WorldWideScience

Sample records for natural bond orbital

  1. Discovering Chemistry With Natural Bond Orbitals

    CERN Document Server

    Weinhold, Frank

    2012-01-01

    This book explores chemical bonds, their intrinsic energies, and the corresponding dissociation energies which are relevant in reactivity problems. It offers the first book on conceptual quantum chemistry, a key area for understanding chemical principles and predicting chemical properties. It presents NBO mathematical algorithms embedded in a well-tested and widely used computer program (currently, NBO 5.9). While encouraging a "look under the hood" (Appendix A), this book mainly enables students to gain proficiency in using the NBO program to re-express complex wavefunctions in terms of intui

  2. The Bond Order of C2 from a Strictly N-Representable Natural Orbital Energy Functional Perspective.

    Science.gov (United States)

    Piris, Mario; Lopez, Xabier; Ugalde, Jesus M

    2016-03-14

    The bond order of the ground electronic state of the carbon dimer has been analyzed in the light of natural orbital functional theory calculations carried out with an approximate, albeit strictly N-representable, energy functional. Three distinct solutions have been found from the Euler equations of the minimization of the energy functional with respect to the natural orbitals and their occupation numbers, which expand upon increasing values of the internuclear coordinate. In the close vicinity of the minimum energy region, two of the solutions compete around a discontinuity point. The former, corresponding to the absolute minimum energy, features two valence natural orbitals of each of the following symmetries, σ, σ*, π and π*, and has three bonding interactions and one antibonding interaction, which is very suggestive of a bond order large than two but smaller than three. The latter, features one σ-σ* linked pair of natural orbitals and three degenerate pseudo-bonding like orbitals, paired each with one triply degenerate pseudo-antibonding orbital, which points to a bond order larger than three. When correlation effects, other than Hartree-Fock for example, between the paired natural orbitals are accounted for, this second solution vanishes yielding a smooth continuous dissociation curve. Comparison of the vibrational energies and electron ionization energies, calculated on this curve, with their corresponding experimental marks, lend further support to a bond order for C2 intermediate between acetylene and ethylene.

  3. Natural Bond Orbital (NBO) Population Analysis, First Order Hyperpolarizabilities and Thermodynamic Properties of Cyclohexanone.

    Science.gov (United States)

    Gangadharan, Rubarani P; Krishnan, S Sampath

    2015-06-01

    The molecular structure of cyclohexanone was calculated by the B3LYP density functional model with 6-31G(d, p) and 6-311++G(d,p) basis set by Gaussian program. The results from natural bond orbital (NBO) analysis have been analyzed in terms of the hybridization of atoms and the electronic structure of the title molecule. The electron density based local reactivity descriptors such as Fukui functions were calculated. The dipole moment (μ) and polarizability (a), anisotropy polarizability (Δα) and first order hyperpolarizability (β(tot)) of the molecule have been reported. Thermodynamic properties of the title compound were calculated at different temperatures.

  4. Natural Bond Orbital (NBO) Population Analysis,First Order Hyperpolarizabilities and Thermodynamic Properties of Cyclohexanone

    Institute of Scientific and Technical Information of China (English)

    Rubarani P Gangadharan; S Sampat H Krishnan

    2015-01-01

    The molecular structure of cyclohexanone was calculated by the B3LYP density functional model with 6‐31G(d ,p) and 6‐311+ +G(d ,p) basis set by Gaussian program .The results from natural bond orbital (NBO) analysis have been analyzed in terms of the hybridization of atoms and the electronic structure of the ti‐tle molecule .The electron density based local reactivity descriptors such as Fukui functions were calculated . The dipole moment (μ) and polarizability (α) ,anisotropy polarizability (Δα) and first order hyperpolarizability (βtot ) of the molecule have been reported .Thermodynamic properties of the title compound were calculated at different temperatures .

  5. Density functional theory, natural bond orbital and quantum theory of atoms in molecule analyses on the hydrogen bonding interactions in tryptophan-water complexes

    Indian Academy of Sciences (India)

    Xiqian Niu; Zhengguo Huang; Lingling Ma; Tingting Shen; Lingfei Guo

    2013-07-01

    The tryptophan-water (Trp-H2O) complexes formed by hydrogen bonding interactions were investigated at the B97XD/6-311++G(d,p) level. Five Trp-H2O complexes possessing various types of hydrogen bonds (H-bonds) were characterized by geometries, energies, vibrational frequencies. The nature of the H-bonds were characterized by the natural bond orbital (NBO) and the quantum theory of atoms in molecule (QTAIM) analyses as well. The intramolecular H-bond formed between the amino and carboxyl oxygen atom of tryptophan was retained in most of the complexes, and the cooperativity between the intra and intermolecular H-bonds exist in some complexes. The intramolecular H-bond and some intermolecular H-bonds are strong and have partial covalent character. The H-bonds formed between carboxyl and oxygen/nitrogen atoms are stronger than other H-bonds. The H-bonds involving methylene of tryptophan as H-donor are weak H-bonds. For all complexes,ele and ex makes major contributions to the total interaction energy (MP2), while disp is the smallest component of the interaction energy. Both hydrogen bonding interaction and structural deformation play important roles in the relative stabilities of the complexes. Regardless of strong H-bonds, the stabilities of some complexes are weakened by the serious structural deformations.

  6. Molecular structure, vibrational spectroscopic studies and natural bond orbital analysis of 7-amino-4-trifluoromethyl coumarin

    Indian Academy of Sciences (India)

    M K Subramanian; P M Anbarasan; S Manimegalai

    2010-05-01

    Quantum mechanical calculations of energies, geometries and vibrational wave numbers of 7-amino-4-trifluoromethyl coumarin (7A4TFMC) were carried out using Hartree–Fock (HF) and density functional theory (DFT) using hybrid functional BLYP and B3LYP with 6-31G(d,p) as basis set. The optimized geometrical parameters obtained by HF and DFT calculations are in good agreement with the experimental X-ray data. The best method to reproduce the experimental wave numbers is B3LYP method with the 6-31G(d,p) basis set. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the infrared spectra of 7A4TFMC was also reported. The entropy of the title compound was also performed at HF using the hybrid functional BLYP and B3LYP with 6-31 G(d,p) as basis set levels of theory. Natural bond orbital (NBO) analysis of the title molecule is also carried out. The theoretical spectrogram for FTIR spectra of the title molecule has been constructed.

  7. Theoretical study on β-aminoacroleine; Density functional theory, atoms in molecules theory and natural bond orbitals studies

    Indian Academy of Sciences (India)

    Heidar Raissi; Mehdi Yoosefian; Effat Moshfeghi; Farzaneh Farzad

    2012-05-01

    The characteristics of the intramolecular hydrogen bonding for a series of 19 different derivatives of -aminoacroleine have been systematically analysed at the B3LYP/6-31G∗∗ level of theory. The topological properties of the electron density distributions for N-H$\\cdots$O intramolecular bridges have been analysed by the Bader theory of atoms in molecules. The electron density () and Laplacian (∇2 ρ) properties at critical points of the relevant bonds, estimated by AIM calculations, showed that N-H$\\cdots$O have low and positive character (∇2 ρ > 0), consistent with electrostatic character of the hydrogen bond. The vibrational study of the hydrogen bonded systems showed negative (red) shifts for the (N−H) stretching mode. The -electron delocalization parameter () as a geometrical indicator of a local aromaticity and the geometry-based HOMA have also been calculated. Furthermore, the analysis of hydrogen bond in this molecule and its derivatives by natural bond orbital (NBO) methods support the DFT results. The results of AIM and NBO analysis as well as (N−H) were further used for estimation of the hydrogen bonding interactions and the forces driving their formation. The various correlations were found between geometrical, energetic and topological parameters. The substituent effect was also analysed and it was found that the strongest hydrogen bonds exist for N+(CH3)3 and Cl substituents while the weakest ones for COOCH3.

  8. Accurate structure and dynamics of the metal-site of paramagnetic metalloproteins from NMR parameters using natural bond orbitals.

    Science.gov (United States)

    Hansen, D Flemming; Westler, William M; Kunze, Micha B A; Markley, John L; Weinhold, Frank; Led, Jens J

    2012-03-14

    A natural bond orbital (NBO) analysis of unpaired electron spin density in metalloproteins is presented, which allows a fast and robust calculation of paramagnetic NMR parameters. Approximately 90% of the unpaired electron spin density occupies metal-ligand NBOs, allowing the majority of the density to be modeled by only a few NBOs that reflect the chemical bonding environment. We show that the paramagnetic relaxation rate of protons can be calculated accurately using only the metal-ligand NBOs and that these rates are in good agreement with corresponding rates measured experimentally. This holds, in particular, for protons of ligand residues where the point-dipole approximation breaks down. To describe the paramagnetic relaxation of heavy nuclei, also the electron spin density in the local orbitals must be taken into account. Geometric distance restraints for (15)N can be derived from the paramagnetic relaxation enhancement and the Fermi contact shift when local NBOs are included in the analysis. Thus, the NBO approach allows us to include experimental paramagnetic NMR parameters of (15)N nuclei as restraints in a structure optimization protocol. We performed a molecular dynamics simulation and structure determination of oxidized rubredoxin using the experimentally obtained paramagnetic NMR parameters of (15)N. The corresponding structures obtained are in good agreement with the crystal structure of rubredoxin. Thus, the NBO approach allows an accurate description of the geometric structure and the dynamics of metalloproteins, when NMR parameters are available of nuclei in the immediate vicinity of the metal-site.

  9. Electron density characteristics and charge transfer effect of hydrogen bond O-H···Pt(II): atoms in molecules study and natural bond orbital analysis

    Science.gov (United States)

    Zhang, Guiqiu; Li, Xiwen; Li, Yan; Chen, Dezhan

    2013-11-01

    In this report, we extended the works of Rizzato et al. [Angew. Chem. Int. Ed. 49, 7440 (2010)] on the nature of O-H...Pt hydrogen bond in trans-[PtCl2(NH3)(N-glycine)].H2O(1.H2O) complex, by computational study of O-H...Pt interaction in [NBu4][Pt(C6F5)3(8-hydroxyquinaldine)], with emphasis on charge transfer effect in this interaction of platinum(II) and hydrogen atom. According to the crystallographic geometry reported by José María Casas et al., [NBu4][Pt(C6F5)3(8-hydroxyquinaldine)] possesses one O-H...Pt hydrogen bridging interaction, similar to the case in trans-[PtCl2(NH3)(N-glycine)].H2O(1.H2O) complex. On the basis of topological criteria of electron density, we characterised this O-H...Pt interaction. Charge transferred between platinum(II) and σ*O-H orbital in this complex was calculated by using NBO method. The stabilised energy associated to charge transfer was estimated using a direct proportionality, that is 2-3 eV per electron transferred. Charge transfer effects in O-H...Pt hydrogen bonds were studied for these two complexes. Our results indicate that the interaction of O-H...Pt is closed-shell in nature with significant charge transfer, and that charge transfer effect is not negligible in the interaction of O-H...Pt. The second conclusion is different from the result of Rizzato et al.

  10. Physio-chemical Investigation and Natural Bond Orbital Analysis of the Most Actives Ingredient of Fennel Plant

    Directory of Open Access Journals (Sweden)

    Mansoureh Pishehabadi

    2016-10-01

    Full Text Available In this study, physio-chemical properties of effective compounds of fennel plant were investigated through using computational chemistry. To do this, trans-anethole, estragole, 3'- hydroxyanethole and 4- methoxycinnamyl alcohol compounds that the most active ingredient combinations make up the fennel plant have been carried out at three different levels of HF, BLYP and B3LYP theories using 6-31G*, 6-311G*, 6-311G**, 6-311+G and 6-311++G basis sets. Additionally, ab initio calculation in the gas phase have been studied and physio-chemical parameters including Gibbs free energy, thermal energy, enthalpy, entropy, and thermal capacity in constant volume (CV of these compounds have been computed as well as Gibbs free energy in polar solvents such as ethanol and methanol and water. Based on these obtained data the structural stabilities of these flavorful compounds have been discussed. However, in these herbal effective compounds presented here the natural bond orbital (NBO analysis has been performed which seemed quite informative to show some important atomic and structural features. The result lead to the issue that all those compounds in polar solvents, particularly alcoholic solvents solved and the compounds can be used sufficiently to extract the active ingredients of herb fennel.

  11. Molecular structure, Normal Coordinate Analysis, harmonic vibrational frequencies, Natural Bond Orbital, TD-DFT calculations and biological activity analysis of antioxidant drug 7-hydroxycoumarin

    Science.gov (United States)

    Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.

    2013-01-01

    In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.

  12. Charge transfer and polarization for chloride ions bound in ClC transport proteins: natural bond orbital and energy decomposition analyses.

    Science.gov (United States)

    Church, Jonathan; Pezeshki, Soroosh; Davis, Christal; Lin, Hai

    2013-12-19

    ClC transport proteins show a distinct "broken-helix" architecture, in which certain α-helices are oriented with their N-terminal ends pointed toward the binding sites where the chloride ions are held extensively by the backbone amide nitrogen atoms from the helices. To understand the effectiveness of such binding structures, we carried out natural bond orbital analysis and energy decomposition analysis employing truncated active-site model systems for the bound chloride ions along the translocation pore of the EcClC proteins. Our results indicated that the chloride ions are stabilized in such a binding environment by electrostatic, polarization, and charge-transfer interactions with the backbone and a few side chains. Up to ~25% of the formal charges of the chloride ions were found smeared out to the surroundings primarily via charge transfer from the chloride's lone pair n(Cl) orbitals to the protein's antibonding σ*(N-H) or σ*(O-H) orbitals; those σ* orbitals are localized at the polar N-H and O-H bonds in the chloride's first solvation shells formed by the backbone amide groups and the side chains of residues Ser107, Arg147, Glu148, and Tyr445. Polarizations by the chloride ions were dominated by the redistribution of charge densities among the π orbitals and lone pair orbitals of the protein atoms, in particular the atoms of the backbone peptide links and of the side chains of Arg147, Glu148, and Tyr445. The substantial amounts of electron density involved in charge transfer and in polarization were consistent with the large energetic contributions by the two processes revealed by the energy decomposition analysis. The significant polarization and charge-transfer effects may have impacts on the mechanisms and dynamics of the chloride transport by the ClC proteins.

  13. A natural orbital analysis of the long range behavior of chemical bonding and van der Waals interaction in singlet H2: the issue of zero natural orbital occupation numbers.

    Science.gov (United States)

    Sheng, X W; Mentel, Ł M; Gritsenko, O V; Baerends, E J

    2013-04-28

    This paper gives a natural orbital (NO) based analysis of the van der Waals interaction in (singlet) H2 at long distance. The van der Waals interaction, even if not leading to a distinct van der Waals well, affects the shape of the interaction potential in the van der Waals distance range of 5-9 bohrs and can be clearly distinguished from chemical bonding effects. In the NO basis the van der Waals interaction can be quantitatively covered with, apart from the ground state configurations (1σ(g))(2) and (1σ(u))(2), just the 4 configurations (2σ(g))(2) and (2σ(u))(2), and (1π(u))(2) and (1π(g))(2). The physics of the dispersion interaction requires and explains the peculiar relatively large positive CI coefficients of the doubly excited electron configurations (2σ(u))(2) and (1π(g))(2) (the occupancy amplitudes of the 2σ(u) and 1π(gx, y) NOs) in the distance range 5-9 bohrs, which have been observed before by Cioslowski and Pernal [Chem. Phys. Lett. 430, 188 (2006)]. We show that such positive occupancy amplitudes do not necessarily lead to the existence of zero occupation numbers at some H-H distances.

  14. Molecular docking, TG/DTA, molecular structure, harmonic vibrational frequencies, natural bond orbital and TD-DFT analysis of diphenyl carbonate by DFT approach

    Science.gov (United States)

    Xavier, S.; Periandy, S.; Carthigayan, K.; Sebastian, S.

    2016-12-01

    Vibrational spectral analysis of Diphenyl Carbonate (DPC) is carried out by using FT-IR and FT-Raman spectroscopic techniques. It is found that all vibrational modes are in the expected region. Gaussian computational calculations were performed using B3LYP method with 6-311++G (d, p) basis set. The computed geometric parameters are in good agreement with XRD data. The observation shows that the structure of the carbonate group is unsymmetrical by ∼5° due to the attachment of the two phenyl rings. The stability of the molecule arising from hyperconjugative interaction and charge delocalization are analyzed by Natural Bond Orbital (NBO) study and the results show the lone pair transition has higher stabilization energy compared to all other. The 1H and 13C NMR chemical shifts are calculated using the Gauge-Including Atomic Orbital (GIAO) method with B3LYP/6-311++G (d, p) method. The chemical shifts computed theoretically go very closer to the experimental results. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies and Molecular electrostatic potential (MEP) exhibit the high reactivity nature of the molecule. The non-linear optical property of the DPC molecule predicted theoretically found to be good candidate for NLO material. TG/DTA analysis was made and decomposition of the molecule with respect to the temperature was studied. DPC having the anthelmintic activity is docked in the Hemoglobin of Fasciola hepatica protein. The DPC has been screened to antimicrobial activity and found to exhibit antibacterial effects.

  15. Surface enhanced Raman scattering, natural bond orbitals and Mulliken atomic charge distribution in the normal modes of diethyldithiocarbamate cadmium (II) complex, [Cd(DDTC)2

    Science.gov (United States)

    Téllez Soto, C. A.; Costa, A. C.; Versiane, O.; Lemma, T.; Machado, N. C. F.; Mondragón, M. A.; Martin, A. A.

    2015-07-01

    Theoretical and experimental bands have been assigned to the Fourier Transform Infrared (FT-IR) and FT-Raman spectra of the bis(diethyldithiocarbamate)Cd(II) complex, abbreviated as ([Cd(DDTC)2]). The calculations and spectral interpretation have been based on the DFT/B3LYP method, infrared and Raman second derivative spectra, and band deconvolution analysis to assist in the assignment of observed fundamentals. This study validated the unusual pseudo tetrahedral molecular structure formed around the Cd(II) cation. Surface-enhanced Raman scattering (SERS) was used to determine the interactions of the normal-modes of the diethyldithiocarbamate cadmium (II) complex on nano-structured silver surfaces. Natural bond orbital (NBO) analysis was also carried out to study the Cd(II) hybridization causing the pseudo tetrahedral geometry of the framework of the [Cd(DDTC)2] complex, and to confirm the charge transfer mechanisms through second order perturbation theory analysis of the Fox Matrix. In order to find out the electronic dispersion of the Mulliken atomic charges (MAC) in the normal modes, we calculated the MAC for each normal mode and correlated these values with the SERS effect. Experimental UV-Vis spectra were obtained and charge transfer bands were assigned. Good agreement between the calculated and experimental values for the vibrational and UV-Vis spectra was obtained.

  16. Surface enhanced Raman scattering, electronic spectrum, natural bond orbital, and Mulliken charge distribution in the normal modes of diethyldithiocarbamate copper (II) complex, [Cu(DDTC)2].

    Science.gov (United States)

    Téllez Soto, C A; Costa, A C; Ramos, J M; Vieira, L S; Rost, N C V; Versiane, O; Rangel, J L; Mondragón, M A; Raniero, L; Martin, A A

    2013-12-01

    Surface-enhanced Raman scattering (SERS) was used to study the interactions of the normal modes of the diethyldithiocarbamate copper (II) complex, [Cu(DDTC)2] on nano-structured mixture silver-gold surfaces and on silver surfaces. The electronic spectrum of this complex was measured and the charge transfer bands were assigned through the TD-PBE1PBE procedure. Natural bond orbital (NBO) were also carried out to study the Cu(II) hybridation leading to the square planar geometry of the framework of the [Cu(DDTC)2] complex, and to study which are the donor NBO and the acceptor NBO in meaningful charge transfer through the Second Order Perturbation Theory Analysis of the Fox Matrix in NBO basis. To see the electronic dispersion, the Mulliken electronic charges (MAC) were calculated for each normal mode and correlated with the SERS effect. Full assignment of the SERS spectra was also supported by carefully analysis of the distorted geometries generated by the normal modes.

  17. Physical Nature of Hydrogen Bond

    CERN Document Server

    Zhyganiuk, I V

    2015-01-01

    The physical nature and the correct definition of hydrogen bond (H-bond) are considered.\\,\\,The influence of H-bonds on the thermodynamic, kinetic, and spectroscopic properties of water is analyzed.\\,\\,The conventional model of H-bonds as sharply directed and saturated bridges between water molecules is incompatible with the behavior of the specific volume, evaporation heat, and self-diffusion and kinematic shear viscosity coefficients of water. On the other hand, it is shown that the variation of the dipole moment of a water molecule and the frequency shift of valence vibrations of a hydroxyl group can be totally explained in the framework of the electrostatic model of H-bond.\\,\\,At the same time, the temperature dependences of the heat capacity of water in the liquid and vapor states clearly testify to the existence of weak H-bonds.\\,\\,The analysis of a water dimer shows that the contribution of weak H-bonds to its ground state energy is approximately 4--5 times lower in comparison with the energy of electr...

  18. Investigation of the encapsulation of metal cations (Cu(2+), Zn(2+), Ca(2+) and Ba(2+)) by the dipeptide Phe-Phe using natural bond orbital theory and molecular dynamics simulation.

    Science.gov (United States)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K

    2017-03-01

    Complexes of the dipeptide phenylalanine-phenylalanine (Phe-Phe) with divalent metal cations (Cu(2+), Zn(2+), Ca(2+) and Ba(2+)) were studied at the B3LYP and MP2 levels of theory with the basis sets 6-311++G(d,p) and 6-31 + G(d) in the gas phase. The relative energies of these complexes indicated that cation-π bidentate/tridentate conformations are more favourable than other conformations with uncoordinated rings. These findings were confirmed by the calculated values of thermodynamic parameters such as the Gibbs free energy. Natural bond orbital (NBO) analysis was carried out to explore the metal-ligand coordination in Phe-Phe-Cu(2+)/Zn(2+) complexes. Possible orbital transitions, types of orbitals and their occupancies were determined for a range of Phe-Phe-Cu(2+)/Zn(2+) complexes. The charge transfer involved in various orbital transitions was explored by considering the second-order perturbation energy. NBO analysis revealed that the change transfer is stronger when the metal cation uses both the 4s + 4p subshells rather than just its 4p subshell. We also performed molecular dynamics (MD) simulations to check the stability and consistency of the most favourable binding motifs of Cu(2+), Zn(2+), Ca(2+) and Ba(2+) with Phe-Phe over time. The structures of the Phe-Phe-Cu(2+)/Zn(2+)/Ca(2+)/Ba(2+) complexes obtained using MD simulation were found to be in good agreement with those obtained in the DFT-based calculations. Graphical Abstract Conformational search on encapsulation of divalent metal cations (Ca(2+), Zn(2+), Ca(2+), Ba(2+)) by the Phe-Phe dipeptide.

  19. The one-electron description of excited states: Natural excitation orbitals of density matrix theory and Kohn-Sham orbitals of density functional theory as ideal orbitals

    Science.gov (United States)

    van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2015-10-01

    Linear response density matrix functional theory has been shown to solve the main problems of time-dependent density functional theory (deficient in case of double, charge transfer and bond breaking excitations). However, the natural orbitals preclude the description of excitations as (approximately) simple orbital-to-orbital transitions: many weakly occupied 'virtual' natural orbitals are required to describe the excitations. Kohn-Sham orbitals on the other hand afford for many excitations such a simple orbital description. In this communication we show that a transformation of the set of weakly occupied NOs can be defined such that the resulting natural excitation orbitals (NEOs) restore the single orbital transition structure for excitations generated by the linear response DMFT formalism.

  20. Conformational behaviors of trans-2,3- and trans-2,5-dihalo-1,4-diselenanes. A complete basis set, hybrid-density functional theory study and natural bond orbital interpretations.

    Science.gov (United States)

    Nori-Shargh, Davood; Mousavi, Seiedeh Negar; Kayi, Hakan

    2014-05-01

    Complete basis set CBS-4, hybrid-density functional theory (hybrid-DFT: B3LYP/6-311+G**) based methods and natural bond orbital (NBO) interpretations have been used to examine the contributions of the hyperconjugative, electrostatic, and steric effects on the conformational behaviors of trans-2,3-dihalo-1,4-diselenane [halo = F (1), Cl (2), Br (3)] and trans-2,5-dihalo-1,4-diselenane [halo = F (4), Cl (5), Br (6)]. Both levels of theory showed that the axial conformation stability, compared to its corresponding equatorial conformation, decreases from compounds 1 → 3 and 4 → 6. Based on the results obtained from the NBO analysis, there are significant anomeric effects for compounds 1-6. The anomeric effect associated with the electron delocalization is in favor of the axial conformation and increases from compounds 1 → 3 and 4 → 6. On the other hand, dipole moment differences between the axial and equatorial conformations [Δ(μ(eq)-μ(ax)] decrease from compounds 1 → 3. Although Δ(μ(eq)-μ(ax)) parameter decreases from compound 1 to compound 3, the dipole moment values of the axial conformations are smaller than those of their corresponding equatorial conformations. Therefore, the anomeric effect associated with the electron delocalizations (for halogen-C-Se segments) and the electrostatic model associated with the dipole-dipole interactions fail to account for the increase of the equatorial conformations stability on going from compound 1 to compound 3. Since there is no dipole moment for the axial and equatorial conformations of compounds 4-6, consequently, the conformational preferences in compounds 1-6 is in general dictated by the steric hindrance factor associated with the 1,3-syn-axial repulsions. Importantly, the CBS-4 results show that the entropy difference (∆S) between the equatorial axial conformations increases from compounds 1 → 3 and 4 → 6. This fact can be explained by the anomeric effect associated

  1. Nature of the N-H...S hydrogen bond.

    Science.gov (United States)

    Biswal, Himansu S; Wategaonkar, Sanjay

    2009-11-19

    The N-H...S hydrogen-bonded complexes of the model compounds of tryptophan (indole and 3-methylindole) and methionine (dimethyl sulfide, Me(2)S) have been characterized by a combination of experimental techniques like resonant two-photon ionization (R2PI), resonant ion dip infrared spectroscopy (RIDIRS), and fluorescence dip infrared spectroscopy (FDIRS) and computational methods like ab initio electronic structure calculations, atoms-in-molecules (AIM), natural bond orbital (NBO), and energy decomposition analyses. The results are compared with the N-H...O (M.H(2)O; M = indole, 3-methyl indole) sigma-type and N-H...Phi (M.benzene) pi-type hydrogen-bonded complexes. It was shown that the S(1)-S(0) band origin red shifts in the N-H...S hydrogen-bonded complexes correlated well with the polarizability of the acceptor rather than their proton affinity, contrary to the trend observed in most X-H...Y (X, Y = O, N, halogens, etc.) hydrogen-bonded systems. The red shift in the N-H stretching frequency in the N-H...S HB clusters (Me(2)S as HB acceptor) was found to be 1.8 times greater than that for the N-H...O hydrogen-bonded complexes (H(2)O as HB acceptor), although the binding energies for the two complexes were comparable. The energy decomposition analyses for all of the N-H...S hydrogen-bonded complexes showed that the correlation (or dispersion) energy has significant contribution to the total binding energy. It is pointed out that the binding energy of the N-H...S complex was also comparable to that of the indole.benzene complex, which is completely dominated by the dispersion interaction. Atoms-in-molcules (AIM) and natural bond orbital (NBO) analyses indicated a nontrivial electrostatic component in the hydrogen-bonding interaction. Greater dispersion contribution to the stabilization energy as well as greater red shifts in the N-H stretch relative to those of N-H...O hydrogen-bonded complexes makes the indole.dimethylsulfide complex unique in regard to the

  2. Vibrational spectra (experimental and theoretical), molecular structure, natural bond orbital, HOMO-LUMO energy, Mulliken charge and thermodynamic analysis of N'-hydroxy-pyrimidine-2-carboximidamide by DFT approach.

    Science.gov (United States)

    Jasmine, N Jeeva; Muthiah, P Thomas; Arunagiri, C; Subashini, A

    2015-06-05

    The FT-IR, FT-Raman, (1)H, (13)C NMR and UV-Visible spectral measurements of N'-hydroxy-pyrimidine-2-carboximidamide (HPCI) and complete analysis of the observed spectra have been proposed. DFT calculation has been performed and the structural parameters of the compound was determined from the optimized geometry with 6-311+G(d,p) basis set and giving energies, harmonic vibrational frequencies and force constants. The results of the optimized molecular structure are presented and compared with the experimental. The geometric parameters, harmonic vibrational frequencies and chemical shifts were compared with the experimental data of the molecule. The title compound, C5H6N4O, is approximately planar, with an angle of 11.04 (15)°. The crystal structure is also stabilized by intermolecular N-H⋯O, N-H⋯N, O-H⋯N, C-H⋯O hydrogen bond and offset π-π stacking interactions. The influences of hydroxy and carboximidamide groups on the skeletal modes and proton chemical shifts have been investigated. Moreover, we have not only simulated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) but also determined the transition state and band gap. The kinetic, thermodynamic stability and chemical hardness of the molecule have been determined. Complete NBO analysis was also carried out to find out the intermolecular electronic interactions and their stabilization energy. The thermodynamic properties like entropies and their correlations with temperatures were also obtained from the harmonic frequencies of the optimized structure.

  3. Local pair natural orbitals for excited states

    Science.gov (United States)

    Helmich, Benjamin; Hättig, Christof

    2011-12-01

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10-8-10-7, corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  4. Local pair natural orbitals for excited states.

    Science.gov (United States)

    Helmich, Benjamin; Hättig, Christof

    2011-12-07

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10(-8)-10(-7), corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  5. A well-scaling natural orbital theory

    CERN Document Server

    Gebauer, Ralph; Car, Roberto

    2016-01-01

    We introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree-Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals of the one-particle density matrix.

  6. The Nature of the Hydrogen Bond Outline of a Comprehensive Hydrogen Bond Theory

    CERN Document Server

    Gilli, Gastone

    2009-01-01

    Hydrogen bond (H-bond) effects are known: it makes sea water liquid, joins cellulose microfibrils in trees, shapes DNA into genes and polypeptide chains into wool, hair, muscles or enzymes. Its true nature is less known and we may still wonder why O-H...O bond energies range from less than 1 to more than 30 kcal/mol without apparent reason. This H-bond puzzle is re-examined here from its very beginning and presented as an inclusive compilation of experimental H-bond energies andgeometries.New concepts emerge from this analysis: new classes of systematically strong H-bonds (CAHBs and RAHBs: cha

  7. Nature of the chemical bond and origin of the inverted dipole moment in boron fluoride: a generalized valence bond approach.

    Science.gov (United States)

    Fantuzzi, Felipe; Cardozo, Thiago Messias; Nascimento, Marco Antonio Chaer

    2015-05-28

    The generalized product function energy partitioning (GPF-EP) method has been applied to investigate the nature of the chemical bond and the origin of the inverted dipole moment of the BF molecule. The calculations were carried out with GPF wave functions treating all of the core electrons as a single Hartree-Fock group and the valence electrons at the generalized valence bond perfect-pairing (GVB-PP) or full GVB levels, with the cc-pVTZ basis set. The results show that the chemical structure of both X (1)Σ(+) and a (3)Π states is composed of a single bond. The lower dissociation energy of the excited state is attributed to a stabilizing intraatomic singlet coupling involving the B 2sp-like lobe orbitals after bond dissociation. An increase of electron density on the B atom caused by the reorientation of the boron 2sp-like lobe orbitals is identified as the main responsible effect for the electric dipole inversion in the ground state of BF. Finally, it is shown that π back-bonding from fluorine to boron plays a minor role in the electron density displacement to the bonding region in both states. Moreover, this effect is associated with changes in the quasi-classical component of the electron density only and does not contribute to covalency in either of the states. Therefore, at least for the case of the BF molecule, the term back-bonding is misleading, since it does not contribute to the bond formation.

  8. On the nature of blueshifting hydrogen bonds.

    Science.gov (United States)

    Mo, Yirong; Wang, Changwei; Guan, Liangyu; Braïda, Benoît; Hiberty, Philippe C; Wu, Wei

    2014-07-01

    The block-localized wave function (BLW) method can derive the energetic, geometrical, and spectral changes with the deactivation of electron delocalization, and thus provide a unique way to elucidate the origin of improper, blueshifting hydrogen bonds versus proper, redshifting hydrogen bonds. A detailed analysis of the interactions of F(3)CH with NH(3) and OH(2) shows that blueshifting is a long-range phenomenon. Since among the various energy components contributing to hydrogen bonds, only the electrostatic interaction has long-range characteristics, we conclude that the contraction and blueshifting of a hydrogen bond is largely caused by electrostatic interactions. On the other hand, lengthening and redshifting is primarily due to the short-range n(Y)→σ*(X-H) hyperconjugation. The competition between these two opposing factors determines the final frequency change direction, for example, redshifting in F(3)CH⋅⋅⋅NH(3) and blueshifting in F(3)CH⋅⋅⋅OH(2). This mechanism works well in the series F(n)Cl(3)-n CH⋅⋅⋅Y (n=0-3, Y=NH(3), OH(2), SH(2)) and other systems. One exception is the complex of water and benzene. We observe the lengthening and redshifting of the O-H bond of water even with the electron transfer between benzene and water completely quenched. A distance-dependent analysis for this system reveals that the long-range electrostatic interaction is again responsible for the initial lengthening and redshifting.

  9. The Breathing Orbital Valence Bond Method in Diffusion Monte Carlo: C-H Bond Dissociation ofAcetylene

    Energy Technology Data Exchange (ETDEWEB)

    Domin, D.; Braida, Benoit; Lester Jr., William A.

    2008-05-30

    This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 {+-} 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 {+-} 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 {+-} 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 {+-} 0.5 kcal/mol).

  10. A new algorithm for inactive orbital optimization in valence bond theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper presents an efficient algorithm for energy gradients in valence bond self-consistent field(VBSCF) method with non-orthogonal orbitals.The frozen core approximation method is extended to the case of non-orthogonal orbitals.The expressions for the total energy and its gradients are presented by introducing auxiliary orbitals,where inactive orbitals are orthogonal,while active orbitals are non-orthogonal themselves but orthogonal to inactive orbitals.It is shown that our new algorithm has a low scaling of(Na+1)m4,where Na and m are the numbers of the active orbitals and basis functions,respectively,and is more efficient than the existing VBSCF algorithms.

  11. Covalent features in the hydrogen bond of a water dimer: molecular orbital analysis

    CERN Document Server

    Wang, Bo; Dai, Xing; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin

    2015-01-01

    The covalent-like characteristics of hydrogen bonds offer a new perspective on intermolecular interactions. Here, using density functional theory and post-Hartree-Fock methods, we reveal that there are two bonding molecular orbitals (MOs) crossing the O and H atoms of the hydrogen-bond in water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. These results illustrate the covalent-like character of the hydrogen bond between water molecules, which contributes to the essential understanding of ice, liquid water, related materials, and life sciences.

  12. A new algorithm for inactive orbital optimization in valence bond theory

    Institute of Scientific and Technical Information of China (English)

    CHEN ZhenHua; ZHANG QianEr; WU Wei

    2009-01-01

    This paper presents an efficient algorithm for energy gradients in valence bond self-consistent field (VBSCF) method with non-orthogonal orbitals.The frozen core approximation method is extended to the case of non-orthogonal orbitals.The expressions for the total energy and its gradients are presented by introducing auxiliary orbitals,where inactive orbitals are orthogonal,while active orbitals are non-orthogonal themselves but orthogonal to inactive orbitsls.It is shown that our new algorithm has a low scaling of (N_a+ 1)m~4,where N_a and m are the numbers of the active orbitals and basis functions,respectively,and is more efficient than the existing VBSCF algorithms.

  13. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model.

    Science.gov (United States)

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Chen, Chun-Nan; Wang, Wan-Tsang; Hsu, Yu-Chi; Ren, Chung-Yuan; Lee, Meng-En; Wu, Chieh-Lung; Gau, Ming-Hong

    2012-10-17

    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion k at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  14. A minimal basis bond-orbital investigation of the linear water dimer

    Science.gov (United States)

    Magnasco, Valerio; Musso, Gian Franco; Costa, Camilla; Figari, Giuseppe

    The perturbative configuration interaction approach based on non-orthogonal bond-orbitals previously used for dealing with rotational barriers is applied to the study of the hydrogen bonding in the linear water dimer. First and second-order interaction energies are obtained in terms of static and transition charge distributions fully accounting for intermolecular overlap. Neglecting electron correlation, the second-order calculations include all single excitations from bonding to antibonding orbitals accounting for induction including exchange and giving results close to the corresponding supermolecular SCF-MOs in the same basis. Ab initio calculations using different gaussian minimal bases show that Clementi's GTO basis MEDIUM is the most suitable for describing molecular interactions. Detailed component analysis of the energy up to second order is possible and reveals the main features of the intermolecular hydrogen bonding occurring between the water molecules.

  15. DFT Study of the Structure, Reactivity, Natural Bond OrbitalandHyperpolarizabilityofThiazoleAzoDyes

    Directory of Open Access Journals (Sweden)

    Osman I. Osman

    2017-02-01

    Full Text Available The structure, reactivity, natural bond orbital (NBO, linear and nonlinear optical (NLO properties of three thiazole azo dyes (A, B and C were monitored by applying B3LYP, CAM-B3LYP and ωB97XD functionals with 6-311++G** and aug-cc-pvdz basis sets. The geometrical parameters,dipolemoments,HOMO-LUMO(highestoccupiedmolecularorbital,lowestunoccupied molecular orbital energy gaps, absorption wavelengths and total hyperpolarizabilities were investigated in carbon tetrachloride (CCl4 chloroform (CHCl3, dichloromethane (CH2Cl2 and dimethlysulphoxide (DMSO. The donor methoxyphenyl group deviates from planarity with the thiazole azo moiety by ca. 38◦; while the acceptor dicyanovinyl, indandione and dicyanovinylindanone groups diverge by ca. 6◦. The HOMOs for the three dyes are identical. They spread over the methoxyphenyl donor moiety, the thiazole and benzene rings as π-bonding orbitals. The LUMOs are shaped up by the nature of the acceptor moieties. The LUMOs of the A, B and C dyes extend over the indandione, malononitrile and dicyanovinylindanone acceptor moieties, respectively, as π-antibonding orbitals. The HOMO-LUMO splittings showed that Dye C is much more reactive than dyes A and B. Compared to dyes A and B, Dye C yielded a longer maximum absorption wavelength because of the stabilization of its LUMOs relative to those of the other two. The three dyes show solvatochromism accompanied by significant increases in hyperpolarizability. The enhancement of the total hyperpolarizability of C compared to those of AandBisduetothecumulativeactionofthelongπ-conjugationoftheindanoneringandthestronger electron-withdrawingabilityofthedicyanovinylmoietythatformthedicyanovinylindanoneacceptor group. These findings are facilitated by a natural bond orbital (NBO technique. The very high total hyperpolarizabilities of the three dyes define their potent nonlinear optical (NLO behaviour.

  16. The Nature of Bonding in WC and WN

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The nature of bonding in the title compounds has been studied by using CASSCF and FOCl techniques. The ground states of WC and WN are found to be 3Δ and 4∑- state arising primarily from:...1σ2σ21π41δ13σ1 and ...1σ2σ21π41δ23σ1 configuration respectively. WC shows a strong character of covalent bond while WN have obvious character of ionic bond and the dissociation energy of WN is larger than that of WC (6.15 and 5.41 eV respective).

  17. Natural orbital description of the halo nucleus 6He

    CERN Document Server

    Constantinou, Ch; Vary, J P; Maris, P

    2016-01-01

    Ab initio calculations of nuclei face the challenge of simultaneously describing strong short-range internucleon correlations and the long-range properties of weakly-bound halo nucleons. Natural orbitals, which diagonalize the one-body density matrix, provide a basis which is better matched to the physical structure of the many-body wave function. We demonstrate that the use of natural orbitals significantly improves convergence for ab initio no-core configuration interaction calculations of the neutron halo nucleus 6He, relative to the traditional oscillator basis.

  18. Synthesis, DFT calculations, electronic structure, electronic absorption spectra, natural bond orbital (NBO) and nonlinear optical (NLO) analysis of the novel 5-methyl-8H-benzo[h]chromeno[2,3-b][1,6] naphthyridine-6(5H),8-dione (MBCND)

    Science.gov (United States)

    Halim, Shimaa Abdel; Ibrahim, Magdy A.

    2017-02-01

    New derivative of heteroannulated chromone identified as 5-methyl-8H-benzo[h]chromeno[2,3-b][1,6]naphthyridine-6(5H),8-dione (5, MBCND) was easily and efficiently synthesized from DBU catalyzed condensation reaction of 2-aminochromone-3-carboxaldehyde (1) with 4-hydroxy-1-methylquinolin-2(1H)-one (2). The same product 5 was isolated from condensation reaction of aldeyde 1 with 3-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-3-oxopropanoic acid (3) or ethyl 4-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-2,4-dioxobutanoate (4). Structure of compound (5, MBCND) was deduced based on their elemental analyses and spectral data (IR, 1H NMR and mass spectra). Density Functional Theory (DFT) calculations at the B3LYP/6-311G (d,p) level of theory have been carried out to investigate the equilibrium geometry of the novel compound (5, MBCND). Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, the dipole moment, theoretical study of the electronic structure, nonlinear optical properties (NLO), and natural bonding orbital (NBO) analysis and orientation have been performed and discussed. Also the electronic absorption spectra were measured in polar (methanol) as well as non polar (dioxane) solvents and the assignment of the observed bands has been discussed by TD-DFT calculations. The correspondences between calculated and experimental transitions energies are satisfactory.

  19. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table.

    Science.gov (United States)

    Kaupp, Martin

    2007-01-15

    The role of radial nodes, or of their absence, in valence orbitals for chemical bonding and periodic trends is discussed from a unified viewpoint. In particular, we emphasize the special role of the absence of a radial node whenever a shell with angular quantum number l is occupied for the first time (lack of "primogenic repulsion"), as with the 1s, 2p, 3d, and 4f shells. Although the consequences of the very compact 2p shell (e.g. good isovalent hybridization, multiple bonding, high electronegativity, lone-pair repulsion, octet rule) are relatively well known, it seems that some of the aspects of the very compact 3d shell in transition-metal chemistry are less well appreciated, e.g., the often weakened and stretched bonds at equilibrium structure, the frequently colored complexes, and the importance of nondynamical electron-correlation effects in bonding.

  20. Bonding in Mercury-Alkali Molecules: Orbital-driven van der Waals Complexes

    Directory of Open Access Journals (Sweden)

    Dieter Cremer

    2008-06-01

    Full Text Available The bonding situation in mercury-alkali diatomics HgA (2Σ+ (A = Li, Na, K, Rb has been investigated employing the relativistic all-electron method Normalized Elimination of the Small Component (NESC, CCSD(T, and augmented VTZ basis sets. Although Hg,A interactions are typical of van der Waals complexes, trends in calculated De values can be explained on the basis of a 3-electron 2-orbital model utilizing calculated ionization potentials and the De values of HgA+(1Σ+ diatomics. HgA molecules are identified as orbital-driven van der Waals complexes. The relevance of results for the understanding of the properties of liquid alkali metal amalgams is discussed.

  1. Electronic structure and chemical bond nature in Cs2PuO2Cl4

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2015-01-01

    Full Text Available X-ray photoelectron spectral analysis of dicaesiumtetrachlorodioxoplutonate (Cs2PuO2Cl4 single crystal was done in the binding energy range 0-~35 eV on the basis of binding energies and structure of the core electronic shells (~35 eV-1250 eV, as well as the relativistic discrete variation calculation results for the PuO2Cl4 (D4h. This cluster reflects Pu close environment in Cs2PuO2Cl4 containing the plutonyl group PuO2. The many-body effects due to the presence of cesium and chlorine were shown to contribute to the outer valence (0-~15 eV binding energy spectral structure much less than to the inner valence (~15 eV- ~35 eV binding energy one. The filled Pu 5f electronic states were theoretically calculated and experimentally con- firmed to present in the valence band of Cs2PuO2Cl4. It corroborates the suggestion on the direct participation of the Pu 5f electrons in the chemical bond. The Pu 6p atomic orbitals were shown to participate in formation of both the inner and the outer valence molecular orbitals (bands, while the filled Pu 6p and O 2s, Cl 3s electronic shells were found to take the largest part in formation of the inner valence molecular orbitals. The composition of molecular orbitals and the sequence order in the binding energy range 0-~35 eV in Cs2PuO2Cl4 were established. The quantitative scheme of molecular orbitals for Cs2PuO2Cl4 in the binding energy range 0-~15 eV was built on the basis of the experimental and theoretical data. It is fundamental for both understanding the chemical bond nature in Cs2PuO2Cl4 and the interpretation of other X-ray spectra of Cs2PuO2Cl4. The contributions to the chemical binding for the PuO2Cl4 cluster were evaluated to be: the contribution of the outer valence molecular orbitals -66 %, the contribution of the inner valence molecular orbitals -34 %.

  2. H$_4$: A Challenging System For Natural Orbital Functional Approximations

    CERN Document Server

    Ramos-Cordoba, Eloy; Piris, Mario; Matito, Eduard

    2015-01-01

    The correct description of nondynamic correlation by electronic structure methods not belonging to the multireference family is a challenging issue. The transition of $D_{2h}$ to $D_{4h}$ symmetry in H$_4$ molecule is among the most simple archetypal examples to illustrate the consequences of missing nondynamic correlation effects. The resurge of interest in density matrix functional methods has brought several new methods including the family of Piris Natural Orbital Functionals (PNOF). In this work we compare PNOF5 and PNOF6, which include nondynamic electron correlation effects to some extent, with other standard ab initio methods in the H$_4$ $D_{4h}/D_{2h}$ potential energy surface. Thus far, the wrongful behavior of single-reference methods at the $D_{2h}-D_{4h}$ transition of H$_4$ has been attributed to wrong account of nondynamic correlation effects, whereas in geminal-based approaches it has been assigned to a wrong coupling of spins and the localized nature of the orbitals. We will show that actual...

  3. 配合[Ni(Pht)(Medpq)(H2O)3]n的水热合成、表征及自然键轨道(NBO)分析%Hydrothermal Synthesis,Characterization and Natural Bond Orbital(NBO)Analysis of[Ni(Pht)(Medpq)(H2O)3]n Complex

    Institute of Scientific and Technical Information of China (English)

    黄艳菊; 倪良; 王蕾; 朱翀

    2011-01-01

    A metal-organic complex [Ni(Pht)(Medpq)(H2O)3]n (1) (Pht=phthalic acid, Medpq=2-methyldipyrido[3,2-f:2',3'-h]quinoxaline) has been hydrothermally synthesized and structurally characterized by elemental analysis, IR spectrum, TG, single-crystal X-ray diffraction and theoretical calculations. In the crystal structure, the nickel atom is hexa-coordinated with two nitrogen atoms from Medpq ligand, one oxygen atom from Pht ligand and three oxygen atoms from three different coordination water molecules, assuming a slightly distorted octahedral geometry. Furthermore, it exhibits a zero-dimensional structure with Pht-Ni-Medpq as building units. Natural bond orbital (NBO) analysis was performed by using the NBO method built in Gaussian03 Program. The calculation results show there is the obvious covalent interaction between the coordinated atoms and Ni(Ⅱ) ion.%采用水热法合成了一种新型金属配合物[Ni(Pht)(Medpq)(H2O)3]n(1)(Pht=phthalic acid,Medpq=2-methyldipyrido[3,2-f:2',3'-h]quinoxaline),并对其进行了元素分析、红外光谱、热重表征、X射线单晶衍射测定和理论计算.在晶体中,Ni(Ⅱ)与来自于Medpq分子上的2个氮原子,邻苯二甲酸上的1个氧原子及来自于3个不同的配位水分子上的3个氧原子配位,形成畸变的八面体构型.整个晶体由Pht-Ni-Medpq单元组成零维结构.应用Guassian03W程序,在HF/LANL2DZ水平上对标题化合物的自然键轨道(NBO)进行了分析,结果表明Ni(Ⅱ)与配位原子间的价键类型都属于共价键范畴.

  4. Molecular electric moments calculated by using natural orbital functional theory

    CERN Document Server

    Mitxelena, Ion

    2016-01-01

    The molecular electric dipole, quadrupole and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-$\\zeta$ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data, and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles (CCSD) and multi-reference single and double excitation configuration interaction (MRSD-CI) methods.

  5. The Effective Fragment Molecular Orbital Method for Fragments Connected by Covalent Bonds

    Science.gov (United States)

    Steinmann, Casper; Fedorov, Dmitri G.; Jensen, Jan H.

    2012-01-01

    We extend the effective fragment molecular orbital method (EFMO) into treating fragments connected by covalent bonds. The accuracy of EFMO is compared to FMO and conventional ab initio electronic structure methods for polypeptides including proteins. Errors in energy for RHF and MP2 are within 2 kcal/mol for neutral polypeptides and 6 kcal/mol for charged polypeptides similar to FMO but obtained two to five times faster. For proteins, the errors are also within a few kcal/mol of the FMO results. We developed both the RHF and MP2 gradient for EFMO. Compared to ab initio, the EFMO optimized structures had an RMSD of 0.40 and 0.44 Å for RHF and MP2, respectively. PMID:22844433

  6. Exact equations of motion for natural orbitals of strongly driven two-electron systems

    CERN Document Server

    Rapp, J; Bauer, D

    2014-01-01

    Natural orbital theory is a computationally useful approach to the few and many-body quantum problem. While natural orbitals are known and applied since many years in electronic structure applications, their potential for time-dependent problems is being investigated only since recently. Correlated two-particle systems are of particular importance because the structure of the two-body reduced density matrix expanded in natural orbitals is known exactly in this case. However, in the time-dependent case the natural orbitals carry time-dependent phases that allow for certain time-dependent gauge transformations of the first kind. Different phase conventions will, in general, lead to different equations of motion for the natural orbitals. A particular phase choice allows us to derive the exact equations of motion for the natural orbitals of any (laser-) driven two-electron system explicitly, i.e., without any dependence on quantities that, in practice, require further approximations. For illustration, we solve th...

  7. Natural triple excitations in local coupled cluster calculations with pair natural orbitals

    Science.gov (United States)

    Riplinger, Christoph; Sandhoefer, Barbara; Hansen, Andreas; Neese, Frank

    2013-10-01

    In this work, the extension of the previously developed domain based local pair-natural orbital (DLPNO) based singles- and doubles coupled cluster (DLPNO-CCSD) method to perturbatively include connected triple excitations is reported. The development is based on the concept of triples-natural orbitals that span the joint space of the three pair natural orbital (PNO) spaces of the three electron pairs that are involved in the calculation of a given triple-excitation contribution. The truncation error is very smooth and can be significantly reduced through extrapolation to the zero threshold. However, the extrapolation procedure does not improve relative energies. The overall computational effort of the method is asymptotically linear with the system size O(N). Actual linear scaling has been confirmed in test calculations on alkane chains. The accuracy of the DLPNO-CCSD(T) approximation relative to semicanonical CCSD(T0) is comparable to the previously developed DLPNO-CCSD method relative to canonical CCSD. Relative energies are predicted with an average error of approximately 0.5 kcal/mol for a challenging test set of medium sized organic molecules. The triples correction typically adds 30%-50% to the overall computation time. Thus, very large systems can be treated on the basis of the current implementation. In addition to the linear C150H302 (452 atoms, >8800 basis functions) we demonstrate the first CCSD(T) level calculation on an entire protein, Crambin with 644 atoms, and more than 6400 basis functions.

  8. Valence-Bond Concepts in Coordination Chemistry and the Nature of Metal-Metal Bonds.

    Science.gov (United States)

    Pauling, Linus; Herman, Zelek S.

    1984-01-01

    Discusses the valence-bond method, applying it to some coordination compounds of metals, especially those involving metal-metal bonds. Suggests that transition metals can form as many as nine covalent bonds, permitting valence-theory to be extended to transition metal compounds in a more effective way than has been possible before. (JN)

  9. The bellamy relationship and the nature of the H-bond. 2-Haloethanols

    Science.gov (United States)

    Vokin, A. I.; Turchaninov, V. K.

    2015-01-01

    IR-spectroscopy data show that the intramolecular H-bond in alcohols with the general formula XCH2CH2OH (X = F, Cl, Br) in a solution is mainly of a nonspecific nature. Molecules of 2-haloethanol form three-center complexes with an external H-bond acceptor. The intramolecular component of their bifurcated bond causes a stronger spectroscopic effect as compared to the two-center H-bond of ethanol or 1-propanol.

  10. Orbitals from local RDMFT: Are they Kohn-Sham or natural orbitals?

    Energy Technology Data Exchange (ETDEWEB)

    Theophilou, Iris; Helbig, Nicole [Peter-Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich (Germany); Lathiotakis, Nektarios N. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vass. Constantinou 48, GR-11635 Athens (Greece); Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale) (Germany); Gidopoulos, Nikitas I. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Rubio, Angel [Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg (Germany); Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Dpto. Física de Materiales, Universidad del País Vasco, CFM CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, E-20018 San Sebastián (Spain)

    2015-08-07

    Recently, an approximate theoretical framework was introduced, called local reduced density matrix functional theory (local-RDMFT), where functionals of the one-body reduced density matrix (1-RDM) are minimized under the additional condition that the optimal orbitals satisfy a single electron Schrödinger equation with a local potential. In the present work, we focus on the character of these optimal orbitals. In particular, we compare orbitals obtained by local-RDMFT with those obtained with the full minimization (without the extra condition) by contrasting them against the exact NOs and orbitals from a density functional calculation using the local density approximation (LDA). We find that the orbitals from local-RMDFT are very close to LDA orbitals, contrary to those of the full minimization that resemble the exact NOs. Since local RDMFT preserves the good quality of the description of strong static correlation, this finding opens the way to a mixed density/density matrix scheme, where Kohn-Sham orbitals obtain fractional occupations from a minimization of the occupation numbers using 1-RDM functionals. This will allow for a description of strong correlation at a cost only minimally higher than a density functional calculation.

  11. Experimental investigation of the EPR parameters and molecular orbital bonding coefficients for VO{sup 2+} ion in NaH{sub 2}PO{sub 4}·2H{sub 2}O single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kalfaoğlu, Emel [Ondokuz Mayıs University, Faculty of Sciences, Department of Physics, 55139 Kurupelit-Samsun (Turkey); Karabulut, Bünyamin, E-mail: bbulut@omu.edu.tr [Ondokuz Mayıs University, Faculty of Engineering, Department of Computer Engineering, 55139 Kurupelit-Samsun (Turkey)

    2016-09-15

    Electron paramagnetic resonance (EPR) spectra of VO{sup 2+} ions in NaH{sub 2}PO{sub 4}·2H{sub 2}O single crystal have been studied. The spin-Hamiltonian parameters and molecular orbital bonding coefficients were calculated. The angular variation of the EPR spectra shows two different VO{sup 2+} complexes. These are located in different chemical environment and each environment contains four magnetically inequivalent VO{sup 2+} sites. The crystal field around VO{sup 2+} ion is approximately axially symmetric since a strong V=O bond distorts the crystal lattice. Spin Hamiltonian parameters and molecular orbital bonding coefficients were calculated from the EPR data and the nature of bonding in the complex was discussed together.

  12. Experimental investigation of the EPR parameters and molecular orbital bonding coefficients for VO2+ ion in NaH2PO4·2H2O single crystals

    Science.gov (United States)

    Kalfaoğlu, Emel; Karabulut, Bünyamin

    2016-09-01

    Electron paramagnetic resonance (EPR) spectra of VO2+ ions in NaH2PO4·2H2O single crystal have been studied. The spin-Hamiltonian parameters and molecular orbital bonding coefficients were calculated. The angular variation of the EPR spectra shows two different VO2+ complexes. These are located in different chemical environment and each environment contains four magnetically inequivalent VO2+ sites. The crystal field around VO2+ ion is approximately axially symmetric since a strong V=O bond distorts the crystal lattice. Spin Hamiltonian parameters and molecular orbital bonding coefficients were calculated from the EPR data and the nature of bonding in the complex was discussed together.

  13. Natural orbit approximations in single power-law potentials

    CERN Document Server

    Struck, Curtis

    2014-01-01

    In a previous paper, I demonstrated the accuracy of simple, precessing, power ellipse (p-ellipse) approximations to orbits of low-to-moderate eccentricity in power-law potentials. Here I explore several extensions of these approximations to improve accuracy, especially for nearly radial orbits. 1) It is found that moderately improved orbital fits can be achieved with higher order perturbation expansions (in eccentricity), with the addition of `harmonic' terms to the solution. 2) Alternately, a matching of the extreme radial excursions of an orbit can be imposed, and a more accurate estimate of the eccentricity parameter is obtained. However, the error in the precession frequency is usually increased. 3) A correction function of small magnitude corrects the frequency problem. With this correction, even first order approximations yield excellent fits at quite high eccentricity over a range of potential indices that includes flat and falling rotation curve cases. 4) Adding a first harmonic term to fit the breadt...

  14. Natural orbit approximations in single power-law potentials

    Science.gov (United States)

    Struck, Curtis

    2015-01-01

    In a previous paper, I demonstrated the accuracy of simple, precessing, power ellipse (p-ellipse) approximations to orbits of low-to-moderate eccentricity in power-law potentials. Here, I explore several extensions of these approximations to improve accuracy, especially for nearly radial orbits. (1) It is found that moderately improved orbital fits can be achieved with higher order perturbation expansions (in eccentricity), with the addition of `harmonic' terms to the solution. (2) Alternately, a matching of the extreme radial excursions of an orbit can be imposed, and a more accurate estimate of the eccentricity parameter is obtained. However, the error in the precession frequency is usually increased. (3) A correction function of small magnitude corrects the frequency problem. With this correction, even first-order approximations yield excellent fits at quite high eccentricity over a range of potential indices that includes flat and falling rotation-curve cases. (4) Adding a first harmonic term to fit the breadth of the orbital loops, and determining the fundamental and harmonic coefficients by matching to three orbital positions further improves the fit. With a couple of additional small corrections, one obtains excellent fits to orbits with radial ranges of more than a thousand for some potentials. These simple corrections to the basic p-ellipse are basically in the form of several successive approximations, and can provide high accuracy. They suggest new results including that the apsidal precession rate scales approximately as log(1 - e) at very high eccentricities e. New insights are also provided on the occurrence of periodic orbits in various potentials, especially at high eccentricity.

  15. 7 CFR 1720.14 - Nature of guarantee; acceleration of guaranteed bonds.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Nature of guarantee; acceleration of guaranteed bonds. 1720.14 Section 1720.14 Agriculture Regulations of the Department of Agriculture (Continued) RURAL... TELEPHONE PURPOSES § 1720.14 Nature of guarantee; acceleration of guaranteed bonds. (a) Any...

  16. Electron states in a quantum dot in an effective-bond-orbital model

    Science.gov (United States)

    Nair, Selvakumar V.; Ramaniah, Lavanya M.; Rustagi, Kailash C.

    1992-03-01

    The electronic-level structure in semiconductor quantum dots is investigated in a tight-binding framework. The energy levels and wave functions of GaAs and CdS crystallites containing up to ~4000 atoms are calculated using an effective-bond-orbital model. The results obtained for GaAs crystallites by using parameters that accurately reproduce the band structure near the Γ point are compared with those obtained by calculations based on a multiband effective-mass theory. The effective-mass approximation (EMA) is found to correctly describe the qualitative features of the level structure, such as the bunching of levels and the spatial dependence of the wave functions. However, for very small particles the EMA grossly overestimates the confinement energies mainly because of the deviation of the bulk band structure from parabolic dispersion at high energies. For CdS crystallites we use a parametrization scheme that reproduces the main features of the bulk band structure throughout the Brillouin zone, and compare the results with those obtained by the multiband EMA, as well as with experimental data on interband transitions.

  17. The quantum nature of the hydrogen bond: insight from path-integral molecular dynamics

    Science.gov (United States)

    Walker, Brent; Li, Xin-Zheng; Michaelides, Angelos

    2011-03-01

    Hydrogen (H) bonds are weak, generally intermolecular bonds, that hold together much of soft matter, the condensed phases of water, network liquids, and many ferroelectric crystals. The small mass of H means H-bonds are inherently quantum mechanical; effects such as zero point motion and tunneling should be considered, although often are not. In particular, a consistent picture of quantum nuclear effects on the strength of H-bonds and consequently the structure of H-bonded systems is still absent. Here, we report ab initio path-integral molecular dynamics studies on the quantum nature of the H-bond. Systematic examination of a range of H-bonded systems shows that quantum nuclei weaken weak H-bonds but strengthen relatively strong ones. This correlation arises from a competition between anharmonic intermolecular bond bending and intramolecular bond stretching. A simple rule of thumb enables predictions to be made for H-bonded bonded materials in general with merely classical knowledge (e.g. H-bond strength or H-bond length). Our work rationalizes the contrasting influence of quantum nuclear dynamics on a wide variety of materials, including liquid water and HF, and highlights the need for flexible molecules in force-field based studies of quantum nuclear dynamics.

  18. Nature of bonding forces between two hydrogen-passivated silicon wafers

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Nielsen, E.; Hult, E.;

    1998-01-01

    attraction between H overlayers, we find that the attraction is mainly due to long-range van der Waals interactions between the Si substrates, while the equilibrium separation is determined by short-range repulsion between occupied Si-H orbitals. Estimated bonding energies and Si-H frequency shifts...

  19. Nature of hydrogen bonding in coal-derived asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.R.; Li, N.C.

    1978-02-01

    Reports are presented on near-infrared and proton magneti resonance studies of hydrogen bonding between the hydroxyl group of o-phenylphenol (OPP) and two coal derived asphaltenes, and their acid and base components. The asphaltenes were prepared from bituminous coal under the same conditions except that one was prepared using a CoMo catalyst. The results of the studies show that the use of the CoMo catalyst leads to a base asphaltene component of lower molecular weight and higher hydrogen-bond acceptor strength.

  20. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    Science.gov (United States)

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed.

  1. Bonding with the Natural World: The Roots of Environmental Awareness

    Science.gov (United States)

    Chawla, Louise

    2013-01-01

    With delicate literary style and allusions, Louise Chawla combines her ecological research and Montessori background to portray the unfolding of childhood in natural places. Starting with "enchantment with the world" as the basis for nature education for the child under six, the article suggests that the "loose parts" in the…

  2. Shake for Sigma, Pray for Pi: Classroom Orbital Overlap Analogies

    Science.gov (United States)

    Dicks, Andrew P.

    2011-01-01

    An introductory organic classroom demonstration is discussed where analogies are made between common societal hand contact and covalent bond formation. A handshake signifies creation of a [sigma] bond ("head-on" orbital overlap), whereas the action of praying illustrates "sideways" overlap and generation of a [pi] bond. The nature of orbital and…

  3. Local explicitly correlated second-order Møller-Plesset perturbation theory with pair natural orbitals.

    Science.gov (United States)

    Tew, David P; Helmich, Benjamin; Hättig, Christof

    2011-08-21

    We explore using a pair natural orbital analysis of approximate first-order pair functions as means to truncate the space of both virtual and complementary auxiliary orbitals in the context of explicitly correlated F12 methods using localised occupied orbitals. We demonstrate that this offers an attractive procedure and that only 10-40 virtual orbitals per significant pair are required to obtain second-order valence correlation energies to within 1-2% of the basis set limit. Moreover, for this level of virtual truncation, only 10-40 complementary auxiliary orbitals per pair are required for an accurate resolution of the identity in the computation of the three- and four-electron integrals that arise in explicitly correlated methods.

  4. Bonding, Backbonding, and Spin-Polarized Molecular Orbitals:Basis for Magnetism and Semiconducting Transport in V[TCNE]x~;;2

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, Jeffrey B; Kortright, Jeffrey B; Lincoln, Derek M; Edelstein, Ruth Shima; Epstein, Arthur J

    2008-05-20

    X-ray absorption spectroscopy (XAS) and magnetic circular dichroism (MCD) at the V L2,3 and C and N K edges reveal bonding/backbonding interactions in films of the 400 K magnetic semiconductor V[TCNE]x~;;2. In V spectra, dxy-like orbitals are modeled assuming V2+ in an octahedral ligand field, while dz2 and dx2-y2 orbitals involved in strong covalent bonding cannot be modeled by atomic calculations. C and N MCD, and differences in XAS from neutral TCNE molecules, reveal spin-polarized molecular orbitals in V[TCNE]x~;;2 associated with backbonding interactions that yield its novel properties.

  5. Hydrothermal Synthesis, Characterization and Natural Bond Orbital(NBO) Analysis of a Binuclear Lead(Ⅱ) Complex with Cinnamic Acid and Medpq Ligands%由肉桂酸和甲基联吡啶喹喔啉配体构筑的双核铅(Ⅱ)的配合物的水热合成、表征及自然键轨道(NBO)分析

    Institute of Scientific and Technical Information of China (English)

    方燕; 王蕾; 倪良; 姚加

    2013-01-01

    采用水热法合成了一种新型双核铅(Ⅱ)配合物[Pb2(CA)4(Medpq)2](HCA=cinnamic acid,Medpq=2-methyldipyrido[3,2-f:2,3'-h]quinoxaline),并对其进行了元素分析、红外光谱、紫外可见光光谱、热重表征、荧光光谱、X射线单晶衍射测定和理论计算.标题配合物属于三斜晶系,空间群为P(1).在晶体中,铅与来自Medpq配体的2个氮原子和3个肉桂酸配体的5个氧原子形成七配位.应用Gaussian 03程序,对标题配合物进行了自然键轨道(NBO)分析,结果表明Pb(Ⅱ)与配位原子间的价键类型都属于共价键范畴.%A binuclear Pb(Ⅱ) complex [Pb2(CA)4(Medpq)2] (HCA=cinnamic acid,Medpq=2-methyldipyrido[3,2-f:2,3'-h]quinoxaline) has been hydrothermally synthesized and structurally characterized by elemental analysis,IR spectrum,UV-Vis spectrum,TG,fluorescent emission,single-crystal X-ray diffraction and theoretical calculations.Title compound crystallizes in triclinic,space group P(1) with a=0.854 35(17) nm,b=1.250 9(3) nm,c=1.436 6 (3) nm,α=107.45 (3)°,β=105.63 (3)°,y=97.04 (3)°.In the crystal structure,the lead atom is sevencoordinated with two nitrogen atoms from Medpq ligand and five oxygen atoms from three cinnamic acid ligands.Natural bond orbital (NBO) analysis was performed by using the NBO method built in Gaussian 03 Program.The calculation results shown an covalent interaction between the coordinated atoms and Pb(Ⅱ) ion.CCDC:859036.

  6. 29 CFR 2580.412-8 - The nature of the duties or activities to which the bonding requirement relates.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false The nature of the duties or activities to which the bonding requirement relates. 2580.412-8 Section 2580.412-8 Labor Regulations Relating to Labor (Continued) EMPLOYEE... INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-8 The nature...

  7. Time-dependent renormalized-natural-orbital theory applied to laser-driven H$_2^+$

    CERN Document Server

    Hanusch, A; Brics, M; Bauer, D

    2016-01-01

    Recently introduced time-dependent renormalized-natural orbital theory (TDRNOT) is extended towards a multi-component approach in order to describe H$_2^+$ beyond the Born-Oppenheimer approximation. Two kinds of natural orbitals, describing the electronic and the nuclear degrees of freedom are introduced, and the exact equations of motion for them are derived. The theory is benchmarked by comparing numerically exact results of the time-dependent Schr\\"odinger equation for a H$_2^+$ model system with the corresponding TDRNOT predictions. Ground state properties, linear response spectra, fragmentation, and high-order harmonic generation are investigated.

  8. Natural orbitals representation and Fermi sea depletion in finite nuclei and nuclear matter

    CERN Document Server

    Psonis, V P; Massen, S E

    2013-01-01

    The natural orbitals and natural occupation numbers of various N = Z, sp and sd shell nuclei are calculated by applying a correlated one-body density matrix. The correlated density matrix has been evaluated by considering central correlations of Jastrow type and an approximation named factor cluster expansion. The correlation effects on the natural orbitals, natural occupation numbers and the Fermi sea depletion are discussed and analysed. In addition, an approximate expression for the correlated one-body density matrix of the nuclear matter has been used for the evaluation of the relative momentum distribution and the Fermi sea depletion. We found that the value of the Fermi sea depletion is higher in closed shell nuclei compared to open shell ones and it is lower compared to the case of nuclear matter. This statement could be confirmed by relevant experimental studies.

  9. Development of Monte Carlo configuration interaction: Natural orbitals and second-order perturbation theory

    CERN Document Server

    Coe, J P; 10.1063/1.4767436

    2013-01-01

    Approximate natural orbitals are investigated as a way to improve a Monte Carlo configuration interaction (MCCI) calculation. We introduce a way to approximate the natural orbitals in MCCI and test these and approximate natural orbitals from MP2 and QCISD in MCCI calculations of single-point energies. The efficiency and accuracy of approximate natural orbitals in MCCI potential curve calculations for the double hydrogen dissociation of water, the dissociation of carbon monoxide and the dissociation of the nitrogen molecule are then considered in comparison with standard MCCI when using full configuration interaction as a benchmark. We also use the method to produce a potential curve for water in an aug-cc-pVTZ basis. A new way to quantify the accuracy of a potential curve is put forward that takes into account all of the points and that the curve can be shifted by a constant. We adapt a second-order perturbation scheme to work with MCCI (MCCIPT2) and improve the efficiency of the removal of duplicate states i...

  10. Oxidation and aging in U and Pu probed by spin-orbit sum rule analysis: indications for covalent metal-oxide bonds

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K; der Laan, G v; Haire, R; Wall, M; Schwartz, A

    2005-10-07

    Transmission electron microscopy is used to acquire electron energy-loss spectra from phase-specific regions of Pu and U metal, PuO{sub 2} and UO{sub 2}, and aged, self-irradiated Pu metal. The N{sub 4,5} (4d {yields} 5f) spectra are analyzed using the spin-orbit sum rule. Our results show that the technique is sensitive enough to detect changes in the branching ratio of the white-line peaks between the metal and dioxide of both U and Pu. There is a small change in the branching ratio between different Pu metals, and the data trends as would be expected for varying f electron localization, i.e., {alpha}-Pu, {delta}-Pu, aged {delta}-Pu. Moreover, our results suggest that the metal-oxide bonds in UO{sub 2} and PuO{sub 2} are strongly covalent in nature and do not exhibit an integer valence change as would be expected from purely ionic bonding.

  11. Time Effects on Morphology and Bonding Ability in Mercerized Natural Fibers for Composite Reinforcement

    Directory of Open Access Journals (Sweden)

    T. Williams

    2011-01-01

    Full Text Available Properties of cellulose-derived fibers are extremely sensitive to surface treatment. Many studies have investigated the effects of varying surface treatment parameters in natural fibers to improve fiber-matrix bonding; however, work is still needed to assist with developing better quality control methods to use these fibers in more load-bearing composites. Kenaf fibers were alkali treated, and the surface and morphology were analyzed to determine how treatment time affected the bonding sites in natural fibers. The mechanical behavior was also characterized, and tensile testing reported a 61% increase in strength and a 25% increase in modulus in fibers treated for 16 hours. The increase in tensile properties was assumed to result from increased intermolecular interaction and increased crystallinity in cellulose, which was supported by XRD. On the other hand, FTIR spectroscopy and XPS showed that the amount of hydroxyl groups needed for fiber-matrix bonding decreased at longer treatment times.

  12. Exploring the Nature of Silicon-Noble Gas Bonds in H3SiNgNSi and HSiNgNSi Compounds (Ng = Xe, Rn

    Directory of Open Access Journals (Sweden)

    Sudip Pan

    2015-03-01

    Full Text Available Ab initio and density functional theory-based computations are performed to investigate the structure and stability of H3SiNgNSi and HSiNgNSi compounds (Ng = Xe, Rn. They are thermochemically unstable with respect to the dissociation channel producing Ng and H3SiNSi or HSiNSi. However, they are kinetically stable with respect to this dissociation channel having activation free energy barriers of 19.3 and 23.3 kcal/mol for H3SiXeNSi and H3SiRnNSi, respectively, and 9.2 and 12.8 kcal/mol for HSiXeNSi and HSiRnNSi, respectively. The rest of the possible dissociation channels are endergonic in nature at room temperature for Rn analogues. However, one three-body dissociation channel for H3SiXeNSi and one two-body and one three-body dissociation channels for HSiXeNSi are slightly exergonic in nature at room temperature. They become endergonic at slightly lower temperature. The nature of bonding between Ng and Si/N is analyzed by natural bond order, electron density and energy decomposition analyses. Natural population analysis indicates that they could be best represented as (H3SiNg+(NSi− and (HSiNg+(NSi−. Energy decomposition analysis further reveals that the contribution from the orbital term (ΔEorb is dominant (ca. 67%–75% towards the total attraction energy associated with the Si-Ng bond, whereas the electrostatic term (ΔEelstat contributes the maximum (ca. 66%–68% for the same in the Ng–N bond, implying the covalent nature of the former bond and the ionic nature of the latter.

  13. Bonding analysis using localized relativistic orbitals: water, the ultrarelativistic case and the heavy homologues H2X (X = Te, Po, eka-Po).

    Science.gov (United States)

    Dubillard, S; Rota, J-B; Saue, T; Faegri, K

    2006-04-21

    We report the implementation of Pipek-Mezey [J. Chem. Phys. 90, 4916 (1989)] localization of molecular orbitals in the framework of a four-component relativistic molecular electronic structure theory. We have used an exponential parametrization of orbital rotations which allows the use of unconstrained optimization techniques. We demonstrate the strong basis set dependence of the Pipek-Mezey localization criterion and how it can be eliminated. We have employed localization in conjunction with projection analysis to study the bonding in the water molecule and its heavy homologues. We demonstrate that in localized orbitals the repulsion between hydrogens in the water molecule is dominated by electrostatic rather than exchange interactions and that freezing the oxygen 2s orbital blocks polarization of this orbital rather than hybridization. We also point out that the bond angle of the water molecule cannot be rationalized from the potential energy alone due to the force term of the molecular virial theorem that comes into play at nonequilibrium geometries and which turns out to be crucial in order to correctly reproduce the minimum of the total energy surface. In order to rapidly assess the possible relativistic effects we have carried out the geometry optimizations of the water molecule at various reduced speed of light with and without spin-orbit interaction. At intermediate speeds, the bond angle is reduced to around 90 degrees , as is known experimentally for H(2)S and heavier homologues, although our model of ultrarelativistic water by construction does not allow any contribution from d orbitals to bonding. At low speeds of light the water molecule becomes linear which is in apparent agreement with the valence shell electron pair repulsion (VSEPR) model since the oxygen 2s12 and 2p12 orbitals both become chemically inert. However, we show that linearity is brought about by the relativistic stabilization of the (n + 1)s orbital, the same mechanism that leads to an

  14. Strength and nature of hydrogen bonding interactions in mono- and di-hydrated formamide complexes.

    Science.gov (United States)

    Angelina, Emilio L; Peruchena, Nélida M

    2011-05-12

    In this work, mono- and di-hydrated complexes of the formamide were studied. The calculations were performed at the MP2/6-311++G(d,p) level of approximation. The atoms in molecules theory (AIM), based on the topological properties of the electronic density distribution, was used to characterize the different types of bonds. The analysis of the hydrogen bonds (H-bonds) in the most stable mono- and di-hydrated formamide complexes shows a mutual reinforcement of the interactions, and some of these complexes can be considered as "bifunctional hydrogen bonding hydration complexes". In addition, we analyzed how the strength and the nature of the interactions, in mono-hydrated complexes, are modified by the presence of a second water molecule in di-hydrated formamide complexes. Structural changes, cooperativity, and electron density redistributions demonstrate that the H-bonds are stronger in the di-hydrated complexes than in the corresponding mono-hydrated complexes, wherein the σ- and π-electron delocalization were found. To explain the nature of such interactions, we carried out the atoms in molecules theory in conjunction with reduced variational space self-consistent field (RVS) decomposition analysis. On the basis of the local Virial theorem, the characteristics of the local electron energy density components at the bond critical points (BCPs) (the 1/4∇ (2)ρ(b) component of electron energy density and the kinetic energy density) were analyzed. These parameters were used in conjunction with the electron density and the Laplacian of the electron density to analyze the characteristics of the interactions. The analysis of the interaction energy components for the systems considered indicates that the strengthening of the hydrogen bonds is manifested by an increased contribution of the electrostatic energy component represented by the kinetic energy density at the BCP.

  15. Investigation of the NMR spin-spin coupling constants across the hydrogen bonds in ubiquitin: the nature of the hydrogen bond as reflected by the coupling mechanism.

    Science.gov (United States)

    Tuttle, Tell; Kraka, Elfi; Wu, Anan; Cremer, Dieter

    2004-04-28

    The indirect scalar NMR spin-spin coupling constants across the H-bonds of the protein ubiquitin were calculated, including the Fermi contact, the diamagnetic spin-orbit, the paramagnetic spin-orbit, and the spin dipole term, employing coupled perturbed density functional theory in combination with the B3LYP functional and different basis sets: (9s,5p,1d/5s,1p)[6s,4p,1d/3s,1p] and (11s,7p,2d/5s,1p)[7s,6p,2d/4s,2p]. Four different models based on either the crystal or the aqueous solution structure of ubiquitin were used to describe H-bonding for selected residue pairs of ubiquitin. Calculated and measured 3hJ(NC') coupling constants differ depending on the model used, which is due to the fact that the geometry of ubiquitin is different in the solid state and in aqueous solution. Also, conformational averaging leads to a decrease of the magnitude of the measured 3hJ(NC') constants, which varies locally (larger for -sheets, smaller for -helix). Two different spin-spin coupling mechanisms were identified. While mechanism I transmits spin polarization via an electric field effect, mechanism II involves also electron delocalization from the lone pair of the carbonyl oxygen to the antibonding orbital of the N-H bond. Mechanism I is more important in the crystal structure of ubiquitin, while in aqueous solution, mechanism II plays a larger role. It is possible to set up simple relationships between the spin-spin coupling constants associated with the H bond in proteins and the geometrical features of these bonds. The importance of the 3hJ(NC') and 1J(N-H) constants as descriptors for the H-bond is emphasized.

  16. Hydrogen bond and halogen bond inside the carbon nanotube

    Science.gov (United States)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  17. The nature of chemical bond in trioxide Mi-UO3

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2002-01-01

    Full Text Available Low-energy X-ray photoelectron and conversion electron spectra from uranium trioxide were measured, and calculations were done for the [UO2O4]-6 (D4b cluster which reflects the structure of uranium close environment in MI-UO3 in the non-relativistic and relativistic Xa-DVM approximation. This enabled a satisfactory qualitative and in some cases quantitative agreement between the experimental and theoretical data, and interpretation of such spectra. Despite the traditional opinion that before participation in the chemical binding, the U5f electrons could be promoted to the higher (for example - U6d levels, it was theoretically proved and experimentally confirmed that the U5f electrons (about two U5f electrons are able to participate directly in the chemical bond formation in uranium trioxide. The filled U5f states proved to be localized in the outer valence molecular orbitals energy range 4-9 eV, while the vacant U5f states were generally localized in the low-energy range (0-6 eV above zero. It was experimentally shown that U6p electrons not only participate effectively in the inner valence molecular orbital formation but also participate strongly (more than 1 U6p electron in the formation of die filled outer valence molecular orbitals.

  18. 29 CFR 453.11 - The nature of the “duties” to which the bonding requirement relates.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false The nature of the âdutiesâ to which the bonding requirement relates. 453.11 Section 453.11 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS... LABOR-MANAGEMENT REPORTING AND DISCLOSURE ACT OF 1959 Scope of the Bond § 453.11 The nature of...

  19. Non-sequential double ionization with time-dependent renormalized natural orbital theory

    CERN Document Server

    Brics, M; Bauer, D

    2014-01-01

    Recently introduced time-dependent renormalized natural orbital theory (TDRNOT) is tested on non-sequential double ionization (NSDI) of a numerically exactly solvable one-dimensional model He atom subject to few-cycle, 800-nm laser pulses. NSDI of atoms in strong laser fields is a prime example of non-perturbative, highly correlated electron dynamics. As such, NSDI is an important "worst-case" benchmark for any time-dependent few and many-body technique beyond linear response. It is found that TDRNOT reproduces the celebrated NSDI "knee," i.e., a many-order-of-magnitude enhancement of the double ionization yield (as compared to purely sequential ionization) with only the ten most significant natural orbitals (NOs) per spin. Correlated photoelectron spectra - as "more differential" observables - require more NOs.

  20. On the efficiency of VBSCF algorithms, a comment on "An efficient algorithm for energy gradients and orbital optimization in valence bond theory"

    NARCIS (Netherlands)

    van Lenthe, J. H.; Broer-Braam, H. B.; Rashid, Z.

    2012-01-01

    We comment on the paper [Song et al., J. Comput. Chem. 2009, 30, 399]. and discuss the efficiency of the orbital optimization and gradient evaluation in the Valence Bond Self Consistent Field (VBSCF) method. We note that Song et al. neglect to properly reference Broer et al., who published an algori

  1. Is There a Need to Discuss Atomic Orbital Overlap When Teaching Hydrogen-Halide Bond Strength and Acidity Trends in Organic Chemistry?

    Science.gov (United States)

    Devarajan, Deepa; Gustafson, Samantha J.; Bickelhaupt, F. Matthias; Ess, Daniel H.

    2015-01-01

    Undergraduate organic chemistry textbooks and Internet websites use a variety of approaches for presenting and explaining the impact of halogen atom size on trends in bond strengths and/or acidity of hydrogen halides. In particular, several textbooks and Internet websites explain these trends by invoking decreasing orbital overlap between the…

  2. The Orbital Nature of 81 Ellipsoidal Red Giant Binaries in the Large Magellanic Cloud

    Science.gov (United States)

    Nie, J. D.; Wood, P. R.; Nicholls, C. P.

    2017-02-01

    In this paper, we collect a sample of 81 ellipsoidal red giant binaries in the Large Magellanic Cloud (LMC), and we study their orbital natures individually and statistically. The sample contains 59 systems with circular orbits and 22 systems with eccentric orbits. We derive orbital solutions using the 2010 version of the Wilson–Devinney code. The sample is selection-bias corrected, and the orbital parameter distributions are compared to model predictions for the LMC and to observations in the solar vicinity. The masses of the red giant primaries are found to range from about 0.6 to 9 {M}ȯ with a peak at around 1.5 {M}ȯ , in agreement with studies of the star formation history of the LMC, which find a burst of star formation beginning around 4 Gyr ago. The observed distribution of mass ratios q={m}2/{m}1 is more consistent with the flat q distribution derived for the solar vicinity by Raghavan et al. than it is with the solar vicinity q distribution derived by Duquennoy & Mayor. There is no evidence for an excess number of systems with equal mass components. We find that about 20% of the ellipsoidal binaries have eccentric orbits, twice the fraction estimated by Soszynski et al. Our eccentricity evolution test shows that the existence of eccentric ellipsoidal red giant binaries on the upper parts of the red giant branch (RGB) can only be explained if tidal circularization rates are ∼1/100 the rates given by the usual theory of tidal dissipation in convective stars.

  3. The electronic nature of the 1,4-β-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry.

    Science.gov (United States)

    Loerbroks, Claudia; Rinaldi, Roberto; Thiel, Walter

    2013-11-25

    The molecular understanding of the chemistry of 1,4-β-glucans is essential for designing new approaches to the conversion of cellulose into platform chemicals and biofuels. In this endeavor, much attention has been paid to the role of hydrogen bonding occurring in the cellulose structure. So far, however, there has been little discussion about the implications of the electronic nature of the 1,4-β-glycosidic bond and its chemical environment for the activation of 1,4-β-glucans toward acid-catalyzed hydrolysis. This report sheds light on these central issues and addresses their influence on the acid hydrolysis of cellobiose and, by analogy, cellulose. The electronic structure of cellobiose was explored by DFT at the BB1 K/6-31++G(d,p) level. Natural bond orbital (NBO) analysis was performed to grasp the key bonding concepts. Conformations, protonation sites, and hydrolysis mechanisms were examined. The results for cellobiose indicate that cellulose is protected against hydrolysis not only by its supramolecular structure, as currently accepted, but also by its electronic structure, in which the anomeric effect plays a key role.

  4. An efficient and near linear scaling pair natural orbital based local coupled cluster method

    Science.gov (United States)

    Riplinger, Christoph; Neese, Frank

    2013-01-01

    In previous publications, it was shown that an efficient local coupled cluster method with single- and double excitations can be based on the concept of pair natural orbitals (PNOs) [F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009), 10.1063/1.3173827]. The resulting local pair natural orbital-coupled-cluster single double (LPNO-CCSD) method has since been proven to be highly reliable and efficient. For large molecules, the number of amplitudes to be determined is reduced by a factor of 105-106 relative to a canonical CCSD calculation on the same system with the same basis set. In the original method, the PNOs were expanded in the set of canonical virtual orbitals and single excitations were not truncated. This led to a number of fifth order scaling steps that eventually rendered the method computationally expensive for large molecules (e.g., >100 atoms). In the present work, these limitations are overcome by a complete redesign of the LPNO-CCSD method. The new method is based on the combination of the concepts of PNOs and projected atomic orbitals (PAOs). Thus, each PNO is expanded in a set of PAOs that in turn belong to a given electron pair specific domain. In this way, it is possible to fully exploit locality while maintaining the extremely high compactness of the original LPNO-CCSD wavefunction. No terms are dropped from the CCSD equations and domains are chosen conservatively. The correlation energy loss due to the domains remains below 8800 basis functions and >450 atoms. In all larger test calculations done so far, the LPNO-CCSD step took less time than the preceding Hartree-Fock calculation, provided no approximations have been introduced in the latter. Thus, based on the present development reliable CCSD calculations on large molecules with unprecedented efficiency and accuracy are realized.

  5. H{sub 4}: A challenging system for natural orbital functional approximations

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Cordoba, Eloy, E-mail: eloy.raco@gmail.com, E-mail: ematito@gmail.com; Lopez, Xabier [Faculty of Chemistry, University of the Basque Country UPV/EHU, and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi (Spain); Piris, Mario; Matito, Eduard, E-mail: eloy.raco@gmail.com, E-mail: ematito@gmail.com [Faculty of Chemistry, University of the Basque Country UPV/EHU, and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2015-10-28

    The correct description of nondynamic correlation by electronic structure methods not belonging to the multireference family is a challenging issue. The transition of D{sub 2h} to D{sub 4h} symmetry in H{sub 4} molecule is among the most simple archetypal examples to illustrate the consequences of missing nondynamic correlation effects. The resurgence of interest in density matrix functional methods has brought several new methods including the family of Piris Natural Orbital Functionals (PNOF). In this work, we compare PNOF5 and PNOF6, which include nondynamic electron correlation effects to some extent, with other standard ab initio methods in the H{sub 4} D{sub 4h}/D{sub 2h} potential energy surface (PES). Thus far, the wrongful behavior of single-reference methods at the D{sub 2h}–D{sub 4h} transition of H{sub 4} has been attributed to wrong account of nondynamic correlation effects, whereas in geminal-based approaches, it has been assigned to a wrong coupling of spins and the localized nature of the orbitals. We will show that actually interpair nondynamic correlation is the key to a cusp-free qualitatively correct description of H{sub 4} PES. By introducing interpair nondynamic correlation, PNOF6 is shown to avoid cusps and provide the correct smooth PES features at distances close to the equilibrium, total and local spin properties along with the correct electron delocalization, as reflected by natural orbitals and multicenter delocalization indices.

  6. Electrostatic Potential Maps and Natural Bond Orbital Analysis: Visualization and Conceptualization of Reactivity in Sanger's Reagent

    Science.gov (United States)

    Mottishaw, Jeffery D.; Erck, Adam R.; Kramer, Jordan H.; Sun, Haoran; Koppang, Miles

    2015-01-01

    Frederick Sanger's early work on protein sequencing through the use of colorimetric labeling combined with liquid chromatography involves an important nucleophilic aromatic substitution (S[subscript N]Ar) reaction in which the N-terminus of a protein is tagged with Sanger's reagent. Understanding the inherent differences between this S[subscript…

  7. Bond angle variations in XH3 [X = N, P, As, Sb, Bi]: the critical role of Rydberg orbitals exposed using a diabatic state model.

    Science.gov (United States)

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    Ammonia adopts sp(3) hybridization (HNH bond angle 108°) whereas the other members of the XH3 series PH3, AsH3, SbH3, and BiH3 instead prefer octahedral bond angles of 90-93°. We use a recently developed general diabatic description for closed-shell chemical reactions, expanded to include Rydberg states, to understand the geometry, spectroscopy and inversion reaction profile of these molecules, fitting its parameters to results from Equation of Motion Coupled-Cluster Singles and Doubles (EOM-CCSD) calculations using large basis sets. Bands observed in the one-photon absorption spectrum of NH3 at 18.3 eV, 30 eV, and 33 eV are reassigned from Rydberg (formally forbidden) double excitations to valence single-excitation resonances. Critical to the analysis is the inclusion of all three electronic states in which two electrons are placed in the lone-pair orbital n and/or the symmetric valence σ* antibonding orbital. An illustrative effective two-state diabatic model is also developed containing just three parameters: the resonance energy driving the high-symmetry planar structure, the reorganization energy opposing it, and HXH bond angle in the absence of resonance. The diabatic orbitals are identified as sp hybrids on X; for the radical cations XH3(+) for which only 2 electronic states and one conical intersection are involved, the principle of orbital following dictates that the bond angle in the absence of resonance is acos(-1/5) = 101.5°. The multiple states and associated multiple conical intersection seams controlling the ground-state structure of XH3 renormalize this to acos[3 sin(2)(2(1/2)atan(1/2))/2 - 1/2] = 86.7°. Depending on the ratio of the resonance energy to the reorganization energy, equilibrium angles can vary from these limiting values up to 120°, and the anomalously large bond angle in NH3 arises because the resonance energy is unexpectedly large. This occurs as the ordering of the lowest Rydberg orbital and the σ* orbital swap, allowing

  8. Investigations into the nature of halogen- and hydrogen-bonding interactions of some heteroaromatic rings with dichlorine monoxide.

    Science.gov (United States)

    Wu, Junyong

    2014-09-01

    We have studied the structures, properties, and nature of halogen- and hydrogen-bonding interactions between some heteroaromatic rings (C(5)H(5)N, C(4)H(4)O, and C(4)H(4)S) with Cl(2)O at the MP2/aug-cc-pVTZ level. We also considered the solvent effect on the halogen bonds and hydrogen bonds in the C(5)H(5)N-Cl(2)O complexes and found that the solvent has a weakening effect on the π-type halogen bond and hydrogen bond but a prominent enhancing effect on σ-type halogen bond. The complexes have also been analyzed with symmetry adapted perturbation theory method (SAPT).

  9. Solution set on the natural satellite formation orbits under first-order earth's non-spherical perturbation

    Institute of Scientific and Technical Information of China (English)

    Humei Wang; Wei Yang; Junfeng Li

    2005-01-01

    Using the reference orbital element approach, the precise governing equations for the relative motion of formation flight are formulated. A number of ideal formations with respect to an elliptic orbit can be designed based on the relative motion analysis from the equations. The features of the oscillating reference orbital elements are studied by using the perturbation theory. The changes in the relative orbit under perturbation are divided into three categories, termed scale enlargement, drift and distortion respectively. By properly choosing the initial mean orbital elements for the leader and follower satellites, the deviations from originally regular formation orbit caused by the perturbation can be suppressed. Thereby the natural formation is set up. It behaves either like non-disturbed or need little control to maintain.The presented reference orbital element approach highlights the kinematics properties of the relative motion and is convenient to incorporate the results of perturbation analysis on orbital elements. This method of formation design has advantages over other methods in seeking natural formation and in initializing formation.

  10. Structural bonding-breakage constitutive model for natural unsaturated clayey soils

    Science.gov (United States)

    Cai, Guo-Qing; Zhao, Cheng-Gang; Qin, Xiao-Ming

    2010-12-01

    The natural clayey soils are usually structural and unsaturated, which makes their mechanical properties quite different from the remolded saturated soils. A structural constitutive model is proposed to simulate the bonding-breakage micro-mechanism. In this model, the unsaturated soil element is divided into a cementation element and a friction element according to the binary medium theory, and the stress-strain coordination for these two elements is obtained. The cementation element is regarded as elastic, whereas the friction element is regarded as elastoplastic which can be described with the Gallipoli's model. The theoretical formulation is verified with the comparative experiments of isotropic compressions on the saturated and unsaturated structural soils. Parametric analyses of the effects of damage variables on the model predictions are further carried out, which show that breakage deformation of natural clayey soils increases with the rising amount of initial defects.

  11. Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds

    Science.gov (United States)

    Yexin, Feng; Ji, Chen; Xin-Zheng, Li; Enge, Wang

    2016-01-01

    The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275008, 91021007, and 10974012) and the China Postdoctoral Science Foundation (Grant No. 2014M550005).

  12. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.

    Science.gov (United States)

    Brovarets', Ol'ha O; Yurenko, Yevgen P; Hovorun, Dmytro M

    2014-01-01

    This study aims to cast light on the physico-chemical nature and energetic of the non-conventional CH···O/N H-bonds in the biologically important natural nucleobase pairs using a comprehensive quantum-chemical approach. As a whole, the 36 biologically important pairs, involving canonical and rare tautomers of nucleobases, were studied by means of all available up-to-date state-of-the-art quantum-chemical techniques along with quantum theory "Atoms in molecules" (QTAIM), Natural Bond Orbital (NBO) analysis, Grunenberg's compliance constants theory, geometrical and vibrational analyses to identify the CH···O/N interactions, reveal their physico-chemical nature and estimate their strengths as well as contribution to the overall base-pairs stability. It was shown that all the 38 CH···O/N contacts (25 CH···O and 13 CH···N H-bonds) completely satisfy all classical geometrical, electron-topological, in particular Bader's and "two-molecule" Koch and Popelier's, and vibrational criteria of H-bonding. The positive values of Grunenberg's compliance constants prove that the CH···O/N contacts in nucleobase pairs are stabilizing interactions unlike electrostatic repulsion and anti-H-bonds. NBO analysis indicates the electron density transfer from the lone electron pair of the acceptor atom (O/N) to the antibonding orbital corresponding to the donor group σ(∗)(CH). Moreover, significant increase in the frequency of the out-of-plane deformation modes γ (CH) under the formation of the CH···O (by 17.2÷81.3/10.8÷84.7 cm(-1)) and CH···N (by 32.7÷85.9/9.0÷77.9 cm(-1)) H-bonds at the density functional theory (DFT)/second-order Møller-Plesset (MP2) levels of theory, respectively, and concomitant changes of their intensities can be considered as reliable indicators of H-bonding. The strengths of the CH···O/N interactions, evaluated by means of Espinosa-Molins-Lecomte formula, lie within the range 0.45÷3.89/0.62÷4.10 kcal/mol for the CH

  13. Quantification of hyperconjugative effect on the proton donor X-H bond length changes in the red- and blueshifted hydrogen-bonded complexes

    Science.gov (United States)

    Zhou, Pan-Pan; Qiu, Wen-Yuan; Jin, Neng-Zhi

    2012-08-01

    A whole dataset containing 55 hydrogen bonds were studied at the MP2/aug-cc-pVTZ level of theory. The changes of geometries and stretching vibrational frequencies show that there are 31 redshifted and 24 blueshifted hydrogen-bonded complexes. Natural bond orbital analysis was carried out at the B3LYP/aug-cc-pVTZ level of theory to obtain the electron densities in the bonding and antibonding orbitals of the proton donor X-H bond, which are closely associated with its bond length. Based on their relationship, a generally applicable method considering both the electron densities in the bonding and antibonding orbitals of the proton donor X-H bond has been developed to quantitatively describe the hyperconjugative effect on the X-H bond length changes in these hydrogen-bonded complexes.

  14. Evidence for chemical bond formation at rubber-brass interface: Photoelectron spectroscopy study of bonding interaction between copper sulfide and model molecules of natural rubber

    Science.gov (United States)

    Ozawa, Kenichi; Mase, Kazuhiko

    2016-12-01

    Strong adhesion between rubber and brass has been considered to arise mainly from the mechanical interaction, which is characterized by dendritic interlocking at the interface. In order to examine a possible contribution of the chemical interaction, chemical state analysis was carried out for model molecules of natural rubber (2-methyl-2-butene and isoprene) adsorbed on Cu2S, a key chemical species for adhesion, by means of photoelectron spectroscopy (PES). Absence of a C 1s PES component associated with C=C bonds and the appearance of adsorption-induced components in the S 2p region indicate that the molecules interact with the Cu2S surface via the C=C bond to form C-S covalent bonds. This proves that the chemical interaction certainly plays a role in rubber-brass adhesion along with the mechanical interaction.

  15. Mineral density, morphology and bond strength of natural versus artificial caries-affected dentin.

    Science.gov (United States)

    Joves, Gerardo José; Inoue, Go; Nakashima, Syozi; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    2013-01-01

    This study aimed to investigate an artificial caries-affected dentin (ACAD) model for in vitro bonding studies in comparison to natural caries-affected dentin (NCAD) of human teeth. ACAD was created over 7 days in a demineralizing solution. Mineral density (MD) at different depth levels (0-150 µm) was compared between NCAD and ACAD by transverse microradiography. Micro-tensile bond strengths (µTBS) of two two-step self-etch adhesives to sound dentin, NCAD and ACAD were evaluated. Caries-affected dentin type was not a significant factor when comparing MD at different lesion levels (p>0.05). Under SEM, the dentinal tubules appeared occluded with crystal logs 1-2 µm in thickness in the NCAD; whereas they remained open in the ACAD. The µTBS to caries-affected dentin was lower than sound dentin, but was not affected by the type of caries (p>0.05). In spite of their different morphologies, the ACAD model showed similar MD and µTBS compared to NCAD.

  16. Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study.

    Science.gov (United States)

    Wu, Qun-Yan; Lan, Jian-Hui; Wang, Cong-Zhi; Xiao, Cheng-Liang; Zhao, Yu-Liang; Wei, Yue-Zhou; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-03-20

    Studying the bonding nature of uranyl ion and graphene oxide (GO) is very important for understanding the mechanism of the removal of uranium from radioactive wastewater with GO-based materials. We have optimized 22 complexes between uranyl ion and GO applying density functional theory (DFT) combined with quasi-relativistic small-core pseudopotentials. The studied oxygen-containing functional groups include hydroxyl, carboxyl, amido, and dimethylformamide. It is observed that the distances between uranium atoms and oxygen atoms of GO (U-OG) are shorter in the anionic GO complexes (uranyl/GO(-/2-)) compared to the neutral GO ones (uranyl/GO). The formation of hydrogen bonds in the uranyl/GO(-/2-) complexes can enhance the binding ability of anionic GO toward uranyl ions. Furthermore, the thermodynamic calculations show that the changes of the Gibbs free energies in solution are relatively more negative for complexation reactions concerning the hydroxyl and carboxyl functionalized anionic GO complexes. Therefore, both the geometries and thermodynamic energies indicate that the binding abilities of uranyl ions toward GO modified by hydroxyl and carboxyl groups are much stronger compared to those by amido and dimethylformamide groups. This study can provide insights for designing new nanomaterials that can efficiently remove radionuclides from radioactive wastewater.

  17. Theoretical study of mononuclear nickel(I), nickel(0), copper(i), and cobalt(I) dioxygen complexes: new insight into differences and similarities in geometry and bonding nature.

    Science.gov (United States)

    Chen, Yue; Sakaki, Shigeyoshi

    2013-11-18

    Geometries, bonding nature, and electronic structures of (N^N)Ni(O2) (N^N = β-diketiminate), its cobalt(I) and copper(I) analogues, and (Ph3P)2Ni(O2) were investigated by density functional theory (DFT) and multistate restricted active space multiconfigurational second-order perturbation (MS-RASPT2) methods. Only (N^N)Ni(O2) takes a C(S) symmetry structure, because of the pseudo-Jahn-Teller effect, while all other complexes take a C(2V) structure. The symmetry lowering in (N^N)Ni(O2) is induced by the presence of the singly occupied δ(d(xy)-π(x)*) orbital. In all of these complexes, significant superoxo (O2-) character is found from the occupation numbers of natural orbitals and the O-O π* bond order, which is independent of the number of d electrons and the oxidation state of metal center. However, this is not a typical superoxo species, because the spin density is not found on the O2 moiety, even in open-shell complexes, (N^N)Ni(O2) and (N^N)Co(O2). The M-O and O-O distances are considerably different from each other, despite the similar superoxo character. The M-O distance and the interaction energy between the metal and O2 moieties are determined by the d(yz) orbital energy of the metal moiety taking the valence state. The binding energy of the O2 moiety is understood in terms of the d(yz) orbital energy in the valence state and the promotion energy of the metal moiety from the ground state to the valence state. Because of the participations of various charge transfer (CT) interactions between the metal and O2 moieties, neither the d(yz) orbital energy nor the electron population of the O2 moiety are clearly related to the O-O bond length. Here, the π bond order of the O2 moiety is proposed as a good measure for discussing the O-O bond length. Because the d electron configuration is different among these complexes, the CT interactions are different, leading to the differences in the π bond order and, hence, the O-O distance among these complexes. The

  18. The structure, properties, and nature of HArF-benzene complex: redshift and blueshift of Ar-H stretch frequency and rare gas atomic number dependence of hydrogen bonds.

    Science.gov (United States)

    Liu, Xiaofeng; Li, Qingzhong; Li, Ran; Li, Wenzuo; Cheng, Jianbo

    2011-12-15

    Ab initio calculations have been performed for the complexes of benzene with HArF, HKrF, and HXeF. The computed results indicate that the complexes of benzene-HArF exist in different conformations and among them those with π-hydrogen bonds are the more stable than those with C-H···F hydrogen bonds. Interestingly, the Ar-H stretching frequency is redshifted in the more stable isomer and blueshifted in the less stable form. The Ng (Ng=Ar, Kr, and Xe) atomic number dependence of the Ng-H···π and C-H···F hydrogen bonds has been explored. The result indicates that the strength of Ng-H···π and C-H···F hydrogen bonds is weakened with the increase of Ng atomic number. Natural bond orbital analysis has been performed to understand the interaction nature, frequency shift of H-Ng stretch, and dependence of Ng-H···π and C-H···F hydrogen bonds on the Ng atomic number.

  19. Molecular structure, natural bond analysis, vibrational and electronic spectra, surface enhanced Raman scattering and Mulliken atomic charges of the normal modes of [Mn(DDTC)2] complex

    Science.gov (United States)

    Téllez S., Claudio A.; Costa, Anilton C.; Mondragón, M. A.; Ferreira, Glaucio B.; Versiane, O.; Rangel, J. L.; Lima, G. Müller; Martin, A. A.

    2016-12-01

    Theoretical and experimental bands have been assigned for the Fourier Transform Infrared and Raman spectra of the bis(diethyldithiocarbamate)Mn(II) complex, [Mn(DDTC)2]. The calculations have been based on the DFT/B3LYP method, second derivative spectra and band deconvolution analysis. The UV-vis experimental spectra were measured in acetonitrile solution, and the calculated electronic spectrum was obtained using the TD/B3LYP method with 6-311G(d, p) basis set for all atoms. Charge transfer bands and those d-d spin forbidden were assigned in the UV-vis spectrum. The natural bond orbital analysis was carried out using the DFT/B3LYP method and the Mn(II) hybridization leading to the planar geometry of the framework was discussed. Surface enhanced Raman scattering (SERS) was also performed. Mulliken charges of the normal modes were obtained and related to the SERS enhanced bands.

  20. A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies

    Science.gov (United States)

    Helmich, Benjamin; Hättig, Christof

    2013-08-01

    We demonstrate how to extend the pair natural orbital (PNO) methodology for excited states, presented in a previous work for the perturbative doubles correction to configuration interaction singles (CIS(D)), to iterative coupled cluster methods such as the approximate singles and doubles model CC2. The original O(N^5) scaling of the PNO construction is reduced by using orbital-specific virtuals (OSVs) as an intermediate step without spoiling the initial accuracy of the PNO method. Furthermore, a slower error convergence for charge-transfer states is analyzed and resolved by a numerical Laplace transformation during the PNO construction, so that an equally accurate treatment of local and charge-transfer excitations is achieved. With state-specific truncated PNO expansions, the eigenvalue problem is solved by combining the Davidson algorithm with deflation to project out roots that have already been determined and an automated refresh with a generation of new PNOs to achieve self-consistency of the PNO space. For a large test set, we found that truncation errors for PNO-CC2 excitation energies are only slightly larger than for PNO-CIS(D). The computational efficiency of PNO-CC2 is demonstrated for a large organic dye, where a reduction of the doubles space by a factor of more than 1000 is obtained compared to the canonical calculation. A compression of the doubles space by a factor 30 is achieved by a unified OSV space only. Moreover, calculations with the still preliminary PNO-CC2 implementation on a series of glycine oligomers revealed an early break even point with a canonical RI-CC2 implementation between 100 and 300 basis functions.

  1. A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies.

    Science.gov (United States)

    Helmich, Benjamin; Hättig, Christof

    2013-08-28

    We demonstrate how to extend the pair natural orbital (PNO) methodology for excited states, presented in a previous work for the perturbative doubles correction to configuration interaction singles (CIS(D)), to iterative coupled cluster methods such as the approximate singles and doubles model CC2. The original O(N(5)) scaling of the PNO construction is reduced by using orbital-specific virtuals (OSVs) as an intermediate step without spoiling the initial accuracy of the PNO method. Furthermore, a slower error convergence for charge-transfer states is analyzed and resolved by a numerical Laplace transformation during the PNO construction, so that an equally accurate treatment of local and charge-transfer excitations is achieved. With state-specific truncated PNO expansions, the eigenvalue problem is solved by combining the Davidson algorithm with deflation to project out roots that have already been determined and an automated refresh with a generation of new PNOs to achieve self-consistency of the PNO space. For a large test set, we found that truncation errors for PNO-CC2 excitation energies are only slightly larger than for PNO-CIS(D). The computational efficiency of PNO-CC2 is demonstrated for a large organic dye, where a reduction of the doubles space by a factor of more than 1000 is obtained compared to the canonical calculation. A compression of the doubles space by a factor 30 is achieved by a unified OSV space only. Moreover, calculations with the still preliminary PNO-CC2 implementation on a series of glycine oligomers revealed an early break even point with a canonical RI-CC2 implementation between 100 and 300 basis functions.

  2. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    Science.gov (United States)

    Wyrick, Jonathan; Einstein, T. L.; Bartels, Ludwig

    2015-03-01

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species' diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  3. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Wyrick, Jonathan; Bartels, Ludwig, E-mail: ludwig.bartels@ucr.edu [Pierce Hall, University of California-Riverside, Riverside, California 92521 (United States); Einstein, T. L. [Department of Physics and Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742-4111 (United States)

    2015-03-14

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species’ diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  4. An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase

    Science.gov (United States)

    Golden, Emily; Yu, Li-Juan; Meilleur, Flora; Blakeley, Matthew P.; Duff, Anthony P.; Karton, Amir; Vrielink, Alice

    2017-01-01

    The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed. PMID:28098177

  5. An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase

    Science.gov (United States)

    Golden, Emily; Yu, Li-Juan; Meilleur, Flora; Blakeley, Matthew P.; Duff, Anthony P.; Karton, Amir; Vrielink, Alice

    2017-01-01

    The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed.

  6. Influence of substituents on the nature of metal⋯π interaction and its cooperativity with halogen bond

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Meng; Cheng, Jianbo, E-mail: li70316@sohu.com, E-mail: liqingzhong1990@sina.com; Yang, Xin; Li, Wenzuo; Xiao, Bo; Li, Qingzhong, E-mail: li70316@sohu.com, E-mail: liqingzhong1990@sina.com [The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005 (China)

    2015-08-07

    High-level quantum chemical calculations have been performed to investigate the influence of substituents on the metal—π interaction and its cooperative effect with halogen bond in C{sub 2}X{sub 4}⋯MCN⋯ClF (X = H, CN, CH{sub 3}; M = Cu, Ag, Au). The strong electron-withdrawing group CN weakens the metal—π covalent interaction, while the weak electron-withdrawing group CH{sub 3} strengthens it. The metal—π covalent interaction is dominated by electrostatic energy although the AuCN complex has approximately equal electrostatic and polarization contributions. However, the metal—π covalent interaction is governed by polarization energy due to the CN substitution. A cooperative effect is found for the halogen bond and metal—π interactions in C{sub 2}H{sub 4}⋯MCN⋯ClF, while a diminutive effect occurs in the triads by the CN substituent. Orbital interaction analysis indicates that the strong electron-withdrawing group CN causes the C=C group vary from a stronger donor orbital to a stronger acceptor orbital.

  7. Communication: Multipole approximations of distant pair energies in local correlation methods with pair natural orbitals

    Science.gov (United States)

    Werner, Hans-Joachim

    2016-11-01

    The accuracy of multipole approximations for distant pair energies in local second-order Møller-Plesset perturbation theory (LMP2) as introduced by Hetzer et al. [Chem. Phys. Lett. 290, 143 (1998)] is investigated for three chemical reactions involving molecules with up to 92 atoms. Various iterative and non-iterative approaches are compared, using different energy thresholds for distant pair selection. It is demonstrated that the simple non-iterative dipole-dipole approximation, which has been used in several recent pair natural orbitals (PNO)-LMP2 and PNO-LCCSD (local coupled-cluster with singles and doubles) methods, may underestimate the distant pair energies by up to 50% and can lead to significant errors in relative energies, unless very tight thresholds are used. The accuracy can be much improved by including higher multipole orders and by optimizing the distant pair amplitudes iteratively along with all other amplitudes. A new approach is presented in which very small special PNO domains for distant pairs are used in the iterative approach. This reduces the number of distant pair amplitudes by 3 orders of magnitude and keeps the additional computational effort for the iterative optimization of distant pair amplitudes minimal.

  8. The Bellamy relationship and the nature of the H-bond. Heteroassociates of alcohols

    Science.gov (United States)

    Vokin, A. I.; Sinegovskaya, L. M.; Shulunova, A. M.; Turchaninov, V. K.

    2013-05-01

    IR spectroscopic data are used to demonstrate that the donor ability of alcohols in H-bonds is determined by the molecular conformation and the universal interaction of subunits of the H-bond complex in homological series. The observed regularities can be employed for empirical separation of the contributions of electrostatic and covalent components in the formation energy of the H-complex.

  9. On the natures of the spin and orbital parts of optical angular momentum

    Science.gov (United States)

    Barnett, Stephen M.; Allen, L.; Cameron, Robert P.; Gilson, Claire R.; Padgett, Miles J.; Speirits, Fiona C.; Yao, Alison M.

    2016-06-01

    The modern field of optical angular momentum began with the realisation by Allen et al in 1992 that, in addition to the spin associated with polarisation, light beams with helical phase fronts carry orbital angular momentum. There has been much confusion and debate, however, surrounding the intricacies of the field and, in particular, the separation of the angular momentum into its spin and orbital parts. Here we take the opportunity to state the current position as we understand it, which we present as six perspectives: (i) we start with a reprise of the 1992 paper in which it was pointed out that the Laguerre-Gaussian modes, familiar from laser physics, carry orbital angular momentum. (ii) The total angular momentum may be separated into spin and orbital parts, but neither alone is a true angular momentum. (iii) The spin and orbital parts, although not themselves true angular momenta, are distinct and physically meaningful, as has been demonstrated clearly in a range of experiments. (iv) The orbital part of the angular momentum in the direction of propagation of a beam is not simply the azimuthal component of the linear momentum. (v) The component of spin in the direction of propagation is not the helicity, although these are related quantities. (vi) Finally, the spin and orbital parts of the angular momentum correspond to distinct symmetries of the free electromagnetic field and hence are separately conserved quantities.

  10. The correlation theory of the chemical bond

    CERN Document Server

    Szalay, Szilárd; Szilvási, Tibor; Veis, Libor; Legeza, Örs

    2016-01-01

    The notion of chemical bond is a very useful concept in chemistry. It originated at the beginning of chemistry, it is expressive for the classically thinking mind, and the errors arising from the approximative nature of the concept can often be ignored. In the first half of the twentieth century, however, we learned that the proper description of the microworld is given by quantum mechanics. Quantum mechanics gives more accurate results for chemical systems than any preceding model, however, it is very inexpressive for the classically thinking mind. The quantum mechanical description of the chemical bond is given in terms of delocalized bonding orbitals, or, alternatively, in terms of correlations of occupations of localized orbitals. However, in the latter case, multiorbital correlations were treated only in terms of two-orbital correlations, although the structure of multiorbital correlations is far richer; and, in the case of bonds established by more than two electrons, multiorbital correlations represent...

  11. Dimerization of green sensitizing cyanines in solution. A spectroscopic and theoretical study of the bonding nature

    Science.gov (United States)

    Baraldi, I.; Caselli, M.; Momicchioli, F.; Ponterini, G.; Vanossi, D.

    2002-01-01

    The bonding nature in cyanine-dye aggregates has been investigated by studying dimerization in solution of 3,3 '-disulfopropyl-4,5,4 ',5 '-dibenzo-9-ethyloxacarbocyanine (D) and three other oxacarbocyanine analogues (E, F, G) used as photographic sensitizers in the green spectral region. Quantitative information on the monomer-dimer equilibrium of dye D in different solvents and of its analogues (E, F, G) in water was obtained by measurement of the absorption spectrum as a function of dye concentration and of temperature. Dimerization was found to be generally driven by enthalpic factors traceable to strong attractive van der Waals interactions between the two large and highly polarizable dye molecules. Entropic contributions to ΔG0 usually favour dissociation but are smaller than the enthalpic ones. The visible absorption spectrum of the dimer consists in a classic two-branched exciton band with a marked splitting ( 1600 cm-1 in water). The experimental observations were the subject of a theoretical study including classical molecular dynamics (MD) and Monte Carlo (MC) calculations of the dimer structure and comparative analysis of monomer and dimer spectra by the CS INDO CI method. Computer simulations led to three similar H-type structures, the most stable of which is characterized by a distance of 4.7 Å between the planes of the chromophores and an endo-endo configuration of the sulfopropyl substituents. The calculated dimer spectrum was clearly interpreted in terms of exciton model but a quantitative agreement with the two-maximum exciton band could be obtained only by assuming substantial deviation of the long molecular axes from parallelism. On the basis of normal coordinate calculations it is suggested that such configurations may occur with a high probability in virtue of twisting vibrational motions of extremely low frequency.

  12. Are non-linear C-H⋯O contacts hydrogen bonds or Van der Waals interactions?. Establishing the limits between hydrogen bonds and Van der Waals interactions

    Science.gov (United States)

    Novoa, Juan J.; Lafuente, Pilar; Mota, Fernando

    1998-07-01

    The hydrogen bond nature of angular C-H⋯O contacts is examined to determine when these contacts are better classified as hydrogen bonds or as Van der Waals bonds. To classify the bond we propose to look at the nature of the intermolecular bond critical point present in the electron density of the complex containing the bond. The physics behind this approach is explained using a qualitative orbital overlap model aimed at describing the main changes in the electronic density of the complex produced by the C-H⋯O bending.

  13. Molecular orbital study of coordinated dioxygen. I. Structure and bonding of model monomeric Co(II) complexes

    Science.gov (United States)

    Boča, R.

    1980-08-01

    The CNDO—UHF type of MO—LCAO—SCP calculation is carried out for model systems of dioxygen fixation: O 2 CoCl 4L 2- complexes in which L = none and L = NH 3. A geometry variation is performed with respect to 5 internal coordinates describing the degrees of freedom of the Co—O 2 group. The calculated geometry, spin densities and atomic charges agree with available data based on X-ray and ESR measurements of real dioxygen carriers. Structure and bonding of complexes are discussed in more detail.

  14. Strong-field absorption and emission of radiation in two-electron systems calculated with time-dependent natural orbitals

    CERN Document Server

    Brics, M; Bauer, D

    2016-01-01

    Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is based on the equations of motion for the so-called natural orbitals, i.e., the eigenfunctions of the one-body reduced density matrix. Exact TDRNOT can be formulated for any time-dependent two-electron system in either spin configuration. In this paper, the method is tested against high-order harmonic generation (HHG) and Fano profiles in absorption spectra with the help of a numerically exactly solvable one-dimensional model He atom, starting from the spin-singlet ground state. Such benchmarks are challenging because Fano profiles originate from transitions involving autoionizing states, and HHG is a strong-field phenomenon well beyond linear response. TDRNOT with just one natural orbital per spin in the helium spin-singlet case is equivalent to time-dependent Hartree-Fock or time-dependent density functional theory (TDDFT) in exact exchange-only approximation. It is not unexpected that TDDFT fails in reproducing Fano profiles ...

  15. A simple natural orbital mechanism of "pure" van der Waals interaction in the lowest excited triplet state of the hydrogen molecule.

    Science.gov (United States)

    Gritsenko, Oleg; Baerends, Evert Jan

    2006-02-07

    A treatment of van der Waals (vdW) interaction by density-matrix functional theory requires a description of this interaction in terms of natural orbitals (NOs) and their occupation numbers. From an analysis of the configuration-interaction (CI) wave function of the 3Sigmau + state of H2 and the exact NO expansion of the two-electron triplet wave function, we demonstrate that the construction of such a functional is straightforward in this case. A quantitative description of the vdW interaction is already obtained with, in addition to the standard part arising from the Hartree-Fock determinant /1sigmag(r1)1sigmau(r2)/, only two additional terms in the two-electron density, one from the first "excited" determinant /2sigmag(r1)2sigmau(r2)/ and one from the state of 3Sigmau + symmetry belonging to the (1pig)1(1piu)1 configuration. The potential-energy curve of the 3Sigmau + state calculated around the vdW minimum with the exact density-matrix functional employing only these eight NOs and NO occupations is in excellent agreement with the full CI one and reproduces well the benchmark potential curve of Kolos and Wolniewicz [J. Chem. Phys. 43, 2429 (1965)]. The corresponding terms in the two-electron density rho2(r1,r2), containing specific products of NOs combined with prefactors that depend on the occupation numbers, can be shown to produce exchange-correlation holes that correspond precisely to the well-known intuitive picture of the dispersion interaction as an instantaneous dipole-induced dipole (higher multipole) effect. Indeed, (induced) higher multipoles account for almost 50% of the total vdW bond energy. These results serve as a basis for both a density-matrix functional theory of van der Waals bonding and for the construction of orbital-dependent functionals in density-functional theory that could be used for this type of bonding.

  16. Phonons, nature of bonding, and their relation to anomalous thermal expansion behavior of M2O (M = Au, Ag, Cu)

    Science.gov (United States)

    Gupta, M. K.; Mittal, R.; Chaplot, S. L.; Rols, S.

    2014-03-01

    We report a comparative study of the dynamics of Cu2O, Ag2O, and Au2O (i.e., M2O with M = Au, Ag, and Cu) using first principle calculations based on the density functional theory. Here, for the first time, we show that the nature of chemical bonding and open space in the unit cell are directly related to the magnitude of thermal expansion coefficient. A good match between the calculated phonon density of states and that derived from inelastic neutron scattering measurements is obtained for Cu2O and Ag2O. The calculated thermal expansions of Ag2O and Cu2O are negative, in agreement with available experimental data, while it is found to be positive for Au2O. We identify the low energy phonon modes responsible for this anomalous thermal expansion. We further calculate the charge density in the three compounds and find that the magnitude of the ionic character of the Ag2O, Cu2O, and Au2O crystals is in decreasing order, with an Au-O bond of covalent nature strongly rigidifying the Au4O tetrahedral units. The nature of the chemical bonding is also found to be an important ingredient to understand the large shift of the phonon frequencies of these solids with pressure and temperature. In particular, the quartic component of the anharmonic term in the crystal potential is able to account for the temperature dependence of the phonon modes.

  17. Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals

    Science.gov (United States)

    Hättig, Christof; Tew, David P.; Helmich, Benjamin

    2012-05-01

    We present an algorithm for computing explicitly correlated second- and third-order Møller-Plesset energies near the basis set limit for large molecules with a cost that scales formally as N^4 with system size N. This is achieved through a hybrid approach where locality is exploited first through orbital specific virtuals (OSVs) and subsequently through pair natural orbitals (PNOs) and integrals are approximated using density fitting. Our method combines the low orbital transformation costs of the OSVs with the compactness of the PNO representation of the doubles amplitude vector. The N^4 scaling does not rely upon the a priori definition of domains, enforced truncation of pair lists, or even screening and the energies converge smoothly to the canonical values with decreasing occupation number thresholds, used in the selection of the PNO basis. For MP2.5 intermolecular interaction energies, we find that 99% of benchmark basis set limit correlation energy contributions are recovered using an aug-cc-pVTZ basis and that on average only 50 PNOs are required to correlate the significant orbital pairs.

  18. Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals.

    Science.gov (United States)

    Hättig, Christof; Tew, David P; Helmich, Benjamin

    2012-05-28

    We present an algorithm for computing explicitly correlated second- and third-order Møller-Plesset energies near the basis set limit for large molecules with a cost that scales formally as N(4) with system size N. This is achieved through a hybrid approach where locality is exploited first through orbital specific virtuals (OSVs) and subsequently through pair natural orbitals (PNOs) and integrals are approximated using density fitting. Our method combines the low orbital transformation costs of the OSVs with the compactness of the PNO representation of the doubles amplitude vector. The N(4) scaling does not rely upon the a priori definition of domains, enforced truncation of pair lists, or even screening and the energies converge smoothly to the canonical values with decreasing occupation number thresholds, used in the selection of the PNO basis. For MP2.5 intermolecular interaction energies, we find that 99% of benchmark basis set limit correlation energy contributions are recovered using an aug-cc-pVTZ basis and that on average only 50 PNOs are required to correlate the significant orbital pairs.

  19. An Effective Hamiltonian Molecular Orbital-Valence Bond (MOVB) Approach for Chemical Reactions Applied to the Nucleophilic Substitution Reaction of Hydrosulfide Ion and Chloromethane.

    Science.gov (United States)

    Song, Lingchun; Mo, Yirong; Gao, Jiali

    2009-01-01

    An effective Hamiltonian mixed molecular orbital and valence bond (EH-MOVB) method is described to obtain an accurate potential energy surface for chemical reactions. Building upon previous results on the construction of diabatic and adiabatic potential surfaces using ab initio MOVB theory, we introduce a diabatic-coupling scaling factor to uniformly scale the ab initio off-diagonal matrix element H(12) such that the computed energy of reaction from the EH-MOVB method is in agreement with the target value. The scaling factor is very close to unity, resulting in minimal alteration of the potential energy surface of the original MOVB model. Furthermore, the relative energy between the reactant and product diabatic states in the EH-MOVB method can be improved to match the experimental energy of reaction. A key ingredient in the EH-MOVB theory is that the off-diagonal matrix elements are functions of all degrees of freedom of the system and the overlap matrix is explicitly evaluated. The EH-MOVB method has been applied to the nucleophilic substitution reaction between hydrosulfide and chloromethane to illustrate the methodology and the results were matched to reproduce the results from ab initio valence bond self-consistent valence bond (VBSCF) calculations. The diabatic coupling (the off-diagonal matrix element in the generalized secular equation) has small variations along the minimum energy reaction path in the EH-MOVB model, whereas it shows a maximum value at the transition state and has nearly zero values in the regions of the ion-dipole complexes from VBSCF calculations. The difference in the diabatic coupling stabilization is attributed to the large overlap integral in the computationally efficient MOVB method.

  20. Investigations of the Nature of Zn(II) -Si(II) Bonds.

    Science.gov (United States)

    Schäfer, Sebastian; Köppe, Ralf; Roesky, Peter W

    2016-05-17

    A series of zinc(II) silylenes was prepared by using the silylene {PhC(NtBu)2 }(C5 Me5 )Si. Whereas reaction of the silylene with ZnX2 (X=Cl, I) gave the halide-bridged dimers [{PhC(NtBu)2 }(C5 Me5 )SiZnX(μ-X)]2 , with ZnR2 (R=Ph, Et, C6 F5 ) as reagent the monomers [{PhC(NtBu)2 }(C5 Me5 )SiZnR2 ] were obtained. The stability of the complexes and the Zn-Si bond lengths clearly depend on the substitution pattern of the zinc atom. Electron-withdrawing groups stabilize these adducts, whereas electron-donating groups destabilize them. This could be rationalized by quantum chemical calculations. Two different bonding modes in these molecules were identified, which are responsible for the differences in reactivity: 1) strong polar Zn-Si single bonds with short Zn-Si distances, Zn-Si force constants close to that of a classical single bond, and strong binding energy (ca. 2.39 Å, 1.33 mdyn Å(-1) , and 200 kJ mol(-1) ), which suggest an ion pair consisting of a silyl cation with a Zn-Si single bond; 2) relatively weak donor-acceptor Zn-Si bonds with long Zn-Si distances, low Zn-Si force constants, and weak binding energy (ca. 2.49 Å, 0.89 mdyn Å(-1) , and 115 kJ mol(-1) ), which can be interpreted as a silylene-zinc adduct.

  1. C2H4 adsorption on Cu(210), revisited: bonding nature and coverage effects.

    Science.gov (United States)

    Amino, Shuichi; Arguelles, Elvis; Agerico Diño, Wilson; Okada, Michio; Kasai, Hideaki

    2016-08-24

    With the aid of density functional theory (DFT)-based calculations, we investigate the adsorption of C2H4 on Cu(210). We found two C2H4 adsorption sites, viz., the top of the step-edge atom (S) and the long bridge between two step-edge atoms (SS) of Cu(210). The step-edge atoms on Cu(210) block the otherwise active terrace sites found on copper surfaces with longer step sizes. This results in the preference for π-bonded over di-σ-bonded C2H4. We also found two stable C2H4 adsorption orientations on the S- and SS-sites, viz., with the C2H4 C[double bond, length as m-dash]C bond parallel (fit) and perpendicular (cross) to [001]. Furthermore, we found that the three peaks observed in previous temperature programmed desorption (TPD) experiment [Surf. Sci., 2011, 605, 934-940] could be attributed to C2H4 in the S-fit or S-cross, S-fit and S-cross-fit (S-cross and S-fit configurations that both exist in the same unit cell) configurations on Cu(210).

  2. Fundamental aspects of recoupled pair bonds. I. Recoupled pair bonds in carbon and sulfur monofluoride

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Thom H., E-mail: thdjr@uw.edu; Xu, Lu T.; Takeshita, Tyler Y. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801 (United States)

    2015-01-21

    The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their {sup 3}P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pair bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a{sup 4}Σ{sup −} states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.

  3. Analysis of the half-projected Hartree--Fock function: density matrix, natural orbitals, and configuration interaction equivalence

    Energy Technology Data Exchange (ETDEWEB)

    Smeyers, Y.G.; Delgado-Barrio, G.

    1976-05-01

    The half-projected Hartree--Fock function for singlet states (HPHF) is analyzed in terms of natural electronic configurations. For this purpose the HPHF spinless density matrix and its natural orbitals are first deduced. It is found that the HPHF function does not contain any contribution from odd-times excited configurations. It is seen in addition, in the case of the singlet ground states, this function is approximately equivalent to two closed-shell configurations, although the nature of the excited one depends on the nuclear geometry. An example is given in the case of the LiH ground state. Finally, the application of this model for studying systems of more than two atoms is criticized.

  4. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.

    Science.gov (United States)

    Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason

    2011-04-12

    We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.

  5. Involvement of 5f-orbitals in the bonding and reactivity of organoactinide compounds: thorium(IV) and uranium(IV) bis (hydrazonato) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cantat, Thibault [Los Alamos National Laboratory; Graves, Christopher R [Los Alamos National Laboratory; Morris, David E [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2008-01-01

    Migratory insertion of diphenyldiazomethane into both metal-carbon bonds of the bis(alkyl) and bis(aryl) complexes (C5Me5)2AnR2 yields the first f-element bis(hydrazonato) complexes (C5Me5)2An[2-(N,N')-R-N-NCPh2]2 [An = Th, R = CH3 (18), PhCH2 (15), Ph (16); An = U, R = CH3 (17), PhCH2 (14)], which have been characterized by a combination of spectroscopy, electrochemistry, and X-ray crystallography. The two hydrazonato ligands adopt an 2-coordination mode leading to 20-electron (for Th) and 22-electron (for U) complexes that have no transition-metal analogues. In fact, reaction of (C5H5)2Zr(CH3)2 or (C5Me5)2Hf(CH3)2 with diphenyldiazomethane is limited to the formation of the corresponding mono(hydrazonato) complex (C5R5)2M[2-(N,N')-CH3-N-NCPh2](CH3) (M = Zr, R = H or M = Hf, R = CH3). The difference in the reactivities of the group 4 metal complexes and the actinides was used as a unique platform for investigating in depth the role of 5f orbitals on the reactivity and bonding in actinide organometallic complexes. The electronic structure of the (C5H5)2M[2-(N,N')-CH3-N-NCH2]2 (M = Zr, Th, U) model complexes was studied using density functional theory (DFT) calculations and compared to experimental structural, electrochemical, and spectroscopic results. Whereas transition-metal bis(cyclopentadienyl) complexes are known to stabilize three ligands in the metallocene girdle to form saturated (C5H5)2ML3 species, in a bis(hydrazonato) system, a fourth ligand is coordinated to the metal center to give (C5H5)2ML4. DFT calculations have shown that 5f orbitals in the actinide complexes play a crucial role in stabilizing this fourth ligand by stabilizing both the s and p electrons of the two 2-coordinated hydrazonato ligands. In contrast, the stabilization of the hydrazonato ligands was found to be significantly less effective for the putative bis(hydrazonato) zirconium(IV) complex, yielding a higher energy structure. However, the difference in the reactivities

  6. Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2)

    Science.gov (United States)

    Menezes, Filipe; Kats, Daniel; Werner, Hans-Joachim

    2016-09-01

    We present a CASPT2 method which exploits local approximations to achieve linear scaling of the computational effort with the molecular size, provided the active space is small and local. The inactive orbitals are localized, and the virtual space for each electron pair is spanned by a domain of pair-natural orbitals (PNOs). The configuration space is internally contracted, and the PNOs are defined for uniquely defined orthogonal pairs. Distant pair energies are obtained by multipole approximations, so that the number of configurations that are explicitly treated in the CASPT2 scales linearly with molecular size (assuming a constant active space). The PNOs are generated using approximate amplitudes obtained in a pair-specific semi-canonical basis of projected atomic orbitals (PAOs). The evaluation and transformation of the two-electron integrals use the same parallel local density fitting techniques as recently described for linear-scaling PNO-LMP2 (local second-order Møller-Plesset perturbation theory). The implementation of the amplitude equations, which are solved iteratively, employs the local integrated tensor framework. The efficiency and accuracy of the method are tested for excitation energies and correlation energies. It is demonstrated that the errors introduced by the local approximations are very small. They can be well controlled by few parameters for the distant pair approximation, initial PAO domains, and the PNO domains.

  7. Orbital solutions of eight close sdB binaries and constraints on the nature of the unseen companions

    CERN Document Server

    Geier, S; Heber, U; Kupfer, T; Maxted, P F L; Barlow, B N; Vuckovic, M; Tillich, A; Mueller, S; Edelmann, H; Classen, L; McLeod, A F

    2014-01-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars (sdBs) with massive compact companions such as white dwarfs, neutron stars, or stellar-mass black holes. In a supplementary programme we obtained time-resolved spectroscopy of known hot subdwarf binary candidates. Here we present orbital solutions of eight close sdB binaries with orbital periods ranging from 0.1 to 10 days, which allow us to derive lower limits on the masses of their companions. Additionally, a dedicated photometric follow-up campaign was conducted to obtain light curves of the reflection-effect binary HS 2043+0615. We are able to constrain the most likely nature of the companions in all cases but one, making use of information derived from photometry and spectroscopy. Four sdBs have white dwarf companions, while another three are orbited by low-mass main sequence stars of spectral type M.

  8. A computational study on the N-heterocyclic carbene-catalyzed Csp(2)-Csp(3) bond activation/[4+2] cycloaddition cascade reaction of cyclobutenones with imines: a new application of the conservation principle of molecular orbital symmetry.

    Science.gov (United States)

    Wang, Yang; Wu, Bohua; Zhang, Haoyang; Wei, Donghui; Tang, Mingsheng

    2016-07-20

    A comprehensive density functional theory (DFT) investigation has been performed to interrogate the mechanisms and stereoselectivities of the Csp(2)-Csp(3) single bond activation of cyclobutenones and their [4+2] cycloaddition reaction with imines via N-heterocyclic carbene (NHC) organocatalysis. According to our calculated results, the fundamental reaction pathway contains four steps: nucleophilic addition of NHC to cyclobutenone, C-C bond cleavage for the formation of an enolate intermediate, [4+2] cycloaddition of the enolate intermediate with isatin imine, and the elimination of the NHC catalyst. In addition, the calculated results also reveal that the second reaction step is the rate-determining step, whereas the third step is the regio- and stereo-selectivity determining step. For the regio- and stereo-selectivity determining step, all four possible attack modes were considered. The addition of the C[double bond, length as m-dash]N bond in isatin imine to the dienolate intermediate is more energy favorable than the addition of the C[double bond, length as m-dash]O bond to a dienolate intermediate. Moreover, the Re face addition of the C[double bond, length as m-dash]N bond in isatin imine to the Re face of the dienolate intermediate leading to the SS configuration N-containing product was demonstrated to be most energy favorable, which is mainly due to the stronger second-order perturbation energy value in the corresponding transition state. Furthermore, by tracking the frontier molecular orbital (FMO) changes in the rate-determining C-C bond cleavage step, we found that the reaction obeys the conservation principle of molecular orbital symmetry. We believe that the present work would provide valuable insights into this kind of reaction.

  9. On the nature of actinide- and lanthanide-metal bonds in heterobimetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vlaisavljevich, Bess; Miro, P.; Cramer, C. J.; Gagliardi, Laura; Infante, I.; Liddle, S. T.

    2011-06-28

    Eleven experimentally characterized complexes containing heterobimetallic bonds between elements of the f-block and other elements were examined by quantum chemical methods: [(η⁵-C₅H₅)₂(THF)LuRu(η⁵-C₅H₅) (CO)₂], [(η⁵-C₅Me₅)₂(I)ThRu(η⁵-C₅H₅) (CO)₂], [(η⁵-C₅H₅)₂YRe(η⁵-C₅H₅)₂], [{N(CH₂CH₂NSiMe₃)₃}URe(η⁵-C₅H₅)₂], [Y{Ga(NArCh)₂}{C(PPh₂NSiH₃)₂}(CH₃OCH₃)₂], [{N(CH₂CH₂NSiMe₃)₃}U{Ga(NArCH)₂}(THF)], [(η⁵-C₅H₅)₃UGa(η⁵-C₅Me₅)], [Yb(η⁵-C₅H₅){Si(SiMe₃)₃(THF)₂}], [(η⁵-C₅H₅)₃U(SnPh₃)], [(η⁵-C₅H₅)₃U(SiPh₃)], and (Ph[Me]N)₃USi(SiMe₃)₃. Geometries in good agreement with experiment were obtained at the density functional level of theory. The multiconfigurational complete active space self-consistent field method (CASSCF) and subsequent corrections with second order perturbation theory (CASPT2) were applied to further understand the electronic structure of the lanthanide/actinide–metal (or metal–metalloid) bonds. Fragment calculations and energy-decomposition analyses were also performed and indicate that charge transfer occurs from one supported metal fragment to the other, while the bonding itself is always dominated by ionic character.

  10. The Bond Between CO and Cp?3U in Cp?3U(CO) involves Backbondingfrom the Cp'3U Ligand-based Orbitals of ?pi-Symmetry, where Cp' Represents a Substituted Cyclopentadienyl Ligand.

    Energy Technology Data Exchange (ETDEWEB)

    Maron, Laurent; Eisenstein, Odile; Andersen, Richard

    2009-06-16

    The experimental CO stretching frequencies in the 1:1 adducts between (C5H5-nRn)3U and CO range from 1976 cm-1 in (C5H4SiMe3)3U(CO) to 1900 cm-1 in (C5HMe4)3U(CO). The origin of the large difference between the stretching frequencies in free (2143 cm-1) and coordinated CO and the large effect the substituents on the cyclopentadienyl ligands play in the difference is explored by DFT calculations with a small core effective core potential in which 32 electrons on uranium are explicitly treated. The results of these calculations, along with a NBO analysis, show that a sigma-bond is formed between CO and an empty sigma-orbital on the Cp'3U fragment composed of f sigma and d sigma parentage orbitals. The backbonding interaction, which results in lowering the CO stretching frequency, does not originate from non-bonding metal-based orbitals but from the filled ligand-based orbitals of pi-symmetry that are used for bonding in the Cp'3U fragment. This model, which is different from the backbonding model used in the d-transition metal complexes, rationalizes the large substituent effect in the 5f-metal complexes.

  11. Strength and bonding nature of superhard Z-carbon from first-principle study

    Directory of Open Access Journals (Sweden)

    Jiaqian Qin

    2012-06-01

    Full Text Available Z-carbon is a candidate structure proposed recently for the cold-compressed phase of carbon. We have studied the mechanical properties of Z-carbon by performing the first-principles density functional calculations. The single-crystal elastic constants calculations show that Z-carbon is mechanically stable. The predicted bulk and shear moduli of Z-carbon are comparable to diamond and cubic BN, suggesting that Z-carbon can be a superhard material. We also obtained the ideal tensile and shear strengths for Z-carbon through deformation from the elastic regime to structural instability. The failure modes under tensile deformation were explored carefully based on the calculated charge density distribution and bonding evolution.

  12. Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals

    Science.gov (United States)

    Hansen, Andreas; Liakos, Dimitrios G.; Neese, Frank

    2011-12-01

    A production level implementation of the high-spin open-shell (spin unrestricted) single reference coupled pair, quadratic configuration interaction and coupled cluster methods with up to doubly excited determinants in the framework of the local pair natural orbital (LPNO) concept is reported. This work is an extension of the closed-shell LPNO methods developed earlier [F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. 130, 114108 (2009), 10.1063/1.3086717; F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009), 10.1063/1.3173827]. The internal space is spanned by localized orbitals, while the external space for each electron pair is represented by a truncated PNO expansion. The laborious integral transformation associated with the large number of PNOs becomes feasible through the extensive use of density fitting (resolution of the identity (RI)) techniques. Technical complications arising for the open-shell case and the use of quasi-restricted orbitals for the construction of the reference determinant are discussed in detail. As in the closed-shell case, only three cutoff parameters control the average number of PNOs per electron pair, the size of the significant pair list, and the number of contributing auxiliary basis functions per PNO. The chosen threshold default values ensure robustness and the results of the parent canonical methods are reproduced to high accuracy. Comprehensive numerical tests on absolute and relative energies as well as timings consistently show that the outstanding performance of the LPNO methods carries over to the open-shell case with minor modifications. Finally, hyperfine couplings calculated with the variational LPNO-CEPA/1 method, for which a well-defined expectation value type density exists, indicate the great potential of the LPNO approach for the efficient calculation of molecular properties.

  13. A valence bond study of three-center four-electron pi bonding: electronegativity vs electroneutrality.

    Science.gov (United States)

    DeBlase, Andrew; Licata, Megan; Galbraith, John Morrison

    2008-12-18

    Three-center four-electron (3c4e) pi bonding systems analogous to that of the ozone molecule have been studied using modern valence bond theory. Molecules studied herein consist of combinations of first row atoms C, N, and O with the addition of H atoms where appropriate in order to preserve the 3c4e pi system. Breathing orbital valence bond (BOVB) calculations were preformed at the B3LYP/6-31G**-optimized geometries in order to determine structural weights, pi charge distributions, resonance energies, and pi bond energies. It is found that the most weighted VB structure depends on atomic electronegativity and charge distribution, with electronegativity as the dominant factor. By nature, these systems are delocalized, and therefore, resonance energy is the main contributor to pi bond energies. Molecules with a single dominant VB structure have low resonance energies and therefore low pi bond energies.

  14. On the bonding nature of electron states for the Fe-Mo double perovskite

    Science.gov (United States)

    Carvajal, E.; Oviedo-Roa, R.; Cruz-Irisson, M.; Navarro, O.

    2014-05-01

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr2FeMoO6 double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by eg and t2g electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  15. On the bonding nature of electron states for the Fe-Mo double perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, E.; Cruz-Irisson, M. [ESIME-Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana 1000, C.P. 04430, México, D.F. (Mexico); Oviedo-Roa, R. [Programa de Investigación en Ingeniería Molecular, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, C.P. 07730, México, D.F. (Mexico); Navarro, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, 04510, México, D.F. (Mexico)

    2014-05-15

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr{sub 2}FeMoO{sub 6} double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by e{sub g} and t{sub 2g} electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  16. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    Science.gov (United States)

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  17. Nature of the chemical bond in complex hydrides, NaAlH{sub 4}, LiAlH{sub 4}, LiBH{sub 4} and LiNH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, M. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan)]. E-mail: yoshino@silky.numse.nagoya-u.ac.jp; Komiya, K. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan); Takahashi, Y. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan); Shinzato, Y. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan); Yukawa, H. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan); Morinaga, M. [Department of Materials Science and Engineering, Graduate School of Engineering, Institute for Advanced Research, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan)

    2005-12-08

    The most stable crystal structures of complex hydrides, MXH{sub n} (NaAlH{sub 4}, LiAlH{sub 4}, LiBH{sub 4} and LiNH{sub 2}) were simulated by the plane-wave pseudopotential method. The local chemical bonds between constituent ions were simulated using the DV-X{alpha} molecular orbital method. As a result, it was found that the covalent interaction is operating between X and H ions to form a XH{sub n} ion in MXH{sub n}. In addition, the ionic interaction is operating between M and XH{sub n} ions through the charge transfer from M to XH{sub n} ions. On the basis of this understanding of the nature of the chemical bond between ions, a phase stability diagram of complex hydrides was proposed using two parameters. One is the bond energy of XH diatomic molecules and the other is electronegativity difference, {delta}{phi}{sub X-M}, between M and X ions. The calculated stability change by doping into NaAlH{sub 4} could by explained qualitatively following this diagram. This diagram will provide us a clue to the modification of hydrides to lower the hydrogen decomposition temperature.

  18. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method

    Science.gov (United States)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-01

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol-1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500

  19. Time-dependent renormalized natural orbital theory applied to the two-electron spin-singlet case: ground state, linear response, and autoionization

    CERN Document Server

    Brics, M

    2013-01-01

    Favorably scaling numerical time-dependent many-electron techniques such as time-dependent density functional theory (TDDFT) with adiabatic exchange-correlation potentials typically fail in capturing highly correlated electron dynamics. We propose a method based on natural orbitals, i.e., the eigenfunctions of the one-body reduced density matrix, that is almost as inexpensive numerically as adiabatic TDDFT, but which is capable of describing correlated phenomena such as doubly excited states, autoionization, Fano profiles in the photoelectron spectra, and strong-field ionization in general. Equations of motion (EOM) for natural orbitals and their occupation numbers have been derived earlier. We show that by using renormalized natural orbitals (RNO) both can be combined into one equation governed by a hermitian effective Hamiltonian. We specialize on the two-electron spin-singlet system, known as being a "worst case" testing ground for TDDFT, and employ the widely used, numerically exactly solvable, one-dimens...

  20. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory

    Science.gov (United States)

    Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank

    2016-03-01

    Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still two important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling "partially contracted" NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient "electron pair prescreening" that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed comparison

  1. Carbon kinetic isotope effects at natural abundances during iron-catalyzed photolytic cleavage of Csbnd C bonds in aqueous phase α,ω-dicarboxylic acids

    Science.gov (United States)

    Irei, Satoshi

    2016-09-01

    Carbon kinetic isotope effects (KIEs) at natural abundances during photolysis of Fe3+-oxalato, malonato, and succinato complexes in aqueous solution were studied to identify the Csbnd C bond cleaving mechanism of Fe3+-oxalato complexes under sunlight irradiation. Observed overall KIEs were 5.9‰, 11.5‰, and 8.4‰, respectively. This variation is inconsistent with secondary carbon KIEs for the Fesbnd O bond cleavage, but consistent with primary carbon KIEs for sequential cleavage of Fesbnd O and Csbnd C bonds. Position-specific probability of 13C content estimated KIEs of 5.9‰, 17.2‰, and 17‰ for 12Csbnd 13C bond cleavage, respectively, indicating the different KIEs for carboxyl-carboxyl and methyl-carboxyl cleavage.

  2. An LDEF 2 dust instrument for discrimination between orbital debris and natural particles in near-Earth space

    Science.gov (United States)

    Tuzzolino, A. J.; Simpson, J. A.; Mckibben, R. B.; Voss, H. D.; Gursky, H.

    1993-01-01

    The characteristics of a space dust instrument which would be ideally suited to carry out near-Earth dust measurements on a possible Long Duraction Exposure Facility reflight mission (LDEF 2) is discussed. As a model for the trajectory portion of the instrument proposed for LDEF 2, the characteristics of a SPAce DUSt instrument (SPADUS) currently under development for flight on the USA ARGOS mission to measure the flux, mass, velocity, and trajectory of near-Earth dust is summarized. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. The SPADUS measurements will cover the dust mass range approximately 5 x 10(exp -12) g (2 microns diameter) to approximately 1 x 10(exp -5) g (200 microns diameter), with an expected mean error in particle trajectory of approximately 7 deg (isotropic flux). Arrays of capture cell devices positioned behind the trajectory instrumentation would provide for Earth-based chemical and isotopic analysis of captured dust. The SPADUS measurement principles, characteristics, its role in the ARGOS mission, and its application to an LDEF 2 mission are summarized.

  3. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques

    Science.gov (United States)

    Schmitz, Gunnar; Hättig, Christof

    2016-12-01

    We present an implementation of pair natural orbital coupled cluster singles and doubles with perturbative triples, PNO-CCSD(T), which avoids the quasi-canonical triples approximation (T0) where couplings due to off-diagonal Fock matrix elements are neglected. A numerical Laplace transformation of the canonical expression for the perturbative (T) triples correction is used to avoid an I/O and storage bottleneck for the triples amplitudes. Results for a test set of reaction energies show that only very few Laplace grid points are needed to obtain converged energy differences and that PNO-CCSD(T) is a more robust approximation than PNO-CCSD(T0) with a reduced mean absolute deviation from canonical CCSD(T) results. We combine the PNO-based (T) triples correction with the explicitly correlated PNO-CCSD(F12*) method and investigate the use of specialized F12-PNOs in the conventional triples correction. We find that no significant additional errors are introduced and that PNO-CCSD(F12*)(T) can be applied in a black box manner.

  4. Evidence for Orbital Decay of RX J1914.4+2456 Gravitational Radiation and the Nature of the X-ray Emission

    CERN Document Server

    Strohmayer, T E

    2002-01-01

    RX J1914.4+2456 is a candidate double-degenerate binary (AM CVn) with a putative 569 s orbital period. If this identification is correct, then it has one of the shortest binary orbital periods known, and gravitational radiation should drive the orbital evolution and mass transfer if the binary is semi-detached. Here we report the results of a coherent timing study of the archival ROSAT data for RX J1914.4+2456. We performed a phase coherent timing analysis using all five ROSAT observations spanning a 4 year period. We demonstrate that all the data can be phase connected, and we show that the 1.756 mHz orbital frequency is increasing at a rate of 1.5 e-17 Hz/s, consistent with the expected loss of angular momentum from the binary system via gravitational radiation. In addition to providing evidence for the emission of gravitational waves, our measurement of the orbital decay constrains models for the X-ray emission and the nature of the secondary. If stable mass accretion drives the X-ray flux, then orbital de...

  5. Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory

    Science.gov (United States)

    Datta, Dipayan; Kossmann, Simone; Neese, Frank

    2016-09-01

    The domain-based local pair-natural orbital coupled-cluster (DLPNO-CC) theory has recently emerged as an efficient and powerful quantum-chemical method for the calculation of energies of molecules comprised of several hundred atoms. It has been demonstrated that the DLPNO-CC approach attains the accuracy of a standard canonical coupled-cluster calculation to about 99.9% of the basis set correlation energy while realizing linear scaling of the computational cost with respect to system size. This is achieved by combining (a) localized occupied orbitals, (b) large virtual orbital correlation domains spanned by the projected atomic orbitals (PAOs), and (c) compaction of the virtual space through a truncated pair natural orbital (PNO) basis. In this paper, we report on the implementation of an analytic scheme for the calculation of the first derivatives of the DLPNO-CC energy for basis set independent perturbations within the singles and doubles approximation (DLPNO-CCSD) for closed-shell molecules. Perturbation-independent one-particle density matrices have been implemented in order to account for the response of the CC wave function to the external perturbation. Orbital-relaxation effects due to external perturbation are not taken into account in the current implementation. We investigate in detail the dependence of the computed first-order electrical properties (e.g., dipole moment) on the three major truncation parameters used in a DLPNO-CC calculation, namely, the natural orbital occupation number cutoff used for the construction of the PNOs, the weak electron-pair cutoff, and the domain size cutoff. No additional truncation parameter has been introduced for property calculation. We present benchmark calculations on dipole moments for a set of 10 molecules consisting of 20-40 atoms. We demonstrate that 98%-99% accuracy relative to the canonical CCSD results can be consistently achieved in these calculations. However, this comes with the price of tightening the

  6. Halogen Bonding or Hydrogen Bonding between 2,2,6,6-Tetramethyl-piperidine-noxyl Radical and Trihalomethanes CHX3 (X=Cl, Br, I)

    Institute of Scientific and Technical Information of China (English)

    Xiao-ran Zhao; Xue Pang; Xiao-qing Yan; Wei-jun Jin

    2013-01-01

    The halogen and hydrogen bonding complexes between 2,2,6,6-tetramethylpiperidine-noxyl and trihalomethanes (CHX3,X=Cl,Br,I) are simulated by computational quantum chemistry.The molecular electrostatic potentials,geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained.The results indicate that both halogen and hydrogen bonding interactions obey the order Cl<Br<I,and hydrogen bonding is stronger than the corresponding halogen bond ing.So,hydrogen bonding complexes should be dominant in trihalomethanes.However,it is possible that halogen bonding complex is competitive,even preponderant,in triiodomethane due to the similar interaction energy.This work might provide useful information on specific solvent effects as well as for understanding the mechanism of nitroxide radicals as a bioprobe to interact with the halogenated compounds in biological and biochemical fields.

  7. Neutron Crystallography, Molecular Dynamics, and Quantum Mechanics Studies of the Nature of Hydrogen Bonding in Cellulose I beta

    Science.gov (United States)

    In the crystal structure of cellulose Ibeta, disordered hydrogen (H) bonding can be represented by the average of two mutually exclusive H bonding schemes that have been designated A and B. An unanswered question is whether A and B interconvert dynamically, or whether they are static but present in ...

  8. Bonding with Your Baby

    Science.gov (United States)

    ... in infant massage in your area. Breastfeeding and bottle-feeding are both natural times for bonding. Infants respond ... activities include: participating together in labor and delivery feeding ( breast or bottle ); sometimes dad forms a special bond with baby ...

  9. Physical nature of interactions in Zn(II) complexes with 2,2'-bipyridyl: quantum theory of atoms in molecules (QTAIM), interacting quantum atoms (IQA), noncovalent interactions (NCI), and extended transition state coupled with natural orbitals for chemical valence (ETS-NOCV) comparative studies.

    Science.gov (United States)

    Cukrowski, Ignacy; de Lange, Jurgens H; Mitoraj, Mariusz

    2014-01-23

    In the present account factors determining the stability of ZnL, ZnL2, and ZnL3 complexes (L = bpy, 2,2′-bipyridyl) were characterized on the basis of various techniques: the quantum theory of atoms in molecules (QTAIM), energy decomposition schemes based on interacting quantum atoms (IQA), and extended transition state coupled with natural orbitals for chemical valence (ETS-NOCV). Finally, the noncovalent interactions (NCI) index was also applied. All methods consistently indicated that the strength of the coordination bonds, Zn–O and Zn–N, decreases from ZnL to ZnL3. Importantly, it has been identified that the strength of secondary intramolecular heteropolar hydrogen bonding interactions, CH···O and CH···N, increases when going from ZnL to ZnL3. A similar trend appeared to be valid for the π-bonding as well as electrostatic stabilization. In addition to the above leading bonding contributions, all techniques suggested the existence of very subtle, but non-negligible additional stabilization from the CH···HC electronic exchange channel; these interactions are the weakest among all considered here. From IQA it was found that the local diatomic interaction energy, Eint(H,H), amounts at HF to −2.5, −2.7, and −2.9 kcal mol(–1) for ZnL, ZnL2, and ZnL3, respectively (−2.1 kcal mol(–1) for ZnL at MP2). NOCV-based deformation density channels showed that formation of CH--HC contacts in Zn complexes causes significant polarization of σ(C–H) bonds, which accordingly leads to charge accumulation in the CH···HC bay region. Charge depletion from σ(C–H) bonds was also reflected in the calculated spin–spin (1)J(C–H) coupling constants, which decrease from 177.06 Hz (ZnL) to 173.87 Hz (ZnL3). This last result supports our findings of an increase in the local electronic CH···HC stabilization from ZnL to ZnL3 found from QTAIM, IQA, and ETS-NOCV. Finally, this work unites for the first time the results from four methods that are widely

  10. Theoretical study of the interplay between lithium bond and hydrogen bond in complexes involved with HLi and HCN.

    Science.gov (United States)

    Li, Qingzhong; Hu, Ting; An, Xiulin; Li, Wenzuo; Cheng, Jianbo; Gong, Baoan; Sun, Jiazhong

    2009-12-21

    The lithium- and hydrogen-bonded complex of HLi-NCH-NCH is studied with ab initio calculations. The optimized structure, vibrational frequencies, and binding energy are calculated at the MP2 level with 6-311++G(2d,2p) basis set. The interplay between lithium bonding and hydrogen bonding in the complex is investigated with these properties. The effect of lithium bonding on the properties of hydrogen bonding is larger than that of hydrogen bonding on the properties of lithium bonding. In the trimer, the binding energies are increased by about 19% and 61% for the lithium and hydrogen bonds, respectively. A big cooperative energy (-5.50 kcal mol(-1)) is observed in the complex. Both the charge transfer and induction effect due to the electrostatic interaction are responsible for the cooperativity in the trimer. The effect of HCN chain length on the lithium bonding has been considered. The natural bond orbital and atoms in molecules analyses indicate that the electrostatic force plays a main role in the lithium bonding. A many-body interaction analysis has also been performed for HLi-(NCH)(N) (N=2-5) systems.

  11. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  12. Nonorthogonal orbital based n-body reduced density matrices and their applications to valence bond theory. III. Second-order perturbation theory using valence bond self-consistent field function as reference.

    Science.gov (United States)

    Chen, Zhenhua; Chen, Xun; Ying, Fuming; Gu, Junjing; Zhang, Huaiyu; Wu, Wei

    2014-10-07

    Using the formulas and techniques developed in Papers I and II of this series, the recently developed second-order perturbation theory based on a valence bond self-consistent field reference function (VBPT2) has been extended by using the internally contracted correction wave function. This ansatz strongly reduces the size of the interaction space compared to the uncontracted wave function and thus improves the capability of the VBPT2 method dramatically. Test calculations show that internally contracted VBPT2 using only a small number of reference valence bond functions, can give results as accuracy as the VBPT2 method and other more sophisticated methods such as full configuration interaction and multireference configuration interaction.

  13. Molecular structure and intramolecular hydrogen bonding in 2-hydroxybenzophenones: A theoretical study

    Indian Academy of Sciences (India)

    Mansoureh Zahedi-Tabrizi; Sayyed Faramarz Tayyari; Farideh Badalkhani-Khamseh; Reihaneh Ghomi; Fatemeh Afshar-Qahremani

    2014-07-01

    The intramolecular hydrogen bonding (IHB) in a series of 3-, 4- and 5-substituted 2-hydroxybenzophenone (HBP) is studied using density functional theory calculations. All calculations are performed at the B3LYP level, using 6-311++G∗∗ basis set. To understand the substitution effects on the nature of IHB and the electronic structure of the chelated ring system, the vibrational frequencies, 1H chemical shift, topological parameters, natural bond orders and natural charges over atoms involved in the chelated ring of HBP and its derivatives were calculated. TheWiberg bond indices and the natural charges over atoms involved in the chelated ring have been computed using the natural bond orbital (NBO) analysis. The computations were further complemented with an atoms-in-molecules (AIM) topological analysis to characterize the nature of the IHB in the considered molecules. Several correlations between geometrical parameters, 1H NMR chemical shift and topological parameters with the IHB strength are obtained.

  14. Molecular Orbital and Density Functional Study of the Formation, Charge Transfer, Bonding and the Conformational Isomerism of the Boron Trifluoride (BF3 and Ammonia (NH3 Donor-Acceptor Complex

    Directory of Open Access Journals (Sweden)

    Dulal C. Ghosh

    2004-09-01

    Full Text Available The formation of the F3B–NH3 supermolecule by chemical interaction of its fragment parts, BF3 and NH3, and the dynamics of internal rotation about the ‘B–N’ bond have been studied in terms of parameters provided by the molecular orbital and density functional theories. It is found that the pairs of frontier orbitals of the interacting fragments have matching symmetry and are involved in the charge transfer interaction. The donation process stems from the HOMO of the donor into the LUMO of the acceptor and simultaneously, back donation stems from the HOMO of acceptor into the LUMO of the donor. The density functional computation of chemical activation in the donor and acceptor fragments, associated with the physical process of structural reorganization just prior to the event of chemical reaction, indicates that BF3 becomes more acidic and NH3 becomes more basic, compared to their separate equilibrium states. Theoretically it is observed that the chemical reaction event of the formation of the supermolecule from its fragment parts is in accordance with the chemical potential equalization principle of the density functional theory and the electronegativity equalization principle of Sanderson. The energetics of the chemical reaction, the magnitude of the net charge transfer and the energy of the newly formed bond are quite consistent, both internally and with the principle of maximum hardness, PMH. The dynamics of the internal rotation of one part with respect to the other part of the supermolecule about the ‘B–N’ bond mimics the pattern of the conformational isomerism of the isostructural ethane molecule. It is also observed that the dynamics and evolution of molecular conformations as a function of dihedral angles is also in accordance with the principle of maximum hardness, PMH. Quite consistent with spectroscopic predictions, the height of the molecule

  15. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation

    KAUST Repository

    Minenkov, Yury

    2017-03-07

    In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes of Li, Be, Na, Mg, Ca, Sr, Ba and Pb(ii). Two strategies were investigated: in the former, only valence electrons were included in the correlation treatment, giving rise to the computationally very efficient FC (frozen core) approach; in the latter, all non-ECP electrons were included in the correlation treatment, giving rise to the AE (all electron) approach. Apart from reactions involving Li and Be, the FC approach resulted in non-homogeneous performance. The FC approach leads to very small errors (<2 kcal mol-1) for some reactions of Na, Mg, Ca, Sr, Ba and Pb, while for a few reactions of Ca and Ba deviations up to 40 kcal mol-1 have been obtained. Large errors are both due to artificial mixing of the core (sub-valence) orbitals of metals and the valence orbitals of oxygen and halogens in the molecular orbitals treated as core, and due to neglecting core-core and core-valence correlation effects. These large errors are reduced to a few kcal mol-1 if the AE approach is used or the sub-valence orbitals of metals are included in the correlation treatment. On the technical side, the CCSD(T) and DLPNO-CCSD(T) results differ by a fraction of kcal mol-1, indicating the latter method as the perfect choice when the CPU efficiency is essential. For completely black-box applications, as requested in catalysis or thermochemical calculations, we recommend the DLPNO-CCSD(T) method with all electrons that are not covered by effective core potentials included in the correlation treatment and correlation-consistent polarized core valence basis sets of cc-pwCVQZ(-PP) quality.

  16. How does the oblateness coefficient influence the nature of orbits in the restricted three-body problem?

    CERN Document Server

    Zotos, Euaggelos E

    2015-01-01

    We numerically investigate the case of the planar circular restricted three-body problem where the more massive primary is an oblate spheroid. A thorough numerical analysis takes place in the configuration $(x,y)$ and the $(x,E)$ space in which we classify initial conditions of orbits into three categories: (i) bounded, (ii) escaping and (iii) collisional. Our results reveal that the oblateness coefficient has a huge impact on the character of orbits. Interpreting the collisional motion as leaking in the phase space we related our results to both chaotic scattering and the theory of leaking Hamiltonian systems. We successfully located the escape as well as the collisional basins and we managed to correlate them with the corresponding escape and collision times. We hope our contribution to be useful for a further understanding of the escape and collision properties of motion in this interesting version of the restricted three-body problem.

  17. Unveiling the influence of the radiation pressure in nature of orbits in the photogravitational restricted three-body problem

    CERN Document Server

    Zotos, Euaggelos E

    2015-01-01

    The case of the planar circular photogravitational restricted three-body problem where the more massive primary is an emitter of radiation is numerically investigated. A thorough numerical analysis takes place in the configuration $(x,y)$ and the $(x,C)$ space in which we classify initial conditions of orbits into three main categories: (i) bounded, (ii) escaping and (iii) collisional. Our results reveal that the radiation pressure factor has a huge impact on the character of orbits. Interpreting the collisional motion as leaking in the phase space we related our results to both chaotic scattering and the theory of leaking Hamiltonian systems. We successfully located the escape as well as the collisional basins and we managed to correlate them with the corresponding escape and collision times. We hope our contribution to be useful for a further understanding of the escape and collision properties of motion in this interesting version of the restricted three-body problem.

  18. C-H(ax)...Y(ax) contacts in cyclohexane derivatives revisited-identification of improper hydrogen-bonded contacts.

    Science.gov (United States)

    Kolocouris, Antonios

    2009-03-06

    The structure of 111 cyclohexane derivatives bearing the axial substitution Y(ax)-C was optimized at the B3LYP/6-31+G(d,p) level. The natural bond orbital analysis revealed the presence of overlap interactions between the axial substituent and the antibonding sigma*(C-Hax) orbitals; these calculated hyperconjugative interactions suggest the presence of improper H-bonded contacts. The addition of an appropriate bridging fragment between the axial substituent and cyclohexane carbon strengthens significantly the hydrogen-bonding component of the contact and several structures of axially substituted cyclohexane derivatives including such hydrogen-bonded C-H(ax)...Y(ax)-C contacts were retrieved from the Cambridge Crystallographic Database. Overall, the calculations predicted that the C-H(ax)...Y(ax)-C contacts in common cyclohexane derivatives that are generally thought to be steric in nature (Pauli repulsive forces) include an improper hydrogen-bonding component.

  19. Studies on the Stablest Geometries and C-P Bonding Nature in P-ylide CH2PH3 and P-ylide-like Radical ·CHPH3

    Institute of Scientific and Technical Information of China (English)

    ZENG Yan-Li; MENG Ling-Peng; ZHENG Shi-Jun

    2005-01-01

    Studies on the geometries, electronic structures and bonding nature of P-ylide CH2PH3 and P-ylide-like radical ·CHPH3 have been carried out at the level of MP4(SDTQ)/6-311 + +G(d,p) and B3LYP/6-311 + +G(d,p). The C-P bonding nature of them was discussed by means of topological analysis of electronic density. The following conclusions were obtained: the C-P bonding nature of the P-ylide-like radical is similar to that of the P-ylide, and πbonds exist in both of them. But there are two electrons in the π bond of P-ylide, while there is only one electron in the π bond of P-ylide-like radical, I.e., there is a single-electron π bond in the P-ylide-like radical. The electron in the π bond of P-ylide-like radical appears mainly near the carbon atom. The bond C-P in P-ylide-like radical is weaker than that in the corresponding product,·CH2PH2.

  20. Cooperative effects between tetrel bond and other σ-hole bond interactions: a comparative investigation

    Science.gov (United States)

    Esrafili, Mehdi D.; Nurazar, Roghaye; Mohammadian-Sabet, Fariba

    2015-12-01

    Covalently bonded atoms of Groups IV-VII tend to have anisotropic charge distributions, the electronic densities being less on the extensions of the bonds (σ-holes) than in the intervening regions. These σ-holes often give rise to positive electrostatic potentials through which the atom can interact attractively and highly directionally with negative sites. In this work, cooperative effects between tetrel bond and halogen/chalcogen/pnicogen bond interactions are studied in multi-component YH3M...NCX...NH3 complexes, where Y = F, CN; M = C, Si and X = Cl, SH and PH2. These effects are analysed in detail in terms of the structural, energetic, charge-transfer and electron density properties of the complexes. The nature of the σ-hole bonds is unveiled by quantum theory of atoms in molecules and natural bond orbital theory. A favourable cooperativity is found with values that range between -0.34 and -1.15 kcal/mol. Many-body decomposition of interaction energies indicate that two-body energy term is the most important source of the attraction, which its contribution accounts for 87%-96% of the total interaction energy.

  1. Continuum in the X-Z---Y weak bonds: Z= main group elements.

    Science.gov (United States)

    Joy, Jyothish; Jose, Anex; Jemmis, Eluvathingal D

    2016-01-15

    The Continuum in the variation of the X-Z bond length change from blue-shifting to red-shifting through zero- shifting in the X-Z---Y complex is inevitable. This has been analyzed by ab-initio molecular orbital calculations using Z= Hydrogen, Halogens, Chalcogens, and Pnicogens as prototypical examples. Our analysis revealed that, the competition between negative hyperconjugation within the donor (X-Z) molecule and Charge Transfer (CT) from the acceptor (Y) molecule is the primary reason for the X-Z bond length change. Here, we report that, the proper tuning of X- and Y-group for a particular Z- can change the blue-shifting nature of X-Z bond to zero-shifting and further to red-shifting. This observation led to the proposal of a continuum in the variation of the X-Z bond length during the formation of X-Z---Y complex. The varying number of orbitals and electrons available around the Z-atom differentiates various classes of weak interactions and leads to interactions dramatically different from the H-Bond. Our explanations based on the model of anti-bonding orbitals can be transferred from one class of weak interactions to another. We further take the idea of continuum to the nature of chemical bonding in general.

  2. Potential energy curves for P2 and P2+ constructed from a strictly N-representable natural orbital functional

    CERN Document Server

    Piris, Mario

    2016-01-01

    The potential energy curves of P2 and P2+ have been calculated using an approximate, albeit strictly N-representable, energy functional of the one-particle reduced density matrix: PNOF5. Quite satisfactory accord is found for the equilibrium bond lengths and dissociation energies for both species. The predicted vertical ionization energy for P2 by means of the extended Koopmans' theorem is 10.57 eV in good agreement with the experimental data. Comparison of the vibrational energies and anharmonicities with their corresponding experimental values supports the quality of the resultant potential energy curves.

  3. Effect of Dentin Biomodification Using Naturally Derived Collagen Cross-Linkers: One-Year Bond Strength Study

    Directory of Open Access Journals (Sweden)

    Carina S. Castellan

    2013-01-01

    Full Text Available Purpose. This study investigated the long-term resin-dentin bond strength of dentin biomodified by proanthocyanidin-rich (PA agents. Materials and Methods. Forty molars had their coronal dentin exposed, etched, and treated for 10 minutes with 6.5% grape seed extract (GSE, 6.5% cocoa seed extract ethanol-water (CSE-ET, 6.5% cocoa seed extract acetone-water (CSE-AC, and distilled water (CO. Samples were restored either with One-Step Plus (OS or Adper Single-Bond Plus (SB. Bond strength test was performed immediately or after 3, 6, and 12 months. Results. Higher μTBS were observed for GSE immediately (SB- 62.9 MPa; OS- 51.9 MPa when compared to CSE-ET (SB- 56.95 MPa; OS- 60.28 MPa, CSE-AC (SB- 49.97 MPa; OS- 54.44 MPa, and CO (SB- 52.0 MPa; OS- 44.0 MPa (P<0.05. CSE outcomes were adhesive system and solvent dependant. After 12 months storage SB results showed no difference among treatment types (GSE- 57.15 MPa; CSE/ET- 54.04 MPa; CSE/AC- 48.22 MPa; CO- 51.68 MPa; P=0.347,while OS results where treatment dependent (GSE- 42.62 MPa; CSE/ET- 44.06 MPa; CSE/AC- 41.30 MPa; CO- 36.85 MPa; P=0.036. Conclusions. GSE and CSE-ET agents provided enhanced immediate adhesion and stabilization to demineralized dentin after long-term storage, depending on adhesive system.

  4. Effect of dentin biomodification using naturally derived collagen cross-linkers: one-year bond strength study.

    Science.gov (United States)

    Castellan, Carina S; Bedran-Russo, Ana K; Antunes, Alberto; Pereira, Patricia N R

    2013-01-01

    Purpose. This study investigated the long-term resin-dentin bond strength of dentin biomodified by proanthocyanidin-rich (PA) agents. Materials and Methods. Forty molars had their coronal dentin exposed, etched, and treated for 10 minutes with 6.5% grape seed extract (GSE), 6.5% cocoa seed extract ethanol-water (CSE-ET), 6.5% cocoa seed extract acetone-water (CSE-AC), and distilled water (CO). Samples were restored either with One-Step Plus (OS) or Adper Single-Bond Plus (SB). Bond strength test was performed immediately or after 3, 6, and 12 months. Results. Higher μ TBS were observed for GSE immediately (SB- 62.9 MPa; OS- 51.9 MPa) when compared to CSE-ET (SB- 56.95 MPa; OS- 60.28 MPa), CSE-AC (SB- 49.97 MPa; OS- 54.44 MPa), and CO (SB- 52.0 MPa; OS- 44.0 MPa) (P < 0.05). CSE outcomes were adhesive system and solvent dependant. After 12 months storage SB results showed no difference among treatment types (GSE- 57.15 MPa; CSE/ET- 54.04 MPa; CSE/AC- 48.22 MPa; CO- 51.68 MPa; P = 0.347),while OS results where treatment dependent (GSE- 42.62 MPa; CSE/ET- 44.06 MPa; CSE/AC- 41.30 MPa; CO- 36.85 MPa; P = 0.036). Conclusions. GSE and CSE-ET agents provided enhanced immediate adhesion and stabilization to demineralized dentin after long-term storage, depending on adhesive system.

  5. Design and Synthesis of Chiral Zn2+ Complexes Mimicking Natural Aldolases for Catalytic C–C Bond Forming Reactions in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Susumu Itoh

    2014-01-01

    Full Text Available Extending carbon frameworks via a series of C–C bond forming reactions is essential for the synthesis of natural products, pharmaceutically active compounds, active agrochemical ingredients, and a variety of functional materials. The application of stereoselective C–C bond forming reactions to the one-pot synthesis of biorelevant compounds is now emerging as a challenging and powerful strategy for improving the efficiency of a chemical reaction, in which some of the reactants are subjected to successive chemical reactions in just one reactor. However, organic reactions are generally conducted in organic solvents, as many organic molecules, reagents, and intermediates are not stable or soluble in water. In contrast, enzymatic reactions in living systems proceed in aqueous solvents, as most of enzymes generally function only within a narrow range of temperature and pH and are not so stable in less polar organic environments, which makes it difficult to conduct chemoenzymatic reactions in organic solvents. In this review, we describe the design and synthesis of chiral metal complexes with Zn2+ ions as a catalytic factor that mimic aldolases in stereoselective C–C bond forming reactions, especially for enantioselective aldol reactions. Their application to chemoenzymatic reactions in aqueous solution is also presented.

  6. Structural and Energetic Impact of Non-Natural 7-Deaza-8-Azaadenine and its 7-Substituted Derivatives on H-Bonding Potential with Uracil in RNA Molecules

    KAUST Repository

    Chawla, Mohit

    2015-09-21

    Non-natural (synthetic) nucleobases, including 7-ethynyl- and 7-triazolyl-8-aza-7-deazaadenosine, have been introduced in RNA molecules for targeted applications, and have been characterized experimentally. However, no theoretical characterization of the impact of these modifications on the structure and energetics of the corresponding H-bonded base pair is available. To fill this gap, we performed quantum mechanics calculations, starting with the analysis of the impact of the 8-aza-7-deaza modification of the adenosine skeleton, and we moved then to analyze the impact of the specific substituents on the modified 8-aza-7-deazaadenosine. Our analysis indicates that, despite of these severe structural modifications, the H-bonding properties of the modified base pair gratifyingly replicate those of the unmodified base pair. Similar behavior is predicted when the same skeleton modifications are applied to guanosine when paired to cytosine. To stress further the H-bonding pairing in the modified adenosine-uracil base pair, we explored the impact of strong electron donor and electron withdrawing substituents on the C7 position. Also in this case we found minimal impact on the base pair geometry and energy, confirming the validity of this modification strategy to functionalize RNAs without perturbing its stability and biological functionality.

  7. Orbit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  8. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals

    Science.gov (United States)

    Pavošević, Fabijan; Pinski, Peter; Riplinger, Christoph; Neese, Frank; Valeev, Edward F.

    2016-04-01

    We present a formulation of the explicitly correlated second-order Møller-Plesset (MP2-F12) energy in which all nontrivial post-mean-field steps are formulated with linear computational complexity in system size. The two key ideas are the use of pair-natural orbitals for compact representation of wave function amplitudes and the use of domain approximation to impose the block sparsity. This development utilizes the concepts for sparse representation of tensors described in the context of the domain based local pair-natural orbital-MP2 (DLPNO-MP2) method by us recently [Pinski et al., J. Chem. Phys. 143, 034108 (2015)]. Novel developments reported here include the use of domains not only for the projected atomic orbitals, but also for the complementary auxiliary basis set (CABS) used to approximate the three- and four-electron integrals of the F12 theory, and a simplification of the standard B intermediate of the F12 theory that avoids computation of four-index two-electron integrals that involve two CABS indices. For quasi-1-dimensional systems (n-alkanes), the O (" separators="N ) DLPNO-MP2-F12 method becomes less expensive than the conventional O (" separators="N5 ) MP2-F12 for n between 10 and 15, for double- and triple-zeta basis sets; for the largest alkane, C200H402, in def2-TZVP basis, the observed computational complexity is N˜1.6, largely due to the cubic cost of computing the mean-field operators. The method reproduces the canonical MP2-F12 energy with high precision: 99.9% of the canonical correlation energy is recovered with the default truncation parameters. Although its cost is significantly higher than that of DLPNO-MP2 method, the cost increase is compensated by the great reduction of the basis set error due to explicit correlation.

  9. Beryllium dimer: a bond based on non-dynamical correlation.

    Science.gov (United States)

    El Khatib, Muammar; Bendazzoli, Gian Luigi; Evangelisti, Stefano; Helal, Wissam; Leininger, Thierry; Tenti, Lorenzo; Angeli, Celestino

    2014-08-21

    The bond nature in beryllium dimer has been theoretically investigated using high-level ab initio methods. A series of ANO basis sets of increasing quality, going from sp to spdf ghi contractions, has been employed, combined with HF, CAS-SCF, CISD, and MRCI calculations with several different active spaces. The quality of these calculations has been checked by comparing the results with valence Full-CI calculations, performed with the same basis sets. It is shown that two quasi-degenerated partly occupied orbitals play a crucial role to give a qualitatively correct description of the bond. Their nature is similar to that of the edge orbitals that give rise to the quasi-degenerated singlet-triplet states in longer beryllium chains.

  10. Orbital cellulitis

    Science.gov (United States)

    ... hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and ... in the space around the eye. An orbital cellulitis infection can get worse very quickly. A person with ...

  11. 1H-NMR as a Structural and Analytical Tool of Intra- and Intermolecular Hydrogen Bonds of Phenol-Containing Natural Products and Model Compounds

    Directory of Open Access Journals (Sweden)

    Pantelis Charisiadis

    2014-09-01

    Full Text Available Experimental parameters that influence the resolution of 1H-NMR phenol OH signals are critically evaluated with emphasis on the effects of pH, temperature and nature of the solvents. Extremely sharp peaks (Δν1/2 ≤ 2 Hz can be obtained under optimized experimental conditions which allow the application of 1H-13C HMBC-NMR experiments to reveal long range coupling constants of hydroxyl protons and, thus, to provide unequivocal assignment of the OH signals even in cases of complex polyphenol natural products. Intramolecular and intermolecular hydrogen bonds have a very significant effect on 1H OH chemical shifts which cover a region from 4.5 up to 19 ppm. Solvent effects on –OH proton chemical shifts, temperature coefficients (Δδ/ΔT, OH diffusion coefficients, and nJ(13C, O1H coupling constants are evaluated as indicators of hydrogen bonding and solvation state of phenol –OH groups. Accurate 1H chemical shifts of the OH groups can be calculated using a combination of DFT and discrete solute-solvent hydrogen bond interaction at relatively inexpensive levels of theory, namely, DFT/B3LYP/6-311++G (2d,p. Excellent correlations between experimental 1H chemical shifts and those calculated at the ab initio level can provide a method of primary interest in order to obtain structural and conformational description of solute-solvent interactions at a molecular level. The use of the high resolution phenol hydroxyl group 1H-NMR spectral region provides a general method for the analysis of complex plant extracts without the need for the isolation of the individual components.

  12. Redefining an epitope of a malaria vaccine candidate, with antibodies against the N-terminal MSA-2 antigen of Plasmodium harboring non-natural peptide bonds.

    Science.gov (United States)

    Lozano, José Manuel; Guerrero, Yuly Andrea; Alba, Martha Patricia; Lesmes, Liliana Patricia; Escobar, José Oswaldo; Patarroyo, Manuel Elkin

    2013-10-01

    The aim of obtaining novel vaccine candidates against malaria and other transmissible diseases can be partly based on selecting non-polymorphic peptides from relevant antigens of pathogens, which have to be then precisely modified for inducing a protective immunity against the disease. Bearing in mind the high degree of the MSA-2(21-40) peptide primary structure's genetic conservation among malaria species, and its crucial role in the high RBC binding ability of Plasmodium falciparum (the main agent causing malaria), structurally defined probes based on non-natural peptide-bond isosteres were thus designed. Thus, two peptide mimetics were obtained (so-called reduced amide pseudopeptides), in which naturally made amide bonds of the (30)FIN(32)-binding motif of MSA-2 were replaced with ψ-[CH2-NH] methylene amide isostere bonds, one between the F-I and the second between I-N amino acid pairs, respectively, coded as ψ-128 ψ-130. These peptide mimetics were used to produce poly- and monoclonal antibodies in Aotus monkeys and BALB/c mice. Parent reactive mice-derived IgM isotype cell clones were induced to Ig isotype switching to IgG sub-classes by controlled in vitro immunization experiments. These mature isotype immunoglobulins revealed a novel epitope in the MSA-2(25-32) antigen and two polypeptides of rodent malaria species. Also, these antibodies' functional activity against malaria was tested by in vitro assays, demonstrating high efficacy in controlling infection and evidencing neutralizing capacity for the rodent in vivo malaria infection. The neutralizing effect of antibodies induced by site-directed designed peptide mimetics on Plasmodium's biological development make these pseudopeptides a valuable tool for future development of immunoprophylactic strategies for controlling malarial infection.

  13. Single-electron aerogen bonds: Do they exist?

    Science.gov (United States)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba; Solimannejad, Mohammad

    2016-08-01

    A novel type of σ-hole interaction is characterized between some noble gas containing molecules (KrOF2, KrO3, XeOF2 and XeO3) and methyl (CH3) or ethyl (C2H5) radical by means of ab initio calculations. This interaction is named as single-electron aerogen bond (SEAB), in view of the concepts of aerogen bond and single-electron bond interactions. The properties of SEABs are studied by molecular electrostatic potential, quantum theory of atom in molecules, natural bonding orbital and noncovalent interaction index analyses. The formation of an O⋯H interaction tends to increase the strength of the SEAB, when they coexist in a ternary complex.

  14. Predicting Bond Dissociation Energies of Transition-Metal Compounds by Multiconfiguration Pair-Density Functional Theory and Second-Order Perturbation Theory Based on Correlated Participating Orbitals and Separated Pairs.

    Science.gov (United States)

    Bao, Junwei Lucas; Odoh, Samuel O; Gagliardi, Laura; Truhlar, Donald G

    2017-02-14

    We study the performance of multiconfiguration pair-density functional theory (MC-PDFT) and multireference perturbation theory for the computation of the bond dissociation energies in 12 transition-metal-containing diatomic molecules and three small transition-metal-containing polyatomic molecules and in two transition-metal dimers. The first step is a multiconfiguration self-consistent-field calculation, for which two choices must be made: (i) the active space and (ii) its partition into subspaces, if the generalized active space formulation is used. In the present work, the active space is chosen systematically by using three correlated-participating-orbitals (CPO) schemes, and the partition is chosen by using the separated-pair (SP) approximation. Our calculations show that MC-PDFT generally has similar accuracy to CASPT2, and the active-space dependence of MC-PDFT is not very great for transition-metal-ligand bond dissociation energies. We also find that the SP approximation works very well, and in particular SP with the fully translated BLYP functional SP-ftBLYP is more accurate than CASPT2. SP greatly reduces the number of configuration state functions relative to CASSCF. For the cases of FeO and NiO with extended-CPO active space, for which complete active space calculations are unaffordable, SP calculations are not only affordable but also of satisfactory accuracy. All of the MC-PDFT results are significantly better than the corresponding results with broken-symmetry spin-unrestricted Kohn-Sham density functional theory. Finally we test a perturbation theory method based on the SP reference and find that it performs slightly worse than CASPT2 calculations, and for most cases of the nominal-CPO active space, the approximate SP perturbation theory calculations are less accurate than the much less expensive SP-PDFT calculations.

  15. Established DFT methods lose sigma/pi separation in double bonds having hyperconjugative interactions

    CERN Document Server

    Sharley, John N

    2015-01-01

    Accurate treatment of amide resonance is important in electronic structure calculation of protein, for Resonance Assisted Hydrogen Bonding in hydrogen bonded chains of backbone amides in protein secondary structure types such as beta sheet and alpha helix is determined by amide resonance. Variation in amide resonance is the means by which the hydrogen bonding in these chains is cooperative. Amide carbonyl orbitals are revealed by Natural Bond Orbital analysis to substantially maintain sigma/pi separation in the presence of non-amide plane hyperconjugative interactions with wavefunction methods but not with established DFT methods. This DFT error is most pronounced with small basis sets such as are used with DFT for proteins to reduce the basis function count. This error disturbs calculation of a range of amide donor/acceptor and steric interactions. This finding has important implications for the selection of electronic structure methods and basis sets for protein calculations. For example, great caution is n...

  16. Naturally occurring hybrids derived from γ-amino acids and sugars with potential tail to tail ether-bonds

    Science.gov (United States)

    Feng, Zi-Ming; Zhan, Zhi-Lai; Yang, Ya-Nan; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2016-05-01

    The basic substances of life include various amino acids and sugars. To search such molecules is the precondition to understand the essential nature. Here we reported four unprecedented hybrids of γ-amino acids and sugars from the roots of Ranunculus ternatus, which possess potential tail to tail ether-connected (6,6-ether-connected) modes in the sugar moiety. The structures of these hybrids were elucidated by extensive analyses of spectra and calculated electronic circular dichroism (ECD) method.

  17. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory

    Energy Technology Data Exchange (ETDEWEB)

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Neese, Frank, E-mail: frank.neese@cec.mpg.de, E-mail: evaleev@vt.edu [Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr (Germany); Valeev, Edward F., E-mail: frank.neese@cec.mpg.de, E-mail: evaleev@vt.edu [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-01-14

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate

  18. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory

    Science.gov (United States)

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Valeev, Edward F.; Neese, Frank

    2016-01-01

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate previous

  19. The two faces of hydrogen-bond strength on triple AAA-DDD arrays.

    Science.gov (United States)

    Lopez, Alfredo Henrique Duarte; Caramori, Giovanni Finoto; Coimbra, Daniel Fernando; Parreira, Renato Luis Tame; da Silva, Éder Henrique

    2013-12-01

    Systems that are connected through multiple hydrogen bonds are the cornerstone of molecular recognition processes in biology, and they are increasingly being employed in supramolecular chemistry, specifically in molecular self-assembly processes. For this reason, the effects of different substituents (NO2, CN, F, Cl, Br, OCH3 and NH2) on the electronic structure, and consequently on the magnitude of hydrogen bonds in triple AAA-DDD arrays (A=acceptor, D=donor) were evaluated in the light of topological [electron localization function (ELF) and quantum theory of atoms in molecules (QTAIM)], energetic [Su-Li energy-decomposition analysis (EDA) and natural bond orbital analysis (NBO)], and geometrical analysis. The results based on local H-bond descriptors (geometries, QTAIM, ELF, and NBO) indicate that substitutions with electron-withdrawing groups on the AAA module tend to strengthen, whereas electron-donating substituents tend to weaken the covalent character of the AAA-DDD intermolecular H-bonds, and also indicate that the magnitude of the effect is dependent on the position of substitution. In contrast, Su-Li EDA results show an opposite behavior when compared to local H-bond descriptors, indicating that electron-donating substituents tend to increase the magnitude of H-bonds in AAA-DDD arrays, and thus suggesting that the use of local H-bond descriptors describes the nature of H bonds only partially, not providing enough insight about the strength of such H bonds.

  20. Competition between dihydrogen bond and beryllium bond in complexes between HBeH and HArF: a huge blue shift of distant H-Ar stretch.

    Science.gov (United States)

    Li, Qingzhong; Liu, Xiaofeng; Li, Ran; Cheng, Jianbo; Li, Wenzuo

    2012-05-01

    A novel interaction mechanism between HArF and BeH(2) has been validated and characterized with quantum chemical calculations at the MP2/aug-cc-pVQZ level. They can interact through beryllium bonding formed between the positively charged Be atom in BeH(2) and the negatively charged F atom in HArF, besides through dihydrogen bonding. The former (61.3 kcal/mol) is much stronger than the latter (5.9 kcal/mol). The red shift is found for the associated H-Ar stretch in the dihydrogen bonding, whereas the big blue shift is observed for the distant H-Ar stretch in the beryllium bonding. The blue shift of the distant H-Ar stretch is affected greatly by computational methods. It is calculated to be 712 cm(-1) at the CCSD(T)/6-311++G(3df,2p) level, which appears to be the largest blue shift validated for any weakly bound complex yet. The substitution effect on the beryllium bond is similar to that on hydrogen bonds. The Kr atom makes the beryllium bond weaken and the distant blue shift decrease. The nature and properties of beryllium bond have been analyzed with natural bond orbital (NBO), atoms in molecules (AIM), and energy decomposition.

  1. Hydrogen bonding of formamide, urea, urea monoxide and their thio-analogs with water and homodimers

    Indian Academy of Sciences (India)

    Damanjit Kaur; Shweta Khanna

    2014-11-01

    Ab initio and DFT methods have been employed to study the hydrogen bonding ability of formamide, urea, urea monoxide, thioformamide, thiourea and thiourea monoxide with one water molecule and the homodimers of the selected molecules. The stabilization energies associated with themonohydrated adducts and homodimers’ formation were evaluated at B3LYP/6-311++G** and MP2/6-311++G∗∗ levels. The energies were corrected for zero-point vibrational energies and basis set superposition error using counterpoise method. Atoms in molecules study has been carried out in order to characterize the hydrogen bonds through the changes in electron density and laplacian of electron density. A natural energy decomposition and natural bond orbital analysis was performed to understand the nature of hydrogen bonding.

  2. The sEDA(=) and pEDA(=) descriptors of the double bonded substituent effect.

    Science.gov (United States)

    Mazurek, Andrzej; Dobrowolski, Jan Cz

    2013-05-14

    New descriptors of the double bonded substituent effect, sEDA(=) and pEDA(=), were constructed based on quantum chemical calculations and NBO methodology. They show to what extent the σ and π electrons are donated to or withdrawn from the substituted system by a double bonded substituent. The new descriptors differ from descriptors of the classical substituent effect for which the pz orbital of the ipso carbon atom is engaged in the π-electron system of the two neighboring atoms in the ring. For double bonded substituents, the pz orbital participates in double bond formation with only one external atom. Moreover, the external double bond forces localization of the double bond system of the ring, significantly changing the core molecule. We demonstrated good agreement between our descriptors and the Weinhold and Landis' "natural σ and π-electronegativities": so far only descriptors allowing for evaluation of the substitution effect by a double bonded atom. The equivalency between descriptors constructed for 5- and 6-membered model structures as well as linear dependence/independence of the constructed parameters was discussed. Some interrelations between sEDA(=) and pEDA(=) and the other descriptors of (hetero)cyclic systems such as aromaticity and electron density in the ring and bond critical points were also examined.

  3. Introducing new reactivity descriptors: "Bond reactivity indices." Comparison of the new definitions and atomic reactivity indices

    Science.gov (United States)

    Sánchez-Márquez, Jesús

    2016-11-01

    A new methodology to obtain reactivity indices has been defined. This is based on reactivity functions such as the Fukui function or the dual descriptor and makes it possible to project the information of reactivity functions over molecular orbitals instead of the atoms of the molecule (atomic reactivity indices). The methodology focuses on the molecule's natural bond orbitals (bond reactivity indices) because these orbitals (with physical meaning) have the advantage of being very localized, allowing the reaction site of an electrophile or nucleophile to be determined within a very precise molecular region. This methodology gives a reactivity index for every Natural Bond Orbital (NBO), and we have verified that they have equivalent information to the reactivity functions. A representative set of molecules has been used to test the new definitions. Also, the bond reactivity index has been related with the atomic reactivity one, and complementary information has been obtained from the comparison. Finally, a new atomic reactivity index has been defined and compared with previous definitions.

  4. Designing high-performance layered thermoelectric materials through orbital engineering.

    Science.gov (United States)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K H; Fischer, Karl F F; Zhang, Wenqing; Shi, Xun; Iversen, Bo B

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  5. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach...... naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth...

  6. Designing high-performance layered thermoelectric materials through orbital engineering

    Science.gov (United States)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-03-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  7. Theoretical Study on Measure of Hydrogen Bonding Strength: R-C≡N…pyrrole Complexes

    Institute of Scientific and Technical Information of China (English)

    史福强; 安静仪; 俞稼镛

    2005-01-01

    The R-C≡N…pyrrole (R=H, CH3, CH2F, CHF2, CF3, NH2, BH2, OH, F, CH2Cl, CHCl2, CCl3, Li, Na) complexes were considered as the simple sample for measure of hydrogen bonding strength. Density functional theory B3LYP/6-311 + + G** level was applied to the optimization of geometries of complexes and monomers. Measure of hydrogen bonding strength based on geometrical and topological parameters, which were derived from the AIM theory, was analyzed. Additionally, natural bond orbital (NBO) analysis and frequency calculations were performed.From the computation results it was found that the electronic density at N-H bond critical points was also strictly correlated with the hydrogen bonding strength.

  8. Theoretical study of bifurcated bent blue-shifted hydrogen bonds CH2…Y

    Institute of Scientific and Technical Information of China (English)

    LI AnYong

    2008-01-01

    Ab initio quantum chemistry methods were applied to study the bifurcated bent hydrogen bonds Y… MP2/6-311++G(2df,2p) levels. The results show that in each complex there are two equivalent natural bond orbital analysis shows that these blue-shifted H-bonds are caused by three factors: large rehybridization; small direct intermolecular hyperconjugation and larger indirect intermolecular hy-perconjugation; large decrease of intramolecular hyperconjugation. The topological analysis of elec-tron density shows that in each complex there are three intermolecular critical points: there is one bond critical point between the acceptor atom Y and each hydrogen, and there is a ring critical point inside the tetragon YHCH, so these interactions are exactly H-bonding.

  9. Theoretical investigation on the non-linear optical properties, vibrational spectroscopy and frontier molecular orbital of (E)-2-cyano-3-(3-hydroxyphenyl)acrylamide molecule.

    Science.gov (United States)

    Xiao-Hong, Li; Hong-Ling, Cui; Rui-Zhou, Zhang; Xian-Zhou, Zhang

    2015-02-25

    The vibrational frequencies of (E)-2-cyano-3-(3-hydroxyphenyl)acrylamide (HB-CA) in the ground state have been calculated using density functional method (B3LYP) with B3LYP/6-311++G(d,p) basis set. The analysis of natural bond orbital was also performed. The IR spectra were obtained and interpreted by means of potential energies distributions (PEDs) using MOLVIB program. In addition, the results show that there exists C-H⋯O hydrogen bond in the title compound, which is confirmed by the natural bond orbital analysis. The predicted NLO properties show that the title compound is a good candidate as nonlinear optical material. The analysis of frontier molecular orbitals shows that HB-CA has high excitation energies, good stability and high chemical hardness. The analysis of MEP map shows the negative and the positive potential sites.

  10. Theoretical investigation on the non-linear optical properties, vibrational spectroscopy and frontier molecular orbital of (E)-2-cyano-3-(3-hydroxyphenyl)acrylamide molecule

    Science.gov (United States)

    Xiao-Hong, Li; Hong-Ling, Cui; Rui-Zhou, Zhang; Xian-Zhou, Zhang

    2015-02-01

    The vibrational frequencies of (E)-2-cyano-3-(3-hydroxyphenyl)acrylamide (HB-CA) in the ground state have been calculated using density functional method (B3LYP) with B3LYP/6-311++G(d,p) basis set. The analysis of natural bond orbital was also performed. The IR spectra were obtained and interpreted by means of potential energies distributions (PEDs) using MOLVIB program. In addition, the results show that there exists Csbnd H⋯O hydrogen bond in the title compound, which is confirmed by the natural bond orbital analysis. The predicted NLO properties show that the title compound is a good candidate as nonlinear optical material. The analysis of frontier molecular orbitals shows that HB-CA has high excitation energies, good stability and high chemical hardness. The analysis of MEP map shows the negative and the positive potential sites.

  11. Bond Issues.

    Science.gov (United States)

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  12. Structural, intramolecular hydrogen bonding and vibrational studies on 3-amino-4-methoxy benzamide using density functional theory

    Indian Academy of Sciences (India)

    G SUBHAPRIYA; S KALYANARAMAN; S GANDHIMATHI; N SURUMBARKUZHALI; V KRISHNAKUMAR

    2017-02-01

    An extensive theoretical study on the molecular structure and vibrational analysis of 3-amino-4- methoxy benzamide (3A4MBA) was undertaken using density functional theoretical (DFT) method. The possibility of formation of intramolecular hydrogen bonding was identified from structural parameter analysis and confirmed with the natural bond orbital (NBO), molecular electrostatic potential (MEP) and natural charge analysis. The harmonic oscillator model of aromaticity (HOMA) index elucidated the impact of hydrogen bonding in the ring. Intramolecular hydrogen bonding energy has been calculated from topological study. The lowwavenumber vibrational modes obtained from experimental FT-Raman spectrum also supported the presence of hydrogen bonding. Bands are assigned for vibrational frequencies using DFT/B3LYP/6-311++G** level of theory.

  13. Phosphorous bonding in PCl3:H2O adducts: A matrix isolation infrared and ab initio computational studies

    Science.gov (United States)

    Joshi, Prasad Ramesh; Ramanathan, N.; Sundararajan, K.; Sankaran, K.

    2017-01-01

    Non-covalent interaction between PCl3 and H2O was studied using matrix isolation infrared spectroscopy and ab initio computations. Computations indicated that the adducts are stabilized through novel P⋯O type phosphorus bonding and conventional Psbnd Cl⋯H type hydrogen bonding interactions, where the former adduct is the global minimum. Experimentally, the P⋯O phosphorus bonded adduct was identified in N2 matrix, which was evidenced from the shifts in the vibrational wavenumbers of the modes involving PCl3 and H2O sub-molecules. Atoms in Molecules and Natural Bond Orbital analyses have been performed to understand the nature of interactions in the phosphorus and hydrogen bonded adducts. Interestingly, experimental evidence for the formation of higher PCl3sbnd H2O adduct was also observed in N2 matrix.

  14. Experimental and theoretical studies on a novel helical architecture driven by hydrogen and halogen bonding interactions

    Indian Academy of Sciences (India)

    QING ZHU LIU; SHAN SHAN WANG; TENG FEI WANG; JIAN GUO LIN; XUE HAI JU; LING QIU

    2016-12-01

    A novel two-dimensional (2D), layered, helical supramolecular architecture constructed via cooperative hydrogen bond and halogen bonds was synthesized and characterized: [(BMBA)₂(TPB)]n (1) [BMBA= 3-bromo-2-methylbenzoic acid, TPB = 1,2,3,4-tetra-(4-pyridyl)-butane]. Density functional theory (DFT) calculations were carried out to investigate the nature of intermolecular interactions between BMBA and TPB. The cooperation between hydrogen bond and halogen bond in building up the open organic architecture was demonstrated elaborately. Complex 1 exhibits strong photoluminescence and high thermal stability. The nature of electronic transitions in the photoluminescent process was investigated by means of time-dependent DFT (TDDFT) calculations and molecular orbital analyses, revealing that the luminescent property of the helical supramolecular architecture of 1 was ligand-based. Periodic DFT calculations show that 1 is an electrical insulator with a band gap of 3.29 eV.

  15. The genesis of the quantum theory of the chemical bond

    CERN Document Server

    Esposito, S

    2013-01-01

    An historical overview is given of the relevant steps that allowed the genesis of the quantum theory of the chemical bond, starting from the appearance of the new quantum mechanics and following later developments till approximately 1931. General ideas and some important details are discussed concerning molecular spectroscopy, as well as quantum computations for simple molecular systems performed within perturbative and variational approaches, for which the Born-Oppenheimer method provided a quantitative theory accounting for rotational, vibrational and electronic states. The novel concepts introduced by the Heitler-London theory, complemented by those underlying the method of the molecular orbitals, are critically analyzed along with some of their relevant applications. Further improvements in the understanding of the nature of the chemical bond are also considered, including the ideas of one-electron and three-electron bonds introduced by Pauling, as well as the generalizations of the Heitler-London theory ...

  16. Density Relaxation in Time-Dependent Density Functional Theory: Combining Relaxed Density Natural Orbitals and Multireference Perturbation Theories for an Improved Description of Excited States.

    Science.gov (United States)

    Ronca, Enrico; Angeli, Celestino; Belpassi, Leonardo; De Angelis, Filippo; Tarantelli, Francesco; Pastore, Mariachiara

    2014-09-09

    Making use of the recently developed excited state charge displacement analysis [E. Ronca et al., J. Chem. Phys. 140, 054110 (2014)], suited to quantitatively characterize the charge fluxes coming along an electronic excitation, we investigate the role of the density relaxation effects in the overall description of electronically excited states of different nature, namely, valence, ionic, and charge transfer (CT), considering a large set of prototypical small and medium-sized molecular systems. By comparing the response densities provided by time-dependent density functional theory (TDDFT) and the corresponding relaxed densities obtained by applying the Z-vector postlinear-response approach [N. C. Handy and H. F. Schaefer, J. Chem. Phys. 81, 5031 (1984)] with those obtained by highly correlated state-of-the-art wave function calculations, we show that the inclusion of the relaxation effects is imperative to get an accurate description of the considered excited states. We also examine what happens at the quality of the response function when an increasing amount of Hartree-Fock (HF) exchange is included in the functional, showing that the usually improved excitation energies in the case of CT states are not always the consequence of an improved description of their overall properties. Remarkably, we find that the relaxation of the response densities is always able to reproduce, independently of the extent of HF exchange in the functional, the benchmark wave function densities. Finally, we propose a novel and computationally convenient strategy, based on the use of the natural orbitals derived from the relaxed TDDFT density to build zero-order wave function for multireference perturbation theory calculations. For a significant set of different excited states, the proposed approach provided accurate excitation energies, comparable to those obtained by computationally demanding ab initio calculations.

  17. Concerted interaction between pnicogen and halogen bonds in XCl-FH2P-NH3 (X=F, OH, CN, NC, and FCC).

    Science.gov (United States)

    Li, Qing-Zhong; Li, Ran; Liu, Xiao-Feng; Li, Wen-Zuo; Cheng, Jian-Bo

    2012-04-10

    We analyze the interplay between pnicogen-bonding and halogen-bonding interactions in the XCl-FH(2)P-NH(3) (X=F, OH, CN, NC, and FCC) complex at the MP2/aug-cc-pVTZ level. Synergetic effects are observed when pnicogen and halogen bonds coexist in the same complex. These effects are studied in terms of geometric and energetic features of the complexes. Natural bond orbital theory and Bader's theory of "atoms in molecules" are used to characterize the interactions and analyze their enhancement with varying electron density at critical points and orbital interactions. The physical nature of the interactions and the mechanism of the synergetic effects are studied using symmetry-adapted perturbation theory. By taking advantage of all the aforementioned computational methods, the present study examines how both interactions mutually influence each other.

  18. Computational evidence for intramolecular hydrogen bonding and nonbonding X···O interactions in 2'-haloflavonols

    Directory of Open Access Journals (Sweden)

    Tânia A. O. Fonseca

    2012-01-01

    Full Text Available The conformational isomerism and stereoelectronic interactions present in 2'-haloflavonols were computationally analyzed. On the basis of the quantum theory of atoms in molecules (QTAIM and natural bond orbital (NBO analysis, the conformer stabilities of 2'-haloflavonols were found to be dictated mainly by a C=O···H–O intramolecular hydrogen bond, but an unusual C–F···H–O hydrogen-bond and intramolecular C–X···O nonbonding interactions are also present in such compounds.

  19. Electronic states and nature of bonding in the molecule YC by all electron ab initio multiconfiguration self-consistent-field calculations and mass spectrometric equilibrium experiments

    DEFF Research Database (Denmark)

    Shim, Irene; Pelino, Mario; Gingerich, Karl A.

    1992-01-01

    , and they hardly contribute to the bonding. The chemical bond in the YC molecule is polar with charge transfer from Y to C giving rise to a dipole moment of 3.90 D at 3.9 a.u. in the 4PI ground state. Mass spectrometric equilibrium investigations in the temperature range 2365-2792 K have resulted...

  20. Third-generation muffin–tin orbitals

    Indian Academy of Sciences (India)

    O K Andersen; T Saha-Dasgupta; S Ezhov

    2003-01-01

    By the example of $sp^3$-bonded semiconductors, we illustrate what 3rd-generation muffin–tin orbitals (MTOs) are. We demonstrate that they can be downfolded to smaller and smaller basis sets: $sp^3d^{10}, sp^3$, and bond orbitals. For isolated bands, it is possible to generate Wannier functions a priori. Also for bands, which overlap other bands, Wannier-like MTOs can be generated a priori. Hence, MTOs have a unique capability for providing chemical understanding.

  1. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  2. Reduced form models of bond portfolios

    OpenAIRE

    Matti Koivu; Teemu Pennanen

    2010-01-01

    We derive simple return models for several classes of bond portfolios. With only one or two risk factors our models are able to explain most of the return variations in portfolios of fixed rate government bonds, inflation linked government bonds and investment grade corporate bonds. The underlying risk factors have natural interpretations which make the models well suited for risk management and portfolio design.

  3. The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3

    OpenAIRE

    June Ho Lee; Jung-Hoon Lee; Eui-Hyun Kong; Hyun Myung Jang

    2016-01-01

    In spite of the key role of hydrogen bonding in the structural stabilization of the prototypic hybrid halide perovskite, CH3NH3PbI3 (MAPbI3), little progress has been made in our in-depth understanding of the hydrogen-bonding interaction between the MA+-ion and the iodide ions in the PbI6-octahedron network. Herein, we show that there exist two distinct types of the hydrogen-bonding interaction, naming α- and β-modes, in the tetragonal MAPbI3 on the basis of symmetry argument and density-func...

  4. A Procedure for Constructing a Highly Localized and Syrmmetrical Bond Orbital Basis Set%π和σ体系彻底分离的高度定域的键轨道基组的建立

    Institute of Scientific and Technical Information of China (English)

    虞忠衡; 彭晓琦; 郭彦伸; 宣正乾

    2001-01-01

    高度定域的、对称的、键轨道基组的建立是一个多步的计算程序:(1)以定域片断轨道[Фk,Фi,φj]为基,对分子作有条件的RHF运算,算得FUL和DSI°态的片断分子轨道[Ф0l,Ф0n,Ф0m]和[Фl,Фn,Фm].在基组[Фk,Фi,φj]中,Фi∈双占据和空σ片断分子轨道(FMOs)组,φi∈πFMO组,Фk∈单占据σFMO组,它们都精确地定域在各自的片断内;(2)利用Ф0l与Фl间的重叠积分值(Sll>O.5),可以从DSI°态中,自动地选出Ns个对称的、由单占据轨道线性组合而成的分子轨道Ф0l=∑akФk(k=1,2,…,Ns).接着,用Ф0l取代FUL态中同类的、非对称轨道组Фl=∑aldФk(k=1,2,…,Ns);(3)以上述新的轨道组[Ф0l,Фn,Фm]为基(其中,Ф0l∈DSI0态,它们离域于整个分子;双占据及空σFMO组Фn和πFMO组Фm属于FUL态),按FUL态的条件,再次对分子作有条件的RHF运算,从中得到一组对称的、闭壳层正则FMOs,而且每一个FMO均有正确的电子占据数;(4)利用Perkin原理,将第3步所得的正则FMO组定域成一个对称的键轨道基组[Фl′,Фn′Фm′].在这个基组中,π体系Фm′与σ构架Фn′是彻底分离的,而且这两个轨道组始终精确地定域在各自的片断内.%A procedure for constructing a highly localized and symmetrical bond orbital basis set with the πsystems separated off from the σ frameworks has been developed. It is a four- step procedure: ( 1 )over the opened-shell localized fragment molecular orbital (FMO) basis set [φk, φi, φj] where φi ∈ doubly occ. And vacant σFMOs, φj ∈ πFMOs, and φk ∈ singly occ. FMOs, the conditional RHF computations provide each of the FUL and DSI° electronic states of a molecule, such as norbornadiene with a set of the closed-shell FMOs;(2) the symmetrical MOs, φ0l′= ∑ akl′ φk ( k = 1,2,…, Ns) which have delocalized over the whole molecule, in the DSI° substitutes for the

  5. Evaluation of the individual hydrogen bonding energies in N-methylacetamide chains

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The individual hydrogen bonding energies in N-methylacetamide chains were evaluated at the MP2/6-31+G** level including BSSE correction and at the B3LYP/6-311++G(3df,2pd) level including BSSE and van der Waals correction.The calculation results indicate that compared with MP2 results,B3LYP calculations without van der Waals correction underestimate the individual hydrogen bonding energies about 5.4 kJ m ol-1 for both the terminal and central hydrogen bonds,whereas B3LYP calculations with van der Waals correction produce almost the same individual hydrogen bonding energies as MP2 does for those terminal hydrogen bonds,but still underestimate the individual hydrogen bonding energies about 2.5 kJ mol-1 for the hydrogen bonds near the center.Our calculation results show that the individual hydrogen bonding energy becomes more negative (more attractive) as the chain becomes longer and that the hydrogen bonds close to the interior of the chain are stronger than those near the ends.The weakest individual hydrogen bonding energy is about-29.0 kJ m ol-1 found in the dimer,whereas with the growth of the N-methylacetamide chain the individual hydrogen bonding energy was estimated to be as large as-62.5 kJ mol-1 found in the N-methylacetamide decamer,showing that there is a significant hydrogen bond cooperative effect in N-methylacetamide chains.The natural bond orbital analysis indicates that a stronger hydrogen bond corresponds to a larger positive charge for the H atom and a larger negative charge for the O atom in the N-H···O=C bond,corresponds to a stronger second-order stabilization energy between the oxygen lone pair and the N-H antibonding orbital,and corresponds to more charge transfer between the hydrogen bonded donor and acceptor molecules.

  6. A priori complete active space self consistent field localized orbitals: an application on linear polyenes

    Science.gov (United States)

    Angeli, Celestino; Sparta, Manuel; Cimiraglia, Renzo

    2006-03-01

    A recently proposed a priori localization technique is used to exploit the possibility to reduce the number of active orbitals in a Complete Active Space Self Consistent Field calculation. The work relies on the fact that the new approach allows a strict control on the nature of the active orbitals and therefore makes it possible to include in the active space only the relevant orbitals. The idea is tested on the calculation of the energy barrier for rigid rotation of linear polyenes. In order to obtain a relevant set of data, a number of possible rotations around double bonds have been considered in the ethylene, butadiene, hexatriene, octatetraene, decapentaene, dodecahexaene molecules. The possibility to reduce the dimension of the active space has been investigated, considering for each possible rotation different active spaces ranging from the minimal dimension of 2 electrons in 2 π orbitals to the π-complete space. The results show that the rigid isomerization in the polyene molecules can be described with a negligible loss in accuracy with active spaces no larger than ten orbitals and ten electrons. In the special case of the rotation around the terminal double bond, the space can be further reduced to six orbitals and six electrons with a large decrease of the computational cost. An interesting summation rule has been found and verified for the stabilization of the energy barriers as a function of the dimension of the conjugated lateral chains and of the dimension of the active space.

  7. Foreign body orbital cyst

    DEFF Research Database (Denmark)

    Yazdanfard, Younes; Heegard, Steffen; Fledelius, Hans C.

    2001-01-01

    Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology......Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology...

  8. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies.

    Science.gov (United States)

    Brownridge, Scott; Crawford, Margaret-Jane; Du, Hongbin; Harcourt, Richard D; Knapp, Carsten; Laitinen, Risto S; Passmore, Jack; Rautiainen, J Mikko; Suontamo, Reijo J; Valkonen, Jussi

    2007-02-05

    The bonding in the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I42+ (three sigma + two pi bonds), the Se-I pi-bonded Se2I42+ (four sigma + one pi bonds), and their higher-energy isomers have been studied using modern DFT and ab initio calculations and theoretical analysis methods: atoms in molecules (AIM), molecular orbital (MO), natural bond orbital (NBO), and valence bond (VB) analyses, giving their relative energies, theoretical bond orders, and atomic charges. The aim of this work was to seek theory-based answers to four main questions: (1) Are the previously proposed simple pi*-pi* bonding models valid for S2I42+ and Se2I42+? (2) What accounts for the difference in the structures of S2I42+ and Se2I42+? (3) Why are the classically bonded isolobal P2I4 and As2I4 structures not adopted? (4) Is the high experimentally observed S-S bond order supported by theoretical bond orders, and how does it relate to high bond orders between other heavier main group elements? The AIM analysis confirmed the high bond orders and established that the weak bonds observed in S2I42+ and Se2I42+ are real and the bonding in these cations is covalent in nature. The full MO analysis confirmed that S2I42+ contains three sigma and two pi bonds, that the positive charge is essentially equally distributed over all atoms, that the bonding between S2 and two I2+ units in S2I42+ is best described by two mutually perpendicular 4c2e pi*-pi* bonds, and that in Se2I42+, two SeI2+ moieties are joined by a 6c2e pi*-pi* bond, both in agreement with previously suggested models. The VB treatment provided a complementary approach to MO analysis and provided insight how the formation of the weak bonds affects the other bonds. The NBO analysis and the calculated AIM charges showed that the minimization of the electrostatic repulsion between EI2+ units (E = S, Se) and the delocalization of the positive charge are the main factors that explain why the nonclassical structures are favored for S2I42

  9. Theoretical study of N(C)-H…H-B multi-dihydrogen bonds

    Institute of Scientific and Technical Information of China (English)

    KUN Yuan; LIU YanZhi; L(U) LingLing

    2009-01-01

    The optimized geometries, frequencies and interaction energy corrected with basis set superposition error (BSSE) of the multi-dihydrogen bond complexes C4H4NH…BH4 and CH≡CH…BH4- have been calculated at both the B3LYP/6-311++G** and the MP2/6-311++G** levels. The calculations were performed to study the nature of the N-H…H3-B and C-H……H2-B red shift multi dihydrogen bond in complex C4H4NH…BH4-and CH≡CH…BH4- The BSSE-corrected multidihydrogen bond interaction energy of complex I (C4H4NH…BH4- and complex Ⅱ(CH≡CH…BH4- is-76.62 and -33.79 kJ/mol (MP2/6-311++G**), respectively. From the natural bond orbital (NBO) analysis, we detailedly discussed the orbital interactions, electron density transfers, rehybridizations and the essential of the correlative bond length changes in the two complexes. In addition, solvent effect on the geometric structures, vibration frequencies and interaction energy of the monomer and complexes was studied in detail. It is relevant to the relatively dielectric constants (ε).

  10. DFT Study of the effects of counter ions on bonding, molecular and spectral properties of pentaflourophenyl xenonium diflouride cation

    Indian Academy of Sciences (India)

    Hossein Tavakol; Neda Khedri

    2015-09-01

    The structures and properties of pentaflourophenyl xenonium diflouride cation (PFF) have been studied in their salts with 12 different counter ions using DFT calculations. The results demonstrated the huge effect of counter ion on all properties. The hybridization values, obtained from the NBO calculations, showed that xenon mostly used pure p orbital in their bonds, especially in Xe-F bond. Calculated binding energies (Hb) and (Gb) indicated that the best anions for PFF are OH-, F-, BH-4 and OAc-. Moreover, the variations of HOMO and LUMO energies and the reactivity parameters have been investigated for all structures. The results of QTAIM calculations confirmed the covalent nature of Xe-C bond and the electrostatic nature of other xenon bonds. Finally, IR frequencies, NMR chemical shifts and NMR coupling constants were calculated to examine the effect of counter ion on the spectral properties of studied structures.

  11. Quantifying the effects of halogen bonding by haloaromatic donors on the acceptor pyrimidine.

    Science.gov (United States)

    Ellington, Thomas L; Reves, Peyton L; Simms, Briana L; Wilson, Jamey L; Watkins, Davita L; Tschumper, Gregory S; Hammer, Nathan I

    2017-02-28

    The effects of intermolecular interactions by a series of haloaromatic halogen bond donors on the normal modes and chemical shifts of the acceptor pyrimidine are investigated by Raman and NMR spectroscopies and electronic structure computations. Halogen bond interactions with pyrimidine's nitrogen atoms shift normal modes to higher energy and shift 1H and 13C NMR peaks upfield in adjacent nuclei. This perturbation of vibrational normal modes is reminiscent of the effects of hydrogen bonded networks of water, methanol, or silver on pyrimidine. The unexpected observation of vibrational red shifts and downfield 13C NMR shifts in some complexes suggests that other intermolecular forces such as pi-interactions are competing with halogen bonding. Natural bond orbital analyses indicate a wide range of charge transfer from pyrimidine to different haloaromatic donors is possible and computed halogen bond binding energies can be larger than a typical hydrogen bond. These results emphasize the importance in strategic selection of substituents and electron withdrawing groups in developing supramolecular structures based on halogen bonding.

  12. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen,and Zhejiang and Guangdong provinces to issue bonds for the first time.How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the Shanghai Securities Journal.Edited excerpts follow.

  13. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen, and Zhejiang and Guangdong provinces to issue bonds for the first time. How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the ShanghaiSecuritiesJournal. Edited excerpts follow:

  14. Periodic orbits for three and four co-orbital bodies

    Science.gov (United States)

    Verrier, P. E.; McInnes, C. R.

    2014-08-01

    We investigate the natural families of periodic orbits associated with the equilibrium configurations of the planar-restricted 1 + n-body problem for the case 2 ≤ n ≤ 4 equal-mass satellites. Such periodic orbits can be used to model both trojan exoplanetary systems and parking orbits for captured asteroids within the Solar system. For n = 2, there are two families of periodic orbits associated with the equilibria of the system: the well-known horseshoe and tadpole orbits. For n = 3, there are three families that emanate from the equilibrium configurations of the satellites, while for n = 4, there are six such families as well as numerous additional connecting families. The families of periodic orbits are all of the horseshoe or tadpole type, and several have regions of neutral linear stability.

  15. Periodic orbits for 3 and 4 co-orbital bodies

    CERN Document Server

    Verrier, Patricia

    2014-01-01

    We investigate the natural families of periodic orbits associated with the equilibrium configurations of the the planar restricted $1+n$ body problem for the case $2\\leq n \\leq 4$ equal mass satellites. Such periodic orbits can be used to model both trojan exoplanetary systems and parking orbits for captured asteroids within the solar system. For $n=2$ there are two families of periodic orbits associated with the equilibria of the system: the well known horseshoe and tadpole orbits. For $n=3$ there are three families that emanate from the equilibrium configurations of the satellites, while for $n=4$ there are six such families as well as numerous additional connecting families. The families of periodic orbits are all of the horseshoe or tadpole type, and several have regions of neutral linear stability.

  16. Orbital entanglement in quantum chemistry

    CERN Document Server

    Boguslawski, Katharina

    2014-01-01

    The basic concepts of orbital entanglement and its application to chemistry are briefly reviewed. The calculation of orbital entanglement measures from correlated wavefunctions is discussed in terms of reduced $n$-particle density matrices. Possible simplifications in their evaluation are highlighted in case of seniority-zero wavefunctions. Specifically, orbital entanglement allows us to dissect electron correlation effects in its strong and weak contributions, to determine bond orders, to assess the quality and stability of active space calculations, to monitor chemical reactions, and to identify points along the reaction coordinate where electronic wavefunctions change drastically. Thus, orbital entanglement represents a useful and intuitive tool to interpret complex electronic wavefunctions and to facilitate a qualitative understanding of electronic structure and how it changes in chemical processes.

  17. O-H···C hydrogen bond in the methane-water complex

    Science.gov (United States)

    Isaev, A. N.

    2016-10-01

    Quantum chemical calculations were performed at different levels of theory (SCF, DFT, MP2, and CCSD(T)) to determine the geometry and electronic structure of the HOH···CH4 complex formed by water and methane molecules, in which water is a proton donor and methane carbon ( sp 3) is an acceptor. The charge distribution on the atoms of the complex was analyzed by the CHelpG method and Hirshfeld population analysis; both methods revealed the transfer of electron charge from methane to water. According to the natural bond orbital (NBO) analysis data, the charge transfer upon complexation is caused by the interaction between the σ orbital of the axial C-H bond of methane directed along the line of the O-H···C hydrogen bridge and the antibonding σ* orbital of the O-H bond of the water molecule. Topological analysis of electron density in the HOH···CH4 complex by the AIM method showed that the parameters of the critical point of the bond between hydrogen and acceptor (carbon atom) for the O-H···C interaction are typical for H-bonded systems (the magnitude of electron density at the critical point of the bond, the sign and value of the Laplacian). It was concluded that the intermolecular interaction in the complex can be defined as an H bond of O-H···σ(C-H) type, whose energy was found to be 0.9 kcal/mol in MP2/aug-cc-pVQZ calculations including the basis set superposition error (BSSE).

  18. Inflammation of the Orbit

    Science.gov (United States)

    ... Boomers Additional Content Medical News Inflammation of the Orbit (Inflammatory Orbital Pseudotumor) By James Garrity, MD, Mayo ... Socket Disorders Cavernous Sinus Thrombosis Inflammation of the Orbit Orbital Cellulitis Preseptal Cellulitis Tumors of the Orbit ...

  19. Effects of chain length and Au spin-orbit coupling on 3(pi pi*) emission from bridging Cn2- units: theoretical characterization of spin-forbidden radiative transitions in metal-capped one-dimensional carbon chains [H3PAu(C[triple bond]C)nAuPH3].

    Science.gov (United States)

    Cao, Zexing; Zhang, Qianer

    2004-04-19

    Density functional theory and CASSCF calculations have been used to optimize the geometries of binuclear gold(I) complexes [H(3)PAu(C[triple bond]C)(n)AuPH(3)] (n=1-6) in their ground states and selected lowest energy (3)(pi pi*) excited states. Vertical excitation energies obtained by time-dependent density functional calculations for the spin-forbidden singlet-triplet transitions have exponential-decay size dependence. The predicted singlet-triplet splitting limit of [H(3)PAu(C[triple bond]C)(proportional/variant)AuPH(3)] is about 8317 cm(-1). Calculated singlet-triplet transition energies are in reasonable agreement with available experimental observations. The effect of the heavy atom Au spin-orbit coupling on the (3)(pi pi*) emission of these metal-capped one-dimensional carbon allotropes has been investigated by MRCI calculations. The contribution of the spin- and dipole-allowed singlet excited state to the spin-orbit-coupling wave function of the (3)(pi pi*) excited state makes the low-lying acetylenic triplet excited states become sufficiently allowed so as to appear in both electronic absorption and emission.

  20. Possible role of bonding angle and orbital mixing in iron pnictide superconductivity: Comparative electronic structure studies of LiFeAs and Sr2VO3FeAs

    Science.gov (United States)

    Kim, Y. K.; Koh, Y. Y.; Kyung, W. S.; Han, G. R.; Lee, B.; Kim, Kee Hoon; Ok, J. M.; Kim, Jun Sung; Arita, M.; Shimada, K.; Namatame, H.; Taniguchi, M.; Mo, S.-K.; Kim, C.

    2015-07-01

    A well-known universal feature among iron pnictide superconductors is the correlation between the As-Fe-As bonding angle and the superconducting transition temperature. However, the origin of such a correlation has not been clearly understood despite its potential importance in understanding the mechanism of superconductivity. Here, we present comparative electronic structure studies of LiFeAs and Sr2VO3FeAs , two representative systems without any dopant that can show bonding angle dependence of the electronic structure. Captured distinct features of the higher Tc compound Sr2VO3FeAs such as an unusual kz modulation and anomalous polarization dependence suggest that the difference between the two systems is in the interorbital coupling strength. This could be the essential element of the bonding angle dependence that allows an enhanced pairing instability and Tc.

  1. Stability and Characteristics of the Halogen Bonding Interaction in an Anion-Anion Complex: A Computational Chemistry Study.

    Science.gov (United States)

    Wang, Guimin; Chen, Zhaoqiang; Xu, Zhijian; Wang, Jinan; Yang, Yang; Cai, Tingting; Shi, Jiye; Zhu, Weiliang

    2016-02-04

    Halogen bonding is the noncovalent interaction between the positively charged σ-hole of organohalogens and nucleophiles. In reality, both the organohalogen and nucleophile could be deprotonated to form anions, which may lead to the vanishing of the σ-hole and possible repulsion between the two anions. However, our database survey in this study revealed that there are halogen bonding-like interactions between two anions. Quantum mechanics calculations with small model complexes composed of halobenzoates and propiolate indicated that the anion-anion halogen bonding is unstable in vacuum but attractive in solvents. Impressively, the QM optimized halogen bonding distance between the two anions is shorter than that in a neutral system, indicating a possibly stronger halogen bonding interaction, which is verified by the calculated binding energies. Furthermore, natural bond orbital and quantum theory of atoms in molecule analyses also suggested stronger anion-anion halogen bonding than that of the neutral one. Energy decomposition by symmetry adapted perturbation theory revealed that the strong binding might be attributed to large induction energy. The calculations on 4 protein-ligand complexes from PDB by the QM/MM method demonstrated that the anion-anion halogen bonding could contribute to the ligands' binding affinity up to ∼3 kcal/mol. Therefore, anion-anion halogen bonding is stable and applicable in reality.

  2. Substitution, cooperative, and solvent effects on π pnicogen bonds in the FH(2)P and FH(2)As complexes.

    Science.gov (United States)

    An, Xiu-Lin; Li, Ran; Li, Qing-Zhong; Liu, Xiao-Feng; Li, Wen-Zuo; Cheng, Jian-Bo

    2012-09-01

    Ab initio calculations have been carried out to study the substitution effect on the π pnicogen bond in ZH(2)P-C(2)HM (Z = H, H(3)C, NC, F; M = H, CH(3), Li) dimer, cooperative effect of the π pnicogen bond and hydrogen bond in XH-FH(2)Y-C(2)H(4) (X = HO, NC, F; Y = P and As) trimer, and solvent effect on the π pnicogen bond in FH(2)P-C(2)H(2), FH(2)P-C(2)H(4), FH(2)As-C(2)H(2), and FH(2)As-C(2)H(4) dimers. The interaction energy of π pnicogen bond increases in magnitude from -1.51 kcal mol(-1) in H(3)P-C(2)H(2) dimer to -7.53 kcal mol(-1) in FH(2)P-C(2)HLi dimer at the MP2/aug-cc-pVTZ level. The π pnicogen bond is enhanced by 12-30 % due to the presence of hydrogen bond in the trimer. The π pnicogen bond is also enhanced in solvents. The natural bond orbital analysis and symmetry adapted perturbation theory (SAPT) were used to unveil the source of substitution, cooperative, and solvent effects.

  3. Applications of the molecular orbital graph theory (XI)——The molecular moment’s method of evaluating π-bond grade and judging relative reactivity of even AH

    Institute of Scientific and Technical Information of China (English)

    胡式贤; 刘晓平; 赵洪刚; 曹阳

    2000-01-01

    The tree graph method of evaluating the local molecular moment is proposed. By applying this method and the molecular moment formula of π-electron energy in the molecular orbital graph theory, a topological method of using the molecular moment to judge the relatively reactive point of even AH is achieved.

  4. Geometric orbit datum and orbit covers

    Institute of Scientific and Technical Information of China (English)

    梁科; 侯自新

    2001-01-01

    Vogan conjectured that the parabolic induction of orbit data is independent of the choice of the parabolic subgroup. In this paper we first give the parabolic induction of orbit covers, whose relationship with geometric orbit datum is also induced. Hence we show a geometric interpretation of orbit data and finally prove the conjugation for geometric orbit datum using geometric method.

  5. Theoretical Study of Intramolecular Interactions in Peri-Substituted Naphthalenes: Chalcogen and Hydrogen Bonds

    Directory of Open Access Journals (Sweden)

    Goar Sánchez–Sanz

    2017-02-01

    Full Text Available A theoretical study of the peri interactions, both intramolecular hydrogen (HB and chalcogen bonds (YB, in 1-hydroxy-8YH-naphthalene, 1,4-dihydroxy-5,8-di-YH-naphthalene, and 1,5-dihydroxy-4,8-di-YH-naphthalene, with Y = O, S, and Se was carried out. The systems with a OH:Y hydrogen bond are the most stable ones followed by those with a chalcogen O:Y interaction, those with a YH:O hydrogen bond (Y = S and Se being the least stable ones. The electron density values at the hydrogen bond critical points indicate that they have partial covalent character. Natural Bond Orbital (NBO analysis shows stabilization due to the charge transfer between lone pair orbitals towards empty Y-H that correlate with the interatomic distances. The electron density shift maps and non-covalent indexes in the different systems are consistent with the relative strength of the interactions. The structures found on the CSD were used to compare the experimental and calculated results.

  6. Theoretical study of bifurcated bent blue-shifted hydrogen bonds CH2…Y

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Ab initio quantum chemistry methods were applied to study the bifurcated bent hydrogen bonds Y… H2CZ (Z = O, S, Se) and Y…H2CZ2 (Z = F, Cl, Br) (Y = Cl-, Br-) at the MP2/6-311++G(d,p) and MP2/6-311++G(2df,2p) levels. The results show that in each complex there are two equivalent blue-shifted H-bonds Y…H—C, and that the interaction energies and blue shifts are large, the energy of each Y…H—C H-bond is 15-27 kJ/mol, and Δr(CH) = -0.1 - -0.5 pm and Δv(CH) = 30 - 80 cm-1. The natural bond orbital analysis shows that these blue-shifted H-bonds are caused by three factors: large rehybridization; small direct intermolecular hyperconjugation and larger indirect intermolecular hy- perconjugation; large decrease of intramolecular hyperconjugation. The topological analysis of elec- tron density shows that in each complex there are three intermolecular critical points: there is one bond critical point between the acceptor atom Y and each hydrogen, and there is a ring critical point inside the tetragon YHCH, so these interactions are exactly H-bonding.

  7. Valence-Bond Theory and Chemical Structure.

    Science.gov (United States)

    Klein, Douglas J.; Trinajstic, Nenad

    1990-01-01

    Discussed is the importance of valence bond theory on the quantum-mechanical theory of chemical structure and the nature of the chemical bond. Described briefly are early VB theory, development of VB theory, modern versions, solid-state applications, models, treatment in textbooks, and flaws in criticisms of valence bond theory. (KR)

  8. Theoretical study of the N-H…O red-shifted and blue-shifted hydrogen bonds

    Institute of Scientific and Technical Information of China (English)

    YANG Yong; ZHANG WeiJun; PEI ShiXin; SHAO Jie; HUANG Wei; GAO XiaoMing

    2007-01-01

    Theoretical calculations are performed to study the nature of the hydrogen bonds in complexes HCHO…HNO, HCOOH…HNO, HCHO…NH3, HCOOH…NH3, HCHO…NH2F and HCOOH…NH2F. The geometric structures and vibrational frequencies of these six complexes at the MP2/6-31+G(d,p), MP2/6-311++G(d,p), B3LYP/6-31+G(d,p) and B3LYP/6-311++G(d,p) levels are calculated by standard and counterpoise-corrected methods, respectively. The results indicate that in complexes HCHO…HNO and HCOOH…HNO the N-H bond is strongly contracted and N-H…O blue-shifted hydrogen bonds are observed. While in complexes HCHO…NH3, HCOOH…NH3, HCHO…NH2F and HCOOH…NH2F, the N-H bond is elongated and N-H…O red-shifted hydrogen bonds are found. From the natural bond orbital analysis it can be seen that the X-H bond length in the X-H…Y hydrogen bond is controlled by a balance of four main factors in the opposite directions: hyperconjugation, electron density redistribution, rehybridization and structural reorganization. Among them hyperconjugation has the effect of elongating the X-H bond, and the other three factors belong to the bond shortening effects. In complexes HCHO…HNO and HCOOH…HNO, the shortening effects dominate which lead to the blue shift of the N-H stretching frequencies. In complexes HCHO…NH3, HCOOH…NH3, HCHO…NH2F and HCOOH…NH2F where elongating effects are dominant, the N-H…O hydrogen bonds are red-shifted.

  9. Measuring Scars of Periodic Orbits

    CERN Document Server

    Kaplan, L

    1999-01-01

    The phenomenon of periodic orbit scarring of eigenstates of classically chaotic systems is attracting increasing attention. Scarring is one of the most important ``corrections'' to the ideal random eigenstates suggested by random matrix theory. This paper discusses measures of scars and in so doing also tries to clarify the concepts and effects of eigenfunction scarring. We propose a new, universal scar measure which takes into account an entire periodic orbit and the linearized dynamics in its vicinity. This measure is tuned to pick out those structures which are induced in quantum eigenstates by unstable periodic orbits and their manifolds. It gives enhanced scarring strength as measured by eigenstate overlaps and inverse participation ratios, especially for longer orbits. We also discuss off-resonance scars which appear naturally on either side of an unstable periodic orbit.

  10. Theoretical study of optical activity of 1:1 hydrogen bond complexes of water with S-warfarin

    Science.gov (United States)

    Dadsetani, Mehrdad; Abdolmaleki, Ahmad; Zabardasti, Abedin

    2016-11-01

    The molecular interaction between S-warfarin (SW) and a single water molecule was investigated using the B3LYP method at 6-311 ++G(d,p) basis set. The vibrational spectra of the optimized complexes have been investigated for stabilization checking. Quantum theories of atoms in molecules, natural bond orbitals, molecular electrostatic potentials and energy decomposition analysis methods have been applied to analyze the intermolecular interactions. The intermolecular charge transfer in the most stable complex is in the opposite direction from those in the other complexes. The optical spectra and the hyperpolarizabilities of SW-water hydrogen bond complexes have been computed.

  11. PbCNN: A molecule containing Pb≡C bonding

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In order to predict potential molecules with Pb≡C bonding, we investigated the potential energy sur-face of a tetra-atomic system [PbCN2] at the CCSD(T)//B3LYP level. We found that the linear isomer PbCNN possesses good thermodynamic and kinetic stability. The combined molecular orbital analysis, hydrogenation heat, bond energy and bond dissociation energy all proved that PbCNN is composed of Pb≡ C triple bonding.

  12. PbCNN: A molecule containing Pb≡C bonding

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Bin; SHI Guo-Sheng; DING Yi-Hong; SUN Chia-Chung

    2009-01-01

    In order to predict potential molecules with Pb≡C bonding, we investigated the potential energy sur-face of a tetra-atomic system [PbCN2] at the CCSD(T)//B3LYP level. We found that the linear isomer PbCNN possesses good thermodynamic and kinetic stability. The combined molecular orbital analysis, hydrogenation heat, bond energy and bond dissociation energy all proved that PbCNN is composed of Pb≡C triple bonding.

  13. Theoretical investigation of hydrogen bonding between water and platinum(II): an atom in molecule (AIM) study

    Science.gov (United States)

    Li, Yan; Zhang, Guiqiu; Chen, Dezhan

    2012-02-01

    Recently, Rizzato et al. [Angew. Chem. Int. Ed. 49, 7440 (2010)] [1] reported a hydrogen-bonding-like interaction between a water molecule and a d8 metal ion (PtII) based on neutron diffraction, and provided the first crystallographic evidence for this interaction. We studied the hydrogen bonding of the O-H ... Pt interaction theoretically using atoms in molecule (AIM) and natural bond orbital analysis (NBO) in the crystallographic geometries. The method used density functional theory (DFT) with the hybrid B3LYP function. For platinum atoms, we used the Los Alamos National Laboratory 2-Double-Zeta (LANL2DZ) basis set, and for the other atoms we used 6-311++G(d,p) basis sets. Criteria based on a topological analysis of the electron density were used in order to characterize the nature of interactions in the complexes. The main purpose of the present work is to provide an answer to the following questions: Why can a filled d orbital of square-planar d8 metal ions such as platinum(II) also act as hydrogen-bond acceptors? Can a study based on the electron charge density answer this question? A good correlation between the density at the intermolecular bond critical point and the energy interaction was found. The interaction is mainly closed-shell and there is some charge transfer in this system.

  14. Hydrogen-bonding Interactions between Apigenin and Ethanol/Water: A Theoretical Study

    Science.gov (United States)

    Zheng, Yan-Zhen; Zhou, Yu; Liang, Qin; Chen, Da-Fu; Guo, Rui; Lai, Rong-Cai

    2016-10-01

    In this work, hydrogen-bonding interactions between apigenin and water/ethanol were investigated from a theoretical perspective using quantum chemical calculations. Two conformations of apigenin molecule were considered in this work. The following results were found. (1) For apigenin monomer, the molecular structure is non-planar, and all of the hydrogen and oxygen atoms can be hydrogen-bonding sites. (2) Eight and seven optimized geometries are obtained for apigenin (I)–H2O/CH3CH2OH and apigenin (II)–H2O/CH3CH2OH complexes, respectively. In apigenin, excluding the aromatic hydrogen atoms in the phenyl substituent, all other hydrogen atoms and the oxygen atoms form hydrogen-bonds with H2O and CH3CH2OH. (3) In apigenin–H2O/CH3CH2OH complexes, the electron density and the E(2) in the related localized anti-bonding orbital are increased upon hydrogen-bond formation. These are the cause of the elongation and red-shift of the X‑H bond. The sum of the charge change transfers from the hydrogen-bond acceptor to donor. The stronger interaction makes the charge change more intense than in the less stable structures. (4) Most of the hydrogen-bonds in the complexes are electrostatic in nature. However, the C4‑O5···H, C9‑O4···H and C13‑O2···H hydrogen-bonds have some degree of covalent character. Furthermore, the hydroxyl groups of the apigenin molecule are the preferred hydrogen-bonding sites.

  15. Hydrogen-bonding Interactions between Apigenin and Ethanol/Water: A Theoretical Study

    Science.gov (United States)

    Zheng, Yan-Zhen; Zhou, Yu; Liang, Qin; Chen, Da-Fu; Guo, Rui; Lai, Rong-Cai

    2016-01-01

    In this work, hydrogen-bonding interactions between apigenin and water/ethanol were investigated from a theoretical perspective using quantum chemical calculations. Two conformations of apigenin molecule were considered in this work. The following results were found. (1) For apigenin monomer, the molecular structure is non-planar, and all of the hydrogen and oxygen atoms can be hydrogen-bonding sites. (2) Eight and seven optimized geometries are obtained for apigenin (I)–H2O/CH3CH2OH and apigenin (II)–H2O/CH3CH2OH complexes, respectively. In apigenin, excluding the aromatic hydrogen atoms in the phenyl substituent, all other hydrogen atoms and the oxygen atoms form hydrogen-bonds with H2O and CH3CH2OH. (3) In apigenin–H2O/CH3CH2OH complexes, the electron density and the E(2) in the related localized anti-bonding orbital are increased upon hydrogen-bond formation. These are the cause of the elongation and red-shift of the X−H bond. The sum of the charge change transfers from the hydrogen-bond acceptor to donor. The stronger interaction makes the charge change more intense than in the less stable structures. (4) Most of the hydrogen-bonds in the complexes are electrostatic in nature. However, the C4−O5···H, C9−O4···H and C13−O2···H hydrogen-bonds have some degree of covalent character. Furthermore, the hydroxyl groups of the apigenin molecule are the preferred hydrogen-bonding sites. PMID:27698481

  16. Experimental charge density and neutron structural study of cis-HMn(CO){sub 4}PPh{sub 3}: Comprehensive analysis of chemical bonding and evidence for a C-H{hor_ellipsis}H-Mn hydrogen bond

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Y.A.; Brammer, L. [Univ. of Missouri, St. Louis, MO (United States). Dept. of Chemistry; Klooster, W.T.; Bullock, R.M. [Brookhaven National Lab., Upton, NY (United States). Chemistry Dept.

    1998-11-30

    The structure and bonding in cis-HMn(CO){sub 4}PPh{sub 3} have been studied by low-temperature neutron and high-resolution X-ray diffraction, the latter study using a charge-coupled device (CCD) area detector. A charge density analysis, including the deformation density, a full topological analysis of {minus}{del}{sup 2}{rho}, has been conducted. The electrostatic component of the H{sup {delta}+}{hor_ellipsis}H{sup {delta}{minus}} interaction energy is calculated to be 5.7 kcal/mol from the experimental data. This electrostatic evidence coupled with the geometry C-H{hor_ellipsis}H 129.0(2){degree} and H{hor_ellipsis}H-Mn 126.5(1){degree} and the identification of an H{hor_ellipsis}H bond path in the charge density distribution strongly supports the characterization of this interaction as an intramolecular C-H{hor_ellipsis}H-Mn hydrogen bond. Both the deformation density and the topological study clearly illustrate the {sigma}-donor nature of both the H-Mn and Ph{sub 3}P-Mn interactions and the {sigma}-donor/{pi}-acceptor nature of the manganese-carbonyl bonds. The topological study further confirms the decrease in C-O bond order upon coordination to the metal and demonstrates for the first time by this method that the metal-ligand bonds, although showing characteristics of a closed-shell interaction, do have a significant dative covalent component to the bond. The latter is reinforced by a study of the derived Mn d-orbital populations, in which populations of the d{sub z{sup 2}} and d{sub x{sup 2}{minus}y{sup 2}} orbitals are significantly higher than would be predicted by a simple crystal field theory model of metal-ligand bonding.

  17. Impact of deformation energy on the hydrogen bonding interactions in gas phase 3-X catechol ⋯ H2O complexes (X = H, F, Cl, Br): The effect of approach of a water molecule

    Science.gov (United States)

    Deb, Debojit Kumar; Sarkar, Biplab

    2016-06-01

    The conformations and nature of hydrogen bonding interactions for 3-X catechol ⋯ H2O (X = H, F, Cl, Br) has been investigated by ab initio MP2, CCSD(T), and density functional B3LYP, wB97XD and M06-2X methods. The changes in interaction energies due to deformation of the structures has been studied in detail. The intra- and intermolecular hydrogen bonding interactions due to the different direction of approach of water molecule have been discussed. A detailed natural bond orbital (NBO) analysis and the symmetry-adapted perturbation theory (SAPT) based energy decomposition analysis has been carried out to elucidate interaction strength and properties in these hydrogen bonded systems. The charge transfer percentage (CTP) has been derived which will be universally useful for correlating binding energy, deformation energy and the geometrical parameters such as angles, bond lengths, etc. for other systems as well.

  18. Density Functional Theory Study of Hydrogen Bonds of Bipyridine with 1,3,5-Benzenetricarboxylic Acid

    Institute of Scientific and Technical Information of China (English)

    LI Quan; ZHAO Keqing

    2009-01-01

    The hydrogen-bonded dimer and trimer formed between 1,3,5-benzenetricarboxylic acid and bipyridine have been investigated using a density functional theory(DFT)method and 6-31++G** basis set.The interaction enerstretching modes in the dimer and trimer red-shifted relative to those of the 1,3,5-benzenetricarhoxylic acid monomer.The natural bond orbit analysis shows that the inter-molecular charge transfers are 0.60475e and 1.20225e for the dimer and trimer,respectively.Thermodynamic analysis indicates that the formation of trimer is an exothermic H-O intermolecular hydrogen bonds between bipyridine and 1,3,5-benzenetricarboxylic acid,which is in good agreement with the experimental results.

  19. Imaging of Orbital Infections

    OpenAIRE

    Seyed Hassan Mostafavi

    2010-01-01

    Preseptal and orbital cellulitis occur more commonly in children than adults. The history and physical examination are crucial in distinguishing between preseptal and orbital cellulitis. The orbital septum delineates the anterior eyelid soft tissues from the orbital soft tissue. Infections anterior to the orbital septum are classified as preseptal cellulitis and those posterior to the orbital septum are termed orbital cellulitis. "nRecognition of orbital involvement is important not only...

  20. Imaging Hydrogen Bond in Real Space

    CERN Document Server

    Chen, Xiu; Liu, Lacheng; Liu, Xiaoqing; Cai, Yingxing; Liu, Nianhua; Wang, Li

    2013-01-01

    Hydrogen bond is often assumed to be a purely electrostatic interaction between a electron-deficient hydrogen atom and a region of high electron density. Here, for the first time, we directly image hydrogen bond in real space by room-temperature scanning tunneling microscopy (STM) with the assistance of resonant tunneling effect in double barrier mode. STM observations demonstrate that the C=O:HO hydrogen bonds lifted several angstrom meters above metal surfaces appear shuttle-like features with a significant contrast along the direction connected the oxygen and hydrogen atoms of a single hydrogen bond. The off-center location of the summit and the variance of the appearance height for the hydrogen bond with scanning bias reveal that there are certain hybridizations between the electron orbitals of the involved oxygen and hydrogen atoms in the C=O:HO hydrogen bond.

  1. Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets

    Science.gov (United States)

    Arvidson, R. E.; Poulet, F.; Morris, R.V.; Bibring, J.-P.; Bell, J.F.; Squyres, S. W.; Christensen, P.R.; Bellucci, G.; Gondet, B.; Ehlmann, B.L.; Farrand, W. H.; Fergason, R.L.; Golombeck, M.; Griffes, J.L.; Grotzinger, J.; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhofer, G.; Langevin, Y.; Ming, D.; Seelos, K.; Sullivan, R.J.; Ward, J.G.; Wiseman, S.M.; Wolff, M.J.

    2006-01-01

    The ???5 km of traverses and observations completed by the Opportunity rover from Endurance crater to the Fruitbasket outcrop show that the Meridiani plains consist of sulfate-rich sedimentary rocks that are largely covered by poorly-sorted basaltic aeolian sands and a lag of granule-sized hematitic concretions. Orbital reflectance spectra obtained by Mars Express OMEGA over this region are dominated by pyroxene, plagioclase feldspar, crystalline hematite (i.e., concretions), and nano-phase iron oxide dust signatures, consistent with Pancam and Mini-TES observations. Mo??ssbauer Spectrometer observations indicate more olivine than observed with the other instruments, consistent with preferential optical obscuration of olivine features in mixtures with pyroxene and dust. Orbital data covering bright plains located several kilometers to the south of the landing site expose a smaller areal abundance of hematite, more dust, and a larger areal extent of outcrop compared to plains proximal to the landing site. Low-albedo, low-thermal-inertia, windswept plains located several hundred kilometers to the south of the landing site are predicted from OMEGA data to have more hematite and fine-grained olivine grains exposed as compared to the landing site. Low calcium pyroxene dominates spectral signatures from the cratered highlands to the south of Opportunity. A regional-scale model is presented for the formation of the plains explored by Opportunity, based on a rising ground water table late in the Noachian Era that trapped and altered local materials and aeolian basaltic sands. Cessation of this aqueous process led to dominance of aeolian processes and formation of the current configuration of the plains. Copyright 2006 by the American Geophysical Union.

  2. The structure, energetics, and nature of the chemical bonding of phenylthiol adsorbed on the Au(111) surface: implications for density-functional calculations of molecular-electronic conduction.

    Science.gov (United States)

    Bilić, Ante; Reimers, Jeffrey R; Hush, Noel S

    2005-03-01

    The adsorption of phenylthiol on the Au(111) surface is modeled using Perdew and Wang density-functional calculations. Both direct molecular physisorption and dissociative chemisorption via S-H bond cleavage are considered as well as dimerization to form disulfides. For the major observed product, the chemisorbed thiol, an extensive potential-energy surface is produced as a function of both the azimuthal orientation of the adsorbate and the linear translation of the adsorbate through the key fcc, hcp, bridge, and top binding sites. Key structures are characterized, the lowest-energy one being a broad minimum of tilted orientation ranging from the bridge structure halfway towards the fcc one. The vertically oriented threefold binding sites, often assumed to dominate molecular electronics measurements, are identified as transition states at low coverage but become favored in dense monolayers. A similar surface is also produced for chemisorption of phenylthiol on Ag(111); this displays significant qualitative differences, consistent with the qualitatively different observed structures for thiol chemisorption on Ag and Au. Full contours of the minimum potential energy as a function of sulfur translation over the crystal face are described, from which the barrier to diffusion is deduced to be 5.8 kcal mol(-1), indicating that the potential-energy surface has low corrugation. The calculated bond lengths, adsorbate charge and spin density, and the density of electronic states all indicate that, at all sulfur locations, the adsorbate can be regarded as a thiyl species that forms a net single covalent bond to the surface of strength 31 kcal mol(-1). No detectable thiolate character is predicted, however, contrary to experimental results for alkyl thiols that indicate up to 20%-30% thiolate involvement. This effect is attributed to the asymptotic-potential error of all modern density functionals that becomes manifest through a 3-4 eV error in the lineup of the adsorbate and

  3. Theoretical Study on N-H…O Blue-shifted H-Bond for HNO…H2O2 Complex

    Institute of Scientific and Technical Information of China (English)

    YANG, Yong; ZHANG, Wei-Jun; GAO, Xiao-Ming

    2006-01-01

    A theoretical study on the blue-shifted H-bond N-H…O and red-shifted H-bond O-H…O in the complex HNO…H2O2 was conducted by employment of both standard and counterpoise-corrected methods to calculate the geometric structures and vibrational frequencies at the MP2/6-31G(d), MP2/6-31 + G(d,p), MP2/6-311 + + G(d,p),B3LYP/6-31G(d), B3LYP/6-31 +G(d,p) and B3LYP/6-311 + +G(d,p) levels. In the H-bond N-H…O, the calculated blue shift of N-H stretching frequency is in the vicinity of 120 cm-1 and this is indeed the largest theoretical estimate of a blue shift in the X-H…Y H-bond ever reported in the literature. From the natural bond orbital analysis, the red-shifted H-bond O-H…O can be explained on the basis of the dominant role of the hyperconjugation.For the blue-shifted H-bond N-H…O, the hyperconjugation was inhibited due to the existence of significant electron density redistribution effect, and the large blue shift of the N-H stretching frequency was prominently due to the rehybridization of spn N-H hybrid orbital.

  4. He II λ4686 Emission from the Massive Binary System in η Car: Constraints to the Orbital Elements and the Nature of the Periodic Minima

    Science.gov (United States)

    Teodoro, M.; Damineli, A.; Heathcote, B.; Richardson, N. D.; Moffat, A. F. J.; St-Jean, L.; Russell, C.; Gull, T. R.; Madura, T. I.; Pollard, K. R.; Walter, F.; Coimbra, A.; Prates, R.; Fernández-Lajús, E.; Gamen, R. C.; Hickel, G.; Henrique, W.; Navarete, F.; Andrade, T.; Jablonski, F.; Luckas, P.; Locke, M.; Powles, J.; Bohlsen, T.; Chini, R.; Corcoran, M. F.; Hamaguchi, K.; Groh, J. H.; Hillier, D. J.; Weigelt, G.

    2016-03-01

    Eta Carinae (η Car) is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He ii λ4686 line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He ii λ4686 emission line across the 2014.6 periastron passage using ground- and space-based telescopes. Comparison with previous data confirmed the overall repeatability of the line equivalent width (EW), radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW variations, combined with other measurements, yield an orbital period of 2022.7 ± 0.3 days. The observed variability of the EW was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of the stellar separation, if we account for the excess emission as the companion star plunges into the hot inner layers of the primary’s atmosphere, and including absorption from the disturbed primary wind between the source and the observer. This model constrains the orbital inclination to 135°-153°, and the longitude of periastron to 234°-252°. It also suggests that periastron passage occurred on {T}0=2456874.4\\quad (+/- 1.3 days). Our model also reproduced EW variations from a polar view of the primary star as determined from the observed He ii λ 4686 emission scattered off the Homunculus nebula. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program numbers 11506, 12013, 12508, 12750, and 13054. Support for program numbers 12013, 12508, and 12750 was provided by NASA

  5. Satellite (Natural)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  6. Structure, bonding and energetics of N-heterocyclic carbene (NHC) stabilized low oxidation state group 2 (Be, Mg, Ca, Sr and Ba) metal complexes: A theoretical study

    Indian Academy of Sciences (India)

    Ashim Baishya; V Rao Mundlapati; Sharanappa Nembenna; Himansu S Biswal

    2014-11-01

    A series of N-heterocyclic carbene stabilized low oxidation state group 2 metal halide and hydrides with metal-metal bonds ([L(X) M-M(X) L]; L = NHC ((CHNH)2C:), M = Be, Mg, Ca, Sr and Ba, and X = Cl or H) has been studied by computational methods. The main objective of this study is to predict whether it is possible to stabilize neutral ligated low oxidation state alkaline-earth metal complexes with metal-metal bonds. The homolytic metal-metal Bond Dissociation Energy (BDE) calculation, Natural Bond Orbital (NBO) and Energy Decomposition Analyses (EDA) on density functional theory (DFT) optimized [L(X)M-M(X)L] complexes revealed that they are as stable as their -diketiminate, guanidinate and -diimine counterparts. The optimized structures of the complexes are in trans-linear geometries. The bond order analyses such as Wiberg Bond Indices (WBI) and Fuzzi Bond Order (FBO) confirm the existence of single bond between two metal atoms, and it is covalent in nature.

  7. A theoretical study of solvent effects on the characteristics of the intramolecular hydrogen bond in Droxidopa

    Indian Academy of Sciences (India)

    Mehdi Yoosefian; Hassan Karimi-Maleh; Afsaneh L Sanati

    2015-06-01

    The molecular structures and intramolecular hydrogen bond of Droxidopa have been investigated with density functional theory. It is found that strong hydrogen bonds (O–H…N and O…H–O) exist in the title compound. These hydrogen bonds play essential roles in determining conformational preferences and energy, which would have important effects in biological activity mechanisms that will strongly influence its characteristics in solution. A computational study of a representative number of actual and model structures was carried out in five solvents with different polarities and different types of interactions with solute molecules: water, ethanol, carbon tetrachloride, dimethyl sulfoxide, and tetrahydrofuran, utilizing the polarizable continuum model (PCM) model. The calculations were performed at the B3LYP/6-311++G(d,p) level of theory. In addition, the topological properties of the electron density distributions for O–H…N(O) intramolecular hydrogen bond were analyzed in terms of the Bader’s theory of atoms in molecules. Furthermore, the analyses of different hydrogen bonds in this molecule by quantum theory of natural bond orbital (NBO) methods support the density functional theory (DFT) results.

  8. After the electronic field: structure, bonding, and the first hyperpolarizability of HArF.

    Science.gov (United States)

    Wu, Heng-Qing; Zhong, Rong-Lin; Kan, Yu-He; Sun, Shi-Ling; Zhang, Min; Xu, Hong-Liang; Su, Zhong-Min

    2013-04-30

    In this work, we add different strength of external electric field (E(ext)) along molecule axis (Z-axis) to investigate the electric field induced effect on HArF structure. The H-Ar bond is the shortest at E(ext) = -189 × 10(-4) and the Ar-F bond show shortest value at E(ext) = 185 × 10(-4) au. Furthermore, the wiberg bond index analyses show that with the variation of HArF structure, the covalent bond H-Ar shows downtrend (ranging from 0.79 to 0.69) and ionic bond Ar-F shows uptrend (ranging from 0.04 to 0.17). Interestingly, the natural bond orbital analyses show that the charges of F atom range from -0.961 to -0.771 and the charges of H atoms range from 0.402 to 0.246. Due to weakened charge transfer, the first hyperpolarizability (β(tot)) can be modulated from 4078 to 1087 au. On the other hand, make our results more useful to experimentalists, the frequency-dependent first hyperpolarizabilities were investigated by the coupled perturbed Hartree-Fork method. We hope that this work may offer a new idea for application of noble-gas hydrides.

  9. He II $\\lambda$4686 emission from the massive binary system in $\\eta$ Car: constraints to the orbital elements and the nature of the periodic minima

    CERN Document Server

    Teodoro, M; Heathcote, B; Richardson, N D; Moffat, A F J; St-Jean, L; Russell, C; Gull, T R; Madura, T I; Pollard, K R; Walter, F; Coimbra, A; Prates, R; Fernández-Lajús, E; Gamen, R C; Hickel, G; Henrique, W; Navarete, F; Andrade, T; Jablonski, F; Luckas, P; Locke, M; Powles, J; Bohlsen, T; Chini, R; Corcoran, M F; Hamaguchi, K; Groh, J H; Hillier, D J; Weigelt, G

    2016-01-01

    {\\eta} Carinae is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He II $\\lambda 4686$ line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He II $\\lambda 4686$ emission line across the 2014.6 periastron passage using ground- and space-based telescopes. Comparison with previous data confirmed the overall repeatability of EW(He II $\\lambda 4686$), the line radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW(He II $\\lambda 4686$) variations, combined with other measurements, yield an orbital period $2022.7\\pm0.3$ d. The observed variability of the EW(He II $\\lambda 4686$) was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of ...

  10. Structure and bonding of second-row hydrides

    OpenAIRE

    Blinder, S. M.

    2014-01-01

    The atomic orbitals, hybridization and chemical bonding of the most common hydrides of boron, carbon, nitrogen and oxygen are described. This can be very instructive for beginning students in chemistry and chemical physics.

  11. Emergent Paramagnetism in D-and L-Alanine Crystals: Spin-Orbital Separation in Quasi-One-Dimensional N+H…O-Bonds%D-和L-丙氨酸晶体的突现顺磁性:准一维N+H…O-氢键的自旋-轨道分离

    Institute of Scientific and Technical Information of China (English)

    王文清; 沈新春; 张玉凤; 龚

    2013-01-01

    研究了与磁场强度相关的手性丙氨酸晶体的电子轨道运动的磁性质.根据丙氨酸单晶的两性离子(+NH3-C(CH3)H-CO2-)模型的手性和蛋白质中肽键晶格结构的螺旋性,当外加磁场为5 T,磁场方向平行于丙氨酸晶轴c(z)的极性N+H…O-氢键,观察到D-丙氨酸晶格中,氢原子的电子自旋翻转,在297.6 K直接突现顺磁性.L-丙氨酸则先发生电子自旋转向,然后在303.9 K突现顺磁性.实验发现:外加强磁场可以分裂手性丙氨酸晶格中氢键的简并顺磁态,并测出能差.本文进一步证明了准一维极性N+H…O-氢键在晶格中可以发生自旋-轨道分离,表现出一维物理的基本特征.%We investigated the field-dependent magnetic properties of chiral alanine crystals,especially associated with the electronic orbital motions.Based on the chirality of the zwitterionic model (+NH3-C(CH3)H-CO2-) and the helicity of the lattice structure of peptide bond in proteins,when an external field of 5 T was applied parallel to the preferred axis c(z) of the N+H…O-hydrogen bond in D-alanine,the electron spin-flip manifested emergent paramagnetism at 297.6 K.Because the spin magnetic dipole moment of hydrogen in L-alanine was originally aligned antiparallel to the field,the electron spins flipped firstly perpendicular to the field then manifested paramagnetism at 303.9 K.The magnetic field of 5 T split a degenerate energy level in the paramagnetic state of chiral alanine.Furthermore,the spin-orbital separation of the quasi-one dimensional N+H…O-hydrogen bond in the crystal lattice provided evidence for the hallmark of one-dimensional physics.

  12. Computational Study of Metal-Dinitrogen Keggin-Type Polyoxometalate Complexes [PW11O39M(II)N2)](5-) (M = Ru, Os, Re, Ir): Bonding Nature and Dinitrogen Splitting.

    Science.gov (United States)

    Liu, Chun-Guang; Liu, Shuang; Zheng, Ting

    2015-08-17

    Molecular geometry, electronic structure, and metal-dinitrogen bonding nature of a series of metal-dinitrogen derivatives of Keggin-type polyoxometalates (POMs) [PW11O39M(II)N2)](5-) (M = Ru, Os, Re, Ir) have been studied by using a density functional theory (DFT) method with the M06L functional. Among these Keggin-type POM complexes, Os- and Re-substituted POM complexes are the most active for N2 adsorption with considerable adsorption energy. The electronic structure analysis shows that Os(II) and Re(II) centers in their metal-dinitrogen POM complexes possess π(2)xzπ(2)yzπ(2)xy and π(2)xzπ(2)yzπ(1)xy configurations, respectively. DFT-M06L calculations show that the possible synthesis routes proposed in this work for the Ru-, Os-, and Re-dinitrogen POM complexes are thermodynamically feasible under various solvent environments. Meanwhile, the Re-dinitrogen POM complex was assessed for the direct cleavage of dinitrogen molecule. In the reaction mechanism, a dimeric Keggin-type POM derivative of rhenium could represent the intermediate which undergoes N-N bond scission. The calculated free energy barrier (ΔG(⧧)) for a transition state with a zigzag conformation is 16.05 kcal mol(-1) in tetrahydrofuran, which is a moderate barrier for the cleavage of the N-N bond when compared with the literature values. In conclusion, regarding the direct cleavage of the dinitrogen molecule, the findings would be very useful to guide the search for a potential N2 cleavage compound into totally inorganic POM fields.

  13. Formation around planetary displaced orbit

    Institute of Scientific and Technical Information of China (English)

    GONG Sheng-ping; LI Jun-feng; BAOYIN He-xi

    2007-01-01

    The paper investigates the relative motion around the planetary displaced orbit. Several kinds of displaced orbits for geocentric and martian cases were discussed. First, the relative motion was linearized around the displaced orbits. Then, two seminatural control laws were investigated for each kind of orbit and the stable regions were obtained for each case. One of the two control laws is the passive control law that is very attractive for engineering practice. However, the two control laws are not very suitable for the Martian mission. Another special semi-natural control law is designed based on the requirement of the Martian mission. The results show that large stable regions exist for the control law.

  14. Updates in Orbital Tumors

    Institute of Scientific and Technical Information of China (English)

    Nila; F.Moeloek

    1993-01-01

    Orbital anatomy, the clinical features of orbital tumors, the recent development of the diagnosis and management of orbital tumors were described. The incidence of orbital tumors in Dr. Cipto Mangunkusumo Hospital in the past years were introduced. The principle of management of orbital tumors and their prognosis were discussed.

  15. Small Orbits

    CERN Document Server

    Borsten, L; Ferrara, S; Marrani, A; Rubens, W

    2012-01-01

    We study both the "large" and "small" U-duality charge orbits of extremal black holes appearing in D = 5 and D = 4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated "moduli spaces". After recalling N = 8 maximal supergravity, we consider N = 2 and N = 4 theories coupled to an arbitrary number of vector multiplets, as well as N = 2 magic, STU, ST^2 and T^3 models. While the STU model may be considered as part of the general N = 2 sequence, albeit with an additional triality symmetry, the ST^2 and T^3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit non-zero elements of rank 3, respectively. Finally, we also consider minimally coupled N = 2, matter coupled N = 3, and "pure" N = 5 theories.

  16. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    Science.gov (United States)

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins.

  17. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Experimental and computational studies on the photophysics of 4-chlorosalicylic acid. Black-Right-Pointing-Pointer Spectroscopically established ESIPT reaction substantiated by theoretical calculation. Black-Right-Pointing-Pointer Quantum chemical treatment of IMHB unveils strength, nature and directional nature. Black-Right-Pointing-Pointer Superiority of quantum chemical treatment of H-bond over geometric criteria. Black-Right-Pointing-Pointer Role of H-bond as a modulator of aromaticity. -- Abstract: The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S{sub 1}-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  18. A New Approach for Studying Bond Rupture/Closure of a Spiro Benzopyran Photochromic Material: Reactivity Descriptors Derived from Frontier Orbitals and DFT Computed Electrostatic Potential Energy Surface Maps

    Directory of Open Access Journals (Sweden)

    M. S. A. Abdel-Mottaleb

    2016-01-01

    Full Text Available This paper focuses on computations technique within the framework of the TD-DFT theory for studying the relationship between structure-properties of reversible conversion of photochromic materials. Specifically, we report on 1′,3′-dihydro-8-methoxy-1′,3′,3′-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2′-(2H-indole] (SP and its isomers. TD-DFT calculated UV-Vis electronic spectra of the closed and open isomers of this photochromic material are in excellent agreement with the experimental results. Moreover, this paper reports on the results of theoretical investigations of reactivity indices that may govern the conversion between spiropyrans and its isomers. In addition, the solvent and rigidity of the medium significantly control the thermal bleaching of the photogenerated colored isomers and hence the switch ability pattern of the photochromic material. The effect of molecular structure computed by DFT in gas-phase and solvents on Cspiro-O bond length has been shown to correlate with photochromic properties. For this compound, DFT optimized geometry could be used to predict photochromism. Furthermore, in an attempt to predict the driving force for MC → SP, this work explores, for the first time, profitable exploitation of the calculated and visualized mapped electrostatic potential energy surfaces (ESP map. Interestingly, it seems that the electrostatic potential forces over the molecular fragments govern spirobond rupture/closure reactions. Thermodynamically, all-trans-colored isomer (CTT is the most stable merocyanine-like form.

  19. X-ray photoelectron spectra structure and chemical bonding in AmO2

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2015-01-01

    Full Text Available Quantitative analysis was done of the X-ray photoelectron spectra structure in the binding energy range of 0 eV to ~35 eV for americium dioxide (AmO2 valence electrons. The binding energies and structure of the core electronic shells (~35 eV-1250 eV, as well as the relativistic discrete variation calculation results for the Am63O216 and AmO8 (D4h cluster reflecting Am close environment in AmO2 were taken into account. The experimental data show that the many-body effects and the multiplet splitting contribute to the spectral structure much less than the effects of formation of the outer (0-~15 eV binding energy and the inner (~15 eV-~35 eV binding energy valence molecular orbitals. The filled Am 5f electronic states were shown to form in the AmO2 valence band. The Am 6p electrons participate in formation of both the inner and the outer valence molecular orbitals (bands. The filled Am 6p3/2 and the O 2s electronic shells were found to make the largest contributions to the formation of the inner valence molecular orbitals. Contributions of electrons from different molecular orbitals to the chemical bond in the AmO8 cluster were evaluated. Composition and sequence order of molecular orbitals in the binding energy range 0-~35 eV in AmO2 were established. The experimental and theoretical data allowed a quantitative scheme of molecular orbitals for AmO2, which is fundamental for both understanding the chemical bond nature in americium dioxide and the interpretation of other X-ray spectra of AmO2.

  20. Imaging of Orbital Infections

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Mostafavi

    2010-05-01

    Full Text Available Preseptal and orbital cellulitis occur more commonly in children than adults. The history and physical examination are crucial in distinguishing between preseptal and orbital cellulitis. The orbital septum delineates the anterior eyelid soft tissues from the orbital soft tissue. Infections anterior to the orbital septum are classified as preseptal cellulitis and those posterior to the orbital septum are termed orbital cellulitis. "nRecognition of orbital involvement is important not only because of the threatened vision loss associated with orbital cellulitis but also because of the potential for central nervous system complications including cavernous sinus thrombosis, meningitis, and death. "nOrbital imaging should be obtained in all patients suspected of having orbital cellulitis. CT is preferred to MR imaging, as the orbital tissues have high con-trast and the bone can be well visualized. Orbital CT scanning allows localization of the disease process to the preseptal area, the extraconal or intraconal fat, or the subperiosteal space. Axial CT views allow evaluation of the medial orbit and ethmoid sinuses, whereas coronal scans image the orbital roof and floor and the frontal and maxillary sinuses. If direct coronal imaging is not possible, reconstruction of thin axial cuts may help the assessment of the orbital roof and floor. Potential sources of orbital cellulitis such as sinusitis, dental infection, and facial cellulitis are often detectable on CT imaging. "nIn this presentation, the imaging considerations of the orbital infections; including imaging differentiation criteria of all types of orbital infections are reviewed.

  1. Preseptal Cellulitis, Orbital Cellulitis, Orbital Abscess

    OpenAIRE

    Rana Altan Yaycıoğlu

    2012-01-01

    Patients with orbital infections present to our clinic usually with unilateral pain, hyperemia, and edema of the eyelids. The differentiation between preseptal and orbital cellulitis is utmost important in that the second requires hospitalization. Since in orbital cellulitis, the tissues posterior to the orbital septum are involved, signs such as conjunctival chemosis, limited eye movement, decreased vision, as well as afferent pupil defect secondary to optic nerve involvement may al...

  2. Bilateral orbital cavernous haemangiomas.

    OpenAIRE

    Fries, P D; Char, D. H.

    1988-01-01

    Simultaneous bilateral orbital lesions are rare. The differential diagnosis includes orbital pseudotumour, metastasis, leukaemia, lymphoma, Wegener's granulomatosis, and neurofibromatosis. We report what we believe to be the first case of bilateral orbital cavernous haemangiomas.

  3. Evidence for phosphorus bonding in phosphorus trichloride-methanol adduct: a matrix isolation infrared and ab initio computational study.

    Science.gov (United States)

    Joshi, Prasad Ramesh; Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-04-09

    The weak interaction between PCl3 and CH3OH was investigated using matrix isolation infrared spectroscopy and ab initio computations. In a nitrogen matrix at low temperature, the noncovalent adduct was generated and characterized using Fourier transform infrared spectroscopy. Computations were performed at B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, and MP2/6-311++G(d,p) levels of theory to optimize the possible geometries of PCl3-CH3OH adducts. Computations revealed two minima on the potential energy surface, of which, the global minimum is stabilized by a noncovalent P···O interaction, known as a pnictogen bonding (phosphorus bonding or P-bonding). The local minimum corresponded to a cyclic adduct, stabilized by the conventional hydrogen bonding (Cl···H-O and Cl···H-C interactions). Experimentally, 1:1 P-bonded PCl3-CH3OH adduct in nitrogen matrix was identified, where shifts in the P-Cl modes of PCl3, O-C, and O-H modes of CH3OH submolecules were observed. The observed vibrational frequencies of the P-bonded adduct in a nitrogen matrix agreed well with the computed frequencies. Furthermore, computations also predicted that the P-bonded adduct is stronger than H-bonded adduct by ∼1.56 kcal/mol. Atoms in molecules and natural bond orbital analyses were performed to understand the nature of interactions and effect of charge transfer interaction on the stability of the adducts.

  4. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study.

    Science.gov (United States)

    Mondal, Bhaskar; Neese, Frank; Ye, Shengfa

    2015-08-03

    The development of efficient catalysts with base metals for CO2 hydrogenation has always been a major thrust of interest. A series of experimental and theoretical work has revealed that the catalytic cycle typically involves two key steps, namely, base-promoted heterolytic H2 splitting and hydride transfer to CO2, either of which can be the rate-determining step (RDS) of the entire reaction. To explore the determining factor for the nature of RDS, we present herein a comparative mechanistic investigation on CO2 hydrogenation mediated by [M(H)(η(2)-H2)(PP3(Ph))](n+) (M = Fe(II), Ru(II), and Co(III); PP3(Ph) = tris(2-(diphenylphosphino)phenyl)phosphine) type complexes. In order to construct reliable free energy profiles, we used highly correlated wave function based ab initio methods of the coupled cluster type alongside the standard density functional theory. Our calculations demonstrate that the hydricity of the metal-hydride intermediate generated by H2 splitting dictates the nature of the RDS for the Fe(II) and Co(III) systems, while the RDS for the Ru(II) catalyst appears to be ambiguous. CO2 hydrogenation catalyzed by the Fe(II) complex that possesses moderate hydricity traverses an H2-splitting RDS, whereas the RDS for the high-hydricity Co(III) species is found to be the hydride transfer. Thus, our findings suggest that hydricity can be used as a practical guide in future catalyst design. Enhancing the electron-accepting ability of low-hydricity catalysts is likely to improve their catalytic performance, while increasing the electron-donating ability of high-hydricity complexes may speed up CO2 conversion. Moreover, we also established the active roles of base NEt3 in directing the heterolytic H2 splitting and assisting product release through the formation of an acid-base complex.

  5. Theoretical Study of H/D Isotope Effects on Nuclear Magnetic Shieldings Using an ab initio Multi-Component Molecular Orbital Method

    Directory of Open Access Journals (Sweden)

    Masanori Tachikawa

    2013-05-01

    Full Text Available We have theoretically analyzed the nuclear quantum effect on the nuclear magnetic shieldings for the intramolecular hydrogen-bonded systems of σ-hydroxy acyl aromatic species using the gauge-including atomic orbital technique combined with our multi-component density functional theory. The effect of H/D quantum nature for geometry and nuclear magnetic shielding changes are analyzed. Our study clearly demonstrated that the geometrical changes of hydrogen-bonds induced by H/D isotope effect (called geometrical isotope effect: GIE is the dominant factor of deuterium isotope effect on 13C chemical shift.

  6. Valence bond study on excited states of molecules——Bonding features of the low-lying states of molecule B2

    Institute of Scientific and Technical Information of China (English)

    曹泽星; 吴玮; 张乾二

    1997-01-01

    Based on the correspondence of the molecular orbital theory and valence bond theory to the description of chemical bonds,the ah imtio valence bond (VB) calculations of the low-lying states of diatomic molecules arc realized.The calculation results for the low-lying states of B2 show that the VB calculation has clear-cut physical significance,and its simulation of the behavior of the potential energy surface about the equilibrium position is superior to that of the molecular orbital theory.The valence bond calculation involving only a few bonded tableaus can correctly re fleet the effect of electronic correlation.

  7. A theoretical evidence for cooperative enhancement in aerogen-bonding interactions: Open-chain clusters of KrOF2 and XeOF2

    Science.gov (United States)

    Esrafili, Mehdi D.; Vessally, Esmail

    2016-10-01

    The cooperativity of aerogen-bonding interactions is studied in open-chain (KrOF2)n=2-6 and (XeOF2)n=2-6 clusters. The formation mechanism and bonding properties of these clusters are investigated by means of molecular electrostatic potentials, natural bond orbital and noncovalent interaction index analyses. The small variation of average interaction energy from the pentamer to hexamer cluster reveals that cooperativity effects are almost completely saturated in the larger clusters. The cooperative effects in the clusters also make an increase in the average 83Kr or 129Xe chemical shielding isotropies and total spin-spin coupling constants across the aerogen-bonding.

  8. 3c/4e [small sigma, Greek, circumflex]-type long-bonding competes with ω-bonding in noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I): a NBO/NRT perspective.

    Science.gov (United States)

    Zhang, Guiqiu; Li, Hong; Weinhold, Frank; Chen, Dezhan

    2016-03-21

    Noble-gas hydrides HNgY are frequently described as a single ionic form (H-Ng)(+)Y(-). We apply natural bond orbital (NBO) and natural resonance theory (NRT) analyses to a series of noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I) to gain quantitative insight into the resonance bonding of these hypervalent molecules. We find that each of the studied species should be better represented as a resonance hybrid of three leading resonance structures, namely, H-Ng(+ -):Y (I), H:(- +)Ng-Y (II), and H^Y (III), in which the "ω-bonded" structures I and II arise from the complementary donor-acceptor interactions nY → σ*HNg and nH → σ*NgY, while the "long-bond" ([small sigma, Greek, circumflex]-type) structure III arises from the nNg → [small sigma, Greek, circumflex]*HY/[small sigma, Greek, circumflex]HY interaction. The bonding for all of the studied molecules can be well described in terms of the continuously variable resonance weightings of 3c/4e ω-bonding and [small sigma, Greek, circumflex]-type long-bonding motifs. Furthermore, we find that the calculated bond orders satisfy a generalized form of "conservation of bond order" that incorporates both ω-bonding and long-bonding contributions [viz., (bHNg + bNgY) + bHY = bω-bonding + blong-bonding = 1]. Such "conservation" throughout the title series implies a competitive relationship between ω-bonding and [small sigma, Greek, circumflex]-type long-bonding, whose variations are found to depend in a chemically reasonable manner on the electronegativity of Y and the outer valence-shell character of the central Ng atom. The calculated bond orders are also found to exhibit chemically reasonable correlations with bond lengths, vibrational frequencies, and bond dissociation energies, in accord with Badger's rule and related empirical relationships. Overall, the results provide electronic principles and chemical insight that may prove useful in the rational design of noble-gas hydrides of

  9. π Type Lithium Bond Interaction between Ethylene,Acetylene,or Benzene and Amido-lithium

    Institute of Scientific and Technical Information of China (English)

    YUAN,Kun; LIU,Yanzhi; L(U),Lingling; ZHU,Yuancheng; ZHANG,Ji; ZHANG,dunyan

    2009-01-01

    The optimization geometries and interaction energy corrected by basis set super-position error (BSSE) of the lithium bond complexes between ethylene,acetylene,or benzene and amido-lithium have been calculated at the B3L YP/6-311++G** and MP2/6-311 ++-G** levels.And only one configuration was obtained for each lithium bond system.All the equilibrium geometries were confirmed to be stable state by analytical frequency computations.The calculations showed that all the N(2)-Li(4) bond lengths increased obviously and the red shift of N(2)-Li(4) stretching frequency occurred after complexes formed.The calculated binding energies with BSSE and zero-point vibrational energy corrections of complexes Ⅰ,Ⅱ and Ⅲ are -26.04,-24.86 and -30.02 kJ·mol-1 via an MP2 method,respectively.Natural bond orbital (NBO) theory analysis revealed that the three complexes were all formed with π type lithium bond interaction between ethylene,acetylene,or benzene and amido-lithium.

  10. Cross Shear Roll Bonding

    DEFF Research Database (Denmark)

    Bay, Niels; Bjerregaard, Henrik; Petersen, Søren. B;

    1994-01-01

    The present paper describes an investigation of roll bonding an AlZn alloy to mild steel. Application of cross shear roll bonding, where the two equal sized rolls run with different peripheral speed, is shown to give better bond strength than conventional roll bonding. Improvements of up to 20......-23% in bond strength are found and full bond strength is obtained at a reduction of 50% whereas 65% is required in case of conventional roll bonding. Pseudo cross shear roll bonding, where the cross shear effect is obtained by running two equal sized rolls with different speed, gives the same results....

  11. Orbital dystopia due to orbital roof defect.

    Science.gov (United States)

    Rha, Eun Young; Joo, Hong Sil; Byeon, Jun Hee

    2013-01-01

    We performed a retrospective review of patients who presented with delayed dystopia as a consequence of an orbital roof defect due to fractures and nontraumatic causes to search for a correlation between orbital roof defect size and surgical indications for the treatment thereof. Retrospective analyses were performed in 7 patients, all of whom presented with delayed dystopia due to orbital roof defects, between January 2001 and June 2011. The causes of orbital roof defects were displaced orbital roof fractures (5 cases), tumor (1 case), and congenital sphenoid dysplasia (1 case). All 7 patients had initially been treated conservatively and later presented with significant dystopia. The sizes of the defects were calculated on computed tomographic scans. Among the 7 patients, aspiration of cerebrospinal fluid, which caused ocular symptoms, in 1 patient with minimal displaced orbital roof and reconstruction with calvarial bone, titanium micromesh, or Medpor in 6 other patients were performed. The minimal size of the orbital roof in patients who underwent orbital roof reconstruction was 1.2 cm (defect height) x 1.0 cm (defect length), 0.94 cm(2). For all patients with orbital dystopia, displacement of the globe was corrected without any complications, regardless of whether the patient was evaluated grossly or by radiology. In this retrospective study, continuous monitoring of clinical signs and active surgical management should be considered for cases in which an orbital roof defect is detected, even if no definite symptoms are noted, to prevent delayed sequelae.

  12. Study of hydrogen-bonding, vibrational dynamics and structure-activity relationship of genistein using spectroscopic techniques coupled with DFT

    Science.gov (United States)

    Singh, Harshita; Singh, Swapnil; Srivastava, Anubha; Tandon, Poonam; Bharti, Purnima; Kumar, Sudhir; Dev, Kapil; Maurya, Rakesh

    2017-02-01

    The conformational and hydrogen bonding studies of genistein have been performed by combined spectroscopic and quantum chemical approach. The vibrational spectra (FT-IR and FT-Raman), UV-visible and 1H and 13C NMR absorption spectra of genistein have been recorded and examined. The vibrational wavenumbers of optimized geometry and total energy for isolated molecule and hydrogen-bonded dimers of genistein have been determined using the quantum chemical calculation (DFT/B3LYP) with extended 6-311++G (d,p) basis set. The vibrational assignments for the observed FT-IR and FT-Raman spectra of genistein are provided by calculations on monomer and hydrogen-bonded dimer. The quantum theory of atoms in molecules (QTAIM) is used for investigating the nature and strength of hydrogen-bonds. UV-visible spectrum of the genistein was recorded in methanol solvent and the electronic properties were calculated by using time-dependent density functional theory (TD-DFT). The computed HOMO and LUMO energies predicted the type of transition as π → π*. The 1H and 13C NMR signals of the genistein were computed by the Gauge including atomic orbital (GIAO) approach. Natural bond orbital (NBO) analysis predicted the stability of molecules due to charge delocalization and hyper conjugative interactions. NBO analysis shows that there is an Osbnd H⋯O inter and intramolecular hydrogen bond, and π → π* transition in the monomer and dimer, which is consistent with the conclusion obtained by the investigation of molecular structure and assignment of UV-visible spectra.

  13. Vibrational progressions in the valence ionizations of transition metal hydrides: evaluation of metal-hydride bonding and vibrations in (eta(5)-C(5)R(5))Re(NO)(CO)H [R = H, CH(3)].

    Science.gov (United States)

    Lichtenberger, Dennis L; Gruhn, Nadine E; Rai-Chaudhuri, Anjana; Renshaw, Sharon K; Gladysz, John A; Jiao, Haijun; Seyler, Jeff; Igau, Alain

    2002-02-20

    The first examples of vibrational structure in metal-ligand sigma-bond ionizations are observed in the gas-phase photoelectron spectra of CpRe(NO)(CO)H and CpRe(NO)(CO)H [Cp = eta(5)-C(5)H(5), Cp = eta(5)-C(5)(CH(3))(5)]. The vibrational progressions are due to the Re-H stretch in the ion states formed by removal of an electron from the predominantly Re-H sigma-bonding orbitals. A vibrational progression is also observed in the corresponding ionization of the deuterium analogue, CpRe(NO)(CO)D, but with lower vibrational energy spacing as expected from the reduced mass effect. The vibrational progressions in these valence ionizations are directly informative about the nature of the metal-hydride bonding and electronic structure in these molecules. Franck-Condon analysis shows that for these molecules the Re-H or Re-D bond lengthens by 0.25(1) A when an electron is removed from the Re-H or Re-D sigma-bond orbital. This bond lengthening is comparable to that of H(2) upon ionization. Removal of an electron from the Re-H or Re-D bonds leads to a quantum-mechanical inner sphere reorganization energy (lambda(QM)) of 0.34(1) eV. These observations suggest that even in these low symmetry molecules the orbital corresponding to the Re-H sigma bond and the Re-H vibrational mode is very localized. Theoretical calculations of the electronic structure and normal vibrational modes of CpRe(NO)(CO)H support a localized two-electron valence bond description of the Re-H interaction.

  14. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  15. Theoretical study of the interaction mechanism of single-electron halogen bond complexes H3C…Br-Y(Y=H,CN,NC,CCH,C2H3)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The characteristics and structures of single-electron halogen bond complexes H3C…Br-Y(Y = H,CCH,CN,NC,C2H3) have been investigated by theoretical calculation methods.The geometries were optimized and frequencies calculated at the B3LYP/6-311++G level.The interaction energies were corrected for basis set superposition error(BSSE) and the wavefunctions obtained by the natural bond orbital(NBO) and atom in molecule(AIM) analyses at the MP2/6-311++G level.For each H3C…Br-Y complex,a single-electron Br bond is formed between the unpaired electron of the CH3(electron donor) radical and the Br atom of Br-Y(electron acceptor);this kind of single-electron bromine bond also possesses the character of a"three-electron bond".Due to the formation of the single-electron Br bond,the C-H bonds of the CH3 radical bend away from the Br-Y moiety and the Br-Y bond elongates,giving red-shifted single-electron Br bond complexes.The effects of substituents,hybridization of the carbon atom,and solvent on the properties of the complexes have been investigated.The strengths of single-electron hydrogen bonds,single-electron halogen bonds and single-electron lithium bonds have been compared.In addition,the single-electron halogen bond system is discussed in the light of the first three criteria for hydrogen bonding proposed by Popelier.

  16. Seniority Number in Valence Bond Theory.

    Science.gov (United States)

    Chen, Zhenhua; Zhou, Chen; Wu, Wei

    2015-09-01

    In this work, a hierarchy of valence bond (VB) methods based on the concept of seniority number, defined as the number of singly occupied orbitals in a determinant or an orbital configuration, is proposed and applied to the studies of the potential energy curves (PECs) of H8, N2, and C2 molecules. It is found that the seniority-based VB expansion converges more rapidly toward the full configuration interaction (FCI) or complete active space self-consistent field (CASSCF) limit and produces more accurate PECs with smaller nonparallelity errors than its molecular orbital (MO) theory-based analogue. Test results reveal that the nonorthogonal orbital-based VB theory provides a reverse but more efficient way to truncate the complete active Hilbert space by seniority numbers.

  17. O-H...O versus O-H...S hydrogen bonding. 3. IR-UV double resonance study of hydrogen bonded complexes of p-cresol with diethyl ether and its sulfur analog.

    Science.gov (United States)

    Biswal, Himansu S; Wategaonkar, Sanjay

    2010-05-20

    In this work the hydrogen bonded complexes of diethyl ether (DEE) and diethyl sulfide (DES) with p-cresol (p-CR) were investigated. Only one conformer of the p-CR.DEE complex and three conformers of the p-CR.DES complex were found to be present under the supersonic jet expansion conditions. The conformational assignments were done with the help of IR-UV double resonance studies and ab initio calculations. The red shifts in the OH stretching frequency for the O-H...O and O-H...S hydrogen bonded complexes were quite close to each other. In fact, one of the p-CR.DES conformers showed a slightly larger red shift in the OH stretch than that in the p-CR.DEE conformer, which suggests that in this case sulfur is not a weak hydrogen bond acceptor as noted previously in case of the p-CR.H(2)O and p-CR.H(2)S complexes (Biswal et al. J. Phys. Chem. A 2009, 113, 5633). The natural bond orbital analysis also shows that the extent of overlap between sulfur lone pair orbitals (LP) and OH antibonding orbital (sigma*(OH)) was comparable to the oxygen (LP) and sigma*(OH) overlap, consistent with the similar magnitudes of the red shifts of OH stretch in the DES and DEE complexes. The computed binding energy of the p-CR.DES complex, however, was about 80% of the p-CR.DEE complex. The electron densities at the bond critical points indicated that the O-H...S interaction was weaker than the O-H...O interaction in this particular system also. The important finding of this study was that the IR red shifts in the H-bond donor X-H stretching frequency were not quite consistent with the computed binding energies and the atoms-in-molecules analysis contrary to the general understanding. Energy decomposition analysis suggests that O-H...S hydrogen bonding interaction is dispersive in nature and the dispersion contribution decreases with the increase in the length of the alkyl chain of the "S" hydrogen bond acceptor.

  18. S···X halogen bonds and H···X hydrogen bonds in H2CS-XY (XY = FF, ClF, ClCl, BrF, BrCl, and BrBr) complexes: cooperativity and solvent effect.

    Science.gov (United States)

    Li, Qingzhong; Li, Ran; Zhou, Zhongjun; Li, Wenzuo; Cheng, Jianbo

    2012-01-07

    Using ab initio calculations, we have studied the structures, properties, and nature of halogen bonds in H(2)CS-XY (XY = FF, ClF, ClCl, BrF, BrCl, and BrBr) complexes. The results show that the ring-shaped complexes are formed by a halogen bond (S···X) and a secondary hydrogen bond (H···X). We also analyzed the H(2)CS-ClF-ClF and FCl-H(2)CS-ClF complexes to investigate the cooperative and diminutive halogen bonding. The cooperative effect of halogen bonding is found in the former, while the diminutive effect is present in the latter. We finally considered the solvent effect on the halogen bond in H(2)CS-BrCl complex and found that the solvent has a prominent enhancing effect on it. The complexes have also been analyzed with natural bond orbital, atoms in molecules, and symmetry adapted perturbation theory method.

  19. Dihydrogen bonding vs metal-σ interaction in complexes between H2 and metal hydride.

    Science.gov (United States)

    Alkorta, Ibon; Elguero, Jose; Solimannejad, Mohammad; Grabowski, Sławomir J

    2011-01-20

    The complexes formed by hydrogen with metal hydrides (LiH, NaH, BeH(2), MgH(2), BH(3), AlH(3), Li(2)H(2), Na(2)H(2), Be(2)H(4), and Mg(2)H(4)) have been theoretically studied at the MP2/aug-cc-pVTZ, MP2/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ levels of theory. The hydrogen molecule can act as a Lewis acid or base. In the first case, a dihydrogen bonded complex is obtained and in the second an interaction between the σ-bond of the hydrogen molecule and an empty orbital of the metal atoms is found. Quantum theory of atoms in molecules and natural bond orbitals methods have been applied to analyze the intermolecular interactions. Additionally, the cooperativity effects are analyzed for selected complexes with two H(2) molecules where both kinds of interactions exist simultaneously.

  20. Aryl-NHC-group 13 trimethyl complexes: structural, stability and bonding insights

    KAUST Repository

    Wu, Melissa M.

    2016-12-14

    Treatment of aromatic N-substituted N-heterocyclic carbenes (NHCs) with trimethyl-gallium and -indium yielded the new Lewis acid-base adducts, IMes·GaMe3 (1), SIMes·GaMe3 (2), IPr·GaMe3 (3), SIPr·GaMe3 (4), IMes·InMe3 (5), SIMes·InMe3 (6), IPr·InMe3 (7), and SIPr·InMe3 (8), with all complexes being identified by X-ray diffraction, IR, and multinuclear NMR analyses. Complex stability was found to be largely dependent on the nature of the constituent NHC ligands. Percent buried volume (%VBur) and topographic steric map analyses were employed to quantify and elucidate the observed trends. Additionally, a detailed bond snapping energy (BSE) decomposition analysis focusing on both steric and orbital interactions of the M-NHC bond (M = Al, Ga and In) has been performed.

  1. Hydrogen bonding in acetylacetaldehyde: Theoretical insights from the theory of atoms in molecules

    Science.gov (United States)

    Nowroozi, A.; Jalbout, A. F.; Roohi, H.; Khalilinia, E.; Sadeghi, M.; de Leon, A.; Raissi, H.

    All the possible conformations of tautomeric structures (keto and enol) of acetylacetaldehyde (AAD) were fully optimized at HF, B3LYP, and MP2 levels with 6-31G(d,p) and 6-311++G(d,p) basis sets to determine the conformational equilibrium. Theoretical results show that two chelated enol forms have extra stability with respect to the other conformers, but identification of global minimum is very difficult. The high level ab initio calculations G2(MP2) and CBS-QB3) also support the HF conclusion. It seems that the chelated enol forms have equal stability, and the energy gap between them is probably lies in the computational error range. Finally, the analysis of hydrogen bond in these molecules by quantum theory of atoms in molecules (AIM) and natural bond orbital (NBO) methods fairly support the ab initio results.

  2. Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry

    Science.gov (United States)

    Green, Malcolm L. H.; Parkin, Gerard

    2014-01-01

    The Covalent Bond Classification (CBC) method provides a means to classify covalent molecules according to the number and types of bonds that surround an atom of interest. This approach is based on an elementary molecular orbital analysis of the bonding involving the central atom (M), with the various interactions being classified according to the…

  3. Using beryllium bonds to change halogen bonds from traditional to chlorine-shared to ion-pair bonds.

    Science.gov (United States)

    Alkorta, Ibon; Elguero, José; Mó, Otilia; Yáñez, Manuel; Del Bene, Janet E

    2015-01-21

    Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the structures, binding energies, and bonding characteristics of binary complexes HFBe:FCl, R2Be:FCl, and FCl:N-base, and of ternary complexes HFBe:FCl:N-base and R2Be:FCl:N-base for R = H, F, Cl; N-base = NH3, NHCH2, NCH. Dramatic synergistic cooperative effects have been found between the Be···F beryllium bonds and the Cl···N halogen bonds in ternary complexes. The Cl···N traditional halogen bonds and the Be···F beryllium bonds in binary complexes become significantly stronger in ternary complexes, while the F-Cl bond weakens. Charge-transfer from F to the empty p(σ) orbital of Be leads to a bending of the XYBe molecule and a change in the hybridization of Be, which in the limit becomes sp(2). As a function of the intrinsic basicity of the nitrogen base and the intrinsic acidity of the Be derivative, the halogen-bond type evolves from traditional to chlorine-shared to ion-pair bonds. The mechanism by which an ion-pair complex is formed is similar to that involved in the dissociative proton attachment process. EOM-CCSD spin-spin coupling constants (1X)J(Cl-N) across the halogen bond in these complexes also provide evidence of the same evolution of the halogen-bond type.

  4. Measuring orbital interaction using quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Rissler, Joerg [Fachbereich Physik, Philipps-Universitaet Marburg, AG Vielteilchentheorie, Renthof 6, D-35032 Marburg (Germany)], E-mail: rissler@staff.uni-marburg.de; Noack, Reinhard M. [Fachbereich Physik, Philipps-Universitaet Marburg, AG Vielteilchentheorie, Renthof 6, D-35032 Marburg (Germany); White, Steven R. [Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 (United States)

    2006-04-21

    Quantum information theory gives rise to a straightforward definition of the interaction of electrons I {sub p,q} in two orbitals p,q for a given many-body wave function. A convenient way to calculate the von Neumann entropies needed is presented in this work, and the orbital interaction I {sub p,q} is successfully tested for different types of chemical bonds. As an example of an application of I {sub p,q} beyond the interpretation of wave functions, I {sub p,q} is then used to investigate the ordering problem in the density-matrix renormalization group.

  5. Natural Orbitals from Generalized Sturmian Calculations

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2003-01-01

    The generalized Sturmian method is a direct configuration interaction method for solving the Schr\\"odinger equation of a many-electron system. The configurations in the basis set are solutions to an approximate Schr\\"odinger equation with a weighted potential $\\beta_\

  6. Preseptal Cellulitis, Orbital Cellulitis, Orbital Abscess

    Directory of Open Access Journals (Sweden)

    Rana Altan Yaycıoğlu

    2012-12-01

    Full Text Available Patients with orbital infections present to our clinic usually with unilateral pain, hyperemia, and edema of the eyelids. The differentiation between preseptal and orbital cellulitis is utmost important in that the second requires hospitalization. Since in orbital cellulitis, the tissues posterior to the orbital septum are involved, signs such as conjunctival chemosis, limited eye movement, decreased vision, as well as afferent pupil defect secondary to optic nerve involvement may also be observed. Prompt intravenous antibiotic treatment should be started, and surgical drainage may be performed if patient shows failure to improve in 48 hours despite optimal management. Without treatment, the clinical course may progress to subperiosteal or orbital abscess, and even to cavernous sinus thrombosis. (Turk J Ophthalmol 2012; 42: Supplement 52-6

  7. The investigation of influence of adhesion promoters on adhesion bond between vulcanisate and zinc coated steel cord in products based on mixtures of natural and 1,4-cis-polybutadiene rubber

    Directory of Open Access Journals (Sweden)

    Gojić Mirko T.

    2007-01-01

    Full Text Available The mixtures of elastomer compounds based on natural and 1,4-cispolybutadiene rubber of 80:20 ratio, were used for the investigation of adhesion promoters influence on adhesion of vulcanisate to steel cord. Ni-stearate and resorsynol-formaldehyde resin combined with hexamethylenetetramine in various mass ratios were included as adhesion promoters. Elastomer mixtures were prepared using a laboratory double mill, and the rheological and vulcanization characteristics were examined on a vulcameter provided with an oscillating disc, a higher temperature of 145 °C. The crosslinking of the mixture was carried out by press, at a temperature of 145 °C and specific pressure of 40 bar, in period of 45 minutes. A wide number of standardized methods for physical mechanical characterization of vulcanization prior and after accelerated aging were used. The adhesion of vulcanizate bond with zinc coated steel cord was determined according to the so called H-test, by measuring the pulling-out force of the cord from the vulcanized block, and the degree of coverage of cord with vulcanizate after separation. The results of examinations show significant dependence of physico-mechanical characteristics and adhesion forces on the type and amount of used adhesion promoters in experimental elastomer mixtures.

  8. Quantifying the Sigma and Pi interactions between U(V) f orbitals and halide, alkyl, alkoxide, amide and ketimide ligands

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lukens, Wayne W.; Edelstein, Norman M.; Magnani, Nicola; Hayton, Trevor W.; Fortier, Skye; Seaman, Lani A.

    2013-06-20

    f Orbital bonding in actinide and lanthanide complexes is critical to their behavior in a variety of areas from separations to magnetic properties. Octahedral f1 hexahalide complexes have been extensively used to study f orbital bonding due to their simple electronic structure and extensive spectroscopic characterization. The recent expansion of this family to include alkyl, alkoxide, amide, and ketimide ligands presents the opportunity to extend this study to a wider variety of ligands. To better understand f orbital bonding in these complexes, the existing molecular orbital (MO) model was refined to include the effect of covalency on spin orbit coupling in addition to its effect on orbital angular momentum (orbital reduction). The new MO model as well as the existing MO model and the crystal field (CF) model were applied to the octahedral f1 complexes to determine the covalency and strengths of the ? and ? bonds formed by the f orbitals. When covalency is significant, MO models more precisely determined the strengths of the bonds derived from the f orbitals; however, when covalency was small, the CF model was better than either MO model. The covalency determined using the new MO model is in better agreement with both experiment and theory than that predicted by the existing MO model. The results emphasize the role played by the orbital energy in determining the strength and covalency of bonds formed by the f orbitals.

  9. Nitrilotris(methylenephosphonato)potassium K[μ6-NH(CH2PO3)3H4]: Synthesis, structure, and the nature of the K-O chemical bond

    Science.gov (United States)

    Somov, N. V.; Chausov, F. F.; Zakirova, R. M.

    2016-07-01

    The crystal structure of nitrilotris(methylenephosphonato)potassium K[μ6-NH(CH2PO3)3H4]—a three-dimensional coordination polymer—was determined. The potassium atom is coordinated by seven oxygen atoms belonging to the six nearest ligand molecules, resulting in distorted monocapped octahedral coordination geometry. The complex contains the four-membered chelate ring K-O-P-O. The K-O chemical bond is predominantly ionic. Meanwhile, the bonds of the potassium atom with some oxygen atoms have a noticeable covalent component. In addition to coordination bonds, the molecules in the crystal packing are linked by hydrogen bonds.

  10. Symmetry in bonding and spectra an introduction

    CERN Document Server

    Douglas, Bodie E

    1985-01-01

    Many courses dealing with the material in this text are called ""Applications of Group Theory."" Emphasizing the central role and primary importance of symmetry in the applications, Symmetry in Bonding and Spectra enables students to handle applications, particularly applications to chemical bonding and spectroscopy. It contains the essential background in vectors and matrices for the applications, along with concise reviews of simple molecular orbital theory, ligand field theory, and treatments of molecular shapes, as well as some quantum mechanics. Solved examples in the text illustra

  11. Halogen bonds in crystal engineering: like hydrogen bonds yet different.

    Science.gov (United States)

    Mukherjee, Arijit; Tothadi, Srinu; Desiraju, Gautam R

    2014-08-19

    The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen···halogen interactions (X···X) and halogen···heteroatom interactions (X···B). Many X···X and almost all X···B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms-halogen and hydrogen-are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X···X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen···halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be

  12. ASC Champ Orbit Model

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif

    1999-01-01

    This documents describes a test of the implementation of the ASC orbit model for the Champ satellite.......This documents describes a test of the implementation of the ASC orbit model for the Champ satellite....

  13. Lunar Orbiter Photo Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Orbiter Photo Gallery is an extensive collection of over 2,600 high- and moderate-resolution photographs produced by all five of the Lunar Orbiter...

  14. Non-additivity of Methyl Group in the Single-electron Lithium Bond of H3C…Li-H Complex

    Institute of Scientific and Technical Information of China (English)

    Zhi-feng Li; Xiao-ning Shi; Yan-zhi Liu; Hui-an Tang; Jun-yan Zhang

    2009-01-01

    The non-additivity of the methyl groups in the single-electron lithium bond was investigated using ab initio calculations at the B3LYP/6-311++G** and UMP2/6-311++G** levels. The strength of the interaction in the H3C…LiH, H3CH2C… LiH, (H3C)2HC… LiH, and (H3C)3C… LiH complexes was analyzed in term of the geometries, energies, frequency shifts, stabilization energies, charges, and topological parameters. It is shown that (H3C)3C radical with LiH forms the strongest single-electron lithium bond, followed by (H3C)2HC radical, then H3CH2.C radical, and H3C radical forms the weakest single-electron lithium bond. A positive non-additivity is present among methyl groups. Natural bond orbital and atoms in molecules analyses were used to estimate such conclusions. Furthermore, there are few linear/nonlinear relationships in the system and the interaction mode of single-electron Li-bond is different from the single-electron H-bond and single-electron halogen bond.

  15. Traumatic transconjunctival orbital emphysema.

    OpenAIRE

    Stroh, E M; Finger, P T

    1990-01-01

    Orbital emphysema can be produced by trans-conjunctival migration of air from a high pressure airgun. In an industrial accident an 8 mm conjunctival laceration was produced in the superior fornix which acted as a portal of entry for air into the subconjunctival, subcutaneous, and retrobulbar spaces. Computed tomography revealed no evidence of orbital fracture and showed that traumatic orbital emphysema occurred without a broken orbital bone.

  16. The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds.

    Science.gov (United States)

    Scheiner, Steve

    2013-02-19

    Among a wide range of noncovalent interactions, hydrogen (H) bonds are well known for their specific roles in various chemical and biological phenomena. When describing conventional hydrogen bonding, researchers use the notation AH···D (where A refers to the electron acceptor and D to the donor). However, the AH molecule engaged in a AH···D H-bond can also be pivoted around by roughly 180°, resulting in a HA···D arrangement. Even without the H atom in a bridging position, this arrangement can be attractive, as explained in this Account. The electron density donated by D transfers into a AH σ* antibonding orbital in either case: the lobe of the σ* orbital near the H atom in the H-bonding AH···D geometry, or the lobe proximate to the A atom in the HA···D case. A favorable electrostatic interaction energy between the two molecules supplements this charge transfer. When A belongs to the pnictide family of elements, which include phosphorus, arsenic, antimony, and bismuth, this type of interaction is called a pnicogen bond. This bonding interaction is somewhat analogous to the chalcogen and halogen bonds that arise when A is an element in group 16 or 17, respectively, of the periodic table. Electronegative substitutions, such as a F for a H atom opposite the electron donor atom, strengthen the pnicogen bond. For example, the binding energy in FH(2)P···NH(3) greatly exceeds that of the paradigmatic H-bonding water dimer. Surprisingly, di- or tri-halogenation does not produce any additional stabilization, in marked contrast to H-bonds. Chalcogen and halogen bonds show similar strength to the pnicogen bond for a given electron-withdrawing substituent. This insensitivity to the electron-acceptor atom distinguishes these interactions from H-bonds, in which energy depends strongly upon the identity of the proton-donor atom. As with H-bonds, pnicogen bonds can extract electron density from the lone pairs of atoms on the partner molecule, such as N, O, and

  17. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  18. Chlorophylls - natural solar cells

    CERN Document Server

    Jantschi, Lorentz; Balan, Mugur C; Sestras, Radu E

    2011-01-01

    A molecular modeling study was conducted on a series of six natural occurring chlorophylls. Quantum chemistry calculated orbital energies were used to estimate frequency of transitions between occupied molecular orbital and unoccupied molecular orbital energy levels of chlorophyll molecules in vivo conditions in standard (ASTMG173) environmental conditions. Obtained results are in good agreement with energies necessary to fix the Magnesium atom by chlorophyll molecules and with occurrence of chlorophylls in living vegetal organisms.

  19. Intramolecular Hydrogen Bond in Biologically Active o-Carbonyl Hydroquinones

    Directory of Open Access Journals (Sweden)

    Maximiliano Martínez-Cifuentes

    2014-07-01

    Full Text Available Intramolecular hydrogen bonds (IHBs play a central role in the molecular structure, chemical reactivity and interactions of biologically active molecules. Here, we study the IHBs of seven related o-carbonyl hydroquinones and one structurally-related aromatic lactone, some of which have shown anticancer and antioxidant activity. Experimental NMR data were correlated with theoretical calculations at the DFT and ab initio levels. Natural bond orbital (NBO and molecular electrostatic potential (MEP calculations were used to study the electronic characteristics of these IHB. As expected, our results show that NBO calculations are better than MEP to describe the strength of the IHBs. NBO energies (∆Eij(2 show that the main contributions to energy stabilization correspond to LPàσ* interactions for IHBs, O1…O2-H2 and the delocalization LPàπ* for O2-C2 = Cα(β. For the O1…O2-H2 interaction, the values of ∆Eij(2 can be attributed to the difference in the overlap ability between orbitals i and j (Fij, instead of the energy difference between them. The large energy for the LP O2àπ* C2 = Cα(β interaction in the compounds 9-Hydroxy-5-oxo-4,8, 8-trimethyl-l,9(8H-anthracenecarbolactone (VIII and 9,10-dihydroxy-4,4-dimethylanthracen-1(4H-one (VII (55.49 and 60.70 kcal/mol, respectively when compared with the remaining molecules (all less than 50 kcal/mol, suggests that the IHBs in VIII and VII are strongly resonance assisted.

  20. Hydrogen bond dynamics in bulk alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S., E-mail: Maxim.Pchenitchnikov@RuG.nl [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  1. Do cooperative cycles of hydrogen bonding exist in proteins?

    CERN Document Server

    Sharley, John N

    2016-01-01

    The closure of cooperative chains of Hydrogen Bonding, HB, to form cycles can enhance cooperativity. Cycles of charge transfer can balance charge into and out of every site, eliminating the charge build-up that limits the cooperativity of open unidirectional chains of cooperativity. If cycles of cooperative HB exist in proteins, these could be expected to be significant in protein structure and function in ways described below. We investigate whether cooperative HB cycles not traversing solvent, ligand or modified residues occur in protein by means including search of Nuclear Magnetic Resonance spectroscopy entries of the Protein Data Bank. We find no mention of an example of this kind of cycle in the literature. For amide-amide HB, for direct inter-amide interactions, when the energy associated with Natural Bond Orbital, NBO, steric exchange is deducted from that of NBO donor-acceptor interactions, the result is close to zero, so that HB is not primarily due to the sum of direct inter-amide NBO interactions....

  2. Automated Selection of Active Orbital Spaces

    CERN Document Server

    Stein, Christopher J

    2016-01-01

    One of the key challenges of quantum-chemical multi-configuration methods is the necessity to manually select orbitals for the active space. This selection requires both expertise and experience and can therefore impose severe limitations on the applicability of this most general class of ab initio methods. A poor choice of the active orbital space may yield even qualitatively wrong results. This is obviously a severe problem, especially for wave function methods that are designed to be systematically improvable. Here, we show how the iterative nature of the density matrix renormalization group combined with its capability to include up to about one hundred orbitals in the active space can be exploited for a systematic assessment and selection of active orbitals. These benefits allow us to implement an automated approach for active orbital space selection, which can turn multi-configuration models into black box approaches.

  3. Density Functional Theory Study of Red-shifted Hydrogen Bonds of 4-Pyridinemethanol with Water

    Institute of Scientific and Technical Information of China (English)

    LI Quan; CAI Jing; CHEN Jun-Rong; ZHAO Ke-Qing

    2008-01-01

    The hydrogen bonds of 1∶1 and 1∶2 complexes formed between 4-pyridinemethanol and water have been investigated using a density functional theory (DFT) method and 6-311++G** basis set, and three and eight stable geometries have been obtained for 1∶1 and 1∶2 complexes, respectively.The interaction energy is -20.536 and -44.256 kJ/mol for the most stable 1∶1 and 1∶2 complexes, respectively, after the basis set superposition error and zero-point corrections.The formation of O-H…N(O) hydrogen bonds makes O-H symmetric stretching modes in the complexes red-shifted relative to those of the monomer.The natural bond orbit analysis indicates that the intermolecular charge transfer between 4-pyridinemethanol and water is 0.02642 e and 0.03813 e for the most stable 1∶1 and 1∶2 complexes, respectively.In addition, TD-B3LYP/6-311++G** calculations show that formation of water-OH…N and water-OH…OH hydrogen bonds makes maximum absorbance wavelength λmax blue-shifted 8-16 nm and red-shifted 4-11 nm compared to that of 4-pyridinemethanol monomer molecule, respectively.

  4. A QTAIM exploration of the competition between hydrogen and halogen bonding in halogenated 1-methyluracil: Water systems

    Science.gov (United States)

    Huan, Guo; Xu, Tianlv; Momen, Roya; Wang, Lingling; Ping, Yang; Kirk, Steven R.; Jenkins, Samantha; van Mourik, Tanja

    2016-10-01

    Using QTAIM we show that the hydrogen bonding complexes of 5-halogenated-1-methyluracil (XmU; X = F, Cl, Br, I or At) with a water molecule were always stronger than the corresponding halogen bonds. The strength of the hydrogen bond decreased with increasing halogen size. The hydrogen bonds displayed an admixture of covalent character but all the halogen bonds were purely electrostatic in nature. An F---O halogen bond was found and was facilitated by an intermediate F---H bonding interaction. The metallicity ξ(rb) of the C = O bonds neighboring the hydrogen bonds and of the C-X bonds contiguous with the halogen bonds was explored.

  5. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  6. Painless orbital myositis

    Directory of Open Access Journals (Sweden)

    Rahul T Chakor

    2012-01-01

    Full Text Available Idiopathic orbital inflammation is the third most common orbital disease, following Graves orbitopathy and lymphoproliferative diseases. We present a 11 year old girl with 15 days history of painless diplopia. There was no history of fluctuation of symptoms, drooping of eye lids or diminished vision. She had near total restricted extra-ocular movements and mild proptosis of the right eye. There was no conjunctival injection, chemosis, or bulb pain. There was no eyelid retraction or lid lag. Rest of the neurological examination was unremarkable.Erythrocyte sedimentation rate was raised with eosinophilia. Antinuclear antibodies were positive. Liver, renal and thyroid functions were normal. Antithyroid, double stranded deoxyribonucleic acid and acetylcholine receptor antibodies were negative. Repetitive nerve stimulation was negative. Magnetic resonance imaging (MRI of the orbit was typical of orbital myositis. The patient responded to oral steroids. Orbital myositis can present as painless diplopia. MRI of orbit is diagnostic in orbital myositis.

  7. Acrylic mechanical bond tests

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  8. Bond percolation in films

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1988-04-01

    Bond percolation in films with simple cubic structure is considered. It is assumed that the probability of a bond being present between nearest-neighbor sites depends on the distances to surfaces. Based on the relation between the Potts model and the bond percolation model, and using the mean-field approximation, the phase diagram and profiles of the percolation probability have been obtained.

  9. Synthesis of diorganoplatinum(IV) complexes by the Ssbnd S bond cleavage with platinum(II) complexes

    Science.gov (United States)

    Niroomand Hosseini, Fatemeh; Rashidi, Mehdi; Nabavizadeh, S. Masoud

    2016-12-01

    Reaction of [PtR2(NN)] (R = Me, p-MeC6H4 or p-MeOC6H4; NN = 2,2‧-bipyridine, 4,4‧-dimethyl-2,2‧-bipyridine, 1,10-phenanthroline or 2,9-dimethyl-1,10-phenanthroline) with MeSSMe gives the platinum(IV) complexes cis,trans-[PtR2(SMe)2(NN)]. They are characterized by NMR spectroscopy and elemental analysis. The geometries and the nature of the frontier molecular orbitals of Pt(IV) complexes containing Ptsbnd S bonds are studied by means of the density functional theory.

  10. Theoretical study of the N—H···O red-shifted and blue-shifted hydrogen bonds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Theoretical calculations are performed to study the nature of the hydrogen bonds in complexes HCHO···HNO, HCOOH···HNO, HCHO···NH3, HCOOH···NH3, HCHO···NH2F and HCOOH···NH2F. The geomet- ric structures and vibrational frequencies of these six complexes at the MP2/6-31+G(d,p), MP2/6-311++G(d,p), B3LYP/6-31+G(d,p) and B3LYP/6-311++G(d,p) levels are calculated by standard and counterpoise-corrected methods, respectively. The results indicate that in complexes HCHO···HNO and HCOOH···HNO the N—H bond is strongly contracted and N—H···O blue-shifted hydrogen bonds are observed. While in complexes HCHO···NH3, HCOOH···NH3, HCHO···NH2F and HCOOH···NH2F, the N—H bond is elongated and N—H···O red-shifted hydrogen bonds are found. From the natural bond orbital analysis it can be seen that the X—H bond length in the X—H···Y hydrogen bond is controlled by a balance of four main factors in the opposite directions: hyperconjugation, electron density redistribu- tion, rehybridization and structural reorganization. Among them hyperconjugation has the effect of elongating the X—H bond, and the other three factors belong to the bond shortening effects. In complexes HCHO···HNO and HCOOH···HNO, the shortening effects dominate which lead to the blue shift of the N—H stretching frequencies. In complexes HCHO···NH3, HCOOH···NH3, HCHO···NH2F and HCOOH···NH2F where elongating effects are dominant, the N—H···O hydrogen bonds are red-shifted.

  11. Three planets orbiting Wolf 1061

    CERN Document Server

    Wright, D J; Tinney, C G; Bentley, J S; Zhao, Jinglin

    2015-01-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf1061 (GJ 628). We detect a 1.36 Mearth minimum-mass planet with an orbital period P = 4.888d (Wolf1061b), a 4.25 Mearth minimum-mass planet with orbital period P = 17.867d (Wolf1061c), and a likely 5.21 Mearth minimum-mass planet with orbital period P = 67.274d (Wolf1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867d planet falls within the habitable zone for Wolf 1061 and the 67.274d planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation full-width-half-maxima, Calcium H & K indices, NaD indices, or H-alpha indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploi...

  12. THREE PLANETS ORBITING WOLF 1061

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.; Bentley, J. S.; Zhao, Jinglin, E-mail: duncan.wright@unsw.edu.au [Department of Astronomy and Australian Centre for Astrobiology, School of Physics, University of New South Wales, NSW 2052 (Australia)

    2016-02-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.

  13. Interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS∙∙∙NH₃ (X = F, OH, NC, CN, and FCC) complex.

    Science.gov (United States)

    Zhao, Qiang

    2014-10-01

    The interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS and XCl∙∙∙OCS∙∙∙NH3 (X = F, OH, NC, CN, and FCC) complex was studied at the MP2/6-311++G(d,p) computational level. Cooperative effect is observed when halogen and chalcogen bonding coexist in the same complex. The effect is studied by means of binding distance, interaction energy, and cooperative energy. Molecular electrostatic potential calculation reveals the electrostatic nature of the interactions. Cooperative effect is explained by the difference of the electron density. Second-order stabilization energy was calculated to study the orbital interaction in the complex. Atoms in molecules analysis was performed to analyze the enhancement of the electron density in the bond critical point.

  14. Diffusive chaos in navigation satellites orbits

    CERN Document Server

    Daquin, J; Tsiganis, K

    2016-01-01

    The navigation satellite constellations in medium-Earth orbit exist in a background of third-body secular resonances stemming from the perturbing gravitational effects of the Moon and the Sun. The resulting chaotic motions, emanating from the overlapping of neighboring resonant harmonics, induce especially strong perturbations on the orbital eccentricity, which can be transported to large values, thereby increasing the collision risk to the constellations and possibly leading to a proliferation of space debris. We show here that this transport is of a diffusive nature and we present representative diffusion maps that are useful in obtaining a global comprehension of the dynamical structure of the navigation satellite orbits.

  15. Nilpotent orbits in real symmetric pairs

    CERN Document Server

    Dietrich, Heiko; Ruggeri, Daniele; Trigiante, Mario

    2016-01-01

    In the classification of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determining the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of SL_2(R)^4 acting on the fourth tensor power of the natural 2-dimensional SL_2(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model.

  16. Understanding the effect of substitution on the formation of S. . .F chalcogen bond

    Indian Academy of Sciences (India)

    RAHUL SHUKLA; DEEPAK CHOPRA

    2016-10-01

    In this study, we have investigated the effect of substitution on the formation of S. . .F non-covalent interactions in XHS. . .FCH₃ complexes (X= −H, −F, −Cl, −OH, −OCH₃, −NH₂, −NHCH₃, −NO₂, −CN) at MP2/aug-cc-pVDZ level of theory. The formation of S. . .F chalcogen bonds was observed in all the cases, except for X = −H. The binding energy of the S. . .F non-covalent interactions is strongly dependent on the nature of the substituent groups. The energy decomposition analysis revealed that electrostatic and exchangeenergy component are the dominant contributors towards the stability of these interactions. The topological analysis established the presence of the S. . .F chalcogen bond due to the presence of a bond critical point exclusively between sulphur and fluorine atoms representing a closed-shell interaction. The natural bondorbital analysis shows that the stability of the interaction comes from a charge transfer from F(lp) to σ* (S-X) orbital transition.

  17. Oxidative addition of the C-I bond on aluminum nanoclusters

    Science.gov (United States)

    Sengupta, Turbasu; Das, Susanta; Pal, Sourav

    2015-07-01

    Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly sensitive to the geometrical shapes and electronic structures of the clusters rather than their size, imposing the fact that comprehensive studies on aluminum clusters can be beneficial for nanoscience and nanotechnology. To understand the possible reaction mechanism in detail, the reaction pathway is investigated with the ab initio Born Oppenheimer Molecular Dynamics (BOMD) simulation and the Natural Bond Orbital (NBO) analysis. In short, our theoretical study highlights the thermodynamic and kinetic details of C-I bond dissociation on aluminum clusters for future endeavors in cluster chemistry.Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly

  18. Halogen bonding origin properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hobza, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague (Czech Republic); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 77146 Olomouc (Czech Republic)

    2015-12-31

    σ-hole bonding represents an unusual and novel type of noncovalent interactions in which atom with σ- hole interacts with Lewis base such as an electronegative atom (oxygen, nitrogen, …) or aromatic systems. This bonding is of electrostatic nature since the σ-hole bears a positive charge. Dispersion energy forms equally important energy term what is due to the fact that two heavy atoms (e.g. halogen and oxygen) having high polarizability lie close together (the respective distance is typically shorter than the sum of van der Waals radii). Among different types of σ-hole bondings the halogen bonding is by far the most known but chalcogen and pnictogen bondings are important as well.

  19. Lunar Orbit Stability for Small Satellite Mission Design

    Science.gov (United States)

    Dono, Andres

    2015-01-01

    The irregular nature of the lunar gravity field will severely affect the orbit lifetime and behavior of future lunar small satellite missions. These spacecraft need stable orbits that do not require large deltaV budgets for station-keeping maneuvers. The initial classical elements of any lunar orbit are critical to address its stability and to comply with mission requirements. This publication identifies stable regions according to different initial conditions at the time of lunar orbit insertion (LOI). High fidelity numerical simulations with two different gravity models were performed. We focus in low altitude orbits where the dominant force in orbit propagation is the existence of unevenly distributed lunar mass concentrations. These orbits follow a periodic oscillation in some of the classical elements that is particularly useful for mission design. A set of orbital maintenance strategies for various mission concepts is presented.

  20. The Exoplanet Orbit Database

    CERN Document Server

    Wright, Jason T; Marcy, Geoffrey W; Han, Eunkyu; Feng, Ying; Johnson, John Asher; Howard, Andrew W; Valenti, Jeff A; Anderson, Jay; Piskunov, Nikolai

    2010-01-01

    We present a database of well determined orbital parameters of exoplanets. This database comprises spectroscopic orbital elements measured for 421 planets orbiting 357 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form on the Web at http://exoplanets.org through the Exoplanets Data Explorer Table, and the data can be plotted and explored through the Exoplanets Data Explorer Plotter. We use the Data Explorer to generate publication-ready plots giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the selection different biase...

  1. Construction of Ligand Group Orbitals for Polyatomics and Transition-Metal Complexes Using an Intuitive Symmetry-Based Approach

    Science.gov (United States)

    Johnson, Adam R.

    2013-01-01

    A molecular orbital (MO) diagram, especially its frontier orbitals, explains the bonding and reactivity for a chemical compound. It is therefore important for students to learn how to construct one. The traditional methods used to derive these diagrams rely on linear algebra techniques to combine ligand orbitals into symmetry-adapted linear…

  2. Orbital inflammation: Corticosteroids first.

    Science.gov (United States)

    Dagi Glass, Lora R; Freitag, Suzanne K

    2016-01-01

    Orbital inflammation is common, and may affect all ages and both genders. By combining a thorough history and physical examination, targeted ancillary laboratory testing and imaging, a presumptive diagnosis can often be made. Nearly all orbital inflammatory pathology can be empirically treated with corticosteroids, thus obviating the need for histopathologic diagnosis prior to initiation of therapy. In addition, corticosteroids may be effective in treating concurrent systemic disease. Unless orbital inflammation responds atypically or incompletely, patients can be spared biopsy.

  3. Preseptal and orbital cellulitis

    OpenAIRE

    Emine Akçay; Gamze Dereli Can; Nurullah Çağıl

    2014-01-01

    Preseptal cellulitis (PC) is defined as an inflammation of the eyelid and surrounding skin, whereas orbital cellulitis (OC) is an inflammation of the posterior septum of the eyelid affecting the orbit and its contents. Periorbital tissues may become infected as a result of trauma (including insect bites) or primary bacteremia. Orbital cellulitis generally occurs as a complication of sinusitis. The most commonly isolated organisms are Staphylococcus aureus, Streptococcus pneumoniae, S. epid...

  4. Geometric orbit datum and orbit covers

    Institute of Scientific and Technical Information of China (English)

    LIANG; Ke(

    2001-01-01

    [1]Vogan, D. , Dixmier algebras, sheets and representation theory (in Actes du colloque en I' honneur de Jacques Dixmier),Progress in Math. 92, Boston: Birkhauser Verlag, 1990, 333-397.[2]McGovern, W., Dixmier Algebras and Orbit Method, Operator Algebras, Unitary Representations and Invariant Theory,Boston: Birkhauser, 1990, 397-416.[3]Liang, K. , Parabolic inductions of nilpotent geometric orbit datum, Chinese Science Bulletin (in Chinese) , 1996, 41 (23):2116-2118.[4]Vogan, D., Representations of Real Reductive Lie Groups, Boston-Basel-Stuttgart: Birkhauser, 1981.[5]Lustig, G., Spaltenstein, N., Induced unipotent class, J. London Math. Soc., 1997, 19. 41-52.[6]Collingwood, D. H. , McGovern, W. M. , Nilpotent Orbits in Semisimple Lie Algebras, New York: Van Nostremt Reinhold,1993.

  5. Family of Orbiters

    Science.gov (United States)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time. All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet. Phoenix will land just south of Mars's north polar ice cap.

  6. Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory.

    Science.gov (United States)

    Liakos, Dimitrios G; Neese, Frank

    2015-09-08

    The recently developed domain-based local pair natural orbital coupled cluster theory with single, double, and perturbative triple excitations (DLPNO-CCSD(T)) delivers results that are closely approaching those of the parent canonical coupled cluster method at a small fraction of the computational cost. A recent extended benchmark study established that, depending on the three main truncation thresholds, it is possible to approach the canonical CCSD(T) results within 1 kJ (default setting, TightPNO), 1 kcal/mol (default setting, NormalPNO), and 2-3 kcal (default setting, LoosePNO). Although thresholds for calculations with TightPNO are 2-4 times slower than those based on NormalPNO thresholds, they are still many orders of magnitude faster than canonical CCSD(T) calculations, even for small and medium sized molecules where there is little locality. The computational effort for the coupled cluster step scales nearly linearly with system size. Since, in many instances, the coupled cluster step in DLPNO-CCSD(T) is cheaper or at least not much more expensive than the preceding Hartree-Fock calculation, it is useful to compare the method against modern density functional theory (DFT), which requires an effort comparable to that of Hartree-Fock theory (at least if Hartree-Fock exchange is part of the functional definition). Double hybrid density functionals (DHDF's) even require a MP2-like step. The purpose of this article is to evaluate the cost vs accuracy ratio of DLPNO-CCSD(T) against modern DFT (including the PBE, B3LYP, M06-2X, B2PLYP, and B2GP-PLYP functionals and, where applicable, their van der Waals corrected counterparts). To eliminate any possible bias in favor of DLPNO-CCSD(T), we have chosen established benchmark sets that were specifically proposed for evaluating DFT functionals. It is demonstrated that DLPNO-CCSD(T) with any of the three default thresholds is more accurate than any of the DFT functionals. Furthermore, using the aug-cc-pVTZ basis set and

  7. Molecular structure, intramolecular hydrogen bonding and vibrational spectral investigation of 2-fluoro benzamide--a DFT approach.

    Science.gov (United States)

    Krishnakumar, V; Murugeswari, K; Surumbarkuzhali, N

    2013-10-01

    The FTIR and FT-Raman spectra of 2-fluoro benzamide (2FBA) have been recorded in the region 4000-400 and 4000-100 cm(-1), respectively. The structuralanalysis, hydrogen bonding, optimized geometry, frequency and intensity of the vibrational bands of 2FBA were obtained by the density functional theory (DFT) with complete relaxation in the potential energy surface using 6-31G** basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The (13)C NMR spectra have been recorded and (13)C nuclear magnetic resonance chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method and their respective linear correlations were obtained. The electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The change in electron density (ED) in the σ* antibonding orbitals and stabilization energies E(2) have been calculated by natural bond (NBO) analysis to give clear evidence of stabilization originating in the hyper conjugation of hydrogen-bonded interactions.

  8. Acid-Base Formalism Extended to Excited State for O-H···S Hydrogen Bonding Interaction.

    Science.gov (United States)

    Bhattacharyya, Surjendu; Roy, Ved Prakash; Wategaonkar, Sanjay

    2016-09-08

    Hydrogen bond can be regarded as an interaction between a base and a proton covalently bound to another base. In this context the strength of hydrogen bond scales with the proton affinity of the acceptor base and the pKa of the donor, i.e., it follows the acid-base formalism. This has been amply demonstrated in conventional hydrogen bonds. Is this also true for the unconventional hydrogen bonds involving lesser electronegative elements such as sulfur atom? In our previous work, we had established that the strength of O-H···S hydrogen bonding (HB) interaction scales with the proton affinity (PA) of the acceptor. In this work, we have investigated the other counterpart, i.e., the H-bonding interaction between the photoacids with different pKa values with a common base such as the H2O and H2S. The 1:1 complexes of five para substituted phenols p-aminophenol, p-cresol, p-fluorophenol, p-chlorophenol, and p-cyanophenol with H2O and H2S were investigated experimentally and computationally. The investigations were also extended to the excited states. The experimental observations of the spectral shifts in the O-H stretching frequency and the S1-S0 band origins were correlated with the pKa of the donors. Ab initio calculations at the MP2 and various dispersion corrected density functional levels of theory were performed to compute the dissociation energy (D0) of the complexes. The quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI) method, natural bonding orbital (NBO) analysis, and natural decomposition analysis (NEDA) were carried out for further characterization of HB interaction. The O-H stretching frequency red shifts and the dissociation energies were found to be lower for the O-H···S hydrogen bonded systems compared to those for the O-H···O H-bound systems. Despite being dominated by the dispersion interaction the O-H···S interaction in the H2S complexes also conformed to the acid-base formalism, i.e., the D0 and the O-H red shift

  9. Congenital orbital encephalocele, orbital dystopia, and exophthalmos.

    Science.gov (United States)

    Hwang, Kun; Kim, Han Joon

    2012-07-01

    We present here an exceedingly rare variant of a nonmidline basal encephalocele of the spheno-orbital type, and this was accompanied with orbital dystopia in a 56-year-old man. On examination, his left eye was located more inferolaterally than his right eye, and the patient said this had been this way since his birth. The protrusion of his left eye was aggravated when he is tired. His naked visual acuity was 0.7/0.3, and the ocular pressure was 14/12 mm Hg. The exophthalmometry was 10/14 to 16 mm. His eyeball motion was not restricted, yet diplopia was present in all directions. The distance from the midline to the medial canthus was 20/15 mm. The distance from the midline to the midpupillary line was 35/22 mm. The vertical dimension of the palpebral fissure was 12/9 mm. The height difference of the upper eyelid margin was 11 mm, and the height difference of the lower eyelid margin was 8 mm. Facial computed tomography and magnetic resonance imaging showed left sphenoid wing hypoplasia and herniation of the left anterior temporal pole and dura mater into the orbit, and this resulted into left exophthalmos and encephalomalacia in the left anterior temporal pole. To the best of our knowledge, our case is the second case of basal encephalocele and orbital dystopia.

  10. Equilibrium CO bond lengths

    Science.gov (United States)

    Demaison, Jean; Császár, Attila G.

    2012-09-01

    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

  11. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  12. Reticulohistiocytoma of the Orbit

    Science.gov (United States)

    Weissman, Heather M.; Hayek, Brent R.; Grossniklaus, Hans E.

    2015-01-01

    Reticulohistiocytoma is a rare, benign histiocytic proliferation of the skin or soft tissue. While ocular involvement has been documented in the past, there have been no previously reported cases of reticulohistiocytoma of the orbit. In this report, the authors describe a reticulohistiocytoma of the orbit in a middle-aged woman. PMID:24807799

  13. Orbital Plots Using Gnuplot

    Science.gov (United States)

    Moore, Brian G.

    2000-06-01

    The plotting program Gnuplot is freely available, general purpose, easy to use, and available on a variety of platforms. Complex three-dimensional surfaces, including the familiar angular parts of the hydrogen atom orbitals, are easily represented using Gnuplot. Contour plots allow viewing the radial and angular variation of the probability density in an orbital. Examples are given of how Gnuplot is used in an undergraduate physical chemistry class to view familiar atomic orbitals in new ways or to generate views of orbital functions that the student may have not seen before. Gnuplot may also be easily integrated into the environment of a Web page; an example of this is discussed (and is available at http://onsager.bd.psu.edu/~moore/orbitals_gnuplot). The plotting commands are entered with a form and a CGI script is used to run Gnuplot and display the result back to the browser.

  14. Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids.

    Science.gov (United States)

    Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo

    2016-06-21

    The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties.

  15. Evidence for orbital ordering in LaCoO3

    NARCIS (Netherlands)

    Maris, G; Ren, Y; Volotchaev, [No Value; Zobel, C; Lorenz, T; Palstra, TTM

    2003-01-01

    We present powder and single-crystal x-ray diffraction data as evidence for a monoclinic distortion in the low-spin (S=0) and intermediate spin states (S=1) of LaCoO3. The alternation of short and long bonds in the ab plane indicates the presence of e(g) orbital ordering induced by a cooperative Jah

  16. Comparison of Gold Bonding with Mercury Bonding

    NARCIS (Netherlands)

    Kraka, Elfi; Filatov, Michael; Cremer, Dieter

    2009-01-01

    Nine AuX molecules (X = H, O, S, Se, Te, F, Cl, Br, I), their isoelectronic HgX(+) analogues, and the corresponding neutral HgX diatomics have been investigated using NESC (Normalized Elimination of the Small Component) and B3LYP theory to determine relativistic effects for bond dissociation energie

  17. The dissociative bond.

    Science.gov (United States)

    Gordon, Nirit

    2013-01-01

    Dissociation leaves a psychic void and a lingering sense of psychic absence. How do 2 people bond while they are both suffering from dissociation? The author explores the notion of a dissociative bond that occurs in the aftermath of trauma--a bond that holds at its core an understanding and shared detachment from the self. Such a bond is confined to unspoken terms that are established in the relational unconscious. The author proposes understanding the dissociative bond as a transitional space that may not lead to full integration of dissociated knowledge yet offers some healing. This is exemplified by R. Prince's (2009) clinical case study. A relational perspective is adopted, focusing on the intersubjective aspects of a dyadic relationship. In the dissociative bond, recognition of the need to experience mutual dissociation can accommodate a psychic state that yearns for relationship when the psyche cannot fully confront past wounds. Such a bond speaks to the need to reestablish a sense of human relatedness and connection when both parties in the relationship suffer from disconnection. This bond is bound to a silence that becomes both a means of protection against the horror of traumatic memory and a way to convey unspoken gestures toward the other.

  18. The samurai bond market

    OpenAIRE

    1997-01-01

    Issuance in the samurai bond market has more than tripled over the past several years. Some observers have attributed this growth to a systematic underestimation of credit risk in the market. A detailed review of credit quality, ratings differences, and initial issue pricing in the samurai bond market, however, turns up little evidence to support this concern.

  19. Correlation effects and orbital magnetism of Co clusters

    CERN Document Server

    Di Marco, L Peters I; Şaşıoğlu, E; Altun, A; Rossen, S; Friedrich, C; Blügel, S; Katsnelson, M I; Kirilyuk, A; Eriksson, O

    2016-01-01

    Recent experiments on isolated Co clusters have shown huge orbital magnetic moments in comparison with their bulk and surface counterparts. These clusters hence provide the unique possibility to study the evolution of the orbital magnetic moment with respect to the cluster size and how competing interactions contribute to the quenching of orbital magnetism. We investigate here different theoretical methods to calculate the spin and orbital moments of Co clusters, and assess the performances of the methods in comparison with experiments. It is shown that density functional theory in conventional local density or generalized gradient approximations, or even with a hybrid functional, severely underestimates the orbital moment. As natural extensions/corrections we considered the orbital polarization correction, the LDA+U approximation as well as the LDA+DMFT method. Our theory shows that of the considered methods, only the LDA+DMFT method provides orbital moments in agreement with experiment, thus emphasizing the...

  20. The bond length and bond energy of gaseous CrW.

    Science.gov (United States)

    Matthew, Daniel J; Oh, Sang Hoon; Sevy, Andrew; Morse, Michael D

    2016-06-07

    Supersonically cooled CrW was studied using resonant two-photon ionization spectroscopy. The vibronically resolved spectrum was recorded over the region 21 100 to 23 400 cm(-1), showing a very large number of bands. Seventeen of these bands, across three different isotopologues, were rotationally resolved and analyzed. All were found to arise from the ground (1)Σ(+) state of the molecule and to terminate on states with Ω' = 0. The average r0 bond length across the three isotopic forms was determined to be 1.8814(4) Å. A predissociation threshold was observed in this dense manifold of vibronic states at 23 127(10) cm(-1), indicating a bond dissociation energy of D0(CrW) = 2.867(1) eV. Using the multiple bonding radius determined for atomic Cr in previous work, the multiple bonding radius for tungsten was calculated to be 1.037 Å. Comparisons are made between CrW and the previously investigated group 6 diatomic metals, Cr2, CrMo, and Mo2, and to previous computational studies of this molecule. It is also found that the accurately known bond dissociation energies of group 5/6 metal diatomics Cr2, V2, CrW, NbCr, VNb, Mo2, and Nb2 display a qualitative linear dependence on the sum of the d-orbital radial expectation values, r; this relationship allows the bond dissociation energies of other molecules of this type to be estimated.

  1. Resonance and Aromaticity : An Ab Initio Valence Bond Approach

    NARCIS (Netherlands)

    Rashid, Zahid; van Lenthe, Joop H.; Havenith, Remco W. A.

    2012-01-01

    Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wav

  2. Orbit Stabilization of Nanosat

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  3. Using Atomic Orbitals and Kinesthetic Learning to Authentically Derive Molecular Stretching Vibrations

    Science.gov (United States)

    Bridgeman, Adam J.; Schmidt, Timothy W.; Young, Nigel A.

    2013-01-01

    The stretching modes of ML[subscript "x"] complexes have the same symmetry as the atomic orbitals on M that are used to form its s bonds. In the exercise suggested here, the atomic orbitals are used to derive the form of the stretching modes without the need for formal group theory. The analogy allows students to help understand many…

  4. Destination bonding: Hybrid cognition using Instagram

    Directory of Open Access Journals (Sweden)

    Arup Kumar Baksi

    2015-01-01

    Full Text Available Empirical research has identified the phenomenon of destination bonding as a result of summated physical and emotional values associated with the destination. Physical values, namely natural landscape & other physical settings and emotional values, namely the enculturation processes, have a significant role to play in portraying visitors’ cognitive framework for destination preference. The physical values seemed to be the stimulator for bonding that embodies action or behavior tendencies in imagery. The emotional values were the conditions that lead to affective bonding and are reflected in attitudes for a place which were evident in text narratives. Social networking on virtual platforms offers the scope for hybrid cognitive expression using imagery and text to the visitors. Instagram has emerged as an application-window to capture these hybrid cognitions of visitors. This study focuses on assessing the relationship between hybrid cognition of visitors expressed via Instagram and their bond with the destination. Further to this, the study attempts to examine the impact of hybrid cognition of visitors on the behavioral pattern of prospective visitors to the destination. The study revealed that sharing of visual imageries and related text by the visitors is an expression of the physico-emotional bonding with the destination. It was further established that hybrid cognition strongly asserts destination bonding and has been also found to have moderating impact on the link between destination bonding and electronic-word-of-mouth.

  5. A first-principles investigation into the hydrogen bond interaction in β-HMX

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A theoretical study of structural and electronic properties of β-HMX crystal is performed using density-functional theory(DFT). The total density of states(TDOS) is presented. The atomic orbit projected density of state(PDOS) from the p-type orbit of C,N,O and the s-type orbit of H is discussed. The study by analyzing the PDOS shows that the structure of β-HMX crystal possesses C-H···O intra- and inter-molecular hydrogen-bonding. There exists a hydrogen bonding between H5 -1s and O12 -2p orbits,between H19 -1s and O28 -2p orbits of intra molecules,and between H19 -1s and O24 -2p orbits of inter molecules. The Mulliken population analysis is also made.

  6. Physics of higher orbital bands in optical lattices: a review

    OpenAIRE

    Li, Xiaopeng; Liu, W. Vincent

    2015-01-01

    Orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensation and topological semimetals emerge. A brief introduction of orbital degree of freedom in optical lattices is given ...

  7. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  8. Actor bonds after relationship dissolution

    DEFF Research Database (Denmark)

    Skaates, Maria Anne

    2000-01-01

    Most of the presented papers at the 1st NoRD Workshop can be classified as belonging to the business marketing approach to relationship dissolution. Two papers were conceptual, and the remaining six were empirical studies. The first conceptual study by Skaates (2000) focuses on the nature...... of the actor bonds that remain after a business relationship has ended. The study suggests that an interdisciplinary approach would provide a richer understanding of the phenomenon; this could be achieved by using e.g. Bourdieu's sociological concepts in dissolution research....

  9. An ab initio Valence Bond Study on Cyclopenta-Fused Naphthalenes and Fluoranthenes

    NARCIS (Netherlands)

    Havenith, R.W.A.; van Lenthe, J.H.; Jenneskens, L.W.

    2005-01-01

    To probe the effect of external cyclopenta-fusion on a naphthalene core, ab initio valence bond (VB) calculations have been performed, using strictly atomic benzene p-orbitals and p-orbitals that are allowed to delocalize, on naphthalene (1), acenaphthylene (2), pyracylene (3), cyclopenta[b,c]-acena

  10. On the Role of D Orbital Hybridization in the Chemistry Curriculum

    Science.gov (United States)

    Galbraith, John Morrison

    2007-01-01

    The role of d-orbital hybridization in the chemistry curriculum and a qualitative description of bonding in SF[subscript 6] are described. The sp[cubed]d[squared] hybridization model found to be helpful in understanding the chemical phenomenon of chemical bonding in SF[subscript 6] and are not applicable to all situations.

  11. Ultrasonic Characterization of Interfaces in Composite Bonds

    Science.gov (United States)

    Wang, N.; Lobkis, O. I.; Rokhlin, S. I.; Cantrell, J. H.

    2010-01-01

    The inverse determination of imperfect interfaces from reflection spectra of normal and oblique incident ultrasonic waves in adhesive bonds of multidirectional composites is investigated. The oblique measurements are complicated by the highly dispersed nature of oblique wave spectra at frequencies above 3MHz. Different strategies for bond property reconstruction, including a modulation method, are discussed. The relation of measured interfacial spring density to the physico-chemical model of a composite interface described by polymer molecular bonds to emulate loss of molecular strength on an adhesive composite interface is discussed. This potentially relates the interfacial (adhesion) strength (number of bonds at the adhesive substrate interface) to the spring constant (stiffness) area density (flux), which is an ultrasonically measurable parameter.

  12. On the photostability of the disulfide bond

    DEFF Research Database (Denmark)

    Stephansen, Anne Boutrup; Larsen, Martin Alex Bjørn; Klein, Liv Bærenholdt;

    2014-01-01

    Photostability is an essential property of molecular building blocks of nature. Disulfides are central in the structure determination of proteins, which is in striking contradiction to the result that the S-S bond is a photochemically labile structural entity that cleaves to form free radicals upon...... on a sub 50 fs timescale without further ado. In a cyclic motif resembling the cysteine-disulfide bond in proteins, light can perturb the S-S bond to generate short-lived diradicaloid species, but the sulfur atoms are conformationally restricted by the ring that prevents the sulfur atoms from flying apart...... the photostability of disulfide-bonds must be ascribed a cyclic structural arrangement....

  13. Influence of atomic bonds on the properties of the laxative drug sodium picosulphate

    Directory of Open Access Journals (Sweden)

    Davide Romani

    2016-11-01

    Full Text Available In this work, the influence of the different S═O, S−O, N⋯H, O⋯H, Na⋯O bonds present in the structures of the powerful laxative drug, sodium picosulphate in gas and aqueous solution phases were studied combining the density functional theory (DFT calculations with the experimental available infrared, 1H NMR and UV-visible spectra. The structural, topological, electronic and vibrational properties were investigated in both media by using the hybrid B3LYP/6-31G* method and the integral equation formalism variant polarised continuum model (IEFPCM. Here, the characteristics of the S═O, S−O, N⋯H, O⋯H, Na⋯O bonds were completely revealed by using atomic charges, natural bond orbital (NBO and atoms in molecules (AIM studies. The infrared, 1H NMR, 13C NMR and UV-visible spectra are in reasonable concordance with those experimental available in the literature. The vibrational analysis of sodium picosulphate was performed considering C3V symmetries for both SO42− groups and the complete assignments of the 126 vibration modes were reported in gas phase and aqueous solution together with their corresponding force fields. In addition, the reactivities of sodium picosulfate increase in solution due to their ionic characteristic which probably justifies their behaviour as a stimulant cathartic and their easy metabolic conversion, as reported in the literature.

  14. Unified description of hydrogen bonding by a two-state effective Hamiltonian

    CERN Document Server

    McKenzie, Ross H

    2011-01-01

    An effective Hamiltonian is considered for hydrogen bonding between two molecules due to the quantum mechanical interaction between the orbitals of the H-atom and the donor and acceptor atoms in the molecules. The Hamiltonian acts on two diabatic states and has a simple chemically motivated form for its matrix elements. The model gives insight into the "H-bond puzzle", describes different classes of bonds, and empirical correlations between the donor-acceptor distance $R$ and binding energies, bond lengths, and the softening of vibrational frequencies. A key prediction is the UV photo-dissociation of H-bonded complexes via an excited electronic state with an exalted vibrational frequency.

  15. Electronic structure contribution to hydrogen bonding interaction of a water dimer

    CERN Document Server

    Zhang, Zhiyuan; Wang, Bo; Wang, Zhigang

    2016-01-01

    Hydrogen bond (H-bond) covalency has recently been observed in ice and liquid water, while the penetrating molecular orbitals (MOs) in the H-bond region of most typical water dimer system, (H2O)2, have also been discovered. However, obtaining the quantitative contribution of these MOs to the H-bond interaction is still problematic. In this work, we introduced the orbital-resolved electron density projected integral (EDPI) along the H-bond to approach this problem. The calculations show that, surprisingly, the electronic occupied orbital (HOMO-4) of (H2O)2 accounts for about 40% of the electron density at the bond critical point. Moreover, the charge transfer analysis visualizes the electron accumulating effect of the orbital interaction within the H-bond between water molecules, supporting its covalent-like character. Our work expands the classical understanding of H-bond with specific contributions from certain MOs, and will also advance further research into such covalency and offer quantitative electronic ...

  16. Congenital orbital teratoma

    Directory of Open Access Journals (Sweden)

    Shereen Aiyub

    2013-01-01

    Full Text Available We present a case of mature congenital orbital teratoma managed with lid-sparing exenteration and dermis fat graft. This is a case report on the management of congenital orbital teratoma. A full-term baby was born in Fiji with prolapsed right globe which was surrounded by a nonpulsatile, cystic mass. Clinical and imaging features were consistent with congenital orbital teratoma. Due to limited surgical expertise, the patient was transferred to Adelaide, Australia for further management. The patient underwent a lid-sparing exenteration with frozen section control of the apical margin. A dermis fat graft from the groin was placed beneath the lid skin to provide volume. Histopathology revealed mature tissues from each of the three germ cell layers which confirmed the diagnosis of mature teratoma. We describe the successful use of demis fat graft in socket reconstruction following lid-sparing exenteration for congenital orbital teratoma.

  17. Looking Inside the Intramolecular C-H∙∙∙O Hydrogen Bond in Lactams Derived from α-Methylbenzylamine.

    Science.gov (United States)

    Mejía, Sandra; Hernández-Pérez, Julio M; Sandoval-Lira, Jacinto; Sartillo-Piscil, Fernando

    2017-02-28

    Recently, strong evidence that supports the presence of an intramolecular C-H···O hydrogen bond in amides derived from the chiral auxiliary α-methylbenzylamine was disclosed. Due to the high importance of this chiral auxiliary in asymmetric synthesis, the inadvertent presence of this C-H···O interaction may lead to new interpretations upon stereochemical models in which this chiral auxiliary is present. Therefore, a series of lactams containing the chiral auxiliary α-methylbenzylamine (from three to eight-membered ring) were theoretically studied at the MP2/cc-pVDZ level of theory with the purpose of studying the origin and nature of the C-Hα···O interaction. NBO analysis revealed that rehybridization at C atom of the C-Hα bond (s-character at C is ~23%) and the subsequent bond polarization are the dominant effect over the orbital interaction energy n(O)→σ*C-Hα (E(2) C-Hα bond distance and an increment in the positive charge in the Hα atom.

  18. Microwave spectroscopic and theoretical investigations of the strongly hydrogen bonded hexafluoroisopropanol···water complex.

    Science.gov (United States)

    Shahi, A; Arunan, E

    2015-10-14

    This paper reports microwave spectroscopic and theoretical investigations on the interaction of water with hexafluoroisopropanol (HFIP). The HFIP monomer can exist in two conformations, antiperiplanar (AP) and synclinical (SC). The former is about 5 kJ mol(-1) more stable than the latter. Theoretical calculations predicted three potential minima for the complex, two having AP and one having SC conformations. Though, the binding energy for the HFIP(SC)···H2O turned out to be larger than that for the other two conformers having HFIP in the AP form, the global minimum for the complex in the potential energy hypersurface had HFIP in the AP form. Experimental rotational constants for four isotopologues measured using a pulsed nozzle Fourier transform microwave spectrometer, correspond to the global minimum in the potential energy hypersurface. The structural parameters and the internal dynamics of the complex could be determined from the rotational spectra of the four isotopologues. The global minimum has the HFIP(AP) as a hydrogen bond donor forming a strong hydrogen bond with H2O. To characterize the strength of the bonding and to probe the other interactions within the complex, atoms in molecules, non-covalent interaction index and natural bond orbital theoretical analyses have been performed.

  19. Characterization and intramolecular bonding patterns of busulfan: Experimental and quantum chemical approach

    Science.gov (United States)

    Karthick, T.; Tandon, Poonam; Singh, Swapnil; Agarwal, Parag; Srivastava, Anubha

    2017-02-01

    The investigations of structural conformers, molecular interactions and vibrational characterization of pharmaceutical drug are helpful to understand their behaviour. In the present work, the 2D potential energy surface (PES) scan has been performed on the dihedral angles C6sbnd O4sbnd S1sbnd C5 and C25sbnd S22sbnd O19sbnd C16 to find the stable conformers of busulfan. In order to show the effects of long range interactions, the structures on the global minima of PES scan have been further optimized by B3LYP/6-311 ++G(d,p) method with and without empirical dispersion functional in Gaussian 09W package. The presence of n → σ* and σ → σ* interactions which lead to stability of the molecule have been predicted by natural bond orbital analysis. The strong and weak hydrogen bonds between the functional groups of busulfan were analyzed using quantum topological atoms in molecules analysis. In order to study the long-range forces, such as van der Waals interactions, steric effect in busulfan, the reduced density gradient as well as isosurface defining these interactions has been plotted using Multiwfn software. The spectroscopic characterization on the solid phase of busulfan has been studied by experimental FT-IR and FT-Raman spectra. From the 13C and 1H NMR spectra, the chemical shifts of individual C and H atoms of busulfan have been predicted. The maximum absorption wavelengths corresponding to the electronic transitions between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of busulfan have been found by UV-vis spectrum.

  20. Orbital interactions in chemistry

    CERN Document Server

    Albright, Thomas A; Whangbo, Myung-Hwan

    2013-01-01

    Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions

  1. Effect of ultrasonic power and bonding force on the bonding strength of copper ball bonds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Copper wire, serving as a cost-saving alternative to gold wire, has been used in many high-end thermosonic ball bonding applications. In this paper, the bond shear force, bond shear strength, and the ball bond diameter are adopted to evaluate the bonding quality. It is concluded that the efficient ultrasonic power is needed to soften the ball to form the copper bonds with high bonding strength. However, excessive ultrasonic power would serve as a fatigue loading to weaken the bonding. Excessive or less bonding force would cause cratering in the silicon.

  2. Antisymmetric Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2007-02-01

    Full Text Available In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space $E_n$ are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group $G$ of rank $n$. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space $E_n$. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in $E_n$, vanishing on the boundary of the fundamental domain $F$. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is closely related to expansions of central functions in characters of irreducible representations of the group $G$. They also determine a transform on a finite set of points of $F$ (the discrete antisymmetric orbit function transform. Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.

  3. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  4. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems.

    Science.gov (United States)

    van Meer, R; Gritsenko, O V; Baerends, E J

    2014-01-14

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ωα and oscillator strengths fα for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ωα(R) curves along the bond dissociation coordinate R for the molecules LiH, Li2, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate.

  5. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Meer, R. van; Gritsenko, O. V. [Faculty of Exact Sciences, Theoretical Chemistry, VU University, Amsterdam (Netherlands); WCU Program, Dep. of Chemistry, Pohang Univ. of Science and Techn., Pohang (Korea, Republic of); Baerends, E. J. [Faculty of Exact Sciences, Theoretical Chemistry, VU University, Amsterdam (Netherlands); WCU Program, Dep. of Chemistry, Pohang Univ. of Science and Techn., Pohang (Korea, Republic of); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-01-14

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ω{sub α} and oscillator strengths f{sub α} for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ω{sub α}(R) curves along the bond dissociation coordinate R for the molecules LiH, Li{sub 2}, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate.

  6. Dioxines, furans and other pollutants emissions bond to the combustion of natural and additive woods; Facteurs d'emission. Emissions de dioxines, de furanes et d'autres polluants liees a la combustion de bois naturels et adjuvantes

    Energy Technology Data Exchange (ETDEWEB)

    Collet, S

    2000-02-15

    This report deals especially on the dioxines and furans bond to the combustion of wood in industrial furnaces and domestic furnaces. It aims to define the environmental strategy which would allow the combustion of wood residues to produce energy. The first part recalls general aspects concerning the wood. The six other parts presents the wood resources and wastes, the additive used, the combustion and the different factors of combustion and finally the pollutants emissions. (A.L.B.)

  7. Origin of the conformational modulation of the 13C NMR chemical shift of methoxy groups in aromatic natural compounds.

    Science.gov (United States)

    Toušek, Jaromír; Straka, Michal; Sklenář, Vladimír; Marek, Radek

    2013-01-24

    The interpretation of nuclear magnetic resonance (NMR) parameters is essential to understanding experimental observations at the molecular and supramolecular levels and to designing new and more efficient molecular probes. In many aromatic natural compounds, unusual (13)C NMR chemical shifts have been reported for out-of-plane methoxy groups bonded to the aromatic ring (~62 ppm as compared to the typical value of ~56 ppm for an aromatic methoxy group). Here, we analyzed this phenomenon for a series of aromatic natural compounds using Density Functional Theory (DFT) calculations. First, we checked the methodology used to optimize the structure and calculate the NMR chemical shifts in aromatic compounds. The conformational effects of the methoxy group on the (13)C NMR chemical shift then were interpreted by the Natural Bond Orbital (NBO) and Natural Chemical Shift (NCS) approaches, and by excitation analysis of the chemical shifts, breaking down the total nuclear shielding tensor into the contributions from the different occupied orbitals and their magnetic interactions with virtual orbitals. We discovered that the atypical (13)C NMR chemical shifts observed are not directly related to a different conjugation of the lone pair of electrons of the methoxy oxygen with the aromatic ring, as has been suggested. Our analysis indicates that rotation of the methoxy group induces changes in the virtual molecular orbital space, which, in turn, correlate with the predominant part of the contribution of the paramagnetic deshielding connected with the magnetic interactions of the BD(CMet-H)→BD*(CMet-OMet) orbitals, resulting in the experimentally observed deshielding of the (13)C NMR resonance of the out-of-plane methoxy group.

  8. Orbital Instability and Relaxation in Stellar Systems

    Science.gov (United States)

    Valluri, Monica; Merritt, David

    We review recent progress in understanding the role of chaos in influencing the structure and evolution of galaxies. The orbits of stars in galaxies are generically chaotic: the chaotic behavior arises in part from the intrinsically grainy nature of a potential that is composed of point masses. Even if the potential is assumed to be smooth, however, much of the phase space of non-axisymmetric galaxies is chaotic due to the presence of central density cusps or black holes. The chaotic nature of orbits implies that perturbations will grow exponentially and this in turn is expected to result in a diffusion in phase space. We show that the degree of orbital evolution is not well predicted by the growth rate of infinitesimal perturbations, i.e. by the Liapunov exponent. A more useful criterion is whether perturbations continue to grow exponentially until their scale is of order the size of the system. We illustrate these ideas in a potential consisting of N fixed point masses. Liapunov exponents are large for all values of N, but orbits become increasingly regular in their behavior as N increases; the reason is that the exponential divergence saturates at smaller and smaller distances as N is increased. The objects which lend phase space its structure and impede diffusion are the invariant tori; in the triaxial potentials we consider, a large fraction of the tori correspond to resonant (thin) orbits and their associated families of regular orbits. Perturbations to the potential destroy the resonant tori. When only a few stable resonances remain, we find that the phase space distribution of an ensemble of chaotic orbits evolves rapidly toward a nearly stationary state. This mixing process is shown to occur on timescales of a few crossing times in triaxial potentials containing massive central singularities, consistent with the rapid evolution observed in N-body simulations of galaxies with central black holes.

  9. [Orbital complications of sinusitis].

    Science.gov (United States)

    Šuchaň, M; Horňák, M; Kaliarik, L; Krempaská, S; Koštialová, T; Kovaľ, J

    2014-12-01

    Orbital complications categorised by Chandler are emergency. They need early diagnosis and agresive treatment. Stage and origin of orbital complications are identified by rhinoendoscopy, ophtalmologic examination and CT of orbite and paranasal sinuses. Periorbital cellulitis and early stage of orbital cellulitis can be treated conservatively with i. v. antibiotics. Monitoring of laboratory parameters and ophtalmologic symptoms is mandatory. Lack of improvement or worsening of symptoms within 24-48 hours and advanced stages of orbital complications are indicated for surgery. The purpose of the study is to evaluate epidemiology, clinical features and management of sinogenic orbital complications. Retrospective data of 8 patients with suspicion of orbital complication admited to hospital from 2008 to 2013 were evaluated. Patients were analyzed in terms of gender, age, CT findings, microbiology, clinical features, stage and treatment. Male and female were afected in rate 1,66:1. Most of patients were young adult in 3rd. and 4th. decade of life (62,5 %). Acute and chronic sinusitis were cause of orbital complication in the same rate. The most common origin of orbital complication was ethmoiditis (62,5 %), than maxillary (25 %) and frontal (12,5 %) sinusitis. Polysinusitis with affection of ethmoidal, maxillary and frontal sinuses (75 %) was usual CT finding. Staphylococcus epidermidis and Staphylococcus aureus were etiological agens in half of cases. Periorbital oedema (100 %), proptosis, chemosis (50 %), diplopia and glaucoma (12,5 %) were observed. Based on examinations, diagnosis of periorbital oedema/preseptal cellulitis was made in 3 (37,5 %), orbital cellulitis in 3 (37,5 %) and subperiosteal abscess in 2 cases (25 %). All patients underwent combined therapy - i. v. antibiotics and surgery within 24 hours. Eradication of disease from ostiomeatal complex (OMC), drainage of affected sinuses and drainage of subperiosteal abscess were done via fuctional endonasal

  10. The orbital record in stratigraphy

    Science.gov (United States)

    Fischer, Alfred G.

    1992-01-01

    Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity

  11. The Cost of Immediacy for Corporate Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Marco, Rossi

    Liquidity provision in the corporate bond market has become significantly more expensive after the 2008 credit crisis. Using index exclusions as a natural experiment during which uninformed index trackers request immediacy, we find that the price of immediacy has doubled for short-term investment...

  12. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts.

    Science.gov (United States)

    Knizia, Gerald

    2013-11-12

    Modern quantum chemistry can make quantitative predictions on an immense array of chemical systems. However, the interpretation of those predictions is often complicated by the complex wave function expansions used. Here we show that an exceptionally simple algebraic construction allows for defining atomic core and valence orbitals, polarized by the molecular environment, which can exactly represent self-consistent field wave functions. This construction provides an unbiased and direct connection between quantum chemistry and empirical chemical concepts, and can be used, for example, to calculate the nature of bonding in molecules, in chemical terms, from first principles. In particular, we find consistency with electronegativities (χ), C 1s core-level shifts, resonance substituent parameters (σR), Lewis structures, and oxidation states of transition-metal complexes.

  13. The McClelland approximation and the distribution of π-electron molecular orbital energy levels

    Directory of Open Access Journals (Sweden)

    IVAN GUTMAN

    2007-10-01

    Full Text Available The total π-electron energy E of a conjugated hydrocarbon with n carbon atoms and m carbon–carbon bonds can be approximately calculated by means of the McClelland formula E = g SQRT(2mr, where g is an empirical fitting constant, g ≈ 0.9. It was claimed that the good quality of the McClelland approximation is a consequence of the fact that the π-electron molecular orbital energy levels are distributed in a nearly uniform manner. It will now be shown that the McClelland approximation does not depend on the nature of the distribution of energy levels, i.e., that it is compatible with a large variety of such distributions.

  14. Handbook of wafer bonding

    CERN Document Server

    Ramm, Peter; Taklo, Maaike M V

    2011-01-01

    Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.

  15. Orbit Propagation and Determination of Low Earth Orbit Satellites

    OpenAIRE

    Ho-Nien Shou

    2014-01-01

    This paper represents orbit propagation and determination of low Earth orbit (LEO) satellites. Satellite global positioning system (GPS) configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP). The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan t...

  16. Quantum chemical study on influence of intermolecular hydrogen bonding on the geometry, the atomic charges and the vibrational dynamics of 2,6-dichlorobenzonitrile.

    Science.gov (United States)

    Agarwal, Parag; Bee, Saba; Gupta, Archana; Tandon, Poonam; Rastogi, V K; Mishra, Soni; Rawat, Poonam

    2014-01-01

    FT-IR (4000-400 cm(-1)) and FT-Raman (4000-200 cm(-1)) spectral measurements on solid 2,6-dichlorobenzonitrile (2,6-DCBN) have been done. The molecular geometry, harmonic vibrational frequencies and bonding features in the ground state have been calculated by density functional theory at the B3LYP/6-311++G (d,p) level. A comparison between the calculated and the experimental results covering the molecular structure has been made. The assignments of the fundamental vibrational modes have been done on the basis of the potential energy distribution (PED). To investigate the influence of intermolecular hydrogen bonding on the geometry, the charge distribution and the vibrational spectrum of 2,6-DCBN; calculations have been done for the monomer as well as the tetramer. The intermolecular interaction energies corrected for basis set superposition error (BSSE) have been calculated using counterpoise method. Based on these results, the correlations between the vibrational modes and the structure of the tetramer have been discussed. Molecular electrostatic potential (MEP) contour map has been plotted in order to predict how different geometries could interact. The Natural Bond Orbital (NBO) analysis has been done for the chemical interpretation of hyperconjugative interactions and electron density transfer between occupied (bonding or lone pair) orbitals to unoccupied (antibonding or Rydberg) orbitals. UV spectrum was measured in methanol solution. The energies and oscillator strengths were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. TD-DFT method has also been used for theoretically studying the hydrogen bonding dynamics by monitoring the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds in the ground and the first excited state. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge independent atomic orbital

  17. Physics of higher orbital bands in optical lattices: a review

    Science.gov (United States)

    Li, Xiaopeng; Liu, W. Vincent

    2016-11-01

    The orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensates and topological semimetals emerge. A brief introduction of orbital degrees of freedom in optical lattices is given and a summary of exotic orbital models and resulting many-body phases is provided. Experimental consequences of the novel phases are also discussed.

  18. Chemical Bonding in Aqueous Ferrocyanide: Experimental and Theoretical X-ray Spectroscopic Study

    CERN Document Server

    Engel, Nicholas; Suljoti, Edlira; Garcia-Diez, Raul; Lange, Kathrin M; Atak, Kaan; Golnak, Ronny; Kothe, Alexander; Dantz, Marcus; Kühn, Oliver; Aziz, Emad F

    2013-01-01

    Resonant inelastic X-ray scattering (RIXS) and X-ray absorption (XA) experiments at the iron L- and nitrogen K-edge are combined with high-level first principles restricted active space self-consistent field (RASSCF) calculations for a systematic investigation of the nature of the chemical bond in potassium ferrocyanide in aqueous solution. The atom- and site-specific RIXS excitations allow for direct observation of ligand-to-metal (Fe L-edge) and metal-to-ligand (N K-edge) charge transfer bands and thereby evidence for strong {\\sigma}-donation and {\\pi}-back-donation. The effects are identified by comparing experimental and simulated spectra related to both the unoccupied and occupied molecular orbitals in solution.

  19. [FHF]−—The Strongest Hydrogen Bond under the Influence of External Interactions

    Directory of Open Access Journals (Sweden)

    Sławomir J. Grabowski

    2015-12-01

    Full Text Available A search through the Cambridge Structural Database (CSD for crystal structures containing the [FHF]− anion was carried out. Forty five hydrogen bifluoride structures were found mainly with the H-atom moved from the mid-point of the F…F distance. However several [FHF]− systems characterized by D∞h symmetry were found, the same as this anion possesses in the gas phase. The analysis of CSD results as well as the analysis of results of ab initio calculations on the complexes of [FHF]− with Lewis acid moieties show that the movement of the H-atom from the central position depends on the strength of interaction of this anion with external species. The analysis of the electron charge density distribution in complexes of [FHF]− was performed with the use of the Quantum Theory of Atoms in Molecules (QTAIM approach and the Natural Bond Orbitals (NBO method.

  20. The Lunar Volatiles Orbiter: A Discovery Class Lunar Water Mission

    Science.gov (United States)

    Lucey, P. G.; Sun, X.; Petro, N.; Farrell, W.; Abshire, J. B.; Mazarico, E.; Neumann, G. A.; Green, R.; Thompson, D. E.; Greenberger, R.; Hurley, D.; McClanahan, T. P.; Smith, D. E.; Zuber, M. T.

    2016-11-01

    The Lunar Volatiles Orbiter is a Discovery Class mission concept aimed at characterizing the nature and mobility of water on the Moon. Its instruments include a laser spectrometer, an infrared hyperspectral imager, and a neutral mass spectrometer.

  1. Thorium–phosphorus triamidoamine complexes containing Th–P single- and multiple-bond interactions

    Science.gov (United States)

    Wildman, Elizabeth P.; Balázs, Gábor; Wooles, Ashley J.; Scheer, Manfred; Liddle, Stephen T.

    2016-01-01

    Despite the burgeoning field of uranium-ligand multiple bonds, analogous complexes involving other actinides remain scarce. For thorium, under ambient conditions only a few multiple bonds to carbon, nitrogen, oxygen, sulfur, selenium and tellurium are reported, and no multiple bonds to phosphorus are known, reflecting a general paucity of synthetic methodologies and also problems associated with stabilising these linkages at the large thorium ion. Here we report structurally authenticated examples of a parent thorium(IV)–phosphanide (Th–PH2), a terminal thorium(IV)–phosphinidene (Th=PH), a parent dithorium(IV)–phosphinidiide (Th–P(H)-Th) and a discrete actinide–phosphido complex under ambient conditions (Th=P=Th). Although thorium is traditionally considered to have dominant 6d-orbital contributions to its bonding, contrasting to majority 5f-orbital character for uranium, computational analyses suggests that the bonding of thorium can be more nuanced, in terms of 5f- versus 6d-orbital composition and also significant involvement of the 7s-orbital and how this affects the balance of 5f- versus 6d-orbital bonding character. PMID:27682617

  2. Thorium-phosphorus triamidoamine complexes containing Th-P single- and multiple-bond interactions

    Science.gov (United States)

    Wildman, Elizabeth P.; Balázs, Gábor; Wooles, Ashley J.; Scheer, Manfred; Liddle, Stephen T.

    2016-09-01

    Despite the burgeoning field of uranium-ligand multiple bonds, analogous complexes involving other actinides remain scarce. For thorium, under ambient conditions only a few multiple bonds to carbon, nitrogen, oxygen, sulfur, selenium and tellurium are reported, and no multiple bonds to phosphorus are known, reflecting a general paucity of synthetic methodologies and also problems associated with stabilising these linkages at the large thorium ion. Here we report structurally authenticated examples of a parent thorium(IV)-phosphanide (Th-PH2), a terminal thorium(IV)-phosphinidene (Th=PH), a parent dithorium(IV)-phosphinidiide (Th-P(H)-Th) and a discrete actinide-phosphido complex under ambient conditions (Th=P=Th). Although thorium is traditionally considered to have dominant 6d-orbital contributions to its bonding, contrasting to majority 5f-orbital character for uranium, computational analyses suggests that the bonding of thorium can be more nuanced, in terms of 5f- versus 6d-orbital composition and also significant involvement of the 7s-orbital and how this affects the balance of 5f- versus 6d-orbital bonding character.

  3. Extended duration orbiter (EDO) insignia

    Science.gov (United States)

    1990-01-01

    Extended duration orbiter (EDO) insignia incorporates a space shuttle orbiter with payload bay doors (PLBDs) open and a spacelab module inside. Trailing the orbiter are the initials EDO. The EDO-modified Columbia, Orbiter Vehicle (OV) 102, will be flown for the first EDO mission, STS-50.

  4. Meteorites from recent amor-type orbits

    Science.gov (United States)

    Benoit, P. H.; Sears, D. W. G.

    1993-01-01

    We report here the discovery of a recent meteorite shower in Antarctica, the members of which have very high natural thermoluminescence levels. It is apparent from these data that the shower has been on Earth only a short time (approximately 1000 years) and the meteorite probably came to Earth through rapid (less than 10 exp 5 years) evolution from an orbit with perihelion greater than 1.1 AU, similar to Amor asteroids. Only a very small number of meteorites, including a few modern falls, appear to have had similar orbital histories.

  5. Total energy global optimizations using non orthogonal localized orbitals

    CERN Document Server

    Kim, J; Galli, G; Kim, Jeongnim; Mauri, Francesco; Galli, Giulia

    1994-01-01

    An energy functional for orbital based $O(N)$ calculations is proposed, which depends on a number of non orthogonal, localized orbitals larger than the number of occupied states in the system, and on a parameter, the electronic chemical potential, determining the number of electrons. We show that the minimization of the functional with respect to overlapping localized orbitals can be performed so as to attain directly the ground state energy, without being trapped at local minima. The present approach overcomes the multiple minima problem present within the original formulation of orbital based $O(N)$ methods; it therefore makes it possible to perform $O(N)$ calculations for an arbitrary system, without including any information about the system bonding properties in the construction of the input wavefunctions. Furthermore, while retaining the same computational cost as the original approach, our formulation allows one to improve the variational estimate of the ground state energy, and the energy conservation...

  6. Orbital Fluid Resupply Assessment

    Science.gov (United States)

    Eberhardt, Ralph N.

    1989-01-01

    Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.

  7. Helioseismology with Solar Orbiter

    CERN Document Server

    Löptien, Björn; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Rodríguez, Julián Blanco; Cally, Paul S; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H; Solanki, Sami K

    2014-01-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21 deg (up to 34 deg by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3 x 10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. The full range of Earth-Sun-spacecraft angles provi...

  8. Orbits for sixteen binaries

    Directory of Open Access Journals (Sweden)

    Cvetković Z.

    2006-01-01

    Full Text Available In this paper orbits for 13 binaries are recalculated and presented. The reason is that recent observations show higher residuals than the corresponding ephemerides calculated by using the orbital elements given in the Sixth Catalog of Orbits of Visual Binary Stars. The binaries studied were: WDS 00182+7257 = A 803, WDS 00335+4006 = HO 3, WDS 00583+2124 = BU 302, WDS 01011+6022 = A 926, WDS 01014+1155 = BU 867, WDS 01112+4113 = A 655, WDS 01361−2954 + HJ 3447, WDS 02333+5219 = STT 42 AB,WDS 04362+0814 = A 1840 AB,WDS 08017−0836 = A 1580, WDS 08277−0425 = A 550, WDS 17471+1742 = STF 2215 and WDS 18025+4414 = BU 1127 Aa-B. In addition, for three binaries - WDS 01532+1526 = BU 260, WDS 02563+7253 = STF 312 AB and WDS 05003+3924 = STT 92 AB - the orbital elements are calculated for the first time. In this paper the authors present not only the orbital elements, but the masses dynamical parallaxes, absolute magnitudes and ephemerides for the next five years, as well.

  9. Labor Income and the Demand for Long-term Bonds

    NARCIS (Netherlands)

    Koijen, R.S.J.; Nijman, T.E.; Werker, B.J.M.

    2005-01-01

    The riskless nature in real terms of inflation-linked bonds has led to the conclusion that inflation-linked bonds should constitute a substantial part of the optimal investment portfolio of long-term investors.This conclusion is reached in models where investors do not receive labor income during th

  10. Magnetic and orbital ordering in the iron-based superconductors. Role of spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Felix; Eremin, Ilya [Institut fuer Theoretische Physik III, Ruhr-Universitaet Bochum (Germany); Knolle, Johannes [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Fernandes, Rafael [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN (United States)

    2015-07-01

    We analyze the magnetic ordering in the iron-based superconductors in presence of spin-orbit coupling. Based on several tight-binding parametrizations of the 3d electron states we show how the spin-orbit coupling introduces the anisotropy of the magnetization of the striped antiferromagnetic state by lifting the degeneracy of all three components of the magnetization m{sub x}, m{sub y} and m{sub z}. The orientation of the magnetic moment is determined by the contribution of the xy, xz, and yz orbitals to the electronic states near the Fermi level of the electron and hole bands and is determined by the electron filling. We find that within an itinerant approach the magnetic ordering is most favorable along the wavevector of the striped AF state. This appears to be a natural consequence of the spin-orbit coupling in the striped AF state where the ferro-orbital order of the xz and yz orbitals is only a consequence of the striped AF order. We further analyze the role of spin-orbit coupling for the C{sub 4} magnetic structure where SDW order parameters with both wavevectors, Q{sub x} = (π,0) and Q{sub y} = (0,π), coexist.

  11. Study on the construction of satisfactory nonorthogonal localized molecular orbitals

    Institute of Scientific and Technical Information of China (English)

    FENG; Huasheng; BIAN; Jiang; LI; Lemin

    2004-01-01

    Comparing to orthogonal localized molecular orbitals (OLMO), the nonorthogonal localized molecular orbitals (NOLMO) exhibit bonding pictures more accordant with those in the traditional chemistry. They are more contracted, so that they have a better transferability and better performances for the calculation of election correlation energies and for the linear scaling algorithms of large systems. The satisfactory NOLMOs should be as contracted as possible while their shapes and spatial distribution keep in accordance with the traditional chemical bonding picture. It is found that the spread of NOLMOs is a monotonic decreasing function of their orthogonality, and it may reduce to any extent as the orthogonality descends. However, when the orthogonality descends to some point, the shapes and spatial distribution of the NOLMOs deviate drastically from the traditional chemical bonding picture, and finally the NOLMOs tend to linear dependence. Without the requirement of orthogonalization, some other constraints have to be imposed for constructing satisfactory NOLMOs by minimizing their spread functional. It is shown that satisfactory results can be generated by coupling the minimization of orbital spread functionals with the maximization of the distances between orbital centroids.

  12. Constant time INEPT CT-HSQC (CTi-CT-HSQC) - A new NMR method to measure accurate one-bond J and RDCs with strong 1H-1H couplings in natural abundance.

    Science.gov (United States)

    Yu, Bingwu; van Ingen, Hugo; Freedberg, Darón I

    2013-03-01

    Strong (1)H-(1)H coupling can significantly reduce the accuracy of (1)J(CH) measured from frequency differences in coupled HSQC spectra. Although accurate (1)J(CH) values can be extracted from spectral simulation, it would be more convenient if the same accurate (1)J(CH) values can be obtained experimentally. Furthermore, simulations reach their limit for residual dipolar coupling (RDC) measurement, as many significant, but immeasurable RDCs are introduced into the spin system when a molecule is weakly aligned, thus it is impossible to have a model spin system that truly represents the real spin system. Here we report a new J modulated method, constant-time INEPT CT-HSQC (CTi-CT-HSQC), to accurately measure one-bond scalar coupling constant and RDCs without strong coupling interference. In this method, changing the spacing between the two 180° pulses during a constant time INEPT period selectively modulates heteronuclear coupling in quantitative J fashion. Since the INEPT delays for measuring one-bond carbon-proton spectra are short compared to (3)J(HH), evolution due to (strong) (1)H-(1)H coupling is marginal. The resulting curve shape is practically independent of (1)H-(1)H coupling and only correlated to the heteronuclear coupling evolution. Consequently, an accurate (1)J(CH) can be measured even in the presence of strong coupling. We tested this method on N-acetyl-glucosamine and mannose whose apparent isotropic (1)J(CH) values are significantly affected by strong coupling with other methods. Agreement to within 0.5Hz or better is found between (1)J(CH) measured by this method and previously published simulation data. We further examined the strong coupling effects on RDC measurements and observed an error up to 100% for one bond RDCs using coupled HSQC in carbohydrates. We demonstrate that RDCs can be obtained with higher accuracy by CTi-CT-HSQC, which compensates the limitation of simulation method.

  13. Deceleration Orbit Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Church, M.

    1991-04-26

    During the accelerator studies period of 12/90-1/91 much study time was dedicated to improving the E760 deceleration ramps. 4 general goals were in mind: (1) Reduce the relative orbit deviations from the nominal reference orbit as much as possible. This reduces the potential error in the orbit length calculation - which is the primary source of error in the beam energy calculation. (2) Maximize the transverse apertures. This minimizes beam loss during deceleration and during accidental beam blow-ups. (3) Measure and correct lattice parameters. Knowledge of {gamma}{sub T}, {eta}, Q{sub h}, Q{sub v}, and the dispersion in the straight sections allows for a more accurate energy calculation and reliable SYNCH calculations. (4) Minimize the coupling. This allows one to discern between horizontal and vertical tunes.

  14. Vertical orbital dystopia.

    Science.gov (United States)

    Tan, S T; Ashworth, G; Czypionka, S; Poole, M D; Briggs, M

    1996-06-01

    Many pathologic processes may lead to vertical orbital dystopia. We reviewed 47 consecutive cases seen over a 13-year period. Twenty-nine patients underwent eye leveling procedures to improve cosmesis, 2 of these by camouflage procedures and 27 by orbital translocation. Ten patients had 16 secondary operations. There was one death, serious complications occurred in 3 patients, and nuisance complications occurred in 20 others. Seven patients developed diplopia postoperatively, and in 6 patients it was troublesome. In these, it resolved fully in 2 patients, improved to be of no consequence in 2, and in the remaining 2 troublesome symptoms persisted requiring inferior oblique muscle recession in 1. Binocular vision was never restored when not present preoperatively, and in 3 patients temporary loss occurred. There was an overall modest but significant improvement in appearance after surgery. It is concluded that vertical orbital translocation is rewarding and worthwhile.

  15. Fundamentals of fiber bonding in thermally point-bonded nonwovens

    Science.gov (United States)

    Chidambaram, Aparna

    Thermal point bonding (TPB) uses heat and pressure to bond a web of fibers at discrete points imparting strength to the manufactured fabric. This process significantly reduces the strength and elongation of the bridging fibers between bond points while strengthening the web. Single fiber experiments were performed with four structurally different polypropylene fibers to analyze the inter-relationships between fiber structure, fiber properties and bonding process. Two fiber types had a low birefringence sheath or surface layer while the remaining had uniform birefringence profiles through their thickness. Bonds were formed between isolated pairs of fibers by subjecting the fibers to a calendering process and simulating TPB process conditions. The dependence of bond strength on bonding temperature and on the type of fiber used was evaluated. Fiber strengths before and after bonding were measured and compared to understand the effect of bonding on fiber strength. Additionally, bonded fiber strength was compared to the strength of single fibers which had experienced the same process conditions as the bonded pairs. This comparison estimated the effect of mechanical damage from pressing fibers together with steel rolls while creating bonds in TPB. Interfiber bond strength increased with bonding temperature for all fiber types. Fiber strength decreased with increasing bonding temperature for all fiber types except for one type of low birefringent sheath fibers. Fiber strength degradation was unavoidable at temperatures required for successful bonding. Mechanical damage from compression of fibers between rolls was an insignificant factor in this strength loss. Thermal damage during bonding was the sole significant contributor to fiber strength degradation. Fibers with low birefringence skins formed strong bonds with minimal fiber strength loss and were superior to fibers without such surface layers in TPB performance. A simple model to predict the behavior of a two-bond

  16. Modelling longevity bonds: Analysing the Swiss Re Kortis bond

    OpenAIRE

    2015-01-01

    A key contribution to the development of the traded market for longevity risk was the issuance of the Kortis bond, the world's first longevity trend bond, by Swiss Re in 2010. We analyse the design of the Kortis bond, develop suitable mortality models to analyse its payoff and discuss the key risk factors for the bond. We also investigate how the design of the Kortis bond can be adapted and extended to further develop the market for longevity risk.

  17. Optical orbital angular momentum

    Science.gov (United States)

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-01-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069775

  18. Optical orbital angular momentum

    Science.gov (United States)

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-02-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue 'Optical orbital angular momentum'.

  19. The GEOS-3 orbit determination investigation

    Science.gov (United States)

    Pisacane, V. L.; Eisner, A.; Yionoulis, S. M.; Mcconahy, R. J.; Black, H. D.; Pryor, L. L.

    1978-01-01

    The nature and improvement in satellite orbit determination when precise altimetric height data are used in combination with conventional tracking data was determined. A digital orbit determination program was developed that could singly or jointly use laser ranging, C-band ranging, Doppler range difference, and altimetric height data. Two intervals were selected and used in a preliminary evaluation of the altimeter data. With the data available, it was possible to determine the semimajor axis and eccentricity to within several kilometers, in addition to determining an altimeter height bias. When used jointly with a limited amount of either C-band or laser range data, it was shown that altimeter data can improve the orbit solution.

  20. Tetrel bond of pseudohalide anions with XH3F (X = C, Si, Ge, and Sn) and its role in SN2 reaction

    Science.gov (United States)

    Liu, Mingxiu; Li, Qingzhong; Cheng, Jianbo; Li, Wenzuo; Li, Hai-Bei

    2016-12-01

    The complexes of XH3F⋯ N3-/OCN-/SCN- (X = C, Si, Ge, and Sn) have been investigated at the MP2/aug-cc-pVTZ(PP) level. The σ-hole of X atom in XH3F acts as a Lewis acid forming a tetrel bond with pseudohalide anions. Interaction energies of these complexes vary from -8 to -50 kcal/mol, mainly depending on the nature of X and pseudohalide anions. Charge transfer from N/O/S lone pair to X-F and X-H σ* orbitals results in the stabilization of these complexes, and the former orbital interaction is responsible for the large elongation of X-F bond length and the remarkable red shift of its stretch vibration. The tetrel bond in the complexes of XH3F (X = Si, Ge, and Sn) exhibits a significant degree of covalency with XH3F distorted significantly in these complexes. A breakdown of the individual forces involved attributes the stability of the interaction to mainly electrostatic energy, with a relatively large contribution from polarization. The transition state structures that connect the two minima for CH3Br⋯ N3-complexhave been localized and characterized. The energetic, geometrical, and topological parameters of the complexes were analyzed in the different stages of the SN2 reaction N3- + CH3Br → Br- + CH3N3.

  1. How universal are hydrogen bond correlations? A density functional study of intramolecular hydrogen bonding in low-energy conformers of α-amino acids

    Science.gov (United States)

    Ramaniah, Lavanya M.; Kamal, C.; Kshirsagar, Rohidas J.; Chakrabarti, Aparna; Banerjee, Arup

    2013-10-01

    Hydrogen bonding is one of the most important and ubiquitous interactions present in Nature. Several studies have attempted to characterise and understand the nature of this very basic interaction. These include both experimental and theoretical investigations of different types of chemical compounds, as well as systems subjected to high pressure. The O-H..O bond is of course the best studied hydrogen bond, and most studies have concentrated on intermolecular hydrogen bonding in solids and liquids. In this paper, we analyse and characterise normal hydrogen bonding of the general type, D-H...A, in intramolecular hydrogen bonding interactions. Using a first-principles density functional theory approach, we investigate low energy conformers of the twenty α-amino acids. Within these conformers, several different types of intramolecular hydrogen bonds are identified. The hydrogen bond within a given conformer occurs between two molecular groups, either both within the backbone itself, or one in the backbone and one in the side chain. In a few conformers, more than one (type of) hydrogen bond is seen to occur. Interestingly, the strength of the hydrogen bonds in the amino acids spans quite a large range, from weak to strong. The signature of hydrogen bonding in these molecules, as reflected in their theoretical vibrational spectra, is analysed. With the new first-principles data from 51 hydrogen bonds, various parameters relating to the hydrogen bond, such as hydrogen bond length, hydrogen bond angle, bond length and vibrational frequencies are studied. Interestingly, the correlation between these parameters in these bonds is found to be in consonance with those obtained in earlier experimental studies of normal hydrogen bonds on vastly different systems. Our study provides some of the most detailed first-principles support, and the first involving vibrational frequencies, for the universality of hydrogen bond correlations in materials.

  2. Romanian government bond market

    Directory of Open Access Journals (Sweden)

    Cornelia POP

    2012-12-01

    Full Text Available The present paper aims to present the level of development reached by Romanian government bond market segment, as part of the country financial market. The analysis will be descriptive (the data series available for Romania are short, based on the secondary data offered by the official bodies involved in the process of issuing and trading the Romanian government bonds (Romanian Ministry of Public Finance, Romanian National Bank and Bucharest Stock Exchange, and also on secondary data provided by the Federation of European Stock Exchanges.To enhance the market credibility as a benchmark, a various combination of measures is necessary; among these measures are mentioned: the extension of the yield curve; the issuance calendars in order to improve transparency; increasing the disclosure of information on public debt issuance and statistics; holding regular meetings with dealers, institutional investors and rating agencies; introducing a system of primary dealers; establishing a repurchase (repo market in the government bond market. These measures will be discussed based on the evolution presented inside the paper.The paper conclude with the fact that, until now, the Romanian government bond market did not provide a benchmark for the domestic financial market and that further efforts are needed in order to increase the government bond market transparency and liquidity.

  3. Bonding charge density from atomic perturbations.

    Science.gov (United States)

    Wang, Yi; Wang, William Yi; Chen, Long-Qing; Liu, Zi-Kui

    2015-05-15

    Charge transfer among individual atoms is the key concept in modern electronic theory of chemical bonding. In this work, we present a first-principles approach to calculating the charge transfer. Based on the effects of perturbations of an individual atom or a group of atoms on the electron charge density, we determine unambiguously the amount of electron charge associated with a particular atom or a group of atoms. We computed the topological electron loss versus gain using ethylene, graphene, MgO, and SrTiO3 as examples. Our results verify the nature of chemical bonds in these materials at the atomic level.

  4. Routes to Hydrogen Bonding Chain-End Functionalized Polymers.

    Science.gov (United States)

    Bertrand, Arthur; Lortie, Frédéric; Bernard, Julien

    2012-12-21

    The contribution of supramolecular chemistry to polymer science opens new perspectives for the design of polymer materials exhibiting valuable properties and easier processability due to the dynamic nature of non-covalent interactions. Hydrogen bonding polymers can be used as supramolecular units for yielding larger assemblies that possess attractive features, arising from the combination of polymer properties and the responsiveness of hydrogen bonds. The post-polymerization modification of reactive end-groups is the most common procedure for generating such polymers. Examples of polymerizations mediated by hydrogen bonding-functionalized precursors have also recently been reported. This contribution reviews the current synthetic routes toward hydrogen bonding sticker chain-end functionalized polymers.

  5. Torsion Testing of Diffusion Bonded LIGA Formed Nickel

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, T.E.; Christenson, T.R.; Schmale, D.T.

    1999-01-27

    A test technique has been devised which is suitable for the testing of the bond strength of batch diffusion bonded LIGA or DXRL defined structures. The method uses a torsion tester constructed with the aid of LIGA fabrication and distributed torsion specimens which also make use of the high aspect ratio nature of DXRL based processing. Measurements reveal achieved bond strengths of 130MPa between electroplated nickel with a bond temperature of 450 C at 7 ksi pressure which is a sufficiently low temperature to avoid mechanical strength degradation.

  6. Local orbitals by minimizing powers of the orbital variance

    DEFF Research Database (Denmark)

    Jansik, Branislav; Høst, Stinne; Kristensen, Kasper;

    2011-01-01

    It is demonstrated that a set of local orthonormal Hartree–Fock (HF) molecular orbitals can be obtained for both the occupied and virtual orbital spaces by minimizing powers of the orbital variance using the trust-region algorithm. For a power exponent equal to one, the Boys localization function...... is obtained. For increasing power exponents, the penalty for delocalized orbitals is increased and smaller maximum orbital spreads are encountered. Calculations on superbenzene, C60, and a fragment of the titin protein show that for a power exponent equal to one, delocalized outlier orbitals may...

  7. Safe and Liquid Mortgage Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Lund, Jesper

    This paper shows that strict match pass-through funding of covered bonds provides safe and liquid mortgage bonds. Despite a 30% drop in house prices during the 2008 global crisis Danish mortgage bonds remained as liquid as most European government bonds. The Danish pass-through system effectively...... eliminates credit risk from the investor's perspective. Similar to other safe bonds, funding liquidity becomes the main driver of mortgage bond liquidity and this creates commonality in liquidity across markets and countries. These findings have implications for how to design a robust mortgage bond system...

  8. Localization of molecular orbitals: from fragments to molecule.

    Science.gov (United States)

    Li, Zhendong; Li, Hongyang; Suo, Bingbing; Liu, Wenjian

    2014-09-16

    Conspectus Localized molecular orbitals (LMO) not only serve as an important bridge between chemical intuition and molecular wave functions but also can be employed to reduce the computational cost of many-body methods for electron correlation and excitation. Therefore, how to localize the usually completely delocalized canonical molecular orbitals (CMO) into confined physical spaces has long been an important topic: It has a long history but still remains active to date. While the known LMOs can be classified into (exact) orthonormal and nonorthogonal, as well as (approximate) absolutely localized MOs, the ways for achieving these can be classified into two categories, a posteriori top-down and a priori bottom-up, depending on whether they invoke the global CMOs (or equivalently the molecular density matrix). While the top-down approaches have to face heavy tasks of minimizing or maximizing a given localization functional typically of many adjacent local extrema, the bottom-up ones have to invoke some tedious procedures for first generating a local basis composed of well-defined occupied and unoccupied subsets and then maintaining or resuming the locality when solving the Hartree-Fock/Kohn-Sham (HF/KS) optimization condition. It is shown here that the good of these kinds of approaches can be combined together to form a very efficient hybrid approach that can generate the desired LMOs for any kind of gapped molecules. Specifically, a top-down localization functional, applied to individual small subsystems only, is minimized to generate an orthonormal local basis composed of functions centered on the preset chemical fragments. The familiar notion for atomic cores, lone pairs, and chemical bonds emerges here automatically. Such a local basis is then employed in the global HF/KS calculation, after which a least action is taken toward the final orthonormal localized molecular orbitals (LMO), both occupied and virtual. This last step is very cheap, implying that, after

  9. Sedna Orbit Animation

    Science.gov (United States)

    2004-01-01

    This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  10. Red- and blue-shifted hydrogen bonds in the cis-trans noncyclic formic acid dimer.

    Science.gov (United States)

    Zhou, Pan-Pan; Qiu, Wen-Yuan

    2009-08-01

    The cis-trans noncyclic formic acid dimer was studied by means of MP2 method with 6-31G(d,p), 6-31+G(d,p) and 6-311+G(d,p) basis sets. It exhibits simultaneously red-shifted O-H...O and blue-shifted C-H...O hydrogen bonds. AIM and NBO analyses are performed at the MP2/6-31+G(d,p) level to explore their properties and origins. AIM analysis provides the evidence that the O-H bond becomes weaker and the C-H bond becomes stronger upon the hydrogen bond formations. Intermolecular and intramolecular hyperconjugations have important influence on the electron densities in the X-H (X = O, C) sigma bonding orbital and its sigma* antibonding orbital. The electron densities in the two orbitals are closely connected with the X-H (X = O, C) bond length, and they are used to quantitatively estimate the bond length variation. The larger amount of charge transfer in the red-shifted O-H...O hydrogen bond is due to its favorable H...O electron channel, whereas the H...O electron channel in the blue-shifted C-H...O hydrogen bond is weaker. Structural reorganization effects shorten the C-H bond by approximately 30% when compared to the C-H bond contraction upon the dimerization. Strikingly, it leads to a small elongation and a slight red shift of the O-H bond. Both rehybridization and repolarization result in the X-H (X = O, C) bond contraction, but their effects on the O-H bond do not hold a dominant position. The hydrogen-bonding processes go through the electrostatic attractions, van der Waals interactions, charge-transfer interactions, hydrogen-bonding interactions and electrostatic repulsions. Electrostatic attractions are of great importance on the origin of the red-shifted O-H...O hydrogen bond, especially the strong H(delta+)...O(delta-) attraction. For the blue-shifted C-H...O hydrogen bond, the considerable nucleus-nucleus repulsion between H and O atoms caused by the strong electrostatic attraction between C and O atoms is a possible reason for the C-H bond contraction and

  11. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...

  12. The Trouble With Bonds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In early June,global financial markets gyrated downwards in the wake of central banks'tough language on inflation.At one point bond prices reflected expectations of four rate hikes by the US Federal Reserve (Fed) in the next 12 months.As a result,the dollar firmed,oil prices stabilized,and yield curves flattened around the world.If all these inflation-fighting measures are real,the situation bodes well for bonds.But,I think otherwise.

  13. Cooperativity in beryllium bonds.

    Science.gov (United States)

    Alkorta, Ibon; Elguero, José; Yáñez, Manuel; Mó, Otilia

    2014-03-07

    A theoretical study of the beryllium bonded clusters of the (iminomethyl)beryllium hydride and (iminomethyl)beryllium fluoride [HC(BeX)=NH, X = H, F] molecules has been carried out at the B3LYP/6-311++G(3df,2p) level of theory. Linear and cyclic clusters have been characterized up to the decamer. The geometric, energetic, electronic and NMR properties of the clusters clearly indicate positive cooperativity. The evolution of the molecular properties, as the size of the cluster increases, is similar to those reported in polymers held together by hydrogen bonds.

  14. Chemical Reasoning Based on an Invariance Property: Bond and Lone Pair Pictures in Quantum Structural Formulas

    Directory of Open Access Journals (Sweden)

    Joseph Alia

    2010-07-01

    Full Text Available Chemists use one set of orbitals when comparing to a structural formula, hybridized AOs or NBOs for example, and another for reasoning in terms of frontier orbitals, MOs usually. Chemical arguments can frequently be made in terms of energy and/or electron density without the consideration of orbitals at all. All orbital representations, orthogonal or not, within a given function space are related by linear transformation. Chemical arguments based on orbitals are really energy or electron density arguments; orbitals are linked to these observables through the use of operators. The Valency Interaction Formula, VIF, offers a system of chemical reasoning based on the invariance of observables from one orbital representation to another. VIF pictures have been defined as one-electron density and Hamiltonian operators. These pictures are classified in a chemically meaningful way by use of linear transformations applied to them in the form of two pictorial rules and the invariance of the number of doubly, singly, and unoccupied orbitals or bonding, nonbonding, and antibonding orbitals under these transformations. The compatibility of the VIF method with the bond pair – lone pair language of Lewis is demonstrated. Different electron lone pair representations are related by the pictorial rules and have stability understood in terms of Walsh’s rules. Symmetries of conjugated ring systems are related to their electronic state by simple mathematical formulas. Description of lone pairs in conjugated systems is based on the strength and sign of orbital interactions around the ring. Simple models for bonding in copper clusters are tested, and the bonding of O2 to Fe(II in hemoglobin is described. Arguments made are supported by HF, B3LYP, and MP2 computations.

  15. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    Science.gov (United States)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  16. [Orbital decompression for Graves' ophthalmopathy].

    Science.gov (United States)

    Boulétreau, P; Breton, P; Freidel, M

    2005-04-01

    Graves' ophthalmopathy is a complex orbital condition with a controversial pathogenesis. It is the clinical expression of a discordance between the inextensible orbit and hypertrophic muscular and fatty elements within the orbit responding to immunological stimulation. The relationship between the orbital and its content can be improved by surgical expansion which increases the useful volume of the orbit. This procedure can be combined with lipectomy to decrease the volume of the orbital contents. We briefly recall the history of surgical decompression techniques and present our experience with Graves' ophthalmopathy patients.

  17. Comparison of shear bond strength between unfilled resin to dry enamel and dentin bonding to moist and dry enamel

    Directory of Open Access Journals (Sweden)

    Yasini E.

    2005-05-01

    Full Text Available Statement of Problem: The use of dentine bondings on enamel and dentin in total etch protocols has recently become popular. Unfilled resin is hydrophobic and dentin bonding is hydrophilic in nature. This chemical difference could be effective in enamel bonding process. Purpose: The aim of this study was to compare the shear bond strength of unfilled resin to dry enamel and dentin bonding to dry and moist enamel. Materials and Methods: In this experimental study, a total of 30 incisor teeth were used. The specimens were randomly assigned to three groups of 10. 37% phosphoric acid etchant was applied to the enamel surfaces in each group for 15 seconds, rinsed with water for 20 seconds and dried for 20 seconds with compressed air in groups one and two. After conditioning, group 1 received unfilled resin (Margin Bond, Colten and group 2 received dentin bonding (Single Bond, 3M and in group 3 after conditioning and rinsing with water, a layer of dentin bonding (Single Bond was applied on wet enamel. The enamel and dentin bonding were light cured for 20 seconds. A ring mold 3.5 mm in diameter and 2 mm height was placed over the specimens to receive the composite filling material (Z100, 3M. The composite was cured for 40 seconds. The specimens were thermocycled and shear bond strengths were determined using an Instron Universal Testing Machine. The findings were analyzed by ANOVA One-Way and Tukey HSD tests. Results: Shear bond strength of dentin bonding to dry enamel was significantly less than unfilled resin to dry enamel (P<0.05. There was no significant difference between the bond strength of dentin bonding to moist and dry enamel. In addition bond strength of dentin bonding to wet enamel was not significantly different from unfilled resin to dry enamel. Conclusion: Based on the findings of this study, it is suggested that enamel surface should remain slightly moist after etching before bonding with single bond but when using unfilled resin, the

  18. Theoretical Study of the ESIPT Process for a New Natural Product Quercetin

    Science.gov (United States)

    Yang, Yunfan; Zhao, Jinfeng; Li, Yongqing

    2016-08-01

    The investigation of excited-state intramolecular proton transfer (ESIPT) has been carried out via the density functional theory (DFT) and the time-dependent density functional theory (TDDFT) method for natural product quercetin in dichloromethane (DCM) solvent. For distinguishing different types of intramolecular interaction, the reduced density gradient (RDG) function also has been used. In this study, we have clearly clarified the viewpoint that two kinds of tautomeric forms (K1, K2)originated from ESIPT processconsist inthe first electronic excited state (S1). The phenomenon of hydrogen bonding interaction strengtheninghas been proved by comparing the changes of infrared (IR) vibrational spectra and bond parameters of the hydrogen bonding groups in the ground state with that in the first excited state. The frontier molecular orbitals (MOs)provided visual electron density redistribution have further verified the hydrogen bond strengthening mechanism. It should be noted that the ESIPT process of the K2 form is easier to occur than that of the K1 form via observing the potential energy profiles. Furthermore, the RDG isosurfaces has indicated that hydrogen bonding interaction of the K2 form is stronger than that of the K1 formin the S1 state, which is also the reason why the ESIPT process of the K2 form is easier to occur.

  19. Microwave Spectrum of Hydrogen Bonded HEXAFLUOROISOPROPANOL•••WATER Complex

    Science.gov (United States)

    Shahi, Abhishek; Arunan, Elangannan

    2014-06-01

    Stabilizing α-helical structure of protein and dissolving a hard to dissolve polymer, polythene terphthalete, are some of the unique properties of the organic solvent Hexafluoroisopropanol (HFIP). After determining the complete microwave spectrum of HFIP monomer, we have recorded the spectrum of HFIP***H_2O complex. Ab initio calculations were used to optimize three different possible structures. The global minimum, structure 1, had HFIP as proton donor. Another promising structure, Structure 2, has been obtained from a molecular dynamic study. A total of 46 observed lines have been fitted well for obtaining the rotational and distortion constants within experimental uncertainty. The observed rotational constants are A = 1134.53898(77) MHz, B = 989.67594(44) MHz and C = 705.26602(20) MHz. Interestingly, the rotational constants of structure 1, structure 2 and experiments were very close. Experimentally observed distortion constants were close to structure 1. b-type transitions were stronger than c-type which is also consistent with the calculated dipole moment components of structure 1. Calculations predict a non-zero a-dipole moment but experimentally a-type transitions were absent. Microwave spectra of two of the deuterium isotopologues of this complex i.e. HFIP***D_2O (30 transitions) and HFIP***HOD (33 transitions) have been also observed. Search for other isotopologues are in progress. To characterize the nature of hydrogen bonding, Atoms in Molecules and Natural Bond Orbital theoretical analysis have been done. Experimental structure and these theoretical analyses indicate that the hydrogen bonding in HFIP***H_2O complex is stronger than that in water dimer. A. Shahi and E. Arunan, Talk number RK16, 68th International Symposium on Molecular Spectroscopy 2013, Ohio, USA. Yamaguchi, T.; Imura, S.; Kai, T.; Yoshida, K. Zeitschrift für Naturforsch. A 2013, 68a, 145.

  20. Unusual Sclerosing Orbital Pseudotumor Infiltrating Orbits and Maxillofacial Regions

    Directory of Open Access Journals (Sweden)

    Huseyin Toprak

    2014-01-01

    Full Text Available Idiopathic orbital pseudotumor (IOP is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI features that help to exclude other entities during differential diagnoses.

  1. Orbit correction algorithm for SSRF fast orbit feedback system

    Institute of Scientific and Technical Information of China (English)

    LIU Ming; YIN Chongxian; LIU Dekang

    2009-01-01

    A fast orbit feedback system is designed at SSRF to suppress beam orbit disturbance within sub-micron in the bandwidth up to 100 Hz.The SVD (Singular value decomposition) algorithm is applied to calculate the inverse response matrix in global orbit correction.The number of singular eigenvalues will influence orbit noise suppression and corrector strengths.The method to choose singular eigenvalue rejection threshold is studied in this paper,and the simulation and experiment results are also presented.

  2. Comparison of Low Earth Orbit and Geosynchronous Earth Orbits

    Science.gov (United States)

    Drummond, J. E.

    1980-01-01

    The technological, environmental, social, and political ramifications of low Earth orbits as compared to geosynchronous Earth orbits for the solar power satellite (SPS) are assessed. The capital cost of the transmitting facilities is dependent on the areas of the antenna and rectenna relative to the requirement of high efficiency power transmission. The salient features of a low orbit Earth orbits are discussed in terms of cost reduction efforts.

  3. Photochemical tissue bonding

    Science.gov (United States)

    Redmond, Robert W.; Kochevar, Irene E.

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  4. Bonding in cementitious composites

    Energy Technology Data Exchange (ETDEWEB)

    Mindess, S. (British Columbia Univ., Vancouver, BC (Canada)) Shah, S.P. (Northwestern Univ., Evanston, IL (USA))

    1988-01-01

    These proceedings discuss the papers presented at the symposium on the subject of high performance cement composites. Some of the topics discussed were; calcium hydroxides treated ceramics microspheres and mechanical properties of high temperature light weight cements; microstructure and chemical variations of class F fly ash; microstructure and bond strength of cement and crack propagation as detected by laser holography and acoustic emission.

  5. Thermal Bond System.

    Science.gov (United States)

    1995-10-31

    a twill weave, a crowfoot weave, a satin weave (FIG. 2), and a leno weave. Descriptions of the various weave types can be found in " Composite ...together to define a fabric mesh having first and second opposing woven surfaces. An adhesive bond that is flowable prior to drying is used to wet and

  6. Quantum Mechanical Earth: Where Orbitals Become Orbits

    Science.gov (United States)

    Keeports, David

    2012-01-01

    Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…

  7. Halogen Bonding in (Z-2-Iodocinnamaldehyde

    Directory of Open Access Journals (Sweden)

    Miriam Rossi

    2013-07-01

    Full Text Available Based on the bulkiness of the iodine atom, a non-planar conformation was expected for the title compound. Instead, its molecular structure is planar, as experimentally determined using single crystal X-ray diffraction, and confirmed theoretically by DFT calculations on the single molecule and the halogen pair paired molecules, therefore ruling out crystal packing forces as a principal factor leading to planarity. Indeed, planarity is ascribed to the carbonyl double bond, as when this bond is saturated on forming the related alcohol derivative, the molecule loses planarity. The X-ray molecular structure shows an intermolecular separation between the iodine and the oxygen of the carbonyl shorter than the corresponding van der Waals distance suggesting a weak halogen bond interaction. DFT minimization of this 2-molecule arrangement shows the iodine--oxygen distance much shorter than that observed in the crystal interaction and confirming its stronger halogen bond nature. A trend between increasing I•••O(carbonyl separation and decreasing C-I•••O(carbonyl angle is demonstrated, further confirming the existence of a halogen bond.

  8. Electronic structure and bonding in crystalline peroxides

    Science.gov (United States)

    Königstein, Markus; Sokol, Alexei A.; Catlow, C. Richard A.

    1999-08-01

    Hartree-Fock and density-functional PW91 theories as realized in the CRYSTAL95 code have been applied to investigate the structural and electronic properties of Ba, Sr, and Ca peroxide materials with the calcium carbide crystal structure, results for which are compared with those for the corresponding oxides. Special attention is paid to the stabilization of the peroxide molecular ion O2-2 in the ionic environment provided by the lattice, and to chemical bonding effects. In order to describe the covalent bonding within the O2-2 ion and the polarization of the O- ion in the crystal electrostatic field, it is essential to include an account of the effects of electron correlation. The PW91 density functional has allowed us to reproduce the crystallographic parameters within a 3% error. The chemical bonding within the peroxide molecular ion has a complex nature with a balance between the weak covalent bond of σz type and the strong electrostatic repulsion of the closed-shell electron groups occupying O 2s and O 2px and 2py states. Compression of the peroxide ion in the ionic crystals gives rise to an excessive overlap of the O 2s closed shells of the two O- ions of a peroxide molecular ion O2-2, which in turn determines the antibonding character of the interaction and chemical bonding in the O2-2 molecular ion.

  9. Characteristics of beryllium bonds; a QTAIM study.

    Science.gov (United States)

    Eskandari, K

    2012-08-01

    The nature of beryllium bonds formed between BeX2 (X is H, F and Cl) and some Lewis bases have been investigated. The distribution of the Laplacian of electron density shows that there is a region of charge depletion around the Be atom, which, according to Laplacian complementary principal, can interact with a region of charge concentration of an atom in the base and form a beryllium bond. The molecular graphs of the investigated complexes indicate that beryllium in BeH2 and BeF2 can form “beryllium bonds” with O, N and P atoms but not with halogens. In addition, eight criteria based on QTAIM properties, including the values of electron density and its Laplacian at the BCP, penetration of beryllium and acceptor atom, charge, energy, volume and first atomic moment of beryllium atom, have been considered and compared with the corresponding ones in conventional hydrogen bonds. These bonds share many common features with very strong hydrogen bonds, however,some differences have also been observed.

  10. External Heavy-Atom Effect via Orbital Interactions Revealed by Single-Crystal X-ray Diffraction.

    Science.gov (United States)

    Sun, Xingxing; Zhang, Baicheng; Li, Xinyang; Trindle, Carl O; Zhang, Guoqing

    2016-07-28

    Enhanced spin-orbit coupling through external heavy-atom effect (EHE) has been routinely used to induce room-temperature phosphorescence (RTP) for purely organic molecular materials. Therefore, understanding the nature of EHE, i.e., the specific orbital interactions between the external heavy atom and the luminophore, is of essential importance in molecular design. For organic systems, halogens (e.g., Cl, Br, and I) are the most commonly seen heavy atoms serving to realize the EHE-related RTP. In this report, we conduct an investigation on how heavy-atom perturbers and aromatic luminophores interact on the basis of data obtained from crystallography. We synthesized two classes of molecular systems including N-haloalkyl-substituted carbazoles and quinolinium halides, where the luminescent molecules are considered as "base" or "acid" relative to the heavy-atom perturbers, respectively. We propose that electron donation from a π molecular orbital (MO) of the carbazole to the σ* MO of the C-X bond (π/σ*) and n electron donation to a π* MO of the quinolinium moiety (n/π*) are responsible for the EHE (RTP) in the solid state, respectively.

  11. Restricted Hartree Fock using complex-valued orbitals: a long-known but neglected tool in electronic structure theory.

    Science.gov (United States)

    Small, David W; Sundstrom, Eric J; Head-Gordon, Martin

    2015-01-14

    Restricted Hartree Fock using complex-valued orbitals (cRHF) is studied. We introduce an orbital pairing theorem, with which we obtain a concise connection between cRHF and real-valued RHF, and use it to uncover the close relationship between cRHF, unrestricted Hartree Fock, and generalized valence bond perfect pairing. This enables an intuition for cRHF, contrasting with the generally unintuitive nature of complex orbitals. We also describe an efficient computer implementation of cRHF and its corresponding stability analysis. By applying cRHF to the Be + H2 insertion reaction, a Woodward-Hoffmann violating reaction, and a symmetry-driven conical intersection, we demonstrate in genuine molecular systems that cRHF is capable of removing certain potential energy surface singularities that plague real-valued RHF and related methods. This complements earlier work that showed this capability in a model system. We also describe how cRHF is the preferred RHF method for certain radicaloid systems like singlet oxygen and antiaromatic molecules. For singlet O2, we show that standard methods fail even at the equilibrium geometry. An implication of this work is that, regardless of their individual efficacies, cRHF solutions to the HF equations are fairly commonplace.

  12. Restricted Hartree Fock using complex-valued orbitals: A long-known but neglected tool in electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Small, David W.; Sundstrom, Eric J.; Head-Gordon, Martin [Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-01-14

    Restricted Hartree Fock using complex-valued orbitals (cRHF) is studied. We introduce an orbital pairing theorem, with which we obtain a concise connection between cRHF and real-valued RHF, and use it to uncover the close relationship between cRHF, unrestricted Hartree Fock, and generalized valence bond perfect pairing. This enables an intuition for cRHF, contrasting with the generally unintuitive nature of complex orbitals. We also describe an efficient computer implementation of cRHF and its corresponding stability analysis. By applying cRHF to the Be + H{sub 2} insertion reaction, a Woodward-Hoffmann violating reaction, and a symmetry-driven conical intersection, we demonstrate in genuine molecular systems that cRHF is capable of removing certain potential energy surface singularities that plague real-valued RHF and related methods. This complements earlier work that showed this capability in a model system. We also describe how cRHF is the preferred RHF method for certain radicaloid systems like singlet oxygen and antiaromatic molecules. For singlet O{sub 2}, we show that standard methods fail even at the equilibrium geometry. An implication of this work is that, regardless of their individual efficacies, cRHF solutions to the HF equations are fairly commonplace.

  13. Cassini's Grand Finale: The Final Orbits

    Science.gov (United States)

    Spilker, Linda; Edgington, Scott

    2016-04-01

    The Cassini-Huygens mission, a joint collaboration between NASA, ESA and the Italian Space Agency, is approaching its last year of operations after nearly 12 years in orbit around Saturn. Cassini will send back its final bits of unique data on September 15th, 2017 as it plunges into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Before that time Cassini will continue its legacy of exploration and discovery with 12 close flybys of Titan in 2016 and 2017 that will return new science data as well as sculpt the inclinations and periods of the final orbits. Even though all of our close icy satellite flybys, including those of Enceladus, are now completed, numerous Voyager-class flybys (summer solstice approaches. In November 2016 Cassini will transition to a series of orbits with peripases just outside Saturn's F ring. These 20 orbits will include close flybys of some tiny ring moons and excellent views of the F ring and outer A ring. The 126th and final close flyby of Titan will propel Cassini across Saturn's main rings and into its final orbits. Cassini's Grand Finale, starting in April 2017, is comprised of 22 orbits at an inclination of 63 degrees. Cassini will repeatedly dive between the innermost rings and the upper atmosphere of the planet providing insights into fundamental questions unattainable during the rest of the mission. Cassini will be the first spacecraft to explore this region. These close orbits provide the highest resolution observations of both the rings and Saturn, and direct in situ sampling of the ring particles, composition, plasma, Saturn's exosphere and the innermost radiation belts. Saturn's gravitational field will be measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the outer layers of Saturn's atmosphere, and the mass distribution in the rings. Probing the magnetic field will give insight into the nature of the magnetic dynamo, telling us: why the

  14. Topics in orbit equivalence

    CERN Document Server

    Kechris, Alexander S

    2004-01-01

    This volume provides a self-contained introduction to some topics in orbit equivalence theory, a branch of ergodic theory. The first two chapters focus on hyperfiniteness and amenability. Included here are proofs of Dye's theorem that probability measure-preserving, ergodic actions of the integers are orbit equivalent and of the theorem of Connes-Feldman-Weiss identifying amenability and hyperfiniteness for non-singular equivalence relations. The presentation here is often influenced by descriptive set theory, and Borel and generic analogs of various results are discussed. The final chapter is a detailed account of Gaboriau's recent results on the theory of costs for equivalence relations and groups and its applications to proving rigidity theorems for actions of free groups.

  15. Comment on "Rabbit-Ears Hybrids, VSEPR Sterics, and Other Orbital Anachronisms": A Reply to a Criticism

    Science.gov (United States)

    Hiberty, Philippe C.; Danovich, David; Shaik, Sason

    2015-01-01

    This commentary summarizes the authors' basic disagreements with the paper, "Rabbit-Ears, VSEPR Sterics, and Other Orbital Anachronisms," which criticizes the authors' usage of the hybrid orbitals for H[subscript 2]O in their book, "A Chemist's Guide to Valence Bond Theory" (Shaik and Hiberty, 2008). The current article shows…

  16. Small Mercury Relativity Orbiter

    Science.gov (United States)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  17. Valence XPS structure and chemical bond in Cs2UO2Cl4

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2016-01-01

    Full Text Available Quantitative analysis was done of the valence electrons X-ray photoelectron spectra structure in the binding energy (BE range of 0 eV to ~35 eV for crystalline dicaesium tetrachloro-dioxouranium (VI (Cs2UO2Cl4. This compound contains the uranyl group UO2. The BE and structure of the core electronic shells (~35 eV-1250 eV, as well as the relativistic discrete variation calculation results for the UO2Cl4(D4h cluster reflecting U close environment in Cs2UO2Cl4 were taken into account. The experimental data show that many-body effects due to the presence of cesium and chlorine contribute to the outer valence (0-~15 eV BE spectral structure much less than to the inner valence (~15 eV-~35 eV BE one. The filled U5f electronic states were theoretically calculated and experimentally confirmed to be present in the valence band of Cs2UO2Cl4. It corroborates the suggestion on the direct participation of the U5f electrons in the chemical bond. Electrons of the U6p atomic orbitals participate in formation of both the inner (IVMO and the outer (OVMO valence molecular orbitals (bands. The filled U6p and the O2s, Cl3s electronic shells were found to make the largest contributions to the IVMO formation. The molecular orbitals composition and the sequence order in the binding energy range 0 eV-~35 eV in the UO2Cl4 cluster were established. The experimental and theoretical data allowed a quantitative molecular orbitals scheme for the UO2Cl4 cluster in the BE range 0-~35 eV, which is fundamental for both understanding the chemical bond nature in Cs2UO2Cl4 and the interpretation of other X-ray spectra of Cs2UO2Cl4. The contributions to the chemical binding for the UO2Cl4 cluster were evaluated to be: the OVMO contribution - 76%, and the IVMO contribution - 24 %.

  18. Orbiter OMS and RCS technology

    Science.gov (United States)

    Boudreaux, R. A.

    1982-01-01

    Orbiter Orbital Maneuver Subsystem (OMS) and Reaction Control Subsystem (RCS) tankage has proved to be highly successful in shuttle flights on-orbit propellant transfer tests were done. Tank qualification tests along with flight demonstrations were carried out future uses of storable propellants are cited.

  19. Chaos Behaviour of Molecular Orbit

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-Tang; SUN Fu-Yan; SHEN Shu-Lan

    2007-01-01

    Based on H(u)ckel's molecular orbit theory,the chaos and;bifurcation behaviour of a molecular orbit modelled by a nonlinear dynamic system is studied.The relationship between molecular orbit and its energy level in the nonlinear dynamic system is obtained.

  20. Preseptal and orbital cellulitis

    Directory of Open Access Journals (Sweden)

    Emine Akçay

    2014-09-01

    Full Text Available Preseptal cellulitis (PC is defined as an inflammation of the eyelid and surrounding skin, whereas orbital cellulitis (OC is an inflammation of the posterior septum of the eyelid affecting the orbit and its contents. Periorbital tissues may become infected as a result of trauma (including insect bites or primary bacteremia. Orbital cellulitis generally occurs as a complication of sinusitis. The most commonly isolated organisms are Staphylococcus aureus, Streptococcus pneumoniae, S. epidermidis, Haempphilus influenzae, Moraxella catarrhalis and S. pyogenes. The method for the diagnosis of OS and PS is computed tomography. Using effective antibiotics is a mainstay for the treatment of PC and OC. There is an agreement that surgical drainage should be performed in cases of complete ophthalmoplegia or significant visual impairment or large abscesses formation. This infections are also at a greater risk of acute visual loss, cavernous sinus thrombosis, meningitis, cerebritis, endophthalmitis, and brain abscess in children. Early diagnosis and appropriate treatment are crucial to control the infection. Diagnosis, treatment, management and complications of PC and OC are summarized in this manuscript. J MicrobiolInfect Dis 2014; 4(3: 123-127

  1. Trading in Treasury Bond Futures Contracts and Bonds in Australia

    OpenAIRE

    Belinda Cheung

    2014-01-01

    Treasury bond futures are a key financial product in Australia, with turnover in Treasury bond futures contracts significantly larger than turnover in the market for Commonwealth Government securities (CGS). Treasury bond futures contracts provide a wide variety of market participants with the ability to hedge against, or gain exposure to, interest rate risk. This article discusses some of the features of the Treasury bond futures contract, and how the contract is used to facilitate hedging a...

  2. Indirect bonding technique in orthodontics

    Directory of Open Access Journals (Sweden)

    Kübra Yıldırım

    2016-08-01

    Full Text Available ‘Direct Bonding Technique’ which allows the fixed orthodontic appliances to be directly bonded to teeth without using bands decreased the clinic time for bracket bonding and increased esthetics and oral hygiene during orthodontic treatment. However, mistakes in bracket positioning were observed due to decreased direct visual sight and access to posterior teeth. ‘Indirect Bonding Technique’ was developed for eliminating these problems. Initially, decreased bond strength, higher bond failure rate, periodontal tissue irritation, compromised oral hygiene and increased laboratory time were the main disadvantages of this technique when compared to direct bonding. The newly developed materials and modified techniques help to eliminate these negative consequences. Today, the brackets bonded with indirect technique have similar bond strength with brackets bonded directly. Moreover, indirect and direct bonding techniques have similar effects on periodontal tissues. However, indirect bonding technique requires more attention and precision in laboratory and clinical stage, and has higher cost. Orthodontist's preference between these two bonding techniques may differ according to time spent in laboratory and clinic, cost, patient comfort and personal opinion.

  3. O-H...O versus O-H...S hydrogen bonding I: Experimental and computational studies on the p-cresol x H2O and p-cresol x H2S complexes.

    Science.gov (United States)

    Biswal, Himansu S; Shirhatti, Pranav R; Wategaonkar, Sanjay

    2009-05-14

    The weak hydrogen bonding ability of sulfur-containing hydrides makes it difficult to study their complexes and has not been characterized experimentally so far. In this work, the hydrogen-bonded complexes of H(2)S and H(2)O with p-cresol (p-CR) were studied using a variety of techniques such as two-color resonant two-photon ionization (2c-R2PI) spectroscopy, single vibronic level fluorescence (SVLF) spectroscopy, resonance ion dip infrared spectroscopy (RIDIRS), and fluorescence dip infrared spectroscopy (FDIRS), with an aim of comparing the nature and strength of their respective hydrogen bonding abilities. The intermolecular stretch (sigma) and the shift in the O-H stretching frequency of p-CR in the complex were taken as the measures of the O-H...O and O-H...S hydrogen bonding strength. The experiments were complemented by the ab initio calculations, atoms in molecules (AIM), natural bond orbital (NBO), and energy decomposition analyses carried out at different levels of theory. The experimental data indicates that in the p-CR x H(2)S complex, the phenolic OH group acts as a hydrogen bond donor, and sulfur as the acceptor. Further, it indicates that the p-CR x H(2)S complex was about half as strong as the p-CR x H(2)O complex. The AIM and NBO analyses corroborate the experimental findings. The energy decomposition analyses for the O-H...S hydrogen bond in the p-CR x H(2)S complex reveal that the dispersion interaction energy has the largest contribution to the total interaction energy, which is significantly higher than that in the case of the p-CR x H(2)O complex.

  4. Local Molecular Orbitals from a Projection onto Localized Centers.

    Science.gov (United States)

    Heßelmann, Andreas

    2016-06-14

    A localization method for molecular orbitals is presented which exploits the locality of the eigenfunctions associated with the largest eigenvalues of the matrix representation of spatially localized functions. Local molecular orbitals are obtained by a projection of the canonical orbitals onto the set of the eigenvectors which correspond to the largest eigenvalues of these matrices. Two different types of spatially localized functions were chosen in this work, a two-parameter smooth-step-type function and the weight functions determined by a Hirshfeld partitioning of the molecular volume. It is shown that the method can provide fairly local occupied molecular orbitals if the positions of the set of local functions are set to the molecular bond centers. The method can also yield reasonably well-localized virtual molecular orbitals, but here, a sensible choice of the positions of the functions are the atomic sites and the locality then depends more strongly on the shape of the set of local functions. The method is tested for a range of polypeptide molecules in two different conformations, namely, a helical and a β-sheet conformation. Futhermore, it is shown that an adequate locality of the occupied and virtual orbitals can also be obtained for highly delocalized systems.

  5. Triel Bonds, π-Hole-π-Electrons Interactions in Complexes of Boron and Aluminium Trihalides and Trihydrides with Acetylene and Ethylene.

    Science.gov (United States)

    Grabowski, Sławomir J

    2015-06-19

    MP2/aug-cc-pVTZ calculations were performed on complexes of aluminium and boron trihydrides and trihalides with acetylene and ethylene. These complexes are linked through triel bonds where the triel center (B or Al) is characterized by the Lewis acid properties through its π-hole region while π-electrons of C2H2 or C2H4 molecule play the role of the Lewis base. Some of these interactions possess characteristics of covalent bonds, i.e., the Al-π-electrons links as well as the interaction in the BH3-C2H2 complex. The triel-π-electrons interactions are classified sometimes as the 3c-2e bonds. In the case of boron trihydrides, these interactions are often the preliminary stages of the hydroboration reaction. The Quantum Theory of "Atoms in Molecules" as well as the Natural Bond Orbitals approach are applied here to characterize the π-hole-π-electrons interactions.

  6. Triel Bonds, π-Hole-π-Electrons Interactions in Complexes of Boron and Aluminium Trihalides and Trihydrides with Acetylene and Ethylene

    Directory of Open Access Journals (Sweden)

    Sławomir J. Grabowski

    2015-06-01

    Full Text Available MP2/aug-cc-pVTZ calculations were performed on complexes of aluminium and boron trihydrides and trihalides with acetylene and ethylene. These complexes are linked through triel bonds where the triel center (B or Al is characterized by the Lewis acid properties through its π-hole region while π-electrons of C2H2 or C2H4 molecule play the role of the Lewis base. Some of these interactions possess characteristics of covalent bonds, i.e., the Al-π-electrons links as well as the interaction in the BH3-C2H2 complex. The triel-π-electrons interactions are classified sometimes as the 3c-2e bonds. In the case of boron trihydrides, these interactions are often the preliminary stages of the hydroboration reaction. The Quantum Theory of “Atoms in Molecules” as well as the Natural Bond Orbitals approach are applied here to characterize the π-hole-π-electrons interactions.

  7. A review of uncertainty propagation in orbital mechanics

    Science.gov (United States)

    Luo, Ya-zhong; Yang, Zhen

    2017-02-01

    Orbital uncertainty propagation plays an important role in space situational awareness related missions such as tracking and data association, conjunction assessment, sensor resource management and anomaly detection. Linear models and Monte Carlo simulation were primarily used to propagate uncertainties. However, due to the nonlinear nature of orbital dynamics, problems such as low precision and intensive computation have greatly hampered the application of these methods. Aiming at solving these problems, many nonlinear uncertainty propagators have been proposed in the past two decades. To motivate this research area and facilitate the development of orbital uncertainty propagation, this paper summarizes the existing linear and nonlinear uncertainty propagators and their associated applications in the field of orbital mechanics. Frameworks of methods for orbital uncertainty propagation, the advantages and drawbacks of different methods, as well as potential directions for future efforts are also discussed.

  8. New Measurements of Orbital Period Change in Cygnus X-3

    CERN Document Server

    Singh, N S; Paul, B; Agrawal, P C; Rao, A R; Singh, K Y

    2002-01-01

    A nonlinear nature of the binary ephemeris of Cygnus X-3 indicates either a change in the orbital period or an apsidal motion of the orbit. We have made extended observations of Cygnus X-3 with the Pointed Proportional Counters (PPCs) of the Indian X-ray Astronomy Experiment (IXAE) during 1999 July 3-13 and October 11-14. Using the data from these observations and the archival data from ROSAT, ASCA, BeppoSAX and RXTE, we have extended the data base for this source. Adding these new arrival time measurements to the published results, we make a comparison between the various possibilities, (a) orbital decay due to mass loss from the system, (b) mass transfer between the stars, and (c) apsidal motion of the orbit due to gravitational interaction between the two components. Orbital decay due to mass loss from the companion star seems to be the most probable scenario.

  9. China-Russia Bond

    Institute of Scientific and Technical Information of China (English)

    Ji Zhiye; Ma Zongshi

    2007-01-01

    @@ Thanks to China's successful launching of the Year of Russia, 2006 will surely go down as a milestone in the history of the China-Russia bond. Furthermore, a still-warmer climate will continue to prevail in 2007 when Moscow, in its turn, hosts the Year of China, trying to outshine its next-door neighbor in this regard, as Russian President Vladimir Putin promised in the exchange of new year greetings with his Chinese counterpart, President Hu Jintao.

  10. Bonded-cell model for particle fracture

    OpenAIRE

    Nguyen, Duc-Hanh; Azéma, Émilien; Sornay, Philippe; Radjaï, Farhang

    2015-01-01

    International audience; Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and ...

  11. The effect of furcated hydrogen bond and coordination bond on luminescent behavior of metal-organic framework [CuCN·EIN]: a TDDFT study.

    Science.gov (United States)

    Wu, Danyang; Mi, Weihong; Ji, Min; Hao, Ce; Qiu, Jieshan

    2012-11-01

    The hydrogen bonding in electronically excited-state of the metal-organic framework [CuCN·EIN] was studied using time-dependent density functional theory (TDDFT). The representative fragment of [CuCN·EIN] was employed for the computation. The geometric structures, binding energies and IR spectra in both ground state and electronically excited state S(1) of the complex were computed using DFT and TDDFT methods to investigate excited-state hydrogen-bonding and coordination bonding, respectively. Based on the analysis of the frontier molecular orbitals and the electronic configuration of the complex, the ligand-to-metal charge transfer (LMCT) luminescence was confirmed. Furthermore, furcated hydrogen bonds are both strengthened in the S(1) state slightly. And then, the strengthening of the hydrogen bonds in the S(1) state goes against the charge transfer from ligand to metal and then should be in favor of the luminescence. In particular, we also discuss strengthening or weakening behavior of the coordination bonds in the S(1) state for the first time. Based on the results of the bond lengths and vibration frequency of the coordination bond, we can conclude that the coordination bond Cu(7)-N(8) is strengthened in the S(1) state. And the strengthening of the coordination bond Cu(7)-N(8) should also be in favor of the luminescence.

  12. Direct bonded space maintainers.

    Science.gov (United States)

    Santos, V L; Almeida, M A; Mello, H S; Keith, O

    1993-01-01

    The aim of this study was to evaluate clinically a bonded space maintainer, which would reduce chair-side time and cost. Sixty appliances were fabricated from 0.7 mm stainless steel round wire and bonded using light-cured composite to the two teeth adjacent to the site of extraction of a posterior primary tooth. Twenty males and sixteen females (age range 5-9-years-old) were selected from the Pedodontic clinic of the State University of Rio de Janeiro. The sixty space maintainers were divided into two groups according to the site in which they were placed: a) absent first primary molar and b) absent second primary molar. Impressions and study models were obtained prior to and 6 months after bonding the appliances. During this period only 8.3% of failures were observed, most of them from occlusal or facial trauma. Student t-test did not show statistically significant alterations in the sizes of the maintained spaces during the trial period.

  13. A History of the Double-Bond Rule

    Science.gov (United States)

    Hoogenboom, Bernard E.

    1998-05-01

    The tautomeric polar systems recognized by Laar in 1886 contain an active atom that appeared to migrate from its original position. The tautomeric systems are of a general structural form and can be represented as X=Y-Z-A. Later workers recognized the same bond weakening effect in a variety of organic structures in which atom A is halogen, hydrogen, carbon, or nitrogen. Hermann Staudinger recognized the weakness of that bond, an allyl bond, in hydrocarbons and exploited the behavior for the preparation of isoprene from terpene hydrocarbons. In 1922 he formulated a generality, a rule, regarding the allyl bond reactivity He noted that natural rubber also decomposed to form isoprene and therefore concluded that natural rubber is an unsaturated hydrocarbon, that isoprene units in natural rubber represent weakly held allyl substituents, and that natural rubber is a macromolecular combination of isoprene units. From his different experience as an industrial chemist, Otto Schmidt recognized the same bond weakening effect in hydrocarbons and in 1932 postulated the "Double-Bond Rule," stating that the presence of a double bond in a hydrocarbon has an alternating strengthening and weakening effect on single bonds throughout the molecule, diminishing with distance from the double bond. Schmidt not only understood the practical benefit of this rule, but he also offered an explanation for the Rule on theoretical grounds. Novel in its time, his theoretical explanation did not find popular acceptance, despite his considerable efforts to promote it in the literature. His concept of the Rule was supplanted by the new theory of resonance devised by Pauling and Wheland and by the implied notion of the stabilization of products by delocalization effects.

  14. Analysis of tensile bond strengths using Weibull statistics.

    Science.gov (United States)

    Burrow, Michael F; Thomas, David; Swain, Mike V; Tyas, Martin J

    2004-09-01

    Tensile strength tests of restorative resins bonded to dentin, and the resultant strengths of interfaces between the two, exhibit wide variability. Many variables can affect test results, including specimen preparation and storage, test rig design and experimental technique. However, the more fundamental source of variability, that associated with the brittle nature of the materials, has received little attention. This paper analyzes results from micro-tensile tests on unfilled resins and adhesive bonds between restorative resin composite and dentin in terms of reliability using the Weibull probability of failure method. Results for the tensile strengths of Scotchbond Multipurpose Adhesive (3M) and Clearfil LB Bond (Kuraray) bonding resins showed Weibull moduli (m) of 6.17 (95% confidence interval, 5.25-7.19) and 5.01 (95% confidence interval, 4.23-5.8). Analysis of results for micro-tensile tests on bond strengths to dentin gave moduli between 1.81 (Clearfil Liner Bond 2V) and 4.99 (Gluma One Bond, Kulzer). Material systems with m in this range do not have a well-defined strength. The Weibull approach also enables the size dependence of the strength to be estimated. An example where the bonding area was changed from 3.1 to 1.1 mm diameter is shown. Weibull analysis provides a method for determining the reliability of strength measurements in the analysis of data from bond strength and tensile tests on dental restorative materials.

  15. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides.

    Science.gov (United States)

    Belkova, Natalia V; Epstein, Lina M; Filippov, Oleg A; Shubina, Elena S

    2016-08-10

    The dihydrogen bond-an interaction between a transition-metal or main-group hydride (M-H) and a protic hydrogen moiety (H-X)-is arguably the most intriguing type of hydrogen bond. It was discovered in the mid-1990s and has been intensively explored since then. Herein, we collate up-to-date experimental and computational studies of the structural, energetic, and spectroscopic parameters and natures of dihydrogen-bonded complexes of the form M-H···H-X, as such species are now known for a wide variety of hydrido compounds. Being a weak interaction, dihydrogen bonding entails the lengthening of the participating bonds as well as their polarization (repolarization) as a result of electron density redistribution. Thus, the formation of a dihydrogen bond allows for the activation of both the MH and XH bonds in one step, facilitating proton transfer and preparing these bonds for further transformations. The implications of dihydrogen bonding in different stoichiometric and catalytic reactions, such as hydrogen exchange, alcoholysis and aminolysis, hydrogen evolution, hydrogenation, and dehydrogenation, are discussed.

  16. Optimal Investment in Structured Bonds

    DEFF Research Database (Denmark)

    Jessen, Pernille; Jørgensen, Peter Løchte

    The paper examines the role of structured bonds in the optimal portfolio of a small retail investor. We consider the typical structured bond essentially repacking an exotic option and a zero coupon bond, i.e. an investment with portfolio insurance. The optimal portfolio is found when the investment...

  17. Coulombic Models in Chemical Bonding.

    Science.gov (United States)

    Sacks, Lawrence J.

    1986-01-01

    Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)

  18. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  19. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  20. Origin of the Spin-Orbit Interaction

    CERN Document Server

    Spavieri, Gianfranco

    2015-01-01

    We consider a semi-classical model to describe the origin of the spin-orbit interaction in a simple system such as the hydrogen atom. The interaction energy U is calculated in the rest-frame of the nucleus, around which an electron, having linear velocity v and magnetic dipole-moment mu, travels in a circular orbit. The interaction energy U is due to the coupling of the induced electric dipole p=(v/c)x mu with the electric field En of the nucleus. Assuming the radius of the electron's orbit remains constant during a spin-flip transition, our model predicts that the energy of the system changes by Delta_E = U/2, the factor 1/2 emerging naturally as a consequence of equilibrium and the change of the kinetic energy of the electron. The correct 1/2 factor for the spin-orbit coupling energy is thus derived without the need to invoke the well-known Thomas precession in the rest-frame of the electron.

  1. Galactic Habitable Orbits

    Science.gov (United States)

    Rahimi, A.; Mao, S.; Kawata, D.

    2014-03-01

    The fossil record shows that the Earth has experienced several mass extinctions over the past 500 million years1, and it has been suggested that there is a periodicity in extinction events on timescales of tens1 and/or hundreds of millions of years. Various hypotheses have been proposed to explain the cause of the mass extinctions, including the suggestion that the Earth's ozone layer may have been destroyed by intense radiation from a nearby supernovae2- 3, exposing the Earth's surface to damaging UV radiation. Recent observations of cores taken from the ocean floor revealed atoms of a very rare isotope of iron (60Fe) believed to have arrived on Earth around 2 million years ago as fallout from a nearby supernovae4. Astronomical evidence for that past supernovae was recently found in the debris of a young cluster of massive stars5, by tracing its past orbit, putting it at the right place at the right time to explain the mild extinction event. Here we report new high-resolution (both in space and time) N-body chemodynamical simulations (carried out with our novel code GCD+6) of the evolution of a model Milky Way Galaxy, tracing the orbit of èsun-like' stars over a 500 million year period, checking the proximity to supernovae throughout the history of the orbit and comparing the times when this occurs with past mass extinctions on Earth. We additionally explain the important effects of the spiral arm pattern, radial migration of stars and Galactic chemistry on habitability.

  2. Spin-orbital order in the undoped manganite LaMnO3 at finite temperature

    Science.gov (United States)

    Snamina, Mateusz; Oleś, Andrzej M.

    2016-12-01

    We investigate the evolution of spin and orbital order in undoped LaMnO3 under increasing temperature with a model including both superexchange and Jahn-Teller interactions. We used several cluster mean field calculation schemes and find coexisting A -type antiferromagnetic and C -type alternating orbital order at low temperature. The value of the Jahn-Teller coupling between strongly correlated eg orbitals is estimated from the orbital transition temperature at TOO≃780 K. By a careful analysis of onsite and on-bond correlations, we demonstrate that spin-orbital entanglement is rather weak. We have verified that the magnetic transition temperature is influenced by entangled spin-orbital operators as well as by entangled orbital operators on the bonds, but the errors introduced by decoupling such operators partly compensate each other. Altogether, these results justify why the commonly used disentangled spin-orbital model is so successful in describing the magnetic properties and the temperature dependence of the optical spectral weights for LaMnO3.

  3. Holonomy reductions of Cartan geometries and curved orbit decompositions

    OpenAIRE

    Cap, Andreas; Gover, A. Rod; Hammerl, Matthias

    2011-01-01

    We develop a holonomy reduction procedure for general Cartan geometries. We show that, given a reduction of holonomy, the underlying manifold naturally decomposes into a disjoint union of initial submanifolds. Each such submanifold corresponds to an orbit of the holonomy group on the modeling homogeneous space and carries a canonical induced Cartan geometry. The result can therefore be understood as a “curved orbit decomposition.” The theory is then applied to the study of several invariant o...

  4. Nitric oxide as a non-innocent ligand in (bio-)inorganic complexes: spin and electron transfer in Fe(II)-NO bond.

    Science.gov (United States)

    Broclawik, Ewa; Stępniewski, Adam; Radoń, Mariusz

    2014-07-01

    The nature of electron density transfer upon bond formation between NO ligand and Fe(II) center is analyzed on the basis of DFT calculation for two {Fe-NO}(7) complexes with entirely diverse geometric and electronic structures: Fe(II)P(NH3)NO (with bent Fe-N-O unit) and [Fe(II)(H2O)5(NO)](2+) (with linear Fe-N-O structure). Proper identification of an electronic status of the fragments, "prepared" to make a bond, was found necessary to get meaningful resolution of charge and spin transfer processes from a spin-resolved analysis of natural orbitals for chemical valence. The Fe(II)P(NH3)NO adduct (built of NO(0) (S=1/2) and Fe(II)P(NH3) (S=0) fragments) showed a strong π*-backdonation competing with spin transfer via a σ-donation, yielding significant red-shift of the NO stretching frequency. [Fe(II)(H2O)5(NO)](2+) (built of NO(0) (S=1/2) antiferromagnetically coupled to Fe(II)(H2O)5 (S=2) fragment) gave no noticeable charge or spin transfer between fragments; a slight blue-shift of the NO stretching frequency could be related to a residual π-donation due to weak π-bonding.

  5. Electronic, optical properties and chemical bonding in six novel 1111-like chalcogenide fluorides AMChF (A=Sr, Ba; M=Cu, Ag; and Ch=S, Se, Te) from first principles calculations

    Science.gov (United States)

    Bannikov, V. V.; Shein, I. R.; Ivanovskii, A. L.

    2012-12-01

    Employing first-principles band structure calculations, we have examined the electronic, optical properties and the peculiarities of the chemical bonding for six newly synthesized layered quaternary 1111-like chalcogenide fluorides SrAgSF, SrAgSeF, SrAgTeF, BaAgSF, BaAgSeF, and SrCuTeF, which are discussed in comparison with some isostructural 1111-like chalcogenide oxides. We found that all of the studied phases AMChF (A=Sr, Ba; M=Cu, Ag; and Ch=S, Se, Te) are semiconductors for which the fitted “experimental” gaps lie in the interval from 2.23 eV (for SrAgSeF) to 3.07 eV (for SrCuTeF). The near-Fermi states of AMChF are formed exclusively by the valence orbitals of the atoms from the blocks (MCh); thus, these phases belong to the layered materials with “natural multiple quantum wells”. The bonding in these new AMChF phases is described as a high-anisotropic mixture of ionic and covalent contributions, where ionic M-Ch bonds together with covalent M-Ch and Ch-Ch bonds take place inside blocks (MCh), while inside blocks (AF) and between the adjacent blocks (MCh)/(AF) mainly ionic bonds emerge.

  6. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper

    2015-01-01

    -chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  7. Exomoon habitability constrained by energy flux and orbital stability

    CERN Document Server

    Heller, René

    2012-01-01

    Detecting massive satellites of extrasolar planets has now become feasible, which led naturally to questions about their habitability. In a previous study we presented constraints on the habitability of moons from stellar and planetary illumination as well as from tidal heating. Here I refine our model by including the effect of eclipses on the orbit-averaged illumination. Moons in low-mass stellar systems must orbit their planet very closely to remain bound, which puts them at risk of strong tidal heating. I first describe the effect of eclipses on stellar illumination of satellites. Then I calculate the orbit-averaged energy flux including illumination from the planet and tidal heating. Habitability is defined by a scaling relation at which a moon loses its water by the runaway greenhouse process. As a working hypothesis, orbital stability is assumed if the moon's orbital period is less than 1/9 of the planet's orbital period. Due to eclipses, a satellite in a close orbit can experience a reduction in orbit...

  8. Why does electron sharing lead to covalent bonding? A variational analysis.

    Science.gov (United States)

    Ruedenberg, Klaus; Schmidt, Michael W

    2007-01-15

    Ground state energy differences between related systems can be elucidated by a comparative variational analysis of the energy functional, in which the concepts of variational kinetic pressure and variational electrostatic potential pull are found useful. This approach is applied to the formation of the bond in the hydrogen molecule ion. A highly accurate wavefunction is shown to be the superposition of two quasiatomic orbitals, each of which consists to 94% of the respective atomic 1s orbital, the remaining 6% deformation being 73% spherical and 27% nonspherical in character. The spherical deformation can be recovered to 99.9% by scaling the 1s orbital. These results quantify the conceptual metamorphosis of the free-atom wavefunction into the molecular wavefunction by orbital sharing, orbital contraction, and orbital polarization. Starting with the 1s orbital on one atom as the initial trial function, the value of the energy functional of the molecule at the equilibrium distance is stepwise lowered along several sequences of wavefunction modifications, whose energies monotonically decrease to the ground state energy of H2+. The contributions of sharing, contraction and polarization to the overall lowering of the energy functional and their kinetic and potential components exhibit a consistent pattern that can be related to the wavefunction changes on the basis of physical reasoning, including the virial theorem. It is found that orbital sharing lowers the variational kinetic energy pressure and that this is the essential cause of covalent bonding in this molecule.

  9. Economical and geopolitical aspects bond to the foreseen development of the natural gas in an open market; Aspects economiques et geopolitiques lies au developpement prevu du gaz naturel dans un marche ouvert

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    For the first time in 2000, the part of natural gas is equal to those of coal in the world energy accounting. The economy and the geo-policy of this developing energy is analyzed, showing an economy dominated by the transport costs, the specificity of the european sector and the opening market since 1980. The european market opening incertitudes and opportunities are detailed. In conclusion the Gaz De France role in the european energy pole and the new regulations are discussed. (A.L.B.)

  10. [Endoscopic approaches to the orbit].

    Science.gov (United States)

    Cebula, H; Lahlou, A; De Battista, J C; Debry, C; Froelich, S

    2010-01-01

    During the last decade, the use of endoscopic endonasal approaches to the pituitary has increased considerably. The endoscopic endonasal and transantral approaches offer a minimally invasive alternative to the classic transcranial or transconjunctival approaches to the medial aspect of the orbit. The medial wall of the orbit, the orbital apex, and the optic canal can be exposed through a middle meatal antrostomy, an anterior and posterior ethmoidectomy, and a sphenoidotomy. The inferomedial wall of the orbit can be also perfectly visualized through a sublabial antrostomy or an inferior meatal antrostomy. Several reports have described the use of an endoscopic approach for the resection or the biopsy of lesions located on the medial extraconal aspect of the orbit and orbital apex. However, the resection of intraconal lesions is still limited by inadequate instrumentation. Other indications for the endoscopic approach to the orbit are the decompression of the orbit for Graves' ophthalmopathy and traumatic optic neuropathy. However, the optimal management of traumatic optic neuropathy remains very controversial. Endoscopic endonasal decompression of the optic nerve in case of tumor compression could be a more valid indication in combination with radiation therapy. Finally, the endoscopic transantral treatment of blowout fracture of the floor of the orbit is an interesting option that avoids the eyelid or conjunctive incision of traditional approaches. The collaboration between the neurosurgeon and the ENT surgeon is mandatory and reduces the morbidity of the approach. Progress in instrumentation and optical devices will certainly make this approach promising for intraconal tumor of the orbit.

  11. Natural gas; Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carlos A.; Moraes, Claudia C.D. [Eletricidade de Sao Paulo S.A. (ELETROPAULO), Sao Paulo, SP (Brazil); Fonseca, Carlos H.F. [Centrais Eletricas de Santa Catarina S.A., Florianopolis, SC (Brazil); Silva, Clecio Fabricio da; Alves, Ricardo P. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil); Sposito, Edivaldo Soares; Hulle, Lutero [Espirito Santo Centrais Eletricas S.A. (ESCELSA), Vitoria, ES (Brazil); S. Martins, Icaro da [Centrais Eletricas do Norte do Brasil S.A. (ELETRONORTE), Belem, PA (Brazil); Vilhena, Joao Luiz S. de [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Fagundes, Zaluar Aquino [Companhia Estadual de Energia Eletrica do Estado do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    1996-12-31

    An increase in the consumption of natural gas in Brazil is an expected fact in what concerns energetic planning. This work presents the existing situation in what concerns natural gas utilization in the main world economies, as well as an analysis of the participation of this fuel among the energy final consumption per sources. The Brazilian consumption of natural gas is also analysed as well as the international agreement between Brazil and Bolivia for natural gas commercialization. Some legal, institutional and political aspects related to natural gas commercialization are also discussed. Finally, several benefits to be brought by the utilization of natural gas are presented 10 refs., 3 tabs.

  12. Orbital debris issues

    Science.gov (United States)

    Kessler, D. J.

    Orbital debris issues fall into three major topics: Environment Definition, Spacecraft Hazard, and Space Object Management. The major issue under Environment Definition is defining the debris flux for sizes smaller (10 cm in diameter) than those tracked by the North American Aerospace Defense Command (NORAD). Sources for this size debris are fragmentation of larger objects, either by explosion or collision, and solid rocket motor products. Modeling of these sources can predict fluxes in low Earth orbit which are greater than the meteoroid environment. Techniques to measure the environment in the size interval between 1 mm and 10 cm are being developed, including the use of telescopes and radar both on the ground and in space. Some impact sensors designed to detect meteoroids may have detected solid rocket motor products. Once the environment is defined, it can be combined with hypervelocity impact data and damage criteria to evaluate the Spacecraft Hazard. Shielding may be required to obtain an acceptable damage level. Space Object Management includes techniques to control the environment and the desired policy to effectively minimize the hazard to spacecraft. One control technique - reducing the likelihood of future explosions in space - has already been implemented by NASA. The effectiveness of other techniques has yet to be evaluated.

  13. Molecular dissociation in presence of catalysts: Interpreting bond breaking as a quantum dynamical phase transition

    CERN Document Server

    Ruderman, A; Santos, E; Pastawski, H M

    2015-01-01

    In this work we show that the molecular chemical bond formation and dissociation in presence of the d-band of a metal catalyst can be described as a Quantum Dynamical Phase Transition (QDPT). This agree with DFT calculations that predict sudden jumps in some observables as the molecule breaks. According to our model this phenomenon emerges because the catalyst provides for a non- Hermitian Hamiltonian. We show that when the molecule approaches the surface, as occurs in the Heyrovsky reaction of H 2, the bonding H 2 orbital has a smooth crossover into a bonding molecular orbital built with the closest H orbital and the surface metal d-states. The same occurs for the antibonding state. Meanwhile, two resonances appear within the continuous spectrum of the d- band which are associated with bonding and antibonding orbitals between the furthest H atom and the d-states at the second metallic layer. These move towards the band center where they collapse into a pure metallic resonance and an almost isolated H orbital...

  14. Bond strength of direct and indirect bonded brackets after thermocycling.

    Science.gov (United States)

    Daub, Jacob; Berzins, David W; Linn, Brandon James; Bradley, Thomas Gerard

    2006-03-01

    Thermocycling simulates the temperature dynamics in the oral environment. With direct bonding, thermocycling reduces the bond strength of orthodontic adhesives to tooth structure. The purpose of this study was to evaluate the shear bond strengths (SBS) of one direct and two indirect bonding methods/adhesives after thermocycling. Sixty human premolars were divided into three groups. Teeth in group 1 were bonded directly with Transbond XT. Teeth in group 2 were indirect bonded with Transbond XT/Sondhi Rapid Set, which is chemically cured. Teeth in group 3 were indirect bonded with Enlight LV/Orthosolo and light cured. Each sample was thermocycled between 5 degrees C and 55 degrees C for 500 cycles. Mean SBS in groups 1, 2, and 3 were not statistically significantly different (13.6 +/- 2.9, 12.3 +/- 3.0, and 11.6 +/- 3.2 MPa, respectively; P > .05). However, when these values were compared with the results of a previous study using the same protocol, but without thermocycling, the SBS was reduced significantly (P = .001). Weibull analysis further showed that group 3 had the lowest bonding survival rate at the minimum clinically acceptable bond-strength range. The Adhesive Remnant Index was also determined, and group 2 had a significantly (P bond failures at the resin/enamel interface.

  15. Orbital responses to methyl sites in CnH2n+2 (n=1-6)

    Institute of Scientific and Technical Information of China (English)

    Yang Ze-Jin; Cheng Xin-Lu; Zhu Zheng-He; Yang Xiang-Dong

    2012-01-01

    Orbital responses to methyl sites in CnH2n+2 (n =1-6) are studied by B3LYP/TZVP based on the most stable geometries using the B3LYP/aug-cc-pVTZ method.Vertical ionization energies are produced using the SAOP/et-pVQZ model for the complete valence space.The highest occupied molecular orbital (HOMO) investigations indicate the pelectron profiles in methane,ethane,propane,and n-butane.By increasing the number of carbon-carbon bonds in lower momentum regions,the s,p-hybridized orbitals are built and display strong exchange and correlation interactions in lower momentum space (P (≤) 0.50 a.u.).Meanwhile,the relative intensities of the isomers in lower momentum space show the strong bonding number dependence of the carbon-carbon bonds,meaning that more electrons have contributed to orbital construction.The study of representative valence orbital momentum distribution further confirms that the structural changes lead to evident electronic rearrangement over the whole valence space.An analysis based on the isomers reveals that the valence orbitals are isomer-dependent and the valence ionization energy experiences an apparent shift in the inner valence space.However,such shifts are greatly reduced in the outer valence space.Meanwhile,the opposite energy shift trend is found in the intermediate valence space.

  16. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation.

    Science.gov (United States)

    Brovarets', Ol'ha O; Yurenko, Yevgen P; Hovorun, Dmytro M

    2015-01-01

    This paper is a logical continuation of the theoretical survey of the CH⋯O/N specific contacts in the nucleobase pairs using a wide arsenal of the modern methods, which was initiated in our previous study [J. Biomol. Struct. & Dynam., 2014, 32, 993-1022]. It was established that 34 CH⋯O and 7 CH⋯N interactions, that were detected by quantum-chemical calculations in the 39 biologically important pairs involving modified nucleobases, completely satisfy all geometrical, vibrational, electron-topological, in particular Bader's and "two-molecule" Koch and Popelier's, Grunenberg's compliance constants theory and natural bond orbital criteria indicating that they can be identified as true H-bonds. The geometrical criteria of the H-bond formation are fulfilled for all considered CH⋯O/N H-bonds without any exception. It was shown that the classical rule of the stretching vibration shifts does not work in the ~95% cases of the CH⋯O/N H-bonds. Furthermore, significant increase in the frequency of the out-of-plane deformation modes γ(CH) under the formation of CH⋯O/N H-bonds and corresponding changes of their intensities can be also considered as reliable indicators of the H-bonding. We revealed high linear mutual correlations between the electron density, Laplacian of the electron density, H-bond energy at the (3, -1) bond critical points of the CH⋯O/N H-bonds, and different physico-chemical parameters of the CH⋯O/N H-bonds. We suggested that the electron density ρ and the interaction energy E((2)) of the lone orbital pairs are the most reliable descriptors of the H-bonding. The linear dependence of the H-bond energy ECH⋯O/N on the electron density ρ was established: ECH⋯O = 250.263∙ρ - .380/258.255∙ρ - .396 and ECH⋯N = 196.800∙ρ - .172/268.559∙ρ - .703 obtained at the density functional theory (DFT)/Møller-Plesset (MP2) levels of theory, respectively. The studies of the interaction energies show that the

  17. Precise Orbit Determination for ALOS

    Science.gov (United States)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  18. Synthesis,Structure,Fluorescent Property and Natural Bond Orbital(NBO) Analysis of a One-dimensional Cobalt(III) Complex Containing 1,3-Benzenedicarboxylate and 2-Methyldipyrido[3,2-f:2',3'-h]quinoxaline Ligand%Synthesis,Structure,Fluorescent Property and Natural Bond Orbital(NBO) Analysis of a One-dimensional Cobalt(III) Complex Containing 1,3-Benzenedicarboxylate and 2-Methyldipyrido[3,2-f:2',3'-h]quinoxaline LigandSynthesis,Structure,Fluorescent Property and Natural Bond Orbital(NBO) Analysis of a One-dimensional Cobalt(III) Complex Containing 1,3-Benzenedicarboxylate and 2-Methyldipyrido[3,2-f:2',3'-

    Institute of Scientific and Technical Information of China (English)

    王蕾; 倪良; 黄艳菊; 姚加

    2012-01-01

    A novel metal-organic coordination polymer [Co(m-BDC)(Medpq)·2H2O]n(m-H2BDC = benzene-1,3-dicarboxyalic acid,Medpq = 2-methyldipyrido[3,2-f:2',3'-h]quinoxaline) has been hydrothermally synthesized and structurally characterized by elemental analysis,IR spectrum and single-crystal X-ray diffraction.The title compound crystallizes in monoclinic,space group C2/c with a = 19.986(4),b = 15.789(3),c = 16.292(3)(A°),β = 126.54(3)°,V = 4130.3(14)(A°)^3,C23H18N4O6Co,Mr = 505.34,Dc = 1.625 g·cm^-3,Z = 8,μ = 0.883 mm^-1,F(000) = 2072,the final R = 0.0772 and wR = 0.1428.The crystal structure of complex 1 is an infinite zigzag-like chain of hexacoordinate Co^3+ ions,in which the Co^3+ ions are bridged in two coordination modes by m-BDC^2+ ligands and decorated by Medpq ligands,showing a slightly distorted octahedral geometry.Additionally,the compound shows strong fluorescence in the solid state at room temperature.Natural bond orbital(NBO) analysis is performed by using the NBO method built in Gaussian 03 Program.The calculation results show a covalent interaction between the coordinated atoms and Co^3+ ions.

  19. Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Morgan, T.; Chin, G.

    2007-08-01

    NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only

  20. Orbital State Uncertainty Realism

    Science.gov (United States)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten

  1. Stereochemistry of enzymatic water addition to C=C bonds.

    Science.gov (United States)

    Chen, Bi-Shuang; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    Water addition to carbon-carbon double bonds using hydratases is attracting great interest in biochemistry. Most of the known hydratases are involved in primary metabolism and to a lesser extent in secondary metabolism. New hydratases have recently been added to the toolbox, both from natural sources or artificial metalloenzymes. In order to comprehensively understand how the hydratases are able to catalyse the water addition to carbon-carbon double bonds, this review will highlight the mechanistic and stereochemical studies of the enzymatic water addition to carbon-carbon double bonds, focusing on the syn/anti-addition and stereochemistry of the reaction.

  2. Unwilling U-U bonding in U2@C80: cage-driven metal-metal bonds in di-uranium fullerenes.

    Science.gov (United States)

    Foroutan-Nejad, Cina; Vícha, Jan; Marek, Radek; Patzschke, Michael; Straka, Michal

    2015-10-07

    Endohedral actinide fullerenes are rare and a little is known about their molecular properties. Here we characterize the U2@C80 system, which was recently detected experimentally by means of mass spectrometry (Akiyama et al., JACS, 2001, 123, 181). Theoretical calculations predict a stable endohedral system, (7)U2@C80, derived from the C80:7 IPR fullerene cage, with six unpaired electrons. Bonding analysis reveals a double ferromagnetic (one-electron-two-center) U-U bond at an rU-U distance of 3.9 Å. This bonding is realized mainly via U(5f) orbitals. The U-U interaction inside the cage is estimated to be about -18 kcal mol(-1). U-U bonding is further studied along the U2@Cn (n = 60, 70, 80, 84, 90) series and the U-U bonds are also identified in U2@C70 and U2@C84 systems at rU-U∼ 4 Å. It is found that the character of U-U bonding depends on the U-U distance, which is dictated by the cage type. A concept of unwilling metal-metal bonding is suggested: uranium atoms are strongly bound to the cage and carry a positive charge. Pushing the U(5f) electron density into the U-U bonding region reduces electrostatic repulsion between enclosed atoms, thus forcing U-U bonds.

  3. Comparison of Bond in Roll-bonded and Adhesively Bonded Aluminums

    Science.gov (United States)

    Schwensfeir, R. J., Jr.; Trenkler, G.; Delagi, R. G.; Forster, J. A.

    1985-01-01

    Lap-shear and peel test measurements of bond strength have been carried out as part of an investigation of roll bonding of 2024 and 7075 aluminum alloys. Shear strengths of the bonded material in the F temper are in the range of 14 to 16 ksi. Corresponding peel strengths are 120 to 130 lb/inch. These values, which are three to five times those reported in the literature for adhesively bonded 2024 and 7075, are a result of the true metallurgical bond achieved. The effects of heat-treating the bonded material are described and the improvements in bond strength discussed relative to the shear strength of the parent material. The significance of the findings for aerospace applications is discussed.

  4. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B

    2013-01-01

    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  5. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  6. Quantification of the push-pull effect in substituted alkynes. Evaluation of +/-I/+/-M substituent effects in terms of C[triple bond]C bond length variation.

    Science.gov (United States)

    Kleinpeter, Erich; Frank, Andrea

    2009-06-18

    (13)C chemical shifts of alkynes, published to date, were computed at the DFT (B3LYP/6-311G*) level of theory and compared with the experimental delta values, and the agreement was employed as a measure of quality for the underlying structures. For the corresponding global minima structures, thus obtained, the occupation quotients of antibonding pi* and bonding pi orbitals (pi*(C[triple bond]C)/pi(C[triple bond]C)) and the bond lengths (d(C[triple bond]C)) of the central C[triple bond]C triple bond were computed and correlated to each other. The linear dependence obtained for the two push-pull parameters d(C[triple bond]C) and pi*(C[triple bond]C)/pi(C[triple bond]C) quantifies changes in the push-pull effect of substituents while deviations from the best line of fit indicate and ascertain quantitatively to what extend the inductive (+/-I) substituent effect changes with respect to the bond length of the C[triple bond]C triple bond.

  7. Geology orbiter comparison study

    Science.gov (United States)

    Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.

    1977-01-01

    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

  8. Orbital angular momentum microlaser

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  9. Orbital science's 'Bermuda Triangle'

    Science.gov (United States)

    Sherrill, Thomas J.

    1991-02-01

    The effects of a part of the inner Van Allen belt lying closest to the earth, known as the South Atlantic Anomaly (SAA) upon spacecraft including the Hubble Space Telescope (HST), are discussed. The area consists of positively charged ions and electrons from the Van Allen Belt which become trapped in the earth's dipole field. Contor maps representing the number of protons per square centimeter per second having energies greater than 10 million electron volts are presented. It is noted that the HST orbit causes it to spend about 15 percent of its time in the SAA, but that, unlike the experience with earlier spacecraft, the satellite's skin, internal structure, and normal electronic's packaging provides sufficient protection against eletrons, although some higher energy protons still get through. Various charged particle effects which can arise within scientific instruments including fluorescence, Cerenkov radiation, and induced radioactivity are described.

  10. Exploratory orbit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, L.

    1989-03-01

    Unlike the other documents in these proceedings, this paper is neither a scientific nor a technical report. It is, rather, a short personal essay which attempts to describe an Exploratory Orbit Analysis (EOA) environment. Analyzing the behavior of a four or six dimensional nonlinear dynamical system is at least as difficult as analyzing events in high-energy collisions; the consequences of doing it badly, or slowly, would be at least as devastating; and yet the level of effort and expenditure invested in the latter, the very attention paid to it by physicists at large, must be two orders of magnitude greater than that given to the former. It is difficult to choose the model which best explains the behavior of a physical device if one does not first understand the behavior of the available models. The time is ripe for the development of a functioning EOA environment, which I will try to describe in this paper to help us achieve this goal.

  11. 27 CFR 28.66 - Strengthening bonds.

    Science.gov (United States)

    2010-04-01

    ... bonds. In all cases where the penal sum of any bond becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum, or give a new bond to... of any bond to less than its full penal sum. Strengthening bonds shall show the current date...

  12. Orbit Determination Toolbox

    Science.gov (United States)

    Carpenter, James R.; Berry, Kevin; Gregpru. Late; Speckman, Keith; Hur-Diaz, Sun; Surka, Derek; Gaylor, Dave

    2010-01-01

    The Orbit Determination Toolbox is an orbit determination (OD) analysis tool based on MATLAB and Java that provides a flexible way to do early mission analysis. The toolbox is primarily intended for advanced mission analysis such as might be performed in concept exploration, proposal, early design phase, or rapid design center environments. The emphasis is on flexibility, but it has enough fidelity to produce credible results. Insight into all flight dynamics source code is provided. MATLAB is the primary user interface and is used for piecing together measurement and dynamic models. The Java Astrodynamics Toolbox is used as an engine for things that might be slow or inefficient in MATLAB, such as high-fidelity trajectory propagation, lunar and planetary ephemeris look-ups, precession, nutation, polar motion calculations, ephemeris file parsing, and the like. The primary analysis functions are sequential filter/smoother and batch least-squares commands that incorporate Monte-Carlo data simulation, linear covariance analysis, measurement processing, and plotting capabilities at the generic level. These functions have a user interface that is based on that of the MATLAB ODE suite. To perform a specific analysis, users write MATLAB functions that implement truth and design system models. The user provides his or her models as inputs to the filter commands. The software provides a capability to publish and subscribe to a software bus that is compliant with the NASA Goddard Mission Services Evolution Center (GMSEC) standards, to exchange data with other flight dynamics tools to simplify the flight dynamics design cycle. Using the publish and subscribe approach allows for analysts in a rapid design center environment to seamlessly incorporate changes in spacecraft and mission design into navigation analysis and vice versa.

  13. Study on preparation and bonding properties of natural rubber latex grafted and modified by HEMA%HEMA接枝改性天然胶乳的制备及其粘接性能研究

    Institute of Scientific and Technical Information of China (English)

    卫飞云; 刘宏超; 曹端林; 余和平

    2013-01-01

    以甲基丙烯酸羟乙酯(HEMA)作为天然胶乳(NRL)的接枝改性剂,采用乳液聚合法制备了NR-g-HEMA[HEMA接枝NR(天然橡胶)]胶乳;然后以此为基体,并以水溶性松香树脂为增黏树脂、邻苯二甲酸二丁酯(DBP)为增塑剂等,制备相应的NR-g-HEMA胶粘剂;最后,用该胶粘剂压制胶合板,并对胶合板的粘接性能进行了测定.结果表明:采用单因素试验法优选出制备NR-g-HEMA胶乳的最佳工艺条件为m(干态单体)∶m(NRL)∶m(引发剂)∶m(活化剂)∶m(交联剂)=20∶100∶0.2∶0.2∶0.1、反应时间为8h和反应温度为16℃,此时相应胶合板的剪切强度(1.88MPa)符合Ⅲ类胶合板的指标要求.%Abstract:With hydroxyethyl methacrylate (HEMA) as graft modifier of natural rubber latex (NRL),a NR-g-HEMA[NR(natural rubber) grafted by HEMA] latex was prepared by emulsion polymerization.Then,with NR-g-HEMA latex as matrix,water-soluble rosin resin as tackifying resin,and dibutyl phthalate(DBP) as plasticizer,a corresponding NR-g-HEMA adhesive was prepared.Finally,the plywood was pressed by the adhesive,and the bongding properties of plywood were mensurated.The results showed that the optimal process conditions of preparing NR-g-HEMA latex were preferred by single-factor experiment method when mass ratio of m(dry monomer)∶m(NRL)∶m(initiator)∶m(activating agent)∶m(cross linker) was 20∶100∶0.2∶0∶2∶0.1,reaction time was 8h and reaction temperature was 16℃.Here,the shear strength (1.88MPa) of corresponding plywood could meet index requirement of Ⅲ class-plywood.

  14. Evaluation of Shear Bond Strength of Composite Resin Bonded to Alloy Treated With Sandblasting and Electrolytic Etching

    OpenAIRE

    Goswami, M. M.; Gupta, S.H.; Sandhu, H. S.

    2013-01-01

    Conservation of natural tooth structure precipitated the emergence of resin-retained fixed partial dentures. The weakest link in this modality is the bond between resin cement and alloy of the retainer. Various alloy surface treatment have been recommended to improve alloy–resin bond. This in vitro study was carried out to observe changes in the Nickel–Chromium alloy (Wiron 99, Bego) surface following sandblasting or electrolytic etching treatment by scanning electron microscope (SEM) and to ...

  15. An excursion from normal to inverted C-C bonds shows a clear demarcation between covalent and charge-shift C-C bonds.

    Science.gov (United States)

    Shaik, Sason; Chen, Zhenhua; Wu, Wei; Stanger, Amnon; Danovich, David; Hiberty, Philippe C

    2009-10-19

    What is the nature of the C-C bond? Valence bond and electron density computations of 16 C-C bonds show two families of bonds that flesh out as a phase diagram. One family, involving ethane, cyclopropane and so forth, is typified by covalent C-C bonding wherein covalent spin-pairing accounts for most of the bond energy. The second family includes the inverted bridgehead bonds of small propellanes, where the bond is neither covalent nor ionic, but owes its existence to the resonance stabilization between the respective structures; hence a charge-shift (CS) bond. The dual family also emerges from calculated and experimental electron density properties. Covalent C-C bonds are characterized by negative Laplacians of the density, whereas CS-bonds display small or positive Laplacians. The positive Laplacian defines a region suffering from neighbouring repulsive interactions, which is precisely the case in the inverted bonding region. Such regions are rich in kinetic energy, and indeed the energy-density analysis reveals that CS-bonds are richer in kinetic energy than the covalent C-C bonds. The large covalent-ionic resonance energy is precisely the mechanism that lowers the kinetic energy in the bonding region and restores equilibrium bonding. Thus, different degrees of repulsive strain create two bonding families of the same chemical bond made from a single atomic constituent. It is further shown that the idea of repulsive strain is portable and can predict the properties of propellanes of various sizes and different wing substituents. Experimentally (M. Messerschmidt, S. Scheins, L. Bruberth, M. Patzel, G. Szeimies, C. Paulman, P. Luger, Angew. Chem. 2005, 117, 3993-3997; Angew. Chem. Int. Ed. 2005, 44, 3925-3928), the C-C bond families are beautifully represented in [1.1.1]propellane, where the inverted C-C is a CS-bond, while the wings are made from covalent C-C bonds. What other manifestations can we expect from CS-bonds? Answers from experiment have the potential

  16. Orbital Chondroma: A rare mesenchymal tumor of orbit

    Directory of Open Access Journals (Sweden)

    Ruchi S Kabra

    2015-01-01

    Full Text Available While relatively common in the skeletal system, cartilaginous tumors are rarely seen originating from the orbit. Here, we report a rare case of an orbital chondroma. A 27-year-old male patient presented with a painless hard mass in the superonasal quadrant (SNQ of left orbit since 3 months. On examination, best-corrected visual acuity of both eyes was 20/20, with normal anterior and posterior segment with full movements of eyeballs and normal intraocular pressure. Computerized tomography scan revealed well defined soft tissue density lesion in SNQ of left orbit. Patient was operated for anteromedial orbitotomy under general anesthesia. Mass was excised intact and sent for histopathological examination (HPE. HPE report showed lobular aggregates of benign cartilaginous cells with mild atypia suggesting of benign cartilaginous tumor - chondroma. Very few cases of orbital chondroma have been reported in literature so far.

  17. New orbit correction method uniting global and local orbit corrections

    Science.gov (United States)

    Nakamura, N.; Takaki, H.; Sakai, H.; Satoh, M.; Harada, K.; Kamiya, Y.

    2006-01-01

    A new orbit correction method, called the eigenvector method with constraints (EVC), is proposed and formulated to unite global and local orbit corrections for ring accelerators, especially synchrotron radiation(SR) sources. The EVC can exactly correct the beam positions at arbitrarily selected ring positions such as light source points, simultaneously reducing closed orbit distortion (COD) around the whole ring. Computer simulations clearly demonstrate these features of the EVC for both cases of the Super-SOR light source and the Advanced Light Source (ALS) that have typical structures of high-brilliance SR sources. In addition, the effects of errors in beam position monitor (BPM) reading and steering magnet setting on the orbit correction are analytically expressed and also compared with the computer simulations. Simulation results show that the EVC is very effective and useful for orbit correction and beam position stabilization in SR sources.

  18. Theoretical exploration of pnicogen bond noncovalent interactions in HCHO· · · PH2X (X=CH3, H, C6H5, F, Cl, Br, and NO2) complexes

    Indian Academy of Sciences (India)

    Yan-Zhi Liu; Kun Yuan; Zhao Yuan; Yuan-Cheng Zhu; Xiang Zhao

    2015-10-01

    Pnicogen bond (ZB) is a new kind of intermolecular weak interaction, which would be an important strategy for the construction of supramolecular materials. In this paper, ab initio MP2/aug-cc-pvDZ calculations have been carried out to characterize the X-P ⋯ O ZB interactions between HCHO and PH2X (X=CH3, H, C6H5, F, Cl, Br, and NO2). The calculated interaction energies with basis set super-position error (BSSE) corrections in seven ZB complexes are between −7.51 and −20.36 kJ·mol−1. The relative stabilities of the seven complexes increase in the order: HCHO⋯ PH2CH3 < HCHO⋯ PH3 < HCHO⋯ PH2 C6H5 < HCHO⋯ PH2 Br < HCHO⋯ PH2 Cl < HCHO⋯ PH2F < HCHO⋯ PH2NO2. The natural bond orbital (NBO) and natural resonance theory (NRT) analysis were employed to investigate the electron behavior and nature of the ZBs. The natural bond orbital interactions in the ZBs are mainly LP1,2 (O) → * (P-X). The P-X (X= Br, Cl, F and NO2) are more suitable for acting as ZB donors than the P-X (X=H, CH3 and C6H5) groups. The electron density topology properties based on atoms-inmolecules (AIM) theory showed that the ZB interactions in the HCHO⋯ PH2X (X=Br, Cl, F and NO2) are stronger than those of HCHO⋯ PH2 X(X=CH3 , H and C6H5) complexes, indicating that the electron withdrawing of X benefits for the stability of ZB structure.

  19. Tuning reactivity and selectivity in hydrogen atom transfer from aliphatic C-H bonds to alkoxyl radicals: role of structural and medium effects.

    Science.gov (United States)

    Salamone, Michela; Bietti, Massimo

    2015-11-17

    Hydrogen atom transfer (HAT) is a fundamental reaction that takes part in a wide variety of chemical and biological processes, with relevant examples that include the action of antioxidants, damage to biomolecules and polymers, and enzymatic and biomimetic reactions. Moreover, great attention is currently devoted to the selective functionalization of unactivated aliphatic C-H bonds, where HAT based procedures have been shown to play an important role. In this Account, we describe the results of our recent studies on the role of structural and medium effects on HAT from aliphatic C-H bonds to the cumyloxyl radical (CumO(•)). Quantitative information on the reactivity and selectivity patterns observed in these reactions has been obtained by time-resolved kinetic studies, providing a deeper understanding of the factors that govern HAT from carbon and leading to the definition of useful guidelines for the activation or deactivation of aliphatic C-H bonds toward HAT. In keeping with the electrophilic character of alkoxyl radicals, polar effects can play an important role in the reactions of CumO(•). Electron-rich C-H bonds are activated whereas those that are α to electron withdrawing groups are deactivated toward HAT, with these effects being able to override the thermodynamic preference for HAT from the weakest C-H bond. Stereoelectronic effects can also influence the reactivity of the C-H bonds of ethers, amines, and amides. HAT is most rapid when these bonds can be eclipsed with a lone pair on an adjacent heteroatom or with the π-system of an amide functionality, thus allowing for optimal orbital overlap. In HAT from cyclohexane derivatives, tertiary axial C-H bond deactivation and tertiary equatorial C-H bond activation have been observed. These effects have been explained on the basis of an increase in torsional strain or a release in 1,3-diaxial strain in the HAT transition states, with kH(eq)/kH(ax) ratios that have been shown to exceed one order of

  20. Molecular structure (monomeric and dimeric) and hydrogen bonds in 5-benzyl 2-thiohydantoin studied by FT-IR and FT-Raman spectroscopy and DFT calculations.

    Science.gov (United States)

    Deval, Vipin; Kumar, Amit; Gupta, Vineet; Sharma, Anamika; Gupta, Archana; Tandon, Poonam; Kunimoto, Ko-Ki

    2014-11-11

    In the present work the structural and spectral characteristics of 5-benzyl-2-thiohydantoin (5-BTH) have been studied by methods of infrared, Raman spectroscopy and quantum chemistry. Electrostatic potential surface, optimized geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by density functional theory (DFT) employing B3LYP with complete relaxation in the potential energy surface using 6-311G++(d,p) basis set. Our results support the hydrogen bonding pattern proposed by reported crystalline structure. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. UV-vis spectrum of the compound was recorded in methanol solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using PCM and 6-311++G(d,p) basis set. In addition, the thermodynamic properties of the compound were calculated at different temperatures and corresponding relations between the properties and temperature were also studied.