WorldWideScience

Sample records for natural gas infrastructure

  1. The economic implications of natural gas infrastructure investment

    NARCIS (Netherlands)

    Hutagalung, Aldi Martino; Hartono, Djoni; Arentsen, Maarten; Lovett, Jon

    2017-01-01

    Since 2001, the Indonesian government has issued natural gas master plans annually holding the planned gas infrastructure developments in order to motivate private parties who are not motivated due to the lack of the gas infrastructure increase. Since 2002, there were only three segments of gas

  2. Quickening construction of natural gas infrastructures and ensuring safe supply of natural gas in China

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Zhongde, Zhao; Chunliang, Sun; Juexin, Shen

    2010-09-15

    Compared with North America or Europe in respect of natural gas resources, markets and pipeline networks, the current China stands in a special period with natural gas market in quick development, accordingly, it's recommended to strengthen cooperation and coordination between investors by way of diversified investment and joint adventures and on the basis of diversified resource supply modes, so as to accelerate the construction of infrastructures including the natural gas pipeline networks and the storage and peak-shaving facilities, quick up the market development, realize the situation of mutual-win-win, and finally ensure safety of natural gas utilization in the domestic markets.

  3. The liquefied natural gas infrastructure and tanker fleet sizing problem

    DEFF Research Database (Denmark)

    Koza, David Franz; Røpke, Stefan; Molas, Anna Boleda

    2017-01-01

    We consider a strategic infrastructure and tanker fleet sizing problem in the liquefied natural gas business. The goal is to minimize long-term on-shore infrastructure and tanker investment cost combined with interrelated expected cost for operating the tanker fleet. A non-linear arc-based model...

  4. Infrastructures for natural gas : The challenges of internationalization

    NARCIS (Netherlands)

    Correlje, A.F.; De Jong, J.

    2009-01-01

    The European natural gas infrastructure is facing the challenge of adapting itself to an increasingly international pattern of supply and demand, while the coordination of transactions is getting more and more complex. New patterns of trade are evolving, reflecting the consequences of the gradual

  5. The economics of natural gas infrastructure investments. Theory and model-based analysis for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lochner, Stefan

    2012-07-01

    Changing supply structures, security of supply threats and efforts to eliminate bottlenecks and increase competition in the European gas market potentially warrant infrastructure investments. However, which investments are actually efficient is unclear. From a theoretical perspective, concepts from other sectors regarding the estimation of congestion cost and efficient investment can be applied - with some extensions - to natural gas markets. Investigations in a simple analytical framework, thereby, show that congestion does not necessarily imply that investment is efficient, and that there are multiple interdependencies between investments in different infrastructure elements (pipeline grid, gas storage, import terminals for liquefied natural gas (LNG)) which need to be considered in an applied analysis. Such interdependencies strengthen the case for a model-based analysis. An optimization model minimizing costs can illustrate the first-best solution with respect to investments in natural gas infrastructure; gas market characteristics such as temperature-dependent stochasticity of demand or the lumpiness of investments can be included. Scenario analyses help to show the effects of changing the underlying model presumption. Hence, results are projections subject to data and model assumption - and not forecasts. However, as they depict the optimal, cost-minimizing outcome, results provide a guideline to policymakers and regulators regarding the desirable market outcome. A stochastic mixed-integer dispatch and investment model for the European natural gas infrastructure is developed as an optimization model taking the theoretical inter-dependencies into account. It is based on an extensive infrastructure database including long-distance transmission pipelines, LNG terminals and gas storage sites with a high level of spatial granularity. It is parameterized with assumptions on supply and demand developments as well as empirically derived infrastructure extension costs

  6. Operation and planning of coordinated natural gas and electricity infrastructures

    Science.gov (United States)

    Zhang, Xiaping

    Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and

  7. The impact of northern gas on North American gas infrastructure

    International Nuclear Information System (INIS)

    Letwin, S.

    2004-01-01

    The three business units that Enbridge operates are crude oil pipelines; natural gas liquids (NGL) transportation; and gas transmission and distribution. The need for more infrastructure will increase as the demand for natural gas increases. This presentation outlined the issues that surround and sometimes impede infrastructure development. It also emphasized the need for northern gas supply at a time when conventional natural gas supplies are decreasing and demand is growing. Additional LNG supply is required along with new supply from Alaska, Mackenzie Delta and the east coast. The issue of a secure source of supply was discussed along with northern gas expectations. It is expected that Mackenzie Delta gas (1.2 bcf/day) will be available by 2008 to 2010 and Alaska North Slope gas (4 bcf/day) will be available from 2012 to 2014. Gas demand by industrial, residential, commercial and power generation sectors across North America was illustrated. The challenge lies in creating infrastructure to move the supply to where it is most in demand. General infrastructure issues were reviewed, such as prices, regulatory streamlining, lead times, stakeholder issues and supporting infrastructure. 19 figs

  8. Natural gas in India

    International Nuclear Information System (INIS)

    Lefevre, Thierry; Todoc, Jessie L.

    1999-11-01

    Contains Executive Summary and Chapters on: Country background; Overview of the energy sector; Natural gas supply; Natural gas infrastructure; Natural gas infrastructure; Natural gas demand; Outlook-government policy reform and industry development, and Appendices on Global and regional energy and gas trends; Overview of India's investment policy, incentives and regulation; The ENRON Dabhol power project. (Author)

  9. Transport of natural gas; criterions for the infrastructure planning

    International Nuclear Information System (INIS)

    Unidad de Planeacion Minero Energetica, UPME

    1999-01-01

    The planning of the expansion of transport of natural gas system; should keep in mind the changes that are happening in the structure of this industry in the country. In this respect, it is growing the number of actors private present in her, what determines a indicative type planning, whose main objective is to serve as information or guide in decisions of investment involved agents in the maintenance and the amplification of the net of transport for the national supply of natural gas. An indicative plan has objectives different to those of an operative plan of short term. While this last search to establish a program of adjustments to manage commitments of transport and to maintain, this way, the validity of the gas pipeline, The indicative plan of transport is guided to quantify the intensity of the financial effort that is required so that the capacity of the gas pipeline net, responds to the prospective growth of the gas industry. In other words, the indicative plan should contribute to identify the type of works and the one mounts of the investments that the transport of gas system needs in the long term. In this sense, it is important to specify the function objective that will optimize, this precision it should take into account, in our case, the foreseen expansion of the electric sector, because this it depends in good measure of the costs and of the geographical readiness of fuels as the natural gas and the coal. Said otherwise, the function objective that should be optimized involves the expansion of the net of transport of natural gas and the expansion of the generation capacity simultaneously and of the infrastructure of electricity transmission

  10. NATURAL GAS TRANSPORTATION

    OpenAIRE

    Stanis³aw Brzeziñski

    2007-01-01

    In the paper, Author presents chosen aspects of natural gas transportation within global market. Natural gas transportation is a technicaly complicated and economicly expensive process; in infrastructure construction and activities costs. The paper also considers last and proposed initiatives in natural gas transportation.

  11. Conventional oil and natural gas infrastructure increases brown-headed cowbird (Molothrus ater) relative abundance and parasitism in mixed-grass prairie.

    Science.gov (United States)

    Bernath-Plaisted, Jacy; Nenninger, Heather; Koper, Nicola

    2017-07-01

    The rapid expansion of oil and natural gas development across the Northern Great Plains has contributed to habitat fragmentation, which may facilitate brood parasitism of ground-nesting grassland songbird nests by brown-headed cowbirds ( Molothrus ater ), an obligate brood parasite, through the introduction of perches and anthropogenic edges. We tested this hypothesis by measuring brown-headed cowbird relative abundance and brood parasitism rates of Savannah sparrow ( Passerculus sandwichensis ) nests in relation to the presence of infrastructure features and proximity to potential perches and edge habitat. The presence of oil and natural gas infrastructure increased brown-headed cowbird relative abundance by a magnitude of four times, which resulted in four times greater brood parasitism rates at infrastructure sites. While the presence of infrastructure and the proximity to roads were influential in predicting brood parasitism rates, the proximity of perch sites was not. This suggests that brood parasitism associated with oil and natural gas infrastructure may result in additional pressures that reduce productivity of this declining grassland songbird.

  12. Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet: Vehicle Infrastructure Cash-Flow Estimation -- VICE 2.0; Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, John

    2015-04-02

    Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.

  13. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2006-01-24

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report presents results of design analysis performed on the TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  14. Viability of developing natural gas infrastructure from the Barents sea : from field to market – a complete analysis of the value chain

    OpenAIRE

    Hammer, Erling Andreas; Torvund, Tord Steinset

    2015-01-01

    This thesis assesses whether it is profitable to build a natural gas infrastructure solution in the Barents Sea, under reasonable assumptions about costs and revenues. In order to answer this question we have looked at the resource base in the Barents Sea and the probability of new discoveries, how the global market for natural gas will develop, at what cost the oil and gas companies will be able to recover the resources, and what type of infrastructure that suits the region best ...

  15. Regulation of gas infrastructure expansion

    International Nuclear Information System (INIS)

    De Joode, J.

    2012-01-01

    The topic of this dissertation is the regulation of gas infrastructure expansion in the European Union (EU). While the gas market has been liberalised, the gas infrastructure has largely remained in the regulated domain. However, not necessarily all gas infrastructure facilities - such as gas storage facilities, LNG import terminals and certain gas transmission pipelines - need to be regulated, as there may be scope for competition. In practice, the choice of regulation of gas infrastructure expansion varies among different types of gas infrastructure facilities and across EU Member States. Based on a review of economic literature and on a series of in-depth case studies, this study explains these differences in choices of regulation from differences in policy objectives, differences in local circumstances and differences in the intrinsic characteristics of the infrastructure projects. An important conclusion is that there is potential for a larger role for competition in gas infrastructure expansion.

  16. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  17. 75 FR 17407 - Energy Efficiency of the Natural Gas Infrastructure and Operations Conference; Notice of Public...

    Science.gov (United States)

    2010-04-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD09-11-000] Energy Efficiency of the Natural Gas Infrastructure and Operations Conference; Notice of Public Conference March 31... Room on the second floor of the offices of the Federal Energy Regulatory Commission, 888 First Street...

  18. Literature Review and Synthesis for the Natural Gas Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Folga, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Talaber, Leah [Argonne National Lab. (ANL), Argonne, IL (United States); McLamore, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Kraucunas, Ian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McPherson, Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parrott, Lori [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manzanares, Trevor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The efficient and effective movement of natural gas from producing regions to consuming regions requires an extensive and elaborate transportation system. In many instances, natural gas produced from a particular well has to travel a great distance to reach its point of use. The transportation system for natural gas consists of a complex network of pipelines designed to quickly and efficiently transport the gas from its origin to areas of high demand. The transportation of natural gas is closely linked to its storage: If the natural gas being transported is not immediately required, it can be put into storage facilities until it is needed. A description of the natural gas transmission, storage, and distribution (TS&D) sector is provided as follows.

  19. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  20. Does infrastructure provision hinder energy integration? The case of natural gas in the southern cone

    Energy Technology Data Exchange (ETDEWEB)

    Navajas, Fernando

    2010-09-15

    This paper uses evidence on policies, markets and private transactions to discuss the experience of natural gas infrastructure integration in the Southern Cone of Latin America. The argument is that contracts on international exchanges supported by infrastructure may become incomplete due to contingencies related to policy-induced price distortions not anticipated at the moment of writing. Beyond regulatory risk mitigation, it calls for back-up contract provisions designed to cope with aggregate imbalances and for some supranational coordination related to information about market conditions and on energy planning dialogues that test consistency and stress situations in markets where exports originate.

  1. An Atmosphere-based Method for Detection and Quantification of Methane Emisions from Natural Gas Infrastructure in an Urban Environment

    Science.gov (United States)

    McKain, K.; Down, A.; Raciti, S. M.; Budney, J.; Hutyra, L.; Floerchinger, C. R.; Herndon, S. C.; Nehrkorn, T.; Zahniser, M. S.; Sargent, M. R.; Jackson, R. B.; Phillips, N. G.; Wofsy, S. C.

    2015-12-01

    Methane emissions from the natural gas supply-chain are highly uncertain and can vary widely among components and processes. We present an atmosphere-based method for detecting and quantifying the area and time-averaged surface flux of methane from natural gas infrastructure, and its application to the case-study of Boston, Massachusetts. Continuous measurements of atmospheric methane at a network of stations, inside and outside the city, are used to quantify the atmospheric methane gradient due to emissions from the urban area. Simultaneous observations of atmospheric ethane, and data on the ethane and methane content of the pipeline gas flowing through the region, are used to trace the atmospheric methane enhancement to the natural gas source. An atmospheric transport model is used to quantitatively relate the observed methane enhancement to a surface flux from the whole urban region. We find that methane emissions from natural gas in the urban region over one year was equal to 2.7 ± 0.6 % of the natural gas delivered to the region. Our findings for Boston suggest natural-gas-consuming regions, generally, may be larger sources of methane to the atmosphere than is current estimated and represent areas of significant resource loss.

  2. Expanding Canadian natural gas production will strengthen growth of LP-gas industry

    International Nuclear Information System (INIS)

    Hawkins, D.J.

    1994-01-01

    In 1992, over 86% of Canadian propane and 70% of Canadian butane production originated in gas plants. Propane and butane production not recovered at gas plants is recovered in other processing facilities, primarily refineries and heavy oil upgraders. As a result, supplies of both products are largely tied to natural gas production, and the outlook for natural gas therefore provides the basis for any discussion on the outlook for gas processing and NGL industry infrastructure. The paper discusses gas processing, economies of scale, NGL supply, expected declines, industry structure and infrastructure, the two major centers of the Canadian NGL industry, new shippers, and required pipeline expansion

  3. Developing competition while building up the infrastructure of the Brazilian gas industry

    International Nuclear Information System (INIS)

    De Mello Sant Ana, Paulo Henrique; De Martino Jannuzzi, Gilberto; Valdir Bajay, Sergio

    2009-01-01

    For the last 20 years, countless countries have been carrying out structural reforms in the natural gas industry, trying to achieve efficiency and economic rationality with the introduction of competition. The objective of the paper is to present an approach to the development of competition and infrastructure of the Brazilian natural gas industry. This approach is based on a market projection to 2011, on the international experience and on the characteristics of the Brazilian market, infrastructure and regulatory framework. Possible impacts of the proposed measures are also provided. According to the market projection carried out in this paper, in 2011 there will be a possible surplus of natural gas in the country, which includes a dependence diminishing of the Bolivian gas supply. This gas surplus, allied to an upcoming Gas Law and the trade liberalization in the states of Sao Paulo and Rio de Janeiro, can stimulate the development of competition, if some changes that proposed in this paper are made in the current Gas Bills. The approach proposed herein seeks to stimulate non-discriminatory open access, focused on information transparency and tariff regulation to help the development of infrastructure and competition. (author)

  4. Australia's changing natural gas and pipeline industry

    International Nuclear Information System (INIS)

    Kimber, M.J.

    1998-01-01

    The future is bright for continued development of Australia's natural gas pipeline infrastructure, as well as for privatization and private energy infrastructure growth. Gas demands are growing and the development of open access principles for all natural gas transmission and distribution pipelines heralds a much more market focused industry. Within the next few years gas-on-gas competition will apply to supply, pipelines, and retail marketing. No longer will operators be able to pass on high costs resulting from inefficiencies to their customers. This article describes the changing Australian gas industry, evaluates the drivers for change and looks at ways the industry is responding to new regulatory regimes and the development and use of new pipeline technology

  5. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure

    International Nuclear Information System (INIS)

    Haeseldonckx, Dries; D'haeseleer, William

    2007-01-01

    In this paper, the transport and distribution aspects of hydrogen during the transition period towards a possible full-blown hydrogen economy are carefully looked at. Firstly, the energetic and material aspects of hydrogen transport through the existing natural-gas (NG) pipeline infrastructure is discussed. Hereby, only the use of centrifugal compressors and the short-term security of supply seem to constitute a problem for the NG to hydrogen transition. Subsequently, the possibility of percentwise mixing of hydrogen into the NG bulk is dealt with. Mixtures containing up to 17 vol% of hydrogen should not cause difficulties. As soon as more hydrogen is injected, replacement of end-use applications and some pipelines will be necessary. Finally, the transition towards full-blown hydrogen transport in (previously carrying) NG pipelines is treated. Some policy guidelines are offered, both in a regulated and a liberalised energy (gas) market. As a conclusion, it can be stated that the use of hydrogen-natural gas mixtures seems well suited for the transition from natural gas to hydrogen on a distribution (low pressure) level. However, getting the hydrogen gas to the distribution grid, by means of the transport grid, remains a major issue. In the end, the structure of the market, regulated or liberalised, turns out not to be important. (author)

  6. Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Yborra

    2007-04-30

    Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling

  7. Effects of a significant New Madrid Seismic Zone event on oil and natural gas pipelines and their cascading effects to critical infrastructures

    Science.gov (United States)

    Fields, Damon E.

    Critical Infrastructure Protection (CIP) is a construct that relates preparedness and responsiveness to natural or man-made disasters that involve vulnerable assets deemed essential for the functioning of our economy and society. Infrastructure systems (power grids, bridges, airports, etc.) are vulnerable to disastrous types of events--natural or man-made. Failures of these systems can have devastating effects on communities and entire regions. CIP relates our willingness, ability, and capability to defend, mitigate, and re-constitute those assets that succumb to disasters affecting one or more infrastructure sectors. This qualitative research utilized ethnography and employed interviews with subject matter experts (SMEs) from various fields of study regarding CIP with respect to oil and natural gas pipelines in the New Madrid Seismic Zone. The study focused on the research question: What can be done to mitigate vulnerabilities in the oil and natural gas infrastructures, along with the potential cascading effects to interdependent systems, associated with a New Madrid fault event? The researcher also analyzed National Level Exercises (NLE) and real world events, and associated After Action Reports (AAR) and Lessons Learned (LL) in order to place a holistic lens across all infrastructures and their dependencies and interdependencies. Three main themes related to the research question emerged: (a) preparedness, (b) mitigation, and (c) impacts. These themes comprised several dimensions: (a) redundancy, (b) node hardening, (c) education, (d) infrastructure damage, (e) cascading effects, (f) interdependencies, (g) exercises, and (h) earthquake readiness. As themes and dimensions are analyzed, they are considered against findings in AARs and LL from previous real world events and large scale exercise events for validation or rejection.

  8. The use of compressed natural gas as a strategy of development of natural gas industry; Utilizacao do GNC (Gas Natural Comprimido) como estrategia de desenvolvimento da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Jucemara [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Segmento Veicular; Rickmann, Cristiano [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Novos Negocios; Maestri, Juares [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Mercado de Grandes Consumidores

    2008-07-01

    This work emphasizes the Compressed Natural Gas (CNG) as modal of transport, used by the Company of Gas of the State of Rio Grande do Sul - Sulgas, through experience in pioneering project in Brazil: the introduction of the technology of Compressed Natural Gas (CNG) to assist areas where there is not the infrastructure of pipeline for the transport. The article offers a display of the project of expansion of the Natural gas in Rio Grande do Sul, through the supply of CNG to the company Tramontina in Carlos Barbosa's city in the year of 2002. The last aspect focused by this article demonstrates as the use of this transport technology impelled the development of the transport market in the State and it has been used as an important strategy for the development of the market of Natural Gas Vehicle (NGV) in the state. (author)

  9. The golden age of natural gas

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The experts of energy policy agree to predict a brilliant future for natural gas. Among fossil energies, natural gas produces the least quantity of CO 2 . Geological reserves are estimated to 65 years for gas and 43 years for petroleum. Throughout the world, industrial infrastructures of gas production, transport and distribution are being developed, for instance 430000 km of gas pipeline are planned. In western Europe half the increase of gas demand by 2010 will be due to electricity production. Innovative techniques using natural gas are studied in various fields: cogeneration, transport, urban heating and fuel cells. The gas-fed fuel cell is based on a reversed electrolysis: hydrogen produced by the decomposition of natural gas interacts with oxygen and yields electricity. (A.C.)

  10. General Motors natural gas vehicle initiatives

    International Nuclear Information System (INIS)

    Weber, J.; Koplow, M.D.

    1992-01-01

    General Motors (GM) has a number of natural gas vehicle (NGV) programs in progress that address various marketing, technical, and production planning issues that lean on the introduction of NGVs from GM. The initial target is light and medium duty trucks sold in non-attainment air quality regions. GM has also embarked on a longer term program that encompasses vehicle and systems development, gas supply and infrastructure development, and customer and market development. The major long-term issues are gas quality, supplier participation, and infrastructure

  11. Russian Gas for Europe. Creating Access and Choice. Underpinning Russia's gas export strategy with Gazprom's infrastructure investments

    International Nuclear Information System (INIS)

    Smeenk, T.

    2010-07-01

    This study deals with Gazprom's investment strategy regarding Russia's gas exports and export market behaviour, with a focus on European infrastructure projects, in a the geopolitical context. Because of its large gas reserves, Russia is well-positioned to take advantage of gas exports even as it faces possible competition from other gas suppliers and uncertain gas demand. Gas export earnings are an important source of income for Russia. As a government-controlled firm, Gazprom depends to a large extent on Europe for its hard-currency income. For Russia and Gazprom, the stream of income from gas exports and its expansion are economically vital. In this regard, gas export infrastructures such as Nord and South Stream could act as important instruments to expand Gazprom's market share in current markets and in growth markets. This study uses a real-option game model to assess the overall value of gas infrastructures in the face of demand uncertainties and potential competition. The result of this approach illustrates the strategic-economic character of Gazprom's infrastructure investments in possibly creating a first-mover's advantage. Yet, the model is of a highly stylised nature. Therefore, other aspects should be taken into account in assessing gas infrastructure investments. Besides the goal of possibly expanding Gazprom's market share, infrastructure investments could serve to mitigate overall transit risks. However, Gazprom's organisational constraints in realising gas infrastructures could put into question the rationale of such investments. In addition, Gazprom's position as well as that of Russian gas may be pressured by European (regulatory) policy in favour of alternative gas and other energy sources. The desired market outcomes for Gazprom have an impact on the prioritisation of Russian investments in the gas value chain.

  12. Natural-gas supply-and-demand problems

    International Nuclear Information System (INIS)

    Hatamian, H.

    1998-01-01

    World natural-gas consumption quadrupled in the 30 years from 1966 to 1996, and natural gas now provides 22% of the total world energy demand. The security of natural-gas supply is paramount and rests with the suppliers and the consumers. This paper gives an overview of world natural-gas supply and demand and examines the main supply problems. The most important nonpredictable variables in natural-gas supply are worldwide gas price and political stability, particularly in regions with high reserves. Other important considerations are the cost of development/processing and the transport of natural gas to market, which can be difficult to maintain if pipelines pass through areas of political instability. Another problem is that many countries lack the infrastructure and capital for effective development of their natural-gas industry. Unlike oil, the cost of transportation of natural gas is very high, and, surprisingly, only approximately 16% of the total world production currently is traded internationally

  13. Natural gas is more than gas power plants

    International Nuclear Information System (INIS)

    Lind, Oddvar

    2000-01-01

    Through the Statpipe gas line at Karmoey, Norway supplies 20% of the natural gas on the European market. The pipeline is 'leaking' a little bit of gas to the local communities at Karmoey and Haugesund. These communities have replaced 65% of their oil consumption with natural gas, which is a fine contribution to a better environment. The supplier of the natural gas, Gasnor ASA in this case, claims an energy efficiency of 90% at the end user because the gas burns directly and the loss in the pipeline is minimal. The efficiency of natural gas utilisation is twice that of the planned gas power stations in West-Norway, subtracting the losses in the electrical network. Gasnor ASA competes with oil suppliers and, if necessary, with electric utilities. The county hospital at Haugesund is quoted as an example. The hospital has two large boilers with dual fuel burners. They have been using natural gas since 1998 because it was worth while both economically and environmentally. The use of natural gas in the transport sector would be very important, but the necessary infrastructure is very little developed. For instance, five diesel-powered ferries on the Boknafjord emit as much NOx as the planned gas power plant at Kaarstoe

  14. Cascading of Fluctuations in Interdependent Energy Infrastructures. Gas-Grid Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lebedev, Vladimir [Russian Academy of Sciences (RAS), Moscow (Russian Federation). L.D. Landau Inst. for Theoretical Physics; Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-05

    The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations of pressure in natural gas pipelines. The mean square pressure fluctuations are found to grow linearly in time with points of maximum deviation occurring at the locations of flow reversals.

  15. Sensor transition failure in the high flow sampler: Implications for methane emission inventories of natural gas infrastructure.

    Science.gov (United States)

    Howard, Touché; Ferrara, Thomas W; Townsend-Small, Amy

    2015-07-01

    Quantification of leaks from natural gas (NG) infrastructure is a key step in reducing emissions of the greenhouse gas methane (CH4), particularly as NG becomes a larger component of domestic energy supply. The U.S. Environmental Protection Agency (EPA) requires measurement and reporting of emissions of CH4 from NG transmission, storage, and processing facilities, and the high-flow sampler (or high-volume sampler) is one of the tools approved for this by the EPA. The Bacharach Hi-Flow Sampler (BHFS) is the only commercially available high-flow instrument, and it is also used throughout the NG supply chain for directed inspection and maintenance, emission factor development, and greenhouse gas reduction programs. Here we document failure of the BHFS to transition from a catalytic oxidation sensor used to measure low NG (~5% or less) concentrations to a thermal conductivity sensor for higher concentrations (from ~5% to 100%), resulting in underestimation of NG emission rates. Our analysis includes both our own field testing and analysis of data from two other studies (Modrak et al., 2012; City of Fort Worth, 2011). Although this failure is not completely understood, and although we do not know if all BHFS models are similarly affected, sensor transition failure has been observed under one or more of these conditions: (1) Calibration is more than ~2 weeks old; (2) firmware is out of date; or (3) the composition of the NG source is less than ~91% CH4. The extent to which this issue has affected recent emission studies is uncertain, but the analysis presented here suggests that the problem could be widespread. Furthermore, it is critical that this problem be resolved before the onset of regulations on CH4 emissions from the oil and gas industry, as the BHFS is a popular instrument for these measurements. An instrument commonly used to measure leaks in natural gas infrastructure has a critical sensor transition failure issue that results in underestimation of leaks, with

  16. Natural gas in Mexico

    International Nuclear Information System (INIS)

    Ramirez, M.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which focused on various aspects of the natural gas industry in Mexico. Some of the viewgraphs depicted statistics from 1998 regarding natural gas throughput from various companies in North America, natural gas reserves around the world, and natural gas reserves in Mexico. Other viewgraphs depicted associated and non-associated natural gas production from 1988 to 1998 in million cubic feet per day. The Burgos Basin and the Cantarell Basin gas production from 1997 to 2004 was also depicted. Other viewgraphs were entitled: (1) gas processing infrastructure for 1999, (2) cryogenic plant at Cd. PEMEX, (3) average annual growth of dry natural gas production for 1997-2004 is estimated at 5.2 per cent, (4) gas flows for December 1998, (5) PGPB- interconnect points, (6) U.S. Mexico gas trade for 1994-1998, (7) PGPB's interconnect projects with U.S., and (8) natural gas storage areas. Technological innovations in the industry include more efficient gas turbines which allow for cogeneration, heat recovery steam generators which reduce pollutant emissions by 21 per cent, cold boxes which increase heat transfer efficiency, and lateral reboilers which reduce energy consumption and total costs. A pie chart depicting natural gas demand by sector shows that natural gas for power generation will increase from 16 per cent in 1997 to 31 per cent in 2004. The opportunities for cogeneration projects were also reviewed. The Comision Federal de Electricidad and independent power producers represent the largest opportunity. The 1997-2001 investment program proposes an 85 per cent sulphur dioxide emission reduction compared to 1997 levels. This presentation also noted that during the 1998-2001 period, total ethane production will grow by 58 tbd. 31 figs

  17. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents tests performed on a KVG103 engine/compressor installed at Duke's Thomaston Compressor Station. This is the first series of tests performed on a four-stroke engine under this program. Additionally, this report presents results, which complete a comparison of performance before and after modification to install High Pressure Fuel Injection and a Turbocharger on a GMW10 at Williams Station 60. Quarterly Reports 7 and 8 already presented detailed data from tests before and after this modification, but the final quantitative comparison required some further analysis, which is presented in Section 5 of this report. The report further presents results of detailed geometrical measurements and flow bench testing performed on the cylinders and manifolds of the Laboratory Cooper GMVH6 engine being employed for two-stroke engine air balance investigations. These measurements are required to enhance the detailed accuracy in modeling the dynamic interaction of air manifold, exhaust manifold, and in-cylinder fuel-air balance.

  18. Western Pacific liquefied natural gas

    International Nuclear Information System (INIS)

    Woronuk, R.

    2005-01-01

    This presentation addressed issues facing WestPac Terminals' proposed construction of a liquefied natural gas (LNG) terminal and associated facilities on the Ridley Island on the coast of British Columbia. WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, LNG and economic optimization. Although a review of proposals for receiving terminals in North America has demonstrated the urgency and attractiveness of LNG imports, west coast terminals are not proceeding, largely due to lack of support by local communities. WestPac's proposal includes a deep enough port to accommodate the largest LNG tankers; a port en route to west coast terminal locations to serve as a transshipment hub; sufficient space for LNG storage tanks and natural gas liquids extraction; sea, rail, air and highway access. Other solutions include selecting locations where communities are pro-development where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG at the proposed site were discussed in terms of serving energy markets and provincial benefits. LNG source and cost issues were reviewed along with existing markets and required infrastructure for LNG market development. tabs., figs

  19. Developing electricity production with natural gas in the southern mediterranean countries: an example of north-south cooperation in the electricity and natural gas sector

    International Nuclear Information System (INIS)

    Grenon, M.; Nogaret, E.

    1995-01-01

    Southern Mediterranean countries are facing an important increase of electricity demand; in order to increase the production capacity at a minimum cost while preserving the environment, most of these countries are planning gas fired power stations due to important natural gas resources. The development of both the power plants and the infrastructures to produce and transport the natural gas is more and more performed through cooperation between companies of the northern and southern sides of the Mediterranean sea: technical assistance programs, joint financing and management of the infrastructures. 3 figs

  20. Land based use of natural gas - distribution solutions

    International Nuclear Information System (INIS)

    Jordanger, Einar; Moelnvik, Mona J.; Owren, Geir; Einang, Per Magne; Grinden, Bjoern; Tangen, Grethe

    2002-05-01

    The report presents results from the project ''Landbasert bruk av naturgass - distribusjonsloesninger'' (Land based use of natural gas - distribution solutions). It describes the aims of the project, the political external conditions for the use of natural gas, some environmental profits by changing from petroleum and coal to natural gas, the Norwegian infrastructure, the optimisation of energy transport, strategic consequences of the introduction of LNG and the practical consequences of the Enova strategy

  1. Cascading of fluctuations in interdependent energy infrastructures: Gas-grid coupling

    International Nuclear Information System (INIS)

    Chertkov, Michael; Backhaus, Scott; Lebedev, Vladimir

    2015-01-01

    Highlights: • Fracturing and low cost of gas stimulated significant recent expansion of the natural gas networks. • Power system operators transition to gas as the main supply, also facing new reliability challenges. • Natural gas-fired generators vary burn-rates to balance fluctuating output of wind generation. • Impact of the gas-generator variations is seen in diffusive jitter of pressure within the gas network. • Fluctuating pressure impacts both reliability of natural gas deliveries and safety of pipeline operations. - Abstract: The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations of pressure in natural gas pipelines. The mean square pressure fluctuations are found to grow linearly in time with points of maximum deviation occurring at the locations of flow reversals.

  2. North American natural gas supply and demand

    International Nuclear Information System (INIS)

    Goobie, G.

    2006-01-01

    This presentation was given by leading energy analysts Pervin and Gertz, and provided their outlook on the North American natural gas supply and demand as well as transportation and processing options for the Mackenzie Valley project and the Alaska natural gas project. Arctic gas development was discussed in relation to larger North American and world energy markets. The impacts of liquefied natural gas (LNG) infrastructure development were compared with the potential impacts of the Alaska and Mackenzie Valley pipelines. A review of North American gas supplies was presented. LNG imports to the United States are expected to exceed 8 BCF/D by 2010. In addition, huge growth in the LNG markets is expected in middle eastern countries as well as in Africa. There is currently strong growth in liquefaction capacity in most regions. However, many proposed LNG terminals will not proceed due to opposition on the west coast of North America. It is also expected that natural gas liquids (NGL) delivered to Alberta from the Mackenzie Valley Gas project are expected to be used by the heavy oil industry. Canadian crude supplies are expected to grow to nearly 4 million barrels per day by 2015. The impacts of Alaska and Mackenzie Valley gas projects on western NGL markets and the petrochemicals industry were reviewed. It was concluded that major investments in supply and infrastructure are need in order to develop Arctic gas, as LNG is likely to be the largest source of incremental supply. tabs., figs

  3. Natural gas vehicles. An option for Europe

    International Nuclear Information System (INIS)

    Engerer, Hella; Horn, Manfred

    2010-01-01

    In Europe natural gas vehicles play a minor role. A decisive reason for this is the dependence of most European countries from gas imports. Except for Italy, there is no tradition to use natural gas as fuel. In addition, there is a lack of infrastructure (e.g. fuelling stations). In contrast to Europe, in Latin American and Asian countries natural gas vehicles are widespread. Some countries foster natural gas vehicles because they have own gas resources. Many countries must reduce the high air pollution in big cities. Environmental reasons are the main motive for the use of natural gas vehicles in Europe. In last years, high oil prices stimulated the use of natural gas as fuel. European governments have developed incentives (e.g. tax reductions) to foster natural gas vehicles. However, the focus is on hybrid technology and the electric car, which, however, need further technical improvement. In contrast, the use of natural gas in conventional engines is technically mature. Additional gas imports can be avoided by further improvements of energy efficiency and the use of renewable energy. In sum, the market penetration of natural gas as fuel should be promoted in Europe. (author)

  4. C.I.S. natural gas-1

    International Nuclear Information System (INIS)

    Carson, M.; Stram, B.

    1993-01-01

    This paper reports that in the countries that make up the Commonwealth of Independent States (C.I.S.), with their vast resources and a considerable existing production base, prospects are good for further growth of the region's exportable gas surplus. Investment fundamentals are stronger for gas than for any other energy resources in the area. But the pipeline infrastructure to move large amounts of gas will need extensive refurbishment to ensure export reliability and growth. Given the potential in terms of production and markets, significant amounts of outside investment in oil, natural gas, and NGL infrastructure will likely increase dramatically in these countries in the near future. These are some of the major conclusions of Enron Corp.'s recent investigations in the C.I.S. and other former Soviet republics

  5. Short-term outlook for natural gas and natural gas liquids to 2006 : an energy market assessment

    International Nuclear Information System (INIS)

    2005-10-01

    In recent years, natural gas markets in North America have seen a close balance between supply and demand, resulting in high and volatile natural gas prices. The National Energy Board monitors the supply of all energy commodities in Canada along with the demand for Canadian energy commodities in domestic and export markets. This is the NEB's first energy market assessment report that presents a combined short-term analysis and outlook of natural gas and natural gas liquids (NGLs), such as ethane, propane and butane. It provides comprehensive information on the complexity of natural gas and NGL industries and highlights recent developments and topical issues. As a major producer of natural gas, western Canada has a correspondingly large natural gas processing capability that was developed specifically to extract NGLs. A world-scale petrochemical industry was developed in Alberta to convert NGLs into even higher valued products such as ethylene. Since NGLs in Canada are sourced mostly from natural gas, changes to the supply and demand for natural gas would impact NGL supply. This report addressed the issue of commodity prices with reference to crude oil, natural gas and NGL prices. Natural gas supply in terms of North American production and natural gas from coal (NGC) was also reviewed along with natural gas demand for residential and commercial heating, industrial use, power generation, and enhanced recovery for oil sand operations. There are about 692 gas plants in Canada that process raw natural gas into marketable gas and NGLs. Most are small field plants that process raw natural gas production to remove impurities such as sulphur, water and other contaminants. This report also discussed this infrastructure, with reference to field plants, straddle plants, pipelines, distribution and storage, including underground NGL storage. 3 tabs., 27 figs., 5 appendices

  6. Some risks related to the short-term trading of natural gas

    International Nuclear Information System (INIS)

    Mazighi, Ahmed El Hachemi

    2004-01-01

    Traditionally guided by long-term contracts, the international natural gas trade is experiencing new methods of operating, based on the short term and more flexibility. Today, indeed, the existence of uncommitted quantities of natural gas, combined with gas price discrepancies among different regions of the world, gives room for the expansion of the spot-trading of gas. The main objective of this paper is to discuss three fundamental risks related to the short-term trading of natural gas: volume risk, price risk and infrastructure risk. The defenders of globalisation argue that the transition from the long-term to the short-term trading of natural gas is mainly a question of access to gas reserves, decreasing costs of gas liquefaction, the building of liquefied natural gas (LNG) fleets and regasification facilities and third-party access to the infrastructure. This process needs to be as short as possible, so that the risks related to the transition process will disappear rapidly. On the other hand, the detractors of globalisation put the emphasis on the complexity of the gas value chain and on the fact that eliminating long-term contracts increases the risks inherent to the international natural gas business. In this paper, we try to untangle and assess the risks related to the short-term trading of natural gas. Our main conclusions are: the short-term trading of gas is far from riskless; volume risk requires stock-building in both consuming and producing countries; price risk, through the high volatility for gas, induces an increase in options prices; there is no evidence to suggest that money-lenders' appetite for financing gas infrastructure projects will continue in a short-term trading system. This would be a threat to consumers' security of supply. (Author)

  7. Western Pacific liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Woronuk, R. [WestPac Terminals Inc., Calgary, AB (Canada)

    2005-07-01

    This presentation addressed issues facing WestPac Terminals' proposed construction of a liquefied natural gas (LNG) terminal and associated facilities on the Ridley Island on the coast of British Columbia. WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, LNG and economic optimization. Although a review of proposals for receiving terminals in North America has demonstrated the urgency and attractiveness of LNG imports, west coast terminals are not proceeding, largely due to lack of support by local communities. WestPac's proposal includes a deep enough port to accommodate the largest LNG tankers; a port en route to west coast terminal locations to serve as a transshipment hub; sufficient space for LNG storage tanks and natural gas liquids extraction; sea, rail, air and highway access. Other solutions include selecting locations where communities are pro-development where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG at the proposed site were discussed in terms of serving energy markets and provincial benefits. LNG source and cost issues were reviewed along with existing markets and required infrastructure for LNG market development. tabs., figs.

  8. Natural gas for New Brunswick: First report

    International Nuclear Information System (INIS)

    1998-01-01

    The development of the gas field off Sable Island and the imminent construction of a gas pipeline which will deliver natural gas to New Brunswick has prompted a thorough examination of energy-related issues in the province. This report presents the findings of the provincial energy committee which examined the implications of the arrival of natural gas to the province. The committee held a series of public hearings and consultations, and also received written submissions. After a historical perspective on natural gas as an energy source in the province and a review of the gas industry participants and their interests, the report discusses such issues as gas pipeline economics, local distribution company operations, infrastructure development, the regulatory framework, energy market competition, regional price equity, development of in-province gas sources, pipeline access, pipeline laterals and expansions, establishment of gas distribution franchises, municipal involvement in gas development, the impact of gas industry development on electric utility restructuring, and the environmental benefits of natural gas. Finally, recommendations are made regarding how natural gas should be regulated and distributed

  9. Effects of natural gas development on forest ecosystems

    Science.gov (United States)

    Mary Beth Adams; W. Mark Ford; Thomas M. Schuler; Melissa Thomas-Van Gundy

    2011-01-01

    In 2004, an energy company leased the privately owned minerals that underlie the Fernow Experimental Forest in West Virginia. The Fernow, established in 1934, is dedicated to long-term research. In 2008, a natural gas well was drilled on the Fernow and a pipeline and supporting infrastructure constructed. We describe the impacts of natural gas development on the...

  10. Geography and the costs of urban energy infrastructure: The case of electricity and natural gas capital investments

    Science.gov (United States)

    Senyel, Muzeyyen Anil

    Investments in the urban energy infrastructure for distributing electricity and natural gas are analyzed using (1) property data measuring distribution plant value at the local/tax district level, and (2) system outputs such as sectoral numbers of customers and energy sales, input prices, company-specific characteristics such as average wages and load factor. Socio-economic and site-specific urban and geographic variables, however, often been neglected in past studies. The purpose of this research is to incorporate these site-specific characteristics of electricity and natural gas distribution into investment cost model estimations. These local characteristics include (1) socio-economic variables, such as income and wealth; (2) urban-related variables, such as density, land-use, street pattern, housing pattern; (3) geographic and environmental variables, such as soil, topography, and weather, and (4) company-specific characteristics such as average wages, and load factor. The classical output variables include residential and commercial-industrial customers and sales. In contrast to most previous research, only capital investments at the local level are considered. In addition to aggregate cost modeling, the analysis focuses on the investment costs for the system components: overhead conductors, underground conductors, conduits, poles, transformers, services, street lighting, and station equipment for electricity distribution; and mains, services, regular and industrial measurement and regulation stations for natural gas distribution. The Box-Cox, log-log and additive models are compared to determine the best fitting cost functions. The Box-Cox form turns out to be superior to the other forms at the aggregate level and for network components. However, a linear additive form provides a better fit for end-user related components. The results show that, in addition to output variables and company-specific variables, various site-specific variables are statistically

  11. Western Pacific liquefied natural gas

    International Nuclear Information System (INIS)

    Woronuk, R.

    2004-01-01

    WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, liquefied natural gas (LNG) and economic optimization. This presentation addressed issues facing their proposed construction of an LNG terminal and associated facilities on the west coast of Canada. It presented pie charts comparing world gas reserves with production. NPC gas price projects and WestPac gas cost estimates were also presented. It was noted that an unprecedented growth in LNG imports to North America is essential and that LNG will be the lowest price major source of natural gas supply. Maps illustrating LNG sources and receiving terminals were also presented along with solutions to the not-in-my-back-yard (NIMBY) syndrome. Solutions include selecting locations where communities are pro-development, where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG to Prince Rupert were discussed in terms of serving energy markets, direct provincial benefits, and LNG/power generation synergies. figs

  12. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  13. All quiet on the eastern front? Disruption scenarios of Russian natural gas supply to Europe

    International Nuclear Information System (INIS)

    Richter, Philipp M.; Holz, Franziska

    2015-01-01

    The 2014 Russian–Ukrainian crisis reignited European concerns about natural gas supply security recalling the experiences of 2006 and 2009. However, the European supply situation, regulation and infrastructure have changed, with better diversified import sources, EU member states being better connected and a common regulation on the security of supply has been introduced. Nevertheless, European dependency on natural gas remained high. This paper investigates different Russian natural gas export disruptions scenarios and analyses short- and long-term reactions in Europe. We use the Global Gas Model (GGM), a large-scale mixed complementarity representation of the natural gas sector with a high level of technical granularity with respect to storage and transportation infrastructure. While we find that most of the EU member states are not severely affected by Russian disruptions, some East European countries are very vulnerable. Prioritizing the removal of infrastructure bottlenecks is critical for securing a sufficient natural gas supply to all EU member states. - Highlights: • We analyze disruption scenarios of Russian natural gas exports to Europe. • Most EU countries are only weakly affected by a complete Russian supply disruption. • We find that Eastern Europe is vulnerable to Russian supply disruptions. • We identify infrastructure bottlenecks in the European natural gas network. • We find that the large EU LNG import capacity is not sufficiently connected

  14. Liquefied natural gas: a harbor plan; Plano diretor portuario para o gas natural liquefeito

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Aluisio de Souza; Baitelo, Ricardo Lacerda [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica; Rego, Erik Eduardo [Excelencia Energetica Consultoria Empresarial Ltda., Sao Paulo, SP (Brazil); Rosim, Sidney Olivieri [Rosim e Papaleo Consultoria e Participacoes Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    The objective of this article is to present the structuring of a port directing plan for the liquefied natural gas. In this sense, an integrated approach between the applied logistic and the requested market conditions was used. For the large distances transportation of liquefied natural gas, the marine modal must attain technical requirements that are not usual in the port routine. Apart from the proper dimensioning of the naval fleet in order to maximize the transported load, providing the optimization of the economic distance, the entire port infra-structure is planned for the reception of liquefied natural gas, in order to attend the physical peculiarities as well as security aspects of extreme importance. The selection of the studied local was motivated by the fuel supply shortage suffered by the country, especially in the northeast region, which owns already installed thermal units in need of the fuel supply to be operated. (author)

  15. Natural gas for power generation : issues and implications : an energy market assessment

    International Nuclear Information System (INIS)

    2006-06-01

    This report presented a historical examination of trends in natural gas-fired generation as well as a perspective on the issues and potential implications of increasing reliance on natural gas. Potential changes to Canadian energy consumers were reviewed in addition to natural gas infrastructure and services. Electricity prices relating to natural gas generation were examined. A broad regional and continental perspective was employed to account for energy market integration and the fact that gas trends reflect developments outside of Canada. The report was divided into 2 sections: (1) an examination of the trend toward natural-gas fired generation of electricity in North America; and (2) an examination of issues in closer detail from a regional perspective followed by a discussion of the changes in generation and natural gas markets in western, eastern, and central North America. Questions arising from the analysis of specific regional supply, demand and infrastructure situations were also examined. Recommendations were presented for issues concerning the current gas market and the appropriate role of the government in ensuring adequate generation. Uncertainties in future natural gas supply were also considered. It was concluded that rapid industrial growth will continue to increase demand for natural gas and electricity supply. 5 figs

  16. Some risks related to the short-term trading of natural gas

    International Nuclear Information System (INIS)

    Ahmed El Hachemi Mazighi

    2004-01-01

    Traditionally guided by long-term contracts, the international natural gas trade is experiencing new methods of operating, based on the short term and more flexibility. Today, indeed, the existence of uncommitted quantities of natural gas, combined with gas price discrepancies among different regions of the world, gives room for the expansion of the spot-trading of gas. The main objective of this paper is to discuss three fundamental risks related to the short-term trading of natural gas: volume risk, price risk and infrastructure risk. The defenders Of globalisation argue that the transition from the long-term to the short-term trading of natural gas is mainly a question of access to gas reserves, decreasing costs of gas liquefaction, the building of liquefied natural gas (LNG) fleets and regasification facilities and third-party access to the infrastructure. This process needs to be as short as possible, so that the risks related to the transition process will disappear rapidly. On the other hand, the detractors of globalisation put the emphasis on the complexity of the gas value chain and on the fact that eliminating long- term contracts increases the risks inherent to the international natural gas business. In this paper, we try to untangle and assess the risks related to the short-term trading of natural gas. Our main conclusions are: the short-term trading of gas is far from riskless; volume risk requires stock-building in both consuming and producing countries. (author)

  17. ISO New England Dual Fuel Capabilities to Limit Natural Gas and Electricity Interdependencies

    Energy Technology Data Exchange (ETDEWEB)

    Adder, Justin M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2016-04-22

    Since 2000, natural gas has seen tremendous growth as a fuel source for electricity generation in the United States (U.S.) with annual installations exceeding 20 GW in all but four years. It also accounts for an increasingly significant share of the nation’s electricity generation, growing from around 15 percent in the early part of the 2000s to between 26 and 29 percent in the last three years. (1) Increasing reliance on natural gas has led to concerns that an extreme weather event – which may cause curtailments in gas delivery – or a natural gas infrastructure failure could lead to local or regional electric reliability issues. (2) These concerns stem from differences in delivery methods of natural gas to electric generating units (EGUs) contrasted with the fuel delivery and storage methods for traditional baseload power systems (i.e. coal and nuclear units).1 (3) Although it seems that there is an abundance of natural gas in a post-shale gas world, infrastructure limitations and differences in electric and natural gas markets persist that differentiate natural gas-fired generators from traditional baseload power generators. Such concerns can be partially mitigated by modifying natural gas EGUs for operation on secondary fuels and installing on-site fuel storage for the secondary fuel, thus ensuring continuity of operation in the case of a gas delivery problem.2 This report examines technical, regulatory, and market issues associated with operating power plants primarily fueled with natural gas, on a secondary fuel, such as fuel oil or liquefied natural gas (LNG). In addition, a regional case study was completed to identify the current and near-term potential for dual fuel operation in New England, along with a market impact analysis of potential cost savings during an extreme weather event. The New England Independent System Operator (ISO-NE) was selected as the study area based on a preponderance of natural gas-fired generators contributing to the

  18. The co-evolution of alternative fuel infrastructure and vehicles. A study of the experience of Argentina with compressed natural gas

    International Nuclear Information System (INIS)

    Collantes, Gustavo; Melaina, Marc W.

    2011-01-01

    In a quest for strategic and environmental benefits, the developed countries have been trying for many years to increase the share of alternative fuels in their transportation fuel mixes. They have met very little success though. In this paper, we examine the experience of Argentina with compressed natural gas. We conducted interviews with a wide range of stakeholders and analyzed econometrically data collected in Argentina to investigate the factors, economic, political, and others that determined the high rate of adoption of this fuel. A central objective of this research was to identify lessons that could be useful to developed countries in their efforts to deploy alternative fuel vehicles. We find that fuel price regulation was a significant determinant of the adoption of compressed natural gas, while, contrary to expectations, government financing of refueling infrastructure was minimal. (author)

  19. Market prospective of natural gas 2010-2025; Prospectiva del mercado de gas natural 2010-2025

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Bautista, Alejandro; Doniz Gonzalez, Virginia; Navarrete Barbosa, Juan Ignacio [Secretaria de Energia, Mexico, D.F. (Mexico)

    2010-07-01

    The Ministry of Energy, in compliance to Article 109 of the Natural Gas Regulations, publishes the Prospective natural gas market 2010-2025, which contains the most current information about the historical evolution and growth prospects of the domestic market country's natural gas and its role in the international context. This foresight is attached to the lines of action established in the National Energy Strategy, ratified by Congress in April 2010 in regard to strengthening the transportation infrastructure of natural gas, in order to ensure the supply of this fuel, therefore remains congruence with the instruments of power sector planning. The first one concerns the international panorama of natural gas in the different producing and consuming regions around the world. Chapter two provides a current perspective of those actions in the sector within the regulatory framework for natural gas in Mexico. The third chapter details the issues that occurred in the natural gas market during the period 1999-2009 and the fourth chapter discusses the expected evolution of demand and domestic supply of natural gas by 2025. [Spanish] La Secretaria de Energia, en el cumplimiento al Articulo 109 del Reglamento de Gas Natural, publica la Prospectiva del mercado de gas natural 2010-2025, la cual contiene la informacion mas actualizada acerca de la evolucion historica y las expectativas de crecimiento del mercado interno de gas natural del pais y su papel en el contexto internacional. Esta Prospectiva se apega a las lineas de accion establecidas en la Estrategia Nacional de Energia, ratificada por el Congreso en abril de 2010, en lo relativo a fortalecer la infraestructura de transporte de gas natural, con el fin de asegurar el suministro de este combustible, por lo cual se mantiene congruencia con los instrumentos de planeacion del sector energetico. La Prospectiva esta integrada por cuatro capitulos. El primero se refiere al panorama internacional del gas natural en las

  20. The role of gas infrastructure in promoting UK energy security

    International Nuclear Information System (INIS)

    Skea, Jim; Chaudry, Modassar; Wang Xinxin

    2012-01-01

    This paper considers whether commercially driven investment in gas infrastructure is sufficient to provide security of gas supply or whether strategic investment encouraged by government is desirable. The paper focuses on the UK in the wider EU context. A modelling analysis of the impact of disruptions, lasting from days to months, at the UK's largest piece of gas infrastructure is at the heart of the paper. The disruptions are hypothesised to take place in the mid-2020s, after the current wave of commercial investments in storage and LNG import facilities has worked its way through. The paper also analyses the current role of gas in energy markets, reviews past disruptions to gas supplies, highlights current patterns of commercial investment in gas infrastructure in the UK and assesses the implications of recent EU legislation on security of gas supply. The paper concludes with an analysis of the desirability of strategic investment in gas infrastructure. - Highlights: ► We examine the impact of disruptions to gas supplies on UK energy markets. ► The policy implications of the EU regulation on gas security are discussed. ► We investigate the role of gas infrastructure investment in mitigating gas shocks. ► The policy case for strategic investment in gas storage is assessed.

  1. Natural gas pipeline technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by

  2. Worldwide natural gas pipeline situation. Sekai no tennen gas pipeline jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, T [Osaka Gas Co. Ltd., Osaka (Japan)

    1993-03-01

    Constructing natural gas pipelines in wide areas requires investments of a huge amount. Many countries are building natural gas supply infrastructures under public support as nations' basic policy of promoting use of natural gas. This paper describes the present conditions of building pipelines in Western Europe, the U.S.A., Korea and Taiwan. In Western Europe, transporting companies established in line with the national policy own trunk pipelines and storage facilities, and import and distribute natural gas. The U.S.A. has 2300 small and large pipeline companies bearing transportation business. Pipelines extend about 1.9 million kilometers in total, with trunk pipelines accounting for about 440,000 kilometers. The companies are given eminent domain for the right of way. Korea has a plan to build a pipeline network with a distance of 1600 kilometers in around 2000. Taiwan has completed trunk pipelines extending 330 kilometers in two years. In Japan, the industry is preparing draft plans for wide area pipeline construction. 5 figs., 1 tab.

  3. Natural gas in Latin America

    International Nuclear Information System (INIS)

    1997-01-01

    Despite having proven reserves equal to that of North America, natural gas has traditionally played a minor role in the energy policies of Latin American countries, being considered secondary to oil. There has, therefore, been a neglect of the sector with a resultant lack of an adequate infrastructure throughout the region, perhaps with the exception of Argentina. However, with a massive increase in energy demand, growing concerns with environmental matters and a need to reduce the massive pollution levels in major cities in the region, natural gas is forecast to play a much greater role in Latin America's energy profile, with final consumption forecast to rise at 5.4% per annum for the next 15 years. This book assesses both the development of the use of natural gas in the power industrial sector and proposals for its growth into the residential, commercial and transport sectors. It analyses the significant investment required and the governments' need to turn to the private sector for investment and innovation. Natural Gas in Latin America analyses the possibilities and pitfalls of investing in the sector and describes the key trends and issues. It analyses all aspects of the gas industry from exploration and production to transportation and distribution to end users. (Author)

  4. More natural gas from Russia, but when?

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1993-01-01

    The fourth article in a series about changes in the European natural gas market focuses on Russia, a country with gigantic potential reserves (216,000 billion m 3 ) and a production unequalled in the world (780.4 billion m 3 in 1992 in the Russian Federation), but also with enormous economic and technical problems. The question is what role Russia is able to play in the European natural gas supply. Attention is paid to the organizational structure in former Soviet Union regarding the natural gas industry, the environmental effects of exploration and exploitation, the need for foreign capital, and the disappointing progress of the 1991 Energy Charter. On a short term the infrastructure must be improved. Also the conflicts on the price of natural gas transport between the transfer countries Ukraine, Slovenia and Czechoslovakia and the West-European clients must be solved. 1 fig., 7 ills., 2 tabs

  5. Hydrogen-enriched natural gas; Bridge to an ultra low carbon world

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Joshua; Oliver, Mike

    2010-09-15

    Natural gas is recognized as an important part of the solution to climate change, as it has the smallest carbon footprint among fossil fuels and can be used with high efficiency. This alone is not enough. Supplementing natural gas with hydrogen creating hydrogen-enriched natural gas (HENG), where the hydrogen comes from a low- or zero-carbon energy source. HENG, the subject of this paper, can leverage existing natural gas infrastructure to reduce CO2 and NOx, improve the efficiency of end-use equipment, and lower the overall carbon intensity of energy consumption.

  6. The costs of avoiding environmental impacts from shale-gas surface infrastructure.

    Science.gov (United States)

    Milt, Austin W; Gagnolet, Tamara D; Armsworth, Paul R

    2016-12-01

    Growing energy demand has increased the need to manage conflicts between energy production and the environment. As an example, shale-gas extraction requires substantial surface infrastructure, which fragments habitats, erodes soils, degrades freshwater systems, and displaces rare species. Strategic planning of shale-gas infrastructure can reduce trade-offs between economic and environmental objectives, but the specific nature of these trade-offs is not known. We estimated the cost of avoiding impacts from land-use change on forests, wetlands, rare species, and streams from shale-energy development within leaseholds. We created software for optimally siting shale-gas surface infrastructure to minimize its environmental impacts at reasonable construction cost. We visually assessed sites before infrastructure optimization to test whether such inspection could be used to predict whether impacts could be avoided at the site. On average, up to 38% of aggregate environmental impacts of infrastructure could be avoided for 20% greater development costs by spatially optimizing infrastructure. However, we found trade-offs between environmental impacts and costs among sites. In visual inspections, we often distinguished between sites that could be developed to avoid impacts at relatively low cost (29%) and those that could not (20%). Reductions in a metric of aggregate environmental impact could be largely attributed to potential displacement of rare species, sedimentation, and forest fragmentation. Planners and regulators can estimate and use heterogeneous trade-offs among development sites to create industry-wide improvements in environmental performance and do so at reasonable costs by, for example, leveraging low-cost avoidance of impacts at some sites to offset others. This could require substantial effort, but the results and software we provide can facilitate the process. © 2016 Society for Conservation Biology.

  7. Developing electricity production with natural gas in the southern mediterranean countries. An example of north-south cooperation in the electricity and natural gas sectors

    International Nuclear Information System (INIS)

    Grenon, M.; Nogaret, E.

    1996-01-01

    The countries of the Southern Mediterranean region are facing an important increase of electricity demand due to their socio-economic development. In order to increase the production capacity at a minimum cost while preserving the environment, most countries of the region are planning gas fired power stations due to the important natural gas resources in the area. Overall investments in new power plants could reach the total of 100 billion dollars, up to the horizon 2010. The development of both the power plants and the infrastructure to produce and transport the natural gas needed is more and more performed through cooperation between companies of the two shores of the Mediterranean and represent an example of North- South cooperation in the energy field. This cooperation is taking place through technical assistance programs and also joint financing and management of the infrastructure required. A special importance is given to the development of highly efficient combined cycle power plants in the Southern Mediterranean countries and to the increase of the activities related to the exploration and production of natural gas. (author)

  8. Market development in the natural gas market

    International Nuclear Information System (INIS)

    Kuenneke, R.W.; Arentsen, M.J.; Manders, A.M.P.; Plettenburg, L.A.

    1998-01-01

    Options for the liberalization of the Dutch natural gas market have been investigated. Three models are compared and assessed for the impacts on the economic performance, the national interests and the so-called public tasks. The results of the report can be used to base the proposals for a new Natural Gas Act, which is expected to be sent to the Dutch parliament in the spring of 1999. The three liberalization models are specified according to the different phases in the industrial column of natural gas. Except for transport (limited possibilities) and distribution (monopolistic character and thus not suitable for market development), market development is possible in all the phases of the column. The models are the cooperation model (equal position for the natural gas trade company Gasunie and the natural gas distribution companies, and management of the natural gas infrastructure and the Dutch gas reserves by means of mutual tuning, cooperation and coordination), the EZ-model (price mechanism for the tariffs for natural gas, and access to the natural gas network through negotiated third party access (TPA) with indicative prices and conditions), and the market model (optimal use of market development options to stimulate the economic performance, introduction of price mechanism options, access through regulated TPA with tariffs, based on long-term marginal costs, role of the government limited to a favorable policy with respect to access to the network, competition and security of the interests which arise from the exploitation of the Dutch natural gas fields). 26 refs

  9. Mitigating for nature in Danish infrastructure projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone; Christensen, Per

    2015-01-01

    his paper presents results of a Danish study of mitigation efforts directed at nature protection in EIA of Danish infrastructure projects. The projects included in the study comprise road, rail, bridges, tunnels cables and oil- and gas-pipes. The study is based on a document analysis of EIA reports......, a workshop held with EIA professionals, a study of two cases and a survey among EIA professionals. The study reveals whether and how the mitigation hierarchy has been adhered to and what types of mitigation measures have been suggested. The study digs a bit deeper in discussing the dynamics in which...

  10. Sector of the natural gas in Colombia: Toward a bigger backing and dependability of the service

    International Nuclear Information System (INIS)

    2005-01-01

    A sketch of the infrastructure requirements and laws is made of the natural gas industry in Colombia, according to the plan of massive use of the gas, settled down by the government in 1991 and the maturity of the market, that which forces to the development of a backing infrastructure to assure the highest levels of quality and continuity of the service of the natural gas for the users

  11. Turkey's natural gas necessity, consumption and future perspectives

    International Nuclear Information System (INIS)

    Kilic, A.M.

    2006-01-01

    Turkey is an important candidate to be the 'energy corridor' in the transmission of the abundant oil and natural gas resources of the Middle East and Middle Asia countries to the Western market. Furthermore, Turkey is planning to increase its oil and gas pipeline infrastructure to accommodate its increased energy consumption. Naturally, Turkish natural gas usage is projected to increase remarkably in coming years, with the prime consumers, expected to be industry and power plants. Energy demand of Turkey is growing by 8% annually, one of the highest rates in the world. In addition, natural gas consumption is the fastest growing primary energy source in Turkey. Gas sales started at 0.5 bcm (billion cubic meters), in 1987 and reached approximately 22 bcm in 2003. This article deals with energy policies and natural gas consumption of Turkey. Besides modernization of present lines and realization of capacity increase, new lines will also be needed. In this context, Turkey, due to its geographical location is, in an important position to vary European supply. Therefore, Turkey's role as a transitory area gains importance

  12. CONSEQUENCES OF FAILURE OF GAS NETWORK INFRASTRUCTURE

    Directory of Open Access Journals (Sweden)

    Marek URBANIK

    2016-06-01

    Full Text Available Ecology today is becoming increasingly important. Increasing air pollution and greenhouse gas emissions make the search for such fuels which will not have such a negative effect on the environment as the fuel use currently - mainly coal. At present it seems that the substitute fuel can be gaseous fuels (propane-butane, methane. Their combustion is less harmful to the environment and their transport is relatively not very complicated. As it turns out, the use of gas is increasing in industry, automotive, heating systems (power plants that operate in the so-called cogeneration. The increase in demand carries continuous development of gas infrastructure, which in turn may increase probability of failure. As a conclusion of this article, taking into account all the construction disasters induced by the gas, the number of such failures is relatively small. It should be remembered, that the disaster caused by gas explosion may cause very large material and human losses. Not without significance is the impact of gas leakage, eg. of the pipeline on the environment. An example is the methane which is a greenhouse gas, less persistent in the air, but much more active than CO2. The article presents selected disasters associated with natural gas or propane-butane and the impact of these gases on the environment because these fuels are most commonly used in most sectors of the economy.

  13. Canadian natural gas winter 2005-06 outlook

    International Nuclear Information System (INIS)

    2005-11-01

    An outline of the Canadian natural gas commodity market was presented along with an outlook for Canadian natural gas supply and prices for the winter heating season of 2005-2006. In Canada, the level of natural gas production is much higher than domestic consumption. In 2004, Canadian natural gas production was 16.9 billion cubic feet per day (Bcf/d), while domestic consumption was much lower at 8.2 Bcf/d. The United States, whose natural gas consumption is higher than production, imported about 16 per cent of its natural gas supply from Canada and 3 per cent from other countries via liquefied natural gas imports. Canadian natural gas exports to the United States in 2004 was 8.7 Bcf/d, representing 51 per cent of Canada's production. In Canada, the most important natural gas commodity markets that determine natural gas commodity prices include the intra-Alberta market and the market at the Dawn, Ontario natural gas hub. A well connected pipeline infrastructure connects the natural gas commodity markets in Canada and the United States, allowing supply and demand fundamentals to be transferred across all markets. As such, the integrated natural gas markets in both countries influence the demand, supply and price of natural gas. Canadian natural gas production doubled from 7 to 16.6 Bcf/d between 1986 and 2001. However, in the past 3 years, production from western Canada has leveled out despite record high drilling activity. This can be attributed to declining conventional reserves and the need to find new natural gas in smaller and lower-quality reservoirs. The combination of steady demand growth with slow supply growth has resulted in high natural gas prices since the beginning of 2004. In particular, hurricane damage in August 2005 disrupted natural gas production in the Gulf of Mexico's offshore producing region, shutting-in nearly 9 Bcf/d at the height of damage. This paper summarized some of the key factors that influence natural gas market and prices, with

  14. Future view on Norwegian natural gas distribution, 2015 - 2025; Framtidsbilde for norsk naturgassdistribusjon, 2015 - 2025

    Energy Technology Data Exchange (ETDEWEB)

    Einang, P M; Hennie, E; Jetlund, A S; Bertelsen, T; Skjelvik, J M

    2005-05-15

    The report shows how the available market for natural gas can realised as LNG and CNG. The necessary investments in infrastructure and cost for the different solutions are also included. The expected price development natural gas and the connection prices for natural gas versus crude oil are shown. The report also shows the environmental benefits possible by choosing natural gas

  15. Role of a natural gas utility in the hydrogen economy

    International Nuclear Information System (INIS)

    Bayko, J.

    2004-01-01

    'Full text:' Enbridge Gas Distribution is the largest natural gas distribution company in Canada at about 1.7 million residential, commercial and industrial customers. Enbridge will speak to the role of a natural gas utility in the hydrogen economy, and outline the benefits of hydrogen production from natural gas reformation for both stationary and mobile applications. Hydrocarbon reformation will act at least as a bridge until a more fully developed hydrogen economy infrastructure is developed. Reformation allows immediate leveraging of the reliability of vast existing natural gas distribution systems, and a reduced need for on-site hydrogen storage. Natural gas powered fuel cells provide improved emissions over traditional internal combustion engines, and in the stationary market provide smarter use of resources through the higher efficiencies of cogeneration (the capture and use of otherwise waste heat). (author)

  16. Insurance issues and natural gas vehicles. Final report, January 1992

    International Nuclear Information System (INIS)

    Squadron, W.F.; Ward, C.O.; Brown, M.H.

    1992-01-01

    GRI has been funding research on natural gas vehicle (NGV) technology since 1986. To support the activity, GRI is evaluating a number of NGV issues including fuel storage, tank inspection, system safety, refueling, U.S. auto and truck use characteristics, and the fleet vehicle infrastructure. In addition, insurance and leasing companies will require new regulations and policies to address clean-fueled vehicle fleets' emergence into the marketplace. These policies may influence and partially determine the structure of the alternatively fueled vehicle industry, and the requirements, if any, imposed upon vehicle technologies. The report asseses the insurance and leasing industries' infrastructure/institutional barriers as they relate to the introduction of natural gas fueled vehicle fleets

  17. The natural gas industry and interest rates

    International Nuclear Information System (INIS)

    Yoon, Y.J.

    1995-01-01

    In discussing the impact of Federal Energy Regulatory Commission (FERC) Order 636, the latest rule on the restructuring and deregulation of the US natural gas industry, the effect of interest rates on the success of the FERC policy is often overlooked. The thesis of this paper is that interest rates play an important role in integrating seasonal gas markets and in stimulating investment in storage infrastructure. We propose a model to analyse the equilibrium condition for an efficient gas market. Also analysed are the implications of pipeline rate design of FERC 636 for gas despatch decisions. (author)

  18. Papers of a Canadian Institute conference : Tapping into new opportunities in oil sands supply and infrastructure : natural gas, diluent, pipelines, cogeneration

    International Nuclear Information System (INIS)

    2003-01-01

    Participants at this conference were provided the opportunity to hear various views of several industry leaders on topics related to oil sands supply and infrastructure. Some of the issues addressed were: the latest project developments and pipeline infrastructure expansion initiatives in the oil sands industry; the growing natural gas supply requirements for oil sands production; how to effectively manage stakeholder issues in the context of rapid growth; an update on the supply and demand balance for diluent; demand for cogeneration and the implications of transmission system congestion; and, market development prospects for heavy crude and the need for additional refinery capacity. The Minister of Alberta Economic Development also made a special presentation. There were fifteen presentations made at the conference, of which nine were indexed separately for inclusion in this database. refs., tabs., figs

  19. Natural gas infrastructure requirements for merchant plant

    International Nuclear Information System (INIS)

    Sukaly, B.

    1998-01-01

    Merchant power plants are complicated with diverse risks. Of course where there are risks there are opportunities for reward. Creating an effective merchant plant requires a strong organization that is committed to marketing, trading and risk management. The organization must have the infrastructure to capitalize on the opportunities a merchant plant provides. The market dynamics are ever changing and move at incredible speeds--what was a moneymaking deal yesterday is no longer valid today. The merchant plant owner is the expert in setting up the actual infrastructure for trading the various commodities, including forward pricing, cash and physical trades, transportation and operation for maximizing the plant's potential. Optionally, the plant's risk profile and a risk management program are the key factors in determining the sucres of the merchant plant project

  20. Investing in Natural and Nature-Based Infrastructure: Building Better Along Our Coasts

    Directory of Open Access Journals (Sweden)

    Ariana E. Sutton-Grier

    2018-02-01

    Full Text Available Much of the United States’ critical infrastructure is either aging or requires significant repair, leaving U.S. communities and the economy vulnerable. Outdated and dilapidated infrastructure places coastal communities, in particular, at risk from the increasingly frequent and intense coastal storm events and rising sea levels. Therefore, investments in coastal infrastructure are urgently needed to ensure community safety and prosperity; however, these investments should not jeopardize the ecosystems and natural resources that underlie economic wealth and human well-being. Over the past 50 years, efforts have been made to integrate built infrastructure with natural landscape features, often termed “green” infrastructure, in order to sustain and restore valuable ecosystem functions and services. For example, significant advances have been made in implementing green infrastructure approaches for stormwater management, wastewater treatment, and drinking water conservation and delivery. However, the implementation of natural and nature-based infrastructure (NNBI aimed at flood prevention and coastal erosion protection is lagging. There is an opportunity now, as the U.S. government reacts to the recent, unprecedented flooding and hurricane damage and considers greater infrastructure investments, to incorporate NNBI into coastal infrastructure projects. Doing so will increase resilience and provide critical services to local communities in a cost-effective manner and thereby help to sustain a growing economy.

  1. Country-Level Life Cycle Assessment of Greenhouse Gas Emissions from Liquefied Natural Gas Trade for Electricity Generation.

    Science.gov (United States)

    Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M

    2018-02-20

    In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.

  2. Natural gas distribution in Brazil - opportunities of improvement; Distribuicao de gas natural no pais - oportunidades de melhoria

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Silvia R. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Quintella, Odair M.; Farias Filho, Jose R. de [Universidade Federal Fluminense, Niteroi, RJ (Brazil)

    2005-07-01

    Great are the challenges established by the Brazilian Government related to goals to be achieved for the increment of the Natural Gas participation in brazilian energetic matrix, from current 5% to 12%, up to 2010. The enlargement of the distribution infrastructure of the gas (gas-pipelines 'mesh') in Brazil is considered one of the greatest challenges for the growth of the Brazilian market of Natural Gas, accomplishment that involves elevated investments. This paper presents a model of Management System for the good organizational performance of the small Natural Gas Supplying Brazilian Companies focused on criteria of Leadership, Strategies and Plans and Results, established by the Premio TOP Empresarial and by the 'Rumo a Excelencia', held by the 'Progama Qualidade Rio' and 'Fundacao para o Premio Nacional da Qualidade', respectively. The management practices of these companies were reviewed, considering the context of the energetic Brazilian scenario, subjected to the political and operational definitions and uncertainties, the available financial resources, limited or not prioritized, and actual barriers to be surpassed by the Gas Supplying Companies in order to achieve the pre-established government goals for this segment. The implementation of the proposed simplified Model, seen as improvement opportunities for the segment of Natural Gas distribution, will lead the Gas Distribution Companies to a intermediary stage envisioning the real steps towards the excellence of the performance. (author)

  3. Natural gas and electric power, coordination to improve

    International Nuclear Information System (INIS)

    Unidad de Planeacion Minero Energetica, UPME

    1999-01-01

    In development of energy diversification strategy, so much in the use of available sources as in the supply of alternative to the final consumer, one comes advancing in Colombia, for several years, the national plan of gas overcrowding. The growing use of natural gas for the new projects of thermal generation has put in evidence the strong link and the existent dependence among of the gas and electric sub sectors. Such a nexus is manifested in four aspects: The electric power substitution for gas affects the demand of both products. The development of the production infrastructure and transport of the natural gas depends in a large part of the electric generation with gas. The costs of electric generation depend directly on the costs of the gas, included that of their transport. The regulation of the natural gas affects the costs of the electric power and vice versa. In this article the nexus and the coordination of both sectors are analyzed and they think about some actions to improve this last one

  4. India expanding oil/gas E and D, infrastructure

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This paper reports that India continues to press oil and gas exploration and development and expansion of its petroleum sector infrastructure. One of the key moves is the government's decision to stage a fourth exploration bidding round, its most ambitious to date and one expected to elicit enthusiasm from international oil companies. At the same time, state oil companies Oil and Natural Gas Commission and Oil India Ltd. plan to maintain strong domestic E and D programs. ONGC is seeking more revenue to sustain India's ambitious oil and gas upstream plans. The state company has asked the government for a 50% hike in the price of domestic crude. The government currently pays ONGC and OIL only about $8.84/bbl, a price fixed in 1981. A jump of 50% in the domestic crude price would net ONGC another $1 billion/year in revenues, ONGC Chairman S.L. Khosla the. The government and other state companies also continue efforts to expand gas utilization and markets and match refining plans with market needs

  5. Development status of liquefied natural gas industry in China

    International Nuclear Information System (INIS)

    Shi Guohua; Jing Youyin; Wang Songling; Zhang Xutao

    2010-01-01

    With the significant economic growth in China, energy related environmental issues become more and more serious. Most of air pollutants are produced by burning coal. In order to achieve a sustainable balance between economic growth and environmental protection, China has been taking measures to expand the role played by natural gas, especially since the beginning of the 21st century. As the liquid form of natural gas, liquefied natural gas (LNG) has also been paid more attention in the country. This paper explores main motives for the fast development of China's LNG industry. An overview of the industry is also described, covering LNG receiving terminals, plants and transportation. Despite a relatively short development history of LNG industry in China, there are many remarkable successes. City-gas supply by LNG is widely applied in many small to medium cities, and LNG vehicles and cold energy utilization are growing rapidly with governmental supports. At the end, the developmental trends of China's LNG industry are introduced. All the discussions show that LNG is strategically important in China's future energy infrastructure. - Research highlights: →Explore main momentums for the fast development of China's LNG industry→Analyze detailedly current states and future prospects of LNG infrastructure in China→Introduce and analyze the wide application of LNG-based gas supply mode in China→Discuss new developmental trends in China's LNG industry

  6. Cost function for the natural gas transmission, industry: further considerations

    International Nuclear Information System (INIS)

    Massol, Olivier

    2009-01-01

    This article studies the cost function for the natural gas transmission industry. 60 years ago, Hollis B. Chenery published an important contribution that demonstrated how, in that particular industry, the production function of micro-economic theory can be rewritten with engineering variables (Chenery, 1949). In 2008, an article published in The Engineering Economist (Yepez, 2008) provided a refreshing revival on Chenery's seminal thoughts. In addition to a tribute to the late H.B. Chenery, this document offers some further comments and extensions on Yepez (2008). It provides a statistically estimated characterisation of the long-run scale economies and a discussion on the short-run economics of the duplication of existing equipments. As a first extension, we study the optimal design for infrastructure that is planned to transport a seasonally-varying flow of natural gas. The second extension analyzes the optimal degree of excess capacity to be built into a new infrastructure by a firm that expects a random rise in its output during the infrastructure's lifetime. (author)

  7. RedeGasEnergia - gas and energy excellence network: a strategy for development the Brazilian natural gas market; RedeGasEnergia - rede de excelencia de gas e energia: uma estrategia para o desenvolvimento do mercado do gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio L.F. dos [PETROBRAS, Rio de Janeiro, RJ (Brazil). Gerencia de Tecnologia do Gas Natural; Freire, Luiz G.M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Coordenacao de Tecnologia da RedeGasEnergia

    2004-07-01

    The present work aims at to present a new methodology of Excellency Net of Natural Gas - RedeGasEnergia for the development do natural gas market no Brazil, through in the application do model management for technologies associates different segments da economy: residential, commercial, industrial, Vehicle and of cogeneration, in accord with the Strategical Planning of the PETROBRAS. The developed methodology is based on the interaction enters the technological lines of direction of the segments of the economy and marketing lines of direction, inside of a corporative environment enters the some agents of the productive chain of the Natural Gas, which is: University, the delivering and transporting Institutions of Research and Technologies (technological arm) and companies of NG, municipal, state and federal equipment manufacturers (enterprise arm) and agencies, trade associations (governmental arm) to which of integrated and articulated form carry through a sustainable development of the Natural Gas market in Brazil. A study of case of the methodology will be shown, from the analysis of the current scenes of the use of the natural gas in light vehicles and weighed, locomotives and boats, as well as the available infrastructure for the Vehicle applications. (author)

  8. Distribution forms for biogas and natural gas in Sweden

    International Nuclear Information System (INIS)

    Benjaminsson, Johan; Nilsson, Ronny

    2009-11-01

    Since biogas and natural gas basically have the same characteristics, they can be distributed in the same system. In the parts of the country where there is an extensive natural gas distribution network, the infrastructure for natural gas can be used for distribution of biogas. In order to increase the use of renewable energy, it is a political ambition to increase the share of biogas in the natural gas network, and, in the long run, entirely replace natural gas with biogas. Much of biogas production in the country is, however, not reached by the existing natural gas network, and this is also the case for a large part of the potential for future biogas production. In these areas the gas is transported in more or less extensive local gas distribution networks and by truck in compressed or liquid form. Transport of compressed and liquefied gas is efficient in some cases and development of these systems is an ongoing process. A number of facilities are planned for production of large quantities of biogas, several hundred GWh/year, through digestion and gasification processes. These plants will be located either in conjunction with major gas consumers or in the vicinity of the existing natural gas grid. The potential for biogas production is, however, present throughout the country and in order to meet market demand biogas requires efficient distribution systems

  9. North American natural gas outlook : does gas remain a fuel option for oil sands?

    International Nuclear Information System (INIS)

    George, R.R.

    2003-01-01

    This paper presents a North America natural gas outlook from Purvin and Gertz, an international energy consulting firm that has 30 years experience in providing strategic, commercial and technical advice to the petroleum industry. In particular, this presentation focuses on natural gas market fundamentals and how they may impact on oil sands development. It includes charts and graphs depicting NYMEX natural gas outlooks to July, 2009 and examines how supply will react to major changes in Canada's supply portfolio. It was noted that oil sands development is a driver for natural gas demand in Alberta. The existing regional gas pipeline infrastructure was presented and the market impact on upgrader options was discussed. The author suggests that if gas prices are too high, there are other fuel options for steam and power generation. These include bitumen, asphalt, coke, coal and nuclear. However, these options have additional costs, uncertainties and environmental issues. A key factor for success would be to have a clear understanding of the benefits and risks between these fuel options. 1 tab., 9 figs

  10. To fully exert the important role of natural gas in building a modern energy security system in China: An understanding of China's National l3th Five-Year Plan for Natural Gas Development

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2017-07-01

    Full Text Available Along with the introduction of 13th Five-Year Plans in succession for natural gas development programmed by governments at all levels and much more attention paid to haze governance by relevant departments, natural gas, as one of the major energy sources, has ushered in a strategic opportunity era. In view of this, based upon China's National 13th Five-Year Plan for Natural Gas Development formulated by the National Development and Reform Commission, the developing trend of natural gas sector was predicted in the period of 13th Five-Year Plan in terms of supply side, demand side, pricing system, infrastructure construction, etc. and some feasible proposals were made on the whole industrial chain. In terms of the supply side, natural gas will be of availability, accessibility, assurance, affordability, and accountability in the production and supply chains. In terms of the demand side, air pollution treatment will indirectly stimulate gas consumption increase. Gas power generation will become the dominant. Natural gas as a transportation fuel will bring a good new opportunity. Thus it is believed that as the present natural gas development is restricted by both gas pricing system and infrastructure construction, further reform should be strengthened to break the barriers of systems and mechanisms; and that due to many uncertainties in the natural gas market, the decisive role of market in the resource allocation should be fully exerted to ensure the main force of natural gas in building a dependable energy strategic system in present and future China.

  11. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts.

    Science.gov (United States)

    McKain, Kathryn; Down, Adrian; Raciti, Steve M; Budney, John; Hutyra, Lucy R; Floerchinger, Cody; Herndon, Scott C; Nehrkorn, Thomas; Zahniser, Mark S; Jackson, Robert B; Phillips, Nathan; Wofsy, Steven C

    2015-02-17

    Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4 ⋅ m(-2) ⋅ y(-1). Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼ 60-100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.

  12. Preliminary report on the commercial viability of gas production from natural gas hydrates

    Science.gov (United States)

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  13. Municipalities in Western Norway concentrate on natural gas

    International Nuclear Information System (INIS)

    2001-01-01

    Only one percent of the natural gas from the Norwegian gas fields is currently used in Norway and it is a national goal that 10 percent of the gas produced shall be used for domestic purposes. Western Norway should pioneer this development, as this is where the gas is brought on land. ''Vestlandsroeret AS'' is a project in which sixteen municipalities - including the city Bergen - and eleven companies plan to develop infrastructure which will provide for transport of the gas to customers and markets in Western Norway. The article also discusses environmental considerations, public opinion, the utilization of waste heat and extensive development of cod culture

  14. A parametric study of light-duty natural gas vehicle competitiveness in the United States through 2050

    International Nuclear Information System (INIS)

    Peterson, Meghan B.; Barter, Garrett E.; West, Todd H.; Manley, Dawn K.

    2014-01-01

    Highlights: • NGVs are economical, but limited by infrastructure and OEM model availability. • NGVs compete more with EVs than conventional vehicles. • By displacing EVs, NGVs offer little or negative GHG reduction benefits. • Public refueling infrastructure is a better investment than home CNG compressors. • Bi-fuel vehicles can be a bridge technology until infrastructure build-out. - Abstract: We modeled and conducted a parametric analysis of the US light-duty vehicle (LDV) stock to examine the impact of natural gas vehicles (NGVs) as they compete with electric vehicles, hybrids, and conventional powertrains. We find that low natural gas prices and sufficient public refueling infrastructure are the key drivers to NGV adoption when matched with availability of compressed natural gas powertrains from automakers. Due to the time and investment required for the build out of infrastructure and the introduction of vehicles by original equipment manufacturers, home natural gas compressor sales and bi-fuel NGVs serve as bridge technologies through 2030. By 2050, however, NGVs could comprise as much as 20% of annual vehicle sales and 10% of the LDV stock fraction. We also find that NGVs may displace electric vehicles, rather than conventional powertrains, as they both compete for consumers that drive enough miles such that fuel cost savings offset higher purchase costs. Due to this dynamic, NGVs in our LDV stock model offer little to no greenhouse gas emissions reduction as they displace lower emission powertrains. This finding is subject to the uncertainty in efficiency technology progression and the set of powertains and fuels considered

  15. MULTI-CRITERIA EVALUATION OF THE EXPANSION OF NATURAL GAS DISTRIBUTION NETWORK BY THE URBAN DYNAMICS

    Directory of Open Access Journals (Sweden)

    Vanessa M. Massara

    2010-01-01

    Full Text Available The objective of this work is to analyze the expansion of the infrastructure of natural gas distribution, identifying priorities from large metropolis using the energy planning based on urban design tools like urban dynamics and techniques like AHP (analytic hierarchy process. The methodology proposed uses matrices considering the relations between the concept of urban dynamics, quality of life and the possibilities of natural gas displacing other energy forms. The matrices are made up of information about social and urban development, costs of establishing the infrastructure and projections of the consumption potential in various sectors. Relating the consumption to urban development parameters and the real estate future of the areas in study, the methodology allows indicating for each district, the viability of implementing a gas network. As conclusion, the model presents the integration between the cities profile and the natural gas use, by means of a growth natural gas on districts of São Paulo City as a specific case study.

  16. Fostering incidental experiences of nature through green infrastructure planning.

    Science.gov (United States)

    Beery, Thomas H; Raymond, Christopher M; Kyttä, Marketta; Olafsson, Anton Stahl; Plieninger, Tobias; Sandberg, Mattias; Stenseke, Marie; Tengö, Maria; Jönsson, K Ingemar

    2017-11-01

    Concern for a diminished human experience of nature and subsequent decreased human well-being is addressed via a consideration of green infrastructure's potential to facilitate unplanned or incidental nature experience. Incidental nature experience is conceptualized and illustrated in order to consider this seldom addressed aspect of human interaction with nature in green infrastructure planning. Special attention has been paid to the ability of incidental nature experience to redirect attention from a primary activity toward an unplanned focus (in this case, nature phenomena). The value of such experience for human well-being is considered. The role of green infrastructure to provide the opportunity for incidental nature experience may serve as a nudge or guide toward meaningful interaction. These ideas are explored using examples of green infrastructure design in two Nordic municipalities: Kristianstad, Sweden, and Copenhagen, Denmark. The outcome of the case study analysis coupled with the review of literature is a set of sample recommendations for how green infrastructure can be designed to support a range of incidental nature experiences with the potential to support human well-being.

  17. Natural Gas Imports and Exports. Third Quarter Report 1999

    International Nuclear Information System (INIS)

    1999-01-01

    The second quarter 1997 Quarterly Report of Natural Gas Imports and Exports featured a Quarterly Focus report on cross-border natural gas trade between the United States and Mexico. This Quarterly Focus article is a follow-up to the 1997 report. This report revisits and updates the status of some of the pipeline projects discussed in 1997, and examines a number of other planned cross-border pipeline facilities which were proposed subsequent to our 1997 report. A few of the existing and proposed pipelines are bidirectional and thus have the capability of serving either Mexico, or the United States, depending on market conditions and gas supply availability. These new projects, if completed, would greatly enhance the pipeline infrastructure on the U.S.-Mexico border and would increase gas pipeline throughput capacity for cross-border trade by more than 1 billion cubic feet (Bcf) per day. The Quarterly Focus is comprised of five sections. Section I includes the introduction as well as a brief historic overview of U.S./Mexican natural gas trade; a discussion of Mexico's energy regulatory structure; and a review of trade agreements and a 1992 legislative change which allows for her cross-border gas trade in North America. Section II looks at initiatives that have been taken by the Mexican Government since 1995to open its energy markets to greater competition and privatization. Section III reviews Mexican gas demand forecasts and looks at future opportunities for U.S. gas producers to supplement Mexico's indigenous supplies in order to meet the anticipated rapid growth in demand. Section IV examines the U.S.-Mexico natural gas trade in recent years. It also looks specifically at monthly import and export volumes and prices and identifies short-term trends in this trade. Finally, Section V reviews the existing and planned cross-border gas pipeline infrastructure. The section also specifically describes six planned pipelines intended to expand this pipeline network and

  18. Natural Gas Imports and Exports. Third Quarter Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    none

    1999-10-01

    The second quarter 1997 Quarterly Report of Natural Gas Imports and Exports featured a Quarterly Focus report on cross-border natural gas trade between the United States and Mexico. This Quarterly Focus article is a follow-up to the 1997 report. This report revisits and updates the status of some of the pipeline projects discussed in 1997, and examines a number of other planned cross-border pipeline facilities which were proposed subsequent to our 1997 report. A few of the existing and proposed pipelines are bidirectional and thus have the capability of serving either Mexico, or the United States, depending on market conditions and gas supply availability. These new projects, if completed, would greatly enhance the pipeline infrastructure on the U.S.-Mexico border and would increase gas pipeline throughput capacity for cross-border trade by more than 1 billion cubic feet (Bcf) per day. The Quarterly Focus is comprised of five sections. Section I includes the introduction as well as a brief historic overview of U.S./Mexican natural gas trade; a discussion of Mexico's energy regulatory structure; and a review of trade agreements and a 1992 legislative change which allows for her cross-border gas trade in North America. Section II looks at initiatives that have been taken by the Mexican Government since 1995to open its energy markets to greater competition and privatization. Section III reviews Mexican gas demand forecasts and looks at future opportunities for U.S. gas producers to supplement Mexico's indigenous supplies in order to meet the anticipated rapid growth in demand. Section IV examines the U.S.-Mexico natural gas trade in recent years. It also looks specifically at monthly import and export volumes and prices and identifies short-term trends in this trade. Finally, Section V reviews the existing and planned cross-border gas pipeline infrastructure. The section also specifically describes six planned pipelines intended to expand this pipeline

  19. A cost function for the natural gas transmission industry: further considerations

    International Nuclear Information System (INIS)

    Massol, O.

    2009-09-01

    This article studies the cost function for the natural gas transmission industry. 60 years ago, Hollis B. Chenery published an important contribution that demonstrated how, in that particular industry, the production function of micro-economic theory can be rewritten with engineering variables (Chenery, 1949). In 2008, an article published in The Engineering Economist (Yepez, 2008) provided a refreshing revival on Chenery's seminal thoughts. In addition to a tribute to the late H.B. Chenery, this document offers some further comments and extensions on Yepez (2008). It provides a statistically estimated characterisation of the long-run scale economies and a discussion on the short-run economics of the duplication of existing equipments. As a first extension, we study the optimal design for infrastructure that is planned to transport a seasonally-varying flow of natural gas. The second extension analyzes the optimal degree of excess capacity to be built into a new infrastructure by a firm that expects a random rise in its output during the infrastructure's lifetime. (author)

  20. Representing nature : Late twentieth century green infrastructures in Paris

    NARCIS (Netherlands)

    Van der Velde, J.R.T.; De Wit, S.I.

    2015-01-01

    The appreciation of green infrastructures as ‘nature’ by urban communities presents a critical challenge for the green infrastructure concept. While many green infrastructures focus on functional considerations, their refinement as places where concepts of nature are represented and where nature can

  1. Natural Gas Value-Chain and Network Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Kobos, Peter H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Outkin, Alexander V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beyeler, Walter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, LaTonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myerly, Melissa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tenney, Craig M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Borns, David J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. To illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven

  2. Security of natural gas supply in Central Europe - Case study: Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Klepac, Jan

    2010-09-15

    Europe's dependence on imported hydrocarbons is increasing. Being the second largest consumer in the world, EU will need of billions of euro over the next 20 years to satisfy the expected energy demand and to replace the ageing infrastructure. Slovakia is the main transport corridor for the Russian gas delivered to the EU countries, 20% of the natural gas consumption in the EU countries is covered by transit through the Slovak territory. Slovakia is also almost 100% dependent on import of the Russian gas. Diversification of the natural gas resources therefore belongs to the key energy security issues in Slovakia.

  3. Improving efficiency and effectiveness in natural gas regulation : discussion paper

    International Nuclear Information System (INIS)

    Rounding, M.C.

    2004-11-01

    Energy market liberalization is a world trend that has prompted the deregulation of natural gas and electricity over the past twenty years in North America. The Ontario Energy Board and the National Energy Board are conducting public hearings on natural gas regulation in response to the request by Canadian energy industries for better regulatory streamlining. The following 5 issues regarding natural gas regulation in Canada have been examined: (1) system gas in a regulated market, (2) natural gas infrastructure investments and capital renewal, (3) improving efficiency in gas regulation, (4) expectations of performance-based regulation (PBR) in the natural gas industry, and (5) the debate whether further deregulation of the natural gas industry is beneficial. This paper discusses the impact that natural gas regulation has had on the efficiency and competitiveness of the industry and its affect on customers and other stakeholders. It focuses on the efficiency of the regulatory process and examines regulatory objectives, best practices and performance indicators. The factors that determine the efficiency of natural gas regulation include alternative regulatory models, structure of the regulatory agency, regulatory framework approaches, and outcomes for the natural gas industry. The relationship between the government and the regulator was also examined in terms of their abilities to implement policy. A comparative evaluation between energy regulators in Canada, the United States, Australia and the United Kingdom was presented. The balancing of short-term and long-term objectives for gas supply and planning issues was also addressed. 17 refs

  4. The formation of the global natural gas industry: definition, constraints and challenges; A formacao da industria global de gas natural: definicao, condicionantes e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, Melissa Cristina Pinto Pires

    2008-03-15

    This study aims to investigate the real possibilities for the natural gas industry to become a global energy industry. So, it is necessary to define what global energy industry really means. In order to do a comparative analysis between the oil and natural gas industries, it is necessary to define three distinct stages of the evolution of an energy industry, namely internationalization, mundialization and globalization. This study analyzes the evolution of the oil industry trying to identify the main aspects that promoted changes and transformed the oil business into a global industry. Then, the evolution of the natural gas industry is analyzed, looking for similarities between the structural changes in both industries, and trying to determine what is the current stage of the natural gas industry. Despite the increase in the natural gas international trade and the prospects of growth of natural gas demand, there are still some challenges for this industry to effectively become global. Some of the challenges are the need of investments in production infrastructure, transportation and distribution sectors, the access to the main reserves, the uncertainty related to the demand evolution and the possible creation of a natural gas producers cartel, like the Organization of the Petroleum Exporting Countries (OPEC). (author)

  5. Lessons learned from Brazilian natural gas industry reform

    International Nuclear Information System (INIS)

    Mathias, Melissa Cristina; Szklo, Alexandre

    2007-01-01

    Over the past decades many countries have reformed their infrastructure industries. Although these reforms have been broadly similar for the most part, aiming at introducing competition in potentially competitive segments, the contexts in which they have been carried out differ. This is due to the past regulatory experience in each country, the maturity of the industry and/or the number of agents when the reform process started. The Brazilian natural gas reform stands out due to the country's singular conditions. The development of the natural gas industry in Brazil was grounded on stepping up supplies through integration with neighboring nations (particularly Bolivia) and establishing a competitive environment by lowering the barriers hampering the arrival of new investors. However, natural gas is located at the crossroads of two main energy chains: oil and hydroelectricity. This article analyzes the Brazilian natural gas reform, and extracts lessons from this process. The low capillarity of transportation and distribution systems continues to be the main bottleneck of the country's natural gas industry. The challenges of the new legal framework are to encourage investments in networks and guarantee supply, to allow the industry to consolidate and mature, against a backdrop of rapid changes in the world market. (author)

  6. Natural gas potential in Canada

    International Nuclear Information System (INIS)

    1997-01-01

    An independent assessment of the undiscovered gas potential in Canada was conducted by a group of volunteer geoscientists. This report is the first of a series of assessments that are planned to be issued every three to four years. Separate assessments were made of conventional gas resources, unconventional gas resources and frontier gas resources. The assessment for conventional gas resources was organized into three categories: (1) gas producing areas where new discoveries can be integrated into existing producing and transportation infrastructure, (2) frontier basins where gas discoveries have been made, but no production is currently underway, and (3) frontier areas where gas-containing sedimentary rocks are known to exist, but where no gas discoveries have been made to date. The committee used year-end 1993 reserves data from discovered pools in each exploration play to predict the undiscovered potential. Information about discovered pools, geological setting, geographic limits and pool sizes of undiscovered pools in each exploration play was provided. Results of the investigation led to the conclusion that the natural gas potential in Canada is in fact larger than hitherto expected. It was estimated that in the Western Canada Sedimentary Basin 47 per cent of the total volume of conventional gas is yet to be discovered. 152 figs

  7. Land-based use of natural gas - distribution methods; Landbasert bruk av naturgass - distribusjonsloesninger

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The Norwegian Government stimulates the use of natural gas in this country at the same time as the increase in the energy consumption should be reduced as much as possible. Thus increased use of natural gas for energy purposes may lead to reduced consumption of other energy carriers, and the use of existing infrastructure must be taken into consideration. The introduction of natural gas increases the need for optimization of the energy consumption with respect to costs and environmental consequences. The principle aim of this project is to evaluate how to implement the increased use of natural gas into existing and planned energy systems in an optimal way.

  8. Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J W

    1967-08-01

    This report on the natural gas industry of Canada includes: composition and uses of natural gas, production statistics, exploration and development, reserve estimates, natural gas processing, transportation, and marketing. For the Canadian natural gas industry, 1966 was a year of moderate expansion in all phases, with a strong demand continuing for sulfur and liquid hydrocarbons produced as by-products of gas processing. Value of natural gas production increased to $199 million and ranked sixth in terms of value of mineral ouput in Canada. Currently, natural gas provides over 70% of Canada's energy requirements. Proved remaining marketable reserves are estimated to be in excess of a 29-yr supply.

  9. Natural gas in 1951: Petroleum in 1951: Logs of wells for 1951. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1954-12-31

    The first part of this report summarises natural gas exploration activity, well drilling, infrastructure changes and improvements, production, distribution, consumption, and leakage during transmission or distribution of natural gas in Ontario. Includes lists of operators licensed to lease, prospect, drill or bore for, produce, and distribute natural gas in the province. The second part summarises oil industry activities, oil production, well drilling, petroleum and refined products imports, and petroleum refining operations. Relevant statistics are provided throughout both parts of the report. Also includes drillers` logs for oil and gas wells completed during the year.

  10. Super-emitters in natural gas infrastructure are caused by abnormal process conditions

    Science.gov (United States)

    Zavala-Araiza, Daniel; Alvarez, Ramón A.; Lyon, David R.; Allen, David T.; Marchese, Anthony J.; Zimmerle, Daniel J.; Hamburg, Steven P.

    2017-01-01

    Effectively mitigating methane emissions from the natural gas supply chain requires addressing the disproportionate influence of high-emitting sources. Here we use a Monte Carlo simulation to aggregate methane emissions from all components on natural gas production sites in the Barnett Shale production region (Texas). Our total emission estimates are two-thirds of those derived from independent site-based measurements. Although some high-emitting operations occur by design (condensate flashing and liquid unloadings), they occur more than an order of magnitude less frequently than required to explain the reported frequency at which high site-based emissions are observed. We conclude that the occurrence of abnormal process conditions (for example, malfunctions upstream of the point of emissions; equipment issues) cause additional emissions that explain the gap between component-based and site-based emissions. Such abnormal conditions can cause a substantial proportion of a site's gas production to be emitted to the atmosphere and are the defining attribute of super-emitting sites.

  11. The European power plant infrastructure-Presentation of the Chalmers energy infrastructure database with applications

    International Nuclear Information System (INIS)

    Kjaerstad, Jan; Johnsson, Filip

    2007-01-01

    This paper presents a newly established database of the European power plant infrastructure (power plants, fuel infrastructure, fuel resources and CO 2 storage options) for the EU25 member states (MS) and applies the database in a general discussion of the European power plant and natural gas infrastructure as well as in a simple simulation analysis of British and German power generation up to the year 2050 with respect to phase-out of existing generation capacity, fuel mix and fuel dependency. The results are discussed with respect to age structure of the current production plants, CO 2 emissions, natural gas dependency and CO 2 capture and storage (CCS) under stringent CO 2 emission constraints. The analysis of the information from the power plant database, which includes planned projects, shows large variations in power plant infrastructure between the MS and a clear shift to natural gas-fuelled power plants during the last decade. The data indicates that this shift may continue in the short-term up to 2010 since the majority of planned plants are natural gas fired. The gas plants are, however, geographically concentrated to southern and northwest Europe. The data also shows large activities in the upstream gas sector to accommodate the ongoing shift to gas with pipelines, liquefaction plants and regasification terminals being built and gas fields being prepared for production. At the same time, utilities are integrating upwards in the fuel chain in order to secure supply while oil and gas companies are moving downwards the fuel chain to secure access to markets. However, it is not yet possible to state whether the ongoing shift to natural gas will continue in the medium term, i.e. after 2010, since this will depend on a number of factors as specified below. Recently there have also been announcements for construction of a number of new coal plants. The results of the simulations for the German and British power sector show that combination of a relatively low

  12. Fostering incidental experiences of nature through green infrastructure planning

    DEFF Research Database (Denmark)

    Beery, Thomas H; Raymond, Christopher M; Kyttä, Marketta

    2017-01-01

    of such experience for human well-being is considered. The role of green infrastructure to provide the opportunity for incidental nature experience may serve as a nudge or guide toward meaningful interaction. These ideas are explored using examples of green infrastructure design in two Nordic municipalities...... to consider this seldom addressed aspect of human interaction with nature in green infrastructure planning. Special attention has been paid to the ability of incidental nature experience to redirect attention from a primary activity toward an unplanned focus (in this case, nature phenomena). The value...

  13. Liquefied natural gas : a Canadian perspective : an energy market assessment

    International Nuclear Information System (INIS)

    2009-01-01

    World requirements for energy and natural gas are expected to increase in the near future. This energy market assessment presented an overview of global liquefied natural gas (LNG) supply and demand, and discussed the potential effects that imported LNG may have on Canadian gas markets and energy infrastructure. Regasification projects will double the world's existing LNG receiving capacity by 2015. However, LNG pricing will still be indexed to the price of crude oil and oil products in the future. LNG price differences will affect trading opportunities as well as the flow of LNG between regions. North American LNG facility development will be influenced by outlooks for continental gas supply and demand. Current declines combined with recent increases in United States natural gas production from unconventional gas resources will reduce requirements for LNG in the near future, and may have a significant impact on long-term North American and global LNG requirements. Canada's existing facilities are located competitively with other terminals. 33 figs.

  14. The chain of the Natural gas in Colombia

    International Nuclear Information System (INIS)

    Anon

    1998-01-01

    For the planning of the natural gas sector in the mark of the analysis integrated energy planning, it is required of the simultaneous study of a great quantity of present factors in the development of this industry, which could give an idea of the diversity of circumstances that it allow a successful evolution of the gas sector. The national market of the natural gas, was limited by offer restrictions and for lack of an appropriate infrastructure of production and transport of this energy. The existent markets until the present time (1997) they have been developed around to the discovered locations in three defined areas that is: Atlantic Coast, where they are the most important producing fields in free gas; Santander and Huila departments, and the center of the country. The readiness of new discovered reserves of gas in Cusiana, Cupiagua, Opon and the perspectives of others in Volcanero, Florena and Pauto, they have strengthened the politics of overcrowding of gas consumption, whose fundamental objective is to develop a efficient and more convenient energy consumption for the country, by means of the energy resources substitution of high cost, initially for GLP and later on for the overcrowding of the natural gas

  15. California Natural Gas Pipelines: A Brief Guide

    Energy Technology Data Exchange (ETDEWEB)

    Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Price, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pezzola, Genny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glascoe, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  16. Turkey's natural gas necessity, consumption and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, A.M. [Mining Engineering Department, Faculty of Engineering and Architecture, Cukurova University, 01330 Balcali, Adana (Turkey)]. E-mail: kilicm@cu.edu.tr

    2006-09-15

    Turkey is an important candidate to be the 'energy corridor' in the transmission of the abundant oil and natural gas resources of the Middle East and Middle Asia countries to the Western market. Furthermore, Turkey is planning to increase its oil and gas pipeline infrastructure to accommodate its increased energy consumption. Naturally, Turkish natural gas usage is projected to increase remarkably in coming years, with the prime consumers, expected to be industry and power plants. Energy demand of Turkey is growing by 8% annually, one of the highest rates in the world. In addition, natural gas consumption is the fastest growing primary energy source in Turkey. Gas sales started at 0.5 bcm (billion cubic meters), in 1987 and reached approximately 22 bcm in 2003. This article deals with energy policies and natural gas consumption of Turkey. Besides modernization of present lines and realization of capacity increase, new lines will also be needed. In this context, Turkey, due to its geographical location is, in an important position to vary European supply. Therefore, Turkey's role as a transitory area gains importance.

  17. Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada

    Science.gov (United States)

    Atherton, Emmaline; Risk, David; Fougère, Chelsea; Lavoie, Martin; Marshall, Alex; Werring, John; Williams, James P.; Minions, Christina

    2017-10-01

    North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3-6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-road plumes to oil- and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background) less than 500 m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s-1 at our average detection distance (319 m). Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47 % of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate > 0.59 g s-1) contribute more than 111 800 t of methane annually to the atmosphere. This value exceeds reported bottom

  18. Natural gas poised to penetrate deeper into electric generation

    International Nuclear Information System (INIS)

    Swanekamp, R.

    1995-01-01

    This article describes how advancements in gas supply, distribution and storage, coupled with new options in combustion equipment, continue to expand the use of natural gas for electric generation. The challenge is to meet the increasing demand while keeping prices competitive with other fuels--and keep a small band of skeptics at bay. To prepare for the projected growth in gas consumption, the natural-gas industry has invented in new infrastructure and technologies. Pipelines have been built; storage facilities have been expanded; and highly precise flow measurement stations have been installed. To mitigate supply and price risk, suppliers are offering short-, mid-, or long-term contracts which include service options and guarantees. In spite of these preparations, not all power producers are comfortable with the potential tidal wave of gas-fired capacity. Reason: It limits the electric-generation resource base to one fuel for future capacity

  19. US crude oil, natural gas, and natural gas liquids reserves

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1991, as well as production volumes for the United States, and selected States and State subdivisions for the year 1991. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1991 is also presented

  20. Gas infrastructure: Does the grid development go in the wrong direction?; Gasinfrastruktur. Stellt der Netzentwicklungsplan die falschen Weichen?

    Energy Technology Data Exchange (ETDEWEB)

    Buex, Arno [Storengy Deutschland GmbH, Berlin (Germany)

    2012-11-15

    The German natural gas market is in a period of strong transition. Gas is rapidly becoming a key resource as it is a low-emission resource whose supply is ensured on a long-term basis. Best of all, natural gas offers high flexibility, which is getting increasingly important in the context of energy transition, growing gas imports, and growing importance of the spot market. Flexibility, in turn, necessitates consequent development of grid capacities and gas stores. In order to establish and coordinate the demand, the gas grid development plan for Germany ('Netzentwicklungsplan Gas' -NEP) required by the EnWG (Renewables Act) is currently under development. marketers are still not in agreement as to how the natural gas infrastructure of the future should be designed. Proposed solutions, scenarios and recommendations are current issues of a controversial discussion concerning the NEP Gas 2013. Especially from the view of gas store operators, the picture is critical. (orig.)

  1. Having our gas and selling it too : natural gas distribution in Atlantic Canada

    International Nuclear Information System (INIS)

    Tucker, T.L.; Crowley, B.L.

    2002-01-01

    This paper presented an overview of the gas industry in Atlantic Canada, its history and development, with particular attention to the future of natural gas in Atlantic Canada, market pricing and rationalized regulation. It also includes a primer on the economic forces behind the industry. A regulatory framework was recommended that will provide gas to the greatest number of consumers at the lowest possible price. The report also describes 10 popular misconceptions regarding how the region believes it can best benefit from natural gas. The report dispels the idea that the greatest benefit comes from consuming natural gas locally. Other misconceptions are that gas can be sold locally at discount prices and at a premium to export markets. It was emphasized that Atlantic Canada needs the gas as much as New England markets, but the investment by consumers in the United States are a big driving force for offshore gas development. The author emphasized that even if Atlantic Canada never consumes its own natural gas, the royalties, economic growth, economic diversification and a new addition to the energy mix will generate benefits much greater than those which could come from local consumption alone. The author also suggests that the lack of market power in Atlantic Canada means that gas-specific provincial regulations to protect the public interest are not required. It was suggested that a gas distributor should be chosen to build the infrastructure and attract customers. This paper demonstrated that the greatest benefit to the region will come from deregulating the distribution industry while realizing the full market value of the gas for its owners. 15 refs

  2. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Ford A. Phillips; Danny M. Deffenbaugh

    2006-05-31

    This project has documented and demonstrated the feasibility of technologies and operational choices for companies who operate the large installed fleet of integral engine compressors in pipeline service. Continued operations of this fleet is required to meet the projected growth of the U.S. gas market. Applying project results will meet the goals of the DOE-NETL Natural Gas Infrastructure program to enhance integrity, extend life, improve efficiency, and increase capacity, while managing NOx emissions. These benefits will translate into lower cost, more reliable gas transmission, and options for increasing deliverability from the existing infrastructure on high demand days. The power cylinders on large bore slow-speed integral engine/compressors do not in general combust equally. Variations in cylinder pressure between power cylinders occur cycle-to-cycle. These variations affect both individual cylinder performance and unit average performance. The magnitude of the variations in power cylinder combustion is dependent on a variety of parameters, including air/fuel ratio. Large variations in cylinder performance and peak firing pressure can lead to detonation and misfires, both of which can be damaging to the unit. Reducing the variation in combustion pressure, and moving the high and low performing cylinders closer to the mean is the goal of engine balancing. The benefit of improving the state of the engine ''balance'' is a small reduction in heat rate and a significant reduction in both crankshaft strain and emissions. A new method invented during the course of this project is combustion pressure ratio (CPR) balancing. This method is more effective than current methods because it naturally accounts for differences in compression pressure, which results from cylinder-to-cylinder differences in the amount of air flowing through the inlet ports and trapped at port closure. It also helps avoid compensation for low compression pressure by the

  3. Natural Gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2010-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  4. Alternative Fuels Data Center: Natural Gas Fueling Infrastructure

    Science.gov (United States)

    greater storage capacity and is tailored to meet fleets' needs. Cost of Installation Costs of installing ). According to a report published by the National Renewable Energy Laboratory, costs for installing a CNG accompanying Clean Cities Vehicle and Infrastructure Cash-Flow Evaluation (VICE) Model to evaluate the return

  5. Nigeria: petroleum; natural gas and economic crisis

    International Nuclear Information System (INIS)

    Gugliotta, A.

    2008-01-01

    Conflicts in Nigeria have recently deepened and they show a continuous escalation. The endless attacks against all infrastructures led to a reduction of oil production, thus effecting international oil market as well. This article provides a Nigeria's economy and energy framework. First, we will focus on troubles characterizing oil companies activities in Nigeria. Then, we will analyze how a higher exploitation of natural gas could affect Nigeria's economy, politics and society. [it

  6. Comparative economics of natural gas vehicles and other vehicles

    International Nuclear Information System (INIS)

    Biederman, R.T.; Blazek, C.F.

    1992-01-01

    The utilization of alternative fuels for transportation applications is now a certainty. The only real questions that remain to be answered involve the type of fuel (or fuels) to be adopted most extensively. While some alternative fuel advocates suggest that a niche will exist for all alternative fuels, the most likely scenario will involve widespread use of only a few major fuel types. Undoubtedly, reformulated gasoline will be a major force as an interim fuel, due to inertia and a predominant bias toward liquid fuels. The prospects for utilization of ethanol, methanol, MTBE, and ETBE appear to be most promising in the area of blending with gasoline to meet the needs of reformulated gasoline and flexible fueled vehicles (FFV's). Propane fueled vehicles will continue to grow in popularity, especially with fleets, but will never become a major force in the transportation market in the U.S. due to unresolvable supply limitations. The clear winner in the alternative fuels transportation market appears to be natural gas. Either in compressed or liquefied form, natural gas enjoys low costs, tremendous availability, and impressive environmental benefits. As shown in this analysis, natural gas competes favorably with gasoline in terms of economics. Natural gas is also preferential to other alternative fuels in terms of safety and heath issues as well as operational issues. Adoption of natural gas as a standard transportation fuel will probably require market segmentation characterized by compressed natural gas utilization in light-duty vehicles and liquefied natural gas utilization in heavy-duty vehicles. The most significant barrier to natural gas utilization will continue to be the creation of a refueling infrastructure. As these problems are resolved, however, natural gas will emerge as the transportation fuel of the future

  7. Natural gas trends

    International Nuclear Information System (INIS)

    Anderson, A.

    1991-01-01

    This book provides data on many facets of the natural gas industry. Topics include: Canadian, Mexican; US natural gas reserves and production; Mexican and US natural gas consumption; market conditions for natural gas in the US; and Canadian natural gas exports

  8. Compressed natural gas for vehicles and how we can develop and meet the market

    International Nuclear Information System (INIS)

    Pinkerton, W.E.

    1992-01-01

    This paper reports that state and federal legislation have mandated the use of clean burning fuels. Clean fuels include: compressed natural gas (CNG), ethanol, methanol, liquefied petroleum gas (LPG), electricity, and reformulated gasoline. The Clean Air Amendments 1990 have created support for the rapid utilization of the compressed natural gas (CNG). Responsively, diverse occupations related to this industry are emerging. A coordinated infrastructure is vital to the successful promotion of clean fuels and synchronized endorsement of the law

  9. Governmental support for driving on natural gas. An outline of political factors

    International Nuclear Information System (INIS)

    Van der Knoop, J.; Overmars, P.

    2005-09-01

    Government support is crucial for the viability of the market for natural gas as engine fuel. This outlook focuses on the viewpoint of the government and the large political parties in this respect. At first this study was meant to be a brief outlook, but the study expanded in two directions. First of all, more attention was paid to the discussion on the use of natural gas as engine fuel and in line with the various incentivisation regulations in the context of more general greening taxes. The stimulation of driving on natural gas cannot be separated from similar measures for other (clean(er)) fuels. Secondly, based on the obtained insights, conclusions were drawn on the chances for government subsidy for driving on natural gas. Finally, attention has also been paid to the question if politicians recognise and acknowledge the intermediary role of natural gas in the transition towards sustainable fuels. If this is the case, the parliament will probably put more pressure on the government to stimulate driving on natural gas in view of the additional value of investments in the natural gas fuel infrastructure.[mk] [nl

  10. Strengthening Canada's position in the North American natural gas market

    International Nuclear Information System (INIS)

    2001-09-01

    The Canadian Gas Association (CGA) is the industry organization that represents the Canadian natural gas and energy delivery industry. It is on the frontline of consumer perceptions regarding natural gas, which is the fuel of choice for Canadian homeowners. Canadian consumers have benefitted from the deregulation initiatives of the mid-1980s which provided significant growth opportunities. Given the tumultuous energy environment throughout North America, the CGA believes that a national energy strategy should be developed to address future supply issues and also to examine ways to ensure that extreme market shifts are anticipated and mitigated as much as possible. The CGA is ready to provide governments with input for such a strategy representing the perspective of the Canadian consumer. The CGA recommends that the Government of Canada, the provinces and territories adopt the following initiatives regarding the use of natural gas: (1) recognize and promote the environmental qualities and applications of natural gas, (2) encourage competition, (3) promote transparent and consistent approach to regulation, (4) reaffirm commitment to market-based policies, (5) facilitate economic research, analysis and communication about trends in the natural gas market, and (6) promote the development of new technologies that expand the uses of natural gas and support research in infrastructure development. The government's actions in the areas proposed in this report will contribute to advancing Canada's environmental objectives and economic growth. 2 figs

  11. Safeguarding public values in gas infrastructure expansion. A comparison of two investment projects

    International Nuclear Information System (INIS)

    De Joode, J.

    2007-02-01

    The realisation of new gas infrastructure projects affects overall gas market performance with respect to the public values of affordability and security of supply. However, the actual contribution of a gas infrastructure expansion project to system affordability and security of supply depends upon the institutional design of the market (legislation, regulatory codes and arrangements, market rules, etc.). In this paper we link the institutional design applicable to two specific gas infrastructure projects with the safeguarding of the aforementioned public values. We conclude that path dependencies can cause large differences in the contribution of the projects to the safeguarding of public values

  12. Assessing the risk posed by natural hazards to infrastructures

    Science.gov (United States)

    Eidsvig, Unni Marie K.; Kristensen, Krister; Vidar Vangelsten, Bjørn

    2017-03-01

    This paper proposes a model for assessing the risk posed by natural hazards to infrastructures, with a focus on the indirect losses and loss of stability for the population relying on the infrastructure. The model prescribes a three-level analysis with increasing level of detail, moving from qualitative to quantitative analysis. The focus is on a methodology for semi-quantitative analyses to be performed at the second level. The purpose of this type of analysis is to perform a screening of the scenarios of natural hazards threatening the infrastructures, identifying the most critical scenarios and investigating the need for further analyses (third level). The proposed semi-quantitative methodology considers the frequency of the natural hazard, different aspects of vulnerability, including the physical vulnerability of the infrastructure itself, and the societal dependency on the infrastructure. An indicator-based approach is applied, ranking the indicators on a relative scale according to pre-defined ranking criteria. The proposed indicators, which characterise conditions that influence the probability of an infrastructure malfunctioning caused by a natural event, are defined as (1) robustness and buffer capacity, (2) level of protection, (3) quality/level of maintenance and renewal, (4) adaptability and quality of operational procedures and (5) transparency/complexity/degree of coupling. Further indicators describe conditions influencing the socio-economic consequences of the infrastructure malfunctioning, such as (1) redundancy and/or substitution, (2) cascading effects and dependencies, (3) preparedness and (4) early warning, emergency response and measures. The aggregated risk estimate is a combination of the semi-quantitative vulnerability indicators, as well as quantitative estimates of the frequency of the natural hazard, the potential duration of the infrastructure malfunctioning (e.g. depending on the required restoration effort) and the number of users of

  13. Positions and synthesis of the seminar on the market of the natural gas; Planteamientos y sintesis del seminario sobre el mercado del gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez R, Raul

    1996-10-01

    In development of this event, the political, juridical, economic, environmental and social elements were analyzed that affect the formation of the national market, equally, the stimuli were discussed for the participation of the private sector, the decisive action promoter that has completed the state, to constitute enough reserves of natural gas, to build the infrastructure and to impel the formation of the market, as well as their perspectives and the possibilities to conform a culture of the use of the natural gas as product of the maturity of the market; the author also refers to the politicians of the national plan of development and the energy planning.

  14. Conservation for cities how to plan and build natural infrastructure

    CERN Document Server

    McDonald, Robert I

    2015-01-01

    With this book, Robert McDonald offers a comprehensive framework for maintaining and strengthening the supporting bonds between cities and nature through innovative infrastructure projects. It's time to think differently about cities and nature. More people than ever live in cities, and all of this urban growth, along with challenges of adapting to climate change, will require a new approach to infrastructure if we're going to create livable urban places. After presenting a broad approach to incorporating natural infrastructure priorities into urban planning, he focuses each following chapter on a specific ecosystem service. He describes a wide variety of benefits, and helps practitioners answer fundamental questions about how to use natural infrastructure to create communities that are more resilient and livable.

  15. Natural gas and Brazilian energetic matrix; Gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Ricardo Luchese de [White Martins S.A., Rio de Janeiro, RJ (Brazil)

    1997-07-01

    Recent projection of the market in global scale shows a tendency in natural gas using replacing mostly the fuel oil. Its market share well increase from 21.1% in 1994 to 24.0% in 2010. The annual energetic use will reach 29.23 x 10{sup 9} Gcal in 2010 (8990 million Nm{sup 3} natural gas/day) versus 18.90 x 10{sup 9} Gcal in 1994 (5810 million Nm{sup 3} natural gas/day). For Brazil, its consumption will increase from 8.7 million Nm{sup 3} natural gas/day in 1994 to 35.9 million Nm{sup 3} natural gas/day in 2010. Projects like Brazil-Bolivia natural gas pipeline, will supply 18 million Nm{sup 3} natural gas/day, which expected to start-up before the year 2000. This projects will supply the Brazilian southern regions, that do not consume natural gas at the current moment. Although there are many different kind of natural gas consumption in the industry this paper presents the technical and economical estimate of the injection in the blast furnace operating with coke or charcoal. The process simulation is done assisted by math modeling developed by White Martins/Praxair Inc. (author)

  16. Gas infrastructure development in the countries of East Baltic as a way to increase energy security

    Directory of Open Access Journals (Sweden)

    Golyashev Alexander

    2013-06-01

    Full Text Available In the context of regional gas infrastructure development this paper considers the issue of energy security of the countries of East Baltic, which depend heavily on a single energy supplier — Russia. In recent years, the countries of the region have announced several LNG terminal construction projects. The European Union will provide political and financial support to only one of these projects. The paper explores the role of gas and energy in the economy of the Eastern Baltic countries. The author concludes that the countries mostly dependent on Russian gas are Lithuania and Latvia. The announced LNG terminal projects are being reviewed in detail. Their necessity is estimated from the perspective of the current and future demand for natural gas, including the terms and conditions of contracts concluded with OAO Gazprom. Different scenarios and prospects for individual LNG terminal projects and associated pipeline infrastructure are evaluated. It is shown that the inability of countries to find a political compromise on this issue and the terms of existing contracts for Russian gas, as well as low domestic demand for gas hamper the implementation of a regional LNG terminal project even in the long term.

  17. Natural gas passenger vehicles: challenges and way forward

    International Nuclear Information System (INIS)

    Sahari, B. B.; Hamouda, A. M. S.

    2006-01-01

    Natural gas vehicles have been used in the world for many years: at present, there are about 3 million vehicles running on natural gas and many governments and vehicle manufactures are involved in programs for further developing the market for natural gas vehicles. In comparison to other forms of energy for vehicles, natural gas (NG) engenders low pressures on the environment. At the same time, because of its technical characteristics, NG is very suitable for motor use. The economic advantage of converting a vehicles (NGVs) would be expected to attract the interest of a great number of people, and achieve rapid and widespread diffusion. On the contrary, traditional fuels still dominate the scene, and show no sign of going out of fashion. The use of natural gas as automotive fuel has become of national and worldwide interests particularly so with the recent increase in petrol price, depleting petrol reserves and stringent control of exhaust emission levels. For automotive applications, shifting from petrol to gas needs technological research and development. Within the framework of the reciprocating piston based engine this development is very challenging with technological issues of low range, refueling infrastructure, heavy fuel storage, safety, emissions control and gas operating pressures. Other issues include available expertise and experience in research management. This paper describes the advances being made with passenger vehicles natural gas engines worldwide and in Malaysia more specific. The significant milestones in the development of NGV in Malaysia and the rationale behind the choice of NGV industry including the NGV vehicle population growth, the development of service station as well as the expansion of the sales volume will be illustrated. The presentation presents also development stages and advances in development, fabrication and testing a Compressed Natural Gas Direct Injection vehicle and NGV refueling station. This presentation discuses the

  18. Investment in transport infrastructure, regulation, and gas-gas competition

    Energy Technology Data Exchange (ETDEWEB)

    Gasmi, Farid [Toulouse School of Economics (ARQADE and IDEI), Universite Toulouse 1 Capitole (France); Oviedo, Juan Daniel [Universidad del Rosario (Colombia)

    2010-05-15

    This paper develops a simple model in which a regulated (upstream) transporter provides capacity to a marketer competing in output with an incumbent in the (downstream) gas commodity market. The equilibrium outcome of the firms' interaction in the downstream market is explicitly taken into account by the regulator when setting the transport charge. We consider various forms of competition in this market and derive the corresponding optimal transport charge policies. We then run simulations that allow us to perform a comparative welfare analysis of these transport infrastructure investment policies based on different assumptions about the intensity of the competition that prevails in the gas commodity market. (author)

  19. Investment in transport infrastructure, regulation, and gas-gas competition

    International Nuclear Information System (INIS)

    Gasmi, Farid; Oviedo, Juan Daniel

    2010-01-01

    This paper develops a simple model in which a regulated (upstream) transporter provides capacity to a marketer competing in output with an incumbent in the (downstream) gas commodity market. The equilibrium outcome of the firms' interaction in the downstream market is explicitly taken into account by the regulator when setting the transport charge. We consider various forms of competition in this market and derive the corresponding optimal transport charge policies. We then run simulations that allow us to perform a comparative welfare analysis of these transport infrastructure investment policies based on different assumptions about the intensity of the competition that prevails in the gas commodity market. (author)

  20. Challenges and solutions in natural gas engine development and productions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mahdi; Izanloo, Hossein [Irankhodro Powertrain Co. (IPCO) (Iran)

    2008-07-01

    As an alternative fuel, natural gas is generally accepted for internal combustion engines and some developments have been conducted in order to adopt it for the road vehicles and stationary applications. Foresights shows natural gas vehicles will be a part of the future transportation technology regarding to their mid and long-term benefits. Therefore inherent problems of natural gas engine technology should be overcome to produce a competitive engine. In this paper major problems and their possible solutions in developing and producing natural gas engine for passenger cars are detailed and discussed. Challenging materials are sorted and presented in two categorizes: technical and econo-strategical problems. In the technical section major difficulties faced in components or systems of natural gas engine are analysed in different aspects of design, validation, and production. In addition problems arisen from the fuel characteristics which influence the function and durability of engine are argued. Subjects like freezing in gas regulator, cold start fuel injection, gas leakage, impurities within compressed natural gas, variation in fuel composition, thermo-mechanics of cylinder head and block, wear of valve seat inserts, spark plug erosion, back-fire phenomenon, engine oil quality requirement, low power density and mileage are described. In the econo-strategical discussion, challenges like limited gas distribution infrastructure, lack of specific manufacturing standards and codes, and non-dedicated emission standards are explained. In both part of the paper a comprehensive view is extended to clarify the effect, risk and solutions of each problem. Due to the fact that almost all information and analysis presented in this paper are based on the experience of developing a natural gas engine family, and an extensive literature review, discussions and conclusions could be useful as a guide line for future natural gas engine projects. (orig.)

  1. Controlling Methane Emissions in the Natural Gas Sector. A Review of Federal and State Regulatory Frameworks Governing Production, Gathering, Processing, Transmission, and Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Paranhos, Elizabeth [Energy Innovation Partners, Seoul (South Korea); Kozak, Tracy G. [Energy Innovation Partners, Seoul (South Korea); Boyd, William [Univ. of Colorado, Boulder, CO (United States); Bradbury, James [U.S. Department of Energy, Washington, DC (United States); Steinberg, D. C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arent, D. J. [Joint Inst. for Strategic Energy Alaysis, Washington, DC (United States)

    2015-04-23

    This report provides an overview of the regulatory frameworks governing natural gas supply chain infrastructure siting, construction, operation, and maintenance. Information was drawn from a number of sources, including published analyses, government reports, in addition to relevant statutes, court decisions and regulatory language, as needed. The scope includes all onshore facilities that contribute to methane emissions from the natural gas sector, focusing on three areas of state and federal regulations: (1) natural gas pipeline infrastructure siting and transportation service (including gathering, transmission, and distribution pipelines), (2) natural gas pipeline safety, and (3) air emissions associated with the natural gas supply chain. In addition, the report identifies the incentives under current regulatory frameworks to invest in measures to reduce leakage, as well as the barriers facing investment in infrastructure improvement to reduce leakage. Policy recommendations regarding how federal or state authorities could regulate methane emissions are not provided; rather, existing frameworks are identified and some of the options for modifying existing regulations or adopting new regulations to reduce methane leakage are discussed.

  2. The domestic natural gas industry in developing countries

    International Nuclear Information System (INIS)

    Klass, D.L.; Khan, R.A.; Khwaja, S.

    1992-01-01

    The domestic natural gas industry has generally exhibited slow growth in most developing countries that are fortunate enough to have sufficient proved gas reserves to meet energy needs. But supportive government policies that promote the use of indigenous reserves are now beginning to have a positive impact in many parts of the world. Supply and distribution infrastructures are being built or modernized. And natural gas is now or will be available at prices that encourage the displacement of competitive fuels in the larger, energy-intensive industrial and power-generation markets of these countries. It is expected that the domestic gas industry in many developing countries will expand at higher rates than in the past. In the next few decades, the resulting benefits will include reductions in oil consumption per capita, improvements in the balance of payments for oil-importing and exporting developing countries, greater efficiency of energy usage and lower energy consumption per output unit, and improved environmental quality. The national economies and living standards will also undergo significant advancement

  3. Overview of use of natural gas on heavy duty vehicles in Brazil; Panorama da utilizacao do gas natural veicular em veiculos pesados no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos; Melo, Tadeu Cavalcante Cordeiro de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Area de Desempenho de Produtos em Motores; Lastres, Luiz Fernando Martins [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Gerencia de Lubrificantes e Produtos Especiais

    2004-07-01

    The use of vehicular natural gas (VNG) was initiated in Brazil in he 80's seeking the replacement of diesel in heavy vehicles due to the oil crisis. In this season PETROBRAS participated, along with other companies, in the development of conversion technologies for replacement part of the diesel by natural gas through systems known as diesel-gas. Were made works to development bank of tests of engines and field tests on some bus companies, verifying if there are technical and economic viability of such conversion. Due to factors such as small mesh distribution of natural gas in Brazil, lack of infrastructure of technical support suitable for conversions and lack of culture in the use of natural gas, the program not progressed and experience was interrupted. Other experiments were conducted in Brazil with the use of engines dedicated to natural gas (Otto cycle) developed and manufactured in the country for use in urban buses. Currently there is a scenario favorable to the return of use of natural gas in weighed vehicles by the following factors: 1) increase the mesh distribution of VNG due to the high growth of the fleet light vehicles to VNG in the country, solving part of the problems of logistics; 2) pressure from environmental agencies by values of emissions of particles and gases ever less pollutants in urban centers; 3) excess supply of natural gas in the domestic market due to new discoveries in Brazil, contracts for the import of natural gas signed with Bolivia and low demand for current industrial consumption of gas; 4) need to replace the import of diesel, which weighs in trade of the country. This paper will be presented some experiences with the technology of diesel-gas and the engine dedicated the VNG in weighed vehicles in Brazil. Also some recommendations will be made to increase and spread the use of these technologies, aiming to increase the replacement of diesel by vehicular natural gas in weighed vehicles. (author)

  4. Natural gas monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  5. Long-term contracts for European gas supply - an empirical analysis of the changing nature of pipeline and LNG-contracts

    International Nuclear Information System (INIS)

    Neumann, Anne

    2005-01-01

    As the structure of the European natural gas market is evolving towards more competition and more diverse market structures than before, the nature of the long-term contracts for European natural gas supply is also undergoing change. Experience from other liberalization processes, such as in the U.S. or the UK, suggests that the importance of long-term contracts diminishes over time, but that they remain an important element of supply. In Europe long-term contracts are still considered as a firm basis for investment and financing of capital-intensive infrastructure with a high degree of asset and relationship-specificity. Literature on institutional economics also suggests that long-term contracts act as a device to overcome the ''hold-up'' problem of relationship-specific investments in infrastructure (Klein, Crawford, and Alchian, 1987; Williamson, 1975, 1985). On the other hand, Hartley and Brito (2002) show that more flexible markets also imply a lower degree of asset specificity, thus requiring less fixed contracts. This paper explores the changing nature of long-term contracts for European natural gas supply, with a particular focus on differences between contracts for pipeline gas and liquefied natural gas (LNG). Traditionally, Europe relied on very long-term contracts for pipeline gas (Russia, Norway, Algeria). More recently, increasing LNG supplies are contemplated as a more flexible source of natural gas: The international LNG market is becoming more flexible, LNG can be sourced from a variety of sellers, and the cost of LNG supplies and infrastructure is coming down rapidly (Jensen, 2004). Thus, the evaluation of investing in LNG infrastructure (and the so bought flexibility and possibility of arbitraging profits) may be higher than committing to fixed/predetermined flows of pipeline gas. We ask whether this is reflected in the observed contracts. The paper is based on standard contract theory (Bolton and Dewatripont, 2005). We apply a microeconomic

  6. Oil and gas to Europe - An overview of existing and planned infrastructures

    International Nuclear Information System (INIS)

    Nies, Susanne; Schuelke, Christian

    2011-04-01

    The European Union's Hydrocarbon energy supply depends heavily on imports. While the European Commission has recommended diversifying and increasing domestic resources, notably with renewable resources which should grow to 20 % by 2020, dependence on hydrocarbon imports will remain not only substantial, but will increase. Particular attention must thus be paid to the question of transportation, and also to the countries of origin, investments in infrastructures, their protection, relations with transit countries, 'competing consumers' (notably China and emerging countries, but also the United States), energy wastefulness in producing countries, and finally, price. Security of supply depends on adequate and reliable infrastructure, and must always be thought of in the long term. This entirely revised edition of the fourth study conducted by the European Governance and Geopolitics of Energy Program at Ifri includes discussions about pipeline routes and potential outputs, their current use and financial requirements for transportation, ongoing projects and those planned for the future, their cost, their financing and their probable operational start-up date. While all infrastructures are necessarily examined (including Norway, the United Kingdom, and North Africa), particular attention is paid to transportation infrastructure that connects Europe with Russia and the former Soviet Union (Central Asia, Caspian Sea). It will be immediately clear that the issue of gas is dominant in current discussions. Contents: 1. Setting up Gas and Oil Infrastructures in Europe. 2. EU Actions on Gas and Oil Infrastructure. 3. Oil Transport to the EU. IV. Gas from the North, South and East - European Demand for Gas and Sources of Supply. V. Turkey and Ukraine: Two Major Transit Countries for EU. VI. Conclusion and Prospectus. Appendix

  7. Strategic analysis on establishing a natural gas trading hub in China

    Directory of Open Access Journals (Sweden)

    Xiaoguang Tong

    2014-12-01

    Full Text Available Since 2010, the LNG importing price premium in the Asia–Pacific markets has become increasingly high, generating great effects on the economic development in China. In addition, the natural gas dependence degree is expanding continuously, making it extremely urgent to establish a natural gas trading hub in China, with the aim to ensure national energy security, to gain the pricing power, and to build the regional benchmark prices. Through a comparative analysis of internal strength/weakness and external competitiveness, we concluded that with intensively-issued supporting policies on the natural gas sector, the initiation of spot and futures markets, the rapid growth of gas production and highly-improved infrastructures, as well as Shanghai's advantageous location, China has more advantages in establishing an Asian Natural Gas Trading Hub than other counties like Singapore, Japan and Malaysia. Moreover, based on the SWOT (strength, weakness, opportunity and threat and the marketization process analysis, the following strategies were presented: to impel the establishment of a natural gas trading hub depending on the gas supply condition, to follow the policies to complete the gas storage system, to form regional communities by taking comparative advantages, and to reinforce the marketization reform and regulation system establishment with foreign experiences for reference. This study rationalized the necessity and practicality of establishing a natural gas trading hub in China and will help China make a proper decision and find a periodical strategic path in this sector.

  8. The obstacles for the investments in natural gas distribution infrastructure in Brazil; Os obstaculos aos investimentos na rede de distribuicao de gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Edmar Luiz Fagundes de; Bueno, Salua Saud; Selles, Vitor [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Economia

    2004-07-01

    This paper analyses the main obstacles for the expansion of the Brazilian gas distribution pipelines infrastructure. The paper examines the evolution of investments in the gas chain and highlights the existence of an important unbalance between the level of investments in the upstream and transportation segments and the level of investment in the distribution network. It is clear that the level of investments in the distribution segment is not following the pace of expansion of the other segments. Given this conclusion, the paper examines the potential for increasing the level of investment in the distribution segment by augmenting the debt level of distribution companies. By analyzing the main distribution companies' financial statements, the paper shows that they there is room for an expansion in investments through financial leverage. Finally, the paper examines the main financing obstacles that impede the companies to increase their investment level. (author)

  9. New energy efficiency technologies associated with increased natural gas demand in delivery and consumption sectors of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Alghalandis, Saeid Mansouri

    2010-09-15

    Increasing population and economic growth in developing countries has changed their energy consumption patterns. So, the conventional systems of energy supply have become inadequate to deal with rising energy demand. Iran has great reservoirs of natural gas and its natural gas usage is far more than average international standard. Dominance of natural gas share in energy basket in Iran, make it necessary to consider energy efficient technologies and solutions for this domain. In this study new technologies for increasing energy efficiency (EE) in natural gas delivery and consumption sub sectors are discussed and evaluated according to available infrastructures in Iran.

  10. 75 FR 42432 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-07-21

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... abandonment of facilities by Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... resources, fisheries, and wetlands; Cultural resources; Vegetation and wildlife; Endangered and threatened...

  11. Compressed natural gas as a vehicle to promote development of consumer market in Campina Grande - PB (Brazil); O gas natural comprimido como fomentador do desenvolvimento do mercado consumidor de gas natural na regiao de Campina Grande - PB

    Energy Technology Data Exchange (ETDEWEB)

    Bonfim, Marcelo dos Santos; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)

    2004-07-01

    Investments required for natural gas distribution networks are high. The use of compressed natural gas (CNG) is seen as a way to prepare and develop consuming markets to receive those networks. This paper outlines the socio-economic context and the reasons that motivated the creation of a CNG project in Campina Grande, in the state of Paraiba. Technical aspects of project implementation are described, including difficulties encountered and courses of action undertaken as a result. Other aspects considered include the social and economic impact and local consumer's expectations with the arrival of new fuel. The study also considers factors relevant to the project such as the distance from the pressure measurement and regulation station, transported volumes, technology used, infrastructure and road conditions. (author)

  12. Natural gas resources in Canada

    International Nuclear Information System (INIS)

    Meneley, R.A.

    2001-01-01

    Natural gas is an important component in many of the technologies aimed at reducing greenhouse gas emissions. In order to understand the role that natural gas can play, it is important to know how much may be present, where it is, when can it be accessed and at what cost. The Canadian Gas Potential Committee has completed its second report 'Natural Gas Potential in Canada - 2001' (CGPC, 2001). This comprehensive study of exploration plays in Canada addresses the two issues of 'how much may be present' and 'where is it'. The Report deals with both conventional gas and non-conventional gas. One hundred and seven Established Conventional Exploration Plays, where discoveries of gas exist, have been assessed in all of the sedimentary basins in Canada. In addition, where sufficient information was available, twelve Conceptual Exploration Plays, where no discoveries have been made, were assessed. Sixty-five other Conceptual Plays were described and qualitatively ranked. An experienced volunteer team of exploration professionals conducted assessments of undiscovered gas potential over a four-year period. The team used technical judgment, statistical techniques and a unique peer review process to make a comprehensive assessment of undiscovered gas potential and estimates of the size of individual undiscovered gas accumulations. The Committee assessed all gas in place in individual exploration plays. For Established Plays, estimates of Undiscovered Nominal Marketable Gas are based on the percentage of the gas in place that is marketable gas in the discovered pools in a play. Not all of the Nominal Marketable Gas will be available. Some underlies areas where exploration is not possible, such as parks, cities and other closed areas. Some will be held in gas pools that are too small to be economic and some of the pools will never be found. In some areas no production infrastructure will be available. Detailed studies of individual exploration plays and basins will be required

  13. Is further deregulation of the natural gas industry beneficial : discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    Hoey, P.J. [Anbrer Consulting, Ottawa, ON (Canada)

    2004-11-01

    Energy market liberalization is a world trend that has prompted the deregulation of natural gas and electricity over the past twenty years in North America. The Ontario Energy Board and the National Energy Board are conducting public hearings on natural gas regulation in response to the request by Canadian energy industries for better regulatory streamlining. The following 5 issues regarding natural gas regulation in Canada have been examined: (1) system gas in a regulated market, (2) natural gas infrastructure investments and capital renewal, (3) improving efficiency in gas regulation, (4) expectations of performance-based regulation (PBR) in the natural gas industry, and (5) the debate whether further deregulation of the natural gas industry is beneficial. This paper examines if a competitive market exists in natural gas distribution and discusses the opportunities for further deregulation of the distribution and storage aspects of the industry. It was noted that the regulatory regime in Ontario will depend on how the Ontario Energy Board deals with issues regarding natural gas storage services. This paper also examines if new storage facilities can charge cost-based or market-based prices as well as the appropriate rate of return on capital to be used to determine those rates. It also examines what the requirement for non-discriminatory access to and from new storage facilities to the Dawn Hub and access to transmission capacity on Union Gas's Dawn to Trafalger pipeline system. Alternative fuels, franchises, bypasses, gated communities, distributed generation, market power and policy issues are the main factors that are considered in assessing the competition in natural gas distribution. It was concluded that further deregulation of the natural gas distribution system in Ontario is not warranted since there is not much possibility in developing a competitive market for distribution services in the short-term. However, the development of storage facilities

  14. Is further deregulation of the natural gas industry beneficial : discussion paper

    International Nuclear Information System (INIS)

    Hoey, P.J.

    2004-11-01

    Energy market liberalization is a world trend that has prompted the deregulation of natural gas and electricity over the past twenty years in North America. The Ontario Energy Board and the National Energy Board are conducting public hearings on natural gas regulation in response to the request by Canadian energy industries for better regulatory streamlining. The following 5 issues regarding natural gas regulation in Canada have been examined: (1) system gas in a regulated market, (2) natural gas infrastructure investments and capital renewal, (3) improving efficiency in gas regulation, (4) expectations of performance-based regulation (PBR) in the natural gas industry, and (5) the debate whether further deregulation of the natural gas industry is beneficial. This paper examines if a competitive market exists in natural gas distribution and discusses the opportunities for further deregulation of the distribution and storage aspects of the industry. It was noted that the regulatory regime in Ontario will depend on how the Ontario Energy Board deals with issues regarding natural gas storage services. This paper also examines if new storage facilities can charge cost-based or market-based prices as well as the appropriate rate of return on capital to be used to determine those rates. It also examines what the requirement for non-discriminatory access to and from new storage facilities to the Dawn Hub and access to transmission capacity on Union Gas's Dawn to Trafalger pipeline system. Alternative fuels, franchises, bypasses, gated communities, distributed generation, market power and policy issues are the main factors that are considered in assessing the competition in natural gas distribution. It was concluded that further deregulation of the natural gas distribution system in Ontario is not warranted since there is not much possibility in developing a competitive market for distribution services in the short-term. However, the development of storage facilities in

  15. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-03-22

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... notice that on March 5, 2010, Northern Natural Gas Company (Northern Natural), 1111 South 103rd Street, Omaha, Nebraska 68124- 1000, filed on behalf of itself and other owners, Southern Natural Gas Company...

  16. Interdependency Assessment of Coupled Natural Gas and Power Systems in Energy Market

    Science.gov (United States)

    Yang, Hongzhao; Qiu, Jing; Zhang, Sanhua; Lai, Mingyong; Dong, Zhao Yang

    2015-12-01

    Owing to the technological development of natural gas exploration and the increasing penetration of gas-fired power generation, gas and power systems inevitably interact with each other from both physical and economic points of view. In order to effectively assess the two systems' interdependency, this paper proposes a systematic modeling framework and constructs simulation platforms for coupled gas and power systems in an energy market environment. By applying the proposed approach to the Australian national electricity market (NEM) and gas market, the impacts of six types of market and system factors are quantitatively analyzed, including power transmission limits, gas pipeline contingencies, gas pipeline flow constraints, carbon emission constraints, power load variations, and non-electric gas load variations. The important interdependency and infrastructure weakness for the two systems are well studied and identified. Our work provides a quantitative basis for grid operators and policy makers to support and guide operation and investment decisions for electric power and natural gas industries.

  17. Risks in global natural gas markets: Investment, hedging and trade

    International Nuclear Information System (INIS)

    Egging, Ruud; Holz, Franziska

    2016-01-01

    Recent supply security concerns in Europe have revived interest into the natural gas market. We investigate infrastructure investment and trade in an imperfect market structure for various possible risks for both supply and demand. We focus on three possible scenarios in a stochastic global gas market model: (i) transit of Russian gas via Ukraine that may be disrupted from 2020 on; (ii) natural gas intensity of electricity generation in OECD countries that may lead to higher or lower natural gas demand after 2025; and (iii) availability of shale gas around the globe after 2030. We illustrate how the timing of investments is affected by inter-temporal hedging behavior of market agents, such as when LNG capacity provides ex-ante flexibility or an ex-post fallback option if domestic or nearby pipeline supply sources are low. Moreover, we find that investment in LNG capacities is more determined by demand side pull – due to higher needs in electric power generation – than by supply side push, e.g. higher shale gas supplies needing an outlet. We focus on Europe, North America, and China that are the world's most important gas consuming and supplying regions. - Highlights: •We use the stochastic variant of the multi-period Global Gas Model. •We investigate the effects of uncertainty in Russian exports, demand, and shale gas. •We find that LNG is preferred as hedging option in anticipation of uncertain events. •Pipelines may be chosen as recourse decision after uncertain events realized. •China will dominate the global natural gas market regardless the scenario.

  18. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    Science.gov (United States)

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  19. Decision support in the natural gas distribution process of the Ceara state, Brazil; Apoio a decisao no processo de distribucao do gas natural no ambito do estado do Ceara

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Clarice Augusta Carvalho; Arruda, Joao Bosco Furtado; Nobre, Junior, Ernesto Ferreira [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Engenharia de Transportes. Nucleo de Pesquisa em Logistica, Transporte e Desenvolvimento (NUPELTD); br, barruda@det ufc; br, nobre@det ufc

    2003-07-01

    The participation of natural gas has improved more and more in Brazilian energetic die. In Ceara, the use of natural gas has increased a lot and the expectations are the best. However it's necessary to guarantee a better infrastructure of distribution and interaction among the actors of the sector. This paper is part of a bigger project that intends to contribute with this improvement through an application of multicriteria techniques in the natural gas distribution process in Ceara. The aim of the project is to choose the market segment to be prioritized due to a possible context of restriction of gas offer in order of its potential demands. Nowadays paper, however, only makes a quick analysis of the actual gas situation in Ceara and a small explanation about multicriteria techniques, specifically, the analytic hierarchy process (AHP). Besides, through a simulation of the problem and an application of the analytic hierarchy process, this paper intends to demonstrate the applicability of these methods in this problem. (author)

  20. Decision support in the natural gas distribution process of the Ceara state, Brazil; Apoio a decisao no processo de distribucao do gas natural no ambito do estado do Ceara

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Clarice Augusta Carvalho; Arruda, Joao Bosco Furtado; Nobre Junior, Ernesto Ferreira [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Engenharia de Transportes. Nucleo de Pesquisa em Logistica, Transporte e Desenvolvimento (NUPELTD)]. E-mail: claricerabelo@aol.com; barruda@det.ufc.br; nobre@det.ufc.br

    2003-07-01

    The participation of natural gas has improved more and more in Brazilian energetic die. In Ceara, the use of natural gas has increased a lot and the expectations are the best. However it's necessary to guarantee a better infrastructure of distribution and interaction among the actors of the sector. This paper is part of a bigger project that intends to contribute with this improvement through an application of multicriteria techniques in the natural gas distribution process in Ceara. The aim of the project is to choose the market segment to be prioritized due to a possible context of restriction of gas offer in order of its potential demands. Nowadays paper, however, only makes a quick analysis of the actual gas situation in Ceara and a small explanation about multicriteria techniques, specifically, the analytic hierarchy process (AHP). Besides, through a simulation of the problem and an application of the analytic hierarchy process, this paper intends to demonstrate the applicability of these methods in this problem. (author)

  1. Huge natural gas reserves central to capacity work, construction plans in Iran

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Questions about oil production capacity in Iran tend to mask the country's huge potential as a producer of natural gas. Iran is second only to Russia in gas reserves, which National Iranian Gas Co. estimates at 20.7 trillion cu m. Among hurdles to Iran's making greater use of its rich endowment of natural gas are where and how to sell gas not used inside the country. The marketing logistics problem is common to other Middle East holders of gas reserves and a reason behind the recent proliferation of proposals for pipeline and liquefied natural gas schemes targeting Europe and India. But Iran's challenges are greater than most in the region. Political uncertainties and Islamic rules complicate long-term financing of transportation projects and raise questions about security of supply. As a result, Iran has remained mostly in the background of discussions about international trade of Middle Eastern gas. The country's huge gas reserves, strategic location, and existing transport infrastructure nevertheless give it the potential to be a major gas trader if the other issues can be resolved. The paper discusses oil capacity plans, gas development, gas injection for enhanced oil recovery, proposals for exports of gas, and gas pipeline plans

  2. Alternative ways to transport natural gas; Transporte alternativo de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Moura, N.R.; Campos, F.B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The Brazilian energy matrix has been showing a huge increase in the demand of natural gas due mainly to industries and power plants. Today the Brazilian gas market is supplied with gas produced by PETROBRAS and imported from Bolivia. To increase the Brazilian gas supply, on the short and middle term, PETROBRAS will import LNG (liquefied natural gas) and exploit the new offshore fields discovered on the pre-salt area. The only proven technology available today to bring this offshore gas to the market is the pipeline, but its costs for the pre-salt area are high enough to keep the solution economically attractive. So, PETROBRAS are evaluating and developing alternative ways to transport offshore gas, such as LNG, CNG (Compressed Natural Gas), GTS (Gas-to-Solids or Natural Gas Hydrates) and ANG (Adsorbed Natural Gas). Using information available in the literature, this paper analyses the main concepts of CNG and LNG floating unities. This paper also presents the PETROBRAS R and D results on ANG and GTS aiming at offshore application. (author)

  3. The 2013 Natural Gas Year in Review. CEDIGAZ' First Estimates

    International Nuclear Information System (INIS)

    2014-01-01

    The world gas expansion had already shown its limits in 2012 when apparent gas demand had only increased by 2.3%, down from an average growth of 2.8% per year in the previous decade. In 2013, the growth in apparent gas demand slowed even more substantially to 0.8%, according to CEDIGAZ's first estimates. The growth of natural gas has been limited by several factors on both the demand and supply sides against a background of economic and geopolitical turmoil. On the demand side, natural gas still suffers in particular from severe competition with coal in the power generation sector. The singular case of the European gas market is quite instructive. However, natural gas continued to gain ground against fuel oil in most markets. Japan's power generation mix was nuclear free by the end of the year, due to the maintenance period on the two reactors still in operation, despite strong support from the government to restart some of the country's 50 reactors. However, the recourse to LNG imports to compensate for the nuclear shortfall was less apparent in 2013, as conservation measures by consumers in a context of high import prices reduced electricity consumption. Japan's gas demand is now limited by the capacity of both its LNG importing infrastructures and combined-cycle gas power plants. The future pace of restarts of nuclear reactors in Japan remains a matter of speculation. Japan's nuclear malaise has spilled over into neighbouring South Korea, where reactors have been shut by a safety certificate scandal and by other safety issues. These developments create further uncertainties on the LNG demand prospects in Northeast Asia. The global growth in natural gas has been increasingly constrained by supply and investment issues. On the supply side, the gas supply shortfall is generally due to the decline of mature and conventional fields, and an insufficient renewal of reserves. In most regions the reserves-to-replacement ratio has followed a

  4. The importance of LNG for natural gas consumption in the EU

    Directory of Open Access Journals (Sweden)

    Metelska Klaudia

    2016-01-01

    Full Text Available The World market of liquefied natural gas (LNG is growing rapidly. In 2015 LNG production exceeded 333 bcm with its predicted increase up to 450 bcm in 2019. The analysis of LNG role in natural gas import to the EU in recent years shows variability: LNG share in overall import reached 25% in 2011 and it went down to 15% in 2014. The smaller demand for natural gas including LNG in the EU can be due to, among others, a slower economic growth and a dynamic development of the use of renewable energy sources. The article shows the role of natural gas in the structure of consumption of primary energy as well as the changes in demand for natural gas in the years 2007–2014 for the main groups of end users: industry, energy production and individual households. The biggest fall in demand for natural gas has been observed in energy production sector in recent years. This publication continues to analyse the structure of natural gas supplies to the EU, with special emphasis on the directions of LNG import to the countries such as: The UK, Spain, France, Greece, Belgium, Portugal, Italy, Lithuania and The Netherlands. The significance of LNG in the balance of consumption of natural gas in these countries has been presented as well as the infrastructure connected with LNG and plans of development of regasification terminals. In the summary the most important conclusions have been drawn and a chance of the increase in significance of the role of LNG in the balance of natural gas supplies has been pointed out, which is due to the steep fall of LNG prices which has taken place in recent years.

  5. Analyzing Drivers of Conflict in Energy Infrastructure Projects: Empirical Case Study of Natural Gas Pipeline Sectors

    Directory of Open Access Journals (Sweden)

    Chan Young Park

    2017-11-01

    Full Text Available Energy infrastructure projects have caused various conflicts between stakeholders, particularly among the residents around construction sites and operators. The conflicts are largely due to the “Not in My Backyard” mentality associated with hazardous projects. In natural gas pipeline (NGP projects, conflicts have been increasing with the increase in a wider range of linear projects, and they have been worsening because of the lack of clear countermeasures. This study proposes an effective conflict management strategy for NGP projects in Korea. To achieve the objectives, 25 conflict drivers were identified and 143 case-based surveys were conducted to determine the causal relationship between the drivers and the level of conflict using structural equation modeling (SEM. The SEM results show that factors such as economic (e.g., decreased value of the land, construction-related (e.g., disturbance due to using the original route and site, and safety-related characteristics (e.g., concerns about explosions and accidents are the most important in understanding the causes of conflicts. Based on the causal relationship, five key strategies were proposed to manage the critical conflicts. This study can serve as a basis for implementing better conflict management plans in the future for a more sustainable project execution.

  6. Natural gas expectations in Mexico a United States analyst's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Foss, Michelle Michot [Energy Institute, University of Houston, TX (United States)

    1996-07-01

    The United States has a mature nature gas infrastructure but still needs continued improvements and expansion. Natural gas policy in the United States at both the federal and state level has generally not provide the right incentives or signals to producers, transports, distributors or customers and, as a result, natural gas not enjoy the market share that it probably should have. In 1973, natural gas consumption in the United States was 30 percent of total energy consumption. In 1994, the share for natural gas was 25 percent. Looking at the United States experience, natural gas has potential in Mexico, but there are constraints. It is useful to keep in mind the size of Mexico's market relative to her resource base of about 70 tcf of proven reserves and the potential and probable reserves that are likely to exist. Therefore, rational decision-makers will also need to consider whether Mexico could do well by exporting natural gas to the United States. [Spanish] Los Estados Unidos tienen una infraestructura madura en gas natural, pero aun necesita mejoras continuas y expansion. La politica de gas natural en los Estados Unidos, tanto en el ambito federal como en el ambito estatal, generalmente no ha proporcionado los incentivos o senales adecuados a los productores, transportadores, distribuidores o clientes y, como resultado, el gas natural no disfruta de la participacion en el mercado que probablemente deberia tener. En 1973, el consumo de gas natural era del 30 % del total del consumo de energia. En 1994, la participacion del gas natural fue del 25%. Viendo la experiencia de los Estados Unidos, el gas natural tiene potencial en Mexico. Pero existen factores limitantes. Es conveniente tener presente el tamano del mercado de Mexico en relacion con su recurso basico de sus reservas probadas de alrededor de 70 tcf y el potencial y probables reservas que pudieran existir. Por lo tanto, los responsables de las decisiones racionales tendran tambien la necesidad de

  7. Natural gas marketing II

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing

  8. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  9. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided

  10. Multi-Period Natural Gas Market Modeling. Applications, Stochastic Extensions and Solution Approaches

    International Nuclear Information System (INIS)

    Egging, R.G.

    2010-11-01

    This dissertation develops deterministic and stochastic multi-period mixed complementarity problems (MCP) for the global natural gas market, as well as solution approaches for large-scale stochastic MCP. The deterministic model is unique in the combination of the level of detail of the actors in the natural gas markets and the transport options, the detailed regional and global coverage, the multi-period approach with endogenous capacity expansions for transportation and storage infrastructure, the seasonal variation in demand and the representation of market power according to Nash-Cournot theory. The model is applied to several scenarios for the natural gas market that cover the formation of a cartel by the members of the Gas Exporting Countries Forum, a low availability of unconventional gas in the United States, and cost reductions in long-distance gas transportation. The results provide insights in how different regions are affected by various developments, in terms of production, consumption, traded volumes, prices and profits of market participants. The stochastic MCP is developed and applied to a global natural gas market problem with four scenarios for a time horizon until 2050 with nineteen regions and containing 78,768 variables. The scenarios vary in the possibility of a gas market cartel formation and varying depletion rates of gas reserves in the major gas importing regions. Outcomes for hedging decisions of market participants show some significant shifts in the timing and location of infrastructure investments, thereby affecting local market situations. A first application of Benders decomposition (BD) is presented to solve a large-scale stochastic MCP for the global gas market with many hundreds of first-stage capacity expansion variables and market players exerting various levels of market power. The largest problem solved successfully using BD contained 47,373 variables of which 763 first-stage variables, however using BD did not result in

  11. Natural gas purchasing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    In recent years, natural gas has gained new momentum because of changes in marketing and regulations. The gas industry has always received an inordinate amount of regulatory control starting at the well head where the gas is produced to the consuming burner tip. Regulations have drastically impacted the availability of gas. Changes in the marketing and regulations have made the natural gas market sensitive at the point of production, the well head. Now, with plentiful supply and ease of transportation to bring the gas from the producing fields to the consumer, natural gas markets are taking advantage of the changed conditions. At the same time, new markets are developing to take advantage of the changes. This section shows consumers, especially the energy planners for large buyers of fuel, the advantages, sources and new methods of securing natural gas supplies. Background on how natural gas is produced and marketed are given. This section lists marketing sources, regulatory agencies and information groups available to help buyers and consumers of this important fuel for US industries and residences. 7 figs., 8 tabs

  12. Natural gas corridors among the EU and its main suppliers. Simulation results with the dynamic GASTALE model

    International Nuclear Information System (INIS)

    Lise, W.; Van Oostvoorn, F.; Hobbs, B.F.

    2006-06-01

    European demand for natural gas has grown and is expected to expand considerably in the next decades. This growth is partly induced by the environmental policy targets, e.g., the Kyoto protocol, and the European energy market liberalisation. However, this development also poses a challenge for the energy consumers in the EU and other gas importing countries with respect to the increasing dependency on gas imports and consequently also the security of gas supplies. First, briefly the business-as-usual (BAU) scenario with a focus on the required gas infrastructure is presented. The analysis focuses on interactions among demand, supply and gas transport infrastructure, pipeline and LNG transport, storage, and necessary investments in the natural gas market over the period 2005-2030. For dealing with the great uncertainties that are part of our long term future, a number of policy scenarios in addition to the BAU case are formulated to study the impact of demand uncertainty and delaying investment behaviour on the gas transport infrastructure (pipeline transport, LNG facilities and storage capacity) required in the long run in Europe. In addition, some of the key tradeoffs among investments in pipelines, LNG liquifaction and regasification facilities, and storage capacity are investigated. The analyses in this paper indicate that substantial investments in gas transport corridors are needed to provide for security of supply. Especially the pipeline connections running from East to West need to be prioritised. The future gas price largely depends upon the sufficient availability of gas from Russia, Iran, and Central Asian countries

  13. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  14. Systematic risk assessment methodology for critical infrastructure elements - Oil and Gas subsectors

    Science.gov (United States)

    Gheorghiu, A.-D.; Ozunu, A.

    2012-04-01

    The concern for the protection of critical infrastructure has been rapidly growing in the last few years in Europe. The level of knowledge and preparedness in this field is beginning to develop in a lawfully organized manner, for the identification and designation of critical infrastructure elements of national and European interest. Oil and gas production, refining, treatment, storage and transmission by pipelines facilities, are considered European critical infrastructure sectors, as per Annex I of the Council Directive 2008/114/EC of 8 December 2008 on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection. Besides identifying European and national critical infrastructure elements, member states also need to perform a risk analysis for these infrastructure items, as stated in Annex II of the above mentioned Directive. In the field of risk assessment, there are a series of acknowledged and successfully used methods in the world, but not all hazard identification and assessment methods and techniques are suitable for a given site, situation, or type of hazard. As Theoharidou, M. et al. noted (Theoharidou, M., P. Kotzanikolaou, and D. Gritzalis 2009. Risk-Based Criticality Analysis. In Critical Infrastructure Protection III. Proceedings. Third Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection. Hanover, New Hampshire, USA, March 23-25, 2009: revised selected papers, edited by C. Palmer and S. Shenoi, 35-49. Berlin: Springer.), despite the wealth of knowledge already created, there is a need for simple, feasible, and standardized criticality analyses. The proposed systematic risk assessment methodology includes three basic steps: the first step (preliminary analysis) includes the identification of hazards (including possible natural hazards) for each installation/section within a given site, followed by a criterial analysis and then a detailed analysis step

  15. Natural gas outlook

    International Nuclear Information System (INIS)

    Molyneaux, M.P.

    1998-01-01

    An overview of natural gas markets in Canada and in the United States was provided. The major factors that determine the direction of natural gas prices were depicted graphically. Price volatility has decreased in recent months. As expected, April through November total energy consumption reached historically high levels. Demand for natural gas during the summer of 1997 was not as strong as anticipated. Nuclear energy appears to be on the slippery slope, with natural gas-driven electricity projects to fill the void. Hydroelectricity had a strong showing in 1997. Prospects are less bright for 1998 due to above average temperatures. Canadian natural gas export capacity has increased 5.5 times between 1986 and estimated 1999 levels. Despite this, in 1997, deliveries to the United States were marginally behind expectations. Natural gas consumption, comparative fuel prices, natural gas drilling activity, natural gas storage capacity, actual storage by region, and average weekly spot natural gas prices, for both the U. S. and Canada, were also provided. With regard to Canada, it was suggested that Canadian producers are well positioned for a significant increase in their price realization mostly because of the increase in Canada's export capacity in 1997 (+175 Mmcf/d), 1998 (1,060 Mmcf/d) and potentially in 1999 or 2000, via the Alliance Pipeline project. Nevertheless, with current production projections it appears next to impossible to fill the 10.9 Bcf/d of export capacity that will be potentially in place by the end of 1999. tabs., figs

  16. Canadian natural gas liquids : market outlook 2000 - 2010

    International Nuclear Information System (INIS)

    Gill, L.; Mortensen, P.

    2001-01-01

    This study provides a comprehensive analysis of the availability of Canadian natural gas liquids. The analysis was developed from production profiles and gas compositions for individual gas pools and takes into account the effects of market factors. On the demand side, the effects of new infrastructure and changes in corporate structures have been evaluated. The study was initiated at a time when energy prices were stable and the major concern was to see how the addition of the Alliance pipeline, the Aux Sable gas processing plant, the Empress V straddle plant and the Nova/UCC E3 ethylene plant would affect the Canadian liquids business. The study was complicated by the advent of unexpected factors affecting the supply and demand of natural gas liquids (NGLs). These included extremely high prices for natural gas, an apparent inability of the supply basin to respond to the high gas prices with increased supply, and the very high electricity costs in Alberta. The weak supply of NGLs coincides with the increase in ethane demand from the start-up of Alberta's fourth ethylene facility and the addition of the high vapour pressure Alliance pipeline. This weak supply suggests there will be an ethane shortage for at least the next few years. The longer term outlook, however, is less certain and will require an analysis of the outlook for gas production, gas composition and NGL extraction capacity. This study developed two forecasts for natural gas prices. Both presume rising gas demand across North America driven by increased gas use for power generation. The Low Case assumes modest growth in domestic Canadian gas demand and the High case predicts strong growth in domestic demand as higher levels of exports to the United States, resulting in a doubling in growth for Canadian gas production from 2000-2015 compared to the Low Case. Both High and Low Case scenarios suggest that prices will decline from current levels so that Alberta plant gate prices fall by 2005 and will then

  17. Canadian natural gas liquids : market outlook 2000 - 2010

    Energy Technology Data Exchange (ETDEWEB)

    Gill, L.; Mortensen, P.

    2001-04-01

    This study provides a comprehensive analysis of the availability of Canadian natural gas liquids. The analysis was developed from production profiles and gas compositions for individual gas pools and takes into account the effects of market factors. On the demand side, the effects of new infrastructure and changes in corporate structures have been evaluated. The study was initiated at a time when energy prices were stable and the major concern was to see how the addition of the Alliance pipeline, the Aux Sable gas processing plant, the Empress V straddle plant and the Nova/UCC E3 ethylene plant would affect the Canadian liquids business. The study was complicated by the advent of unexpected factors affecting the supply and demand of natural gas liquids (NGLs). These included extremely high prices for natural gas, an apparent inability of the supply basin to respond to the high gas prices with increased supply, and the very high electricity costs in Alberta. The weak supply of NGLs coincides with the increase in ethane demand from the start-up of Alberta's fourth ethylene facility and the addition of the high vapour pressure Alliance pipeline. This weak supply suggests there will be an ethane shortage for at least the next few years. The longer term outlook, however, is less certain and will require an analysis of the outlook for gas production, gas composition and NGL extraction capacity. This study developed two forecasts for natural gas prices. Both presume rising gas demand across North America driven by increased gas use for power generation. The Low Case assumes modest growth in domestic Canadian gas demand and the High case predicts strong growth in domestic demand as higher levels of exports to the United States, resulting in a doubling in growth for Canadian gas production from 2000-2015 compared to the Low Case. Both High and Low Case scenarios suggest that prices will decline from current levels so that Alberta plant gate prices fall by 2005 and will

  18. Joint Costs in Electricity and Natural Gas Distribution Infrastructures: The Role of Urban Factors

    Directory of Open Access Journals (Sweden)

    Muzeyyen Anil Senyel

    2018-04-01

    Full Text Available This paper analyzes the joint cost structure of electricity and natural gas distribution investments. Assessing the joint costs is critical for urban development and public policy regarding competition at the local level. The paper accounts for the urban and geographic factors at the local level, while the previous literature primarily used company-level data with a few or no site-specific variables in joint cost analyses. An empirical analysis of the multi-utility capital costs suggests that the local urban and geographic conditions affect such costs, with economies of scope present in electricity and natural gas both in terms of total costs and underground investment costs. Hence, the joint service provision makes economic and environmental sense for urban policy makers.

  19. Coalbed methane : evaluating pipeline and infrastructure requirements to get gas to market

    International Nuclear Information System (INIS)

    Murray, B.

    2005-01-01

    This Power Point presentation evaluated pipeline and infrastructure requirements for the economic production of coalbed methane (CBM) gas. Reports have suggested that capital costs for CBM production can be minimized by leveraging existing oil and gas infrastructure. By using existing plant facilities, CBM producers can then tie in to existing gathering systems and negotiate third party fees, which are less costly than building new pipelines. Many CBM wells can be spaced at an equal distance to third party gathering systems and regulated transmission meter stations and pipelines. Facility cost sharing, and contracts with pipeline companies for compression can also lower initial infrastructure costs. However, transmission pressures and direct connect options for local distribution should always be considered during negotiations. The use of carbon dioxide (CO 2 ) commingling services was also recommended. A map of the North American gas network was provided, as well as details of Alberta gas transmission and coal pipeline overlays. Maps of various coal zones in Alberta were provided, as well as a map of North American pipelines. refs., tabs., figs

  20. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  1. The dynamic linkages between crude oil and natural gas markets

    International Nuclear Information System (INIS)

    Batten, Jonathan A.; Ciner, Cetin; Lucey, Brian M.

    2017-01-01

    The time varying price spillovers between natural gas and crude oil markets for the period 1994 to 2014 are investigated. Contrary to earlier research, we show that in a large part of our sample the natural gas price leads the price of crude oil with price spillover effects lasting up to two weeks. This result is robust to a battery of tests including out-of-sample forecasting exercises. However, after 2006, we detect little price dependencies between these two energy commodities. These findings arise due to a conjunction of both demand and supply-side shocks arising from both natural and economic events, including Hurricane Katrina, the Tohoku earthquake and the Global Financial Crisis, as well as infrastructure and technological improvements. The increased use of new technologies such as hydraulic fracking for the extraction of gas and oil in particular affected supply in the latter part of the study. We conclude that the long term relation present in the early part of the sample has decoupled, such that price determination of these two energy sources is now independent. - Highlights: • Contrary to earlier research we find natural gas may lead crude oil prices over a long sample. • This finding holds in forecasting out of sample. • There may be a break in the relationship between oil and gas in 2006. • We suggest that new technologies and financial conditions have led to a decoupling of these markets. • Oil and natural gas prices may now be determined independently.

  2. Building the NGV [natural gas vehicle] industry into the 21st century

    International Nuclear Information System (INIS)

    Eaves, M.

    1992-01-01

    The status and potential of the natural gas vehicle (NGV) industry is reviewed. The current status of NGV technology is discussed, and a perspective on the business potential of NGV is offered. The cost of compressed natural gas is compared with the cost of conventional fuel options. At present there is a ca 92-97 cent/gallon differential between natural gas and gasoline, however it is not clear that this is sufficient to provide an incentive for purchasing a compressor. The economics of running a Sierra pickup truck are calculated, and it is proposed that a fuel cost differential in the order of 30 cents may be enough to entice consumers to purchase NGV. The gas industry is expected to finance the fuelling infrastructure for NGVs for the reasonable future. The investment must be made using a 25-40 cent per therm differential (or 30-50 cent/gallon equivalent) to finance compressor facilities. Extensive tables and graphs are presented that show the dependence of number of vehicles (and gas sales) on simple payback periods for compressor facilities. 4 figs., 19 tabs

  3. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Science.gov (United States)

    2013-06-26

    ... Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission Company, LLC; Notice of Application Take notice that on June 4, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and...

  4. A simulation approach for analysis of short-term security of natural gas supply in Colombia

    International Nuclear Information System (INIS)

    Villada, Juan; Olaya, Yris

    2013-01-01

    Achieving security of gas supply implies diversifying gas sources, while having enough supply, transportation, and storage capacity to meet demand peaks and supply interruptions. Devising a strategy for securing gas supply is not straightforward because gas supply depends on complex interactions of production, demand and infrastructure, and it is exposed to economic, regulatory, political, environmental and technical risks. To address this complexity, we propose a simulation approach that replicates the structure of the gas supply chain, including transportation constraints and demand fluctuations. We build and calibrate a computer model for the Colombian gas sector, and run the model to assess the impact of expanding transportation capacity and increasing market flexibility on the security of supply. Our analysis focuses on the operation and planned and proposed expansions of the transportation infrastructure because adequate regulation and development of this infrastructure can contribute to increase the security of supply in the gas sector. We find that proposed import facilities, specifically LNG import terminals at Buenaventura, increase system's security under the current market structure. - Highlights: ► We build a simulation model for analyzing natural gas trade in Colombia. ► The model captures the structure of the gas network and on market rules. ► We simulate investment decisions to increase short-term security of supply. ► Securing supply would need LNG imports and expansion of pipeline capacity.

  5. Brazil's insertion in the international LNG (Liquefied Natural Gas) route; A insercao do Brasil na rota internacional de GNL (Gas Natural Liquefeito)

    Energy Technology Data Exchange (ETDEWEB)

    Kueng, Stephan de Carvalho; Bastos, Filipe Sant' Ana [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2008-07-01

    In the late 1990's, PETROBRAS began considering diversifying its energy sources. This included the possibility of importing LNG (Liquefied Natural Gas), making it one additional source for gas supply in Brazil. There is a belief that the imported LNG is the cheapest, quickest and most efficient option in terms of infrastructure compared to other transportation, such as pipelines. This will permit an increase in gas supply, given the growing demand for this energy source in the domestic market. The current international LNG trading market is adjusting itself to the world integration, where short-term (spot) agreements prevail. These agreements have many advantages, such as: lowering fixed trading costs; the possibility to diversify suppliers; minimizing gas supply risk; and facilitating import market supply adjustment. In Brazil, the main objective to import LNG is to supply natural gas (NG) to thermal plants, supplementing the hydroelectric - gas integration of the electric system. For the accomplishment of this project, it is forecasted the construction of LNG offloading terminals, together with the construction of gas distribution networks. Therefore, LNG transportation will guarantee security in supply, permit the diversification of the NG supply source and enable the increased use of NG in the Brazilian energy grid. (author)

  6. Scenario Analysis of Natural Gas Consumption in China Based on Wavelet Neural Network Optimized by Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Deyun Wang

    2018-04-01

    Full Text Available Natural gas consumption has increased with an average annual growth rate of about 10% between 2012 and 2017. Total natural gas consumption accounted for 6.4% of consumed primary energy resources in 2016, up from 5.4% in 2012, making China the world’s third-largest gas user. Therefore, accurately predicting natural gas consumption has become very important for market participants to organize indigenous production, foreign supply contracts and infrastructures in a better way. This paper first presents the main factors affecting China’s natural gas consumption, and then proposes a hybrid forecasting model by combining the particle swarm optimization algorithm and wavelet neural network (PSO-WNN. In PSO-WNN model, the initial weights and wavelet parameters are optimized using PSO algorithm and updated through a dynamic learning rate to improve the training speed, forecasting precision and reduce fluctuation of WNN. The experimental results show the superiority of the proposed model compared with ANN and WNN based models. Then, this study conducts the scenario analysis of the natural gas consumption from 2017 to 2025 in China based on three scenarios, namely low scenario, reference scenario and high scenario, and the results illustrate that the China’s natural gas consumption is going to be 342.70, 358.27, 366.42 million tce (“standard” tons coal equivalent in 2020, and 407.01, 437.95, 461.38 million tce in 2025 under the low, reference and high scenarios, respectively. Finally, this paper provides some policy suggestions on natural gas exploration and development, infrastructure construction and technical innovations to promote a sustainable development of China’s natural gas industry.

  7. The French wholesale electricity and natural gas markets. 2008 report

    International Nuclear Information System (INIS)

    2009-12-01

    This second report on the operation of French wholesale electricity and natural gas markets deals with CRE wholesale market surveillance activities. It follows on from the different work undertaken or announced in the first surveillance report and in the proceedings of the CRE deliberation held on the 8 January 2009. It capitalizes on the experience gained in this area since the Law of the 7 December 2006 gave the CRE market surveillance powers. It is also based on feedback from discussions and interaction with the different stakeholders, through the public consultations held by CRE in 2008 and 2009. market surveillance applies to: - electricity and gas, - bilateral transactions, trading on exchanges and cross-border transactions, - all maturities, from short-term markets to long-term contracts, - all French wholesale market counter-parties, whatever nationality they may have, - contracts for physical delivery, as well as to financial products. The Law also allows extensive surveillance of market participants' behaviour, in that the CRE can oversee not only transactions between operators but also their bids and the correspondence between the prices charged and the position of each operator. In order to address these different subjects, the electricity and gas sections of this report are divided into four main chapters dealing with the development of trading, wholesale market price trends, the fundamentals (generation, infrastructures) and, finally, the analysis of electricity transactions and the supply of alternative gas operators. Contents: A - Methodology notice, Introduction, Summary of the report; B - Section 1 - Wholesale electricity markets: The development of the main wholesale market segments, Monitoring of price formation in France in terms of fundamentals and in comparison with the main interconnected European markets, Analysis and transparency of generation, The analysis of transactions; C - Section 2 - Wholesale natural gas markets: The

  8. Review of Sector and Regional Trends in U.S. Electricity Markets. Focus on Natural Gas. Natural Gas and the Evolving U.S. Power Sector Monograph Series. Number 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey; Medlock III, Kenneth B.; Boyd, William C.

    2015-10-15

    This study explores dynamics related to natural gas use at the national, sectoral, and regional levels, with an emphasis on the power sector. It relies on a data set from SNL Financial to analyze recent trends in the U.S. power sector at the regional level. The research aims to provide decision and policy makers with objective and credible information, data, and analysis that informs their discussions of a rapidly changing energy system landscape. This study also summarizes regional changes in natural gas demand within the power sector. The transition from coal to natural gas is occurring rapidly along the entire eastern portion of the country, but is relatively stagnant in the central and western regions. This uneven shift is occurring due to differences in fuel price costs, renewable energy targets, infrastructure constraints, historical approach to regulation, and other factors across states.

  9. Economic impact analysis of natural gas development and the policy implications

    International Nuclear Information System (INIS)

    De Silva, P.N.K.; Simons, S.J.R.; Stevens, P.

    2016-01-01

    In the US, the shale gas revolution ensured that the development costs of unconventional natural gas plummeted to the levels of $2–3/Mcf. This success has motivated the development of shale gas in other regions, including Australia and Europe. This study, focussing primarily on aspects of economic impact analysis, estimates the development costs of shale gas extraction in both Australia and Europe, based on both direct and fiscal costs, and also suggests policy initiatives. The increasing liquefied natural gas (LNG) developments in Australia are already straining domestic gas supplies. Hence, the development of more natural gas resources has been given a high priority. However, a majority of the Australian shale resources is non-marine in origin and significantly different to the marine-type shales in the US. In addition, the challenges of high development costs and the lack of infrastructure, service capacity and effective government policy are inhibiting shale gas development. Increasing the attractiveness of low risk investment by new, local, developers is critical for Australian shale gas success, which will simultaneously increase domestic gas security. In the European context, unconventional gas development will be challenged by direct, rather than fiscal costs. High direct costs will translate into average overall gas development costs over $13/Mcf, which is well over the existing market price. - Highlights: • The shale gas development potential of US, Europe and Australia are compared. • An economic impact analysis of shale gas development in Europe and Australia. • Factors important for shale gas development are discussed. • Policy pathways are suggested for shale gas development

  10. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  11. Natural gas pricing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    Natural gas pricing is the heart and soul of the gas business. Price specifically affects every phase of the industry. Too low a price will result in short supplies as seen in the mid-1970s when natural gas was scarce and in tight supply. To fully understand the pricing of this energy commodity, it is important to understand the total energy picture. In addition, the effect and impact of world and US economies, and economics in general are crucial to understanding natural gas pricing. The purpose of this presentation will be to show the parameters going into US natural gas pricing including the influence of the many outside industry factors like crude oil and coal pricing, market drivers pushing the gas industry, supply/demand parameters, risk management for buyers and sellers, and other elements involved in pricing analysis

  12. Probabilistic modelling of security of supply in gas networks and evaluation of new infrastructure

    International Nuclear Information System (INIS)

    Praks, Pavel; Kopustinskas, Vytis; Masera, Marcelo

    2015-01-01

    The paper presents a probabilistic model to study security of supply in a gas network. The model is based on Monte-Carlo simulations with graph theory, and is implemented in the software tool ProGasNet. The software allows studying gas networks in various aspects including identification of weakest links and nodes, vulnerability analysis, bottleneck analysis, evaluation of new infrastructure etc. In this paper ProGasNet is applied to a benchmark network based on a real EU gas transmission network of several countries with the purpose of evaluating the security of supply effects of new infrastructure, either under construction, recently completed or under planning. The probabilistic model enables quantitative evaluations by comparing the reliability of gas supply in each consuming node of the network. - Highlights: • A Monte-Carlo algorithm for stochastic flow networks is presented. • Network elements can fail according to a given probabilistic model. • Priority supply pattern of gas transmission networks is assumed. • A real-world EU gas transmission network is presented and analyzed. • A risk ratio is used for security of supply quantification of a new infrastructure.

  13. Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH)

    International Nuclear Information System (INIS)

    Nogami, T.; Oya, N.; Ishida, H.; Matsumoto, H.

    2008-01-01

    Recent studies in Japan have suggested that natural gas hydrate (NGH) transportation of natural gas is more economical than liquefied natural gas (LNG) transportation systems for small, medium and remote gas fields. Researchers in Japan have built a 600 kg per day NGH production and pelletizing plant and regasification facility. This paper discussed feasibility studies conducted in southeast Asia to determine the unit's commercialization potential with large natural gas-related businesses including shipping companies and electric power utilities. The total supply chain was compared with the corresponding liquefied natural gas (LNG) and compressed natural gas (CNG) supply chains. The study also examined natural gas reserves, energy policies, the positioning of natural gas supplies, and future forecasts of natural gas demand. A conceptual design for an NGH supply chain in Indonesia was presented. Results of the study have demonstrated that the NGH chain is an appropriate and economically feasible transportation method for many areas in southeast Asia. 8 refs., 10 figs

  14. 2013 - The Natural Gas Year in Review

    International Nuclear Information System (INIS)

    Lecarpentier, Armelle

    2014-01-01

    Natural gas consumption only rose by 1.3%, down from an average growth of 2.8% per year in the previous decade. Natural gas still suffers in particular from severe competition with coal in the power generation sector. Inside the EU-28, actual consumption was estimated down 1.9% to 460 Billion cubic metres (Bcm). This poor performance brought European consumption to levels not seen in more than 15 years. In the US, rising gas prices compared to 2012 has often made coal more competitive and penalized gas consumption in the power generation sector, causing it to fall by 10.5%. Global growth in natural gas has been increasingly constrained by supply. In 2013, the growth in gas production slowed substantially to 0.8%, bringing the total volume to 3377 Bcm. As before, the gas supply shortfall was due to the decline of mature and conventional fields, and an insufficient renewal of reserves. The lack of upstream investment is especially acute in emerging markets, due to a lack of a favourable regulatory and fiscal climate. The moderation of natural gas supply and investment has also been increasingly driven by geopolitical challenges. Deterioration of security, internal conflicts and resulting damage to infrastructures have caused some production outages and supply disruptions in some countries. In 2013, marketed production fell especially heavily in Africa (Algeria, Nigeria, Libya and Egypt). With the exception of Europe, other regions posted positive production gains. The largest of them were recorded in the CIS (+ 2.7%) and the Middle East (+ 3.4%). International gas trade increased significantly by 2.1% to 1048 Bcm, due to the growing dependence of consumer markets on increasingly distant production sources, sometimes located in economically and politically unstable areas. The rise in the international gas trade was only driven by inter-regional pipeline gas exports from the CIS to Europe (+ 15%) and China (+ 36%). Geopolitical risks are having an ever

  15. Development of natural gas vehicles in China: An assessment of enabling factors and barriers

    International Nuclear Information System (INIS)

    Wang, Hongxia; Fang, Hong; Yu, Xueying; Wang, Ke

    2015-01-01

    Replacing conventional gasoline or diesel vehicles with natural gas vehicles (NGVs) is necessary if China hopes to significantly reduce its greenhouse gas emissions in the short term. Based on city-level data, this paper analyzes the enabling factors and barriers to China's NGV development. We find that a shortage in natural gas supply and a relatively high price ratio of natural gas compared to gasoline are the main factors impeding China's NGV development. Imbalanced development between natural gas refueling stations and NGVs also hinder the popularity of these lower-carbon vehicles. While various policies have been implemented in recent years to promote NGVs in China, only those encouraging adoption of NGVs by the private sector appear effective. To promote further NGV development in China, the following strategies are proposed: (1) improve natural gas delivery infrastructure across the country; (2) reasonably reduce the relative price of natural gas compared to gasoline; (3) give priority to middle-income and medium-sized cities and towns, since siting natural gas refueling stations is easier in these areas; and (4) promote the use of NGVs in the private sector. -- Highlights: •We assess the effectiveness of NGV policies in China. •Relatively low natural gas price promotes NGV development. •Coordinated development of refueling stations and NGVs is important. •Policies that encourage private NGV development should be adopted. •Middle-income and medium-sized cities are more suitable for developing NGVs

  16. Liquefied natural gas projects in Altamira: impacts on the prices of the natural gas; Proyectos de gas natural licuado en Altamira: impactos sobre los precios del gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Perez Cordova, Hugo; Elizalde Baltierra, Alberto [Petroleos Mexicanos (PEMEX), (Mexico)

    2004-06-15

    The possible incorporation of new points of supply of natural gas to the Sistema National de Gasoductos (SNG) through the import of Liquified Natural Gas or (GNL) could cause an important modification in the national balance of supply-demand of the fuel and in its price, if large volumes are received. An analysis is presented of the possible impact that would have in the natural gas national market and in its prices the import of GNL made by the region of Altamira, Tamaulipas. [Spanish] La posible incorporacion de nuevos puntos de oferta de gas natural al Sistema Nacional de Gasoductos (SNG) a traves de la importacion de Gas Natural Licuado (GNL), podria provocar una modificacion importante en el balance oferta-demanda nacional del combustible y en su precio, si se reciben fuertes volumenes. Se presenta un analisis del posible impacto que tendria en el mercado nacional del gas natural y en sus precios la importacion de GNL realizada por la region de Altamira, Tamaulipas.

  17. Corrosion behavior of API 5L-X80 Pipeline steel for natural gas pipeline

    International Nuclear Information System (INIS)

    Mohd Asyadi Azam Mohd Abid; Imai, Hachiro

    2007-01-01

    Natural energy problem, including the environmental aspects had changes into certain circumstances in recent years and natural gas has been a focus of constant attention from the viewpoint of energy efficiency and pollution free. From that kind of background, pipeline construction for petroleum and natural gas were considerate as energy infrastructure maintenance plan. Based on the clarification of Asian Pipeline Project (1997-2007) centered in Japan, international pipeline is needed as the natural gas is mainly transported from gas field in Russia and Middle East to consumer country such as Japan etc. It used in severe condition such as cold district and sea. In the meantime, pipeline steel is not just received damages by earth crust fluctuation and corrosion, but also suffered from the corrosion caused by anions that were dissolved in sea and groundwater. The diversification of dispersion and consumption structure of natural gas supply acceptance base are seen regarding, that made the needs of the storing are rising and dealt with the quantitative spatial expansion of the demand. By that, corrosion resistance, not only the hardness, tough, weldability, corrosiveness gas environment is extremely required. (author)

  18. NATURAL GAS SUPPLY PROJECTS FOR EUROPE – SOUTH STREAM AND NABUCCO

    Directory of Open Access Journals (Sweden)

    Domagoj Sučić

    2011-12-01

    Full Text Available South Stream and Nabucco are planned southern corridor projects for natural gas supply to Europe. South Stream is a Russian construction project of the gas pipeline with the capacity of 63 bcm of natural gas per year. It will connect Russia with Austria through Black Sea, Bulgaria, Serbia and Hungary, and with southern Italy through Greece and Ionian Sea, respectively. Nabucco is a European Union planned gas pipeline with the capacity of 31 bcm per year. If built, it will connect Caspian Region and Middle East with Austria through Turkey, Bulgaria, Romania and Hungary. Gas sources for South Stream pipeline are known and available, however it’s construction will be expensive. Nabucco gas pipeline construction costs will be two times less, but the unresolved political relations and non-existent infrastructure have caused it to have no available gas sources at the moment. Countries like Bulgaria and Hungary are involved with both projects, indicating the importance of both projects. In this paper SWOT analysis of the proposed projects was done and it has shown that there is a great chance Nabucco won’t be built if South Stream materializes first (the paper is published in Croatian.

  19. Multi-period natural gas market modeling Applications, stochastic extensions and solution approaches

    Science.gov (United States)

    Egging, Rudolf Gerardus

    This dissertation develops deterministic and stochastic multi-period mixed complementarity problems (MCP) for the global natural gas market, as well as solution approaches for large-scale stochastic MCP. The deterministic model is unique in the combination of the level of detail of the actors in the natural gas markets and the transport options, the detailed regional and global coverage, the multi-period approach with endogenous capacity expansions for transportation and storage infrastructure, the seasonal variation in demand and the representation of market power according to Nash-Cournot theory. The model is applied to several scenarios for the natural gas market that cover the formation of a cartel by the members of the Gas Exporting Countries Forum, a low availability of unconventional gas in the United States, and cost reductions in long-distance gas transportation. 1 The results provide insights in how different regions are affected by various developments, in terms of production, consumption, traded volumes, prices and profits of market participants. The stochastic MCP is developed and applied to a global natural gas market problem with four scenarios for a time horizon until 2050 with nineteen regions and containing 78,768 variables. The scenarios vary in the possibility of a gas market cartel formation and varying depletion rates of gas reserves in the major gas importing regions. Outcomes for hedging decisions of market participants show some significant shifts in the timing and location of infrastructure investments, thereby affecting local market situations. A first application of Benders decomposition (BD) is presented to solve a large-scale stochastic MCP for the global gas market with many hundreds of first-stage capacity expansion variables and market players exerting various levels of market power. The largest problem solved successfully using BD contained 47,373 variables of which 763 first-stage variables, however using BD did not result in

  20. Alaska gas pipeline and the global natural gas market

    International Nuclear Information System (INIS)

    Slutz, J.

    2006-01-01

    The global natural gas market was discussed in relation to the Alaska natural gas pipeline project. Natural gas supply forecasts to the year 2025 were presented. Details of the global liquefied natural gas (LNG) market were discussed. Charts were included for United States natural gas production, consumption, and net imports up to the year 2030. The impact of high natural gas prices on the manufacturing sector and the chemicals industry, agricultural, and ethanol industries were discussed. Natural gas costs around the world were also reviewed. The LNG global market was discussed. A chart of world gas reserves was presented, and global LNG facilities were outlined. Issues related to the globalization of the natural gas trade were discussed. Natural gas imports and exports in the global natural gas market were reviewed. A chart of historical annual United States annual LNG imports was presented. tabs., figs

  1. The impact of natural hazard on critical infrastructure systems: definition of an ontology

    Science.gov (United States)

    Dimauro, Carmelo; Bouchon, Sara; Frattini, Paolo; Giusto, Claudia

    2013-04-01

    According to the Council of the European Union Directive (2008), 'critical infrastructure' means an asset, system or part thereof which is essential for the maintenance of vital societal functions, health, safety, security, economic or social well-being of people, and the disruption or destruction of which would have a significant impact as a result of the failure to maintain those functions. Critical infrastructure networks are exposed to natural events, such as floods, storms, landslides, earthquakes, etc. Recent natural disasters show that socio-economic consequences can be very much aggravated by the impact on these infrastructures. Though, there is still a lack of a recognized approach or methodology to assess the vulnerability of critical infrastructure assets against natural threats. The difficulty to define such an approach is increased by the need to consider a very high number of natural events, which differ in nature, magnitude and probability, as well as the need to assess the vulnerability of a high variety of infrastructure assets (e.g. bridges, roads, tunnels, pipelines, etc.) To meet this challenge, the objective of the THREVI2 EU-CIPS project is to create a database linking the relationships between natural hazards and critical infrastructure assets. The query of the database will allow the end-users (critical infrastructure protection authorities and operators) to identify the relevant scenarios according to the own priorities and criteria. The database builds on an ontology optimized for the assessment of the impact of threats on critical infrastructures. The ontology aims at capturing the existing knowledge on natural hazards, critical infrastructures assets and their related vulnerabilities. Natural phenomena that can threaten critical infrastructures are classified as "events", and organized in a genetic-oriented hierarchy. The main attributes associated to each event are the probability, the magnitude and the "modus". The modus refers to the

  2. The impact of regulation, privatization and competition on gas infrastructure investments

    International Nuclear Information System (INIS)

    Andrade, Tiago

    2014-01-01

    In recent years we have witnessed several reforms in network industries, as privatization, regulatory changes and opening to competition in certain segments of the value chain. In sectors such as electricity and gas, this opening to competition is possible only in certain activities (i.e. generation, storage of natural gas and supply), maintaining as a natural monopoly the activities of distribution and transmission, and therefore still subject to regulation. The performance of these regulated segments can have important effects on the operation of the competitive segments, because the regulated segments (i.e. the transmission and distribution networks) provide the infrastructure platform upon which the competitive activities rely. The motivation of this paper is to evaluate the effects of privatization, liberalization and regulation on investments, as components of the reform of the natural gas sector. An empirical analysis was carried out using a panel data of 11 European countries from 2001 to 2011, with the aim to better understand the determinants influencing investment, thus contributing to a better understanding of the dynamics of this sector and meet the investments needs established by energy policies. - Highlights: • We carried out an empirical analysis using a panel data of 11 European TSO's from 2001 to 2011. • Privatization has a significant impact on investments, “more privatization means less investment”. • Different forms of regulation seem to play an important role in transmission investment. • It was found that incentive regulation has a positive impact leading to a higher investment more than rate of return. • Efficiency is an effective driver to increased investment. TSO's “only” invests if they have good operational efficiency

  3. The future of gas infrastructures in Eurasia

    International Nuclear Information System (INIS)

    Klaassen, Ger; McDonald, Alan; Jimin Zhao

    2001-01-01

    The IIASA-WEC study global energy perspectives emphasized trends toward cleaner, more flexible, and more convenient final energy forms, delivered chiefly by energy grids, and noted potential energy infrastructure deficiencies in Eurasia. We compare planned interregional gas pipelines and LNG terminals in Eurasia with the study's projected trade flows for 2020. We focus on the study's three high-growth scenarios and single middle course scenario. The comparison indicates that high gas consumption in a scenario need not imply high gas trade. For the former Soviet Union, a robust strategy across all six scenarios is to implement existing plans and proposals for expanding gas export capacity. For Eastern Europe, significant import capacity expansions beyond current plans and proposals are needed in all but the middle course scenario. Western European plans and proposals need to be increased only in two high gas consumption scenarios. Planned and proposed capacities for the Middle East (exports) and centrally planned Asia (imports) most closely match a high gas trade scenario, but are otherwise excessive. Paradoxically, for the Pacific OECD, more short-term import capacity is needed in scenarios with low gas consumption than in high-consumption scenarios. For Southeast Asia, proposed import capacities are significantly higher than scenario trade projections. (Author)

  4. Natural gas and its consumption in Switzerland

    International Nuclear Information System (INIS)

    Baniriah, N.

    1991-01-01

    In this report the worldwide position of natural gas as an important energy of the coming decades and its modest current standing in the Swiss energy balance are highlighted. The relative role and importance of the principal fossil fuels in the energy supply, the average energy prices and taxes, particularly those of gas and fuel oil in the residential sector and the overall statistically related inter-fuel substitution in Switzerland are examined. The role of governments in energy supply in general and with gas utilization in particular is examined. The international trade in gas and its supply infrastructure are reviewed and the advantageous situation of Switzerland in Western Europe and the latter in the World, with respect to present and future gas supplies, are underlined. Considering the current level of gas consumption in Switzerland and its past and projected rates of market penetration, in comparison to other OECD countries, it would appear that Switzerland is not taking full advantage of the situation. The implicit message, even if diffidently conveyed, is intervention by prescription and by proscription. In the absence of such measures, and with the virtual demise of nuclear energy or its expansion, the disproportionate and dominant position of fuel oil in the energy mix, will endure whereas the share of gas grows very slowly remaining at much lower levels than in the neighbouring countries. (author) figs., tabs., refs

  5. Natural gas retailing: writing the last chapter of natural gas deregulation

    International Nuclear Information System (INIS)

    Bjerkelund, T.

    1995-01-01

    Under the A greement on Natural Gas Markets and Prices of October 1985, the Canadian federal government agreed to deregulate the price of natural gas and to allow a competitive gas market to develop. Several beneficial changes that have occurred as a result of the deregulation were described, including the Industrial Gas Users Association's (IGUA) view on the marketing and sale of natural gas by local gas distributor's (LDC) and the sale within the LDC franchise. IGUA's support for the separation between LDC distribution and LDC sales and marketing activities as the last step in deregulation process, was explained. Several arguments for the opposing view were also discussed. Recommendations were made for effective separation of LDC distribution and LDC sales/marketing activities

  6. The quest for the oil and gas infrastructure protection in central Asia : time bombs and policy options

    Energy Technology Data Exchange (ETDEWEB)

    Bi, J. [Carleton Univ., Ottawa, ON (Canada). Norman Paterson School of International Affairs

    2006-03-15

    The growing economies of China and India have increased global anxieties over dwindling fossil fuel resources. Regional countries in central Asia have advocated for more extensive strategic partnerships within the oil and gas industry as insurance against the pressures of more powerful nations. However, non-traditional threats such as terrorism raise serious questions about critical oil and gas infrastructure protection in central Asia. This paper assessed the vulnerability and threats inherent in protecting the critical oil and gas infrastructure of Central Asia, with a specific focus on Kazakhstan, Turkmenistan, Uzbekistan, and the region of Xinjiang in China. An-depth analysis of the development strategies, terrorist threats, and water issues confronted by Central Asian powers was conducted to demonstrate their vulnerability. The analysis was then used to consider options available for managing oil and gas infrastructure in the regions. It was observed that different perceptions and technological difficulties have made cooperation on critical oil and gas infrastructure protection less important than national sovereignty and domestic stability. It was concluded that a low-key approach to homeland security and oil and gas infrastructure may be the best strategy for Central Asia and China. 44 refs.

  7. Securing energy assets and infrastructure 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This report describes in detail the energy industry's challenges and solutions for protecting critical assets including oil and gas infrastructure, transmission grids, power plants, storage, pipelines, and all aspects of strategic industry assets. It includes a special section on cyber-terrorism and protecting control systems. Contents: Section I - Introduction; U.S Energy Trends; Vulnerabilities; Protection Measures. Section II - Sector-wise Vulnerabilities Assessments and Security Measures: Coal, Oil and Petroleum, Natural Gas, Electric Power, Cybersecurity and Control Systems, Key Recommendations; Section III - Critical Infrastructure Protection Efforts: Government Initiatives, Agencies, and Checklists.

  8. Natural gas deregulation

    International Nuclear Information System (INIS)

    Ronchi, M.

    1993-01-01

    With the aim of establishing realistic options for deregulation in the natural gas industry, this paper first considers the structural evolution of this industry and evidences how it differs from the petroleum industry with which it exhibits some essential characteristics in common. This comparison is made in order to stress that, contrary to popular belief, that which is without doubt good for the petroleum industry is not necessarily so also for the natural gas industry. The paper concludes with separate analyses of the natural gas markets in the principal industrialized countries. Arguments are provided to show that the 'soft' deregulation option for the natural gas industry is not feasible, and that 'total' deregulation instead, backed by the passing of a suitable package of anti-trust laws 'unbundling' the industry's four major activities, i.e., production, storage, primary and secondary distribution, is the preferable option. The old concept of guaranteed supplies for minor users of natural gas should give way to the laws of supply and demand governing inter-fuel competition ensured through the strict supervision of vigilance committees

  9. LNG (Liquefied Natural Gas): the natural gas becoming a world commodity and creating international price references; GNL (Gas Natural Liquefeito): o gas natural se tornando uma commodity mundial e criando referencias de preco internacionais

    Energy Technology Data Exchange (ETDEWEB)

    Demori, Marcio Bastos [PETROBRAS, Rio de Janeiro, RJ (Brazil). Coordenacao de Comercializacao de Gas e GNL; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)

    2004-07-01

    The transportation of large quantities of natural gas through long distances has been done more frequently by Liquefied Natural Gas (LNG). The increase of natural gas demand and the distance of major reserves, allied to technological improvements and cost reduction through LNG supply chain, have triggered the expressive increase of LNG world market This paper tries to evaluate the influence that LNG should cause on natural gas world market dynamic, analyzing the tendency of gas to become a world commodity, creating international price references, like oil and its derivates. For this, are shown data as natural gas world reserves, the participation of LNG in natural gas world market and their increase. Furthermore, will be analyzed the interaction between major natural gas reserves and their access to major markets, still considering scheduled LNG projects, the following impacts from their implementation and price arbitrage that should be provoked on natural gas markets. (author)

  10. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    Directory of Open Access Journals (Sweden)

    Z. R. Barkley

    2017-11-01

    Full Text Available Natural gas infrastructure releases methane (CH4, a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem, and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are

  11. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    Science.gov (United States)

    Barkley, Zachary R.; Lauvaux, Thomas; Davis, Kenneth J.; Deng, Aijun; Miles, Natasha L.; Richardson, Scott J.; Cao, Yanni; Sweeney, Colm; Karion, Anna; Smith, MacKenzie; Kort, Eric A.; Schwietzke, Stefan; Murphy, Thomas; Cervone, Guido; Martins, Douglas; Maasakkers, Joannes D.

    2017-11-01

    Natural gas infrastructure releases methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem), and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are lower than rates found in any

  12. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1991 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition form 1987 to 1991 are given for each Census Division and each State. Annual historical data are shown at the national level

  13. Natural gas annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1993 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition from 1989 to 1993 are given for each Census Division and each State. Annual historical data are shown at the national level

  14. Vehicle-based Methane Mapping Helps Find Natural Gas Leaks and Prioritize Leak Repairs

    Science.gov (United States)

    von Fischer, J. C.; Weller, Z.; Roscioli, J. R.; Lamb, B. K.; Ferrara, T.

    2017-12-01

    Recently, mobile methane sensing platforms have been developed to detect and locate natural gas (NG) leaks in urban distribution systems and to estimate their size. Although this technology has already been used in targeted deployment for prioritization of NG pipeline infrastructure repair and replacement, one open question regarding this technology is how effective the resulting data are for prioritizing infrastructure repair and replacement. To answer this question we explore the accuracy and precision of the natural gas leak location and emission estimates provided by methane sensors placed on Google Street View (GSV) vehicles. We find that the vast majority (75%) of methane emitting sources detected by these mobile platforms are NG leaks and that the location estimates are effective at identifying the general location of leaks. We also show that the emission rate estimates from mobile detection platforms are able to effectively rank NG leaks for prioritizing leak repair. Our findings establish that mobile sensing platforms are an efficient and effective tool for improving the safety and reducing the environmental impacts of low-pressure NG distribution systems by reducing atmospheric methane emissions.

  15. Environmental and natural resource implications of sustainable urban infrastructure systems

    Science.gov (United States)

    Bergesen, Joseph D.; Suh, Sangwon; Baynes, Timothy M.; Kaviti Musango, Josephine

    2017-12-01

    As cities grow, their environmental and natural resource footprints also tend to grow to keep up with the increasing demand on essential urban services such as passenger transportation, commercial space, and thermal comfort. The urban infrastructure systems, or socio-technical systems providing these services are the major conduits through which natural resources are consumed and environmental impacts are generated. This paper aims to gauge the potential reductions in environmental and resources footprints through urban transformation, including the deployment of resource-efficient socio-technical systems and strategic densification. Using hybrid life cycle assessment approach combined with scenarios, we analyzed the greenhouse gas (GHG) emissions, water use, metal consumption and land use of selected socio-technical systems in 84 cities from the present to 2050. The socio-technical systems analyzed are: (1) bus rapid transit with electric buses, (2) green commercial buildings, and (3) district energy. We developed a baseline model for each city considering gross domestic product, population density, and climate conditions. Then, we overlaid three scenarios on top of the baseline model: (1) decarbonization of electricity, (2) aggressive deployment of resource-efficient socio-technical systems, and (3) strategic urban densification scenarios to each city and quantified their potentials in reducing the environmental and resource impacts of cities by 2050. The results show that, under the baseline scenario, the environmental and natural resource footprints of all 84 cities combined would increase 58%-116% by 2050. The resource-efficient scenario along with strategic densification, however, has the potential to curve down GHG emissions to 17% below the 2010 level in 2050. Such transformation can also limit the increase in all resource footprints to less than 23% relative to 2010. This analysis suggests that resource-efficient urban infrastructure and decarbonization of

  16. Will the short-term capital crisis have long-term effects on supply and infrastructure?

    International Nuclear Information System (INIS)

    Theal, C.

    2003-01-01

    Natural gas supply and infrastructure is influenced by market segmentation and capital crises. The dynamics of market segmentation was highlighted and the implications for growth in the pipeline business were outlined. It was noted that the strategy for growth must mirror exploration and production trends in frontier gas and in oil sands growth. Acquisitions will likely shift from traditional regulated companies to energy infrastructure companies such as non-regulated midstream assets, natural gas liquids facilities, and liquefied natural gas infrastructure. In 2001, U.S. companies had a significant influence on the Canadian market by acquiring several Canadian assets. Several graphs were included with this presentation depicting: evolving U.S. based presence; distribution of Canadian exploration and production assets; changing composition of acquirers in 2002; increased U.S. presence from 1999; Canadian consolidation trends; the American advantage; the capital crisis; year to year activity levels by the independents; impact on industry activity levels; capital spending trends; growth spending outside the Western Canada Sedimentary Basin; Royalty Trusts as the new intermediate sub-sector; and, reshaping the landscape. A final section of the presentation described the impact on supply and infrastructure of both oil and natural gas with reference to gas storage and pipelines. In particular the economics of developing frontier gas and shipping it via the Alaska pipeline and the proposed Mackenzie Delta pipeline was discussed. 3 tabs., 28 figs

  17. Natural gas marketing and transportation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners

  18. The issue of natural gas deregulation has arrived on Canada's east coast

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-06-01

    It is predicted that the introduction of natural gas to Atlantic Canada from Nova Scotia's Sable Offshore Energy Project, will usher in an era of competition among suppliers and choice for customers, making gas deregulation a likely development. Natural gas from the Sable Project is regulated by the National Energy Board for such things as tolls and the cost of transmission through the Maritimes and Northeast Pipeline; residential customer service will be provided by Sempra Atlantic Gas, a provincially regulated distributor which holds the franchise to service the entire province with a gas transportation network. Sempra will provide the infrastructure to move the gas to customers, however, in a deregulated market place customers may choose to purchase gas from a wide range of marketers, producers and brokers, the same way as is now done with home heating fuel. It is expected that several fuel companies will go after the kind of business opportunities that will open up with deregulation, which means that customers will have a choice to buy natural gas from a supplier other than the company that delivers it. The resulting competition among suppliers will translate into savings for the consumer.

  19. Natural gas annual 1995

    International Nuclear Information System (INIS)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level

  20. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Annual 1991 provides information on the supply and disposition of natural gas to a wide audience including industry, consumers Federal and State agencies, and education institutions. This report, the Natural Gas Annual 1991 Supplement: Company Profiles, presents a detailed profile of selected companies

  1. Striving for equilibrium : the changing role of storage in the North American natural gas industry

    International Nuclear Information System (INIS)

    Clifton, S.

    2003-01-01

    This presentation included an analysis of North American storage patterns and transport of natural gas. Gas-fired generation has impacted the value of storage operations significantly. The role of natural gas storage in North America is changing to meet the demands of peak-load generators, to manage tight gas supplies, and expand pipeline infrastructure. Storage facilities help in optimizing the flexibility of gas procurement. The historic role of storage was compared to the current role of storage as an economic asset. In 2002, the major developments affecting gas storage were a decline in liquidity, a decline in North American natural gas production, a recovery in forecasted gas consumption, and a capital dilemma. It is expected that the traditional role of gas storage will intensify as local distribution companies (LDCs) try to manage tight gas supplies, optimize pipeline capacity and manage price volatility. The role of storage as an economic asset will become more prominent and gas storage will be used to meet the needs of power plants. Desirable elements in future storage include a good location, high flexible performance, environmentally secure, and easy to use. The Stagecoach storage facility was presented as a case study. 1 tab., 14 figs

  2. Canadian natural gas

    International Nuclear Information System (INIS)

    Lucas, D.A.

    1991-01-01

    Canada's natural gas industry enjoys a quiet confidence as it looks ahead to the 1990s. In this paper, the author explains why, despite some critical uncertainties, the optimism endures. Reviewing the current conditions of supply, production, consumption, pipelines, and pipeline expansion plans, the author contends that the New World of the 1990s will belong to natural gas. The author's assessment of natural gas markets proceeds far beyond the borders of Canada. The author examines the determinants of gas prices throughout North America and he identifies the one force that promises to seize almost complete control of gas prices throughout the continent. While the analysis points out the attributes of this new pricing regime, it also names the obstacles that could prevent this emerging mechanism from assuming its anticipated position

  3. NATGAS. A Model of the European Natural Gas Market

    International Nuclear Information System (INIS)

    Mulder, M; Zwart, G.

    2006-02-01

    The NATural GAS model is an integrated model of the European wholesale gas market providing long-run projections of supply, transport, storage and consumption patterns in the model region, aggregated in 5-year periods, distinguishing two seasons (winter and summer). Model results include levels of investment in the various branches, output and consumption, depletion of reserves and price levels. The NATGAS model computes long-term effects of policy measures on future gas production and gas prices in Europe. NATGAS is an equilibrium model describing behaviour of gas producers, investors in infrastructure (pipeline, LNG capacity, as well as storage), traders and consumers. NATGAS covers the main European demand regions, including the United Kingdom, Germany, the Netherlands and Italy. Moreover, it covers the main origins of supply on the European market, such as Russia, Norway, Algeria, the Netherlands, the United Kingdom and LNG. In this memorandum, we first discuss the theoretical background as well as the model specifications. Afterwards, we describe the data we used, present some results and assess validity by computing sensitivities and comparing with current developments

  4. Natural gas annual 1997

    International Nuclear Information System (INIS)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs

  5. Natural gas annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  6. Growing natural gas usage

    International Nuclear Information System (INIS)

    Saarni, T.

    1996-01-01

    Finnish natural gas usage topped the 3.3 billion cubic metre mark last year, up 3.6 % on the 1994 figure. Growth has increased now for 12 years in a row. Thanks to offtake by large individual users, the pipeline network has been expanded from South-East Finland to the Greater Helsinki area and central southern Finland. Natural gas plays a much larger role in this region than the 10 % accounted for by natural gas nationally would indicate. The growth in the share of Finland's energy use accounted for by natural gas has served to broaden the country's energy supply base. Natural gas has replaced coal and oil, which has considerably reduced the level of emissions resulting form energy generation

  7. US crude oil, natural gas, and natural gas liquids reserves: 1990 annual report

    International Nuclear Information System (INIS)

    1991-09-01

    The primary focus of this report is to provide an accurate estimate of US proved reserves of crude oil, natural gas, and natural gas liquids. These estimates were considered essential to the development, implementation, and evaluation of natural energy policy and legislation. In the past, the government and the public relied upon industry estimates of proved reserves. These estimates were prepared jointly by the American Petroleum Institute (API) and the American Gas Association (AGA) and published in their annual report, Reserves of Crude Oil, Natural Gas Liquids, and Natural Gas in the United States and Canada. However, API and AGA ceased publication of reserves estimates after their 1979 report. By the mid-1970's, various federal agencies had separately established programs to collect data on, verify, or independently estimate domestic proved reserves of crude oil or natural gas. Each program was narrowly defined to meet the particular needs of the sponsoring agency. In response to recognized need for unified, comprehensive proved reserves estimates, Congress in 1977 required the Department of Energy to prepare such estimates. To meet this requirement, the EIA's reserves program was undertaken to establish a unified, verifiable, comprehensive, and continuing statistical series for proved reserves of crude oil and natural gas. The program was expanded to include proved reserves of natural gas liquids in the 1979 report. 36 refs., 11 figs., 16 tabs

  8. Finland's leading natural gas company

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The ownership structure of Finland's leading natural gas company, Gasum, changed fundamentally in 1999, and the company is now no longer a subsidiary of Fortum Corporation. 'Our new strong and broad ownership base will enable us to develop the natural gas business and pipeline network in Finland in response to the requirements of our Finnish customers', says Antero Jaennes, Gasum's Chairman and CEO, who stresses that Gasum is committed to remaining the leading developer of the Finnish natural gas market and the number-one gas supplier. Natural gas usage in Finland in 1999 totalled 3.9 billion m 3 (38.7 TWh), unchanged from 1998. Natural gas accounted for 11% of Finland's total primary energy need, as it did in 1998. The proportion of natural gas used in district heating rose by 2% to 36%, and moved down 2% in power generation to 10%. Industry's use of natural gas fell 1% to 17%. 75% of natural gas was used in combined heat and power (CHP) generation in industry and district heating. In 2000, Gasum expects to sell 4 billion m 3 of natural gas (40 TWh)

  9. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.J.; Levey, R.A.; Hardage, B.A.

    1993-12-31

    The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gasfrom conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas gulf coast basin as a natural laboratory for developing concepts and testing applications to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

  10. Natural gas monthly, April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  11. Almacenamiento de gas natural

    Directory of Open Access Journals (Sweden)

    Tomás Correa

    2008-12-01

    Full Text Available The largest reserves of natural gas worldwide are found in regions far of main cities, being necessary different alternatives to transport the fluid to the consumption cities, such as pipelines, CNG or ships, LNG, depending on distances between producing regions and demanding regions and the producing volumes. Consumption regions have three different markets to naturalgas; residential and commercial, industrial and power generation sector. The residential and commercial is highly seasonal and power generation sector is quite variable depending on increases of temperature during summer time. There are also external issuesthat affect the normal gas flow such as fails on the national system or unexpected interruptions on it, what imply that companies which distribute natural gas should design plans that allow supplying the requirements above mentioned. One plan is using underground natural gas storage with capacities and deliverability rates enough to supply demands. In Colombia there are no laws in this sense but it could be an exploration to discuss different ways to store gas either way as underground natural gas storage or above superficies. Existing basically three different types of underground natural gas storage; depleted reservoirs, salt caverns and aquifers. All ofthem are adequate according to geological characteristics and the needs of the distributors companies of natural gas. This paper is anexploration of technical and economical characteristics of different kind of storages used to store natural gas worldwide.

  12. Natural gas benefits

    International Nuclear Information System (INIS)

    1999-01-01

    The General Auditor in the Netherlands studied the natural gas policy in the Netherlands, as has been executed in the past decades, in the period 1997-1999. The purpose of the study is to inform the Dutch parliament on the planning and the backgrounds of the natural gas policy and on the policy risks with respect to the benefits for the Dutch State, taking into account the developments in the policy environment. The final conclusion is that the proposed liberalization of the national natural gas market will result in a considerable deprivation of income for the State in case the benefit policy is not adjusted. This report includes a reaction of the Dutch Minister of Economic Affairs and an afterword of the General Auditor. In the appendix an outline is given of the natural gas policy

  13. Assessment of demand for natural gas from the electricity sector in India

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash; Victor, David G.

    2009-01-01

    Electricity sector is among the key users of natural gas. The sustained electricity deficit and environment policies have added to an already rising demand for gas. This paper tries to understand gas demand in future from electricity sector. This paper models the future demand for gas in India from...... the electricity sector under alternative scenarios for the period 2005–2025, using bottom-up ANSWER MARKAL model. The scenarios are differentiated by alternate economic growth projections and policies related to coal reforms, infrastructure choices and local environment. The results across scenarios show that gas...... competes with coal as a base-load option if price difference is below US $ 4 per MBtu. At higher price difference gas penetrates only the peak power market. Gas demand is lower in the high economic growth scenario, since electricity sector is more flexible in substitution of primary energy. Gas demand...

  14. Power to gas. Investigation of energy storage options in the frame of the DVGW-innovation initiative; Power to Gas. Untersuchungen im Rahmen der DVGW-Innovationsoffensive zur Energiespeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Syring, Gert; Henel, Marco [DBI-GUT, Freiberg (Germany); Rasmusson, Hans [Deutsche Vereinigung des Gas- und Wasserfaches e.V. (DVGW), Bonn (Germany); Mlaker, Herwig [E.on Ruhrgas AG, Koeln (Germany); Koeppel, Wolfgang [European Bioinformatics Institute (EBI) (United Kingdom); Hoecher, Thomas [Verbundnetz Gas AG (VNG), Leipzig (Germany); Sterner, Michael; Trost, Tobias [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany)

    2011-07-01

    The existing natural gas grid is an efficient, safe, environmental friendly and accepted energy infrastructure. This infrastructure is able to convey hydrogen and renewable methane beyond its initial purpose to transport natural gas. Using this existing infrastructure to accommodate renewable gases will support the further development of renewable energies and their integration in the energy systems. Thus the natural gas grid can be a partner of renewable energies. (orig.)

  15. Fuels Containing Methane of Natural Gas in Solution

    Science.gov (United States)

    Sullivan, Thomas A.

    2004-01-01

    cylinders, relative to gasoline, it would disperse more readily and therefore would mix with air more nearly completely. As a consequence, this fuel would burn more nearly completely (and, hence, more cleanly) than gasoline does. The storage density of this fuel would be similar to that of gasoline, but its energy density would be such that the mileage (more precisely, the distance traveled per unit volume of fuel) would be greater than that of either gasoline or compressed natural gas. Because the pressure needed to maintain the fuel in liquid form would be more nearly constant and generally lower than that needed to maintain compressed natural gas in liquid form, the pressure rating of a tank used to hold this fuel could be lower than that of a tank used to hold compressed natural gas. A mixture of natural gas and gasoline could be distributed more easily than could some alternative fuels. A massive investment in new equipment would not be necessary: One could utilize the present fuel-distribution infrastructure and could blend the gasoline and natural gas at almost any place in the production or distribution process - perhaps even at the retail fuel pump. Yet another advantage afforded by use of a blend of gasoline and natural gas would be a reduction in the amount of gasoline consumed. Because natural gas costs less than gasoline does and is in abundant supply in the United States, the cost of automotive fuel and the demand for imported oil could be reduced.

  16. Safety implications of bridging the energy supply/demand gap in Nigeria through associated natural gas utilization

    International Nuclear Information System (INIS)

    Akeredolu, Funso A.; Sonibare, Jacob A.

    2007-01-01

    There exists a wide energy supply/demand gap in Nigeria. The local generation of electricity meets only 31% of the demand of 10000 MW. By contrast, only 39.6% of the total installed capacity for electricity generation is achieved, owing to aging infrastructure, etc. The energy demand/supply pattern and infrastructure critically reviewed thus suggested the need to increase the electricity generation capacity. Furthermore, Nigeria flares 77% of her associated natural gas. Apart from the environmental penalties that flaring represents, in monetary terms, over the 110 years' life of Nigeria's gas reserves, a conservative estimate of the cost of the gas so-flared was $330 billion (based on $20/barrel average price of crude). It was safely inferred that the way forward in meeting the country's energy demand should include a strong element of gas utilization. In previous publications by this group, it was established that while domestic cooking could reduce the flared gas by about 5.4%, a cohesive policy on associated gas use for electricity generation could eliminate gas flaring. For domestic utilization of the associated gas, burner design and safety concerns were identified as the key challenges to overcome. The paper reports the effectiveness of odorizers in leakage detection/ prevention by the local consumers. It also discusses the issue of prevention of gas explosions. The previous cases of gas accidents were reviewed. The safety approaches proffered in the paper identified the relevant areas of research for safe delivery and consumption of natural gas in Nigeria. (Author)

  17. Green gas in the natural gas network

    International Nuclear Information System (INIS)

    Bruinsma, B.

    2007-09-01

    The aim of this study is to map the technical, economic and organizational options and limitations of feeding biogas back into the natural gas grid by means of regional co-digestion. Emphasis is put on feeding back into the natural gas grid, analogous to a comparable situation in a number of landfill gas projects. This report first provides insight into the energetic potential of co-digestion. Next several landfill gas projects are examined that feed back into the natural gas grid. After that the political and policy-related issues and preconditions for feeding back biogas from co-digestion are discussed, including the technical and economic aspects. Finally, a picture is painted of the future potential of green gas. [mk] [nl

  18. More natural gas

    International Nuclear Information System (INIS)

    Leprince, P.; Valais, M.

    1993-01-01

    This paper reports that large resources and growing markets are the salient prospects of natural gas for the coming decades. The greater impact of natural gas on the worldwide energy market can become a reality if several scientific disciplines can be mobilized in order to succeed in cutting production costs. Modeling, mechanics of complex fluids, and physical chemistry of interfaces are basic disciplines for understanding and mastering the gas processing technologies

  19. Natural gas supply in Denmark - A model of natural gas transmission and the liberalized gas market

    International Nuclear Information System (INIS)

    Bregnbaek, L.

    2005-01-01

    In the wake of the liberalization of European energy markets a large area of research has spawned. This area includes the development of mathematical models to analyze the impact of liberalization with respect to efficiency, supply security and environment, to name but a few subjects. This project describes the development of such a model. In Denmark the parallel liberalization of the markets of natural gas and electricity and the existence of an abundance of de-centralized combined heat and power generators of which most are natural gas fired, leads to the natural assumption that the future holds a greater deal of interdependency for these markets. A model is developed describing network flows in the natural gas transmission system, the main arteries of natural gas supply, from a technical viewpoint. This yields a technical bounding on the supply available in different parts of the country. Additionally the economic structure of the Danish natural gas market is formulated mathematically giving a description of the transmission, distribution and storage options available to the market. The supply and demand of natural gas is put into a partial equilibrium context by integrating the developed model with the Balmorel model, which describes the markets for electricity and district heat. Specifically on the demand side the consumption of natural gas for heat and power generation is emphasized. General results and three demonstration cases are presented to illustrate how the developed model can be used to analyze various energy policy issues, and to disclose the strengths and weaknesses in the formulation. (au)

  20. Natural gas monthly, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  1. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    Science.gov (United States)

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  2. Natural gas monthly, August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  3. Natural gas monthly, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  4. Economic regulation of Canada's natural gas delivery industry : policy and regulatory principles

    International Nuclear Information System (INIS)

    Gormley, B.

    2006-03-01

    This policy paper demonstrated how restoring balance and clarity to Canada's regulatory environment will ensure the continued strength of the economy, environment, and communities. It was noted that regulatory outcomes that reflect the broad public interest can be achieved if 4 basic principles for economic regulation are pursued. These principles include strength, balance, efficiency, and clarity. In particular, this paper addressed the challenge facing Canada's natural gas delivery industry in terms of increased energy demand, tight supply, ageing infrastructure and increasing cost pressures on the energy system. It emphasized that transparent, efficient energy policy developed through informed debate can provide the foundation for a reliable, environmentally acceptable and sustainable energy future. It was suggested that immediate attention be given to rebalancing the regulatory processes that have placed short term considerations above the longer term strength of the natural gas system; improving the support for new natural gas supply development; reconsidering pricing in some energy markets where information has been distorted; and revisiting the regulatory processes that have become inefficient

  5. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities

  6. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  7. Natural gas monthly, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

  8. The French wholesale electricity and natural gas markets. 2009-2010 Report

    International Nuclear Information System (INIS)

    2010-10-01

    This report on the operation of French wholesale electricity and natural gas markets deals with CRE wholesale market surveillance activities. It capitalizes on the experience gained in this area since the Law of the 7 December 2006 gave the CRE market surveillance powers. It is also based on feedback from discussions and interaction with the different stakeholders through public consultations. Market surveillance applies to: - electricity and gas, - bilateral transactions, trading on exchanges and cross-border transactions, - all maturities, from short-term markets to long-term contracts, - all French wholesale market counter-parties, whatever nationality they may have, - contracts for physical delivery, as well as to financial products. The Law also allows extensive surveillance of market participants' behaviour, in that the CRE can oversee not only transactions between operators but also their bids and the correspondence between the prices charged and the position of each operator. In order to address these different subjects, the electricity and gas sections of this report are divided into four main chapters dealing with the development of trading, wholesale market price trends, the fundamentals (generation, infrastructures) and, finally, the analysis of electricity transactions and the supply of alternative gas operators. Contents: A - Introduction, Summary of the report; B - Section 1 - The wholesale electricity markets: The development of the main segments of the wholesale market, Electricity prices, Analysis of generation and its transparency, Analysis of transactions; C - Section 2 - The wholesale gas markets: The development of gas trading, Gas prices, The gas infrastructures, The supply of players/new entrants; D - Section 3 - Appendices: Glossary, Index to graphs, Index to tables, Index to boxes

  9. Who's afraid of natural gas?

    International Nuclear Information System (INIS)

    Patterson, W.

    1999-01-01

    Changes in our electricity systems provoked by natural gas power generation technology are paving the way for large-scale renewables use in the future. Natural gas and gas turbines are now such a cheap and easy option for electricity generation that they appear to cast a pall over renewables. The market share of gas-fired generation continues expanding inexorably. Its cost continues to fall, setting renewables an ever more demanding competitive target. Nevertheless, paradoxical though this may sound, natural gas is actually the natural ally of renewables. Despite the fierce competitive challenge it represents, natural gas may even be the most important single factor shaping a bright future for renewables. (author)

  10. Natural Gas Multi-Year Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  11. Alternative Fuels Data Center: Natural Gas

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on

  12. The Employment of spatial autoregressive models in predicting demand for natural gas; O Emprego de modelos auto-regressivos espaciais na previsao de demanda para gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Jorge Henrique de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Silva, Alexandre Pinto Alves da [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Eletrica

    2010-07-01

    Develop the natural gas network is critical success factor for the distribution company. It is a decision that employs the demand given location 'x' and a future time 't' so that the net allows the best conditions for the return of the capital. In this segment, typical network industry, the spatial infra-structure vision associated to the market allows better evaluation of the business because to mitigate costs and risks. In fact, economic models little developed in order to assess the question of the location, due to its little employment by economists. The objective of this article is to analyze the application of spatial perspective in natural gas demand forecasting and to identify the models that can be employed observing issues of dependency and spatial heterogeneity; as well as the capacity of mapping of variables associated with the problem. (author)

  13. Environmental benefits and economic rationale of expanding the Italian natural gas private car fleet

    International Nuclear Information System (INIS)

    Ballardin, Giorgio

    2005-01-01

    There are several concerns which bring to consider natural gas as a viable alternative to liquid fuels in transport. First, natural gas allows the curbing of global pollution in this steadily growing industry. Indeed, decoupling greenhouse gas emissions from transport growth has become a major issue in tackling climate change. Second, a more extensive use of natural gas would relieve city air quality, which is presently at levels harmful of human health. Nonetheless, this is just one side of the coin. The other side entails building a refuelling station network, and this carries financial requirements. The financing fraction holds a pivotal role in deciding whether natural gas for automotive purposes is an efficient solution. The final aim of this work is, therefore, to compare the natural gas advantages, stemming from avoided global and local emission, with the economic rationale of engaging in supplementary model network investments. A system dynamics model underlies this study's economic reasoning and is taken as reference for quantitative assertions. The model, named CH 4 CleanerAir, contains data referring to two scenarios: a Business As Usual Scenario and an Expansion Scenario. Simulation runs in Expansion Scenario serve to understand how gaseous pollution diminishes and network investments rise when the natural gas-fuelled fleet, as share of the total fleet, increases. Are new infrastructures needs compatible with existing refuelling facilities? What is the extent by which the natural gas-fuelled fleet can actually reduce global and local emission? The scenarios' gap analysis lead to the work's final considerations. The sounder reductions of gaseous pollutants in the last years of the considered time lag make the overall assessment lean towards a positive evaluation of natural gas employment in this industry. The beneficial effects of increasing the natural gas-fuel-led fleet take some time to unfold, but they eventually prevail. This study shows how natural

  14. Natural gas prices

    International Nuclear Information System (INIS)

    Johnson, W.A.

    1990-01-01

    Since the 1970s, many electric utilities and industrial boiler fuel users have invested in dual fuel use capability which has allowed them to choose between natural gas, residual fuel oil, and in some instances, coal as boiler fuels. The immediate reason for this investment was the need for security of supply. Wellhead regulation of natural gas prices had resulted in shortages during the 1970s. Because many industrial users were given lowest priority in pipeline curtailments, these shortages affected most severely boiler fuel consumption of natural gas. In addition, foreign supply disruptions during the 1970s called into question the ready availability of oil. Many boiler fuel users of oil responded by increasing their ability to diversify to other sources of energy. Even though widespread investment in dual fuel use capability by boiler fuel users was initially motivated by a need for security of supply, perhaps the most important consequence of this investment was greater substitutability between natural gas and resid and a more competitive boiler fuel market. By the early 1980s, most boiler fuel users were able to switch from one fuel to another and often did for savings measured in pennies per MMBtu. Boiler fuel consumption became the marginal use of both natural gas and resid, with coal a looming threat on the horizon to both fuels

  15. The prospects of natural gas at the threshold of the third millenium and the search of new equilibria

    International Nuclear Information System (INIS)

    Valais, M.

    1992-01-01

    Between growing and abundant resources and the promise of increasingly open potential markets, natural gas may seem a providential source of energy for the next decades and moreover one which may more easily answer new demands of environmental protection. However, this perspective of expansion is not without constraints. Progressively, the development of natural gas encounters heavier and heavier logistical and infrastructural needs, increasingly costly at all stages of its industrial chain. The industry of natural gas should necessarily find answers, new balances between the market prices and the cost of future supplies, in order to assure the continuation of its expansion well beyond the end of the present millenium. 3 refs., 5 figs

  16. Natural gas 1995: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  17. Natural gas monthly, August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  18. Natural gas monthly, November 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information

  19. 77 FR 19277 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Science.gov (United States)

    2012-03-30

    ... and Export Natural Gas and Liquefied Natural Gas During February 2012 FE Docket Nos. FREEPORT LNG...-LNG QUICKSILVER RESOURCES INC 12-12-NG UNITED ENERGY TRADING CANADA, ULC 12-13-NG ENCANA NATURAL GAS... authority to import and export natural gas and liquefied natural gas. These Orders are summarized in the...

  20. Running on Fumes: A Critical Look at Mexico’s Natural Gas Transportation and Distribution Infrastructure

    Science.gov (United States)

    2011-10-27

    company’s revenues, but PEMEX has also been hampered in its ability to leverage private investment and ownership in developing and improving...PEMEX offers for gas distribution franchises ; the standard for exclusivity ranges from 20 to 75 years or more in much of the world, but in Mexico... vs . Government,” Revue de l’energie 53, no.1 (2002):648. 12 Juan Rosellon and Jonathan Halpern, “Regulatory Reform in Mexico’s Natural Gas Industry

  1. Natural gas vehicles in Italy

    International Nuclear Information System (INIS)

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  2. Natural gas consumption and economic growth: Are we ready to natural gas price liberalization in Iran?

    International Nuclear Information System (INIS)

    Heidari, Hassan; Katircioglu, Salih Turan; Saeidpour, Lesyan

    2013-01-01

    This paper examines the relationship between natural gas consumption and economic growth in Iran within a multivariate production model. We also investigate the effects of natural gas price on its consumption and economic growth using a demand side model. The paper employs bounds test approach to level relationship over the period of 1972–007. We find evidence of bidirectional positive relationship between natural gas consumption and economic growth in short-run and long-run, based on the production model. The findings also suggest that real GDP growth and natural gas have positive and negative impacts on gross fixed capital formation, respectively. Employment, however, was found to have negative but insignificant impact on gross fixed capital formation. Moreover, the estimation results of demand side model suggest that natural gas price has negative and significant impact on natural gas consumption only in the long-run, though there is insignificant impact on economic growth. These results imply that the Iranian government's decision for natural gas price liberalization has the adverse effects on economic growth and policy makers should be cautious in doing this policy. - Highlights: • Iran has been considered as a major natural gas producer in the world. • This paper examines the relationship between gas consumption and growth in Iran. • Positive impact of gas consumption on growth has been obtained. • The paper finds that gas consumption and income reinforce each other in Iran. • Natural gas price has also negative and significant impact on natural gas consumption in Iran

  3. Natural gas monthly, June 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  4. Natural gas monthly, October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  5. Natural gas monthly, May 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  6. 77 FR 12274 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Science.gov (United States)

    2012-02-29

    ... Authority To Import and Export Natural Gas and Liquefied Natural Gas During January 2012 AGENCY: Office of... LNG, LP 11-98-LNG ENERGY PLUS NATURAL GAS LLC 11-155-NG BROOKFIELD ENERGY MARKETING L.P 12-03-NG WPX... granting authority to import and export natural gas and liquefied natural gas. These Orders are summarized...

  7. European natural gas

    International Nuclear Information System (INIS)

    Thackeray, Fred

    1999-11-01

    Contains Executive Summary and Chapters on: Main issues; Natural gas consumption and supply: statistics and key features of individual countries; Sectoral natural gas consumption; Indigenous production; Imports; Prices and taxes; The spot market: The interconnector; Forecasts of production and consumption and contracted imports; Progress of markets liberalisation; Effects of environmentalist developments; Transmission networks and storage; Some principal players. (Author)

  8. Civil unrest in North Africa—Risks for natural gas supply?

    International Nuclear Information System (INIS)

    Lochner, Stefan; Dieckhöner, Caroline

    2012-01-01

    The uprising and military confrontation in Libya that began in February 2011 has led to disruptions of gas supplies to Europe. An analysis of how Europe has compensated for these missing gas volumes shows that this situation has not affected security of supply. However, this situation would change if the North African uprising were to spread to Algeria. Since Algeria is a much more important gas supplier to Europe than is Libya, more severe consequences would be likely. Applying a natural gas infrastructure model, we investigate the impact of supplier disruptions from both countries for a summer and winter period. Our analysis shows that disruptions in the low-demand summer months could be compensated for, mainly by LNG imports into several European countries. An investigation of a similar situation at the beginning of the winter shows that security of supply would be severely compromised and that disruptions to Italian consumers would be unavoidable. The analysis thereby highlights the importance of taking the political stability of supply countries into account when assessing the security of European gas imports. - Highlights: ► Impact of political instability on security of natural gas supplies. ► Analysis of export stop during Libyan civil war in 2011. ► Model-based analysis of potential future North African crisis scenarios. ► Findings: spread of uprisings to Algeria more critical for Europe. ► Price effects and potential demand curtailment for consumers.

  9. Buying natural gas in the spot market: risks related to the natural gas industry globalization; Aquisicao de gas natural em bases 'spot': riscos associados a globalizacao da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, Melissa Cristina [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Szklo, Alexandre Salem [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2008-07-01

    The growth of the international natural gas trade during the last decade resulted in the expectation that this product would be traded as a commodity. This expectation created a boom in the investments related to the commercialization of natural gas between borders, especially in the distinct segments of the chain of liquefied natural gas (LNG). Different agents launched themselves into liquefaction and regasification enterprises, and the ordering of ships also showed significant growth. Despite that, the natural gas market still cannot be considered global, and international gas transactions are primarily done within regional markets. This article investigates the challenges posed to the constitution of a global natural gas market. These challenges represent risks to the commercialization of this product in spot bases, for the agents that launch themselves into projects to export or import LNG to be commercialized through short term contracts in the international market for this product. (author)

  10. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    Science.gov (United States)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted

  11. Balancing natural gas policy : Fueling the demands of a growing economy

    International Nuclear Information System (INIS)

    Howard, R.

    2003-01-01

    In March 2002 a request was made to the National Petroleum Council by the United States Secretary of Energy to examine the potential implications of new supplies, technologies, perceptions of risk on natural gas demand, supplies, and delivery through 2025. In addition, the Secretary was looking for insight on energy market dynamics and an outlook on the longer-term sustainability of natural gas supplies. Ideas on ways to improve the productivity and efficiency of North American natural gas markets while ensuring adequate and reliable supplies of energy for consumers were also requested. Two options were examined by the National Petroleum Council (NPC). The reactive path involves public policies which remain in conflict, while the balanced future involves aligned public policies. It was discovered that 75 per cent of long-term American gas needs will be met by traditional North American producing areas which will be unable to meet projected demand. Production growth is desirable in the Rockies and deepwater Gulf of Mexico, as well as non conventional production. After careful examination, it was determined that demand flexibility and efficiency must be improved, along with an increase in supply diversity. Infrastructure must be enhanced and sustained, and efficient markets must be promoted. All these measures would result in higher economic growth, higher employment, and stronger industrial activity. figs

  12. Natural gas industry in Bulgaria

    International Nuclear Information System (INIS)

    Mashkin, L.

    1994-01-01

    An overview of the Bulgarian natural gas industry is presented. The starting point was the discovery of the indigenous Chiren gas-field in 1967. The first agreement with the ex-USSR for supply of natural gas and construction of main pipelines was signed in 1968. The state gas company BULGARGAZ is responsible for transportation, storage, distribution, processing and marketing of the gas to over 150 industrial companies in the country, as well as for the transportation services to gas importers in neighboring Turkey. The GAZSTROJMONTAZH company accomplish the construction of the local and transit pipelines to Turkey and Greece, as well as of some objects in Iran, Syria, Ukraine and Germany. In the past 20 years, 87890 million m 3 natural gas from Russia are supplied and 846 million m 3 - from domestic sources. The share of natural gas in the overall energy balance is 13.6% for 1992. The restructuring and further development of gas industry require to take into account some factors as: security in supply; investments for technical assurance; pricing policy for natural gas; development of private business. Some administrative problems are also mentioned. 2 tabs., 1 fig

  13. Oil and natural gas

    International Nuclear Information System (INIS)

    Riddell, C.H.

    1993-01-01

    The natural gas industry and market prospects in Canada are reviewed from a producer's point of view. In the first eight months of 1993, $2.3 billion in new equity was raised for natural gas exploration and production, compared to $900 million in 1991 and $1.2 billion in 1992. The number of wells drilled in the western Canada basin is expected to reach 8,000-9,000 in 1993, up from 5,600 in 1992, and Canadian producers' share of the North American natural gas market will probably reach 20% in 1993, up from 13% in 1986. Potential and proved gas supply in North America is ca 750 trillion ft 3 , of which ca 30% is in Canada. Factors affecting gas producers in Canada are the deregulated nature of the market, low costs for finding gas (finding costs in the western Canada basin are the lowest of any basin in North America), and the coming into balance of gas supply and demand. The former gas surplus has been reduced by expanding markets and by low prices which reduced the incentive to find new reserves. This surplus is largely gone, and prices have started rising although they are still lower than the pre-deregulation prices. Progress is continuing toward an integrated North American gas market in which a number of market hubs allow easy gas trading between producers and consumers. Commodity exchanges for hedging gas prices are beginning operation and electronic trading of gas contracts and pipeline capacity will also become a reality. 4 figs

  14. Natural gas, the new deal?

    International Nuclear Information System (INIS)

    Encel, Frederic; Boroumand, Raphael H.; Charlez, Philippe; Goutte, Stephane; Lafargue, Francois; Lombardi, Roland; Porcher, Thomas; Rebiere, Noemie; Schalck, Christophe; Sebban, Anne-Sophie; Sylvestre, Stephan

    2016-01-01

    As natural gas is about to become the first energy source in the world, is abundant and easy to transport, this collective publication addresses issues related to shale gas and to natural gas. The first part addresses shale gas. Four articles propose a global overview, comment the situation in the USA which, in eight years of time, reduced their oil dependency by half and became almost self-sufficient as far as gas is concerned, discuss technical and legal issues related to shale gas exploitation, discuss the perspective of evolution of the world gas markets, and notice that shale gas will not be a game changer in Europe. The second part addresses the natural gas. The articles discuss the possible influence of natural gas exploitation by Israel on the Middle-East geopolitical situation, the influence of the emergence of new producers in Africa (Tanzania and Mozambique), the contribution of gas-fuelled power station to the coverage of market risks, and the issue of European energy safety with a focus on the role of Turkey

  15. The Employment of spatial autoregressive models in predicting demand for natural gas

    International Nuclear Information System (INIS)

    Castro, Jorge Henrique de; Silva, Alexandre Pinto Alves da

    2010-01-01

    Develop the natural gas network is critical success factor for the distribution company. It is a decision that employs the demand given location 'x' and a future time 't' so that the net allows the best conditions for the return of the capital. In this segment, typical network industry, the spatial infra-structure vision associated to the market allows better evaluation of the business because to mitigate costs and risks. In fact, economic models little developed in order to assess the question of the location, due to its little employment by economists. The objective of this article is to analyze the application of spatial perspective in natural gas demand forecasting and to identify the models that can be employed observing issues of dependency and spatial heterogeneity; as well as the capacity of mapping of variables associated with the problem. (author)

  16. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  17. Case studies of scenario analysis for adaptive management of natural resource and infrastructure systems

    DEFF Research Database (Denmark)

    Hamilton, M.C.; Thekdi, S.A.; Jenicek, E.M.

    2013-01-01

    Management of natural resources and infrastructure systems for sustainability is complicated by uncertainties in the human and natural environment. Moreover, decisions are further complicated by contradictory views, values, and concerns that are rarely made explicit. Scenario analysis can play...... of emergent conditions and help to avoid regret and belated action. The purpose of this paper is to present several case studies in natural resources and infrastructure systems management where scenario analysis has been used to aide decision making under uncertainty. The case studies include several resource...... and infrastructure systems: (1) water resources (2) land-use corridors (3) energy infrastructure, and (4) coastal climate change adaptation. The case studies emphasize a participatory approach, where scenario analysis becomes a means of incorporating diverse stakeholder concerns and experience. This approach...

  18. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  19. Developing Sustainable Urban Water-Energy Infrastructures: Applying a Multi-Sectoral Social-Ecological-Infrastructural Systems (SEIS) Framework

    Science.gov (United States)

    Ramaswami, A.

    2016-12-01

    Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K

  20. Environmental review of natural gas production in Lake Erie

    International Nuclear Information System (INIS)

    O'Shea, K.

    2002-01-01

    The water of Lake Erie is used as a source of drinking water for Ontario, New York, Pennsylvania, Ohio and Michigan. An environmental review has been conducted to determine the impact of drilling operations on the overall ecology of the lake. Since 1913, 2000 natural gas wells have been drilled in Lake Erie, of which 550 currently produce gas and account for 75 per cent of Ontario's total gas production. 180 wells are shut-in or suspended and the remaining wells have been abandoned. The gas wells are connected to onshore production facilities by approximately 1,600 km of small diameter pipelines that lie buried near shore or on top of the lake bed. Nearly 90 per cent of the in-lake infrastructure is in water depths of more than 20 metres. Talisman Energy is actively involved with the Canadian Coast Guard, the Department of Fisheries and Oceans, and the Ministry of Natural Resources to ensure cooperation between regulators and off-shore personnel. The environmental assessment of natural gas production in Lake Erie included a review of regulatory and best management practices, a biophysical overview of the lake, and a review of drilling practices, well completions, handling of waste streams, materials management, operations inspections, wastewater discharge, air emissions, and oil spills. It was revealed that for most drilling programs, cuttings are washed and discharged to the Lake. Ongoing testing will determine the impact that this practice has on benthic populations. The drill muds used for drilling operations are water based, environmentally friendly, and re-used between well locations. For completion programs, all well activities are closed circuit operations. Wells are abandoned through plugging with cement, removing wellheads and casing below the lake bottom. There has been a reported volume of about 23,000 litres of spilled product from 1990 to 2001, of which 68 per cent has come from 3 industrial companies that operate near Lake Erie. The offshore gas

  1. Electrochemical Noise Sensors for Detection of Localized and General Corrosion of Natural Gas Transmission Pipelines. Final Report for the Period July 2001-October 2002

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Sophie J.; Covino, Jr., Bernard S.; Russell, James H.; Holcomb, Gordon R.; Cramer, Stephen D.; Ziomek-Moroz, Margaret

    2002-12-01

    The U.S. Department of Energy, National Energy Technology Laboratory funded a Natural Gas Infrastructure Reliability program directed at increasing and enhancing research and development activities in topics such as remote leak detection, pipe inspection, and repair technologies and materials. The Albany Research Center (ARC), U.S. Department of Energy was funded to study the use of electrochemical noise sensors for detection of localized and general corrosion of natural gas transmission pipelines. As part of this, ARC entered into a collaborative effort with the corrosion sensor industry to demonstrate the capabilities of commercially available remote corrosion sensors for use with the Nation's Gas Transmission Pipeline Infrastructure needs. The goal of the research was to develop an emerging corrosion sensor technology into a monitor for the type and degree of corrosion occurring at key locations in gas transmission pipelines.

  2. Economy calculation to determine the optimum plant parameters for peak coverage with stored liquefied natural gas. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, H

    1979-02-08

    The economical supply of natural gas is faced with particular problems due to the considerably fluctuating demand as a result of the greatly varying course of temperature; the infrastructure of the gas distribution of largely fluctuating loads is particularly effected. As the utilization structure deteriorates however, the higher specific gas costs rise. It is hence necessary for gas supply optimization, to extensively adapt the gas bought to the gas sold especially when trying to compare with the import. Storage plays a key role in this. Starting with the annual normal line, mathematical relationships are developed for peak coverage wth liquefied natural gas which however, are set up in such a way that every other peak coverage process can be analyzed according to costs and the parameters optimized. A few selected model cases are treated (gas supply undertakings of various sizes, different gas drawing and supply conditions).

  3. 78 FR 19696 - Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-02

    ... DEPARTMENT OF ENERGY Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To Export Liquefied Natural Gas and Vacating Prior Authority During December 2012 FE... granting authority to import and export natural gas and liquefied natural gas and vacating prior [[Page...

  4. Globalization of the Natural Gas Industry

    International Nuclear Information System (INIS)

    Burns, RJ.

    1996-01-01

    This document deals with the foreseeable evolution of natural gas demand in the next 15 years. Natural gas consumption is growing faster than any other fossil fuel and, according to ENRON, the natural consumption growth will continue. The environmental aspect of natural gas use for power generation is presented, showing that gas use reduces pollution emissions (when compared with coal). On top of that, it appears that the conversion efficiency of gas is much higher than the conversion efficiency of coal steam. Eventually, natural gas resources should meet energy demand for decades. (TEC)

  5. An Economic Evaluation of Onshore and Floating Liquefied Natural Gas Receiving Terminals: the Case Study of Indonesia

    Science.gov (United States)

    Giranza, M. J.; Bergmann, A.

    2018-05-01

    Indonesia has abundant natural gas resources, however the primary fuel used for electricity generation is coal and oil. Insufficient natural gas infrastructure with-in the country acts as a barrier to increased natural gas usage. In Indonesia LNG is the most efficient and effective method for distributing natural gas given the difficult geographical conditions, the world’s largest archipelago and located in a deep sea area. The Government is planning to initiate natural gas imports by 2019 to meet the country’s energy demands. In order to allocate adequate amounts of natural gas across the geographic regions Indonesia must build more LNG regasification terminals. The Indonesia government has not yet determined if the additional regasification terminals will be floating or land-based facilities. This paper assesses the two options and identifies which facility attains greater profitability. The financial analysis of investing in the Sorong LNG regasification terminal project is conducted using NPV, IRR, and sensitivity analysis. This analysis demonstrates that FSRU facilities have greater economic viability than onshore LNG regasification facilities. The FSRU project earns greater than a 12% IRR as compared to a negative IRR earned by an onshore project. The government can make the onshore projects viable by increasing the sales fee from US10.00/MMBTU to US10.60/MMBTU.

  6. Natural Gas Regulation

    International Nuclear Information System (INIS)

    1995-01-01

    The regulation of Natural Gas. Natural gas Regulation clarifies and consolidates the legal and institutional framework for development of the industry through six principal elements: 1) Establishment of a vision of the industry. 2) Development of regulatory objectives. 3) Determination of relationships among industry participants. 4) Clear specification of the role of PEMEX in the industry. 5) Definition of the functions of the Regulatory authority. 6) Creation of a transition regime. In parallel with the development of the substantive legal framework, the law of the Comision Reguladora de Energia (CRE) was also enacted by Congress in October 1995 to strength the institutional framework and implement the legal changes. This law defines the CRE as an agency of the Energy Ministry with technical, operational, and budgetary autonomy, and responsibility for implementing natural gas industry regulation. (Author)

  7. 77 FR 31838 - Notice of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas...

    Science.gov (United States)

    2012-05-30

    ... Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas During April 2012 AGENCY... International, LLC....... 12-33-NG Phillips 66 Company 12-34-NG Northwest Natural Gas Company 12-41-NG Sequent... authority to import and export natural gas and liquefied natural gas. These Orders are summarized in the...

  8. Green gas (SNG) in the Dutch energy infrastructure

    International Nuclear Information System (INIS)

    Boerrigter, H.

    2006-04-01

    The presentation on the title subject comprises Motivation for Green Gas; Potential and application; Green Gas and SNG implementation; Biomass availability and import; Economy of SNG production; and the SNG development trajectory. SNG stands for Synthetic Natural Gas

  9. Understanding the life cycle surface land requirements of natural gas-fired electricity

    Science.gov (United States)

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan; Bush, Brian W.; Mohammadi, Ehsan; Ben-Horin, Dan; Urrea, Victoria; Marceau, Danielle

    2017-10-01

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. Here we present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m2 MWh-1, 95% confidence intervals ±0.01 m2 MWh-1) was dominated by midstream infrastructure, particularly pipelines (74%). Our results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.

  10. Natural gas: redistributing the economic surplus

    International Nuclear Information System (INIS)

    Oliveira, A. de; Pinto Junior, H.Q.

    1990-01-01

    The natural gas has a limited role in the Brazilian energy balance. This role in industrial countries and some developing countries is much more important. Historically this contrasting situation can be explained by the limited natural gas reserves Brazil used to have. Since the oil crisis however the Brazilian natural gas reserves increased substantially without a similar increase in the role of natural gas in the energy balance. The existing institutional arrangement generates a struggle for the economic rent generated by natural gas production and consumption that seems to be at the core of this question. Our paper estimates the economic rent generated by natural gas in Brazil and its distribution among producers and consumers: it points toward a new institutional arrangement that could arguably, generate a new role for the natural gas in the Brazilian energy balance. (author)

  11. Natural gas supply and demand outlook

    International Nuclear Information System (INIS)

    McGill, C.B.

    1998-01-01

    The outlook for U.S. natural gas supply and demand in the residential, commercial, industrial/cogeneration, electricity and transportation sectors for 1995, 2000, 2005, 2010, and 2015 was presented. A summary of gas well completions from 1990 to 1997 was also provided. The Canadian natural gas resource was estimated at 184 trillion cubic feet. In 1996, Canada produced 5.6 trillion cubic feet of natural gas, half of which was exported to the U.S. New pipeline projects have been proposed to transport natural gas from eastern offshore areas and the Western Canadian Sedimentary Basin. A table representing U.S. and Canada gas trade from 1990 to 1997 and a map of proposed Canadian and U.S. natural gas pipeline routes were also included. Looking into the future, this speaker predicted continued volatility in natural gas prices. 9 tabs., 9 figs

  12. Developing compressed natural gas as an automotive fuel in Nigeria: Lessons from international markets

    International Nuclear Information System (INIS)

    Ogunlowo, Olufemi O.; Bristow, Abigail L.; Sohail, M.

    2015-01-01

    The Nigerian government proposed the use of compressed natural gas (CNG) as an automotive fuel in 1997 as part of the initiatives to harness natural gas (NG) resources but progress has been slow. This paper examines the natural gas vehicle (NGV) implementation approaches and outcomes in seven countries with diverse experiences in order to gain an understanding of the barriers to the NGV market development in Nigeria. The analysis employs hermeneutic principles to secondary data derived from academic literature, published reports from a variety of international agencies, grey literature, and text from online sources and identifies eight success factors for NGV market development namely: strategic intent, legal backing, learning and adaptation, assignment of responsibilities, financial incentives, NG pricing, consumer confidence, and NG infrastructure. The paper concludes that the principal impediment to NGV market development in Nigeria is the uncoordinated implementation approach and that greater government involvement is required in setting strategic goals, developing the legal and regulatory frameworks, setting of clear standards for vehicles and refuelling stations as well as assigning responsibilities to specific agencies. Short-term low cost policy interventions identified include widening the existing NG and gasoline price gap and offering limited support for refuelling and retrofitting facilities. - Highlights: • We examined the NGV policies and implementation strategies in selected countries. • The use of legislative mandates help deepen NGV penetration. • Aligning stakeholder interest is critical to NGV adoption. • Making national interest a priority ahead of regional infrastructure is a critical success factor. • Government support drives participation

  13. Natural gas and crude oil

    International Nuclear Information System (INIS)

    Valais, M.R.

    1991-01-01

    Two main development could gradually modify these traditional features of natural gas markets and prices. First, environmental pressures and the tightening of emission standards and of the quality specifications for fuels should work in favor of natural gas. Second the increasing distance of resources in relation to the major consuming zones should bring about a considerable development of international natural gas trade. International expansion should mark the development of the gas industry in the coming decades. This evolution will give natural gas an importance and a role appreciably closer to those of oil on the world energy scene. But it is obvious that such a development can come about only at the cost of considerable investments for which the economic viability is and will remain dependent on the level of the prices of natural gas as the inlet to its consuming markets. This paper attempts to answer the questions: Will these markets accept a new scale of value for gas in relation to other fossil fuels, including oil, which will take into account new environmental constraints and which will be able to fulfill the formidable financial needs of the gas industry in the coming decades?

  14. Natural gas in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Ask, T Oe; Einang, P M; Stenersen, D [MARINTEK (Norway)

    1996-12-01

    The transportation sector is responsible for more than 50% of all oil products consumed, and it is the fastest growing oil demand sector and the fastest growing source of emissions. During the last 10 years there have been a considerable and growing effort in developing internal combustion gas engines. This effort has resulted in gas engines with efficiencies comparable to the diesel engines and with emissions considerably lower than engines burning conventional fuels. This development offers us opportunities to use natural gas very efficiently also in the transportation sector, resulting in reduced emissions. However, to utilize all the built in abilities natural gas has as engine fuel, the natural gas composition must be kept within relatively narrow limits. This is the case with both diesel and gasoline today. A further development require therefore specified natural gas compositions, and the direct use of pipeline natural gas as today would only in limited areas be acceptable. An interesting possibility for producing a specified natural gas composition is by LNG (Liquid Natural Gas) production. (EG)

  15. Natural gas demand prospects in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Jin [Korea Electric Power Corp. (KEPCO), Seoul (Korea, Republic of)

    1997-06-01

    Korea s natural gas demand has increase enormously since 1986. Natural gas demand in Korea will approach to 29 million tonnes by the year 2010, from little over 9 million tonnes in 1996. This rapid expansion of natural gas demand is largely due to regulations for environmental protection by the government as well as consumers preference to natural gas over other sources of energy. Especially industrial use of gas will expand faster than other use of gas, although it will not be as high as that in European and North America countries. To meet the enormous increase in demand, Korean government and Korea Gas Corporation (KOGAS) are undertaking expansion of capacities of natural gas supply facilities, and are seeking diversification of import sources, including participation in major gas projects, to secure the import sources on more reliable grounds. (Author). 5 tabs.

  16. Natural gas demand prospects in Korea

    International Nuclear Information System (INIS)

    Young-Jin Kwon

    1997-01-01

    Korea s natural gas demand has increase enormously since 1986. Natural gas demand in Korea will approach to 29 million tonnes by the year 2010, from little over 9 million tonnes in 1996. This rapid expansion of natural gas demand is largely due to regulations for environmental protection by the government as well as consumers preference to natural gas over other sources of energy. Especially industrial use of gas will expand faster than other use of gas, although it will not be as high as that in European and North America countries. To meet the enormous increase in demand, Korean government and Korea Gas Corporation (KOGAS) are undertaking expansion of capacities of natural gas supply facilities, and are seeking diversification of import sources, including participation in major gas projects, to secure the import sources on more reliable grounds. (Author). 5 tabs

  17. Acid Gas Removal from Natural Gas with Alkanolamines

    DEFF Research Database (Denmark)

    Sadegh, Negar

    commercially for the removal of acid gas impurities from natural gas. Alkanolamines, simple combinations of alcohols and ammonia, are the most commonly used category of chemical solvents for acid gas capture. This Ph.D. project is aboutthermodynamics of natural gas cleaning process with alkanolamines......Some 40 % of the world’s remaining gas reserves are sour or acid, containing large quantities of CO2 and H2S and other sulfur compounds. Many large oil and gas fields have more than 10 mole % CO2 and H2S content. In the gas processing industry absorption with chemical solvents has been used...... pressure on acid gas solubility was also quantitatively investigated through both experimental and modeling approaches....

  18. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Chauveron, S. de

    1996-01-01

    This article presents compressed natural gas for vehicles (CNG), which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical descriptions is given of CNG stations and vehicles, with the aim of acquainting the reader with some of CNG's specific technical features as compared to gasoline and diesel oil. Here CNG technologies are seen to be very close to the more conventional ones. (author)

  19. Evolving natural gas markets: LNG possibilities for a hydrothermal power system

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Tiago B.; Resende, Joao P.; Costa, Agnes M. [Brazilian Ministry of Mines and Energy, Brasilia, DF (Brazil)

    2008-07-01

    The latest advancements in the natural gas - NG industry have brought new opportunities for the resource's application, especially in the power industry. On the one hand, rapid growth in demand and falling costs of transportation over long distances, particularly as liquefied natural gas - LNG, should lead to a more integrated NG world market. On the other, the deregulation of electricity markets and the growth of independent power producers - IPPs using NG as a fuel for generating peak load power have increased the demand for more flexible NG supply contracts. These factors have allowed a shift in the timing of investment and contract negotiation in NG market. Traditionally, firms searched for trading partners and signed long-term contracts before investing in infrastructure. In the evolving LNG market, producers invest in infrastructure before they have buyers for all their expected outputs, while buyers undertake investment before having firm contracts for all their expected NG needs. These technological and market changes may foster greater participation of a fully flexible NG power plants in the Brazilian electricity market. Nowadays, thermal power long-term capacity contracts customized and negotiated in the local electricity pool (ACR) require power producer to award guarantees of NG firm supply, substantially increasing their cost. A combination of flexible LNG supply contracts and electricity pool contracts may present a solution to the lack of competitiveness of NG power plants in the Brazilian power industry. (author)

  20. Natural Gas as a Future Fuel for Heavy-Duty Vehicles

    International Nuclear Information System (INIS)

    Wai-Lin Litzke; James Wegrzyn

    2001-01-01

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications

  1. Canadian natural gas and climate change

    International Nuclear Information System (INIS)

    2002-03-01

    The Canadian Gas Association (CGA) has expressed concerns regarding how the goal to reduce greenhouse gas emissions can be met. It also has concerns regarding the possible economic impacts of required measures to reduce emissions to 6 per cent below 1990 levels. The CGA argued that since the initial negotiations of the Kyoto Protocol, Canada's greenhouse gas emissions have increased significantly, meaning that if the agreement were to come into force, Canada would have to reduce emissions by about 29 per cent below the currently-projected 2008-2012 level. The report states that 28 per cent of Canada's energy needs are met by natural gas. Excluding energy use in transportation, natural gas contributes more than 40 per cent to Canada's energy portfolio. More than half of Canadian households rely on pipeline services and distribution companies to deliver natural gas for household use. The manufacturing sector relies on natural gas for more than half of its energy needs. Natural gas is a major energy source for the iron/steel, petroleum refining and chemical manufacturing industries. Natural gas is a cleaner-burning fuel than coal or crude oil, and its use results in fewer environmental impacts than other fossil fuels. Vehicles powered by natural gas produce 20 - 30 per cent less carbon dioxide emissions than vehicles powered by gasoline. Pipelines are also a more efficient way of transporting and distributing natural gas than marine transport, railways or trucks. The CGA recommends that policy development should emphasize the environmental benefits of natural gas and recognize its role as a bridge fuel to a cleaner energy-based economy. It also recommends that policies should be developed to encourage the use of natural gas in electricity generation to lower greenhouse gases and air pollutants such as oxides of nitrogen that cause smog

  2. 75 FR 70350 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... announce they have received an application for the licensing of a natural gas deepwater port and the...

  3. 76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... application describes an offshore natural gas deepwater port facility that would be located approximately 16.2...

  4. Natural Assurance Scheme: A level playing field framework for Green-Grey infrastructure development.

    Science.gov (United States)

    Denjean, Benjamin; Altamirano, Mónica A; Graveline, Nina; Giordano, Raffaele; van der Keur, Peter; Moncoulon, David; Weinberg, Josh; Máñez Costa, María; Kozinc, Zdravko; Mulligan, Mark; Pengal, Polona; Matthews, John; van Cauwenbergh, Nora; López Gunn, Elena; Bresch, David N

    2017-11-01

    This paper proposes a conceptual framework to systematize the use of Nature-based solutions (NBS) by integrating their resilience potential into Natural Assurance Scheme (NAS), focusing on insurance value as corner stone for both awareness-raising and valuation. As such one of its core goal is to align research and pilot projects with infrastructure development constraints and priorities. Under NAS, the integrated contribution of natural infrastructure to Disaster Risk Reduction is valued in the context of an identified growing need for climate robust infrastructure. The potential of NAS benefits and trade-off are explored by through the alternative lens of Disaster Resilience Enhancement (DRE). Such a system requires a joint effort of specific knowledge transfer from research groups and stakeholders to potential future NAS developers and investors. We therefore match the knowledge gaps with operational stages of the development of NAS from a project designer perspective. We start by highlighting the key role of the insurance industry in incentivizing and assessing disaster and slow onset resilience enhancement strategies. In parallel we place the public sector as potential kick-starters in DRE initiatives through the existing initiatives and constraints of infrastructure procurement. Under this perspective the paper explores the required alignment of Integrated Water resources planning and Public investment systems. Ultimately this will provide the possibility for both planners and investors to design no regret NBS and mixed Grey-Green infrastructures systems. As resources and constraints are widely different between infrastructure development contexts, the framework does not provide explicit methodological choices but presents current limits of knowledge and know-how. In conclusion the paper underlines the potential of NAS to ease the infrastructure gap in water globally by stressing the advantages of investment in the protection, enhancement and restoration of

  5. The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives

    Science.gov (United States)

    2012-01-01

    Natural gas comprises about a quarter of the United States’ energy use. It is more environmentally friendly than oil and coal due to lower carbon dioxide (CO2) emissions per unit, less costly per unit of energy and more readily available domestically in abundant supply. However, due to a number of barriers in the political, infrastructural, pricing and other arenas, the use of natural gas as a significant energy source in the United States has been limited. In our paper, we highlight the favorable qualities of natural gas and its benefits for the consumer, producer, and environment, having compared the costs of the various components of the natural gas business such as drilling and transport to that of coal and oil. Moreover, we touch upon the major issues that have prevented a more prevalent use of the gas, such as the fact that the infrastructure of natural gas is more costly since it is transported though pipelines whereas other energy sources such as oil and coal have flexible systems that use trains, trucks and ships. In addition, the powerful lobbies of the coal and oil businesses, along with the inertia in the congress to pass a national climate change bill further dampens incentives for these industries to invest in natural gas, despite its various attractive qualities. We also include discussions of policy proposals to incentive greater use of natural gas in the future. PMID:22540989

  6. Natural gas for vehicles (NGV)

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities. (author)

  7. Mathematical models of natural gas consumption

    International Nuclear Information System (INIS)

    Sabo, Kristian; Scitovski, Rudolf; Vazler, Ivan; Zekic-Susac, Marijana

    2011-01-01

    In this paper we consider the problem of natural gas consumption hourly forecast on the basis of hourly movement of temperature and natural gas consumption in the preceding period. There are various methods and approaches for solving this problem in the literature. Some mathematical models with linear and nonlinear model functions relating to natural gas consumption forecast with the past natural gas consumption data, temperature data and temperature forecast data are mentioned. The methods are tested on concrete examples referring to temperature and natural gas consumption for the area of the city of Osijek (Croatia) from the beginning of the year 2008. The results show that most acceptable forecast is provided by mathematical models in which natural gas consumption and temperature are related explicitly.

  8. Natural gas: an environmental-friendly solution?

    International Nuclear Information System (INIS)

    Vermeire, J.

    1994-01-01

    Since 1970, the portion of natural gas in energy consumption in Western-Europe has grown by 6 percent per year on the average. About 20 percent of the energy demand in Western-Europe is now covered by natural gas. It is forecasted that this growth will continue at a rate of 2 percent per year until 2010. The natural gas consumption will increase from 325 billion cubic metres in 1993 to 450 billion cubic metres per year in 2010. For the coming 10 to 15 years, the natural gas demand is covered by long-term contracts with gas producing countries. From 2010 on, additional contracts, covering 70 to 120 billion cubic metres per year are required. A shift in geographic distribution of countries from which natural gas will be imported by Western-European countries is expected, which implies high investments and additional costs for transport and distribution of natural gas. Due to its qualities with respect to environmental impact, yield, availability, and advanced technology, natural gas is the energy vector of the 21 first century. (A.S.)

  9. Short-term natural gas consumption forecasting

    International Nuclear Information System (INIS)

    Potocnik, P.; Govekar, E.; Grabec, I.

    2007-01-01

    Energy forecasting requirements for Slovenia's natural gas market were investigated along with the cycles of natural gas consumption. This paper presented a short-term natural gas forecasting approach where the daily, weekly and yearly gas consumption were analyzed and the information obtained was incorporated into the forecasting model for hourly forecasting for the next day. The natural gas market depends on forecasting in order to optimize the leasing of storage capacities. As such, natural gas distribution companies have an economic incentive to accurately forecast their future gas consumption. The authors proposed a forecasting model with the following properties: two submodels for the winter and summer seasons; input variables including past consumption data, weather data, weather forecasts and basic cycle indexes; and, a hierarchical forecasting structure in which a daily model was used as the basis, with the hourly forecast obtained by modeling the relative daily profile. This proposed method was illustrated by a forecasting example for Slovenia's natural gas market. 11 refs., 11 figs

  10. Canada's looming infrastructure crisis and gas tax agreements : are strategic connections being made?

    International Nuclear Information System (INIS)

    Kennedy, E.; Roseland, M.; Connelly, S.; Markey, S.

    2008-03-01

    Canada's municipalities face multiple challenges in relation to the maintenance and development of services and infrastructure. This paper examined the growing infrastructure crisis in relation to sustainable community planning policies, gas tax agreements (GTA) and integrated community sustainability plans (ICSP). The study assessed the degree to which the GTA and ICSP may help to resolve the crisis and move towards the development of more sustainable infrastructure systems. The current need to upgrade or add to the infrastructure inventory represents an opportunity to adopt infrastructure technologies that are sustainable and more environmentally-friendly into municipal systems. The study demonstrated that the GTA and ICSP are financially insufficient. Jurisdictions with an existing capacity to plan and implement sustainability planning are the most successful at engaging with the ICSP process. However, there is no method of ensuring the transfer of innovative greener technologies. There is no overarching national strategy to eliminate or reduce the national infrastructure crisis. A serious national commitment is needed to address Canada's future infrastructure needs. 12 refs., 1 tab.

  11. Natural gas participation on brazilian demand supply of liquefied petroleum gas

    International Nuclear Information System (INIS)

    Freitas Rachid, L.B. de

    1991-01-01

    Natural Gas Liquids Production, Liquefied Petroleum Gas (LPG) among them, has undergone a continuous growth and technological development until the first half of the eighties. This paper presents the natural gas processing activity development in Brazil, in the last 20 years, and the increasing share of LPG produced from natural gas in the supply of LPG domestic market. Possibilities of achieving greater shares are discussed, based on economics of natural gas processing projects. Worldwide gas processing installed capacity and LPG pricing tendencies, and their influence in the construction of new Natural Gas Processing Units in Brazil, are also discussed. (author)

  12. Adsorptive storage of natural gas

    International Nuclear Information System (INIS)

    Yan, Song; Lang, Liu; Licheng, Ling

    2001-01-01

    The Adsorbed Natural Gas (ANG) storage technology is reviewed. The present status, theoretical limits and operational problems are discussed. Natural gas (NG) has a considerable advantage over conventional fuels both from an environmental point of view and for its natural abundance. However, as well known, it has a two fold disadvantage compared with liquid fuels: it is relatively expensive to transport from the remote areas, and its energy density (heat of combustion/volume) is low. All these will restrict its use. Compressed natural gas (CNG) may be a solution, but high pressures are needed (up to 25 MPa) for use in natural-gas fueled vehicles, and the large cost of the cylinders for storage and the high-pressure facilities necessary limit the practical use of CNG. Alternatively, adsorbed natural gas (ANG) at 3 - 4 MPa offers a very high potential for exploitation in both transport and large-scale applications. At present, research about this technology mainly focuses on: to make adsorbents with high methane adsorption capacity; to make clear the effects of heat of adsorption and the effect of impurities in natural gas on adsorption and desorption capacity. This paper provides an overview of current technology and examines the relations between fundamentals of adsorption and ANG storage. (authors)

  13. Investing in Alternative Fuel Infrastructure: Insights for California from Stakeholder Interviews: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Muratori, Matteo; McLaren, Joyce; Schwabe, Paul

    2017-03-13

    Increased interest in the use of alternative transportation fuels, such as natural gas, hydrogen, and electricity, is being driven by heightened concern about the climate impacts of gasoline and diesel emissions and our dependence on finite oil resources. A key barrier to widespread adoption of low- and zero-emission passenger vehicles is the availability of refueling infrastructure. Recalling the 'chicken and egg' conundrum, limited adoption of alternative fuel vehicles increases the perceived risk of investments in refueling infrastructure, while lack of refueling infrastructure inhibits vehicle adoption. In this paper, we present the results of a study of the perceived risks and barriers to investment in alternative fuels infrastructure, based on interviews with industry experts and stakeholders. We cover barriers to infrastructure development for three alternative fuels for passenger vehicles: compressed natural gas, hydrogen, and electricity. As an early-mover in zero emission passenger vehicles, California provides the early market experience necessary to map the alternative fuel infrastructure business space. Results and insights identified in this study can be used to inform investment decisions, formulate incentive programs, and guide deployment plans for alternative fueling infrastructure in the U.S. and elsewhere.

  14. Trends in natural gas distribution and measurements

    International Nuclear Information System (INIS)

    Crone, C.F.A.

    1993-01-01

    On the occasion of the GAS EXPO 93, to be held from 13-15 October 1993 in Amsterdam, Netherlands, an overview is given of trends in the distribution of natural gas and the measuring of natural gas, as noted by experts from the energy utilities, GASTEC and Gasunie in the Netherlands. With regard to the natural gas distribution trends attention is paid to synthetic materials, the environmental effects, maintenance, underground natural gas pressure control, horizontal drilling (no-dig techniques), and other trends. With regard to natural gas metering trends brief discussions are given of the direct energy meter, the search for a new gas meter in households, telemetering, improving the accuracy of the gas meters by means of electronics, on the spot calibration of large gas meters, the use of an online chromatograph to determine the calorific value, the development of a calibration instrument, the so-called piston prover, to measure large quantities of natural gas, the recalibration of natural gas stations, the ultrasonic gas meter, and finally the quality of the natural gas supply. 1 fig., 11 ills

  15. Economics of natural gas upgrading

    International Nuclear Information System (INIS)

    Hackworth, J.H.; Koch, R.W.

    1995-01-01

    Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels

  16. Origin of natural gas; Tennen gas no kigen

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Y. [The Institute of Applied Energy, Tokyo (Japan)

    1996-03-20

    Natural gas, which is a general term of flammable hydrocarbon gases such as methane, is classified by origin into the following categories : (1) oil field gas (oil gas), (2) aquifers (bacteria-fermented methane), (3) coal gas (coal field gas), and (4) abiogenetic gas. The natural gas which has (1-4) origins and is now used as resource in a large quantity is (1) oil field gas. This gas is a hydrocarbon gas recovered in the production process of petroleum and contains components such as ethane, propane and butane. To the contrary, (2) aquifers and (3) coal gas have methane as main component. As (4) abiogenetic methane, there are gas formed in inorganic reaction in activities of submarine volcanos and deep gas (earth origin gas). Oil field gas has kerogen origin. Aquifers were formed by fermentation of organic matters. Coal gas was formed by coalification of vitrinite. As abiogenetic methane, there are inorganic reaction formation gas and deep gas, the latter of which exists little as resource. 7 refs., 11 figs., 1 tab.

  17. Natural gas in the European Community

    International Nuclear Information System (INIS)

    Kalim, Z.

    1991-01-01

    A report is presented on 'Natural Gas in the European Community'. Aspects discussed include the challenges facing the gas industry in the EC, the development of the European gas industry, the structure and role of European gas companies, the sources of European supply, gas contracts and the influences that operate on sales into end markets, electricity generation from natural gas, evolving markets for natural gas in the EC, life in the private sector using British Gas as a role model and country profiles for eleven European countries. (UK)

  18. Business cycles and natural gas prices

    International Nuclear Information System (INIS)

    Apostolos, S.; Asghar, S.

    2005-01-01

    This paper investigates the basic stylised facts of natural gas price movements using data for the period that natural gas has been traded on an organised exchange and the methodology suggested by Kydland and Prescott (1990). Our results indicate that natural gas prices are procyclical and lag the cycle of industrial production. Moreover, natural gas prices are positively contemporaneously correlated with United States consumer prices and lead the cycle of consumer prices, raising the possibility that natural gas prices might be a useful guide for US monetary policy, like crude oil prices are, possibly serving as an important indicator variable. (author)

  19. Natural gas monthly, February 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  20. Agricultural demands for natural gas and liquified petroleum gas in the USA

    International Nuclear Information System (INIS)

    Uri, N.D.; Gill, M.

    1992-01-01

    This study endeavours to determine whether farmers adjust their consumption of natural gas and liquefied petroleum gas in response to changes in the unit price of energy. A demand model is specified and estimated. The conclusions suggest that the unit price of natural gas (liquefied petroleum gas) is a factor impacting the quantity of natural gas (liquefied petroleum gas) demanded by farmers, but there is no indication that other types of energy are substitutes for natural gas or liquefied petroleum gas. Additionally, the number of acres irrigated is an important factor driving the demand for natural gas and liquefied petroleum gas. Finally, the estimated models of natural gas and liquefied petroleum gas demand were structurally stable over the period 1971-1989. (author)

  1. Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market

    Energy Technology Data Exchange (ETDEWEB)

    Dieckhoener, Caroline

    2010-12-15

    Due to the increasing European import dependency, significant additional natural gas volumes will be required. In addition to the Nord Stream pipeline, the Nabucco and South Stream pipeline are projects planned for the next decade to provide further gas supplies to the European market. As one of the European Union's energy policies' foci is security of supply, the question can be raised if and how these projects contribute to this objective not only in terms of diversification but also in case of supply disruptions such as occurred in 2009 during the Russia-Ukraine gas crisis. This paper discusses the impact of these two major gas import pipeline projects on the South-Eastern Europe gas supply and analyzes their effects on gas flows and marginal cost prices in general and in case of gas supply disruptions via Ukraine in a model-based analysis with the European natural gas infrastructure and dispatch model TIGER. (orig.)

  2. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  3. Gas supplies of interstate natural gas pipeline companies 1990

    International Nuclear Information System (INIS)

    1992-01-01

    This publication provides information on the interstate pipeline companies' supply of natural gas in the United States during calendar year 1990, for use by the Federal Energy Regulatory Commission for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years

  4. Future perspective for CNG (Compressed Natural Gas)

    International Nuclear Information System (INIS)

    Veen, D.

    1999-01-01

    Driving on natural gas (CNG, Compressed Natural Gas) has been the talk of the industry for many years now. Although the benefits of natural gas as an engine fuel have become well-known, this phenomenon does not seem to gain momentum in the Netherlands. Over the last few months, however, the attitude towards CNG seems to be changing. Energy companies are increasingly engaged in commercial activities, e.g. selling natural gas at petrol stations, an increasing number of car manufacturers are delivering natural gas vehicles ex-works, and recently the NGV (Natural Gas Vehicles) Holland platform was set up for the unequivocal marketing of natural gas as an engine fuel

  5. The natural gas market

    International Nuclear Information System (INIS)

    Lagrasta, F.; Kaminski, V.; Prevatt, R.

    1999-01-01

    This chapter presents a brief history of the natural gas market highlighting the changes in the gas market and examining risk management in practice detailing the types of price risks, and the use of hedging using forwards and swaps. Options to manage risk are identified, and the role of risk management in financing, the role of the intermediary, and the market outlook are discussed. Panels describing the market structure, storage and natural gas risk management, the art of risk management, the winter 1995-96 basis blowout, spark spreads, the UK gas market and Europe, and weather derivatives are presented

  6. Natural gas : a highly lucrative commodity

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Exploration and production of natural gas has become highly profitable as natural gas is becoming a leading future commodity. With new technology, high demand and environmental benefits, natural gas is the preferred choice over petroleum as the leading source of energy to heat home and businesses. Canada is the world's third largest producer of natural gas with its Sable Offshore Energy Project being the fourth largest producing natural gas basin in North America. The basin will produce high quality sweet natural gas from 28 production wells over the course of the next 20 to 25 years. The gas will be transported to markets through Nova Scotia, New Brunswick and into the Northeastern United States via the Maritimes and Northeast Pipeline. The 1051 kilometer underground gas pipeline is currently running laterals to Halifax, Nova Scotia and Saint John, New Brunswick. Market studies are being conducted to determine if additional lines are needed to serve Cape Breton, Prince Edward Island and northern New Brunswick. A recent survey identified the following 5 reasons to convert to natural gas: (1) it is safe, (2) it is reliable, (3) it is easy to use, (4) it is cleaner burning and environmentally friendly compared to other energy sources, and (5) it saves the consumer money

  7. Natural radioactivity at Podravina gas fields

    International Nuclear Information System (INIS)

    Kovac, J.; Marovic, G.

    2006-01-01

    In Croatia, natural gas is an important source of energy, where its use exceeds other sources by one third. Composed primarily of the methane, natural gas from Croatian Podravina gas fields, beside other impurities, contains small amounts of radioactive elements. At Gas Treatment Plant (GTP) Molve, technological procedures for purification of natural gas and its distribution are performed. With yearly natural gas production of 3.5 109 m3 GTP Molve is major Croatian energy resource. Its safety and environment impact is matter of concern. Using different radioactivity measuring techniques the exposure of population to ionizing radiation were calculated at Central Natural Gas Station Molve and the underground wells. The measurement techniques included in-situ gamma spectrometric measurements, from which contribution to absorbed dose of the natural radionuclide in soil were calculated. Exposure dose measurements were performed using T.L.-dosimeters, and L.A.R.A. electronic dosimeters as well as field dose rate meter. Comparing used different radioactivity measuring methods, the correlations have been calculated. (authors)

  8. 78 FR 21349 - Orders Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-10

    ... DEPARTMENT OF ENERGY Orders Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To Export Compressed Natural Gas, Vacating Prior Authority and Denying Request for... OIL COMMERCIAL GP 12-164-NG XPRESS NATURAL GAS LLC 12-168-CNG MERRILL LYNCH COMMODITIES CANADA, ULC 12...

  9. Governing the transition to natural gas in Mediteranean Metropolis: The case of Cairo, Istanbul and Sfax (Tunisia)

    International Nuclear Information System (INIS)

    Verdeil, Éric; Arik, Elvan; Bolzon, Hugo; Markoum, Jimmy

    2015-01-01

    Recent scholarship on urban energy governance has focused on low carbon energy strategies seen as a response to climate change and energy pressure threats. But such approaches tend to overlook the situations of cities from the Global South and emerging countries concerned with strong energy demand growth. The development of urban natural gas networks is an understudied response to such a challenge. Focusing on three cities, Istanbul, Cairo and Sfax (Tunisia), the article analyses the factors and the governance of these energy transitions. It uses a geographical approach to such processes that highlight the mutual influence of the territory in its material and political dimensions and of the policy goals and tools in the implementation. The development of urban gas networks rests upon the proximity of gas deposits. It is determined by metropolitan strategies for economic development as well as by programs aiming to cut energy subsidies. Though urban gas networks have a strong potential for restructuring the physical and social landscapes in cities, the dominant commercial approach taken by energy utilities and morphological constraints in the urban fabric limit their universalization. Natural gas is part of a mix of energies at the urban level and often competes with other energy forms, specifically renewables (like solar water heaters). Lastly, the development of urban natural gas networks sparks heated politics in relation to unfulfilled energy demand and affordability. - Highlights: • Considers the governance of natural gas networks in emerging cities. •Adopts a geographical approach looking at interactions between natural gas infrastructure and urban space. • Switch to natural gas linked to financial purpose (subsidy cuts) more than concern for climate change. • Switch to natural gas shaped by policies governing other urban energy forms. • Urban politics and issues of affordability impact the governance of natural gas transition

  10. 78 FR 21351 - Orders Granting Authority to Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-10

    ... DEPARTMENT OF ENERGY Orders Granting Authority to Import and Export Natural Gas, To Import Liquefied Natural Gas, To Export Liquefied Natural Gas, and Vacating Prior Authority During February 2013 FE... NORTH AMERICA, INC 13-01-NG RESOLUTE FP US INC 13-05-NG GAS NATURAL APROVISIONAMIENTOS SDG, S.A 13-07...

  11. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  12. Natural gas; Erdgas

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Frank [DVGW-Forschungsstelle am KIT, Karlsruhe (Germany); Groeschl, Frank; Wetzel, Uwe [DVGW, Bonn (Germany); Heikrodt, Klaus [Hochschule Ostwestfalen-Lippe, Lemgo (Germany); Krause, Hartmut [DBI Gastechnologisches Institut, An-Institut der TU Bergakademie, Freiberg (Germany); Beestermoeller, Christina; Witschen, Bernhard [Team Consult G.P.E. GmbH, Berlin (Germany); Albus, Rolf; Burmeister, Frank [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2015-07-01

    The reform of the EEG in Germany, a positive global development in natural gas, the decline in oil prices, questions about the security of supply in Europe, and not least the effect of the decision by E.on at the end of 2014 have moved the gas industry. Gas has the lowest CO{sub 2} emissions of fossil fuels. Flexibility, storability, useful for networks and the diversity in the application make it an ideal partner for renewable energy. However, these complementary properties are valued at wind and photovoltaics internationally and nationally different. The situation in the gas power plants remains tense. LNG - liquefied natural gas - is on the rise. [German] Die Reform des EEG in Deutschland, eine positive Entwicklung beim Gas weltweit, der Verfall der Oelpreises, Fragen zur Versorgungssicherheit in Europa und nicht zuletzt die Auswirkung der Entscheidung von E.on Ende 2014 haben die Gaswirtschaft bewegt. Gas weist die geringsten CO{sub 2}-Emissioen der fossilen Energietraeger auf. Flexibilitaet, Speicherbarkeit, Netzdienlichkeit sowie die Vielfalt in der Anwendung machen es zum idealen Partner der erneuerbaren Energien. Allerdings werden diese komplementaeren Eigenschaften zu Wind und Photovoltaik international und national unterschiedlich bewertet. Die Lage bei den Gaskraftwerken bleibt weiter angespannt. LNG - verfluessigtes Erdgas - ist auf dem Vormarsch.

  13. Radon gas in oil and natural gas production facilities

    International Nuclear Information System (INIS)

    Chandler, W.P.

    1994-01-01

    Radon gas is a naturally occurring radionuclide that can be found in some oil and natural gas production facilities, either as a contaminant in a natural gas stream or derived from Radium dissolved in formation waters. The gas itself is not normally a health hazard, but it's decay products, which can be concentrated by plate-out or deposition as a scale in process equipment, can be a health hazard for maintenance personnel. To evaluate possible health hazards, it is necessary to monitor for naturally occurring radioactive materials (NORM) in the gas stream and in the formation water. If Radon and/or Radium is found, a monitoring programme should be initiated to comply with National or State requirements. In some instances, it has been found necessary to dispose of silt and scale materials as low level radioactive waste. 8 refs

  14. Papers of the Canadian Institute's forum on natural gas purchasing strategies : critical information for natural gas consumers in a time of diminishing natural gas supplies and higher prices

    International Nuclear Information System (INIS)

    2003-01-01

    This conference provided insight into how to prosper in an increasingly complex natural gas marketplace. The presentations from key industry players offered valuable information on natural gas purchasing strategies that are working in the current volatile price environment. Diminishing natural gas supplies in North America mean that higher prices and volatility will continue. Other market challenges stem from potential cost increases in gas transportation, unbundling of natural gas services, and the changing energy marketing environment. The main factors that will affect prices for the winter of 2004 were outlined along with risk management and the best pricing strategies for businesses. The key strategies for managing the risks associated with natural gas purchase contracts were also reviewed, along with the issue of converging natural gas and electricity markets and the impact on energy consumers. The conference featured 15 presentations, of which 4 have been indexed separately for inclusion in this database. refs., tabs., figs

  15. Evaluation of Ultra Clean Fuels from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  16. A miniaturized optical gas sensor for natural gas analysis

    NARCIS (Netherlands)

    Ayerden, N.P.

    2016-01-01

    The depletion of domestic reserves and the growing use of sustainable resources forces a transition from the locally produced natural gas with a well-known composition toward the ‘new’ gas with a more flexible composition in the Netherlands. For safe combustion and proper billing, the natural gas

  17. Assessment of greenhouse gas emissions from natural gas

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The study, 'Assesment of greenhouse gas emission from natural gas' by independent consultants Energetics Pty Ltd, shows that natural gas has significantly fewer greenhouses gas emissions than either black or brown cola for the defined life cycle stages. The life cycle emissions from natural gas use by an Australian Major User are approximately 50% less than the emissions from Victorian brown coal and approximately 38% less than the emissions from Australian average black coal. Australian Best Practice gas fired electricity generation is estimated to emit between 514 and 658 kg CO 2 e/MWh. By comparison, Australian Best Practice coal-fired electricity generation is estimated to emit between 907 and 1,246 kg CO 2 e/MWh for black and brown coal respectively. Greenhouse gas emissions from Australian Best Practice gas-fired electricity generation using combined cycle gas turbines (including full fuel cycle emissions) vary from 41% to 46% of the emissions from brown coal-fired electricity generation and 57% to 64% of emissions from black coal-fired electricity generation. Greenhouse gas emissions from direct gas supply water heating range from 1,470 to 2,042 kilograms per annum. This compares with emissions of 1,922 to 2,499 kg for electric heating from gas-fired electricity generation and 3,975 to 5,393 kg for coal-fired electricity generation. The implications for greenhouse policy nationally are also discussed, emphasising the need to review national energy policy, currently tied to 'fuel neutrality' doctrine

  18. Life cycle water consumption for shale gas and conventional natural gas.

    Science.gov (United States)

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  19. Alternatives for the Santos Basin natural gas insertion in the energetic matrix; Alternativas para a insercao do gas da Bacia de Santos na matriz energetica. Estudo de caso: cidade de Santos

    Energy Technology Data Exchange (ETDEWEB)

    Awazu, Ricardo de Mello [Grupo MKR, Sao Paulo, SP (Brazil). Gerencia de Novos Negocios], e-mail: ricardo@mkr.com.br; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)], e-mail: edsantos@iee.usp.br

    2008-07-01

    The natural gas difficult to penetrate in the residential market and compete with electrical energy is the main objective of this study, which will support that in big cities, where natural gas is already reality or will be the use of natural gas should not be considered competition for other types of energy resources but as a strategically complement of the overall power system. Electricity used as thermal source creates only demand for concessionaires and not consumption, in other words, there is short period of time when demand peaks and the amount of energy consumed by the electric shower is so high that requires a huge infra-structure of generation, transmission and distribution. However, it creates a big idle capacity in periods off-peak. The replacement of electricity to natural gas in water heating is critical factor to make the pipeline network economically feasible and to consolidate the residential market. The use of natural gas only to cooking purposes makes the network very costly and with high idle capacity. This study will discuss how an integrated planning of resources can lead to a better use of energy resources and distribution network of natural gas and electricity. (author)

  20. Forecasting world natural gas supply

    International Nuclear Information System (INIS)

    Al-Fattah, S. M.; Startzman, R. A.

    2000-01-01

    Using the multi-cyclic Hubert approach, a 53 country-specific gas supply model was developed which enables production forecasts for virtually all of the world's gas. Supply models for some organizations such as OPEC, non-OPEC and OECD were also developed and analyzed. Results of the modeling study indicate that the world's supply of natural gas will peak in 2014, followed by an annual decline at the rate of one per cent per year. North American gas production is reported to be currently at its peak with 29 Tcf/yr; Western Europe will reach its peak supply in 2002 with 12 Tcf. According to this forecast the main sources of natural gas supply in the future will be the countries of the former Soviet Union and the Middle East. Between them, they possess about 62 per cent of the world's ultimate recoverable natural gas (4,880 Tcf). It should be noted that these estimates do not include unconventional gas resulting from tight gas reservoirs, coalbed methane, gas shales and gas hydrates. These unconventional sources will undoubtedly play an important role in the gas supply in countries such as the United States and Canada. 18 refs., 2 tabs., 18 figs

  1. Natural gas and the environment

    International Nuclear Information System (INIS)

    DeCarufel, A.

    1991-01-01

    The role of various atmospheric pollutants in environmental changes and the global water cycle, carbon cycle, and energy balance is explained. The role of sulfur dioxide and nitrogen oxides in acid deposition is also outlined. The pollutants that contribute to environmental problems include nitrogen oxides and volatile organic compounds, carbon dioxide, and other greenhouse gases. The potential for natural gas utilization to mitigate some of these pollution problems is explored. Natural gas combustion emits less carbon dioxide and nitrogen oxides than combustion of other fossil fuel, and also does not produce sulfur dioxide, particulates, or volatile organics. Other pollution controlling opportunities offered by natural gas include the use of low-polluting burners, natural gas vehicles, and cogeneration systems. 18 figs., 4 tabs

  2. Developing the market for natural gas and biogas as a vehicle fuel on a regional level (MADEGASCAR)

    Energy Technology Data Exchange (ETDEWEB)

    Emmerling, Bettina; Jellinek, Reinhard (Austrian Energy Agency (Austria)); Baumgartner, Birgit (Graz Energy Agency, Graz (Austria))

    2009-07-01

    Although natural gas as a car fuel is a more environmentally clean alternative to gasoline or diesel and gas is considerable cheaper and much safer than other fuels, costumers are still suspicious of alternative fuels and vehicles. The main reasons are a lack of awareness and information on the consumer side, as well as a low information and acceptance level among car dealers and service stations. Therefore the MADEGASCAR project directly addresses major barriers by specific actions. The project MADEGASCAR (Market development for gas driven cars including supply and distribution of biogas), co-funded by the Intelligent Energy Europe programme of the European commission, aims at developing the market for natural gas vehicles by addressing target groups at the demand side (private car owners, fleet managers) as well as strengthening the supply and distribution infrastructure for Compressed Natural Gas (CNG) and Natural Gas Vehicles (NGVs) municipalities, car dealers, owners of fuel stations, natural gas and biogas suppliers) in 10 participating partner countries. The Unique Selling Point of the MADEGASCAR project is deployment in several regional areas instead of sole basic research. Country specific action plans, which are developed and implemented in the project, will have direct impact on regional markets but also affect car manufacturers and national regulations, resulting in long term changes. The main ambition of the MADEGASCAR project is to increase the number of gas vehicles in the partner regions by 50%.

  3. Natural gas industry R and D

    International Nuclear Information System (INIS)

    Pavan, S.

    1992-01-01

    The last three decades have witnessed significant developments in engineering relative to the distribution and use of natural gas. This paper reviews these developments which, in natural gas distribution, include - polyethylene conduits, the use of radar to trace buried conduits, telemetering, innovative pressure reducing techniques and equipment, optimized retrofitting of buried pipelines, leak detection techniques, and energy recovery systems applied to pressure reducing operations. Relative to the efficient combustion and new uses of natural gas, the paper reviews the state-of-the-art in the design of compact wall mounted gas fired boilers for building space heating, gas fuelled space heating ventilation and air conditioning systems, and natural gas fed fuel cells

  4. Alternative Fuels Data Center: Natural Gas Benefits

    Science.gov (United States)

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas

  5. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e

  6. Natural gas : nirvana

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2001-01-01

    Despite completing 8,900 gas wells in year 2000, the deliverability of natural gas out of the Western Canadian Sedimentary Basin (WCSB) was stagnant which has left many analysts wondering whether the basin has reached its limit. It also leaves many wondering if gas producers will be able to meet the strong demand for natural gas in the future. Nearly all new electrical generation being built in the U.S. is gas-based due to strict new environmental standards limiting the growth in hydro and coal-powered generation. Any future coal plants will use gasification technology and combined cycle turbines. Combined cycle turbines developed by Boeing and Lockheed are more efficient than combustion turbines, making gas more competitive with fuel alternatives. The lack of growth in natural gas supply has left storage levels near record lows. Demand is expected to increase in 2001 by 3.2 per cent to 23 trillion cubic feet in the U.S. Longer term, major new reserves must be brought on stream to meet this demand. It was noted that the easy discoveries within the WCSB have been made. The new plays are smaller, more technically complex and expensive which suggests that more investment is needed in training geologists, geophysicists and petroleum engineers to find new reserves. The Canadian Energy Research Institute agrees that there is enough gas in Alberta and British Columbia to meet current demands but efforts must shift towards drilling in the foothills front and northwest regions of Alberta to increase deliverability. Brief notes on several gas finds by various oil and gas companies in the area were presented. The article also discussed the huge untapped potential of northern reserves. Analysts have noted 44 Tcf of proven reserve, with a potential of 165 Tcf. In addition, new pipelines from the Alaskan North Slope and the Mackenzie Delta could transport nearly 2 Tcf annually to market. Wells drilled by Chevron and Paramount at Fort Liard in 1999 initially flowed at rates up to

  7. Developing hydrogen infrastructure through near-term intermediate technology

    International Nuclear Information System (INIS)

    Arthur, D.M.; Checkel, M.D.; Koch, C.R.

    2003-01-01

    The development of a vehicular hydrogen fuelling infrastructure is a necessary first step towards the widespread use of hydrogen-powered vehicles. This paper proposes the case for using a near-term, intermediate technology to stimulate and support the development of that infrastructure. 'Dynamic Hydrogen Multifuel' (DHM) is an engine control and fuel system technology that uses flexible blending of hydrogen and another fuel to optimize emissions and overall fuel economy in a spark ignition engine. DHM vehicles can enhance emissions and fuel economy using techniques such as cold-starting or idling on pure hydrogen. Blending hydrogen can extend lean operation and exhaust gas recirculation limits while normal engine power and vehicle range can be maintained by the conventional fuel. Essentially DHM vehicles are a near-term intermediate technology which provides significant emissions benefits in a vehicle which is sufficiently economical, practical and familiar to achieve significant production numbers and significant fuel station load. The factors leading to successful implementation of current hydrogen filling stations must also be understood if the infrastructure is to be developed further. The paper discusses important lessons on the development of alternative fuel infrastructure that have been learned from natural gas; why were natural gas vehicle conversions largely successful in Argentina while failing in Canada and New Zealand? What ideas can be distilled from the previous successes and failures of the attempted introduction of a new vehicle fuel? It is proposed that hydrogen infrastructure can be developed by introducing a catalytic, near-term technology to provide fuel station demand and operating experience. However, it is imperative to understand the lessons of historic failures and present successes. (author)

  8. Norwegian Natural Gas. Liberalization of the European Gas Market

    International Nuclear Information System (INIS)

    Austvik, Ole Gunnar

    2003-01-01

    Leading abstract. This book focuses on issues that are important for Norway as a major gas exporter and to the development of a liberalized European market. Chapter 2 explains main features of the European gas market. Natural gas is sold in regional markets with independent pricing structure and particularities. In Europe, this has led to large investments for the producers and long-term contracts. The strong market growth and EU's actions to liberalize the market may change this. The organization of the Norwegian gas production and sale is discussed, as well as the reorganization taking place in 2001. Pricing mechanisms are discussed in Chapter 3, both in the ''old'' / existing structure and how a liberalization of the market may change price formation. The increased importance of energy taxation in EU countries is covered in Chapter 4. Even though natural gas is the most environmentally friendly of the fossil fuels, the use of natural gas may be taxed far harder in the future. The report discusses price effects of such a development. Chapter 5 discusses whether or not a gas producer, like Norway, necessarily must earn a resource rent. With the use of economic theory for exhaustible resources it is shown how prices to consumers may increase at the same time as prices to producers drop, where the difference is made up by higher gas taxes to the consuming countries. Transportation of natural gas involves considerable scale advantages and there are often scope advantages from production, storage and sale, as well. Chapter 6 discusses how competition and regulation may influence the functioning and social efficiency of the market, and the concentration of market power. When companies become large, they may exploit market power, supported by the authorities of their respective countries. Chapter 7 focuses on regulatory challenges for the EU, and how the transporters may change between conflicting and cooperation with the EU. Chapter 8 focuses on schedules for

  9. Alternative Fuels Data Center: Natural Gas Vehicles

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative

  10. Natural gas supply - a producer's perspective

    International Nuclear Information System (INIS)

    Papa, M.G.

    1994-01-01

    The supply of natural gas from the producers standpoint is discussed. The following factors in the marketing demand for natural gas are considered to be important: gas demand is growing, U.S. gas resource base is large, chronic gas bubble has shrunk, and North American supply is more resilient than expected

  11. 7 CFR 2900.4 - Natural gas requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Natural gas requirements. 2900.4 Section 2900.4..., DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.4 Natural gas requirements. For purposes of Section 401(c), NGPA, the natural gas requirements for...

  12. Essentials of natural gas microturbines

    CERN Document Server

    Boicea, Valentin A

    2013-01-01

    Addressing a field which, until now, has not been sufficiently investigated, Essentials of Natural Gas Microturbines thoroughly examines several natural gas microturbine technologies suitable not only for distributed generation but also for the automotive industry. An invaluable resource for power systems, electrical, and computer science engineers as well as operations researchers, microturbine operators, policy makers, and other industry professionals, the book: Explains the importance of natural gas microturbines and their use in distributed energy resource (DER) systemsDiscusses the histor

  13. Natural gas corridors between the EU and its main suppliers: Simulation results with the dynamic GASTALE model

    Energy Technology Data Exchange (ETDEWEB)

    Lise, Wietze [Energy Markets and International Environmental Policy Group, ECN Policy Studies, Energy Research Centre of the Netherlands, Amsterdam (Netherlands); IBS Research and Consultancy, Agahamami Cadessi 1/6, Cihangir 34433, Beyoglu, Istanbul (Turkey); Hobbs, Benjamin F. [Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Van Oostvoorn, Frits [Energy Markets and International Environmental Policy Group, ECN Policy Studies, Energy Research Centre of the Netherlands, Amsterdam (Netherlands)

    2008-06-15

    Growth in gas demand poses a challenge for European energy consumers and other gas-importing countries in terms of an increasing dependency on gas imports and consequently also supply security. This paper focuses on interactions among demand, supply, and investments in natural gas corridors, namely pipeline transport, LNG, and storage facilities, affecting the European natural gas market over the period 2005-2030. A number of policy scenarios, including a business-as-usual (BAU) scenario, are formulated to study the impact of demand uncertainty and delays in investment on the gas transport infrastructure required in the long run in Europe. The analyses indicate that substantial investments in gas transport corridors are needed to accommodate imports and seasonal demand variations. Analysis of scenarios of supply interruption, in the form of suddenly reduced import capacity for particular pipeline routes, indicates that portions of Europe could experience price increases of up to 100% in the case of a year-long interruption. To accommodate import needs and to mitigate possible disruptions, pipeline connections running from East to West need to be given special priority. (author)

  14. Natural gas corridors between the EU and its main suppliers: Simulation results with the dynamic GASTALE model

    International Nuclear Information System (INIS)

    Lise, Wietze; Hobbs, Benjamin F.; Van Oostvoorn, Frits

    2008-01-01

    Growth in gas demand poses a challenge for European energy consumers and other gas-importing countries in terms of an increasing dependency on gas imports and consequently also supply security. This paper focuses on interactions among demand, supply, and investments in natural gas corridors, namely pipeline transport, LNG, and storage facilities, affecting the European natural gas market over the period 2005-2030. A number of policy scenarios, including a business-as-usual (BAU) scenario, are formulated to study the impact of demand uncertainty and delays in investment on the gas transport infrastructure required in the long run in Europe. The analyses indicate that substantial investments in gas transport corridors are needed to accommodate imports and seasonal demand variations. Analysis of scenarios of supply interruption, in the form of suddenly reduced import capacity for particular pipeline routes, indicates that portions of Europe could experience price increases of up to 100% in the case of a year-long interruption. To accommodate import needs and to mitigate possible disruptions, pipeline connections running from East to West need to be given special priority. (author)

  15. Experimental Study of Gas Explosions in Hydrogen Sulfide-Natural Gas-Air Mixtures

    Directory of Open Access Journals (Sweden)

    André Vagner Gaathaug

    2014-01-01

    Full Text Available An experimental study of turbulent combustion of hydrogen sulfide (H2S and natural gas was performed to provide reference data for verification of CFD codes and direct comparison. Hydrogen sulfide is present in most crude oil sources, and the explosion behaviour of pure H2S and mixtures with natural gas is important to address. The explosion behaviour was studied in a four-meter-long square pipe. The first two meters of the pipe had obstacles while the rest was smooth. Pressure transducers were used to measure the combustion in the pipe. The pure H2S gave slightly lower explosion pressure than pure natural gas for lean-to-stoichiometric mixtures. The rich H2S gave higher pressure than natural gas. Mixtures of H2S and natural gas were also studied and pressure spikes were observed when 5% and 10% H2S were added to natural gas and also when 5% and 10% natural gas were added to H2S. The addition of 5% H2S to natural gas resulted in higher pressure than pure H2S and pure natural gas. The 5% mixture gave much faster combustion than pure natural gas under fuel rich conditions.

  16. Canadian natural gas price debate

    International Nuclear Information System (INIS)

    Wight, G.

    1998-01-01

    Sunoco Inc. is a subsidiary of Suncor Energy, one of Canada's largest integrated energy companies having total assets of $2.8 billion. As one of the major energy suppliers in the country, Sunoco Inc has a substantial stake in the emerging trends in the natural gas industry, including the Canadian natural gas price debate. Traditionally, natural gas prices have been determined by the number of pipeline expansions, weather, energy supply and demand, and storage levels. In addition to all these traditional factors which still apply today, the present day natural gas industry also has to deal with deregulation, open competition and the global energy situation, all of which also have an impact on prices. How to face up to these challenges is the subject of this discourse. tabs., figs

  17. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Tissot-Favre, V.; Sudour, D.; Binutti, M.; Zanetta, P.; Rieussec, J.L.

    2005-01-01

    As a true alternative to oil products, and environment friendly fuel, Natural Gas for Vehicles complies with requirements for sustainable development. In addition, it is part of the European Union policy which underlines the importance of energy diversification through alternative fuels. This workshop will look into the current offer to the public transport segment, waste collection vehicles, and commercial vehicle fleets. Actions taken to spread the use of natural gas to all types of cars will also be covered. This article gathers 5 presentations about this topic given at the gas conference

  18. Pricing of natural gas in Kazakhstan

    International Nuclear Information System (INIS)

    Zhapargaliev, I.K.

    1996-01-01

    Two state companies are in charge of natural gas supply in Kazakhstan. They buy, transport and sell natural gas and have monopolized the industry and provoked increase of gas prices. Ministry of Oil and gas Industry proposed demonopolization. The restructuring that took place caused new distribution of tasks in the gas industry. A more competitive environment was created leading to normalization of the natural gas prices. All economic subjects were granted the right to acquire gas regardless the type of ownership. Measures implemented for reorganization of gas companies contributed to the reduction of gas transport costs and prices by 50% and to decrease of gas prices in the southern regions by 50%. Despite these measures gas prices for household sector are still unchanged and are below the import prices, the main reason being the low average household income

  19. Vancouver Island gas supply

    International Nuclear Information System (INIS)

    Des Brisay, C.

    2005-01-01

    Terasen Gas is pursuing alternatives for the supply of additional natural gas capacity to Vancouver Island. Its subsidiary, Terasen Gas (Vancouver Island) Inc. (TGVI), is responding to the need for delivery of increased gas supply and, is supporting plans for new gas-fired power generation on Vancouver Island. TGVI's proposal for new natural gas capacity involves a combination of compression and pipeline loops as well as the addition of a storage facility for liquefied natural gas (LNG) at Mt. Hayes to help manage price volatility. This presentation outlined the objectives and components of the resource planning process, including demand forecast scenarios and the preferred infrastructure options. tabs., figs

  20. Natural gas's hottest spot

    International Nuclear Information System (INIS)

    Peterson, T.

    1993-01-01

    This paper reviews the growing power and economic strength of Enron Corp., a natural gas distributor and exploration company. The paper reviews the policy of the company to exploit deregulation at home and privatization of all sorts of energy companies abroad. Enron is actively building its own power plants in the US and has successfully boosted their profits by 20 percent in what was considered a flat natural gas market. The paper goes on to discuss the company's view of the new energy tax and how it should benefit natural gas companies as a whole. Finally the paper reviews the contracting procedures of the company to secure long-term fixed price contracts in a volatile market which precludes most companies from taking the risk

  1. Gas and oil towards Europe: infrastructures outlook. European governance and energy geopolitics - Tome 4

    International Nuclear Information System (INIS)

    Nies, S.

    2008-01-01

    In a context of strong energy dependence, the safety of supplies and the reliability of infrastructures remain of prime importance. The Europe of 27 is looking for the proper balance between excessive dependence and beneficial interdependence. A real competitive bidding about the potential paths of the Russian and CIS gas towards western Europe is taking place. However, a given energy infrastructure can change the economic and cultural relations and the prices as well. Interpreting the energy diplomacy between political and economical stakes has become a hard task. The underlying logic of the impressive number of projects in progress is extremely complex as many projects are in competition and linked with each others (like the BTC - Bakou-Tbilissi-Ceyhan, the Transcaspian and the South Stream). This study aims at presenting a comprehensive overview of the existing and planned projects with the help of a table which includes the oil and gas pipelines and the methane gas terminals. This study includes the imports coming from the north (Norway, UK), from the south (Algeria) and above all from the east (Russia and CIS). It includes the layout and the potential flow rate of these infrastructures, their present day use and financial conditions of transport, the projects in progress or planned, their cost, financing and possible date of commissioning. Even if the study encompasses all infrastructures (including Norway, UK and North Africa), it stresses on those linking Europe to Russia and to the post-soviet area (Central Asia, Caspian Sea). (J.S.)

  2. Regulatory issues of natural gas distribution; Aspectos regulatorios acerca da distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Fabio Augusto C.C.M.; Costa, Hirdan Katarina de M. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Faculdade de Direito

    2004-07-01

    In these past few years, natural gas in Brazil has arised as one of the alternatives for the energetic crisis suffered by the country. Such situation was one of the motives for its expansion, rising, after that, the importance of the regulation of its distribution. The regulation of canalized natural gas distribution can be found in the Federal Constitution, after Constitutional Amendment n. 05/95, in the article n. 25, para. 2nd, which say that belongs to the Federal States the concession or direct exercise of canalized natural gas services, now clearly classified as a public service. In order of these events, its imperative the analysis of natural gas distribution's public service, because it belongs to the Federal States. According to this situation, the study of the new regulatory function of the Administration and the tracing of action for the regulatory state agencies are the main goals of this work. As so, the present research aims to focus the reflexes from the actual dimension of natural gas distribution, specially referring to its regulatory statements, the limitations of state agencies, the National Petroleum Agency and the market where distribution belongs, and particularly the open access of new agents. (author)

  3. 40 CFR 1065.715 - Natural gas.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet the...

  4. Multi-criteria evaluation of natural gas resources

    International Nuclear Information System (INIS)

    Afgan, Naim H.; Pilavachi, Petros A.; Carvalho, Maria G.

    2007-01-01

    Geologically estimated natural gas resources are 500 Tcm. With the advance in geological science increase of estimated resources is expected. Natural gas reserves in 2000 have been proved to be around 165 Tcm. As it is known the reserves are subject to two constraints, namely: capital invested in the exploration and drilling technologies used to discover new reserves. The natural gas scarcity factor, i.e. ratio between available reserves and natural gas consumption, is around 300 years for the last 50 years. The new discovery of natural gas reserves has given rise to a new energy strategy based on natural gas. Natural gas utilization is constantly increasing in the last 50 years. With new technologies for deep drilling, we have come to know that there are enormous gas resources available at relatively low price. These new discoveries together with high demand for the environment saving have introduced a new energy strategy on the world scale. This paper presents an evaluation of the potential natural gas utilization in energy sector. As the criteria in this analysis resource, economic, environmental, social and technological indicators are used. Among the potential options of gas utilization following systems are considered: Gas turbine power plant, combine cycle plant, CHP power plant, steam turbine gas-fired power plant, fuel cells power plant. Multi-criteria method was used for the assessment of potential options with priority given to the Resource, Economic and Social Indicators. Results obtained are presented in graphical form representing priority list of potential options under specific constraints in the priority of natural gas utilization strategy in energy sector

  5. Well Integrity for Natural Gas Storage in Depleted Reservoirs and Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jordan, Preston [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perfect, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morris, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bauer, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bromhal, Grant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Wyatt, Douglas [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Rose, Kelly [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-09-02

    Introduction Motivation The 2015-2016 Aliso Canyon/Porter Ranch natural gas well blowout emitted approximately 100,000 tonnes of natural gas (mostly methane, CH4) over four months. The blowout impacted thousands of nearby residents, who were displaced from their homes. The high visibility of the event has led to increased scrutiny of the safety of natural gas storage at the Aliso Canyon facility, as well as broader concern for natural gas storage integrity throughout the country. Federal Review of Well Integrity In April of 2016, the U.S. Department of Energy (DOE), in conjunction with the U.S. Department of Transportation (DOT) through the Pipeline and Hazardous Materials Safety Administration (PHMSA), announced the formation of a new Interagency Task Force on Natural Gas Storage Safety. The Task Force enlisted a group of scientists and engineers at the DOE National Laboratories to review the state of well integrity in natural gas storage in the U.S. The overarching objective of the review is to gather, analyze, catalogue, and disseminate information and findings that can lead to improved natural gas storage safety and security and thus reduce the risk of future events. The “Protecting our Infrastructure of Pipelines and Enhancing Safety Act of 2016’’ or the ‘‘PIPES Act of 2016,’’which was signed into law on June 22, 2016, created an Aliso Canyon Natural Gas Leak Task Force led by the Secretary of Energy and consisting of representatives from the DOT, Environmental Protection Agency (EPA), Department of Health and Human Services, Federal Energy Regulatory Commission (FERC), Department of Commerce and the Department of Interior. The Task Force was asked to perform an analysis of the Aliso Canyon event and make recommendations on preventing similar incidents in the future. The PIPES Act also required that DOT/PHMSA promulgate minimum safety standards for underground storage that would take effect within two years. Background on the DOE

  6. Natural gas - Market and environmental needs

    International Nuclear Information System (INIS)

    Beyer, R.

    1995-01-01

    The paper discusses the natural gas market and environmental needs with topics as follow: Importance of the North Sea region; sustainable development on the balance between economic use and environmental protection; role of natural gas in meeting energy demand: market needs, technologies, environmental aspects. According to the author, natural gas causes minimal pollutants because it contains virtually no pollutant-forming substances such as heavy metals, sulphur, chlorine or fluorine. No solid residues exist in the combustion space such as ash, slag, dust or soot, and the formation of thermal NO x through natural gas combustion has decreased to a very large extent as a result of technical advances. Natural gas can make a significant contribution towards reducing CO 2 emissions due to its very high hydrogen content. 12 figs

  7. Legislative competence relative to natural gas; Competencia legislativa atinente ao gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Rafael Silva Paes Pires; Silveira Neto, Otacilio dos Santos [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Recursos Humanos da ANP para Habilitacao em Petroleo e Gas Natural, PRH-36

    2004-07-01

    The expansion of the gas industry in our country in the actual days, allied to the constitutional authorization for the private initiative acting in this sector provides the establishment of precise rules to the consequent market consolidation. In spite of the exigencies, one realises that the law no. 9.487/97, often denominated as Oil Law, does not rule in its fullness the specifics situations concerned to the natural gas. Despite the elaboration of the natural gas Law is a target of the governmental politics, overcoming the question pondered, there is not, until now, a detailed study of the legislative competency regimen relative to the natural gas. This very work, notably, gathers relevance in front of the State shape adopted in our country and the federative pact historically built; while aiming the complex distribution of legislative power made to each one of the political entities, there is need to establish the limits of performance to the sort of the coming gas Law, under penalty its arising with an unconstitutionality defect confronting to the federative pact. In the sense of clarifying the probably doubts around the subject and allowing that power comes closer to the people are our considerations proposed for. (author)

  8. Natural gas in France: main results in 2008

    International Nuclear Information System (INIS)

    2008-01-01

    This document briefly presents and comments the main data about natural gas in France: gas consumption, natural gas-based electricity production, refineries, energetic final consumption of natural gas, non-energetic final consumption of natural gas, gas imports and suppliers (countries), national production, and stocks

  9. Making sure natural gas gets to market

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    The role of natural gas in power generation was discussed with reference to price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. 13 figs

  10. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  11. Competition in trade with natural gas

    International Nuclear Information System (INIS)

    1999-01-01

    On 22 June 1998, the European Parliament and the Council of Europe adopted Directive 98/30/EC on common rules for the internal market for natural gas. The Natural Gas Market Directive is aimed at increasing the competition on the gas market and creating an internal market for natural gas. To achieve this, the Directive includes provisions for ensuring that owners of transmission and distribution networks will allow other players access to these networks. The Directive is much more far-reaching and comprehensive than the present Swedish legislation in the field of natural gas. The main task of the committee is to submit a proposal for natural gas legislation that will meet the requirements of the new Directive. According to the committee directives, the work on the new legislation should aim at the regulations serving as a basis for a socio economically efficient market. However, it should also be borne in mind that the Swedish natural gas market is less developed than the markets in most other European countries, and that a lack of equilibrium in the opening of the gas markets should be avoided. Current international deliberations concerning the natural gas network in the Nordic countries and the Baltic Sea region should also be taken into account. Chapter 1 gives more detailed particulars of the points of departure for the work of the committee and the implementation of the work. The report is arranged in the form three main parts, i.e. a background part, a part describing the points of departure, and a proposals part

  12. A natural adsorbent for natural gas industry; Um adsorvente nacional para a industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Cachina, G.H.A.B.; Silveira, V.R.; Melo, D.M.A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Balthar, A.R.; Oliveira, V.M.; Bayer, M.M. [CTGAS - Centro de Tecnologias do Gas, Natal, RN (Brazil); Barbosa, C.M.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    One the natural pollutants in the natural gas considered critical in reference to the corrosion is the H{sub 2}S. Its presence depends on the origin, as well as the own process used in the gas treatment, it can bring problems to the pipes and the final applications of natural gas (NG). The National Petroleum Agency (ANP) in its entrance number 104/02, establishes that the quantity of H{sub 2}S in NG, of national or imported origin, commercialized at the country can only be at the most 10 - 15 mg/m{sup 3}. In the Natural Gas Processing Unit (UPGN) different methods are used for the removal of H{sub 2}S, the absorption process (e.g. with aminas, Sulfinol{sup R} process) or for adsorption in tower filled with activated coal, zeolites and Sulfatreat{sup R}. In this work, the adsorbent material used is the mineral clay Paligorsquita. That class of clay minerals characterized by pores and a crystalline structure containing Tetrahedral layers linked by chains of longitudinal secondary lines. The typical unitary cell is formed basically by moisturized oxides of aluminum, Sicilian and magnesium of (Mg, Al)5SiO2O(OH)2(H20)4.4H20, with Mg specially located in octahedral sites. (author)

  13. Natural gas market assessment. Canadian natural gas market mechanisms: Recent experiences and developments

    International Nuclear Information System (INIS)

    1993-11-01

    The increase in natural gas demand and the associated expansions of most of the pipeline systems serving western Canada have reduced the excess deliverability or excess productive capacity that existed at the time of deregulation of the natural gas industry in 1985. Based on an industry survey, the responses of natural gas buyers and sellers to recent supply difficulties are described. Specific production, transportation, and contractual difficulties were encountered in winter 1992/93 as production was stretched to meet record levels of demand during periods of very cold temperatures and as short-term spot prices reached very high levels. Problems at this time included wellhead freezeups, pipeline outages, and inadequate contract terms and conditions. Methods used to maintain gas flows to end users are reviewed, including a discussion of force majeure, spot gas purchases, storage, supply curtailment, and special loan arrangements. In 1992/93, in most instances where the responsibility fell on the end-user to solve the supply problem, the difficulty was shifted to local distribution companies who have traditionally had more experience with such situations. No cases were identified where either a firm or interruptible end-user was forced to curtail gas consumption because of inadequate supply. New market mechanisms are emerging that will enable buyers and sellers of western Canadian gas to avoid many of the problems encountered in 1992/93. These include prearranged backstopping arrangements, short-term spot markets, access to other gas basins, standardized gas contracts, electronic trading, and price risk management tools. 11 figs

  14. Natural gas projects, strategies and economics

    International Nuclear Information System (INIS)

    Hamaide, G.

    2000-01-01

    This article summarizes the content of some of the posters presented during the WOC 9 working committee of the CMG 2000 worldwide gas congress: natural gas in the new worldwide energy balance; eastern Russia: the last gas projects; the new underwater technologies and the availability of natural gas. (J.S.)

  15. Natural gas 1998: Issues and trends

    International Nuclear Information System (INIS)

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today's natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs

  16. Natural gas 1998: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  17. Natural gas - an alternative. Swedish electric power from Norwegian natural gas

    International Nuclear Information System (INIS)

    1986-10-01

    The report describes the possible substitution of electric power by natural gas on the heat source market and how gas can be used for power production. The cost of distribution and means of supply are presented. 1/3 of the electric power produced by nuclear power plants can be replaced by the middle of the nineties. Transport techniques for gas and its total volume as well as transport cost from Norwegian North Sea are discussed

  18. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  19. Natural Gas STAR Program

    Science.gov (United States)

    EPA’s Voluntary Methane Programs encourage oil and natural gas companies to adopt cost-effective technologies and practices that improve operational efficiency and reduce emissions of methane, a potent greenhouse gas.

  20. Linear infrastructure drives habitat conversion and forest fragmentation associated with Marcellus shale gas development in a forested landscape.

    Science.gov (United States)

    Langlois, Lillie A; Drohan, Patrick J; Brittingham, Margaret C

    2017-07-15

    Large, continuous forest provides critical habitat for some species of forest dependent wildlife. The rapid expansion of shale gas development within the northern Appalachians results in direct loss of such habitat at well sites, pipelines, and access roads; however the resulting habitat fragmentation surrounding such areas may be of greater importance. Previous research has suggested that infrastructure supporting gas development is the driver for habitat loss, but knowledge of what specific infrastructure affects habitat is limited by a lack of spatial tracking of infrastructure development in different land uses. We used high-resolution aerial imagery, land cover data, and well point data to quantify shale gas development across four time periods (2010, 2012, 2014, 2016), including: the number of wells permitted, drilled, and producing gas (a measure of pipeline development); land use change; and forest fragmentation on both private and public land. As of April 2016, the majority of shale gas development was located on private land (74% of constructed well pads); however, the number of wells drilled per pad was lower on private compared to public land (3.5 and 5.4, respectively). Loss of core forest was more than double on private than public land (4.3 and 2.0%, respectively), which likely results from better management practices implemented on public land. Pipelines were by far the largest contributor to the fragmentation of core forest due to shale gas development. Forecasting future land use change resulting from gas development suggests that the greatest loss of core forest will occur with pads constructed farthest from pre-existing pipelines (new pipelines must be built to connect pads) and in areas with greater amounts of core forest. To reduce future fragmentation, our results suggest new pads should be placed near pre-existing pipelines and methods to consolidate pipelines with other infrastructure should be used. Without these mitigation practices, we

  1. North American Natural Gas Vision

    Science.gov (United States)

    2005-01-01

    hand sales of natural gas and LPG. 17 Decreto Legal, Diario Oficial , Noviembre 25, 1993. 37 Review Section 38 Figure 2. Mexican Natural Gas...California 500 Mexicali Baja California 29 Naco - Hermosillo Sonora 130 Nacozari de Garcia Sonora 85 Agua Prieta Sonora 173

  2. Natural gas in Brazil's energy matrix: demand for 1995-2010 and usage factors

    International Nuclear Information System (INIS)

    Fernandes, Elton; Fonseca, Marcus Vinicius de A; Alonso, P.S.R.

    2005-01-01

    This paper describes and analyzes the constraints hampering achievement of the 12% share planned for natural gas in Brazil's energy matrix by 2010, and advises policies for reaching that goal on the basis of forecasts and three probable scenarios for the development of the Brazilian economy. The 12% share goal was established in 1993 by the Ministry of Mines and Energy and confirmed in 2000, and is now in full development. The figures used to represent the estimates of natural gas demands in the three scenarios were obtained from the Integrated Energy Planning Model (MIPE--Modelo Integrado de Planejamento Energetico), which is a technical and economic forecasting model developed by a group of researchers linked to the Energy Planning Program run by the Graduate Engineering Programs Coordination Unit at the Rio de Janeiro Federal University (COPPE-UFRJ) under the sponsorship of Petrobras (a Brazilian enterprise operating in the oil and gas segment) and Eletrobras (a Brazilian enterprise in charge of electricity demand planning). The analysis of the constraints take place under the aegis of the objective proposed by the Brazilian Government. The authors suggest specific actions to be taken in four application areas of natural gas: industrial, electric power generation, domestic distribution and vehicular fleet conversions. All the actions proposed encourage the use of a fuel with low environmental impacts and high calorie power, replacing firewood and other polluting fuels and are evaluated relative to the impacts occurring in society, especially from the standpoint of social welfare in a developing country. The necessity of developing the goods and services infrastructure in the country to support the natural gas insertion in the Brazilian energy matrix is also addressed

  3. Natural gas purchasing for cogeneration projects

    International Nuclear Information System (INIS)

    Kubacki, J. Jr.

    1992-01-01

    This paper reports on the primary cost component for most gas-fired cogeneration or on-site power projects, cost of natural gas. Often gas comprises 50 to 65% of total project costs over the life of the project. Thus it is very important to focus on natural gas sourcing, pricing, transportation and storage. This important task should not be blindly delegated to a gas supplier. The end user must develop a gas strategy that results in the most cost-effective burnertip price. Long-term natural gas supplies are usually source from the three major producing regions: Mod-Continent, Gulf Coast, and Western Canada. A well-reasoned gas strategy must include: determination of transportation and distribution options from the project site to potential gas sources (including direct interconnection of the project to interstate pipelines); acquisition of competitive gas bids from suppliers in appropriate regions; negotiation of potential discounts from interstate pipelines and local distribution companies (LDCs); fine-tuning project economics by, for example, using storage to maximize transportation load factor; and pricing mechanisms that meet economic parameters of the project. This paper uses a hypothetical project in the Midwest to examine the major factors in devising a cost-effective natural gas sourcing

  4. Natural gas: modern application - the environmental question

    International Nuclear Information System (INIS)

    Suarez, Miriam Liliana Hinostroza; Guerra, Sinclair Mallet-Guy

    1999-01-01

    Natural gas has been proposed as a transition fuel. The combustion of natural gas emits less CO 2 per unit of energy than the combustion of other fossil fuels. Increased reliance upon natural gas in preference to other fossil fuels would be encouraged to mitigate greenhouse gas releases while more comprehensive responses are devised to provide more time for adaptation to the inevitable climate change. In this context, the article overviews of natural gas and its relation with the environment

  5. Natural gas market assessment: Price convergence in North American natural gas markets

    International Nuclear Information System (INIS)

    1995-12-01

    The extent to which Canadian and U.S. natural gas markets have become integrated in the post-deregulation era was assessed. This assessment was accomplished through a statistical analysis of the price movements in Canadian and U.S. gas markets. The analysis pointed to three broad conclusions: (1) on the whole, there has been an increasing degree of integration among North American natural gas markets since price deregulation and the introduction of open access, (2) there is somewhat of a split between eastern and western markets, (3) Alberta's links are stronger with the western U.S. natural gas market than with the market in the eastern U.S. Several factors were cited as contributing to the general increase in market integration, including: (1) increased pipeline capacity and additional pipeline interconnections, coupled with the development of market hubs, (2) improved flexibility of access to pipeline transportation services, (3) improved access to market information and greater trading flexibility which has been facilitated by growing use of electronic bulletin boards and electronic trading systems. The increased market integration was claimed to have benefited both consumers and producers, and to have increased competition in both countries.. 28 refs., 14 figs

  6. Petroleum and natural gas in Illinois

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Presentations made at the 7th Annual Illinois Energy Conference are compiled and reported. Specific topics include: Illinois petroleum and natural gas supply; energy use patterns for Illinois and the nation; impacts of the National Energy Act on the natural gas industry; natural gas for North America; natural gas supply under the Natural Gas Policy; US access to international oil; deregulation and its impact on the US petroleum supply; the US Energy Policy; petroleum pricing and taxation policies in Illinois; the high cost of energy and its impact on the poor; impact of increased fuel prices on Illinois' industrial future; energy prices and inflation; opportunities for energy conservation in transportaton; overview of energy and synfuels from biomass and wastes; an inventory of energy potential from biomass in Illinois; problems and potential of alcohol from agriculture; liquid and gaseous fuels from coal; and alternatives to liquid and gaseous fuels.

  7. Conceptos Basicos Sobre el Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-01

    El gas natural abastece cerca de 150.000 vehiculos en los Estados Unidos y aproximadamente 22 millones de vehiculos en todo el mundo. Los vehiculos de gas natural (NGV, por sus siglas en ingles) son una buena opcion para las flotas de vehiculos de alto kilometraje, tales como autobuses, taxis, vehiculos de recoleccion de basura, los cuales son alimentados centralmente u operan dentro de un area limitada o a lo largo de una ruta con estaciones de servicio de gas natural. Las ventajas del gas natural como combustible alternativo incluyen su disponibilidad interna, la red de distribucion establecida, un costo relativamente bajo, y los beneficios de las emisiones.

  8. Natural gas contracts in efficient portfolios

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, R.J.

    1994-12-01

    This report addresses the {open_quotes}contracts portfolio{close_quotes} issue of natural gas contracts in support of the Domestic Natural Gas and Oil Initiative (DGOI) published by the U.S. Department of Energy in 1994. The analysis is a result of a collaborative effort with the Public Service Commission of the State of Maryland to consider {open_quotes}reforms that enhance the industry`s competitiveness{close_quotes}. The initial focus of our collaborative effort was on gas purchasing and contract portfolios; however, it became apparent that efficient contracting to purchase and use gas requires a broader consideration of regulatory reform. Efficient portfolios are obtained when the holder of the portfolio is affected by and is responsible for the performance of the portfolio. Natural gas distribution companies may prefer a diversity of contracts, but the efficient use of gas requires that the local distribution company be held accountable for its own purchases. Ultimate customers are affected by their own portfolios, which they manage efficiently by making their own choices. The objectives of the DGOI, particularly the efficient use of gas, can be achieved when customers have access to suppliers of gas and energy services under an improved regulatory framework. The evolution of the natural gas market during the last 15 years is described to account for the changing preferences toward gas contracts. Long-term contracts for natural gas were prevalent before the early 1980s, primarily because gas producers had few options other than to sell to a single pipeline company, and this pipeline company, in turn, was the only seller to a gas distribution company.

  9. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Science.gov (United States)

    2010-04-01

    ... conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources... INTERPRETATIONS Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and conservation of natural resources—natural gas. (a)(1) The national interests in the development and utilization...

  10. NREL + Southern California Gas

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Sonja E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-09

    NREL and Southern California Gas Company are evaluating a new 'power-to-gas' approach - one that produces methane through a biological pathway and uses the expansive natural gas infrastructure to store it. This approach has the potential to change how the power industry approaches renewable generation and energy storage.

  11. Natural gas pricing: concepts and international overview

    Energy Technology Data Exchange (ETDEWEB)

    Gorodicht, Daniel Monnerat [Gas Energy, Rio de Janeiro, RJ (Brazil); Veloso, Luciano de Gusmao; Fidelis, Marco Antonio Barbosa; Mathias, Melissa Cristina Pinto Pires [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The core of this article is a critical analysis of different forms of pricing of natural gas existing in the world today. This paper is to describe the various scenarios of natural gas price formation models. Along the paper, the context is emphasized by considering their cases of applications and their results. Today, basically, there are three main groups of models for natural gas pricing: i) competition gas-on-gas, i.e., a liberalized natural gas market, II) gas indexed to oil prices or its products and III) bilateral monopolies and regulated prices. All the three groups of models have relevant application worldwide. Moreover, those are under dynamic influence of economic, technological and sociopolitical factors which bring complexity to the many existing scenarios. However, at first this paper builds a critical analysis of the international current situation of natural gas today and its economic relevance. (author)

  12. Israel-New natural gas producer in the Mediterranean

    International Nuclear Information System (INIS)

    Shaffer, Brenda

    2011-01-01

    In 2009 and 2010, major offshore natural gas reserves were discovered near the State of Israel. This article examines Israel's newly discovered natural gas reserves and the implications of this discovery for Israel, the Middle East, and the Mediterranean region. The article will discuss Israel's energy security approach; the role of natural gas in Israel's energy consumption patterns; the organization of Israel's natural gas sector; regional political and security implications of the natural gas discoveries; the prospects for export, and the outlook for various natural gas markets. These new discoveries significantly improve Israel's energy security. They may also spur Israel to develop technologies related to utilization of natural gas in a variety of sectors, such as transportation. The discoveries may contribute to the emergence of a number of maritime border delimitation conflicts in the Eastern Mediterranean. At current volumes, the Israeli discoveries will not be a game-changer for gas markets in southern Europe or liquefied natural gas (LNG) markets. However, they will lead to expanded natural gas consumption in the region. In addition, offshore exploration efforts in Israel and in neighboring countries are intensifying. Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. - Highlights: → In 2009 and 2010, major natural gas deposits were discovered offshore of Israel's port city of Haifa. → They will satisfy a large portion of Israel's domestic energy consumption needs for a number of decades. → The gas discoveries have created an opportunity to fundamentally change the country's energy policies. → Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. → Israel could become a supplier of natural gas to neighbors in the Middle East region, such as Jordan.

  13. Natural gas as a traded global commodity : no longer just a continental resource

    International Nuclear Information System (INIS)

    Pickard, A.

    2004-01-01

    Many consider natural gas to be the fuel of choice for the future because it is abundant, clean and cost competitive. This presentation reviewed how gas markets are changing in terms of globalization, the critical role of liquefied natural gas (LNG), the politics, technology and how the evolution will differ from oil. Other topics of discussion included the expanding world trade of LNG, LNG markets, supply countries, LNG flows in 2002 and potential future flows. Developments in the market were reviewed with reference to limited LNG spot market, mix of contract types, and the role of powerful aggregator partners. The impact of joining suppliers and markets was also discussed along with the value chain of the tramline model. Shell's LNG shipping position was outlined. Shell wholly owns 4 LNG ships and partly owns and operates 16 more ships. The presentation listed existing, permitted, publicly announced and scouting LNG regas terminals in North America, along with Shell interests. It was noted that LNG has the potential to meet some of the growing deficit in North American gas production. The issues that require consideration include permitting uncertainties, basis risk, impact of imports on basis, expansion possibilities, constraints on pipeline infrastructure, marketing capabilities, global supply issues and finance possibilities. figs

  14. British Columbia natural gas: Core market policy

    International Nuclear Information System (INIS)

    1988-06-01

    The core market for natural gas in British Columbia is defined as all natural gas consumers in the residential, institutional, commercial, and industrial sectors not currently purchasing natural gas directly and not exempted from the core market by the British Columbia Utilities Commission (BCUC). The intent of the definition is to include all customers who must be protected by contracts which ensure long-term security of supply and stable prices. Core market customers are excluded from direct natural gas purchase and will be served by distribution utilities. A customer may apply to BCUC to leave the core market; such an application may be approved if it is demonstrated that the customer has adequate long-term natural gas supplies or alternative fuel supplies to protect him from supply interruptions. The non-core market is defined as all large industrial customers who elect to make their own natural gas supply arrangements and who can demonstrate to the BCUC sufficient long-term natural gas supply protection or alternative fuel capability to ensure security of the industry. Non-core market customers have full and open access to the competitive natural gas market. The British Columbia government will not apply its core market policy to other jurisdictions through Energy Removal Certificates

  15. 78 FR 46581 - Orders Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas...

    Science.gov (United States)

    2013-08-01

    ... DEPARTMENT OF ENERGY Orders Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas During June 2013 FE Docket Nos. CONOCOPHILLIPS COMPANY 13-66-NG CONOCOPHILLIPS COMPANY... June 2013, it issued orders granting authority to import and export natural gas and to import liquefied...

  16. Natural gas annual 1993 supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  17. Investigating the Methane Footprint of Compressed Natural Gas Stations in the Los Angeles Basin

    Science.gov (United States)

    Carranza, V.; Hopkins, F. M.; Randerson, J. T.; Bush, S.; Ehleringer, J. R.; Miu, J.

    2013-12-01

    In recent years, natural gas has taken on a larger role in the United States' discourse on energy policy because it is seen as a fuel that can alleviate the country's dependence on foreign energy while simultaneously reducing greenhouse gas emissions. To this end, the State of California promotes the use of vehicles fueled by compressed natural gas (CNG). However, the implications of increased CNG vehicles for greenhouse gas emission reduction are not fully understood. Specifically, methane (CH4) leakages from natural gas infrastructure could make the switch from conventional to CNG vehicles a source of CH4 to the atmosphere, and negate the greenhouse-gas reduction benefit of this policy. The goal of our research is to provide an analysis of potential CH4 leakages from thirteen CNG filling stations in Orange County, California. To improve our understanding of CH4 leakages, we used a mobile laboratory, which is a Ford Transit van equipped with cavity-ring down Picarro spectrometers, to measure CH4 mixing ratios in these CNG stations. MATLAB and ArcGIS were used to conduct statistical analysis and to construct spatial and temporal maps for each transect. We observed mean levels of excess CH4 (relative to background CH4 mixing ratios) ranging from 60 to 1700 ppb at the CNG stations we sampled. Repeated sampling of CNG stations revealed higher levels of excess CH4 during the daytime compared to the nighttime. From our observations, CNG storage tanks and pumps have approximately the same CH4 leakage levels. By improving our understanding of the spatial and temporal patterns of CH4 emissions from CNG stations, our research can provide valuable information to reduce the climate footprint of the natural gas industry.

  18. Natural gas 1994: Issues and trends

    International Nuclear Information System (INIS)

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A)

  19. Natural gas 1994: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  20. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov (United States)

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  1. Annual survey 2013 - Natural gas in the World 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The 2013 Edition of 'Natural Gas in the World' by CEDIGAZ is built on CEDIGAZ's unique natural gas statistical database. This 170-page study, published since 1983, provides an in-depth analysis of the latest developments in the gas markets along with the most complete set of statistical data on the whole gas chain covering close to 130 countries. Topics covered by Natural Gas in the World 2013 include: proved natural gas reserves; unconventional gas status in the world; gross and marketed natural gas production; the international gas trade; existing and planned underground gas storage facilities in the world; natural gas consumption; natural gas prices

  2. Economic missions. Synthetic file: the petroleum sector in Brazil (exploration and production); the refining activity in Brazil; natural gas in Brazil: a fragile market, inferior to forecasts

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    This dossier prepared by the economic mission of the French embassy in Brazil makes a synthesis of the exploration-production and refining activities of the petroleum industry, and of the natural gas distribution market in Brazil: oil reserves and production, Petrobras company, partnership agreements with Petrobras, legal aspects, concessions, projects financing, refining capacity, refinery projects in progress or under study, para-petroleum market perspectives and opportunities, natural gas market development, pipelines network, gas utilities, privatization and foreign participation, lack of expertise and of gas infrastructures and equipments. (J.S.)

  3. Natural gas monthly, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  4. Proposal for a Northeast Asian Hydrogen Highway: From a Natural-gas-based to a Hydrogen-based Society

    International Nuclear Information System (INIS)

    Kazuhiko O Hashi; Masaru Hirata; William C Leighty; D Eng

    2006-01-01

    In Northeast Asia, East Siberia and Sakhalin are rich in natural gas (NG). The environmental protection and energy security of the Northeast Asian region requires constructing an energy infrastructure network that can transport and distribute NG throughout the region in the near term, and renewable-source gaseous hydrogen (GH2) in the long term. We have promoted the construction of an NG pipeline network, the principal component of the energy infrastructure essential to our evolution toward a hydrogen-based society, through the Northeast Asia Natural Gas and Pipeline Forum (NAGPF). Our ultimate goal is a clean and sustainable society based on renewable energy sources, wherein hydrogen is produced from the vast potential of renewable energy in Siberia and China. The hydrogen thus produced would be transmitted through the pipeline network, progressively replacing NG as it is depleted. Over three-quarters of commercially exploitable hydroelectric power (hydro) resources of all Russia is in East Siberia. The areas from Kamchatka through the Kurilskiye Islands (called the Chishima Islands, in Japan) to Sakhalin is a world-class wind energy resource. West China has huge potential for solar energy. (authors)

  5. The price of natural gas

    International Nuclear Information System (INIS)

    Bakhtiari, A.M.S.

    2001-01-01

    Natural gas used to be a relatively cheap primary energy source, always at a discount to crude oil (on a comparative British thermal unit basis). It gradually evolved into a major resource during the 20th century - reaching a 24 per cent share of global primary energy in 1999. In the year 2000, natural gas prices in the USA rose to unheard-of highs of 10/million US dollars Btu, ushering in a new era, with natural gas at a 120 per cent premium to crude oil. This clearly was a watershed for gas, somehow similar to the 1973-74 watershed for oil prices. And similarly, any return to the status quo-ante looks rather improbable, although a number of experts (alongside the International Energy Agency) still believe the 2000 price 'spike' to have been ''only transitory''. The consequences of higher gas prices (at a level equal to crude oil prices on a Btu basis) will be multifaceted and momentous, altering habits and uses in downstream industries and economic sectors, as well as providing added income for major gas-exporters, such as Russia, Canada and Algeria. Another potential consequence of the 2000 watershed might be to propel US standard prices (such as the 'Henry Hub' spot) to international status and gas price-setter, as the 'WTI spot' became an 'international benchmark' for crude oils in the post-1993 era. For the time being, the equality of gas and oil prices has become the new norm; but, in the longer term, a discount of crude oil relative to natural gas might be envisaged, as the latter is a cleaner fuel and emits less carbon dioxide when used. (author)

  6. Monitoring and prediction of geotechnical and environmental risks for security in natural gas transportation; Monitoramento e previsao de riscos geotecnicos e ambientais para seguranca no transporte do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Chamecki, Paulo R.; Ligocki, Laryssa P.; Andrade, Heber A.C.; Manzolli, Andre; Horbatiuk, Borys W.D. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil); Strieder, Adelir J.; Quadros, Telmo F.P.; Buffon, Sergio A.; Stupf, Leonardo; Bressani, Luiz A.; Bica, Adriano V. Damiani [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Schiafino, Antonio V.; Bastos, Cesar B. [Fundacao Universidade Federal do Rio Grande (FURG), RS (Brazil); Radu, Marcos S.; Nascimento Filho, Lenart P. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Santoro, Alcides [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil); Vasconcellos, Carlos R.A.; Oliveira, Hudson R. [TBG - Transportadora Brasileira Gasoduto Bolivia-Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    In order to take care of the consumption issues, often the bands of pipelines have to cross regions that do not present ideal conditions in terms of geotechnical and geologic characteristics. The present work describes a research in progress, involving a partnership between LACTEC, UFRGS, RedeGasEnergia and FINEP, that aims the development of a methodology for instrumentation and remote monitoring of places which present risks to the infrastructure of the gas-lines and the environment, due to geological and geotechnical conditions, as well as the definition of these places. The methodology is practically concluded and will be applied in the place defined for the case study in natural gas Bolivia-Brazil gas-line. Satellite images are being used, along whit computational modeling, geophysical methods, exploratory boreholes and field and laboratory tests, for the definition of points of risk. In the remote monitoring, besides a data communication system, residual stress test of the pipelines, strain gauges and automatic instruments, inclinometers, piezometer and pluviometers are being used. (author)

  7. Natural gas in the world - Cedigaz annual report

    International Nuclear Information System (INIS)

    Lecarpentier, A.

    2010-01-01

    The recent developments in gas E and P in the US with the huge ExxonMobil acquisition (41 Billion US $) of XTO Energy Inc and TOTAL's investment in Chesapeake Energy show if needed that the gas is more and more important in the world energy panorama. The new edition of the CEDIGAZ Annual Report is an indispensable tool for better knowledge of the international gas market. This report offers a compilation of the main statistical data in terms of reserves, gross and marketed production, the volume of international gas trade by pipe and by LNG Tanker, consumption, prices of the main contracts, new LNG Infrastructures in production, underground gas storage and so on

  8. The effects of LNG imports on the North American natural gas market and the economy of Atlantic Canada

    International Nuclear Information System (INIS)

    Howard, P.H.; Kralovic, P.; McColl, D.C.; Mutysheva, D.; Stogran, M.; Ryan, P.C.; Brown, M.; Gardner, M.; Hanrahan, M.

    2006-01-01

    Liquefied natural gas (LNG) is natural gas that has been cooled to a point that it condenses in a liquid state. As such, it is economical to transport over long distances in specially designed double-hulled tankers. With record high price, high demand and tight supply of natural gas, LNG has attracted considerable attention in recent years, and trade is expected to be 18 per cent of North American gas supply by 2020. Volatility in North American natural gas markets is felt strongly along the east coast, with demand dominated by gas-fired power generation. There are 5 facilities proposed to import LNG into the Maritimes and the province of Quebec. These include the Bear Head and Keltic facilities in Nova Scotia, Canaport in New Brunswick and the Rabaska and Cacouna facilities in the province of Quebec. There is a need for a comprehensive analysis of east coast gas development, given the degree of uncertainty regarding significant investment in gas supply, demand, pipelines and LNG projects. This report examined many possible changes in regional marketplace conditions with particular attention to the effects on the economic viability of natural gas developments in Atlantic Canada; the impacts of LNG imports on capacities and flows in natural gas pipeline corridors; and, the influence of increased natural gas supplies on local and regional prices. In order to examine the impact of LNG imports on the development of the natural gas industry, this report provided a 15-year natural gas flow and price simulation for Atlantic Canada, New England and the Mid-Atlantic region. It considered how LNG imports may influence the development of compressed natural gas and the impact that CNG may have on regional markets and infrastructure. It was concluded that the most direct impacts the LNG facilities will have on Atlantic Canada, other than the impacts of terminal construction, jobs and tax revenue, will be the security of supply to area residents and the availability of gas

  9. Insight conference proceedings : natural gas

    International Nuclear Information System (INIS)

    2005-01-01

    The state of Quebec's energy industry was discussed at this conference. Quebec's energy market is distinct by the diversity of its clients, the resource exploitation sector and its types of industries. As such, the energy needs are specific and the strategies for developing natural gas should be adapted to meet these needs. This conference focused on recent energy policy developments at Quebec's Office of Energy and other regulatory bodies. Topics of discussion included the risks and opportunities of the natural gas export market; volatile gas prices; public consultation processes; perspectives of large energy consumers; hydrocarbon potential and exploration in Quebec; natural gas exploration and development in Quebec; energy security and strategies to address carbon dioxide emissions. Other topics of discussion included the investment climate in Quebec; the profitability of Canada's oil and gas sector and refining capacity in Quebec. The conference featured 17 presentations, of which 6 have been indexed separately for inclusion in this database. refs., tabs., figs

  10. Substitution of petroleum liquefied gas for natural gas in a metallurgical industry: a case study; Substituicao de gas liquefeito de petroleo por gas natural em uma siderurgica: um estudo de caso

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Isac Quintao; Miranda, Luciano Lellis; Fullin Junior, Benjamin; Rodrigues, Henrique de Castro; Manella, Roberto [Aperam South America, Timoteo, MG (Brazil). Utilidades e Eficiencia Energetica; Lins, Vanessa de Freitas Cunha [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Quimica

    2011-12-21

    Minas Gerais is a State where there is no production of natural gas. Aiming to increase the consumption of natural gas in Minas Gerais, PETROBRAS increase the network of gas natural distribution in the State of Minas Gerais and the State concessionaire (GASMIG) installed the Project of Natural Gas Valley. The case study is associated to an enterprise that firmed contract for supplying of natural gas. The fuel to be substituted is the Liquefied Petroleum Gas and the results of the substitution were shown. The advantages of the substitution were related to costs, and environmental aspects with the reduction of CO{sub 2} production. The natural gas contains a lower content of impurities and is operated with higher safety than the petroleum liquefied gas. (author)

  11. 78 FR 35014 - Orders Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas...

    Science.gov (United States)

    2013-06-11

    ... DEPARTMENT OF ENERGY Orders Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas During April 2013 FE Docket Nos. NEXEN ENERGY MARKETING SERVICES NG U.S.A. INC... SOLUTIONS TRANSPORT 13-40-LNG MIECO INC 13-41-NG CASCADE NATURAL GAS CORPORATION 13-43-NG ENCANA MARKETING...

  12. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  13. Promising Data for Public Empowerment: The Making of Data Culture and Water Monitoring Infrastructures in the Marcellus Shale Gas Rush

    Science.gov (United States)

    Jalbert, Kirk

    A recent wave of advanced technologies for collecting and interpreting data offer new opportunities for laypeople to contribute to environmental monitoring science. This dissertation examines the conditions in which building knowledge infrastructures and embracing data "cultures" empowers and disempowers communities to challenge polluting industries. The processes and technologies of data cultures give people new capacities to understand their world, and to formulate powerful scientific arguments. However, data cultures also make many aspects of social life invisible, and elevate quantitative objective analysis over situated, subjective observation. This study finds that data cultures can empower communities when concerned citizens are equal contributors to research partnerships; ones that enable them to advocate for more nuanced data cultures permitting of structural critiques of status-quo environmental governance. These arguments are developed through an ethnographic study of participatory watershed monitoring projects that seek to document the impacts of shale gas extraction in Pennsylvania, New York, and West Virginia. Energy companies are drilling for natural gas using highly controversial methods of extraction known as hydraulic fracturing. Growing evidence suggests that nearby watersheds can be impacted by a myriad of extraction related problems including seepage from damaged gas well casing, improper waste disposal, trucking accidents, and the underground migration of hydraulic fracking fluids. In response to these risks, numerous organizations are coordinating and carrying out participatory water monitoring efforts. All of these projects embrace data culture in different ways. Each monitoring project has furthermore constructed its own unique infrastructure to support the sharing, aggregation, and analysis of environmental data. Differences in data culture investments and infrastructure building make some projects more effective than others in empowering

  14. Liquefied natural gas (LNG) market and Australia

    Science.gov (United States)

    Alam, Firoz; Alam, Quamrul; Reza, Suman; Khurshid-ul-Alam, S. M.; Saleque, Khondkar; Ahsan, Saifuddin

    2017-06-01

    As low carbon-emitting fossil fuel, the natural gas is mainly used for power generation and industrial applications. It is also used for heating and cooling in commercial and residential buildings as well as in transport industry. Although the natural gas reaches the end-user mainly through pipelines (if gas is available locally), the liquefied form is the most viable alternative to transport natural gas from far away location to the end user. The economic progress in Asia and other parts of the world creates huge demand for energy (oil, gas and coal). As low carbon-emitting fuel, the demand for gas especially in liquefied form is progressively rising. Having 7th largest shale gas reserve (437 trillion cubic feet recoverable), Australia has become one of the world's major natural gas producers and exporters and is expected to continue a dominating role in the world gas market in foreseeable future. This paper reviews Australia's current gas reserve, industries, markets and LNG production capabilities.

  15. North American natural gas pipeline and supply update

    International Nuclear Information System (INIS)

    Molyneaux, M.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which presented an update of North American natural gas supply. Some of the graphs depicted the following: (1) natural gas consumption in the United States, (2) U.S. imports of Canadian natural gas, (3) natural gas prices differential: Henry Hub versus Empress, (4) natural gas production in the U.S., and (5) Baker Hughes active rig count, U.S. gas rigs. First Energy's view of U.S. natural gas supply is that the estimate of 50.0 Bcf/d for U.S. domestic production is looking too high. The first quarter 1999 exit production rates are behind expectations. U.S. domestic natural gas expenditure budgets are still down by more than 40 per cent compared to 1998 levels. The impact that this will have on prices was discussed. 21 figs

  16. Greening infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-10-01

    Full Text Available The development and maintenance of infrastructure is crucial to improving economic growth and quality of life (WEF 2013). Urban infrastructure typically includes bulk services such as water, sanitation and energy (typically electricity and gas...

  17. Use of compressed natural gas in automotive vehicles; Uso del gas natural comprimido aplicado en vehiculos automotores

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, Adrian [Comision Nacional para el Ahorro de Energia (CONAE) (Mexico)

    2005-07-01

    The natural gas is natural origin energy (fossil fuel); it contains predominantly 90 percent methane; does not require transformation process for its use; is supplied the 24 hours to commerce, industries and homes by underground pipes; it is lighter than air; it is not corrosive, nor absorbent or toxic. For those reasons a study was performed where it is widely justified why the natural gas ought to be used in vehicles. [Spanish] El gas natural es un energetico de origen natural (combustible fosil), contiene predominantemente 90 por ciento de metano, no requiere proceso de transformacion para su utilizacion, llega directamente las 24 horas del dia a los hogares, comercios e industrias por tuberias subterraneas, es mas ligero que el aire, no es corrosivo, no es absorbente y no es toxico. Por esas razones se hizo un estudio donde se justifica ampliamente porque el gas natural debe utilizarse en vehiculos.

  18. The necessity for storage of natural gas in the Netherlands: In particular the natural gas storage near Langelo, Drenthe, Netherlands

    International Nuclear Information System (INIS)

    1994-11-01

    The natural gas supply in the Netherlands will experience a capacity problem once the pressure of the natural gas field Slochteren in the province Groningen will decrease below a certain level. It is expected that this will already happen in the winter of 1996. Underground storage of natural gas reserves is considered to be the only appropriate solution to accommodate this problem. Four environmental organizations in the Netherlands ordered GASTEC, the Dutch research center for natural gas technology, to study the alternatives for natural gas storage in the Netherlands. 7 figs

  19. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  20. Asian natural gas--For a brighter '90s

    International Nuclear Information System (INIS)

    Klass, D.L.; Ohashi, Tadahiko

    1991-01-01

    The seminar was designed to focus on the business aspects of developing Asian natural gas resources by inclusion of papers on natural gas markets, the role of banks, and financial case histories of existing projects, and papers on commercial and industrial natural gas utilization. The utilization of natural gas was addressed by papers that targeted small-scale, industrial and utility usage of natural gas in electric power production, and by papers on air conditioning and other applications. Each of these topics is important to the development of the Asian natural gas industry. Together, they formed a balanced program when combined with the opening keynote addresses from Tokyo Gas Company, Ltd., and PETRONAS and a panel discussion on gas pricing. All papers have been processed separately for inclusion on the data base

  1. Dedicated natural gas vehicle with low emission

    NARCIS (Netherlands)

    Voogd, A. de; Weide, J. van der; Konig, A.; Wegener, R.

    1995-01-01

    In the introduction an overview is given of international activities in the field of natural gas vehicles. The main incentives for the use of natural gas in vehicles are: emission reduction in urban areas, fuel diversification, and long term availability. Heavy duty natural gas engines are mainly

  2. Integrating climate forecasts and natural gas supply information into a natural gas purchasing decision

    Science.gov (United States)

    Changnon, David; Ritsche, Michael; Elyea, Karen; Shelton, Steve; Schramm, Kevin

    2000-09-01

    This paper illustrates a key lesson related to most uses of long-range climate forecast information, namely that effective weather-related decision-making requires understanding and integration of weather information with other, often complex factors. Northern Illinois University's heating plant manager and staff meteorologist, along with a group of meteorology students, worked together to assess different types of available information that could be used in an autumn natural gas purchasing decision. Weather information assessed included the impact of ENSO events on winters in northern Illinois and the Climate Prediction Center's (CPC) long-range climate outlooks. Non-weather factors, such as the cost and available supplies of natural gas prior to the heating season, contribute to the complexity of the natural gas purchase decision. A decision tree was developed and it incorporated three parts: (a) natural gas supply levels, (b) the CPC long-lead climate outlooks for the region, and (c) an ENSO model developed for DeKalb. The results were used to decide in autumn whether to lock in a price or ride the market each winter. The decision tree was tested for the period 1995-99, and returned a cost-effective decision in three of the four winters.

  3. Natural gas ballast requirement to allow participation of thermal plants in the new energy auctions: analysis and proposals; Requisito de lastro de gas natural para viabilizar a participacao de termeletricas nos leiloes de energia nova: analise e propostas

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Pedro Luis de; Bezerra, Bernardo Vieira; Barroso, Luiz Augusto Nobrega; Pereira, Mario Veiga; Rosenblatt, Jose [PSR, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Since the first New Energy Auction (LEN), held in December 2005, there has been a continuous process of improving the auction rules and mechanism. For the specific case of gas-fired plants, a significant change was observed between the LEN A-3/2011 and LEN A-5/2011, and refers to the need of natural gas ballast for candidate projects in the auction. This rule was introduced by ANP Resolution No. 52, which establishes that the gas supply agreements must be backed up by proven reserves (analogous to the requirement in the power sector contracts of physical guarantee backup), and Ordinance MME No. 21/2008, which deals with power plants qualification for the new energy auctions. The latter was amended by MME Ordinance No. 514, which requires proven natural gas reserves to support the GSA of all candidate projects in a LEN. In other words, the gas supplier now has to prove that there are sufficient gas reserves to meet requirements of all candidate project in an auction, regardless of the plausibility of their engagement in the auction. In this context, the present study discusses these issues and has as main contributions: (I) a review of current regulations on contract ballast in the Brazilian natural gas sector, (II) a proposal to conciliate the need of fuel supply contract ballast to the dynamics of the natural gas sector, and (III) a proposal to conciliate the need for fuel contract ballast to the contracting process of the thermoelectric power in the new energy auctions. These contributions aim at a better integration between the sectors of natural gas and electricity in Brazil, leading to a more efficient use of resources and infrastructure development. (author)

  4. Natural gas supply, demand and price outlook

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Natural gas consumption in the US grew 15.9 percent between 1986 and 1989. Its share of total primary energy use in the US grew from 22.5 percent to 23.8 percent. Despite unusually warm weather and an economic downturn, natural gas use in the first eight months of 1990 fell only modestly from its 1989 pace - while its market share of US total primary energy use has remained stable. The American Gas Association's Total Energy Resource Analysis energy modeling system (A.G.A.-TERA) projects continued growth in natural gas demand and supply. Natural gas is projected to gain a growing share of total US primary use. Natural gas prices are projected to be sufficient to encourage growth in well completions and reserve additions, yet competitive with electricity, fuel oil and other alternative forms of energy

  5. Outlook for Noth American natural gas supplies

    International Nuclear Information System (INIS)

    Kuuskraa, V.A.

    1995-01-01

    The underlying resource base for North America natural gas is large, sufficient for nearly 100 years of current consumption. As such, the issues are not the size of the resource, but how to convert this resource into economically competitive supply. The key questions are: Will the cost (price) of natural gas remain competitive? What is the status of near-term deliverability? Will there be enough supply to meet growing demand? These economic and market issues frame the outlook for gas supplies in North America. Most importantly, they will determine how natural gas emerges from its competition for markets with other fuels and electricity. The paper addresses these questions by examining: (1) the underlying nature of the natural gas resource base; (2) the current status and trends in deliverability; and, (3) the potential of new technologies for producing gas more cost-effectively. (author)

  6. The natural gas as integration element in Latin America

    International Nuclear Information System (INIS)

    Morales, Maria Elizabeth; Dutra, Luis Eduardo; Rosa, Luiz Pinguelli

    1999-01-01

    The article discusses the following global aspects of natural gas development: natural gas and worldwide energetic integration; natural gas consumption rates in the world; natural gas industry development in Latin America; and natural gas industry in Brazil. The article concludes that the natural gas can integrate Latin-american economies since the Governments adopt coherent energetic politicians articulated to each other

  7. North American natural gas price outlook

    International Nuclear Information System (INIS)

    Denhardt, R.

    1998-01-01

    Issues regarding future natural gas prices for North America were discussed. Various aspects of the issue including the relationship between storage, weather and prices, received attention. It was noted that strong demand-growth will be needed to support near-term Canadian export increases without price declines. The issue of Gulf Coast production was also discussed. Power generation using natural gas as fuel is expected to support strong growth in the demand for natural gas. tabs., figs

  8. European key issues concerning natural gas: Dependence and vulnerability

    International Nuclear Information System (INIS)

    Reymond, Mathias

    2007-01-01

    Due to the high demand for natural gas from emerging countries and because natural gas has become an increasingly valuable resource is electricity production, natural gas demand should increase. This paper re-examines the geopolitical key issues related to natural gas as well as the uneven distribution of natural gas resources on a worldwide scale. This paper proposes to define the significance of liquefied natural gas in gas exchanges and it analyses the problem of European gas vulnerability using several indicators

  9. Bring money and natural gas

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1993-01-01

    The budding natural gas markets in East Europe attract a great deal of interest from natural gas industries in the Western countries. Dutch companies, institutions and the government, too, are active in this market. So far the results have not been spectacular. An analysis is made of the present situation and the Dutch approach

  10. Natural gas liquids: market outlook

    International Nuclear Information System (INIS)

    Heath, M.

    1996-01-01

    Future market outlook for natural gas liquids was discussed. It was shown that Canadian natural gas and natural gas liquid (NGL) production levels have experienced extraordinary growth over the past few years due to an increased U.S. demand for Canadian natural gas. Recent supply and demand studies have indicated that there will be growing surpluses of NGLs in Canada. By 1996, the majority of NGL surplus that is forecast to be available is ethane (64%), followed by propane (22%), butane (12%) and pentane plus (2%). Throughout the forecast period, the ratio of incremental ethane to the total NGL surplus, over and above forecast demand, was expected to continue to rise. The viability of producing and processing that ethane and transporting it to market, will be crucial. Development of a large ex-Alberta C2+ pipeline from Empress to Mont Belvieu under the reference case supply projection is a possibility, but only if total tariff and fractionation charge on the line is less than or equal to 10 US cents/USG (currently 16-22 US cents/USG). 11 figs

  11. Suggestion for a natural gas development policy

    International Nuclear Information System (INIS)

    Drummond, P.H.

    1987-01-01

    First, this work presents some aspects concerning the reserves and the future of natural gas consumption in Brazil. Then, from the results of a case-study about the implementation of a natural gas distribution company in Fortaleza (Ceara), we analyse under which conditions the business of natural gas distribution is economically interesting (subject of the M.Sc. thesis developed by the author). In possession of this results, the author proposes directions for a Natural Gas Policy in Brazil, approaching also aspects of Tariffs Policy. (author)

  12. Trading in LNG and natural gas

    International Nuclear Information System (INIS)

    1992-01-01

    We have examined the market for natural gas from a number of viewpoints, starting with the role of natural gas in the global energy market where its 20% share of primary energy demand has been captured in the space of almost as many years. In discussion regional energy markets we cover the disparities between supply and demand which give rise to trade by pipeline, and by sea in the form of liquefied natural gas (LNG). Both have in fact increased steadily in recent years, yet even in 1991, only 12-15% of total gas production was traded across international boundaries, whereas for oil it was closer to 40%. For the moment pipeline trade remains heavily concentrated in Europe and North America, and it is in the LNG sector where the spread of projects, both existing and planned, is more global in nature. We examine the development of LNG trades and the implications for shipping. Finally, we look at transportation costs, which are likely to be an important component in the viability of many of the natural gas export schemes now under review. There is good reason to be ''bullish'' about parts of the natural gas industry but this Report suggests that there are areas of concern which could impinge on the development of the market in the 1990s. (author)

  13. The greenhouse advantage of natural gas appliances

    International Nuclear Information System (INIS)

    Coombe, N.

    2000-01-01

    The life cycle report prepared recently by Energetics for the AGA, Assessment of Greenhouse Gas Emissions from Natural Gas, demonstrates clearly the greenhouse advantage natural gas has over coal in generating electricity. This study also goes one step further in applying this life cycle approach to the use of space and water heating within the home. The study shows the significant green-house advantage that natural gas appliances have over electric appliances. Findings from other studies also support this claim. The natural gas suppliers are encouraged to take advantage of the marketing opportunity that these studies provide, offering the householders the fuel that will significantly reduce their contribution to greenhouse emission

  14. North American Natural Gas Markets

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models

  15. North American Natural Gas Markets

    International Nuclear Information System (INIS)

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models

  16. Natural gas monthly, July 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  17. Natural Gas Energy Educational Kit.

    Science.gov (United States)

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  18. Research into the transmission of natural gas by gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Gadonneix, P.

    1998-12-31

    This paper is the press release of the talk given at the `Gaz de France scientific meeting with the press` by P. Gadonneix, chairman of Gaz de France company, on October 7, 1998. The aim of this talk concerns the new French and European supply link for bringing natural gas from the Norwegian North Sea fields. This new supply link is the first direct link between Norway and France and the NorFra gas pipeline which brings natural gas from the North Sea to France is the longest offshore pipeline in the world. The `Artere des Hauts de France` pipeline (the largest diameter gas pipeline ever laid in France) is devoted to the transfer of natural gas from Dunkerque to the Gournay-sur-Aronde underground storage site. This paper describes successively: the French European gas supply hub, the NorFra project, the Artere des Hauts de France pipeline, the network performance research, the safety and quality guaranties, the reduction of overland natural gas transmission costs (improvement of pipe-laying techniques and optimization of line route and welding operations), the specific techniques used for road and river crossing (micro-tunnel digging, river-crossing ditches) and for anchoring (buoyancy compensation). Finally, the environmental impact of the laying operations is briefly described. (J.S.)

  19. The Pricing of natural gas

    International Nuclear Information System (INIS)

    Nese, Gjermund

    2004-11-01

    The report focuses on the pricing of natural gas. The motivation has been the wish of the Norwegian authorities to increase the use of natural gas and that this should follow market conditions. The pricing of gas occurs at present in various ways in the different markets. The report identifies to main factors behind the pricing. 1) The type of market i.e. how far the liberalization of the gas markets has gone in the various countries. 2) The development within the regulation, climate and tax policies. The gas markets are undergoing as the energy markets in general, a liberalization process where the traditional monopoly based market structures are replaced by markets based on competition. There are great differences in the liberalization development of the various countries, which is reflected in the various pricing principles applied for the trade of gas in the countries. The analysis shows that the net-back-pricing is predominant in some countries i.e. that the price is in various ways indexed towards and follow the development of the price of alternative energy carriers so that the gas may be able to compete. The development towards trade places for gas where the pricing is based on offer and demand is already underway. As the liberalization of the European gas markets progresses it is expected that the gas price will be determined increasingly at spot markets instead of through bilateral agreements between monopolistic corporations. The development within the regulation, climate and tax policies and to what extent this may influence the gas prices in the future, are also studied. There seem to be effects that may pull in both directions but it is evident that these political variables will influence the gas pricing in the international market to a large extent and thereby also the future internal natural gas market

  20. Natural gas utilization study : offshore Newfoundland

    International Nuclear Information System (INIS)

    1998-10-01

    A study was conducted to quantify the natural gas resources of Newfoundland and to identify production and transportation options. The objective was to create a development strategy for natural gas which is growing in global importance as an energy source and as a feedstock for the downstream industry. The growth is driven by general economic expansion and the fact that natural gas is far less polluting than its main fossil fuel alternatives of oil and coal. New use is dominated by the power generation sector. The natural gas industry is also evolving rapidly as new reserves are established and pipelines are being constructed. Proven world reserves of natural gas now stand in excess of 5000 Tcf, 70 per cent of which is in the Russian Federation (CIS) and Middle East regions. Production and consumption, however, is dominated by the industrialized countries of North America and western Europe. This difference between markets and reserves has major implications including the need to develop cost effective long-distance transportation technologies and delivery systems or to relocate downstream industries closer to the reserves. In Newfoundland, the estimated reserves total 61.9 Tcf, including 8.2 Tcf of discovered reserves and 53.7 Tcf of undiscovered reserves. Of the discovered reserves, 4.2 Tcf is on the Labrador Shelf and 4.0 Tcf is in the the Jeanne d'Arc Basin on the Grand Banks. The Hibernia development could play a major role in the development of the natural gas resources of fields within a radius of 50 km around the platform. The general conclusion from the first phase of this study is that Newfoundland's natural gas resources are valuable and potentially capable of supporting significant industrial activities. The undiscovered potential holds significant promise for both the Newfoundland offshore and onshore areas. Phase Two of the study will deal with the development and implementation of a Strategic Plan for Newfoundland's natural gas resources. A series of

  1. The crude petroleum and natural gas industry, 1995

    International Nuclear Information System (INIS)

    1996-01-01

    A compilation of data regarding the crude petroleum and natural gas industry was presented. This industry includes establishments engaged in exploration for, or production of petroleum or natural gas from wells or tar sands. Data presented in this publication include: the supply and disposition of crude oil and natural gas, operating and capital expenditures of approximately 500 companies of the oil and natural gas industry, drilling completions, and crude oil and natural gas reserves. Data about the oil sands industry is reported in another volume. Much of the data was obtained from the Canadian Association of Petroleum Producers. Overall, in 1995 Canadian natural gas production rose 6.7%; exports of crude oil rose 7.7%. 8 tabs., 2 figs

  2. Natural gas 1992: Issues and trends

    International Nuclear Information System (INIS)

    1993-03-01

    This report provides an overview of the natural gas industry in 1991 and 1992, focusing on trends in production, consumption, and pricing of natural gas and how they reflect the regulatory and legislative changes of the past decade (Chapter 1). Also presented are details of FERC Order 636 and the Energy Policy Act of 1992, as well as pertinent provisions of the Clean Air Act Amendments of 1990 (Chapter 2). In addition, the report highlights a range of issues affecting the industry, including: Trends in wellhead prices and natural gas supply activities (Chapter 3); Recent rate design changes for interstate pipeline companies (Chapter 4); Benefits to consumers from the more competitive marketplace (Chapter 5); Pipeline capacity expansions during the past 2 years (Chapter 6); Increasing role of the natural gas futures market (Chapter 7)

  3. Joint deployment of refuelling infrastructure and vehicles

    International Nuclear Information System (INIS)

    Smith, R.

    2010-01-01

    A wide range of fuels will be used in future transportation technologies. This presentation discussed refuelling infrastructure solutions for alternative fuels. A well-placed demonstration infrastructure will help to accelerate market development. Stakeholder collaboration is needed to create high value business paradigms and identify stakeholder benefits. Infrastructure paradigms include the home; businesses; retail public refuelling forecourts; and multi-fuel waste heat recovery sites. Commercial nodes can be developed along major transportation routes. Stakeholder groups include technology providers, supply chain and service providers, commercial end-users, and government. A successful alternative fuel infrastructure model will consider market development priorities, time frames and seed investment opportunities. Applications must be market-driven in order to expand. A case study of the natural gas vehicle (NGV) program in Ontario was also discussed, as well as various hydrogen projects. tabs., figs.

  4. Spark ignition natural gas engines-A review

    International Nuclear Information System (INIS)

    Cho, Haeng Muk; He, Bang-Quan

    2007-01-01

    Natural gas is a promising alternative fuel to meet strict engine emission regulations in many countries. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the operating envelope, fuel economy, emissions, cycle-to-cycle variations in indicated mean effective pressure and strategies to achieve stable combustion of lean burn natural gas engines are highlighted. Stoichiometric natural gas engines are briefly reviewed. To keep the output power and torque of natural gas engines comparable to those of their gasoline or Diesel counterparts, high boost pressure should be used. High activity catalyst for methane oxidation and lean deNOx system or three way catalyst with precise air-fuel ratio control strategies should be developed to meet future stringent emission standards

  5. Radon measurements over a natural-gas contaminated aquifer

    International Nuclear Information System (INIS)

    Palacios, D.; Fusella, E.; Avila, Y.; Salas, J.; Teixeira, D.; Fernández, G.; Salas, A.; Sajo-Bohus, L.; Greaves, E.; Barros, H.; Bolívar, M.; Regalado, J.

    2013-01-01

    Radon and thoron concentrations in soil pores in a gas production region of the Anzoategui State, Venezuela, were determined by active and passive methods. In this region, water wells are contaminated by natural gas and gas leaks exist in the nearby river. Based on soil gas Radon data surface hydrocarbon seeps were identified. Radon and thoron concentration maps show anomalously high values near the river gas leaks decreasing in the direction of water wells where natural gas is also detected. The area where the highest concentrations of 222 Rn were detected seems to indicate the surface projection of the aquifer contaminated with natural gas. The Radon/Thoron ratio revealed a micro-localized anomaly, indicating the area where the gas comes from deep layers of the subsoil. The radon map determined by the passive method showed a marked positive anomaly around abandoned gas wells. The high anomalous Radon concentration localized near the trails of ascending gas bubbles at the river indicates the zone trough where natural gases are ascending with greater ease, associated with a deep geological fault, being this the main source of methane penetration into the aquifer. It is suggested that the source of the natural gas may be due to leaks at deep sites along the structure of some of the abandoned wells located at the North-East of the studied area. - Highlights: ► High Radon/Thoron ratios were localized near the natural-gas emanations in a river. ► Natural gases are ascending trough a deep geological fault. ► Apparently, the radon anomaly shows the site where natural gas enters the aquifer. ► Natural gas source may be related to leaks in the structure of abandoned gas wells

  6. Venezuela natural gas outlook

    International Nuclear Information System (INIS)

    Silva, P.

    1991-01-01

    This paper reports on the natural gas outlook for Venezuela. First of all, it is very important to remember that in the last few years we have had frequent and unforeseen changes in the energy, ecological, geopolitical and economical fields which explain why all the projections of demand and prices for hydrocarbons and their products have failed to predict what later would happen in the market. Natural gas, with its recognized advantages over other traditional competitors such as oil, coal and nuclear energy, is identified as the component that is acquiring more weight in the energy equation, with a strengthening projection, not only as a resource that covers demand but as a key element in the international energy business. In fact, natural gas satisfies 21% of overall worldwide energy consumption, with an annual increase of 2.7% over the last few years, which is higher than the global energy growth of other fossil fuels. This tendency, which dates from the beginning of the 1980's, will continue with a possibility of increasing over the coming years. Under a foreseeable scenario, it is estimated that worldwide use of natural gas will increase 40% over the next 10 years and 75% on a longer term. Specifically for liquid methane (LNG), use should increase 60% during this last decade. The LPG increase should be moderate due to the limited demand until 1995 and to the stable trends that will continue its use until the end of this century

  7. The European natural gas market

    International Nuclear Information System (INIS)

    Hagland, Jan

    2001-01-01

    An increasing amount of natural gas is flowing into continental Europe, one of the largest gas markets in the world. There are three main sources of gas: Africa, Russia and Norway. Norway is an important supplier of gas, but may be vulnerable to competition. The demand for gas is increasing on a global basis and the largest increase is expected in Asia, followed by America and Europe. It is expected that Norwegian gas deliveries will be a principle source of natural gas for North Europe in the next years and that they will take an increasing part of the British market as the gas deliveries from the British shelf is going down. The European gas market is likely to become liberalized according to the EU's competition- and gas directives. This will not necessarily be a problem, and Norway may be able to increase the export of gas to Great Britain considerably from the year 2010, perhaps up to 40 billion standard m3 per year. Russia is expected to take an increased share of the European gas market, especially in East- and Central Europe, Germany and North Italy. But large investments in existing fields, new developments and new strategic pipelines are necessary

  8. Market penetration of natural gas in Europe

    International Nuclear Information System (INIS)

    Haas, R.; Wirl, F.

    1992-01-01

    The strategy of restricting natural gas to noble uses (directive of EEC and endorsed by the IEA) impeded gas expansion despite substantial upward revisions in the assessment of available resources. However, increasing environmental concern slowly but gradually undermines this strategy because natural gas serves as a substitute for costly abatement. This article discusses the prospect of future natural gas consumption considering economic and ecological facts as well as strategic and political considerations. In fact, we argue that inconsistent political interventions first seriously lowered gas penetration but now favor its use

  9. Natural gas annual 1992: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

  10. A sociological study of visions and reality constructions related to the uses of natural gas in Norway

    International Nuclear Information System (INIS)

    Gjoeen, Heidi

    2001-01-01

    The thesis has 8 chapters. Chapter 1 deals with the sociology of the energy society. In chapter 2 question for the following empirical chapters are developed. The presentation is divided in 2 parts. Firstly the vision concept as used in the scientific literature on business and technology is discussed. Secondly various controversy study treatments of the relationship between politics and science based knowledge are discussed. From these discussions problems for the study of visions where the relationship between knowledge and policy are derived and evaluated. In chapter 3 the use of a modified field method in the study of the visions for technology projects ''in the making'' is described. In chapter 4 a brief survey of the Norwegian gas history and previous visions for natural gas utilisation in Norway is presented. Central natural gas concepts and different ways natural gas may be used, how it may be distributed and which environmental arguments may be connected to the use in various sectors are surveyed. Finally some measures which the government used and may use in order to stimulate and set a framework for national gas activity are presented. Chapter 5 describes the demonstration project on natural gas busses in Trondheim in the period 1989 - 1994/95. Chapter 6 mainly surveys the story of how Gasnor ASA on Karmoey in Rogaland started the infrastructure project on delivery of natural gas to local industrial users in the period of 1989 - 194/95. Chapter 7 studies how the use of natural gas is dealt with politically in the period of 1993 - 1998. A brief account of further work after 1995 with distributing natural gas to the users in Mid-Norway and Rogaland is presented. In chapter 8 a brief abstract of the empirical accounts in chapters 5,6 and 7 is given. Furthermore the concept of visionary work as it is developed and presented in the thesis is discussed thus giving the concept a theoretical and analytical content

  11. The AFG Convention - The future for natural gas

    International Nuclear Information System (INIS)

    Ferrier, Jerome; Lafon, Madeleine; Bouchard, Georges; Figoli, Jean-Michel; Honorat, Augustin; Clodic, Denis; Fauvel, Philippe; Frantz, Ludovic; Rottenberg, Jacques; Stabat, Thibault; Constant, Herve; Ferraris, Patrick; Monserand, David; Padova, Yann; Leeder, Nick

    2017-01-01

    The Association Francaise du Gas (French Gas Association) has held its 'the future of gas' convention in October 2016. After an opening speech, which insisted on the fact that natural gas is now recognized as a low greenhouse gas emission energy source, and a presentation of the gas demand scenario for 2030, two round tables addressed the new utilizations of natural gas (LNG for ships and vehicles, power generation, biomethane, cryogenics, heating systems), and the contributions of new technologies (and more especially digital systems) in the natural gas market and gas utilities

  12. Natural gas applications in waste management

    International Nuclear Information System (INIS)

    Tarman, P.B.

    1991-01-01

    The Institute of Gas Technology (IGT) is engaged in several projects related to the use of natural gas for waste management. These projects can be classified into four categories: cyclonic incineration of gaseous, liquid, and solid wastes; fluidized-bed reclamation of solid wastes; two-stage incineration of liquid and solid wastes; natural gas injection for emissions control. 5 refs., 8 figs

  13. North American Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  14. North American Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  15. Liquefied natural gas storage at Ambergate

    Energy Technology Data Exchange (ETDEWEB)

    Higton, C W; Mills, M J

    1970-08-19

    Ambergate works was planned in 1965-1966 and the decision was taken to install 4 ICI lean gas reformers using natural gas as feedstock, fuel, and enrichment. To cover the possible failure of natural gas supplies, petroleum distillate would be used as alternative feedstock and fuel. The choice for alternative enrichment lay between LPG or LNG. Since LNG would provide peak-on-peak storage facilities for either the East Midlands Board or the Gas Council when conversion was completed--and in the meantime would provide an additional source of LNG for local requirements when temporary LNG installations were used during conversion--agreement was reached with the Gas Council for it to build a 5,000-ton storage installation at Ambergate. The installation consists of 3 major sections: (1) the offloading bay and storage tank; (2) the reliquefaction system; and (3) the export system. The offloading bay and storage tank are for the reception and storage of liquefied Algerian natural gas, delivered to Ambergate by road tanker from the Canvey Is. Terminal. The reliquefaction system is to maintain the necessary storage tank conditions by reliquefying the boil-off natural gas. The export system delivers LNG from the storage tank at high pressure through a vaporization section in the national methane grid.

  16. Liquefied Natural Gas for Trucks and Buses

    International Nuclear Information System (INIS)

    James Wegrzyn; Michael Gurevich

    2000-01-01

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems

  17. Natural gas vehicles : Status, barriers, and opportunities.

    Energy Technology Data Exchange (ETDEWEB)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  18. Eastern Canada natural gas market development

    Energy Technology Data Exchange (ETDEWEB)

    Laird, N. [PanCanadian Petroleum Ltd., Calgary, AB (Canada)

    2001-07-01

    An overview an update of PanCanadian's exploration operations in Atlantic Canada was presented along with market delivery options. PanCanadian is one of Canada's largest natural gas producers and the most active Canadian driller with 2,479 wells. With its' 94 per cent success rate, the company is emerging as an international exploration success and is marketing energy throughout North America. In terms of marketing natural gas, PanCanadian is ranked twelfth of 68 suppliers in customer satisfaction. The company also markets about 10 per cent of western crude production and is the second largest Canadian marketer for natural gas liquids. Also, with the deregulation of electricity in Alberta, PanCanadian is constructing two 106 megawatt power plants in Alberta to provide electricity to Southern Alberta and to take advantage of the economics of energy conversion. PanCanadian also has a dominant, 20 per cent position in the Scotia Shelf and has plans for offshore processing. Graphs depicting its Deep Panuke operations and pipeline routes to market the natural gas were included. Forecast charts for natural gas demand show a steady increase in demand from 2000 to 2010. tabs., figs.

  19. Eastern Canada natural gas market development

    International Nuclear Information System (INIS)

    Laird, N.

    2001-01-01

    An overview an update of PanCanadian's exploration operations in Atlantic Canada was presented along with market delivery options. PanCanadian is one of Canada's largest natural gas producers and the most active Canadian driller with 2,479 wells. With its' 94 per cent success rate, the company is emerging as an international exploration success and is marketing energy throughout North America. In terms of marketing natural gas, PanCanadian is ranked twelfth of 68 suppliers in customer satisfaction. The company also markets about 10 per cent of western crude production and is the second largest Canadian marketer for natural gas liquids. Also, with the deregulation of electricity in Alberta, PanCanadian is constructing two 106 megawatt power plants in Alberta to provide electricity to Southern Alberta and to take advantage of the economics of energy conversion. PanCanadian also has a dominant, 20 per cent position in the Scotia Shelf and has plans for offshore processing. Graphs depicting its Deep Panuke operations and pipeline routes to market the natural gas were included. Forecast charts for natural gas demand show a steady increase in demand from 2000 to 2010. tabs., figs

  20. Mercury Removal from Natural Gas in Egypt

    International Nuclear Information System (INIS)

    Korkor, H.; AI-Alf, A.; EI-Behairy, S.

    2004-01-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems

  1. Mercury Removal from Natural Gas in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Korkor, H; AI-Alf, A; EI-Behairy, S [EGAS, Cairo (Egypt)

    2004-07-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems.

  2. Razvitie gazovoj infrastruktury zarubezhnyh stran Vostochnoj Baltiki kak sposob povyshenija ih jenergeticheskoj bezopasnosti [Gas infrastructure development in the countries of East Baltic as a way to increase energy security

    Directory of Open Access Journals (Sweden)

    Golyashev Alexander

    2013-01-01

    Full Text Available In the context of regional gas infrastructure development this paper considers the issue of energy security of the countries of East Baltic, which depend heavily on a single energy supplier — Russia. In recent years, the countries of the region have announced several LNG terminal construction projects. The European Union will provide political and financial support to only one of these projects. The paper explores the role of gas and energy in the economy of the Eastern Baltic countries. The author concludes that the countries mostly dependent on Russian gas are Lithuania and Latvia. The announced LNG terminal projects are being reviewed in detail. Their necessity is estimated from the perspective of the current and future demand for natural gas, including the terms and conditions of contracts concluded with OAO Gazprom. Different scenarios and prospects for individual LNG terminal projects and associated pipeline infrastructure are evaluated. It is shown that the inability of countries to find a political compromise on this issue and the terms of existing contracts for Russian gas, as well as low domestic demand for gas hamper the implementation of a regional LNG terminal project even in the long term.

  3. Natural gas monthly, September 1991. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

  4. Natural gas commoditization - evolution and trends

    International Nuclear Information System (INIS)

    Albon, D.R.

    1998-01-01

    This presentation dealt with issues of deregulation in the natural gas industry. The commoditization process, the effect of deregulation as reflected by changes in the percentage distribution of market participation by profession in NYMEX in 1994 and for the first quarter of 1998, the natural gas supply and demand from 1990 to 1996, and natural gas market activities (i.e. swaps, EFPs, spreads, transportation look-alikes, triggers) were reviewed. An Alberta supply and demand forecast for the winter heating season of 1998-1999 and its impact on prices was also provided. tabs., figs

  5. Canadian natural gas market: dynamics and pricing

    International Nuclear Information System (INIS)

    2000-01-01

    This publication by the National Energy Board is part of a continuing program of assessing applications for long-term natural gas export licences. The market-based procedure used by the Board is based on the premise that the marketplace will generally operate in a way that will ensure that Canadian requirements for natural gas will be met at fair market prices. The market--based procedure consists of a public hearing and a monitoring component. The monitoring component involves the on-going assessment of Canadian energy markets to provide analyses of major energy commodities on either an individual or integrated commodity basis. This report is the result of the most recent assessment . It identifies factors that affect natural gas prices and describes the functioning of regional markets in Canada. It provides an overview of the energy demand, including recent trends, reviews the North American gas supply and markets, the natural gas pricing dynamics in Canada, and a regional analysis of markets, prices and dynamics in British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec and the Atlantic provinces. In general, demand growth outstripped growth in supply, but natural gas producers throughout North America have been responding to the current high price environment with aggressive drilling programs. The Board anticipates that in time, there will be a supply and demand response and accompanying relief in natural gas prices. A review of the annual weighted average border price paid for Alberta gas indicates that domestic gas users paid less than export customers until 1998, at which point the two prices converged, suggesting that Canadians have had access to natural gas at prices no less favourable than export customers. The influence of electronic trading systems such as NYMEX and AECO-C/NIT have had significant impact on the pricing of natural gas. These systems, by providing timely information to market participants. enables them to manage price

  6. Assessment of future natural gas vehicle concepts

    Science.gov (United States)

    Groten, B.; Arrigotti, S.

    1992-10-01

    The development of Natural Gas Vehicles is progressing rapidly under the stimulus of recent vehicle emission regulations. The development is following what can be viewed as a three step progression. In the first step, contemporary gasoline or diesel fueled automobiles are retrofitted with equipment enabling the vehicle to operate on either natural gas or standard liquid fuels. The second step is the development of vehicles which utilize traditional internal combustion engines that have been modified to operate exclusively on natural gas. These dedicated natural gas vehicles operate more efficiently and have lower emissions than the dual fueled vehicles. The third step is the redesigning, from the ground up, of a vehicle aimed at exploiting the advantages of natural gas as an automotive fuel while minimizing its disadvantages. The current report is aimed at identifying the R&D needs in various fuel storage and engine combinations which have potential for providing increased efficiency, reduced emissions, and reductions in vehicle weight and size. Fuel suppliers, automobile and engine manufacturers, many segments of the natural gas and other industries, and regulatory authorities will influence or be affected by the development of such a third generation vehicle, and it is recommended that GRI act to bring these groups together in the near future to begin, developing the focus on a 'designed-for-natural-gas' vehicle.

  7. Natural gas supply strategies for European energy market actors

    International Nuclear Information System (INIS)

    Girault, Vincent

    2007-06-01

    The liberalization of the European energy markets leads to the diversification of supplies. Hence, we analyse the natural gas importation problem in a power producer point of view. Upstream and downstream natural gas markets are concentrated. In this oligopoly context, our topic is to focus on strategies which modify natural gas sourcing price. This by studying the surplus sharing on the natural gas chain. A European firm can bundle gas and electricity outputs to increase its market share. Therefore, a bundling strategy of a power producer in competition with a natural gas reseller on the final European energy market increases upstream natural gas price. Bundling also acts as a raising rival cost strategy and reduces the rivals' profit. Profits opportunities incite natural gas producers to enter the final market. Vertical integration between a natural gas producer and a European gas reseller is a way, for producers, to catch end consumer surplus. Vertical integration results in the foreclosure of the power producer on the upstream natural gas market. To be active on the natural gas market, the power producer could supply bundles. But, this strategy reallocates the rent. The integrated firm on natural gas gets the rent of electricity market in expenses of the power producer. Then, a solution for the power producer is to supply gas and electricity as complements. Then, we consider a case where vertical integration is not allowed. Input price discrimination by a monopolist leads to a lower natural gas price for the actor which diversifies its supplying sources. Furthermore, a bundling strategy increases the gap between the price proposed to the firm which also diversify its output and the firm which is fully dependent from the producer to supply natural gas on final market. (author)

  8. Impact of hydrogen insertion on vehicular natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Strangueto, Karina Maretti; Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. of Mechanical Engineering. Energy Dept.], Email: karinakms@fem.unicamp.br

    2010-07-01

    This article aims to analyze the possibility of insertion of hydrogen in the vehicular natural gas or even the insertion of the hydrogen in the compressed natural gas used in Brazil. For the production of this hydrogen, the spilled turbinable energy from Itaipu would be harnessed. The calculation of production can be extended to other power plants which are close to the natural gas pipelines, where the hydrogen would be introduced. Then, it was analyzed the consumption of natural gas in vehicles in Brazil, the regulation of transportation, the sales of compressed natural gas to fuelling station, the specifications that the piped gas should follow to be sold, and how much hydrogen could be accepted in the mix. (author)

  9. Natural gas: energy, environment, development and externalities; Gas natural: energia, meio-ambiente, desenvolvimento e externalidades

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Eduardo F. de [Universidade Salvador (UNIFACS), BA (Brazil)

    2010-07-01

    Natural gas is a major source of non-renewable energy in the Brazilian energy matrix, and the noticeable increase in demand for this energy. This can be checked with the expansion of investments in Brazil and in the state of Bahia for the various sectors. The environmental benefits of natural gas highlight the advantages of using this input to the other fossil fuels. This paper discusses the availability of natural gas in Brazil and how it occurs its participation in the national energy matrix. This issue of the vulnerability of the market by the conflict between the growing demand from various industries and the need for order of thermal. It indicates scenarios and future prospects, and limiting factors for their growth. (author)

  10. Natural gas market review 2006 - towards a global gas market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market.

  11. Natural gas market review 2006 - towards a global gas market

    International Nuclear Information System (INIS)

    2006-01-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market

  12. LNG (liquefied natural gas): A necessary part in China's future energy infrastructure

    International Nuclear Information System (INIS)

    Lin, Wensheng; Gu, Anzhong; Zhang, Na

    2010-01-01

    This paper presents an overview of the LNG industry in China, covering LNG plants, receiving terminals, transportation, and applications. Small and medium scale LNG plants with different liquefaction processes have already been built or are being built. China's first two LNG receiving terminals have been put into operation in Guangdong and Fujian, another one is being built in Shanghai, and more are being planned. China is now able to manufacture LNG road tanks and containers. The construction of the first two LNG carriers has been completed. LNG satellite stations have been built, and LNG vehicles have been manufactured. LNG related regulations and standards are being established. The prospects of LNG in China are also discussed in this paper. Interesting topics such as small-scale liquefiers, LNG cold energy utilization, coal bed methane liquefaction, LNG plant on board (FPSO - floating production, storage, and off-loading), and LNG price are introduced and analyzed. To meet the increasing demand for natural gas, China needs to build about 10 large LNG receiving terminals, and to import LNG at the level of more than 20 bcm (billion cubic metre) per year by 2020. (author)

  13. Natural gas industry and its effects on the environment

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Kejeijan, B.

    2008-01-01

    The discoveries of natural gas have increased during the last ten years in Syria, These increases lead to the necessity of knowing the effects of this industry on the environment. Syrian Arabic Republic has been planning to convert most of the current electric of plants to natural gas in addition to future plans to export natural gas to the surrounding countries. In addition, the government is working on the use of LPG gas in automobiles. However, environmentally, the importance of natural gas is due to the followings: 1- Natural gas, when burned, emits lower quantities of greenhouse gases and criteria pollutants per unit of energy produced than to other fossil fuels. This occurs in part because natural gas is more fully combusted, and in part because natural gas contains fewer impurities than any other fossil fuel. 2-The amount of carbon dioxide produced from the combustion of natural gas is less than the amount produced from the combustion of other fossil fuels to produce the same amount of heat. One of the important uses of natural gas is in the transportation since natural gas does not produce during combustion toxic compounds which are usually produced during the combustion of diesel and benzene. therefore natural gas is seen and considered as an important fuel to address environmental concerns. (author)

  14. Natural gas market assessment ten years after deregulation

    International Nuclear Information System (INIS)

    1996-11-01

    Changes which have taken place in the Canadian natural gas market in the ten years since the gas market was de-regulated, were reviewed. A 1985 agreement created conditions for a competitive natural gas market. However, the National Energy Board ensured that the pipeline transmission sector of the gas industry would continue to be regulated because of its natural monopoly characteristics. Open non-discriminatory access was to be provided to all shippers on inter-provincial gas pipelines. One objective of this report was to provide the Board with the means of assuring itself that the market was operating in such a way that Canadian requirements for natural gas were being met at fair market prices. The report also provided a review of the major changes in the gas producing and transmission sector, and reviewed developments in gas markets and sales practices. The overall assessment was that the natural gas industry was efficient and responsive to the demands of the marketplace. 5 tabs., 30 figs

  15. Natural gas in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    de Voogd, J G

    1965-08-01

    In 1948, the first natural gas was found in Netherlands. Since 1951 it has been supplied by gas undertakings. Originally reserves were limited (c. 350 milliard ftU3D of dry gas in the NE. and c. 175 milliard ftU3D, mostly wet gas, in the SW). These finds have been completely overshadowed by the huge deposits discovered in 1960 in the province of Groningen near the village of Slochteren, these reserves being estimated now at 38.5 billion ftU3D at least. This gas is not of high cal val (894 Btu/ftU3D), but contains only traces of sulfur. The concession is being developed for a partnership formed by Shell (30%), Standard Oil Company of new Jersey (Esso, 30%), and ''Staatsmijnen,'' the Government owned Netherlands State Mining Industry (40%). The natural gas is destined, first, for domestic use, especially, for space heating, and secondly, for industrial purpose, after which important quantities will be available for export.

  16. The petroleum, natural gas and bio fuel transportation; O transporte de petroleo, gas natural e biocombustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Diego Varela; Campos, Carlos Hebert

    2011-01-15

    The paper expose on the activity of petroleum, natural gas and bio fuels transportation, outlining the transportation means used by the petroleum industry. After that, analyses the importance and the economic relevance of the Transpetro. Yet, proceeds an examination of the transportation activity under a constitutional optics, based on the EC 9/95; a legal optic, from the Petroleum Law (Law 9478/97) and some other legal documents related to the theme. Finally, presents the importance that the Law of Natural Gas (Law 11909/09) brought for that activity, by making possible that the natural gas transportation can also be effectuated through the Concession.

  17. Natural gas vehicles in Europe: Commercialization prospects

    International Nuclear Information System (INIS)

    Vettori, P.; Merigo, F.

    1992-01-01

    This paper tables numerous statistical data to evidence that whereas the use of natural gas as an automotive fuel for private and public vehicles is growing in Asia, North and South America, in Europe this trend is currently being followed only in Italy. However, with the relatively recent expansion of the European Communities' natural gas distribution network, coupled with growing interest in this fuel as a cost effective and environmentally compatible alternative to petroleum, the demand for natural gas automotive fuels is expected to increase even in this continent. The trucking industry in particular should derive significant benefits from the switch to natural gas

  18. Price discovery in European natural gas markets

    International Nuclear Information System (INIS)

    Schultz, Emma; Swieringa, John

    2013-01-01

    We provide the first high-frequency investigation of price discovery within the physical and financial layers of Europe's natural gas markets. Testing not only looks at short-term return dynamics, but also considers each security's contribution to price equilibrium in the longer-term. Results show that UK natural gas futures traded on the Intercontinental Exchange display greater price discovery than physical trading at various hubs throughout Europe. - Highlights: • We use intraday data to gauge price discovery in European natural gas markets. • We explore short and long-term dynamics in physical and financial market layers. • Results show ICE's UK natural gas futures are the main venue for price discovery

  19. Front Range Infrastructure Resources Project: water-resources activities

    Science.gov (United States)

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  20. Natural gas : the green fuel of the future

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Harbinson, S.W. [Halliburton Energy Services, Calgary, AB (Canada); Tertzakian, P. [ARC Financial, Calgary, AB (Canada); Wall, T.; Wilkinson, J. [Apache Canada Ltd., Calgary, AB (Canada); Graham, M. [EnCana Corp., Calgary, AB (Canada); Young, P.J. [DYAD Consulting, Cambridge, MA (United States)

    2010-07-01

    Studies have shown that the demand for crude oil exceeds supply and other energy sources are needed to met the shortfall. Natural gas and coal are the only 2 current energy sources that have the global capacity to, by themselves, address increased energy demand in a timely manner. Both these resources have been used primarily for power generation and heating. This paper discussed the transition that will likely occur in which natural gas and coal will be used increasingly as transportation fuels. It presented data comparing the environmental impact of using methane versus coal and proposed natural gas as the future green fuel. A strengths, weaknesses, opportunities and threats (SWOT) analysis was conducted to obtain a better understanding of the current Canadian natural gas market. The strengths include recent discoveries in the Horn River Basin and the Montney plays in British Columbia which are expected to triple natural gas production within the next decade. The weaknesses include an oversupply of gas compared to current demand; gas prices are currently in a range that are barely economic for many shale plays; and Canadian gas is disadvantaged for sales in the United States by additional pipeline transportation costs. The opportunities include global export opportunities of liquefied natural gas (LNG) through the proposed Kitimat LNG export facility and others off the west coast of Canada. The threat facing natural gas development is the strong competition for market share with coal. However, emissions data and energy efficiencies provide evidence to support the choice to use natural gas. 5 refs., 2 tabs., 26 figs.

  1. Natural gas : the green fuel of the future

    International Nuclear Information System (INIS)

    Taylor, R.S.; Harbinson, S.W.; Tertzakian, P.; Wall, T.; Wilkinson, J.; Graham, M.; Young, P.J.

    2010-01-01

    Studies have shown that the demand for crude oil exceeds supply and other energy sources are needed to met the shortfall. Natural gas and coal are the only 2 current energy sources that have the global capacity to, by themselves, address increased energy demand in a timely manner. Both these resources have been used primarily for power generation and heating. This paper discussed the transition that will likely occur in which natural gas and coal will be used increasingly as transportation fuels. It presented data comparing the environmental impact of using methane versus coal and proposed natural gas as the future green fuel. A strengths, weaknesses, opportunities and threats (SWOT) analysis was conducted to obtain a better understanding of the current Canadian natural gas market. The strengths include recent discoveries in the Horn River Basin and the Montney plays in British Columbia which are expected to triple natural gas production within the next decade. The weaknesses include an oversupply of gas compared to current demand; gas prices are currently in a range that are barely economic for many shale plays; and Canadian gas is disadvantaged for sales in the United States by additional pipeline transportation costs. The opportunities include global export opportunities of liquefied natural gas (LNG) through the proposed Kitimat LNG export facility and others off the west coast of Canada. The threat facing natural gas development is the strong competition for market share with coal. However, emissions data and energy efficiencies provide evidence to support the choice to use natural gas. 5 refs., 2 tabs., 26 figs.

  2. Sustainability and energy security : the squeeze on natural gas

    International Nuclear Information System (INIS)

    Hoover, G.; Howatson, A.; Parmenter, R.

    2004-01-01

    This paper outlines the impact of environmental policy on natural gas demand and describes alternative energy sources such as wind, solar, biomass and clean coal that can increase energy supplies. This briefing also establishes the short-, medium-, and long-term consequences of current natural gas realities. It also outlines the driving forces in Canada and the United States behind the demand for natural gas. The impact of policy formation and the phase-out of coal in Ontario are addressed along with natural gas supply prospects and the prospects and obstacles for riskier incremental supplies such as liquefied natural gas, natural gas from coal, and frontier natural gas. It was concluded that strong demand and tight supply are the factors that have driven up natural gas prices. Continued high natural gas prices in the short term will likely motivate conservation strategies at the personal household level as well as in the business and industrial sectors. Although wind power is seen as a clean, competitively prices alternative to natural gas-fired electricity generation, its contribution is not expected to change the supply and demand equilibrium. Initiatives such as the Mackenzie Valley Pipeline, the Alaskan Pipeline and drilling in the Atlantic may help balance natural gas supply and demand in the mid-term. 44 refs., 2 tabs., 7 figs

  3. Outlook for natural gas liquids sales in North America

    International Nuclear Information System (INIS)

    Anderson, A.B.

    1991-01-01

    The outlook for natural gas liquids (NGL) markets in North America is forecast, with a focus on NGL sourced from Canada. The supply of NGL from Canada is first discussed, showing that Canadian NGL production is typically a function of natural gas production. Over the period ending in the year 2001, Canadian propane and butanes production is expected to peak at ca 275,000 bbl/d and ethane at ca 175,000 bbl/d. The processing, transport, and storage infrastructure for NGL in Canada has been regarded as being matured. A historical overview of the NGL market has shown large swings in demand, linked to such factors as crude oil prices and the drop in butanes demand caused by changes in gasoline specifications in the USA. On the other hand, oxygenates required for reformulated gasolines need butanes as a raw material for their manufacture, signifying a new market for butanes when such gasolines are mandated in clean air programs. Prospects for propane are good in the transportation market because of its clean burning properties. Prospects for expanding ethylene production are favorable to NGL producers; major Canadian petrochemical producers are located close to the source of ethane and petrochemical demand for ethane is forecast to increase by 40,000 bbl/d due to a new plant coming on line and to larger exports to the USA. Results of some forecasts of Canadian propane, butane, and ethane supply and demand are included. 8 figs

  4. Improved of Natural Gas Storage with Adsorbed Natural Gas (ANG) Technology Using Activated Carbon from Plastic Waste Polyethylene Terepthalate

    Science.gov (United States)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.

    2017-07-01

    Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.

  5. Natural gas industry at the 2020 prospects

    International Nuclear Information System (INIS)

    Chabrelie, M.F.

    2006-01-01

    Natural gas was for a long time reserved to the most noble uses in the industry. However, natural gas, which get a priori no captive market, has progressively imposed itself in all possible energy uses. The gas resources and abundant enough to represent the main contribution of the energy industry of the 21 century. With intrinsic qualities which make it an energy less polluting than the other fossil fuels, natural gas is the commercial energy source with the highest potential growth in the energy status of the future. (J.S.)

  6. Natural-gas world reserves and world resources

    International Nuclear Information System (INIS)

    Eickhoff, G.; Rempel, H.

    1995-01-01

    Natural gas is extracted in nearly 80 countries, 12 of which have a share of four fifths in the world extraction and 15 of which have a share of four fifths in the world consumption. The natural-gas world reserves can cover the present annual demand for years beyond the middle of the coming century. According to current assessments, the resources which presently cannot be extracted economically, the expected additional resources, and the extractable share in the potential of unconventional natural gas amount to more than ten times the reliable world reserves of natural gas. From the geological and technical points of view the world natural-gas extraction will not decrease or cease in the near future. However, the more expensive development of unconventional deposits which are located far away from the end-user will have to be preferred over the medium term on account of the exhaustion of the known deposits whose exploitation is comparatively cheap. (orig./UA) [de

  7. Does Increased Extraction of Natural Gas Reduce Carbon Emissions?

    International Nuclear Information System (INIS)

    Aune, F.R.; Golombek, R.; Kittelsen, S.A. C.

    2004-01-01

    Without an international climate agreement, extraction of more natural gas could reduce emissions of CO2 as more 'clean' natural gas may drive out ''dirty'' coal and oil. Using a computable equilibrium model for the Western European electricity and natural gas markets, we examine whether increased extraction of natural gas in Norway reduces global emissions of CO2. We find that both in the short run and in the long run total emissions are reduced if the additional quantity of natural gas is used in gas power production in Norway. If instead the additional quantity is exported directly, total emissions increase both in the short run and in the long run. However, if modest CO2-taxes are imposed, increased extraction of natural gas will reduce CO2 emissions also when the additional natural gas is exported directed

  8. World statistics on natural gas reserves, production and utilization

    International Nuclear Information System (INIS)

    Raikaslehto, S.

    2001-01-01

    By reviewing the statistics of BP Amoco on natural gas reserves, production and usage, it is easy to see that Russia and USA, both being large natural gas producers, differ significantly from each other. The natural gas reserves of USA are 6th largest in the world, simultaneously the natural gas consumption and import are largest in the world. About one third of the known natural gas reserves of the world are in Russia. The known natural gas reserves of both USA and Canada have decreases, but they have potential gas reserves left. Known natural gas reserves of the USA have been calculated to be sufficient for 9 years consumption at present usage and those of Canada for 11 years. The reserves of Algeria correspond to the usage of 55 years, and the Russian reserves for are about 83 years. Annual production figures of both Russia and the USA are nearly the same. Russia is the largest exporter (125.5 billion m 3 ) of natural gas and the USA the largest importer (96 billion m 3 ). The natural gas reserves of the largest European producers, the Netherlands and Norway have been estimated to be sufficient for use of about 20 years, but those of Great Britain only for about 10 years. The annual production of Russia has varied in the 1990s between nearly 600 billion m 3 and present 550 billion m 3 , the minimum being in 1997 only about 532 billion m 3 . Ten largest natural gas consumers use 67% of the natural gas consumed annually in the world. USA consumes about 27% of the total natural gas produced in the world, the amount of Russia being 364 billion m 3 (16%). Other large natural gas consumers are Great Britain, Germany, Japan, Ukraine, Canada, Italy, Iran and Uzbekistan. The share of these countries of the total consumption varied in between 2-4%. Only Japan has no natural gas production of its own. The foreign trade between Japan and Indonesia is trade on LNG. On the other hand the natural gas consumption of the world's 10th largest producer Norway is nearly zero, so

  9. German natural gas market and the international supply situation. Pt. 1. Supply market for natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, U [Deutsches Inst. fuer Wirtschaftsforschung, Berlin (Germany, F.R.). Abt. Bergbau und Energie

    1978-01-01

    Since the oil crisis the buyers's market started to change to a seller's market as a result of the worldwide rising demand for natural gas. This development will be amplified with the increasing significance and volume of LNG trade. This depends upon the availability of handling and tanker capacities. It is considered that technical solutions are available. The internationalisation of the world natural gas market imposes changes in terms of trade for the Federal Republic of Germany. In the sixties, terms of trade made under sales considerations presented no problems. But gas buyers today are forced to accept sellers' terms looking for the buyer offering the highest prices and other sales advantages. The world gas market has assumed the features of a polypolistic market. The security of supply is not a matter of adequate reserves, but almost entirely that of terms of contract on which the natural gas supply can be ensured. It is thereby decisive, whether it will be possible in future to procure the required amount of gas at such terms that it can be sold on the German energy market at competetive rates.

  10. Constraining Methane Emissions from Natural Gas Production in Northeastern Pennsylvania Using Aircraft Observations and Mesoscale Modeling

    Science.gov (United States)

    Barkley, Z.; Davis, K.; Lauvaux, T.; Miles, N.; Richardson, S.; Martins, D. K.; Deng, A.; Cao, Y.; Sweeney, C.; Karion, A.; Smith, M. L.; Kort, E. A.; Schwietzke, S.

    2015-12-01

    Leaks in natural gas infrastructure release methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated fugitive emission rate associated with the production phase varies greatly between studies, hindering our understanding of the natural gas energy efficiency. This study presents a new application of inverse methodology for estimating regional fugitive emission rates from natural gas production. Methane observations across the Marcellus region in northeastern Pennsylvania were obtained during a three week flight campaign in May 2015 performed by a team from the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division and the University of Michigan. In addition to these data, CH4 observations were obtained from automobile campaigns during various periods from 2013-2015. An inventory of CH4 emissions was then created for various sources in Pennsylvania, including coalmines, enteric fermentation, industry, waste management, and unconventional and conventional wells. As a first-guess emission rate for natural gas activity, a leakage rate equal to 2% of the natural gas production was emitted at the locations of unconventional wells across PA. These emission rates were coupled to the Weather Research and Forecasting model with the chemistry module (WRF-Chem) and atmospheric CH4 concentration fields at 1km resolution were generated. Projected atmospheric enhancements from WRF-Chem were compared to observations, and the emission rate from unconventional wells was adjusted to minimize errors between observations and simulation. We show that the modeled CH4 plume structures match observed plumes downwind of unconventional wells, providing confidence in the methodology. In all cases, the fugitive emission rate was found to be lower than our first guess. In this initial emission configuration, each well has been assigned the same fugitive emission rate, which can potentially impair our ability to match the observed spatial variability

  11. Mexican demand for US natural gas

    International Nuclear Information System (INIS)

    Kanter, M.A.; Kier, P.H.

    1993-09-01

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000

  12. Mexican demand for US natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kanter, M.A.; Kier, P.H.

    1993-09-01

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000.

  13. Natural gas developments in Latin America

    International Nuclear Information System (INIS)

    Faith, P.L.

    1996-01-01

    Natural gas opportunities in Latin America are discussed with reference to the Bolivia to Brazil Gas Pipeline Project. This fully integrated natural gas project extends from reserves development to market consumption and involves cooperation between countries and between the public and private sector. The project's success will depend, it is argued on the thorough integration and cooperation of all stages from reserve exploration, through pipeline construction, and distribution to power generation. (UK)

  14. Green future of natural gas

    International Nuclear Information System (INIS)

    Mallardi, P.

    1991-01-01

    A sectoral analysis of current trends in the use of natural gas in Italy shows that this energy source, now estimated to be covering 23.7% of total Italian national energy requirements, is fulfilling its role as an environmentally compatible, low cost and readily available energy alternative well suited to alleviate Italy's worrisome over-dependence on foreign supplied oil and reduce the severity of the urban air pollution problem (it being a low nitrogen oxide and carbon dioxide emitting, non-sulfur containing fuel). This paper expands this theme by giving a complete panorama of the natural gas market in Italy, sector by sector, and by coupling projections on the expected increased use of this energy source (as mandated by the National Energy Plan) with estimates of consequent reductions in air pollution based on a comparative analysis of fuel oil versus natural gas combustion

  15. Natural gas annual 1992: Supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  16. Evaluation And Analysis of Natural Gas Rates

    International Nuclear Information System (INIS)

    Taheri, Ali Akbar

    1999-01-01

    Natural gas is considered as a preferred fuel and its utility is growing every day in the country (Iran). The usage of natural gas has increased from 3.5 to 44 billion cubic meters from 1980 to 1997, respectively. Currently, 4 million residences and most of the industrial sector are being provided with the pipelined natural gas. Because of the tremendous increase in consumption, it is necessary to give the needed considerations to natural gas rate structure. The objective of the paper is to 1.Evaluate the fundamentals and principal methods used for rate structures. 2. Identification of effective components. 3. Analyze the current rates including connection fees and other customer charges

  17. Natural gas: A bridge to the future?

    International Nuclear Information System (INIS)

    Andriesse, C.D.

    1991-01-01

    Natural gas is the cleanest fossil fuel, but never got the chance to develop its use. The reason for that is the notion that the natural gas supplies would last for only some decennia. That is only right for the conventional gas supplies. In ice crystals, some hundreds of meters deep in the oceans, enormous methane reserves, many times larger than the conventional supplies, are enclosed in so-called clathrates. From the literature it appears that other sources of natural gas or methane and new options to use these energy sources are considered or to be developed. Attention is paid to the methane reserves in geologic formations, methane produced by microbes, and methane in clathrates. It is estimated that the methane reserve is 8 x 10 2 3 Joule. By using natural gas as a fuel CO 2 emission will be reduced considerably. Methane emission however must be limited, because of the reducing effect of methane on the oxygen production in the troposphere. The large reserves of methane also offer good prospects for the production of hydrogen, large-scale applications to generate electric power or the use of CH 4 as a fuel in the transportation sector. New techniques and economic, social and institutional factors determine how fast the use of natural gas will increase. It is expected that 0.54 Tm 3 of natural gas will be needed for the twelve countries of the European Community. Main users in the year 2030 will be the electric power industry (39%), industry (26%), households and trade (18%), and transportation sector and supply (15%). In 2030 63% of natural gas has to be imported. 3 refs

  18. Natural gas conversion new route using halogen derivatives; Nova rota de conversao de gas natural utilizando derivados halogenados

    Energy Technology Data Exchange (ETDEWEB)

    Noronha, Leandro A.; Mota, Claudio J.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Centro de Tecnologia]. E-mail: noronha@iq.ufrj.br; Sousa Aguiar, E. Falabella [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-07-01

    Natural gas will have important position in the next decades. Nowadays, there is high demand for petrochemicals products, such as ethene and propene. With the nafta price variation, the development of alternative routes from natural gas will be stimulate, as occur in Rio de Janeiro. Between the main technologies for the natural gas use, arise the gas to liquids (GTL) routes for the conversion to hydrocarbons. Therefore, will be studied the transformation of methyl chloride to light olefins (ethene and propene) and other hydrocarbons in zeolitic catalysts. All of these reactions will be simulate occurring in the zeolitic surface, using a cluster that represents very much the catalyst structure. (author)

  19. Green gas. Gas of natural gas quality from biomass. Update of the 2004 study

    International Nuclear Information System (INIS)

    Welink, Jan-Henk; Dumont, M.; Kwant, K.

    2007-01-01

    In 2004 a study was published on green gas. Green gas is defined as a gaseous energy carrier from renewable biomass with a similar quality as natural gas. As a result of new developments in the field of co-digestion/fermentation the Dutch Ministry of Economic Affairs asked it's agency SenterNovem to update the 2004 study. The aim of the update is (1) to gain insight into operational aspects of green gas projects, e.g. reliability, efficiency and maintenance aspects; (2) stimulate the production of green gas, taking into account the economics of green gas projects, calculation of the financial gap of green gas production, efficient use of biogas (conversion to electricity or directly input into the natural gas distribution systems, and aspects with regard to commercialization and the market; and (3) the potential of green gas [nl

  20. Natural gas - bridge to a clean energy future

    International Nuclear Information System (INIS)

    Doelman, J.

    1991-01-01

    Per unit of useful energy natural gas gives the lowest environmental pollution of all fossil fuels. This is due to its low carbon content, the absence of sulphur compounds, and the fact that natural gas can, rather easily, be burnt completely in such a way that also the NO x emission is acceptably low. Although natural gas has already a good record as an efficient and clean fuel large improvements are still possible, but this requires more R+D and time. The presently known natural gas world reserves are high enough to go for a substantially higher share of gas in the energy package. E.g. replacing coal by natural gas will give large environmental improvements. Furthermore, direct gas use is very often the most efficient and cleanest option, also when electricity is an alternative. To develop and connect the known large reserves to the market enormous amounts of money are required. The political and economical situation should make these investments possible and attractive. The ideas first expressed by the Dutch prime minister, now incorporated in the Energy Charter, have been developed to that end. Special attention should be given to the development of small gas fields as is e.g. being done in The Netherlands, which has improved the local gas reserves situation impressively. As a first major step to a clean future the potential of natural gas should be explored and put to work worldwide. Its potential as an important diversified source of energy is underestimated. Amongst others by funding more natural gas R+D natural gas should develop a keyrole in the energy scene of the next 3-5 decades.(author) 3 figs., 8 tabs., 3 refs