to capture, refactor, and express biosynthetic gene clusters for the production of complex organic compounds in reliable host organisms. Here, we report a platform for the capture of proteobacterial gene clusters using a transformation-associated recombination (TAR) strategy coupled with direct pathway manipulation and expression in Escherichia coli. The ~34 kb pathway for production of alterochromide lipopeptides by Pseudoalteromonas piscicida JCM 20779 was captured and heterologously expressed in E. coli utilizing native and E. coli-based T7 promoter sequences. Our approach enabled both facile production of the alterochromides and in vivo interrogation of gene function associated with alterochromide's unusual brominated lipid side chain. This platform represents a simple but effective strategy for the discovery and biosynthetic characterization of natural products from marine proteobacteria.

  13. Mechanism-based modeling of solute strengthening: application to thermal creep in Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-01

    This report focuses on the development of a physics-based thermal creep model aiming to predict the behavior of Zr alloy under reactor accident condition. The current models used for this kind of simulations are mostly empirical in nature, based generally on fits to the experimental steady-state creep rates under different temperature and stress conditions, which has the following limitations. First, reactor accident conditions, such as RIA and LOCA, usually take place in short times and involve only the primary, not the steady-state creep behavior stage. Moreover, the empirical models cannot cover the conditions from normal operation to accident environments. For example, Kombaiah and Murty [1,2] recently reported a transition between the low (n~4) and high (n~9) power law creep regimes in Zr alloys depending on the applied stress. Capturing such a behavior requires an accurate description of the mechanisms involved in the process. Therefore, a mechanism-based model that accounts for the evolution with time of microstructure is more appropriate and reliable for this kind of simulation.

  14. Wetting behaviour and reactivity between liquid Gd and ZrO2 substrate

    Directory of Open Access Journals (Sweden)

    Turalska P.

    2017-01-01

    Full Text Available The wetting behavior and reactivity between molten pure Gd and polycrystalline 3YSZ substrate (ZrO2 stabilized with 3 wt% of Y2O3were experimentally determined by a sessile drop method using a classical contact heating coupled with drop pushing procedure. The test was performed under an inert flowing gas atmosphere (Ar at two temperatures of 1362°C and 1412°C. Immediately after melting (Tm=1341°C, liquid Gd did not wet the substrate forming a contact angle of θ=141°. The non-wetting to wetting transition (θ < 90° took place after about 110 seconds of interaction and was accompanied by a sudden decrease in the contact angle value to 67°. Further heating of the couple to 1412 °C did not affect wetting (θ=67°±1°. The solidified Gd/3YSZ couple was studied by means of optical microscopy and scanning electron microscopy coupled with X-ray energy dispersive spectroscopy. Structural investigations revealed that the wettability in the Gd/3YSZ system is of a reactive nature associated with the formation of a continuous layer of a wettable reaction product Gd2Zr2O7.

  15. Structural behaviour of nearly stoichiometric ZrC under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, Dominique [Materiaux Fonctionnels pour l' Energie, CEA - CNRS - Ecole Centrale Paris, CEA/DEN/SRMA 91191 Gif-sur-Yvette and SPMS 92295, Chatenay-Malabry (France)], E-mail: dominique.gosset@cea.fr; Dolle, Mickael; Simeone, David; Baldinozzi, Gianguido [Materiaux Fonctionnels pour l' Energie, CEA - CNRS - Ecole Centrale Paris, CEA/DEN/SRMA 91191 Gif-sur-Yvette and SPMS 92295, Chatenay-Malabry (France); Thome, Lionel [CSNSM - CNRS, Orsay University, Bat. 108, 91405 Orsay (France)

    2008-06-15

    Zirconium carbide is one of the candidate materials considered as a component for the fuel elements of some nuclear reactors in the Gen-IV international project. This material has complex bonding and the actual materials have a high vacancy concentration and a non-negligible oxygen substitution on the carbon sub-network. Few data exist regarding its behaviour under irradiation. To study the structural stability of zirconium carbide in the nuclear environment, we have performed low energy ion irradiations (4 MeV Au) at room temperature of two different materials, a nearly stoichiometric ZrC{sub 0.95} and a ternary ZrC{sub 0.85}O{sub 0.08}. Grazing Incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM) were used to monitor the microstructural changes of those materials as a function of the ion fluence. The analyses of the X-ray diffraction diagrams show a moderated swelling, lower for the ternary compound, and high internal strains, both of them saturate at a fluence around 10{sup 14} cm{sup -2}. TEM observations show that the microscopic origin of these strains is mainly due to the formation of a high density of small faulted dislocation loops. As a result, it appears that a high substitution of carbon by oxygen in zirconium carbide does not modify the nature of the defects created under ion irradiation.

  16. Production of ZrC Matrix for Use in Gas Fast Reactor Composite Fuels

    International Nuclear Information System (INIS)

    Vasudevamurthy, Gokul; Knight, Travis W.; Roberts, Elwyn; Adams, Thad

    2007-01-01

    Zirconium carbide is being considered as a candidate for inert matrix material in composite nuclear fuel for Gas fast reactors due to its favorable characteristics. ZrC can be produced by the direct reaction of pure zirconium and graphite powders. Such a reaction is exothermic in nature. The reaction is self sustaining once initial ignition has been achieved. The heat released during the reaction is high enough to complete the reaction and achieve partial sintering without any external pressure applied. External heat source is required to achieve ignition of the reactants and maintain the temperature close to the adiabatic temperature to achieve higher levels of sintering. External pressure is also a driving force for sintering. In the experiments described, cylindrical compacts of ZrC were produced by direct combustion reaction. External induction heating combined with varying amounts of external applied pressure was employed to achieve varying degrees of density/porosity. The effect of reactant particle size on the product characteristics was also studied. The samples were characterized for density/porosity, composition and microstructure. (authors)

  17. Magnetic properties of amorphous alloys of Fe with La, Lu, Y, and Zr

    International Nuclear Information System (INIS)

    Heiman, N.; Kazama, N.

    1979-01-01

    In order to study the systematics of the Fe-Fe exchange in amorphous rare-earth--Fe alloys, without the complications associated with the magnetic characteristics of the rare-earth elements, amorphous films of Fe alloyed with La, Lu, Y, and Zr have been prepared with a wide range of Fe concentrations. Magnetization and Moessbauer-effect measurements were made. The magnetic properties of the alloys depended critically on the choice of rare earth (or rare-earth-like element). YFe and LuFe alloys were found to have spin-glass characteristics while LaFe and ZrFe alloys were found to be ferromagnetic, but with evidence that exchange fluctuations were nearly as large as the average exchange. Thus the nature of the Fe-Fe exchange interaction depends critically upon the species of the rare earth. The most important parameter in determining the magnetic behavior of these alloys appears to be the size of the rare-earth atom, with large rare-earth atoms resulting in a smaller ratio of exchange fluctuations to exchange. The same dependence of the magnetic properties upon rare-earth size appears to be important in the case of magnetic-rare-earth atoms; however, the effect of rare-earth--Fe exchange also becomes important and these effects are discussed

  18. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2

    Energy Technology Data Exchange (ETDEWEB)

    Foraita, Sebastian D.; Fulton, John L.; Chase, Zizwe A.; Vjunov, Aleksei; Xu, Pinghong; Barath, Eszter; Camaioni, Donald M.; Zhao, Chen; Lercher, Johannes A.

    2015-02-02

    The effect of the physicochemical properties of ZrO2 phases on the activity of Ni/ZrO2 catalysts for hydrodeoxygenation of stearic acid are described. A synergistic interaction between Ni and ZrO2 support was found. The effect is greatest for the monoclinic phase of ZrO2.

  19. Multiscale scenarios for nature futures

    CSIR Research Space (South Africa)

    Rosa, IMD

    2017-09-01

    Full Text Available Targets for human development are increasingly connected with targets for nature, however, existing scenarios do not explicitly address this relationship. Here, we outline a strategy to generate scenarios centred on our relationship with nature...

  20. Investigation of the corrosion resistance of Ti-13Nb-13Zr alloy by electrochemical techniques and surface analysis; Investigacao da resistencia a corrosao da liga Ti-13Nb-13Zr por meio de tecnicas eletroquimicas e de analise de superficie

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Sergio Luiz de

    2006-07-01

    In this work, the in vitro corrosion resistance of the Ti-13Nb-13Zr alloy, manufactured at a national laboratory, and used for orthopedic applications, has been investigated in solutions that simulate the body fluids. The electrolytes used were 0.9 % (mass) NaCl, Hanks' solution, a culture medium (MEM), and the two last electrolytes, without and with addition of hydrogen peroxide. The aim of peroxide addition was to simulate the conditions found when inflammatory reactions occur due to surgical procedures. The corrosion resistance of alloys commercially in use as biomaterials, Ti-6Al-7Nb and Ti-6Al-4V, as well as of the pure titanium (Ti-cp), was also studied for comparison with the Ti-13Nb-13Zr alloy. The corrosion resistance characterization was carried out by electrochemical and surface analysis techniques. The electrochemical tests used were: open circuit potential measurements as a function of tim; potentiodynamic polarization; and electrochemical impedance spectroscopy (EIE). The impedance experimental diagrams were interpreted using equivalent electric circuits that simulate an oxide film with a duplex structure composed of an internal and compact, barrier type layer, and an external porous layer. The results showed that the corrosion resistance is due mainly to the barrier type layer. The titanium alloys and the Ti-cp showed high corrosion resistance in all electrolytes used. The oxides formed on the Ti-13Nb-13Zr, either naturally or during immersion in MEM ar Hank's solution was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (MEV). The results showed that the presence of hydrogen peroxide in MEM promotes the growth of the porous layer and incorporation of mineral ions, besides favouring hydroxyapatite formation. The cytotoxicity of the Ti-13Nb-13Zr alloy was also evaluated and it was shown to be non-toxic. (author)

  1. A proposed phase equilibrium diagram for Pt-Zr system

    International Nuclear Information System (INIS)

    Arias, D.E.; Gribaudo, L.

    1993-01-01

    A revision of the phase diagram of the Pt-Zr system is presented using up to date information from recent publications. The proposed change concerning the invariant transformation in the Pt-rich zone is supported by simplified thermodynamic evaluations. (author). 12 refs., 1 fig

  2. Design of Cu8Zr5-based bulk metallic glasses

    DEFF Research Database (Denmark)

    Yang, L.; Xia, J.H.; Wang, Q.

    2006-01-01

    Basic polyhedral clusters have been derived from intermetallic compounds at near-eutectic composition by considering a dense packing and random arrangement of atoms at shell sites. Using such building units, bulk metallic glasses can be formed. This strategy was verified in the Cu-Zr binary syste...

  3. Consolidation of partially amorphous Al-Fe-Zr alloys

    International Nuclear Information System (INIS)

    Rodrigues, C.A.D.; Leiva, D.R.; Kiminami, C.S.; Botta F., W.J.

    2002-01-01

    We present in this work the preparation of partially amorphous Al-Fe-Zr alloy powders by mechanical alloying and their consolidation by hot-extrusion. Elemental powder mixture corresponding to the composition Al 90 Fe 7 Zr 3 was mechanically alloyed with milling power of 10:1 and time varying from 5 h to 100 h. Milling for 60 h resulted in a powder alloy microstructure composed mostly of nanocrystalline Al and amorphous phase. Heat treatment of such powder resulted in the formation of Al and also the equilibrium intermetallic Al 3 Zr and Al 13 Fe 4 phases. The alloy powders have been hot extruded at 450 C and the microstructure of the consolidated alloy was very fine and composed also by the three equilibrium phases; Al, Al 3 Zr and Al 13 Fe 4 . This fine microstructure resulted in yield stress values in compression tests at room temperature in the range of 780MPa, associated with elongation to fracture of 10%. (orig.)

  4. Synthesis of polyaniline/ZrO2 nanocomposites and their ...

    Indian Academy of Sciences (India)

    the composites showed that ZrO2 nanoparticles were dispersed in the PANI matrix. ... posites materials finds large variety of applications in light- .... was more valuable for supercapacitor electrode applications compared to earlier reports. 2. Experimental. 2.1 Materials. Aniline (C6H5NH2), ammonium peroxydisulfate ...

  5. Thermal and hydrothermal stability of ZrMCM-41 mesoporous ...

    Indian Academy of Sciences (India)

    Administrator

    T S JIANG*, Y H LI, X P ZHOU, Q ZHAO and H B YIN. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang,. Jiangsu Province 212013, PR China e-mail: tshjiang@ujs.edu.cn. MS received 22 December 2008; revised 19 May 2009; accepted 29 July 2009. Abstract. ZrMCM-41 mesoporous molecular ...

  6. Grain-boundary migration in Zr-Sn alloys

    International Nuclear Information System (INIS)

    Snowden, K.U.; Stathers, P.A.; Hughes, D.S.

    1979-01-01

    Measurements are reported of grain-boundary migration in a series of Zr-Sn alloys containing from 0.75 to 5.1 wt% Sn (0.58 to 4.0 at% Sn) fatigued under vacuum at temperatures between 600 and 775 0 C. At these temperatures, the condition of the alloys correspond to either the single phase (α) or the double phase (α + Zr 4 Sn) regions of the phase diagram. The amount and rate of grain-boundary migration increased with temperature and decreased with tin addition. The dependence of grain-boundary migration on tin content was a minimum at tin compositions which corresponded to the reported region of the α/(α + Zr 4 Sn) boundary. In the α-region, the reciprocal of the rate of grain-boundary migration was approximately linear with tin content. The temperature dependence for grain-boundary migration exhibited a kinetic transition temperature which divided the dependence into two ranges characterised by different apparent activation energies. The effect of tin additions on both activation energies was to first reduce and then to increase their value. This latter increase is possibly associated with the precipitation of Zr 4 Sn at grain boundaries. (orig.)

  7. Synthesis of polyaniline/ZrO 2 nanocomposites and their ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Synthesis of polyaniline/ZrO 2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance. B P PRASANNA D N AVADHANI H B MURALIDHARA K CHAITRA VINNY ROSE THOMAS M REVANASIDDAPPA N ...

  8. Thermal and hydrothermal stability of ZrMCM-41 mesoporous ...

    Indian Academy of Sciences (India)

    The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductive coupled plasma (ICP) technique, Fourier transform infrared spectroscopy (FT-IR) and N2 physical adsorption, respectively. The effect of the different initial ZrO2 : SiO2 ...

  9. Hydrogen ingress into oxidized Zr-2.5Nb

    Science.gov (United States)

    Laursen, T.; Palmer, G. R.; Haysom, J. E.; Nolan, J.; Tapping, R. L.

    1994-03-01

    Deuterium (D) distributions in D 2O-corroded Zr-2.5 wt% Nb samples have been measured for three different corrosion temperatures: 763, 673 and 573 K. The oxide thickness and details in the D profile for 763 K show considerable variation due to changes in surface preparation. Nevertheless, the D concentration in the central part of the oxide is within 0.002-0.005 {D}/{Zr} atomic ratio. At lower temperatures - 673 K and below — the D concentration is somewhat higher: ˜ 0.01 {D}/{Zr}. These concentrations are less than the 2-5% level observed with Zircaloy-2 after corrosion at 763 K. D distributions in O 2-oxidized Zr-2.5 wt% Nb have been measured following a subsequent exposure to either D 2 or D 2O exposure at 573 K. D ingress into the metal is enhanced with D 2 compared to D 2O, supporting the expectation that reducing conditions (D 2) may lead to a degradation of the protective oxide. Evidence is presented that two different diffusing species are responsible for the different D distributions measured in the oxide for the two types of exposure.

  10. Thermal stability of ultrasoft Fe-Zr-N films

    NARCIS (Netherlands)

    Chechenin, NG; van Veen, A; Schut, H; Chezan, AR; Boerma, D; Vystavel, T; De Hosson, JTM

    2003-01-01

    The thermal stability of nanocrystalline ultrasoft magnetic (Fe98Zr2)(1-x)N-x films with x = 0.10-0.25 was studied using thermal desorption spectrometry, positron beam analysis and high resolution transmission electron microscopy. The results demonstrate that grain growth during the heat treatment

  11. Improving iron-enriched basalt with additions of ZrO{sub 2} and TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, G.A.; Kong, P.C.

    1993-06-01

    The iron-enriched basalt (IEB) waste form, developed at the Idaho National Engineering Laboratory a decade ago, was modified to IEB4 by adding sufficient ZrO{sub 2} and TiO{sub 2} to develop crystals of zirconolite upon cooling, in addition to the crystals that normally form in a cooling basalt. Zirconolite (CaZrTi{sub 2}O{sub 7}) is an extremely leach-resistant mineral with a strong affinity for actinides. Zirconolite crystals containing uranium and thorium have been found that have endured more than 2 billion years of natural processes. On this basis, zirconolite was considered to be an ideal host crystal for the actinides contained in transuranic (TRU)-contaminated wastes. Crystals of zirconolite were developed in laboratory melts of IEB4 that contained 5% each of ZrO{sub 2} and TiO{sub 2} and that were slow-cooled in the 1200--1000{degrees}C range. When actinide surrogates were added to IEB4, these oxides were incorporated into the crystals of zirconolite rather than precipitating in the residual glass phase. Zirconolite crystals developed in IEB4 should stabilize and immobilize the dilute TRUs in heterogeneous, buried low-level wastes as effectively as this same phase does in the various formulations of Synroc used for the more concentrated TRUs encountered in high-level wastes. Synroc requires hot-pressing equipment, while IEB4 precipitates zirconolite from a cooling basaltic melt.

  12. Pronounced Plasticity Caused by Phase Separation and β-relaxation Synergistically in Zr-Cu-Al-Mo Bulk Metallic Glasses.

    Science.gov (United States)

    Wang, Tuo; Wang, Lu; Wang, Qinjia; Liu, Yanhui; Hui, Xidong

    2017-04-27

    Bulk metallic glasses (BMGs) are known to have extraordinary merits such as ultrahigh strength and dynamic toughness etc. but tied to the detrimental brittleness, which has become a critical issue to the engineering application and understanding the glass nature. In this article, we report a new class of Zr-Cu-Al-Mo BMGs with extraordinary plastic strain above 20%. "Work-hardening" effect after yielding in a wide range of plastic deformation process has been detected for this kind of BMGs. Compositional heterogeneity, which can be classified into ZrMo- and Cu-rich zones, was differentiated in this kind of BMG. Pronounced humps have been observed on the high frequency kinetic spectrum in Mo containing BMGs, which is the indicator of β-relaxation transition. The underlying mechanism for the excellent plastic deforming ability of this class of BMGs is ascribed to the synergistic effects of soft ZrMo-rich glass formed through phase separation and abundant flow units which related to β-relaxation.

  13. Unravelling the magnetism, high spin polarization and thermoelectric efficiency of ZrFeSi half-Heusler

    Science.gov (United States)

    Yousuf, Saleem; Gupta, D. C.

    2018-04-01

    We report the systematic investigation of structural properties, occupancy of density of states, nature of bonding and thermoelectric efficiency of half-Heusler ZrFeSi. The band structure analysis predicts the hybridization of Zr-d and Fe-d metal atoms resulting in occupation of density of states above the Fermi level (EF) while Fe-p and Si-p occupy the lower energy states below the EF. Thermoelectric transport coefficients are predicted using the Boltzmann transport theory under constant relaxation approximation, where Seebeck coefficient (S), total thermal conductivity and figure of merit are calculated. The negative value of total S as -14.02 μV/K predicts the material as n-type with thermoelectric figure of merit (zT) of 0.5 at 800 K. The lattice thermal conductivity decreases with increasing temperature with room temperature value of 4.18 W/mK and shows a significant reduction towards higher temperatures. In view of above elements, structural stability, high zT, ZrFeSi alloy have the capabilities to stimulate experimental verification as a promising materials for high temperature power generation and spintronic device fabrications.

  14. ZrZn2: Geometrical enhancement of the local density of states and quantum design of magnetic instabilities

    Science.gov (United States)

    Bruno, Ezio; Ginatempo, Beniamino; Staunton, J. B.

    2002-03-01

    The recent discovery of coexisting ferromagnetism and superconductivity in ZrZn2, and the fact that they are simultaneously suppressed on applying pressure [Pfleiderer et al., Nature 412, 58 (2001)] suggest the possibility of a pairing mechanism which is mediated by exchange interactions and connected with the proximity to a magnetic quantum critical point. On the basis of first principles, full potential electronic structure calculations, we study the conditions that, for ZrZn2, determine the proximity to this magnetic instability. More specifically, we discuss the role played by the geometrical arrangement of the lattice, the hybridization effects, and the presence of disorder, as well as the application of external pressure. These circumstances influence the width of the relevant Zr d bands whose narrowing, due to the reduction of the effective number of neighbors or to an increase of the cell volume, causes an enhancement of the density of states at the Fermi level. Finally, we highlight some general features that may aid the design of other materials close to magnetic instabilities.

  15. Improving iron-enriched basalt with additions of ZrO2 and TiO2

    International Nuclear Information System (INIS)

    Reimann, G.A.; Kong, P.C.

    1993-06-01

    The iron-enriched basalt (IEB) waste form, developed at the Idaho National Engineering Laboratory a decade ago, was modified to IEB4 by adding sufficient ZrO 2 and TiO 2 to develop crystals of zirconolite upon cooling, in addition to the crystals that normally form in a cooling basalt. Zirconolite (CaZrTi 2 O 7 ) is an extremely leach-resistant mineral with a strong affinity for actinides. Zirconolite crystals containing uranium and thorium have been found that have endured more than 2 billion years of natural processes. On this basis, zirconolite was considered to be an ideal host crystal for the actinides contained in transuranic (TRU)-contaminated wastes. Crystals of zirconolite were developed in laboratory melts of IEB4 that contained 5% each of ZrO 2 and TiO 2 and that were slow-cooled in the 1200--1000 degrees C range. When actinide surrogates were added to IEB4, these oxides were incorporated into the crystals of zirconolite rather than precipitating in the residual glass phase. Zirconolite crystals developed in IEB4 should stabilize and immobilize the dilute TRUs in heterogeneous, buried low-level wastes as effectively as this same phase does in the various formulations of Synroc used for the more concentrated TRUs encountered in high-level wastes. Synroc requires hot-pressing equipment, while IEB4 precipitates zirconolite from a cooling basaltic melt

  16. Stacking faults in Zr(Fe, Cr)2 Laves structured secondary phase particle in Zircaloy-4 alloy.

    Science.gov (United States)

    Liu, Chengze; Li, Geping; Yuan, Fusen; Han, Fuzhou; Zhang, Yingdong; Gu, Hengfei

    2018-02-01

    Stacking faults (SFs) in secondary phase particles (SPPs), which generally crystallize in the Laves phase in Zircaloy-4 (Zr-4) alloy, have been frequently observed by researchers. However, few investigations on the nano-scale structure of SFs have been carried out. In the present study, an SF containing C14 structured SPP, which located at grain boundaries (GBs) in the α-Zr matrix, was chosen to be investigated, for its particular substructure as well as location, aiming to reveal the nature of the SFs in the SPPs in Zr-4 alloy. It was indicated that the SFs in the C14 structured SPP actually existed in the local C36 structured Laves phase, for their similarities in crystallography. The C14 → C36 phase transformation, which was driven by synchroshearing among the (0001) basal planes, was the formation mechanism of the SFs in the SPPs. By analyzing the strained regions near the SPP, a model for understanding the driving force of the synchroshear was proposed: the interaction between SPP and GB resulted in the Zener pinning effect, leading to the shearing parallel to the (0001) basal planes of the C14 structured SPP, and the synchroshear was therefore activated.

  17. PRODUCTION OF HIGHLY PURE NO-CARRIER ADDED ZR-89 FOR THE LABELING OF ANTIBODIES WITH A POSITRON EMITTER

    NARCIS (Netherlands)

    MEIJS, WE; HERSCHEID, JDM; Haisma, Hidde; WIJBRANDTS, R; VANLANGEVELDE, F; VANLEUFFEN, PJ; MOOY, R; PINEDO, HM

    1994-01-01

    Zr-89 was produced in high amounts (130 mCi/h) via a (p,n) reaction on Y-89. The Zr-89-isotope was purified using a hydroxamate column. More than 95% of the Zr was eluted with 1 mt of 1 M oxalic acid. The radionuclidic purity was over 99.99%. The isolated Zr-89 quantitatively formed complexes with

  18. Self-diffusion and heterodiffusion in Zr-2.5%Nb α/β interfaces comparison with grain boundary diffusion in α-Zr

    International Nuclear Information System (INIS)

    Iribarren, M.J.; Dyment, F.

    1991-01-01

    Conventional radioactive tracer section techniques were used to make an experimental determination of diffusion parameters for Zr, Nb and Ni along the α/β boundary interfaces of Zr-2.5%Nb and comparing them with those for Zr, Nb and Co in α-Zr grain boundaries. Both determinations were made for a wide range of temperatures, including reactor working temperatures. Different materials were used for this purpose, both specially prepared alloys for diffusion experiments and part of the material from the actual pressure tubes. Different stabilizing thermal treatments were performed and results were analyzed based on the different morphologies obtained. (Author) [es

  19. Thermal properties and thermal shock resistance of liquid phase sintered ZrC-Mo cermets

    International Nuclear Information System (INIS)

    Landwehr, Sean E.; Hilmas, Gregory E.; Fahrenholtz, William G.; Talmy, Inna G.; Wang Hsin

    2009-01-01

    The linear thermal expansion coefficient (CTE), heat capacity, and thermal conductivity, were investigated as a function of temperature for hot pressed ZrC and liquid phase sintered ZrC-Mo cermets. The ZrC and the ZrC-Mo cermets had the same CTE at 50 deg. C (∼5.1-5.5 ppm deg. C -1 ), but the CTE of ZrC increased to ∼12.2 ppm deg. C -1 at 1000 deg. C compared to ∼7.2-8.5 ppm deg. C -1 for the ZrC-Mo cermets. Heat capacity was calculated using a rule of mixtures and previously reported thermodynamic data. Thermal diffusivity was measured with a laser flash method and was, in turn, used to calculate thermal conductivity. Thermal conductivity increased linearly with increasing temperature for all compositions and was affected by solid solution formation and carbon deficiency of the carbide phases. Hot pressed ZrC had the highest thermal conductivity (∼30-37 W m -1 K -1 ). The nominally 20 and 30 vol% Mo compositions of the ZrC-Mo cermets had a lower thermal conductivity, but the thermal conductivity generally increased with increasing Mo content. Water quench thermal shock testing showed that ZrC-30 vol% Mo had a critical temperature difference of 350 deg. C, which was ∼120 deg. C higher than ZrC. This increase was due to the increased toughness of the cermet compared to ZrC.

  20. Microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr-Mo alloys.

    Science.gov (United States)

    Zhou, F Y; Wang, B L; Qiu, K J; Li, L; Lin, J P; Li, H F; Zheng, Y F

    2013-02-01

    In this study, the microstructure, mechanical properties, corrosion behaviors, and in vitro biocompatibility of Zr-Mo alloys as a function of Mo content after solution treatment were systemically investigated to assess their potential use in biomedical application. The experimental results indicated that Zr-1Mo alloy mainly consisted of an acicular structure of α' phase, while ω phase formed in Zr-3Mo alloy. In Zr-5Mo alloy, retained β phase and a small amount of precipitated α phase were observed. Only the retained β phase was obtained in Zr-10Mo alloy. Zr-1Mo alloy exhibited the greatest hardness, bending strength, and modulus among all experimental Zr-Mo alloys, while β phase Zr-10Mo alloy had a low modulus. The results of electrochemical corrosion indicated that adding Mo into Zr improved its corrosion resistance which resulted in increasing the thermodynamic stability and passivity of zirconium. The cytotoxicity test suggested that the extracts of the studied Zr-Mo alloys produced no significant deleterious effect to fibroblast cells (L-929) and osteoblast cells (MG 63), indicating an excellent in vitro biocompatibility. Based on these facts, certain Zr-Mo alloys potentially suitable for different biomedical applications were proposed. Copyright © 2012 Wiley Periodicals, Inc.

  1. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram

    International Nuclear Information System (INIS)

    Zeng, K.J.; Haemaelaeinen, M.; Lilius, K.

    1995-01-01

    In the available experimental information on the Cu-Cr-Zr ternary system, there exist different opinions concerning the phase relationships in the Cu-rich corner of Cu-Cr-Zr phase diagram. Glazov et al. and Zakharov et al. investigated the Cu-rich corner of the Cu-Cr-Zr phase diagram within the composition range up to 3.5 Cr and 3.5 Zr (wt. %). A quasi-eutectic reaction L → (Cu) + αCr 2 Zr was observed to occur at 1,020 C and several isothermal sections were constructed within the temperature range from 600 to 1,000 C to show the (Cu)-αCr 2 Zr two phase equilibrium. Therefore, a pseudobinary Cu-Cr 2 Zr system was supposed. Afterwards, Dawakatsu et al, Fedorov et al, and Kuznetsov et al studied the cu-rich corner of the phase diagram in a wider composition range up to 5 Cr and 20 Zr (at.%). Contrary to Glazov et al. and Zakharov et al., they found no Cr 2 Zr phase in their samples. Hence, the pseudobinary Cu-Cr 2 Zr system does not exist. In this study an experimental investigation is presented on the phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram at 940 C in order to clear up the confusion

  2. Reversible disproportionation of ZrCo under high temperature and hydrogen pressure

    International Nuclear Information System (INIS)

    Konishi, S.; Nagasaki, T.; Okuno, K.

    1995-01-01

    Chemical behavior of an intermetallic compound ZrCo with hydrogen at high temperature region was studied with respect to application utilizing the reversible hydrogenation. While ZrCo compound reacts with hydrogen to form ZrCoH (0-3) below 400 C, the disproportionation reaction, 2ZrCo+H 2 →ZrH 2 +ZrCo 2 occurs above 400 C under hydrogen pressure higher than the equilibrium decomposition pressure of ZrCoH (0-3) . X-ray diffraction analysis showed that the reaction is completed in 5 h at 500 C and it takes more than 40 h at 400 C. No sign of generation of ZrH 2 +ZrCo 2 phase was observed by the X-ray diffraction in 10 h at 400 C, however. The disproportionated product completely returned to single-phase ZrCo when evacu ated at or above 500 C for several hours, thus this reaction is reversible. Kinetics of the disproportionation reaction was expressed by an Avrami equation R=1-exp{-(t/τ) n }. The reaction speed was expressed by an Arrhenius form. For practical application of ZrCo, the results suggest some operational precaution and limitation, and recovery treatment when the material is suspected to have lost some capacity by disproportionation reaction. ((orig.))

  3. Nafion/ZrSPP composite membrane for high temperature operation of PEMFCs

    International Nuclear Information System (INIS)

    Kim, Young-Taek; Song, Min-Kyu; Kim, Ki-Hyun; Park, Seung-Bae; Min, Sung-Kyu; Rhee, Hee-Woo

    2004-01-01

    Nafion/zirconium sulphophenyl phosphate (ZrSPP) composite membranes were prepared to maintain proton conductivity at elevated temperatures. ZrSPP was precipitated by the reaction of Zr 4+ ion and m-sulphophenyl phosphonic (SPP) acid with a stoichiometric ratio P/Zr = 2. The synthesis of ZrSPP was confirmed by phosphonate (P-O) stretching band, assigned at 900-1300 cm -1 in FTIR spectra. The sharp diffraction pattern at 2θ = 5 deg. indicated crystalline α-layered structure of ZrSPP. The proton conductivity of Nafion/ZrSPP (12.5 wt.%) composite membrane reached ca. 0.07 S/cm at 140 deg. C without extra humidification

  4. Dynamics of transfer and distribution of 95Zr in the broadbean-soil ecosystem

    International Nuclear Information System (INIS)

    Liu Lili; Shi Jianjun; Zhao Xiyue; Hua Yuejin

    2005-01-01

    The transfer and distribution of 95 Zr in a simulated broadbean-soil system was studied by using isotope-tracer techniques. The results showed that the 95 Zr was mainly concentrated in the haulm, pod and root, and the activity concentration of 95 Zr in these tissues reached the maximum in the initial stage then decreased continuously. The activity concentration of 95 Zr in edible part-bean was relatively lower, which was just near to the detection limit. The 95 Zr in soil was mainly (97%) deposited in surface layer soil (0-6 cm), indicating that the 95 Zr absorbed by surface soil could not be moved downwards easily because of the strong adsorption. The dynamics of 95 Zr concentrations in broadbean and soil were also confirmed by application of nonlinear regression method

  5. Hydrogen isotope storage behavior of Zr1-xTixCo alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.

    2016-01-01

    Tritium storage properties similar to uranium make ZrCo as a suitable candidate material for storage, supply and recovery of hydrogen isotopes in various tritium facilities. Beside non-radioactive, nonpyrophoric at room temperature and higher storage capacity (H/f.u. up to 3, f.u. = ZrCo), it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes dis-proportionation as per the reaction; ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The present study is aimed to investigate the effect of Ti content on the hydrogen storage behavior of Zr 1-x Ti x Co alloys and the hydrogen isotope effect

  6. Neutron capture on (94)Zr: Resonance parameters and Maxwellian-averaged cross sections

    CERN Document Server

    Tagliente, G; Fujii, K; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Belloni, F; Berthoumieux, E; Bisterzo, S; Calvino, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapico, C; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrari, A; Ferreira-Marques, R; Furman, W; Gallino, R; Goncalves, I; Gonzalez-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez, T; Massimi, C; Mastinu, P; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M.T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tain, J.L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M.C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2011-01-01

    The neutron capture cross sections of the Zr isotopes play an important role in nucleosynthesis studies. The s-process reaction flow between the Fe seed and the heavier isotopes passes through the neutron magic nucleus (90)Zr and through (91,92,93,94)Zr, but only part of the flow extends to (96)Zr because of the branching point at (95)Zr. Apart from their effect on the s-process flow, the comparably small isotopic (n, gamma) cross sections make Zr also an interesting structural material for nuclear reactors. The (94)Zr (n, gamma) cross section has been measured with high resolution at the spallation neutron source n_TOF at CERN and resonance parameters are reported up to 60 keV neutron energy.

  7. Investigation of the corrosion resistance of Ti-13Nb-13Zr alloy by electrochemical techniques and surface analysis

    International Nuclear Information System (INIS)

    Assis, Sergio Luiz de

    2006-01-01

    In this work, the in vitro corrosion resistance of the Ti-13Nb-13Zr alloy, manufactured at a national laboratory, and used for orthopedic applications, has been investigated in solutions that simulate the body fluids. The electrolytes used were 0.9 % (mass) NaCl, Hanks' solution, a culture medium (MEM), and the two last electrolytes, without and with addition of hydrogen peroxide. The aim of peroxide addition was to simulate the conditions found when inflammatory reactions occur due to surgical procedures. The corrosion resistance of alloys commercially in use as biomaterials, Ti-6Al-7Nb and Ti-6Al-4V, as well as of the pure titanium (Ti-cp), was also studied for comparison with the Ti-13Nb-13Zr alloy. The corrosion resistance characterization was carried out by electrochemical and surface analysis techniques. The electrochemical tests used were: open circuit potential measurements as a function of tim; potentiodynamic polarization; and electrochemical impedance spectroscopy (EIE). The impedance experimental diagrams were interpreted using equivalent electric circuits that simulate an oxide film with a duplex structure composed of an internal and compact, barrier type layer, and an external porous layer. The results showed that the corrosion resistance is due mainly to the barrier type layer. The titanium alloys and the Ti-cp showed high corrosion resistance in all electrolytes used. The oxides formed on the Ti-13Nb-13Zr, either naturally or during immersion in MEM ar Hank's solution was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (MEV). The results showed that the presence of hydrogen peroxide in MEM promotes the growth of the porous layer and incorporation of mineral ions, besides favouring hydroxyapatite formation. The cytotoxicity of the Ti-13Nb-13Zr alloy was also evaluated and it was shown to be non-toxic. (author)

  8. A physical and chemical analysis of fast quenched particles of UO 2 and ZrO 2 mixture

    Science.gov (United States)

    Min, Beong Tae; Song, Jin Ho; Park, Yang Soon; Kim, Jong Gu

    2006-11-01

    An interaction between molten fuel of a nuclear reactor, which is called corium and mainly consisted of UO 2 and ZrO 2, and sub-cooled water may result in a steam explosion. It is one of the outstanding reactor safety issues. To investigate the fundamental mechanism behind the recent experimental observation that the composition of the material highly affected the strength of the steam explosion, a physical and chemical analysis for the fast quenched particles of UO 2 and ZrO 2 mixture at different compositions was performed. Six cases were selected for the study, in which the melt composition was changed, while other initial and boundary conditions of the molten fuel and water interaction tests were maintained the same. It was observed that the cases at eutectic composition resulted in a spontaneous steam explosion, while the cases at non-eutectic composition did not result in a spontaneous steam explosion. Electron probe microanalysis (EPMA) was performed for fast quenched particles along a cross-section. Results demonstrated that the UO 2 and ZrO 2 mixtures formed a solid solution of U 1- xZr xO 2. The mechanism for the hydrogen generation during the molten material and water interaction was examined by thermogravity analysis (TGA), X-ray diffraction (XRD) and hydrogen reduction analysis. It was demonstrated that the hydrogen generation was not directly related to the oxidation of UO 2. Morphologies observed by scanning electron microscopy (SEM) indicated that the particles from the eutectic mixture had many holes, while the particles at non-eutectic mixture did not. The existence of mush phase for the non-eutectic mixture is suggested to be the reason for the non-explosive nature.

  9. Luminescent properties in films of ZrO2: Dy

    International Nuclear Information System (INIS)

    Martinez, R. C.; Guzman, J.; Rivera, T.; Ceron, P.; Montes, E.; Guzman, D.; Garcia H, M.; Falcony, C.; Azorin, J.

    2014-08-01

    In this work the luminescent characterization of zirconium oxide (ZrO 2 ) films impure with dysprosium (Dy +3 ) is reported, obtained by means of the ultrasonics spray pyrolysis technique. The films were deposited on glass substrates (Corning), in a temperatures interval of 400 to 550 grades C, using as precursor elements Zirconium oxide chloride octahydrate (ZrOCl 2 ·8H 2 O) and Dysprosium tri-chloride (DyCl 3 ), dissolved in deionized water, varying the concentration of the contaminated from the 1 to 20 atomic % with relationship to the zirconium in solution. The luminescent characterization was analyzed by means of photoluminescence and thermoluminescence. The photoluminescence results showed a spectrum with three maxima which correspond to the electronic transitions 4 F 9/2 - 6 H 15/2 , 4 F 9/2 - 6 H 13/2 and 4 F 9/2 - 6 H 11/2 characteristics of the Dy 3+ ion. The thermoluminescence (Tl) response when being exposed to a monochrome UV beam in 240 nm showed a wide curve that exhibits a maxim centered in 200 grades C. The Tl response of ZrO 2 :Dy in function of the dose was shown lineal in the interval of 24 mJ/cm 2 to 432 mJ/cm 2 . A study of the repeatability and dissipation of the ZrO 2 :Dy Tl response is included. Considering the shown previous results we can conclude that the ZrO 2 in film form obtained by spray pyrolysis has luminescent properties in 240 nm. (Author)

  10. Production of 92Y via the 92Zr(n,p) reaction using the C(d,n) accelerator neutron source

    Science.gov (United States)

    Kin, Tadahiro; Sanzen, Yukimasa; Kamida, Masaki; Watanabe, Yukinobu; Itoh, Masatoshi

    2017-09-01

    We have proposed a new method of producing medical radioisotope 92Y as a candidate of alternatives of 111In bioscan prior to 90Y ibritumomab tiuxetan treatment. The 92Y isotope is produced via the 92Zr (n,p) reaction using accelerator neutrons generated by the interaction of deuteron beams with carbon. A feasibility experiment was performed at Cyclotron and Radioisotope Center, Tohoku University. A carbon thick target was irradiated by 20-MeV deuterons to produce accelerator neutrons. The thick target neutron yield (TTNY) was measured by using the multiple foils activation method. The foils were made of Al, Fe, Co, Ni, Zn, Zr, Nb, and Au. The production amount of 92Y and induced impurities were estimated by simulation with the measured TTNY and the JENDL-4.0 nuclear data.

  11. Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators.

    Science.gov (United States)

    Papanikolaou, Nikos E; Kalaitzaki, Argyro; Karamaouna, Filitsa; Michaelakis, Antonios; Papadimitriou, Vassiliki; Dourtoglou, Vassilis; Papachristos, Dimitrios P

    2018-04-01

    The insecticidal activity of a new nano-formulated natural pyrethrin was examined on the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), and the predators Coccinella septempunctata L. (Coleoptera: Coccinellidae) and Macrolophus pygmaeus Rambur (Hemiptera: Miridae), in respect with the nano-scale potential to create more effective and environmentally responsible pesticides. Pyrethrin was nano-formulated in two water-in-oil micro-emulsions based on safe biocompatible materials, i.e., lemon oil terpenes as dispersant, polysorbates as stabilizers, and mixtures of water with glycerol as the dispersed aqueous phase. Laboratory bioassays showed a superior insecticidal effect of the pyrethrin micro-emulsions compared to two commercial suspension concentrates of natural pyrethrins against the aphid. The nano-formulated pyrethrins were harmless, in terms of caused mortality and survival time, to L3 larvae and four-instar nymphs of the predators C. septempunctata and M. pygmaeus, respectively. We expect that these results can contribute to the application of nano-technology in optimization of pesticide formulation, with further opportunities in the development of effective plant protection products compatible with integrated pest management practices.

  12. Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers

    Directory of Open Access Journals (Sweden)

    Samuel Mañas-Valero

    2016-09-01

    Full Text Available In the race towards two-dimensional electronic and optoelectronic devices, semiconducting transition metal dichalcogenides (TMDCs from group VIB have been intensively studied in recent years due to the indirect to direct band-gap transition from bulk to the monolayer. However, new materials still need to be explored. For example, semiconducting TMDCs from group IVB have been predicted to have larger mobilities than their counterparts from group VIB in the monolayer limit. In this work we report the mechanical exfoliation of ZrX2 (X = S, Se from bulk down to the monolayer and we study the dimensionality dependence of the Raman spectra in ambient conditions. We observe Raman signal from bulk to few layers and no shift in the peak positions is found when decreasing the dimensionality. While a Raman signal can be observed from bulk to a bilayer for ZrS2, we could only detect signal down to five layers for flakes of ZrSe2. These results show the possibility of obtaining atomically thin layers of ZrX2 by mechanical exfoliation and represent one of the first steps towards the investigation of the properties of these materials, still unexplored in the two-dimensional limit.

  13. Beyond Ti-Zr-V: present development on thin-film coatings for beam pipes

    CERN Document Server

    Chiggiato, P

    2008-01-01

    Since 1997, Ti-Zr-V thin films have been studied to provide a solution to the problems of both pressure distribution and electron cloud build-up in beam pipes. Nowadays, this material is coated on the whole inner surface of vacuum chambers providing large pumping speed, low degassing rate and secondary electron yield. These favourable characteristics are obtained after heating in vacuum at temperatures higher than 180 °C. Unfortunately, heating at such temperatures is not always possible for the future CERN projects: in some cases, magnet designs impose lower heating temperatures; in other cases, heating is not allowed at all, as for most of the existing SPS vacuum chambers. To overcome these limitations, two lines of development have been drawn; if pursed successfully, they will allow the production of both NEG films with lower activation temperature (150 °C being our target) and films or surface treatments providing low secondary electron yield without any heating.

  14. The structure and mechanical properties of as-cast Zr-Ti alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Wu, S.-C.; Sung, Y.-C.; Ho, W.-F.

    2009-01-01

    This study has investigated the structure and mechanical properties of pure Zr and a series of binary Zr-Ti alloys in order to determine their potential application as dental implant materials. The titanium contents of these alloys range from 10 to 40 wt.% and were prepared by arc melting in inert gas. This study evaluated the phase and structure of these Zr-Ti alloys using an X-ray diffraction (XRD) for phase analysis, and an optical microscope for microstructure analysis of the etched alloys. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The experimental results indicated that the pure Zr and Zr-10Ti comprised entirely of an acicular hexagonal structure of α' phase. When the Ti content increased to 20 wt.%, a significant amount of β phase was retained. However, when the Ti content increased to 40 wt.%, only the equi-axed, retained β phase was observed in the cast alloy. Moreover, the hardness values and bending strengths of the Zr-Ti alloys decreased with an increasing Ti content. Among pure Zr and Zr-Ti alloys, the α'-phase Zr-10Ti alloy has the greatest hardness and bending strength. The pure Zr and Zr-Ti alloys exhibit a similar elastic modulus ranging from 68 GPa (Zr-30Ti) to 78 GPa (Zr-40Ti). Based on the results of elastic moduli, pure Zr and Zr-Ti alloys are found to be suitable for implant materials due to lower modulus. Like bending strength, the elastically recoverable angle of Zr-Ti alloys decreased as the concentration of Ti increased. In the current search for a better implant material, the Zr-10Ti alloy exhibited the highest bending strength/modulus ratios as large as 25.3, which are higher than that of pure Zr (14.9) by 70%, and commercially pure Ti (8.7) by 191%. Thus, Zr-Ti alloy's low modulus, ductile property, excellent elastic recovery capability and impressive strength confirm that it is a promising candidate for dental implant materials.

  15. Superelastic and shape memory properties of TixNb3Zr2Ta alloys.

    Science.gov (United States)

    Zhu, Yongfeng; Wang, Liqiang; Wang, Minmin; Liu, Zhongtang; Qin, Jining; Zhang, Di; Lu, Weijie

    2012-08-01

    The microstructure and phase constitutions of TixNb3Zr2Ta alloys (x=35, 31, 27, 23) (wt%) were studied. With a lower niobium content the grain size of β phase in TixNb3Zr2Ta alloys increased significantly, and the TixNb3Zr2Ta system was more likely to form α″ phase and even α phase. Tensile tests showed that UTS of TixNb3Zr2Ta alloys improved as the Nb content was decreased. Cyclic loading-unloading tensile tests were carried on TixNb3Zr2Ta alloys. Ti23Nb3Zr2Ta and Ti27Nb3Zr2Ta alloys featured the best superelasticity among the alloys studied. The pseudoelastic strain ratio of Ti35Nb3Zr2Ta alloy decreased a lot as the cycle number increased. Ti31Nb3Zr2Ta alloy showed only minimum superelasticity. This is because Ti23Nb3Zr2Ta and Ti27Nb3Zr2Ta alloys had higher yield strength than Ti31Nb3Zr2Ta did, which allowed martensite phase to be induced. On the contrary, Ti31Nb3Zr2Ta alloy exhibited better shape memory property than Ti27Nb3Zr2Ta, Ti23Nb3Zr2Ta and Ti35Nb3Zr2Ta titanium alloys. β phase, α phase and α″ phase were found in Ti23Nb3Zr2Ta alloy by TEM observation. The dislocation density of α phase was much lower than that of β phase due to their crystal structure difference. This may explained why Ti23Nb3Zr2Ta with α phase possessed higher tensile strength. The incomplete shape recovery of Ti23Nb3Zr2Ta alloy after unloading resulted from two sources. Plastic deformation occurred in β phase, α phase and even α″ phase under dislocation slip mechanism, and incomplete decomposition of α″ martensitic phase resulted in unrecovered strain as well. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy

    International Nuclear Information System (INIS)

    Vlach, M.; Stulikova, I.; Smola, B.; Kekule, T.; Kudrnova, H.; Danis, S.; Gemma, R.; Ocenasek, V.; Malek, J.; Tanprayoon, D.; Neubert, V.

    2013-01-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 °C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al 3 Sc and/or Al 3 (Sc,Zr) particles precipitated during extrusion at 350 °C in the alloys studied. Additional precipitation of the Al 3 Sc and/or Al 3 (Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 °C. The precipitation of the Al 6 Mn- and/or Al 6 (Mn,Fe) particles of a size ∼ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 °C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al 3 Sc particles formation and/or coarsening and that of the Al 6 Mn and/or Al 6 (Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al 3 Sc-phase and the Al 6 Mn-phase precipitation. - Highlights: • The Mn, Sc and Zr additions to Al totally suppresses recrystallization at 550 °C. • The Sc,Zr-containing particle precipitation is slightly facilitated by

  17. Storage of Hydrogen in the Ti-Zr System; Almacenamiento de hidrogeno en el sistema Ti-Zr

    Energy Technology Data Exchange (ETDEWEB)

    Salmones, J.; Zeifert, B. [Instituto Politecnico Nacional, ESIQIE, Mexico D.F. (Mexico)]. E-mail: jose_salmones@yahoo.com.mx; Ortega-Aviles, M. [Instituto Politecnico Nacional, Mexico D.F. (Mexico); Contreras-Larios, J. L. [Universidad Autonoma Metropolitana, Mexico D.F. (Mexico); Garibay-Febles, V. [Instituto Mexicano del Petroleo, Mexico D.F. (Mexico)

    2009-09-15

    This research was conducted to contribute to the study of hydrogen storage systems, synthesizing and characterizing two Ti-Zr based systems: I) titanium dioxide (TiO{sub 2}) + zirconium acetylacetonate (C{sub 20}H{sub 28}O{sub 8}Zr) and II) titanium dioxide (TiO{sub 2}) + zirconium tetrachloride (ZrCl{sub 4}). Both systems were prepared using mechanical grinding under the same conditions, with a composition of 50% Ti and Zr weights and grinding times of 2, 5, 7, 15, 30 and 70 hours. The samples were evaluated with hydrogen absorption tests and characterized with BET, DRX and MET. The results of hydrogen storage for one absorption-desorption cycle, at ambient temperature and pressure, showed that the samples from system I absorbed the greatest amount of hydrogen, but did not desorb them, while samples from system II liberated the hydrogen absorbed in them. The increase in temperature from mechanical grinding is directly associated with changes in the adsorption capacity of hydrogen, the size of the particle and formation of new components, as shows by BET measurements, XRD diffractograms and MET micrographs. The formation of Ti and Zr oxide nanoparticles in the samples in series II were associated with the desorption capacity of hydrogen. [Spanish] Esta investigacion se realizo para contribuir al estudio de sistemas para almacenamiento de hidrogeno, sintetizando y caracterizando dos sistemas base Ti-Zr: I) dioxido de titanio (TiO{sub 2}) + acetilacetonato de zirconio (C{sub 20}H{sub 28}O{sub 8}Zr) y II) dioxido de titanio (TiO{sub 2}) + tetracloruro de zirconio (ZrCl{sub 4}). Ambos sistemas se prepararon por molienda mecanica a las mismas condiciones, con composicion de 50% en peso de Ti y Zr y tiempos de molienda de 2, 5, 7, 15, 30 y 70 hrs. Las muestras fueron evaluadas mediante pruebas de absorcion de hidrogeno y caracterizadas por BET, DRX y MET. Los resultados de almacenamiento de hidrogeno para un ciclo de absorcion-desorcion, a presion y temperatura ambientes

  18. NK-cell-dependent killing of colon carcinoma cells is mediated by natural cytotoxicity receptors (NCRs) and stimulated by parvovirus infection of target cells

    International Nuclear Information System (INIS)

    Bhat, Rauf; Rommelaere, Jean

    2013-01-01

    Investigating how the immune system functions during malignancies is crucial to developing novel therapeutic strategies. Natural killer (NK) cells, an important component of the innate immune system, play a vital role in immune defense against tumors and virus-infected cells. The poor survival rate in colon cancer makes it particularly important to develop novel therapeutic strategies. Oncolytic viruses, in addition to lysing tumor cells, may have the potential to augment antitumor immune responses. In the present study, we investigate the role of NK cells and how parvovirus H-1PV can modulate NK-cell mediated immune responses against colon carcinoma. Human NK cells were isolated from the blood of healthy donors. The cytotoxicity and antibody-mediated inhibition of NK cells were measured in chromium release assays. Phenotypic assessment of colon cancer and dendritic cells was done by FACS. The statistical significance of the results was calculated with Student’s t test (*p <0.05; **, p < 0.01; ***, p < 0.001). We show that IL-2-activated human NK cells can effectively kill colon carcinoma cells. Killing of colon carcinoma cells by NK cells was further enhanced upon infection of the former cells with parvovirus H-1PV. H-1PV has potent oncolytic activity against various tumors, yet its direct killing effect on colon carcinoma cells is limited. The cytotoxicity of NK cells towards colon carcinoma cells, both mock- and H-1PV-infected, was found to be mostly mediated by a combination of natural cytotoxicity receptors (NCRs), namely NKp30, 44, and 46. Colon carcinoma cells displayed low to moderate expression of NK cell ligands, and this expression was modulated upon H-1PV infection. Lysates of H-1PV-infected colon carcinoma cells were found to increase MHC class II expression on dendritic cells. Altogether, these data suggest that IL-2-activated NK cells actively kill colon carcinoma cells and that this killing is mediated by several natural cytotoxicity receptors

  19. Selection of the Composition with High Glass Forming Ability in Zr-Cu-Ni-Al Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yajuan Sun

    2014-01-01

    Full Text Available Three new Zr-Cu-Ni-Al bulk metallic glasses were developed through appropriate mixing of three binary eutectics Zr38.2Cu61.8, Zr51Al49, and Zr64Ni36. By suppressing solidification of competing crystalline phases, a new glass forming alloy Zr51Cu24.22Ni14.06Al10.72 with the critical diameter of up to 10 mm is obtained.

  20. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin

    2013-12-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  1. Influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings

    International Nuclear Information System (INIS)

    Reyes-Acosta, M.A.; Torres-Huerta, A.M.; Domínguez-Crespo, M.A.; Flores-Vela, A.I.; Dorantes-Rosales, H.J.; Ramírez-Meneses, E.

    2015-01-01

    Highlights: • PMMA/ZrO 2 nanocomposites were prepared by melt blending in a single screw extruder. • The nanoparticles of m-, t-ZrO 2 were successfully synthesized using sol–gel technique. • The prepared PMMA/ZrO 2 nanocomposites have better UV protection than pure PMMA. • The thermal stability of the PMMA increases with low amount of ZrO 2 nanoparticles. • PMMA/ZrO 2 nanocomposites show superior values of elastic modulus and hardness. - Abstract: In this work, ZrO 2 nanoparticles were synthesized by the sol–gel method, treated thermally at different temperatures (400, 600 and 800 °C), and added to a polymer matrix in two different weight percentages (0.5 and 1) by single screw extrusion in order to determine the influence of these parameters on the thermal stability and UV radiation resistance of PMMA/ZrO 2 composites. Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), ultraviolet–visible spectroscopy (UV–Vis), thermogravimetric analysis (TGA) and nanoindentation techniques were used to evaluate the structural, morphological, optical, thermal and mechanical properties of as-prepared composites. The average crystallite sizes for ZrO 2 sintered at 600 and 800 °C were about 17 and 26 nm, respectively. It was found that the incorporation of a low percentage of ZrO 2 nanoparticles increased the thermal properties of PMMA as well as its hardness and elastic modulus. The degradation temperature at 10 wt.% loss of the PMMA/ZrO 2 (0.5 wt.%, 400 °C) nanocomposite was approximately 48 °C higher than that of pure PMMA. The absorption in the UV region was increased according to the ZrO 2 heat treatment temperature and amount added to the polymer matrix

  2. 89Zr, a Radiometal Nuclide with High Potential for Molecular Imaging with PET: Chemistry, Applications and Remaining Challenges

    Directory of Open Access Journals (Sweden)

    Ralf Schirrmacher

    2013-06-01

    Full Text Available Molecular imaging—and especially Positron Emission Tomography (PET—is of increasing importance for the diagnosis of various diseases and thus is experiencing increasing dissemination. Consequently, there is a growing demand for appropriate PET tracers which allow for a specific accumulation in the target structure as well as its visualization and exhibit decay characteristics matching their in vivo pharmacokinetics. To meet this demand, the development of new targeting vectors as well as the use of uncommon radionuclides becomes increasingly important. Uncommon nuclides in this regard enable the utilization of various selectively accumulating bioactive molecules such as peptides, antibodies, their fragments, other proteins and artificial structures for PET imaging in personalized medicine. Among these radionuclides, 89Zr (t1/2 = 3.27 days and mean Eβ+ = 0.389 MeV has attracted increasing attention within the last years due to its favorably long half-life, which enables imaging at late time-points, being especially favorable in case of slowly-accumulating targeting vectors. This review outlines the recent developments in the field of 89Zr-labeled bioactive molecules, their potential and application in PET imaging and beyond, as well as remaining challenges.

  3. Hybrid natural element method for viscoelasticity problems

    Science.gov (United States)

    Zhou, Yan-Kai; Ma, Yong-Qi; Dong, Yi; Feng, Wei

    2015-01-01

    A hybrid natural element method (HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation system of the HNEM for viscoelasticity problems is obtained using the Hellinger-Reissner variational principle. In contrast to the natural element method (NEM), the HNEM can directly obtain the nodal stresses, which have higher precisions than those obtained using the moving least-square (MLS) approximation. Some numerical examples are given to demonstrate the validity and superiority of this HNEM. Project supported by the Natural Science Foundation of Shanghai, China (Grant No.13ZR1415900).

  4. Y and Ni Co-Doped BaZrO3 as a Proton-Conducting Solid Oxide Fuel Cell Electrolyte Exhibiting Superior Power Performance

    KAUST Repository

    Shafi, Shahid P.

    2015-10-16

    The fabrication of anode supported single cells based on BaZr0.8Y0.2O3-δ (BZY20) electrolyte is challenging due to its poor sinteractive nature. The acceleration of shrinkage behavior, improved sinterability and larger grain size were achieved by the partial substitution of Zr with Ni in the BZY perovskite. Phase pure Ni-doped BZY powders of nominal compositions BaZr0.8-xY0.2NixO3-δ were synthesized up to x = 0.04 using a wet chemical combustion synthesis route. BaZr0.76Y0.2Ni0.04O3-δ (BZYNi04) exhibited adequate total conductivity and the open circuit voltage (OCV) values measured on the BZYNi04 pellet suggested lack of significant electronic contribution. The improved sinterability of BZYNi04 assisted the ease in film fabrication and this coupled with the application of an anode functional layer and a suitable cathode, PrBaCo2O5+δ (PBCO), resulted in a superior fuel cell power performance. With humidified hydrogen and static air as the fuel and oxidant, respectively, a peak power density value of 428 and 240 mW cm−2 was obtained at 700 and 600°C, respectively.

  5. Insight into mechanical properties and thermoelectric efficiency of Zr2CoZ (Z  =  Si, Ge) Heusler alloys

    Science.gov (United States)

    Yousuf, Saleem; Gupta, Dinesh C.

    2017-11-01

    We investigated the electronic, mechanical and thermoelectric properties of Zr2CoZ (Z  =  Si, Ge) Heusler alloys using the first-principles calculation. From the analysis of various elastic constants, the shear and Young’s moduli, Poisson’s ratio, the ductile nature of the alloys is predicted. Thermoelectric coefficients viz., Seebeck, electrical conductivity and figure of merit show Zr2CoZ alloys as n-type thermoelectric materials showing linearly increasing Seebeck coefficient with temperature. The value of total absolute Seebeck coefficients at 1200 K of Zr2CoSi and Zr2CoGe are 60 µV K‑1 and 40 µV K‑1 respectively mainly because of the existence of almost flat conduction bands along L to Г directions of high symmetry Brillouin zone. Further, the chemical potential variation of power factor confirms the n-type doping fruitful to increase their TE performance. The figure of merit achieves an upper-limit of 0.95 at 850 K and can favour their use for waste heat recovery at higher temperatures and thermoelectric spin generators.

  6. Study of a ;hot; particle with a matrix of U-bearing metallic Zr: Clue to supercriticality during the Chernobyl nuclear accident

    Science.gov (United States)

    Pöml, P.; Burakov, B.

    2017-05-01

    This paper is dedicated to the 30th anniversary of the severe nuclear accident that occurred at the Chernobyl NPP on 26 April 1986. A detailed study on a Chernobyl "hot" particle collected from contaminated soil was performed. Optical and electron microscopy, as well as quantitative x-ray microbeam analysis methods were used to determine the properties of the sample. The results show that the particle (≈ 240 x 165 μm) consists of a metallic Zr matrix containing 2-3 wt. % U and bearing veins of an U,Nb admixture. The metallic Zr matrix contains two phases with different amounts of O with the atomic proportions (U,Zr,Nb)0.73O0.27 and (U,Zr,Nb)0.61O0.39. The results confirm the interaction between UO2 fuel and zircaloy cladding in the reactor core. To explain the process of formation of the particle, its properties are compared to laboratory experiments. Because of the metallic nature of the particle it is concluded that it must have formed during a very high temperature (> 2400∘C) process that lasted for only a very short time (few microseconds or less); otherwise the particle should have been oxidised. Such a rapid very high temperature process indicates that at least part of the reactor core could have been supercritical prior to an explosion as it was previously suggested in the literature.

  7. Some recent observations on the properties of UHV-deposited ZrO/sub 2/

    International Nuclear Information System (INIS)

    Raj, T.; Weaver, L.D.; Tuenge, S.R.; Price, J.S.; Jungling, K.C.

    1984-01-01

    Single-layer ZrO/sub 2/ coatings were deposited in an ultrahigh vacuum system by two techniques: laser evaporation (utilizing a 100-W, continuous wave, CO/sub 2/ laser) and electron-beam evaporation. Substrate temperatures were maintained at either 150 0 C or 250 0 C with backfill oxygen pressures between 0 and 5x10/sup -5/ torr. The coatings were analyzed by Auger Electron Spectroscopy to determine stoichiometry and to provide information on the nature and level of impurities. The refractive indices for the coatings were determined by ellipsometry at 6328 A. Selected coatings were damage tested at 531 nm. This report discusses the influence of backfill pressure, substrate temperature and evaporation technique on thin film properties and compares the results obtained by Auger and ellipsometric analyses. Also presented is a comparison between films prepared under high vacuum and ultrahigh vacuum conditions

  8. NF-κB/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton

    Directory of Open Access Journals (Sweden)

    Van Thai Ha

    2014-01-01

    Full Text Available AP736 was identified as an antimelanogenic drug that can be used for the prevention of melasma, freckles, and dark spots in skin by acting as a suppressor of melanin synthesis and tyrosinase expression. Since macrophage-mediated inflammatory responses are critical for skin health, here we investigated the potential anti-inflammatory activity of AP736. The effects of AP736 on various inflammatory events such as nitric oxide (NO/prostaglandin (PG E2 production, inflammatory gene expression, phagocytic uptake, and morphological changes were examined in RAW264.7 cells. AP736 was found to strongly inhibit the production of both NO and PGE2 in lipopolysaccharide- (LPS- treated RAW264.7 cells. In addition, AP736 strongly inhibited both LPS-induced morphological changes and FITC-dextran-induced phagocytic uptake. Furthermore, AP736 also downregulated the expression of multiple inflammatory genes, such as inducible NO synthase (iNOS, cyclooxygenase- (COX- 2, and interleukin- (IL- 1β in LPS-treated RAW264.7 cells. Transcription factor analysis, including upstream signalling events, revealed that both NF-κB and AP-1 were targeted by AP736 via inhibition of the IKK/IκBα and IRAK1/TAK1 pathways. Therefore, our results strongly suggest that AP736 is a potential anti-inflammatory drug due to its suppression of NF-κB-IKK/IκBα and AP-1-IRAK1/TAK1 signalling, which may make AP736 useful for the treatment of macrophage-mediated skin inflammation.

  9. Potential Natural Products for Alzheimer’s Disease: Targeted Search Using the Internal Ribosome Entry Site of Tau and Amyloid-β Precursor Protein

    Directory of Open Access Journals (Sweden)

    Yun-Chieh Tasi

    2015-04-01

    Full Text Available Overexpression of the amyloid precursor protein (APP and the hyperphosphorylation of the tau protein are vital in the understanding of the cause of Alzheimer’s disease (AD. As a consequence, regulation of the expression of both APP and tau proteins is one important approach in combating AD. The APP and tau proteins can be targeted at the levels of transcription, translation and protein structural integrity. This paper reports the utilization of a bi-cistronic vector containing either APP or tau internal ribosome entry site (IRES elements flanked by β-galactosidase gene (cap-dependent and secreted alkaline phosphatase (SEAP (cap-independent to discern the mechanism of action of memantine, an N-methyl-d-aspartate (NMDA receptor antagonist. Results indicate that memantine could reduce the activity of both the APP and tau IRES at a concentration of ~10 μM (monitored by SEAP activity without interfering with the cap-dependent translation as monitored by the β-galactosidase assay. Western blot analysis of the tau protein in neuroblastoma (N2A and rat hippocampal cells confirmed the halting of the expression of the tau proteins. We also employed this approach to identify a preparation named NB34, extracts of Boussingaultia baselloides (madeira-vine fermented with Lactobacillus spp., which can function similarly to memantine in both IRES of APP and Tau. The water maze test demonstrated that NB34 could improve the spatial memory of a high fat diet induced neurodegeneration in apolipoprotein E-knockout (ApoE−/− mice. These results revealed that the bi-cistronic vector provided a simple, and effective platform in screening and establishing the mechanistic action of potential compounds for the treatment and management of AD.

  10. Effect of microstructural evolution on in-reactor creep of Zr-2.5Nb tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, YoungSuk [Korea Atomic Energy Research Institute, Zirconium Group, P.O. Box 105, Yusong, Daejon 305-353 (Korea, Republic of)]. E-mail: yskim1@kaeri.re.kr; Im, KyungSoo [Korea Atomic Energy Research Institute, Zirconium Group, P.O. Box 105, Yusong, Daejon 305-353 (Korea, Republic of); Cheong, YongMoo [Korea Atomic Energy Research Institute, Zirconium Group, P.O. Box 105, Yusong, Daejon 305-353 (Korea, Republic of); Ahn, SangBok [Korea Atomic Energy Research Institute, Zirconium Group, P.O. Box 105, Yusong, Daejon 305-353 (Korea, Republic of)

    2005-11-15

    Dislocation density, decomposition of the {beta}-Zr phase and diametral creep were examined as a function of the location of the Zr-2.5Nb tube irradiated in the Wolsong Unit 1 for 9.3 effective full power years (EFPYs). The maximum a-dislocation density occurred at the inlet part of the irradiated Zr-2.5Nb tube exposed to the lowest temperature while the outlet part of the tube exposed to the higher temperature had the higher extent of decomposition of the {beta}-Zr phase and the maximum diametral creep. Thus, it is concluded that in-reactor creep of the Zr-2.5Nb tube is not related to the dislocation density but governed by the Nb concentration of the {alpha}-Zr grains caused by thermal decomposition of the {beta}-Zr phase. Supplementary creep tests on the Zr-2.5Nb sheets with different Nb contents in the {beta}-Zr phase provide supportive evidence to this conclusion. The acceleration of the in-reactor creep of the Zr-2.5Nb tubes is suggested after a long-term operation.

  11. Beryllide pebble fabrication of Be–Zr compositions as advanced neutron multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Nakamichi, Masaru, E-mail: nakamichi.masaru@jaea.go.jp; Kim, Jae Hwan; Ochiai, Kentaro

    2016-11-01

    Highlights: • Fabrication of beryllide pebbles of Be–Zr compositions was conducted from the viewpoint of pebble mass production. • Prototypic Be–Zr beryllides pebbles were successfully fabricated using the plasma-sintered electrodes by the rotating electrode method. • By utilizing plasma-sintered electrodes with high Be and Zr contents, Be{sub 13}Zr pebbles had a high granulation yield of 84%. • The Be{sub 13}Zr pebbles displayed better oxidation properties as compared to pure Be pebbles. - Abstract: Fusion reactors require advanced neutron multipliers with high stability at high temperatures. Beryllium intermetallic compounds (beryllides) have a universally robust potential for high temperature use. Fabrication of beryllide pebbles of Be–Zr compositions was conducted from the viewpoint of pebble mass production. Prototypic pebbles were successfully fabricated using the plasma-sintered electrodes with high Be and Zr contents for enhanced of the thermal shock resistivity of the electrodes during granulation by a rotating electrode method. From the results of granulation examinations, it was revealed that granulation yields varied greatly depending on compositions of the plasma-sintered electrodes themselves. By utilizing plasma-sintered electrodes with high Be and Zr contents, Be{sub 13}Zr pebbles had a high granulation yield of 84%. Moreover, the Be{sub 13}Zr pebbles displayed better oxidation properties as compared to pure Be pebbles.

  12. Effects of Al addition on atomic structure of Cu-Zr metallic glass

    Science.gov (United States)

    Li, Feng; Zhang, Huajian; Liu, Xiongjun; Dong, Yuecheng; Yu, Chunyan; Lu, Zhaoping

    2018-02-01

    The atomic structures of Cu52Zr48 and Cu45Zr48Al7 metallic glasses (MGs) have been studied by molecular dynamic simulations. The results reveal that the molar volume of the Cu45Zr48Al7 MG is smaller than that of the Cu52Zr48 MG, although the size of the Al atom is larger than that of the Cu atom, implying an enhanced atomic packing density achieved by introducing Al into the ternary MG. Bond shortening in unlike atomic pairs Zr-Al and Cu-Al is observed in the Cu45Zr48Al7 MG, which is attributed to strong interactions between Al and (Zr, Cu) atoms. Meanwhile, the atomic packing efficiency is enhanced by the minor addition of Al. Compared with the Cu52Zr48 binary MG, the potential energy of the ternary MG decreases and the glass transition temperature increases. Structural analyses indicate that more Cu- and Al-centered full icosahedral clusters emerge in the Cu45Zr48Al7 MG as some Cu atoms are substituted by Al. Furthermore, the addition of Al leads to more icosahedral medium-range orders in the ternary MG. The increase of full icosahedral clusters and the enhancement of the packing density are responsible for the improved glass-forming ability of Cu45Zr48Al7.

  13. Computer simulation of hydrogen diffusion and hydride precipitation at Ta/Zr bond interface. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Fujimoto, Tetsuya; Nishimoto, Kazutoshi

    2010-01-01

    The concentration of hydrogen and precipitation of zirconium hydrides in Ta/Zr explosive bonded joint were analysed by computer simulation. Numerical model of hydride precipitation under hydrogen diffusion was simplified by the alternate model coupled the macroscopic hydrogen diffusion with the microscopic hydride precipitation. Effects of the initial hydrogen content in Ta, working degree of Zr and post-bond heat treatment on the hydrogen diffusion and hydride precipitation were investigated. Hydrogen was rapidly diffused from Ta substrate into Zr after explosive bonding and temporarily concentrated at Ta/Zr bond interface. Zirconium hydrides were precipitated and grew at Ta/Zr bond interface, and the precipitation zone of hydrides was enlarged with the lapse of time. The precipitation of zirconium hydrides was promoted when the initial hydrogen content in Ta and working degree of Zr were increased. The concentration of hydrogen and precipitation of hydrides at the bond interface were reduced and diminished by post-bond heat treatment at 373 K. It was deduced that hydrogen embrittlement in Ta/Zr explosive bonded joint was caused by the precipitation of zirconium hydrides and concentration of hydrogen at Ta/Zr bond interface during the diffusion of hydrogen containing in Ta substrate. (author)

  14. Inelastic neutron scattering in Zr2NiH1.9 and Zr2NiH4.6

    Indian Academy of Sciences (India)

    would attract hydrogen more in comparison to Ni. Because of this, d sites formed by (2Zr + 2Ni) are almost empty. The a and b sites formed by 4Zr atoms are large enough (hole radius of more than 0.5 Å) to accommodate hydrogen. The absence of hydrogen in a sites could be due to repulsive interactions with hydrogen. 400.

  15. Superconducting properties of Zr1+xNi2-xGa and Zr1-xNi2+xGa Heusler compounds

    Directory of Open Access Journals (Sweden)

    Saad Alzahrani

    2017-05-01

    Full Text Available The superconducting properties of a series of Zr1+xNi2-xGa and Zr1-xNi2+xGa compounds have been investigated by x-ray diffraction, electrical resistivity, dc magnetization, and ac susceptibility measurements. While the parent compound, ZrNi2Ga, exhibited the cubic L21 Heusler structure, multiple non-cubic structures formed in the Zr and Ni rich doped materials. For x ≤ 0.3, all Zr1-xNi2+xGa compounds demonstrated superconducting behavior, but no superconductivity was observed in the Zr1+xNi2-xGa alloys for x > 0.2. The magnetization data revealed that all materials in both Zr1+xNi2-xGa and Zr1-xNi2+xGa series exhibited type-II superconductivity. With increasing doping concentration x, the paramagnetic ordering were enhanced in both systems while the superconducting properties were found to weaken. The observations are discussed considering the structural disorders in the systems.

  16. Microstructure and mechanical properties of Mo/ZrC in-situ composites

    International Nuclear Information System (INIS)

    Suzuki, T.; Nomura, N.; Hanada, S.

    2001-01-01

    Mo/ZrC in-situ composites with hyper-eutectic (Mo-40 mol%ZrC) and eutectic (Mo-16 mol%ZrC) compositions were synthesized by arc-melting blended Mo and ZrC powders and their microstructures and mechanical properties were investigated. Mo-40ZrC annealed at 1873 K for 70 h consists of coarse primary ZrC particles greater than 10 μm and eutectic of fine ZrC particles less than 1 μm and Mo solid solution with grain sizes of about 3 μm. In Mo-16ZrC fine ZrC particles with an average diameter of 600 nm are distributed in Mo solid solution, forming some colonies with sizes of several 10 μm. Yield stresses at a strain rate of 1.7 x 10 -4 s -1 for Mo-40ZrC are very high at high temperatures, especially above 1500 K, which are higher than those of monolithic ZrC and Mo-40TiC. Mo-40M exhibits good creep strength as compared with advanced ceramic matrix composites. Fracture toughness K Q for Mo-40ZrC and Mo-16ZrC at room temperature is evaluated to be 13.9 and 12.7 Mpa x m 1/2 by three point bending test, respectively, which is much higher than that of monolithic carbide (1 - 3 Mpa x m 1/2 ). (author)

  17. Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt

    Science.gov (United States)

    Lü, P.; Wang, H. P.

    2018-04-01

    The liquid Ni-16.75 at. pct Zr peritectic alloy was substantially undercooled and containerlessly solidified by an electromagnetic levitator and a drop tube. The dependence of the peritectic solidification mode on undercooling was established based on the results of the solidified microstructures, crystal growth velocity, as well as X-ray diffraction patterns. Below a critical undercooling of 124 K, the primary Ni7Zr2 phase preferentially nucleates and grows from the undercooled liquid, which is followed by a peritectic reaction of Ni7Zr2+L → Ni5Zr. The corresponding microstructure is composed of the Ni7Zr2 dendrites, peritectic Ni5Zr phase, and inter-dendritic eutectic. Nevertheless, once the liquid undercooling exceeds the critical undercooling, the peritectic Ni5Zr phase directly precipitates from this undercooled liquid. However, a negligible amount of residual Ni7Zr2 phase still appears in the microstructure, indicating that nucleation and growth of the Ni7Zr2 phase are not completely suppressed. The micromechanical property of the peritectic Ni5Zr phase in terms of the Vickers microhardness is enhanced, which is ascribed to the transition of the peritectic solidification mode. To suppress the formation of the primary phase completely, this alloy was also containerlessly solidified in free fall experiments. Typical peritectic solidified microstructure forms in large droplets, while only the peritectic Ni5Zr phase appears in smaller droplets, which gives an indication that the peritectic Ni5Zr phase directly precipitates from the undercooled liquid by completely suppressing the growth of the primary Ni7Zr2 phase and the peritectic reaction due to the combined effects of the large undercooling and high cooling rate.

  18. Deuterium absorption and material phase characteristics of SAES St 198 Zr-Fe Alloy

    International Nuclear Information System (INIS)

    Nobile, A.; Mosley, W.C.; Holder, J.S.; Brooks, K.N.

    1994-01-01

    This document reports deuterium absorption and material phase characteristics of SAES St 198 Zr-Fe Alloy (76.5% Zr). Scanning electron microscope images of polished surfaces, electron probe microanalysis, and x-ray powder diffractometry indicated the presence of a primary Zr 2 Fe phase with secondary phases of ZrFe 2 , Zr 5 FeSn, α-Zr, and Zr 6 Fe 3 O. A statistically designed experiment to determine the effects of temperature, time, and vacuum quality on activation of St 198 revealed that, when activated at low temperature (350C), deuterium absorption rate was slower when the vacuum quality was poor (2.5 Pa vs. 3 x 10 -4 Pa). However, at higher activation temperature (500C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200 to 500C. The P-C-T data over the full range of deuterium loading and at temperatures of 350C and below is described an expression. At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D 2 from the gas phase. X-ray diffraction and other data suggest these reactions to be: 2 Zr 2 FeD x → xZrD 2 + x/3 ZrFe 2 + (2 - 2/3x) Zr 2 Fe and Zr 2 FeD x + (2 - 1/2x) D 2 → 2 ZrD 2 + Fe, where 0 2 Fe formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction

  19. Stability of genotyping target sequences of Mycobacterium avium subsp. paratuberculosis upon cultivation on different media, in vitro- and in vivo passage, and natural infection.

    Science.gov (United States)

    Kasnitz, Nadine; Köhler, Heike; Weigoldt, Mathias; Gerlach, Gerald F; Möbius, Petra

    2013-12-27

    Mycobacterium (M.) avium subsp. paratuberculosis - the causative agent of paratuberculosis (Johne's disease) - affects domestic and wild ruminants worldwide. Recently, different typing techniques have been combined to provide sufficient discriminatory power for the differentiation of isolates and for epidemiological studies. In order to challenge the reliability of this approach the stability of different M. avium subsp. paratuberculosis genotypes determined after primary isolation was investigated after sub-cultivation on six different media (A), twelve in vitro passages (B), or a singular in vivo passage (C). In addition, different isolates from a single animal or herd were investigated (D). Sub-cultures of type- and reference strains, re-isolated inoculation strain after in vivo passage, and 23 field isolates were genotyped by mycobacterial interspersed repetitive unit-variable-number of tandem-repeat (MIRU-VNTR)-, short-sequence-repeat (SSR)-, and IS900-based restriction-fragment length-polymorphism (IS900-RFLP)-analyses and compared with initial genotypes. MIRU-VNTR-alleles (at loci 292, X3, 25, 47, 7, and 32) were stable after in vitro cultivations and after animal passage. Results of SSR analysis at Locus 1 with 7G nucleotides and at Loci 8 and 9 (tri-nucleotides) were also stable. At Locus 2 9G repeats changed into 10G after goat passage. After in vitro subculture (A+B) but not after animal passage (C) IS900-RFLP-typing revealed changes of BstEII-patterns for 3 of 23 strains (including ATCC 19698). Multiple isolates from individual animals or from a single cattle herd with natural infection (D) which exhibited identical IS900-RFLP- and MIRU-VNTR- genotypes, showed different G repeat numbers at SSR locus 2. This implies strand slippage events during chromosomal duplication of bacteria in the course of bacterial spreading within hosts and herds. Consequently, SSR-Locus 2 is not suitable as genome marker for epidemiological studies. Copyright © 2013 Elsevier

  20. Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies.

    Science.gov (United States)

    Muñoz-Alía, Miguel Angel; Casasnovas, José M; Celma, María Luisa; Carabaña, Juan; Liton, Paloma B; Fernandez-Muñoz, Rafael

    2017-05-15

    Measles virus (MV) remains a leading cause of vaccine-preventable deaths in children. Protection against MV is associated with neutralizing antibodies that preferentially recognize the viral hemagglutinin (MV-H), and to a lesser extent, the fusion protein (MV-F). Although MV is serologically monotypic, 24 genotypes have been identified. Here we report three neutralization epitopes conserved in the more prevalent circulating MV genotypes, two located in the MV-H receptor binding site (RBS) (antigenic site III) and a third in MV-H/MV-F interphase (antigenic site Ia) which are essential for MV multiplication. In contrast, two MV-H neutralization epitopes, showed a genotype-specific neutralization escape due to a single amino acid change, that we mapped in the "noose" antigenic site, or an enhanced neutralization epitope (antigenic site IIa). The monoclonal antibody (mAb) neutralization potency correlated with its binding affinity and was mainly driven by kinetic dissociation rate (k off ). We developed an immunoassay for mAb binding to MV-H in its native hetero-oligomeric structure with MV-F on the surface of a MV productive steady-state persistently infected (p.i.) human cell lines, and a competitive-binding assay with serum from individuals with past infection by different MV genotypes. Binding assays revealed that a broad neutralization epitope, in RBS antigenic site, a genotype specific neutralization epitopes, in noose and IIa sites, were immunogenic in natural infection and vaccination and may elicit long-lasting humoral immunity that might contribute to explain MV immunogenic stability. These results support the design of improved measles vaccines, broad-spectrum prophylactic or therapeutic antibodies and MV-used in oncolytic therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Target Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — [Part of the ATLAS user facility.] The Physics Division operates a target development laboratory that produces targets and foils of various thickness and substrates,...

  2. X-ray study of rapidly cooled ribbons of Al-Cr-Zr and Al-Ni-Y-Cr-Zr alloys

    International Nuclear Information System (INIS)

    Betsofen, S.Ya.; Osintsev, O.E.; Lutsenko, A.N.; Konkevich, V.Yu.

    2002-01-01

    One investigated into phase composition, lattice spacing and structure of rapidly cooled 25-200 μm gauge strips made of Al-4,1Cr-3,2Zr and Al-1,5Cr-1,5Zr-4Ni-3Y alloys, wt. %, produced by melt spinning to a water-cooled copper disk. In Al-4,1Cr-3,2Zr alloy one detected intermetallic phases: Al 3 Zr and two Al 86 Cr 14 composition icosahedral phases apart from aluminium solid solution with 4.040-4.043 A lattice spacing. In Al-1,5Cr-1,5Zr-4Ni-3Y alloy one identified two Al 86 Cr 14 icosahedral phases and two AlNiY and Al 3 Y yttrium-containing ones, lattice spacing of aluminium solid solution was equal to 4.052-4.053 A [ru

  3. Novel composition above the limit of Bi:Zr solid solution; synthesis and physical properties of Bi1.33Zr0.67O3+δ

    International Nuclear Information System (INIS)

    Meatza, Iratxe de; Chapman, Jon P.; Mauvy, Fabrice; Larramendi, Jose I. Ruiz de; Arriortua, Maria I.; Rojo, Teofilo

    2004-01-01

    This paper presents an increase to x = 0.67 of the zirconium content in the conductive Bi 2-x Zr x O 3+δ solid solution. Complete incorporation of Zr in the β III -Bi 2 O 3 structure, confirmed by X-ray powder diffraction, has produced a phase with a lower volume and superior conductivity than those predicted by an earlier study. The observed β III -δ Bi 2-x Zr x O 3+δ phase transition around 730 deg. C has been characterised for the first time and shows a segregation of a mixture of predominantly γ-Bi 2 O 3 and approximately 30% of the ZrO 2 , before total reincorporation of the Zr in the high temperature δ-phase

  4. Three-color resonance ionization spectroscopy of Zr in Si

    International Nuclear Information System (INIS)

    Hansen, C. S.; Calaway, W. F.; Pellin, M. J.; Wiens, R. C.; Burnett, D. S.

    1997-01-01

    It has been proposed that the composition of the solar wind could be measured directly by transporting ultrapure collectors into space, exposing them to the solar wind, and returning them to earth for analysis. In a study to help assess the applicability of present and future postionization secondary neutral mass spectrometers for measuring solar wind implanted samples, measurements of Zr in Si were performed. A three-color resonant ionization scheme proved to be efficient while producing a background count rate limited by secondary ion signal (5x10 -4 counts/laser pulse). This lowered the detection limit for these measurements to below 500 ppt for 450,000 averages. Unexpectedly, the Zr concentration in the Si was measured to be over 4 ppb, well above the detection limit of the analysis. This high concentration is thought to result from contamination during sample preparation, since a series of tests were performed that rule out memory effects during the analysis

  5. Study on the adducts formation of Zr and Hf chelates

    International Nuclear Information System (INIS)

    Ree, Chin Taik; Jung, Young Sam; Park, Jun Kown

    1986-01-01

    The synergistic effect observed in Zr(IV) and Hf(IV) extraction from strong perchloric acid solutions by the mixtures of 2-Thenoyltri-fluoroacetone(TTA) and Octanols is shown to be caused by the formation of a mixed complex, M(TTA) 3 XS (M=Zr(IV), HF(IV), X=ClO 4 - , S=Octanol). One of the four TTA molecules coordinated at lower HClO 4 concentration to the metal as bidendate ligand seems to be changed to monodendate due to increasing HClO 4 concentration. The monodenate TTA ligand leaves the coordination site, finally, due to the activity of perchlorate at higher concentration and the additional coordination of an Octanol molecule seems to be allowed to the vaccant site which shows the synergistic extraction phenomena. (Author)

  6. Reusable molds for casting U-Zr alloys

    International Nuclear Information System (INIS)

    Chen, P.S.; Stevens, W.C.; Trybus, C.L.

    1992-09-01

    Refractory oxides, carbides, nitrides and sulfides were examined as mold coating materials for use in casting nuclear fuel. The molds require excellent high temperature chemical and mechanical stability combined with reasonable room temperature ductility to allow for fuel removal. Coatings were applied onto quartz and refractory metal coupons using various techniques. Sessile drop tests employing molten U-10%Zr (by weight) at 1550 degrees C were used to characterize coating performance. Results indicate that NbC, TiN, and Y 2 O 3 were non-wetting with U-10%Zr. However, only the Y 2 O 3 coating completely prevented adhesion of the fuel. The paper describes coating methods and details of the sessile drop experiments

  7. The effect of preliminary hydrolysis on the properties of ZrO2-7% Y2O3 powders prepared by hydroxide precipitation

    Science.gov (United States)

    Zhirenkina, Nina V.; Mashkovtsev, Maxim A.; Bereskina, Polina A.; Zakirov, Ilsur F.; Baksheev, Evgenie O.; Bujnachev, Sergey V.; Vereshchagin, Artem O.

    2017-09-01

    In this study, the effect of preliminary hydrolysis of zirconyl oxysulfate on the properties of ZrO2-7 % Y2O3 powders prepared by hydroxides precipitation at a constant pH of 5 was studied. X-ray diffraction analysis showed the monophasic nature of the samples and the insignificant difference between CSR (coherent scattering regions). Samples differed in particle size distribution, porosity and morphology.

  8. Hydrogen absorption and hydrogen-induced phase-separation in amorphous Zr[sub 50]Ni[sub 50-x]Cu[sub x] alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bakonyi, I. (Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Solid State Physics); Toth-Kadar, E. (Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Solid State Physics); Nagy, I. (Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Solid State Physics); Toth, J. (Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Solid State Physics); Tompa, K. (Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Solid State Physics); Lovas, A. (Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Solid State Physics); Cziraki, A. (Eoetvoes Univ., Budapest (Hungary). Inst. for Solid State Physics); Fogarassay, B. (Eoetvoes Univ., Budapest (Hungary). Inst. for Solid State Physics); Wiesinger, G. (Technische Univ., Vienna (Austria). Inst. fuer Experimentalphysik)

    1994-01-01

    The hydrogen absorption from the gas phase was investigated for melt-quenched Zr[sub 50]Ni[sub 50-x]Cu[sub x] (0[<=]x[<=]25) amorphous alloys by weighing, by thermoelectric power (TEP) and magnetization measurements aand by electron microscopy. A strongly nonmonotonous behaviour been observed, both as a function of the charging time and the Cu-content, for several materials characteristics and also for the nature of the hydrogen-induced phase-separation. (orig.)

  9. Zr Extrusion – Direct Input for Models & Validation

    Energy Technology Data Exchange (ETDEWEB)

    Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    As we examine differences in the high strain rate, high strain tensile response of high purity, highly textured Zr as a function of loading direction, temperature and extrusion velocity with primarily post mortem characterization techniques, we have also developed a technique for characterizing the in-situ extrusion process. This particular measurement is useful for partitioning energy of the system during the extrusion process: friction, kinetic energy, and temperature

  10. Development of an interatomic EAM type potential for Zr

    International Nuclear Information System (INIS)

    Pasianot, R.C.; Monti, A.M.

    1996-01-01

    In the present work are developed interatomic potentials of the embedded atom type (EAM) adequate for computer simulation of microstructural defects in the Zr lattice. It is observed that the less repulsive potential agrees better with the experimental data of the self-interstitial relaxation volume and predicts the basal crowdion as the stable configuration, the basal dumbbell having a formation energy slightly higher (0.01 eV). (author). 9 refs., 1 fig., 3 tabs

  11. Electrodeposition and characterization of Ni–W/ZrO2 ...

    Indian Academy of Sciences (India)

    Administrator

    30 g L–1 Na2WO4∙2H2O, 60 g L–1 citric acid and ZrO2 nanoparticles from 2∙5 to 10 g L–1 at pH 6 adjusted by the ... trochemical experiment was repeated three times to verify the reproducibility of experimental results. ... velocity of the samples in 30 wt% NaOH solution at room temperature was determined by measuring ...

  12. Natural gas; Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carlos A.; Moraes, Claudia C.D. [Eletricidade de Sao Paulo S.A. (ELETROPAULO), Sao Paulo, SP (Brazil); Fonseca, Carlos H.F. [Centrais Eletricas de Santa Catarina S.A., Florianopolis, SC (Brazil); Silva, Clecio Fabricio da; Alves, Ricardo P. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil); Sposito, Edivaldo Soares; Hulle, Lutero [Espirito Santo Centrais Eletricas S.A. (ESCELSA), Vitoria, ES (Brazil); S. Martins, Icaro da [Centrais Eletricas do Norte do Brasil S.A. (ELETRONORTE), Belem, PA (Brazil); Vilhena, Joao Luiz S. de [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Fagundes, Zaluar Aquino [Companhia Estadual de Energia Eletrica do Estado do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    1996-12-31

    An increase in the consumption of natural gas in Brazil is an expected fact in what concerns energetic planning. This work presents the existing situation in what concerns natural gas utilization in the main world economies, as well as an analysis of the participation of this fuel among the energy final consumption per sources. The Brazilian consumption of natural gas is also analysed as well as the international agreement between Brazil and Bolivia for natural gas commercialization. Some legal, institutional and political aspects related to natural gas commercialization are also discussed. Finally, several benefits to be brought by the utilization of natural gas are presented 10 refs., 3 tabs.

  13. High electron beam dosimetry using ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lueza M, F.; Rivera M, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Azorin N, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Garcia H, M. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2009-10-15

    This paper reports the experimental results of studying the thermoluminescent (Tl) properties of ZrO{sub 2} powder embedded in polytetrafluorethylene (PTFE) exposed to high energy electron beam from linear accelerators (Linac). Structural and morphological characteristics were also reported. Irradiations were conducted using high energy electrons beams in the range from 2 to 18 MeV. Pellets of ZrO{sub 2}+PTFE were produced using polycrystalline powder grown by the precipitation method. These pellets presented a Tl glow curve exhibiting an intense glow peak centered at around 235 C. Tl response as a function of high electron absorbed dose was linear in the range from 2 to 30 Gy. Repeatability determined by exposing a set of pellets repeatedly to the same electron absorbed dose was 0.5%. Fading along 30 days was about 50%. Then, results obtained in this study suggest than ZrO{sub 2}+PTFE pellets could be used for high energy electron beam dosimetry provided fading correction is accounted for. (Author)

  14. Selenidation of epitaxial silicene on ZrB2

    Science.gov (United States)

    Wiggers, F. B.; Yamada-Takamura, Y.; Kovalgin, A. Y.; de Jong, M. P.

    2018-01-01

    The deposition of elemental Se on epitaxial silicene on ZrB2 thin films was investigated with synchrotron-based core-level photoelectron spectroscopy and low-energy electron diffraction. The deposition of Se at room temperature caused the appearance of Si 2p peaks with chemical shifts of n × 0.51 ± 0.04 eV (n = 1-4), suggesting the formation of SiSe2. This shows that capping the silicene monolayer, without affecting its structural and electronic properties, is not possible with Se. The annealing treatments that followed caused the desorption of Se and Si, resulting in the etching of the Si atoms formerly part of the silicene layer, and the formation of bare ZrB2(0001) surface area. In addition, a ZrB2(0001)-(√7 × 3)R40.9° surface reconstruction was observed, attributed to a Se-termination of the surface of the transition metal diboride thin film.

  15. Corrosion behaviour and deposition of crud on Zr-alloys

    International Nuclear Information System (INIS)

    Maroto, A.J.G.; Bordoni, R.; Olmedo, A.M.; Villegas, M.; Chocron, M.; Szpunar, J.

    1999-01-01

    The results from the long term corrosion surveillance of Zr-alloys samples located out of pile in the primary heat transfer system of a PHWR with standard water chemistry show that, up to 3400 days, the mean value of the oxide thickness obtained for Zr-2.5Nb and Zry-4 samples exposed at 305 deg. C is in good agreement with the values reported in the literature. The amount of crud deposited on the corrosion samples was calculated at every inspection of the long term surveillance programme. The corrosion behaviour of these alloys is also studied in static autoclaves with lithiated heavy water. The effect on Zr-alloys of a change in chemistry resulting from the degradation of mixed resins in the primary heat transfer system was investigated in additional tests in static autoclaves up to 120 days at 400 deg. C comparing the results with those from the corrosion samples inserted in the autoclave facilities of the plant. (author)

  16. 51Cr diffusion in Zr-Sn alloys

    International Nuclear Information System (INIS)

    Nicolai, L.I.; Migoni, R.L.; Hojvat de Tendler, Ruth

    1982-01-01

    The 51 Cr volume diffusion in Zr-Sn alloys is measured in polycrystals with big grains by the thin-film method. The Sn content in the alloys ranges from 0.39% at to 6.66 % at. In the beta-phase the analysed temperature range is 982 deg C-1240 deg C. The Sn dehances the 51 Cr diffusion in beta-Zr, the effect being small but well defined. Assuming the formation of Sn-Cr dimers, the linear dehancement coefficient b and the parameters for the variation of b with temperature were calculated. The parameters Q and D o were calculated for the more diluted alloys and, upon application of the Zener theory for D o , a negative contribution to the activation entropy is found. Three experiments at different temperatures were performed in the alpha-phase. 51 Cr diffuses very fast in alpha-Zr-Sn. No definite correlation is found between the 51 Cr diffusivity and the increasing Sn concentration, probably due to the anisotropy of the alfa-phase. (M.E.L.) [es

  17. Continuous amorphization of Cu-Zr studied by positron lifetime

    International Nuclear Information System (INIS)

    Wilde, G.; Wuerschum, R.; Rabitsch, H.; Puff, W.

    2006-01-01

    Full text: Solid state amorphization by cold-rolling represents an attractive alternative to commonly used ball-milling. The present work aimed at a free volume study of the process of amorphization. To study the amorphization process binary Cu-Zr alloys were mechanically intermixed by cold rolling. Foils of pure Cu and Zr were stacked to form arrays of composition Cu 60 Zr 40 and folded four times. The folded samples were rolled at a strain rate of approximately 0.1 s -1 to a thickness of about 80 μm and then folded to double the thickness and rolled again to a minimum thickness of 80 μm. This procedure was repeated until the final material was cold-rolled for up to 80 passes. The microstructural changes during cold-rolling were investigated at different stages of the mechanical intermixing process by positron lifetime and 2-dimensional Doppler broadening measurements. The obtained Doppler results are discussed analysing the S-W-plot as well as a two-component fit and the shape of the ratio curves. Finally the results are compared to the lifetime results. (author)

  18. High electron beam dosimetry using ZrO2

    International Nuclear Information System (INIS)

    Lueza M, F.; Rivera M, T.; Azorin N, J.; Garcia H, M.

    2009-10-01

    This paper reports the experimental results of studying the thermoluminescent (Tl) properties of ZrO 2 powder embedded in polytetrafluorethylene (PTFE) exposed to high energy electron beam from linear accelerators (Linac). Structural and morphological characteristics were also reported. Irradiations were conducted using high energy electrons beams in the range from 2 to 18 MeV. Pellets of ZrO 2 +PTFE were produced using polycrystalline powder grown by the precipitation method. These pellets presented a Tl glow curve exhibiting an intense glow peak centered at around 235 C. Tl response as a function of high electron absorbed dose was linear in the range from 2 to 30 Gy. Repeatability determined by exposing a set of pellets repeatedly to the same electron absorbed dose was 0.5%. Fading along 30 days was about 50%. Then, results obtained in this study suggest than ZrO 2 +PTFE pellets could be used for high energy electron beam dosimetry provided fading correction is accounted for. (Author)

  19. Investigation of Partially Crystalline Zr77Ni23 Metallic Glass

    Directory of Open Access Journals (Sweden)

    Amra Salčinović Fetić

    2016-08-01

    Full Text Available This paper presents the results of an extensive research of partially crystalline Zr77Ni23 metallic glass (indicated numbers refer to atomic percentages. The partially crystalline Zr77Ni23 samples were prepared by melt-spinning using a device constructed in the Metal Physics Laboratory, Faculty of Science in Sarajevo. XRD pattern shows crystalline peaks which correspond to an orthorhombic structure of Zr3Ni superimposed on an amorphous pattern. Homogeneity and chemical composition were investigated using scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDX. Crystallization was studied by differential scanning calorimetry (DSC. DSC analysis indicated a simple thermally activated process. Overall activation energy of the crystallization was calculated using Kissinger's model for nonisothermal process and compared with those given by the Augis-Bennett model. By monitoring of the electrical resistance in the temperature range 80 – 270 K a small and negative thermal coefficient of electrical resistance was observed. This means that electrical resistance varies slightly with temperature and it makes this metallic glass suitable for application in electronic circuits for which this property is an important requirement.

  20. Directionally solidified pseudo-binary eutectics of Ni-Cr-/Hf,Zr/

    Science.gov (United States)

    Kim, Y. G.; Ashbrook, R. L.

    1975-01-01

    This report is concerned with the experimental determination of pseudo binary eutectic compositions and the directional solidification of the Ni-Cr-Hf,Zr, and Ni-Cr-Zr eutectic alloys. To determine unknown eutectics, chemical analyses were made of material bled from near eutectic ingots during incipient melting. Nominal compositions in weight per cent of Ni-18.6Cr-24.0Hf, Ni-19.6Cr-12.8Zr-2.8Hf, and Ni-19.2Cr-14.8Zr formed aligned pseudo-binary eutectic structures. The melting points were about 1270 C. The reinforcing intermetallic phases were identified as noncubic (Ni,Cr)7Hf2 and (Ni,Cr)7(Hf,Zr)2, and face centered cubic (Ni,Cr)5Zr. The volume fraction of the reinforcing phases were about 0.5.

  1. Mechanical spectroscopy study of the Cu36Zr59Al5 and Cu54Zr40Al6 amorphous alloys

    Directory of Open Access Journals (Sweden)

    Paulo Wilmar Barbosa Marques

    2012-12-01

    Full Text Available A mechanical spectroscopy study of Cu-Zr-Al bulk metallic glasses, was performed with two types of equipment: a Kê-type inverted torsion pendulum and an acoustic elastometer, working in the frequency ranges of Hz and kHz, respectively, with a heating rate of 1 K/min. The analysis of the anelastic relaxation shows similar spectra for both types of equipment resulting in internal friction patterns that vary with temperature and are not reproducible at each thermal cycle. The normalized of the square of the frequency changes from the first to later measurement cycles. These results indicate that the specimens of Cu-Zr-Al alloys were changing by mechanical relaxation, owing to the motion of atoms or clusters in the glassy state and possible "defects" produced during the processing of alloys.

  2. Analysis of Zr++++ dan ZrO++ cations through their Hydroxide precipitate with thermal differential analysis method

    International Nuclear Information System (INIS)

    Simbolon, Sahat; Ratmi-Herlani

    1996-01-01

    Hydroxide of zirconyl and zirconium, made by reacting zirconium and zirconyl solution with NH 4 OH 25 % solution, were analysed by thermal differential analysis (TDA). It was also done TDA method for hydroxide of zirconyl and zirconium, made by reacting zirconyl chloride and zirconium chloride solid with NH 4 OH 25 % solution directly. It was found that TDA of hydroxide precipitate made through solution had a clear TDA counter, meanwhile TDA thermogram of hydroxide precipitate made by direct adding NH 4 OH 25 % solution to zirconyl and zirconium hydroxide had no clear TDA thermogram. Precipitate Zr O(OH) 2 and Zr(OH) 4 found through solution could be differentiated each other based on their TDA thermograms

  3. Activity and deactivation of sulphated TiO2- and ZrO2-based V, Cu, and Fe oxide catalysts for NO abatement in alkali containing flue gases

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Rasmussen, Søren Birk; Fehrmann, Rasmus

    2007-01-01

    Vanadia, copper and iron oxide catalysts supported on conventional TiO2, ZrO2, and sulphated-TiO2 and ZrO2 have been prepared. These catalysts were characterized by elemental analysis, N-2-BET, XRD, and NH3-TPD methods. The influence of potassium oxide additives on the acidity and activity...... in NO selective catalytic reduction (SCR) with ammonia was studied. The absolute activity of the samples does not vary significantly depending on the nature of the active metal and the acidic properties of the support used, seem to be influenced mainly by the concentration of active metal. Loading...

  4. Preparation method of Ce{sub 1-x}Zr{sub x}O{sub 2}/tourmaline nanocomposite with high far-infrared emissivity and its mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin; Li, Wenlong [Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics, Xi' an (China); University of Chinese Academy of Sciences, Beijing (China); Yang, Liqing; Wang, Haojing; Zhang, Hong [Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics, Xi' an (China)

    2016-02-15

    Far-infrared functional nanocomposites were prepared by the coprecipitation method using natural tourmaline (XY{sub 3}Z{sub 6}Si{sub 6}O{sub 18}(BO{sub 3}){sub 3}V{sub 3}W, where X is Na{sup +}, Ca{sup 2+}, K{sup +}, or vacancy; Y is Mg{sup 2+}, Fe{sup 2+}, Mn{sup 2+}, Al{sup 3+}, Fe{sup 3+}, Mn{sup 3+}, Cr{sup 3+}, Li{sup +}, or Ti{sup 4+}; Z is Al{sup 3+}, Mg{sup 2+}, Cr{sup 3+}, or V{sup 3+}; V is O{sup 2-}, OH{sup -}; and W is O{sup 2-}, OH{sup -}, or F{sup -}) powders, ammonium cerium(IV) nitrate and zirconium(IV) nitrate pentahydrate as raw materials. The reference sample tourmaline modified with ammonium cerium(IV) nitrate alone was also prepared by a similar precipitation route. The results of Fourier transform infrared spectroscopy show that Ce-Zr can further enhance the far-infrared emission properties of tourmaline than Ce alone. Through characterization by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), the mechanism by which Ce(-Zr) acts on the far-infrared emission property of tourmaline was systematically studied. The XPS spectra show that the Fe{sup 3+} ratio inside tourmaline powders after heat treatment can be raised by doping Ce and further raised after adding Zr. Moreover, it is showed that Ce{sup 3+} is dominant inside the samples, but its dominance is replaced by Ce{sup 4+} outside. In addition, XRD results indicate the formation of CeO{sub 2} and Ce{sub 1-x}Zr{sub x}O{sub 2} crystallites during the heat treatment, and further, TEM observations show they exist as nanoparticles on the surface of tourmaline powders. Based on these results, we attribute the improved far-infrared emission properties of Ce-Zr-doped tourmaline to the enhanced unit cell shrinkage of the tourmaline arisen from much more oxidation of Fe{sup 2+} (0.074 nm in radius) to Fe{sup 3+} (0.064 nm in radius) inside the tourmaline caused by Zr enhancing the redox shift between Ce{sup 4+} and Ce{sup 3+} via improving the

  5. Toughening of dental porcelain by tetragonal ZrO2 additions

    International Nuclear Information System (INIS)

    Morena, R.; Lockwood, P.E.; Evans, A.L.; Fairhurst, C.W.

    1986-01-01

    The effect of mechanical behavior of ZrO 2 additions to a dental porcelain was investigated. The ZrO 2 was introduced into the glassy matrix phase of the porcelain by refritting the all-glass porcelain constituent. X-ray diffraction indicated that a sizeable fraction of the ZrO 2 was retained in the tetragonal from after the porcelain was fired. Zirconia additions to the porcelain produced substantial improvements in fracture toughness, strength, and thermal shock resistance

  6. 40 CFR 1065.284 - Zirconia (ZrO2) analyzer.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Zirconia (ZrO2) analyzer. 1065.284... Zirconia (ZrO2) analyzer. (a) Application. You may use a zirconia (ZrO2) analyzer to measure air-to-fuel...O2-based system must meet the linearity verification in § 1065.307. You may use a Zirconia analyzer...

  7. Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: A first-principles study

    Science.gov (United States)

    Fiedler, Gregor; Kratzer, Peter

    2016-08-01

    The ternary semiconductors NiZrSn and CoZrBi with C 1b crystal structure are introduced by calculating their basic structural, electronic, and phononic properties using density functional theory. Both the gradient-corrected PBE functional and the hybrid functional HSE06 are employed. While NiZrSn is found to be a small-band-gap semiconductor (Eg=0.46 eV in PBE and 0.60 eV in HSE06), CoZrBi has a band gap of 1.01 eV in PBE (1.34 eV in HSE06). Moreover, effective masses and deformation potentials are reported. In both materials A B C , the intrinsic point defects introduced by species A (Ni or Co) are calculated. The Co-induced defects in CoZrBi are found to have a higher formation energy compared to Ni-induced defects in NiZrSn. The interstitial Ni atom (Nii) as well as the VNiNii complex introduce defect states in the band gap, whereas the Ni vacancy (VNi) only reduces the size of the band gap. While Nii is electrically active and may act as a donor, the other two types of defects may compensate extrinsic doping. In CoZrBi, only the VCoCoi complex introduces a defect state in the band gap. Motivated by the reported use of NiZrSn for thermoelectric applications, the Seebeck coefficient of both materials, both in the p -type and the n -type regimes, is calculated. We find that CoZrBi displays a rather large thermopower of up to 500 μ V /K when p doped, whereas NiZrSn possesses its maximum thermopower in the n -type regime. The reported difficulties in achieving p -type doping in NiZrSn could be rationalized by the unintended formation of Nii2 + in conjunction with extrinsic acceptors, resulting in their compensation. Moreover, it is found that all types of defects considered, when present in concentrations as large as 3%, tend to reduce the thermopower compared to ideal bulk crystals at T =600 K. For NiZrSn, the calculated thermodynamic data suggest that additional Ni impurities could be removed by annealing, leading to precipitation of a metallic Ni2ZrSn phase.

  8. Disordering and amorphization of Zr3Al by 3.8 MeV Zr3+ ion bombardment

    International Nuclear Information System (INIS)

    Chen, F.C.; Ardell, A.J.

    1991-01-01

    The ordered intermetallic compound Zr 3 Al was irradiated with 3. 8 MeV Zr 3+ ions at various fluences up to 5 x 10 12 tons/mm 2 at a temperature of 250 degrees C and the irradiation- induced microstructures were investigated by transmission electron microscopy. Disordering began at the lowest dose, 0.0033 dpa, and complete loss of chemical long-range order occurred at a dose of 0.33 dpa. The onset of amorphization was also observed at this dose. Electron diffraction patterns from irradiated samples showed satellite reflections along in thin foils in [100] orientation and streaking along in foils oriented [011]. These diffraction effects are attributed to the presence of irradiation-induced microstructural defects that, when imaged in dark field, resemble rows of dislocation loops. A model of these arrays of loops, which are suggested to have Burgers vectors of the Frank type, is proposed. The model accounts for the contrast effects observed in the images and the streaking and satellites seen in the diffraction patterns. At the highest dose, 1.6 dpa, a new phase, Zr 5 Al 3 , appeared unexpectedly, most likely as a consequence of irradiation-induced solute segregation

  9. Characterization of CuCrZr and CuCrZr/SS joint strength for different blanket components manufacturing conditions

    International Nuclear Information System (INIS)

    Gillia, Olivier; Briottet, Laurent; Chu, Isabelle; Lemoine, Patrick; Rigal, Emmanuel; Peacock, Alan

    2009-01-01

    This work describes studies on the strength of CuCrZr/SS joints for different manufacturing conditions foreseen for the fabrication of blanket components. In the meantime, as junction strength is expected to be strongly related to CuCrZr properties, investigation on the properties of the CuCrZr itself after the different manufacturing conditions is also presented. The initial manufacturing conditions retained were made of a HIP treatment combined with a fast cooling plus a subsequent ageing treatment. For security reasons, the HIP-quenching operation was not possible. A supplementary solutionning cycle with fast cooling has thus been inserted in the heat treatment process just after the HIP bonding treatment. The influence of solutionning temperature (1040 deg. C or 980 deg. C), the cooling rate after solutionning (70 deg. C/min to water quench), the ageing temperature (480 deg. C or 560 deg. C) and the HIP temperature (1040 deg. C or 980 deg. C) have been addressed. Test results show that the ageing temperature is very important for keeping high strength of material whereas elongation properties are not very sensible to the manufacturing conditions. 1040 deg. C HIP or solutionning temperature gives better strength properties, as well as a higher cooling rate after solutionning. Concerning samples with joints, it appears that CT test is more selective than other tests since tensile test does not give rupture at joint and KCU test eliminates a route without classifying other routes.

  10. Availability of Zr80Ni20-alloy for tritium Extraction from tritiated methane

    International Nuclear Information System (INIS)

    Matsuyama, Masao; Motohashi, Eiichi; Shu, W.M.; Watanabe, Kuniaki

    1998-01-01

    Decomposition of methane by gettering materials is one of promising methods to extract tritium atoms from tritiated hydrocarbon species in the exhaust gases of thermonuclear fusion devices. Basic properties of the powered Zr 80 Ni 20 -alloy on the dec