WorldWideScience

Sample records for native prairie grasses

  1. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  2. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies.

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  3. Native prairie revegetation on wellsites in southeastern Alberta

    International Nuclear Information System (INIS)

    Soulodre, E.; Naeth, A.; Hammermeister, A.

    1999-01-01

    The Native Prairie Revegetation Research Project (NPRRP) was initiated to address concerns about wellsite revegetation of native grassland. The objective was to determine the impact of alternative seeding treatments on soil and vegetation and to produce a quantifiable description of what constitutes successful revegetation of native prairie sites. Four wellsites, each site comprising four revegetation treatment plots and an undisturbed control plot, have been chosen for field study. The revegetation treatments included natural recovery without seeding; current mix dominated by native wheatgrass cultivars; simple mix seeding containing wheatgrasses plus other native grasses, and diverse mix seeding with a mixture of wheatgrasses, other grasses and thirteen perennial forbs. The plant communities were monitored for biomass production, species richness, species composition and a combination of factors which include density, frequency, canopy cover and basal cover, these collectively representing importance value. Nitrogen availability in the soil was also monitored. Results showed high importance values for wheatgrasses for all seeded treatments. Perennial non-wheatgrasses had low importance values in the seeded treatment but higher importance in the control plot. The dominance of wheatgrasses in the seeded treatments resulted in communities that differed significantly from both the control and natural recovery communities, probably due to suppression of the growth of other grasses

  4. COMPARISON OF THE POPULATIONS OF COMMON WOOD-NYMPH BUTTERFLIES IN BURNED PRAIRIE, UNBURNED PRAIRIE AND OLD FIELD GRASSES

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, M.; Walton, R.

    2007-01-01

    Common wood-nymph butterfl ies are found throughout the United States and Canada. However, not much is known about how they overwinter or their preferences for particular grasses and habitats. In this study, the impact of prairie management plans on the abundance of the wood-nymph population was assessed, as well as the preference of these butterfl ies for areas with native or non-native grasses. The abundance of common wood-nymph butterfl ies was determined using Pollard walks; more common wood-nymph butterfl ies were found in the European grasses than were found in the burned and unburned prairie sites. The majority of the vegetation at each of the three sites was identifi ed and documented. Using a 1 X 3 ANOVA analysis, it was determined there were signifi cantly more butterfl ies in the European grasses than in the burned and unburned prairie sites (p < 0.0005). There was no signifi cant difference between the burned and unburned treatments of the prairie on the common wood-nymph population. A multiple variable linear regression model described the effect of temperature and wind speed on the number of observed common wood-nymph butterfl ies per hour (p = 0.026). These preliminary results need to be supplemented with future studies. Quadrat analysis of the vegetation from all three sites should be done to search for a correlation between common wood-nymph butterfl y abundance per hour and the specifi c types or quantity of vegetation at each site. The effect of vegetation height and density on the observer’s visual fi eld should also be assessed.

  5. Cluster fescue (Festuca paradoxa Desv.): A multipurpose native cool-season grass

    Science.gov (United States)

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek; R.A. Pierce

    2005-01-01

    Native cool-season grasses (NCSG) are adapted to a wide range of habitats and environmental conditions, and cluster fescue (Festuca paradoxa Desv.) is no exception. Cluster fescue can be found in unplowed upland prairies, prairie draws, savannas, forest openings, and glades (Aiken et al. 1996). Although its range includes 23 states in the continental...

  6. Native Prairie Adaptive Management: a multi region adaptive approach to invasive plant management on Fish and Wildlife Service owned native prairies

    Science.gov (United States)

    Gannon, Jill J.; Shaffer, Terry L.; Moore, Clinton T.

    2013-01-01

    Much of the native prairie managed by the U.S. Fish and Wildlife Service (FWS) in the Prairie Pothole Region (PPR) of the northern Great Plains is extensively invaded by the introduced cool-season grasses, smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis). Management to suppress these invasive plants has had poor to inconsistent success. The central challenge to managers is selecting appropriate management actions in the face of biological and environmental uncertainties. In partnership with the FWS, the U.S. Geological Survey (USGS) developed an adaptive decision support framework to assist managers in selecting management actions under uncertainty and maximizing learning from management outcomes. This joint partnership is known as the Native Prairie Adaptive Management (NPAM) initiative. The NPAM decision framework is built around practical constraints faced by FWS refuge managers and includes identification of the management objective and strategies, analysis of uncertainty and construction of competing decision models, monitoring, and mechanisms for model feedback and decision selection. Nineteen FWS field stations, spanning four states of the PPR, have participated in the initiative. These FWS cooperators share a common management objective, available management strategies, and biological uncertainties. Though the scope is broad, the initiative interfaces with individual land managers who provide site-specific information and receive updated decision guidance that incorporates understanding gained from the collective experience of all cooperators. We describe the technical components of this approach, how the components integrate and inform each other, how data feedback from individual cooperators serves to reduce uncertainty across the whole region, and how a successful adaptive management project is coordinated and maintained on a large scale. During an initial scoping workshop, FWS cooperators developed a consensus management objective

  7. Effect of frame size and season on enteric methane (CH4) and carbon dioxide (CO2)emissions in Angus brood cows grazing native tall-grass prairie in central Oklahoma USA

    Science.gov (United States)

    Effect of frame size and season on enteric methane (CH4) and carbon dioxide (CO2) emissions in Angus brood cows grazing native tall-grass prairie in central Oklahoma, USA J.P.S. Neel USDA ARS, El Reno, OK A reduction in enteric CH4 production in ruminants is associated with improved production effic...

  8. Flora and fauna associated with prairie dog colonies and adjacent ungrazed mixed-grass prairie in western South Dakota

    Science.gov (United States)

    William Agnew; Daniel W. Uresk; Richard M. Hansen

    1986-01-01

    Vegetation, small rodents, and birds were sampled during the growing seasons of 2 years on prairie dog (Cynomys ludovicianus) colonies and adjacent mixed-grass prairie in western South Dakota. Prairie dog grazing decreased mulch cover, maximum height of vegetation, plant species richness, and tended to decrease live plant canopy cover compared to...

  9. Use of ecological sites in managing wildlife and livestock: An example with prairie dogs

    Science.gov (United States)

    Prairie dogs are a native rodent found in the mixed grass prairie of the northern Great Plains. Prairie dogs can have an adverse impact on the amount of forages available for grazing livestock. In the Native American community, prairie dogs are often valued as a cultural resource and as an importan...

  10. Use of vegetation sampling and analysis to detect a problem within a portion of a prairie restoration project.

    Science.gov (United States)

    Franson, Raymond; Scholes, Chad; Krabbe, Stephen

    2017-01-02

    In June 2005, the Department of Energy (DOE) began establishing the 60-ha Howell Prairie around the disposal cell at the DOE Weldon Spring Site (WSS). Prairies were historically present in the area of the site. Quantitative Cover sampling was used to quantify Total Cover, Native Grass Cover, Non-Native Grass Cover, Native Forb Cover, Non-Native Forb Cover, Warm Season (C 4 Grass), Cool Season (C 3 Grass), Perennial Cover and Annual Cover, Litter, and Bare Ground. Four permanent vegetation sampling plots were established. The first 4 years of vegetation measurements at Howell Prairie were made during above-average rainfall years on burned and unburned plots. The fifth-year (2012) vegetation measurements were made after below-average rainfall. Five years of results not only document the consistency of the restoration effort in three areas, but also demonstrate deficiencies in Grass Cover in a fourth area. The results are not only useful for Howell Prairie, but will be useful for restoration work throughout the region. Restoration work suffers from a lack of success monitoring and in this case from a lack of available reference areas. Floristic Quality Indices are used to make qualitative comparisons of the site to Konza Prairie sites.

  11. Small mammal use of native warm-season and non-native cool-season grass forage fields

    Science.gov (United States)

    Ryan L Klimstra,; Christopher E Moorman,; Converse, Sarah J.; Royle, J. Andrew; Craig A Harper,

    2015-01-01

    Recent emphasis has been put on establishing native warm-season grasses for forage production because it is thought native warm-season grasses provide higher quality wildlife habitat than do non-native cool-season grasses. However, it is not clear whether native warm-season grass fields provide better resources for small mammals than currently are available in non-native cool-season grass forage production fields. We developed a hierarchical spatially explicit capture-recapture model to compare abundance of hispid cotton rats (Sigmodon hispidus), white-footed mice (Peromyscus leucopus), and house mice (Mus musculus) among 4 hayed non-native cool-season grass fields, 4 hayed native warm-season grass fields, and 4 native warm-season grass-forb ("wildlife") fields managed for wildlife during 2 summer trapping periods in 2009 and 2010 of the western piedmont of North Carolina, USA. Cotton rat abundance estimates were greater in wildlife fields than in native warm-season grass and non-native cool-season grass fields and greater in native warm-season grass fields than in non-native cool-season grass fields. Abundances of white-footed mouse and house mouse populations were lower in wildlife fields than in native warm-season grass and non-native cool-season grass fields, but the abundances were not different between the native warm-season grass and non-native cool-season grass fields. Lack of cover following haying in non-native cool-season grass and native warm-season grass fields likely was the key factor limiting small mammal abundance, especially cotton rats, in forage fields. Retention of vegetation structure in managed forage production systems, either by alternately resting cool-season and warm-season grass forage fields or by leaving unharvested field borders, should provide refugia for small mammals during haying events.

  12. Uptake of C14-atrazine by prairie grasses in a phytoremediation setting.

    Science.gov (United States)

    Khrunyk, Yuliya; Schiewer, Silke; Carstens, Keri L; Hu, Dingfei; Coats, Joel R

    2017-02-01

    Agrochemicals significantly contribute to environmental pollution. In the USA, atrazine is a widely used pesticide and commonly found in rivers, water systems, and rural wells. Phytoremediation can be a cost-effective means of removing pesticides from soil. The objective of this project was to investigate the ability of prairie grasses to remove atrazine. 14 C-labeled atrazine was added to sterilized sand and water/nutrient cultures, and the analysis was performed after 21 days. Switchgrass and big bluestem were promising species for phytoremediation, taking up about 40% of the applied [ 14 C] in liquid hydroponic cultures, and between 20% and 33% in sand cultures. Yellow Indiangrass showed low resistance to atrazine toxicity and low uptake of [ 14 C] atrazine in liquid hydroponic cultures. Atrazine degradation increased progressively from sand to roots and leaves. Most atrazine taken up by prairie grasses from sand culture was degraded to metabolites, which accounted for 60-80% of [ 14 C] detected in leaves. Deisopropylatrazine (DIA) was the main metabolite detected in sand and roots, whereas in leaves further metabolism took place, forming increased amounts of didealkylatrazine (DDA) and an unidentified metabolite. In conclusion, prairie grasses achieved high atrazine removal and degradation, showing a high potential for phytoremediation.

  13. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    Science.gov (United States)

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  14. The effects of black-tailed prairie dogs on plant communities within a complex urban landscape: an ecological surprise?

    Science.gov (United States)

    Beals, Stower C; Hartley, Laurel M; Prevéy, Janet S; Seastedt, Timothy R

    2014-05-01

    Historically, prairie dogs (Cynomys spp.) have been considered essential keystone species of western United States grassland ecosystems because they provide unique services and increase vegetation community richness, evenness, and diversity. However, the effects of black-tailed prairie dogs (Cynomys ludovicianus) on lands adjacent to or surrounded by urban areas may not result in the same ecosystem benefits historically associated with their presence. An urban landscape presents prairie dogs with movement challenges unparalleled in natural landscapes, as well as suites of nonnative plant species that are more common in disturbed areas. This study examined a complex ecosystem where vegetation communities are being influenced by directional environmental change, and quantified the synergistic effects resulting from the protective management of a native keystone species. The data set for this analysis was comprised of 71 paired (occupied by prairie dogs vs. unoccupied) vegetation surveys and 156 additional unpaired surveys collected from around the city of Boulder, Colorado, USA for 14 yr. Linear mixed models were used to compare data from transects occupied and unoccupied by prairie dogs, as well as to evaluate the effect of prairie dog occupation duration. In the absence of prairie dogs, vegetation in this region exhibited declines in native grasses, no changes in introduced grasses, and increases in native and nonnative forbs and bare soil over the study interval. In the presence of prairie dogs, these observed directional changes were nearly all amplified at rates four to 10 times greater than when prairie dogs were absent. Areas in Boulder occupied by prairie dogs also had significantly lower richness, evenness, and diversity of plant species, compared to unoccupied areas. Analysis of plant functional groups revealed the significant reduction of perennial native grasses, as well as a significantly higher cover of introduced forbs in occupied areas. Prairie dogs

  15. A comparison of native tallgrass prairie and plains bluestem forage systems for cow-calf production in the southern great plains.

    Science.gov (United States)

    Coleman, S W; Phillips, W A; Volesky, J D; Buchanan, D

    2001-07-01

    The objective of this study was to compare an introduced warm-season perennial grass (plains bluestem, Bothriochloa ischaemum) to native tallgrass prairie for cow-calf production. Three systems were used, two based on tallgrass prairie with two different forms of protein supplementation and one based on plains bluestem as the primary forage. The systems were as follows: 1) native tallgrass prairie with pelleted oilseed meal as the winter protein supplement (native-control); 2) native tallgrass prairie with limited access to wheat pasture as the winter protein supplement (native-wheat); and 3) plains bluestem with limited access to wheat pasture as the protein supplement (bluestem-wheat). Oilseed meal protein supplements were fed twice weekly. Cows grazing wheat pasture were allowed 6 h of grazing twice weekly. Ninety-nine cows per year were used over the 3-yr study. Cows were sired by either Charolais, Gelbvieh, Angus, or Hereford bulls out of commercial Angus-Hereford dams. Calves were sired by Simmental bulls. Calving and weaning rate increased over time but did not differ among systems or breed types. System did not influence the size or body condition score of cows or the performance of calves, but changes in the weight and condition scores of cows were greater on either native system than on the bluestem-wheat system. Cows from Charolais and Gelbvieh bulls were taller (P < 0.05), and heavier (P < 0.05), and weaned heavier (P < 0.05) calves than cows from Angus or Hereford bulls. The weight of cows on the bluestem-wheat system tended to decrease over time, whereas cows grazing on the native systems tended to gain weight over time. The native-control system was the most profitable system based on cow production. If excess hay produced from the bluestem-wheat system was sold as a cash crop, then this system was the most profitable. In general, we conclude that limit-grazing wheat pasture is a viable alternative to oilseed meal as protein supplement for wintering

  16. Soil nitrogen mineralization not affected by grass species traits

    Science.gov (United States)

    Maged Ikram Nosshi; Jack Butler; M. J. Trlica

    2007-01-01

    Species N use traits was evaluated as a mechanism whereby Bromus inermis (Bromus), an established invasive, might alter soil N supply in a Northern mixed-grass prairie. We compared soils under stands of Bromus with those from three representative native grasses of different litter C/N: Andropogon...

  17. An emerging crisis across northern prairie refuges: Prevalence of invasive plants and a plan for adaptive management

    Science.gov (United States)

    Grant, T.A.; Flanders-Wanner, B.; Shaffer, T.L.; Murphy, R.K.; Knutsen, G.A.

    2009-01-01

    In the northern Great Plains, native prairies managed by the U.S. Fish and Wildlife Service (Service) can be pivotal in conservation of North America's biological diversity. From 2002 to 2006, we surveyed 7,338 belt transects to assess the general composition of mixed-grass and tallgrass prairie vegetation across five "complexes" (i.e., administrative groupings) of national wildlife refuges managed by the Service in North Dakota and South Dakota. Native grasses and forbs were common (mean frequency of occurrence 47%-54%) on two complexes but uncommon (4%-13%) on two others. Conversely, an introduced species of grass, smooth brome (Bromus inermis), accounted for 45% to 49% of vegetation on two complexes and another species, Kentucky bluegrass (Poa pratensis) accounted for 27% to 36% of the vegetation on three of the complexes. Our data confirm prior suspicions of widespread invasion by introduced species of plants on Service-owned tracts of native prairie, changes that likely stem in part from a common management history of little or no disturbance (e.g., defoliation by grazing or fire). However, variability in the degree and type of invasion among prairie tracts suggests that knowledge of underlying causes (e.g., edaphic or climatic factors, management histories) could help managers more effectively restore prairies. We describe an adaptive management approach to acquire such knowledge while progressing with restoration. More specifically, we propose to use data from inventories of plant communities on Service-owned prairies to design and implement, as experiments, optimal restoration strategies. We will then monitor these experiments and use the results to refine future strategies. This comprehensive, process-oriented approach should yield reliable and robust recommendations for restoration and maintenance of native prairies in the northern Great Plains. 2009 by the Board of Regents of the University of Wisconsin System.

  18. Revegetation of wellsite disturbances on Fescue Prairie in east-central Alberta

    International Nuclear Information System (INIS)

    Woosaree, J.; Puhl, M.

    1999-01-01

    It has been observed that past methods of revegetating disturbed land in Alberta by using commercially-available species of grasses has had limited success in terms of biodiversity, the reason being that commercial forage species are highly competitive, and as such not only prevented the original prairie species from returning to reclaimed sites, but in some cases they have migrated from reclaimed sites and invaded surrounding native prairie. Alfalfa, crested wheatgrass, Kentucky bluegrass and Canada bluegrass are believed to be the most invasive of these commercially available species. Because their use in the past has resulted in landscape fragmentation, they are not recommended for use on wellsites located on native prairie. The limited mix of available native grass cultivars also have had limited success in increasing species diversity. Cross seeding has been suggested as one method for reducing the effect of inter-specific competition on the species emergence. However, the general view of government and industry is that improved methods of revegetation of wellsite disturbances and new guidelines for determining reclamation success are required to establish more ecologically compatible plant communities on well site disturbances 4 refs., 1 tab., 3 figs

  19. Establishing native warm season grasses on Eastern Kentucky strip mines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Forestry

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  20. Establishing native warm season grasses on Eastern Kentucky strip mines

    International Nuclear Information System (INIS)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-01-01

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat

  1. Native Grass Community Management Plan for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Ryon, Michael G [ORNL; Parr, Patricia Dreyer [ORNL; Cohen, Kari [ORNL

    2007-06-01

    Land managers at the Department of Energy's Oak Ridge National Laboratory in East Tennessee are restoring native warm-season grasses and wildflowers to various sites across the Oak Ridge Reservation (ORR). Some of the numerous benefits to planting native grasses and forbs include improved habitat quality for wildlife, improved aesthetic values, lower long-term maintenance costs, and compliance with Executive Order 13112 (Clinton 1999). Challenges to restoring native plants on the ORR include the need to gain experience in establishing and maintaining these communities and the potentially greater up-front costs of getting native grasses established. The goals of the native grass program are generally outlined on a fiscal-year basis. An overview of some of the issues associated with the successful and cost-effective establishment and maintenance of native grass and wildflower stands on the ORR is presented in this report.

  2. Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR).

    Science.gov (United States)

    Malmstrom, Carolyn M; Bigelow, Patrick; Trębicki, Piotr; Busch, Anna K; Friel, Colleen; Cole, Ellen; Abdel-Azim, Heba; Phillippo, Colin; Alexander, Helen M

    2017-09-15

    As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most

  3. Agricultural field reclamation utilizing native grass crop production

    Science.gov (United States)

    J. Cure

    2013-01-01

    Developing a method of agricultural field reclamation to native grasses in the Lower San Pedro Watershed could prove to be a valuable tool for educational and practical purposes. Agricultural field reclamation utilizing native grass crop production will address water table depletion, soil degradation and the economic viability of the communities within the watershed....

  4. Seed production and establishment of western Oregon native grasses

    Science.gov (United States)

    Dale C. Darris

    2005-01-01

    It is well understood that native grasses are ecologically important and provide numerous benefits. However, unfavorable economics, low seed yields for some species, genetic issues, and a lack of experience behind the production and establishment of most western Oregon native grasses remain significant impediments for their expanded use. By necessity, adaptation of...

  5. Tier 2 guidelines and remediation of Tebuthiuron on a native prairie site

    Energy Technology Data Exchange (ETDEWEB)

    Bessie, K.; Harckham, N.; Dance, T. [EBA Engineering Consultants Ltd., Calgary, AB (Canada); Burk, A. [EnCana Corp., Calgary, AB (Canada); Stephenson, G. [Stantec Consulting, Guelph, ON (Canada); Corbet, B. [Access Analytical Laboratories Inc., Calgary, AB (Canada)

    2009-10-01

    Tebuthiuron is a sterilant used to control vegetation at upstream and midstream petroleum sites. This article discussed the remediation processes used to reclaim a native prairie site contaminated with tebuthiuron. The site was located within a dry mixed grass natural area. A literature review was conducted to establish soil eco-contact guidelines specific to tebuthiuron. A site-specific ecotoxicity assessment was then conducted using a liquid chromatograph to detect tebuthiuron limits in the contaminated soils. A soil sampling technique was used to delineate the affected areas at the site. Site soils were spiked with various concentrations of tebuthiuron ranging from 0.00003 mg/kg to 3000 mg/kg. Test species included a Folsomia candida, an earthworm, and 4 plant species. The study showed that the invertebrate species were less sensitive to tebuthiuron than the plant species. A groundwater assessment showed that tebuthiuron levels exceeded Tier 1 groundwater remediation guidelines. A multilayer hydro-geological model showed that remediation guidelines were orders of magnitude greater than Tier 1 groundwater remediation. A thermal desorption technique was used to remediate the site. 7 refs., 8 figs.

  6. Bud-bank and tiller dynamics of co-occurring C3 caespitose grasses in mixed-grass prairie.

    Science.gov (United States)

    Ott, Jacqueline P; Hartnett, David C

    2015-09-01

    Tiller recruitment from the belowground bud bank of caespitose grasses influences their ability to monopolize local resources and, hence, their genet fitness. Differences in bud production and outgrowth among tiller types within a genet and among species may explain co-occurrence of caespitose grasses. This study aimed to characterize genet bud-bank and tiller production and dynamics in two co-occurring species and compare their vegetative reproductive strategies. Bud-bank and tiller dynamics of Hesperostipa comata and Nassella viridula, dominant C3 caespitose grasses in the northern mixed-grass prairie of North America, were assessed throughout an annual cycle. The two species showed similar strategies, maintaining polycyclic tillers and thus creating mixed-age genet bud banks comprising multiple bud cohorts produced in different years. Vegetative tillers produced the majority of buds, whereas flowering tillers contributed little to the bud bank. Buds lived for at least 2 yr and were maintained in multiple developmental stages throughout the year. Because bud longevity rarely exceeded tiller longevity, tiller longevity drove turnover within the bud bank. Tiller population dynamics, more than bud production per tiller, determined the differential contribution of tiller types to the bud bank. Nassella viridula had higher bud production per tiller, a consistent annual tiller recruitment density, and greater longevity of buds on senesced and flowering tillers than H. comata. Co-occurring C3 caespitose grasses had similar bud-bank and tiller dynamics contributing to genet persistence but differed in bud characteristics that could affect genet longevity and species coexistence. © 2015 Botanical Society of America.

  7. Investigating temporal patterns of a native bee community in a remnant North American bunchgrass prairie using blue vane traps.

    Science.gov (United States)

    Kimoto, Chiho; Debano, Sandra J; Thorp, Robbin W; Rao, Sujaya; Stephen, William P

    2012-01-01

    Native bees are important ecologically and economically because their role as pollinators fulfills a vital ecosystem service. Pollinators are declining due to various factors, including habitat degradation and destruction. Grasslands, an important habitat for native bees, are particularly vulnerable. One highly imperiled and understudied grassland type in the United States is the Pacific Northwest Bunchgrass Prairie. No studies have examined native bee communities in this prairie type. To fill this gap, the bee fauna of the Zumwalt Prairie, a large, relatively intact remnant of the Pacific Northwest Bunchgrass Prairie, was examined. Native bees were sampled during the summers of 2007 and 2008 in sixteen 40-ha study pastures on a plateau in northeastern Oregon, using a sampling method not previously used in grassland studies-blue vane traps. This grassland habitat contained an abundant and diverse community of native bees that experienced marked seasonal and inter-annual variation, which appears to be related to weather and plant phenology. Temporal variability evident over the entire study area was also reflected at the individual trap level, indicating a consistent response across the spatial scale of the study. These results demonstrate that temporal variability in bee communities can have important implications for long-term monitoring protocols. In addition, the blue vane trap method appears to be well-suited for studies of native bees in large expanses of grasslands or other open habitats, and may be a useful tool for monitoring native bee communities in these systems.

  8. Germination sensitivities to water potential among co-existing C3 and C4 grasses of cool semi-arid prairie grasslands.

    Science.gov (United States)

    Mollard, F P O; Naeth, M A

    2015-03-01

    An untested theory states that C4 grass seeds could germinate under lower water potentials (Ψ) than C3 grass seeds. We used hydrotime modelling to study seed water relations of C4 and C3 Canadian prairie grasses to address Ψ divergent sensitivities and germination strategies along a risk-spreading continuum of responses to limited water. C4 grasses were Bouteloua gracilis, Calamovilfa longifolia and Schizachyrium scoparium; C3 grasses were Bromus carinatus, Elymus trachycaulus, Festuca hallii and Koeleria macrantha. Hydrotime parameters were obtained after incubation of non-dormant seeds under different Ψ PEG 6000 solutions. A t-test between C3 and C4 grasses did not find statistical differences in population mean base Ψ (Ψb (50)). We found idiosyncratic responses of C4 grasses along the risk-spreading continuum. B. gracilis showed a risk-taker strategy of a species able to quickly germinate in a dry soil due to its low Ψb (50) and hydrotime (θH ). The high Ψb (50) of S. scoparium indicates it follows the risk-averse strategy so it can only germinate in wet soils. C. longifolia showed an intermediate strategy: the lowest Ψb (50) yet the highest θH . K. macrantha, a C3 grass which thrives in dry habitats, had the highest Ψb (50), suggesting a risk-averse strategy for a C3 species. Other C3 species showed intermediate germination patterns in response to Ψ relative to C4 species. Our results indicate that grasses display germination sensitivities to Ψ across the risk-spreading continuum of responses. Thus seed water relations may be poor predictors to explain differential recruitment and distribution of C3 and C4 grasses in the Canadian prairies. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Status and use of important native grasses adapted to sagebrush communities

    Science.gov (United States)

    Thomas A. Jones; Steven R. Larson

    2005-01-01

    Due to the emphasis on restoration, native cool-season grass species are increasing in importance in the commercial seed trade in the Western U.S. Cultivated seed production of these native grasses has often been hampered by seed dormancy, seed shattering, and pernicious awns that are advantageous outside of cultivation. Relatively low seed yields and poor seedling...

  10. Ecophysiological responses of native and invasive grasses to simulated warming and drought

    Science.gov (United States)

    Ravi, S.; Law, D. J.; Wiede, A.; Barron-Gafford, G. A.; Breshears, D. D.; Dontsova, K.; Huxman, T. E.

    2011-12-01

    Climate models predict that many arid regions around the world - including the North American deserts - may become affected more frequently by recurrent droughts. At the same time, these regions are experiencing rapid vegetation transformations such as invasion by exotic grasses. Thus, understanding the ecophysiological processes accompanying exotic grass invasion in the context of rising temperatures and recurrent droughts is fundamental to global change research. Under ambient and warmer (+ 4° C) conditions inside the Biosphere 2 facility, we compared the ecophysiological responses (e.g. photosynthesis, stomatal conductance, pre-dawn leaf water potential, light & CO2 response functions, biomass) of a native grass - Heteropogan contortus (Tangle head) and an invasive grass - Pennisetum ciliare (Buffel grass) growing in single and mixed communities. Further, we monitored the physiological responses and mortality of these plant communities under moisture stress conditions, simulating a global change-type-drought. The results indicate that the predicted warming scenarios may enhance the invasibility of desert landscapes by exotic grasses. In this study, buffel grass assimilated more CO2 per unit leaf area and out-competed native grasses more efficiently in a warmer environment. However, scenarios involving a combination of drought and warming proved disastrous to both the native and invasive grasses, with drought-induced grass mortality occurring at much shorter time scales under warmer conditions.

  11. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  12. A model for backscattering characteristics of tall prairie grass canopies at microwave frequencies

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Zoughi, R.

    1991-01-01

    We have developed a discrete microwave scattering model, describing the radar backscattering coefficient from two treatments (burned and unburned) of tall prairie grass canopies at VV (electric field vector of the transmitted and received signals are vertically oriented) and HH (electric field vector of the transmitted and received signals and horizontally oriented) polarizations, based on the physical, biophysical, and geometrical characteristics of such canopies. Grass blades are modeled as thin and finite dielectric ellipsoids with arbitrary orientations. Scattering by an individual grass blade is formulated using a generalization of the Rayleigh—Gans approximation with a quasistatic solution for the expansion of the interior field. By associating, with each grass blade, various appropriate distribution functions, the relative orientation, location, height, cross section, and permittivity of each grass blade is taken into account. This makes for a more realistic overall description of the canopy. Kirchhoff's surface scattering is used to model the backscatter from the soil surface. An incoherent summation of the effect of grass blades and soil surface is adopted to obtain the total canopy backscattering coefficient, taking into account the attenuation experienced by the signal as it travels through the canopy. The results of this model are given for 1.5, 5, and 10 GHz (L-, C-, and X-band). Although for the shorter wavelengths (X-band) the Rayleigh—Gans criteria is not totally satisfied, nevertheless, the limited available measured X-band data compare relatively well with the results of this model both quantitatively and qualitatively. (author)

  13. An adaptive approach to invasive plant management on U.S. Fish and Wildlife Service-owned native prairies in the Prairie Pothole Region: decision support under uncertainity

    Science.gov (United States)

    Gannon, Jill J.; Moore, Clinton T.; Shaffer, Terry L.; Flanders-Wanner, Bridgette

    2011-01-01

    Much of the native prairie managed by the U.S. Fish and Wildlife Service (Service) in the Prairie Pothole Region (PPR) is extensively invaded by the introduced cool-season grasses smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis). The central challenge to managers is selecting appropriate management actions in the face of biological and environmental uncertainties. We describe the technical components of a USGS management project, and explain how the components integrate and inform each other, how data feedback from individual cooperators serves to reduce uncertainty across the whole region, and how a successful adaptive management project is coordinated and maintained on a large scale. In partnership with the Service, the U.S. Geological Survey is developing an adaptive decision support framework to assist managers in selecting management actions under uncertainty and maximizing learning from management outcomes. The framework is built around practical constraints faced by refuge managers and includes identification of the management objective and strategies, analysis of uncertainty and construction of competing decision models, monitoring, and mechanisms for model feedback and decision selection. Nineteen Service field stations, spanning four states of the PPR, are participating in the project. They share a common management objective, available management strategies, and biological uncertainties. While the scope is broad, the project interfaces with individual land managers who provide refuge-specific information and receive updated decision guidance that incorporates understanding gained from the collective experience of all cooperators.

  14. Prairie Conservation in Canada: The Prairie Conservation Action Plan Experience

    Science.gov (United States)

    Dean Nernberg; David Ingstrup

    2005-01-01

    In Canada, grassland conservation has been mobilized and directed through the development of Prairie Conservation Action Plans and Action Plan Committees in the three prairie provinces of Alberta (45 partner agencies and organizations), Saskatchewan (26 partners), and Manitoba (26 partners). In Alberta, 43 percent of the native prairie remains; in Saskatchewan and...

  15. Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses.

    Science.gov (United States)

    Weremijewicz, Joanna; da Silveira Lobo O'Reilly Sternberg, Leonel; Janos, David P

    2018-01-01

    Arbuscular mycorrhizal fungi form extensive common mycorrhizal networks (CMNs) that may interconnect neighboring root systems of the same or different plant species, thereby potentially influencing the distribution of limiting mineral nutrients among plants. We examined how CMNs affected intra- and interspecific interactions within and between populations of Andropogon gerardii, a highly mycorrhiza dependent, dominant prairie grass and Elymus canadensis, a moderately dependent, subordinate prairie species. We grew A. gerardii and E. canadensis alone and intermixed in microcosms, with individual root systems isolated, but either interconnected by CMNs or with CMNs severed weekly. CMNs, which provided access to a large soil volume, improved survival of both A. gerardii and E. canadensis, but intensified intraspecific competition for A. gerardii. When mixed with E. canadensis, A. gerardii overyielded aboveground biomass in the presence of intact CMNs but not when CMNs were severed, suggesting that A. gerardii with intact CMNs most benefitted from weaker interspecific than intraspecific interactions across CMNs. CMNs improved manganese uptake by both species, with the largest plants receiving the most manganese. Enhanced growth in consequence of improved mineral nutrition led to large E. canadensis in intact CMNs experiencing water-stress, as indicated by 13 C isotope abundance. Our findings suggest that in prairie plant communities, CMNs may influence mineral nutrient distribution, water relations, within-species size hierarchies, and between-species interactions.

  16. Effects of hay management and native species sowing on grassland community structure, biomass, and restoration.

    Science.gov (United States)

    Foster, Bryan L; Kindscher, Kelly; Houseman, Greg R; Murphy, Cheryl A

    2009-10-01

    Prairie hay meadows are important reservoirs of grassland biodiversity in the tallgrass prairie regions of the central United States and are the object of increasing attention for conservation and restoration. In addition, there is growing interest in the potential use of such low-input, high-diversity (LIHD) native grasslands for biofuel production. The uplands of eastern Kansas, USA, which prior to European settlement were dominated by tallgrass prairie, are currently utilized for intensive agriculture or exist in a state of abandonment from agriculture. The dominant grasslands in the region are currently high-input, low-diversity (HILD) hay fields seeded to introduced C3 hay grasses. We present results from a long-term experiment conducted in a recently abandoned HILD hay field in eastern Kansas to evaluate effects of fertilization, haying, and native species sowing on community dynamics, biomass, and potential for restoration to native LIHD hay meadow. Fertilized plots maintained dominance by introduced grasses, maintained low diversity, and were largely resistant to colonization throughout the study. Non-fertilized plots exhibited rapid successional turnover, increased diversity, and increased abundance of C4 grasses over time. Haying led to modest changes in species composition and lessened the negative impact of fertilization on diversity. In non-fertilized plots, sowing increased representation by native species and increased diversity, successional turnover, and biomass production. Our results support the shifting limitations hypothesis of community organization and highlight the importance of species pools and seed limitations in constraining successional turnover, community structure, and ecosystem productivity under conditions of low fertility. Our findings also indicate that several biological and functional aspects of LIHD hay meadows can be restored from abandoned HILD hay fields by ceasing fertilization and reintroducing native species through

  17. Ducks and passerines nesting in northern mixed-grass prairie treated with fire

    Science.gov (United States)

    Grant, Todd A.; Shaffer, Terry L.; Madden, Elizabeth M.; Berkey, Gordon B.

    2011-01-01

    Prescribed fire is an important, ecology-driven tool for restoration of grassland systems. However, prescribed fire remains controversial for some grassland managers because of reported reductions in bird use of recently burned grasslands. Few studies have evaluated effects of fire on grassland bird populations in the northern mixed-grass prairie region. Fewer studies yet have examined the influence of fire on nest density or survival. In our review, we found no studies that simultaneously examined effects of fire on duck and passerine nesting. During 1998—2003, we examined effects of prescribed fire on the density of upland-nesting ducks and passerines nesting in north-central North Dakota, USA. Apparent nest densities of gadwall (Anas strepera), mallard (A. platyrhynchos), and all duck species combined, were influenced by fire history of study units, although the degree of influence was not compelling. Fire history was not related to nest densities of blue-winged teal (A. discors), northern shoveler (A. clypeata), or northern pintail (A. acuta); however, apparent nest densities in relation to the number of postfire growing seasons exhibited a strikingly similar pattern among all duck species. When compared to ducks, fire history strongly influenced apparent nest densities of clay-colored sparrow (Spizella pallida), Savannah sparrow (Passerculus sandwichensis), and bobolink (Dolichonyx oryzivorus). For most species examined, apparent nest densities were lowest in recently burned units, increased during the second postfire growing season, and stabilized or, in some cases, decreased thereafter. Prescribed fire is critical for restoring the ecology of northern mixed-grass prairies and our findings indicate that reductions in nest densities are limited mostly to the first growing season after fire. Our results support the premise that upland-nesting ducks and several grassland passerine species are adapted to periodic fires occurring at a frequency similar to that

  18. Evaluation of Turf-Grass and Prairie-Vegetated Rain Gardens in a Clay and Sand Soil, Madison, Wisconsin, Water Years 2004-08

    Science.gov (United States)

    Selbig, William R.; Balster, Nicholas

    2010-01-01

    The U.S. Geological Survey, in cooperation with a consortium of 19 cities, towns, and villages in Dane County, Wis., undertook a study to compare the capability of rain gardens with different vegetative species and soil types to infiltrate stormwater runoff from the roof of an adjacent structure. Two rain gardens, one planted with turf grass and the other with native prairie species, were constructed side-by-side in 2003 at two locations with different dominant soil types, either sand or clay. Each rain garden was sized to a ratio of approximately 5:1 contributing area to receiving area and to a depth of 0.5 foot. Each rain garden, regardless of vegetation or soil type, was capable of storing and infiltrating most of the runoff over the 5-year study period. Both rain gardens in sand, as well as the prairie rain garden in clay, retained and infiltrated 100 percent of all precipitation and snowmelt events during water years 2004-07. The turf rain garden in clay occasionally had runoff exceed its confining boundaries, but was still able to retain 96 percent of all precipitation and snowmelt events during the same time period. Precipitation intensity and number of antecedent dry days were important variables that influenced when the storage capacity of underlying soils would become saturated, which resulted in pooled water in the rain gardens. Because the rooftop area that drained runoff to each rain garden was approximately five times larger than the area of the rain garden itself, evapotranspiration was a small percentage of the annual water budget. For example, during water year 2005, the maximum evapotranspiration of total influent volume ranged from 21 percent for the turf rain garden in clay to 25 percent for the turf rain garden in sand, and the minimum ranged from 12 percent for the prairie rain garden in clay to 19 percent for the prairie rain garden in sand. Little to no runoff left each rain garden as effluent and a small percentage of runoff returned to the

  19. Established native perennial grasses out-compete an invasive annual grass regardless of soil water and nutrient availability

    Science.gov (United States)

    Christopher M. McGlone; Carolyn Hull Sieg; Thomas E. Kolb; Ty Nietupsky

    2012-01-01

    Competition and resource availability influence invasions into native perennial grasslands by nonnative annual grasses such as Bromus tectorum. In two greenhouse experiments we examined the influence of competition, water availability, and elevated nitrogen (N) and phosphorus (P) availability on growth and reproduction of the invasive annual grass B. tectorum and two...

  20. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2002-12-01

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO 2 and CH 4 (by the breeding animals on grass) and N 2 O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  1. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    Science.gov (United States)

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  2. Ecosystem engineering varies spatially: a test of the vegetation modification paradigm for prairie dogs

    Science.gov (United States)

    Baker, Bruce W.; Augustine, David J.; Sedgwick, James A.; Lubow, Bruce C.

    2013-01-01

    Colonial, burrowing herbivores can be engineers of grassland and shrubland ecosystems worldwide. Spatial variation in landscapes suggests caution when extrapolating single-place studies of single species, but lack of data and the need to generalize often leads to ‘model system’ thinking and application of results beyond appropriate statistical inference. Generalizations about the engineering effects of prairie dogs (Cynomys sp.) developed largely from intensive study at a single complex of black-tailed prairie dogs C. ludovicianus in northern mixed prairie, but have been extrapolated to other ecoregions and prairie dog species in North America, and other colonial, burrowing herbivores. We tested the paradigm that prairie dogs decrease vegetation volume and the cover of grasses and tall shrubs, and increase bare ground and forb cover. We sampled vegetation on and off 279 colonies at 13 complexes of 3 prairie dog species widely distributed across 5 ecoregions in North America. The paradigm was generally supported at 7 black-tailed prairie dog complexes in northern mixed prairie, where vegetation volume, grass cover, and tall shrub cover were lower, and bare ground and forb cover were higher, on colonies than at paired off-colony sites. Outside the northern mixed prairie, all 3 prairie dog species consistently reduced vegetation volume, but their effects on cover of plant functional groups varied with prairie dog species and the grazing tolerance of dominant perennial grasses. White-tailed prairie dogs C. leucurus in sagebrush steppe did not reduce shrub cover, whereas black-tailed prairie dogs suppressed shrub cover at all complexes with tall shrubs in the surrounding habitat matrix. Black-tailed prairie dogs in shortgrass steppe and Gunnison's prairie dogs C. gunnisoni in Colorado Plateau grassland both had relatively minor effects on grass cover, which may reflect the dominance of grazing-tolerant shortgrasses at both complexes. Variation in modification of

  3. Effects of prescribed burning and litter type on litter decomposition and nutrient release in mixed-grass prairie in Eastern Montana

    Science.gov (United States)

    Fire can affect litter decomposition and carbon (C) and nitrogen (N) dynamics. Here, we examined the effect of summer fire and three litter types on litter decomposition and litter C and N dynamics in a northern mixed-grass prairie over a 24 month period starting ca. 14 months after fire. Over all...

  4. State of the prairies of marine grasses

    International Nuclear Information System (INIS)

    Barrios, Lina M; Gomez, Diana I

    2002-01-01

    At the end of the year 2000, INVEMAR gave beginning to the project Distribution, it structures and classification of the prairies of marine flowering in the Colombian Caribbean, guided to characterize ecological and environmentally the ecosystems in this Colombian sector, particularly as for its distribution, extension, structures, associate biota and intervention degree. The above-mentioned like answer to the lack of information that was presented to the date in almost all the levels (line bases and ecology) for this ecosystem, required to implement monitoring programs and to adopt conservation strategies for the same one. The information that is presented is based primarily on the results obtained during the execution of the project in mention. An diagnostic is done, a characterization of the prairies, epiphytes covering, associate fauna and it structures of the prairies

  5. Sparrow nest survival in relation to prescribed fire and woody plant invasion in a northern mixed-grass prairie

    Science.gov (United States)

    Murphy, Robert K.; Shaffer, Terry L.; Grant, Todd A.; Derrig, James L.; Rubin, Cory S.; Kerns, Courtney K.

    2017-01-01

    Prescribed fire is used to reverse invasion by woody vegetation on grasslands, but managers often are uncertain whether influences of shrub and tree reduction outweigh potential effects of fire on nest survival of grassland birds. During the 2001–2003 breeding seasons, we examined relationships of prescribed fire and woody vegetation to nest survival of clay-colored sparrow (Spizella pallida) and Savannah sparrow (Passerculus sandwichensis) in mixed-grass prairie at Des Lacs National Wildlife Refuge in northwestern North Dakota, USA. We assessed relationships of nest survival to 1) recent fire history, in terms of number of breeding seasons (2, 3, or 4–5) since the last prescribed fire, and 2) prevalence of trees and tall (>1.5 m) shrubs in the landscape and of low (≤1.5 m) shrubs within 5 m of nests. Nest survival of both species exhibited distinct patterns related to age of the nest and day of year, but bore no relationship to fire history. Survival of clay-colored sparrow nests declined as the amount of trees and tall shrubs within 100 m increased, but we found no relationship to suggest nest parasitism by brown-headed cowbirds (Molothrus ater) as an underlying mechanism. We found little evidence linking nest survival of Savannah sparrow to woody vegetation. Our results suggest that fire can be used to restore northern mixed-grass prairies without adversely affecting nest survival of ≥2 widespread passerine species. Survival of nests of clay-colored sparrow may increase when tall woody cover is reduced by fire. Our data lend support to the use of fire for reducing scattered patches of tall woody cover to enhance survival of nests of ≥1 grassland bird species in northern mixed-grass prairies, but further study is needed that incorporates experimental approaches and assessments of shorter term effects of fire on survival of nests of grassland passerines.

  6. Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian prairies

    Science.gov (United States)

    van der Kamp, G.; Hayashi, M.; Gallén, D.

    2003-02-01

    At the St Denis National Wildlife Area in the prairie region of southern Saskatchewan, Canada, water levels in wetlands have been monitored since 1968. In 1980 and 1983 a total of about one-third of the 4 km2 area was converted from cultivation to an undisturbed cover of brome grass. A few years after this conversion all the wetlands within the area of grass dried out; they have remained dry since, whereas wetlands in adjacent cultivated lands have held water as before. Field measurements show that introduction of undisturbed grass reduces water input to the wetlands mainly through a combination of efficient snow trapping and enhanced infiltration into frozen soil. In winter, the tall brome grass traps most of the snowfall, whereas in the cultivated fields more wind transport of snow occurs, especially for short stubble and fallow fields. Single-ring infiltration tests were conducted during snowmelt, while the soil was still frozen, and again in summer. The infiltrability of the frozen soil in the grassland is high enough to absorb most or all of the snowmelt, whereas in the cultivated fields the infiltration into the frozen soil is limited and significant runoff occurs. In summer, the infiltrability increases for the cultivated fields, but the grassland retains a much higher infiltrability than the cultivated land. The development of enhanced infiltrability takes several years after the conversion from cultivation to grass, and is likely due to the gradual development of macropores, such as root holes, desiccation cracks, and animal burrows.

  7. Flood Control at Grafton, North Dakota, Park River.

    Science.gov (United States)

    1975-08-01

    expected to occur, in the escarpment forest include mice, shrews , voles, bats, rabbits, squirrels, muskrat, woodchuck, beaver, pocket gopher, ground...although short-grass prairie would probably eventually be invaded by either taller tame grasses, such as brome, or taller native grasses). 2. The ...grass prairie would eventually be invaded by either taller tame grasses (brome) or taller natives in this area. Thus, the statement that "there would

  8. Microsatellite genetic diversity and differentiation of native and introduced grass carp populations in three continents

    Science.gov (United States)

    Chapman, Duane C.; Chen, Qin; Wang, Chenghui; Zhao, Jinlian; Lu, Guoqing; Zsigmond, Jeney; Li, Si-Fa

    2012-01-01

    Grass carp (Ctenopharyngodon idella), a freshwater species native to China, has been introduced to about 100 countries/regions and poses both biological and environmental challenges to the receiving ecosystems. In this study, we analyzed genetic variation in grass carp from three introduced river systems (Mississippi River Basin in US, Danube River in Hungary, and Tone River in Japan) as well as its native ranges (Yangtze, Pearl, and Amur Rivers) in China using 21 novel microsatellite loci. The allelic richness, observed heterozygosity, and within-population gene diversity were found to be lower in the introduced populations than in the native populations, presumably due to the small founder population size of the former. Significant genetic differentiation was found between all pairwise populations from different rivers. Both principal component analysis and Bayesian clustering analysis revealed obvious genetic distinction between the native and introduced populations. Interestingly, genetic bottlenecks were detected in the Hungarian and Japanese grass carp populations, but not in the North American population, suggesting that the Mississippi River Basin grass carp has experienced rapid population expansion with potential genetic diversification during the half-century since its introduction. Consequently, the combined forces of the founder effect, introduction history, and rapid population expansion help explaining the observed patterns of genetic diversity within and among both native and introduced populations of the grass carp.

  9. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses

    Science.gov (United States)

    Hawkes, C.V.; Belnap, J.; D'Antonio, C.; Firestone, M.K.

    2006-01-01

    Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem. ?? Springer 2006.

  10. Brant Prairie : Union Gas customer service centre, Brantford, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Hensel, M.J.; Thompson, J. [The Walter Fedy Partnership, Kitchener, ON (Canada)

    1998-12-31

    The four-acre ecological restoration of tall grass prairie, wetland and Savannah ecosystems within the Union Gas Customer Service Centre in Brantford, Ontario is discussed. The restoration of the Brant Prairie site was instigated three years ago through Union Gas` land stewardship and environmental action initiative which tried to encourage the diversity and dynamics of each ecosystem, while creating a community resource for visitors to learn about natural heritage. The Brantford initiative includes: (1) protecting the sedge wetland which contained regionally rare species, (2) maintaining the dynamic water budget while protecting the sedge wetland from roadway contaminants, (3) creating a tall grass prairie similar in diversity and aesthetics to Brantford`s surviving prairie remnants, (4) creating a wildlife habitat for butterflies, birds and aquatic species, and (5) rediscovering partridge pea by uncovering a historic seed bank.

  11. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Koteen, Laura E; Harte, John [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 94720 (United States); Baldocchi, Dennis D, E-mail: lkoteen@berkeley.edu [Department of Environmental Science, Policy and Management, 137 Mulford Hall, University of California, Berkeley, CA 94720 (United States)

    2011-10-15

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  12. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    International Nuclear Information System (INIS)

    Koteen, Laura E; Harte, John; Baldocchi, Dennis D

    2011-01-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  13. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Science.gov (United States)

    Koteen, Laura E.; Baldocchi, Dennis D.; Harte, John

    2011-10-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  14. Non-native grass removal and shade increase soil moisture and seedling performance during Hawaiian dry forest restoration

    Science.gov (United States)

    Jared M. Thaxton; Susan Cordell; Robert J. Cabin; Darren R. Sandquist

    2012-01-01

    Invasive non-native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non-native species, particularly grasses. Within a grass-dominated site in leeward...

  15. Economic and conservation implications of converting exotic forages to native warm-season grass

    Directory of Open Access Journals (Sweden)

    Adrian P. Monroe

    2017-07-01

    Full Text Available Intensive agriculture can have negative environmental consequences such as nonpoint source pollution and the simplification of biotic communities, and land sharing posits that conservation can be enhanced by integrating agricultural productivity and biodiversity on the same land. In the Southeastern United States, native warm-season grasses (NWSG may be a land sharing alternative to exotic forages currently in production because of greater livestock gains with lower fertilizer inputs, and habitat for grassland birds. However, uncertainty regarding costs and risk poses an important barrier to incorporating NWSG in livestock operations. We evaluated the economic and conservation implications of NWSG conversion among small, operational-scale pastures (6.8–10.5 ha during 2011–2012 at the Prairie Research Unit in Monroe Co., Mississippi (USA. We used partial budgets to compare the marginal rate of return (MRRe from converting exotic grass pastures to either a NWSG monoculture of Indiangrass (Sorghastrum nutans or a NWSG mix of Indiangrass, little bluestem (Schizachyrium scoparium, and big bluestem (Andropogon gerardii. We similarly compared changes in productivity of dickcissels (Spiza americana, a grassland bird specializing in tall structure. Average daily gain (ADG of steers and revenue were consistently higher for NWSG treatments than exotic grass pasture, but ADG declined between years. Indiangrass pastures yielded consistently positive MRRe, indicating producers would receive 16–24% return on investment. Marginal rate of return was lower for mixed NWSG (−12 to 3%, driven by slightly lower livestock ADG and higher establishment costs than for Indiangrass. Sensitivity analyses indicated that MRRe also was influenced by cattle selling price. Conversely, mixed NWSG increased dickcissel productivity by a greater degree than Indiangrass per amount invested in NWSG conversion, suggesting a tradeoff between livestock and dickcissel production

  16. Evaluation of the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002; Bilan des emissions de gaz a effet de serre (CO{sub 2}, CH{sub 4}, N{sub 2}O) en prairie paturee et dans des exploitations d'elevage herbager. GES-Prairies. Rapport de la premiere tranche du projet Decembre 2002

    Energy Technology Data Exchange (ETDEWEB)

    Soussana, J.F

    2002-12-15

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO{sub 2} and CH{sub 4} (by the breeding animals on grass) and N{sub 2}O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  17. Prairie revegetation of a strip mine in Illinois: fifteen years after establishment

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, E.A.; Anderson, R.C.; Rodgers, C.S. [Illinois State University, Normal, IL (United States). Dept. of Biological Sciences

    1996-12-01

    The long-term success of prairie planting on a former strip mine in northeastern Illinois was investigated. The site was reclaimed and planted with prairie species in the 1970s. Total biomass increased over time, largely as a result of an increase in biomass of non-prairie species. Biomass of prairie species remained unchanged because of an increase in Panicum virgatum (switchgrass) offsetting decreases in Sorghastrum nutans (Indian grass).

  18. Interactive effects between nest microclimate and nest vegetation structure confirm microclimate thresholds for Lesser Prairie-Chicken nest survival

    Science.gov (United States)

    Grisham, Blake A.; Godar, Alixandra J.; Boal, Clint W.; Haukos, David A.

    2016-01-01

    The range of Lesser Prairie-Chickens (Tympanuchus pallidicinctus) spans 4 unique ecoregions along 2 distinct environmental gradients. The Sand Shinnery Oak Prairie ecoregion of the Southern High Plains of New Mexico and Texas is environmentally isolated, warmer, and more arid than the Short-Grass, Sand Sagebrush, and Mixed-Grass Prairie ecoregions in Colorado, Kansas, Oklahoma, and the northeast panhandle of Texas. Weather is known to influence Lesser Prairie-Chicken nest survival in the Sand Shinnery Oak Prairie ecoregion; regional variation may also influence nest microclimate and, ultimately, survival during incubation. To address this question, we placed data loggers adjacent to nests during incubation to quantify temperature and humidity distribution functions in 3 ecoregions. We developed a suite of a priori nest survival models that incorporated derived microclimate parameters and visual obstruction as covariates in Program MARK. We monitored 49 nests in Mixed-Grass, 22 nests in Sand Shinnery Oak, and 30 nests in Short-Grass ecoregions from 2010 to 2014. Our findings indicated that (1) the Sand Shinnery Oak Prairie ecoregion was hotter and drier during incubation than the Mixed- and Short-Grass ecoregions; (2) nest microclimate varied among years within ecoregions; (3) visual obstruction was positively associated with nest survival; but (4) daily nest survival probability decreased by 10% every half-hour when temperature was greater than 34°C and vapor pressure deficit was less than −23 mmHg during the day (about 0600–2100 hours). Our major finding confirmed microclimate thresholds for nest survival under natural conditions across the species' distribution, although Lesser Prairie-Chickens are more likely to experience microclimate conditions that result in nest failures in the Sand Shinnery Oak Prairie ecoregion. The species would benefit from identification of thermal landscapes and management actions that promote cooler, more humid nest microclimates.

  19. Arthropod consumption by small mammals on prairie dog colonies and adjacent ungrazed mixed grass prairie in western South Dakota

    Science.gov (United States)

    W. Agnew; Daniel W. Uresk; R. M. Hansen

    1988-01-01

    The percentage of arthropods and plants in the diets of seven small rodents captured on prairie dog colonies and adjacent mixed grasslands were estimated by microhistological techniques. Arthropod composition over the two year study averaged 51% and 37% on prairie dog colonies and mixed grasslands, respectively. Composition of arthropods on prairie dog colonies was...

  20. Soil amendment effects on the exotic annual grass Bromus tectorum L. and facilitation of its growth by the native perennial grass Hilaria jamesii (Torr.) Benth

    Science.gov (United States)

    Belnap, J.; Sherrod, S.K.

    2009-01-01

    Greenhouse experiments were undertaken to identify soil factors that curtail growth of the exotic annual grass Bromus tectorum L. (cheatgrass) without significantly inhibiting growth of native perennial grasses (here represented by Hilaria jamesii [Torr.] Benth). We grew B. tectorum and H. jamesii alone (monoculture pots) and together (combination pots) in soil treatments that manipulated levels of soil phosphorus, potassium, and sodium. Hilaria jamesii showed no decline when its aboveground biomass in any of the applied treatments was compared to the control in either the monoculture or combination pots. Monoculture pots of B. tectorum showed a decline in aboveground biomass with the addition of Na2HPO4 and K2HPO4. Interestingly, in pots where H. jamesii was present, the negative effect of these treatments was ameliorated. Whereas the presence of B. tectorum generally decreased the aboveground biomass of H. jamesii (comparing aboveground biomass in monoculture versus combination pots), the presence of H. jamesii resulted in an enhancement of B. tectorum aboveground biomass by up to 900%. We hypothesize that B. tectorum was able to obtain resources from H. jamesii, an action that benefited B. tectorum while generally harming H. jamesii. Possible ways resources may be gained by B. tectorum from native perennial grasses include (1) B. tectorum is protected from salt stress by native plants or associated soil biota; (2) when B. tectorum is grown with H. jamesii, the native soil biota is altered in a way that favors B. tectorum growth, including B. tectorum tapping into the mycorrhizal network of native plants and obtaining resources from them; (3) B. tectorum can take advantage of root exudates from native plants, including water and nutrients released by natives via hydraulic redistribution; and (4) B. tectorum is able to utilize some combination of the above mechanisms. In summary, land managers may find adding soil treatments can temporarily suppress B. tectorum

  1. Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the U.S. Central Plains.

    Directory of Open Access Journals (Sweden)

    Lori Biederman

    Full Text Available The distribution of flowering across the growing season is governed by each species' evolutionary history and climatic variability. However, global change factors, such as eutrophication and invasion, can alter plant community composition and thus change the distribution of flowering across the growing season. We examined three ecoregions (tall-, mixed, and short-grass prairie across the U.S. Central Plains to determine how nutrient (nitrogen (N, phosphorus, and potassium (+micronutrient addition alters the temporal patterns of plant flowering traits. We calculated total community flowering potential (FP by distributing peak-season plant cover values across the growing season, allocating each species' cover to only those months in which it typically flowers. We also generated separate FP profiles for exotic and native species and functional group. We compared the ability of the added nutrients to shift the distribution of these FP profiles (total and sub-groups across the growing season. In all ecoregions, N increased the relative cover of both exotic species and C3 graminoids that flower in May through August. The cover of C4 graminoids decreased with added N, but the response varied by ecoregion and month. However, these functional changes only aggregated to shift the entire community's FP profile in the tall-grass prairie, where the relative cover of plants expected to flower in May and June increased and those that flower in September and October decreased with added N. The relatively low native cover in May and June may leave this ecoregion vulnerable to disturbance-induced invasion by exotic species that occupy this temporal niche. There was no change in the FP profile of the mixed and short-grass prairies with N addition as increased abundance of exotic species and C3 graminoids replaced other species that flower at the same time. In these communities a disturbance other than nutrient addition may be required to disrupt phenological

  2. Determination of nutritional value of native prairie José Manuel Pando Province, Municipality of Santiago de Machaca

    Directory of Open Access Journals (Sweden)

    Instituto de Investigación en Ciencia Animal y Tecnología (IICAT

    2015-10-01

    Full Text Available This research work was conducted in the municipality of Santiago de Machaca which is the first section of the province, José Manuel Pando, it is located at the southeast of the Department of La Paz, at a distance of 205 km, from the city of La Paz. The objectives of this research were to: determine the biomass and floristic composition according to vegetative site, the stocking of native grasslands and the chemical composition of native prairie. The results were the following: the biomass composition and floristic composition is diverse, (35 native forrage species were identified in the vegetative site pampa, Marsh (11, hillside (18 and Hill (33. The capacity of stocking ability of (DC a stocking of native grasslands, Urtica flabellata (Itapallu (2.46; Bromus catharticus (bromus (1.26; Trifolium pratensis (Layulayu (1.38; Iberis sp. (tears of Virgin (1.55 and Hordium muticum (tail of mouse (1.64. Regarding chemical composition, the forage species with higher crude protein content of (% is Urtica flabellata (Itapallu, Bromus catharticus (bromus, 181,66 is 25.77%, forage species with higher energy content Kcal100/g Kcal100/g. and forage specie with higher content of iron mg / 100 g was Iberis sp. (Tears of Virgin, 20,97 mg / 100g. These identified species should be preserved and disseminated, since they showed greater amount of production and quality in content of nutrients required by animals. The conservation of these native species identified improve weight gain, consumption of native forage throughout the year, the chemical content, these native species studied, improve quality and cover the requirements from consumption of dry matter and nutrients required by animals. Finally this condition will positively affect the economy of the producers. It is recommended that these native species should be preserved and disseminated on the Prairies, since they showed greater amount of production and quality in content of nutrients required by animals.

  3. The Effect of Different levels of Soil Moisture on Visual Quality, Morphological and Physiological Characteristics of Three Native Grass Species

    Directory of Open Access Journals (Sweden)

    ramin mahdavi

    2017-10-01

    Full Text Available Introduction: Over the last three decades, turfgrass breeders have put significant effort into breeding and developing turf species that have good drought resistance. As water conservation becomes an important issue, an interest is increasing in identifying grasses that require less water. Lack of water resources is most problems to increasing urban green spaces. Plants with good drought resistance are those that are able to survive stress by means of drought avoidance, drought tolerance at leaf water potentials, or both. The efficient use of water is made possible by understanding the effects of soil moisture water on crop development and yield. Drought affects the visual quality, growth rate and evapotranspiration. Researchers reported that turfgrass subjected to drought conditions for short periods could sustain a fairly good appearance by soil moisture about half of its consumptive use whenever soil moisture level falls to near permanent wilting point. Drought stress caused decrease in RWC and visual quality of many grass cultivars. In drought conditions resistance grass showed increase in proline content on their leaves. Therefore the use of native grasses with high-strength instead of imported grass with low-resistance is one way to increase landscape areas and reduce costs. The purpose of this study was to be compared native grasses with commercial grass cultivar “Super sport”. Materials and Methods: The objective of this study was to evaluate the effect of soil moisture stress levels included 85% (control, 65% and 45% of field capacity on native species Brumos tomentellus, Festuca rubra and F. arundinacea and commercial cultivars Super sport (control under greenhouse conditions. Plants were cultured in PVC containers measuring 9 cm in diameter and 60 cm deep. Soil was mixture of 70% loam soil, 20% pit mass and 10% sand. Greenhouse air temperature was maintained between 22 and 28 centigrade degree. All plants were maintained under

  4. Alien plant invasion in mixed-grass prairie: effects of vegetation type, stochiasticity, and anthropogenic disturbance in two park units

    Science.gov (United States)

    Larson, Diane L.; Anderson, Patrick J.; Newton, Wesley E.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  5. Optimal prescribed burn frequency to manage foundation California perennial grass species and enhance native flora

    Science.gov (United States)

    Grasslands can be diverse assemblages of grasses and forbs but not much is known how perennial grass species management affects native plant diversity except for in a few instances. We studied the use of late spring prescribed burns over a span of eleven years on experimental plots in which the pere...

  6. Diets of swift foxes (Vulpes velox) in continuous and fragmented prairie in Northwestern Texas

    Science.gov (United States)

    Kamler, J.F.; Ballard, W.B.; Wallace, M.C.; Gipson, P.S.

    2007-01-01

    Distribution of the swift fox (Vulpes velox) has declined dramatically since the 1800s, and suggested causes of this decline are habitat fragmentation and transformation due to agricultural expansion. However, impacts of fragmentation and human-altered habitats on swift foxes still are not well understood. To better understand what effects these factors have on diets of swift foxes, scats were collected in northwestern Texas at two study sites, one of continuous native prairie and one representing fragmented native prairie interspersed with agricultural and fields in the Conservation Reserve Program. Leporids, a potential food source, were surveyed seasonally on both sites. Diets of swift foxes differed between sites; insects were consumed more on continuous prairie, whereas mammals, birds, and crops were consumed more on fragmented prairie. Size of populations of leporids were 2-3 times higher on fragmented prairie, and swift foxes responded by consuming more leporids on fragmented (11.1% frequency occurrence) than continuous (3.8%) prairie. Dietary diversity was greater on fragmented prairie during both years of the study. Differences in diets between sites suggested that the swift fox is an adaptable and opportunistic feeder, able to exploit a variety of food resources, probably in relation to availability of food. We suggest that compared to continuous native prairie, fragmented prairie can offer swift foxes a more diverse prey base, at least within the mosaic of native prairie, agricultural, and fields that are in the Conservation Reserve Program.

  7. Long-term lesser prairie-chicken nest ecology in response to grassland management

    Science.gov (United States)

    Fritts, Sarah R.; Grisham, Blake A.; Haukos, David A.; Boal, Clint W.; Patten, Michael; Wolfe, Don H.; Dixon, Charles; Cox, Robert D.; Heck, Willard R.

    2016-01-01

    Long-term population and range declines from habitat loss and fragmentation caused the lesser prairie-chicken (Tympanuchus pallidicinctus) to be a species of concern throughout its range. Current lesser prairie-chicken range in New Mexico and Texas is partially restricted to sand shinnery oak (Quercus havardii; hereafter shinnery oak) prairies, on which cattle grazing is the main socioeconomic driver for private landowners. Cattle producers within shinnery oak prairies often focus land management on shrub eradication using the herbicide tebuthiuron to promote grass production for forage; however, herbicide application alone, and in combination with grazing, may affect nest site selection and nest survival of lesser prairie-chickens through the reduction of shinnery oak and native grasses. We used a controlled, paired, completely randomized design study to assess the influence of grazing and tebuthiuron application and their combined use on nest site selection and nest survival from 2001 to 2010 in Roosevelt County, New Mexico, USA at 2 spatial scales (i.e., treatment and microhabitat) in 4 treatments: tebuthiuron with grazing, tebuthiuron without grazing, no tebuthiuron with grazing, and a control of no tebuthiuron and no grazing. Grazing treatment was a short-duration system in which plots were grazed once during the dormant season and once during the growing season. Stocking rate was calculated each season based on measured forage production and applied to remove ≤25% of available herbaceous material per season. At the treatment scale, we compared nest site selection among treatments using 1-way χ2 tests and nest survival among treatments using a priori candidate nest survival models in Program MARK. At the microhabitat scale, we identified important habitat predictors of nest site selection and nest survival using logistic regression and a priori candidate nest survival models in Program MARK, respectively. Females typically used treatments as expected and

  8. Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression

    Science.gov (United States)

    Oyler-McCance, Sara J.; DeYoung, Randall W; Fike, Jennifer; Hagen, Christian A.; Johnson, Jeff A.; Larsson, Lena C.; Patten, Michael

    2016-01-01

    The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.

  9. Indirect effects of an invasive annual grass on seed fates of two native perennial grass species.

    Science.gov (United States)

    Meyer, Susan E; Merrill, Katherine T; Allen, Phil S; Beckstead, Julie; Norte, Anna S

    2014-04-01

    Invasive plants exhibit both direct and indirect negative effects on recruitment of natives following invasion. We examined indirect effects of the invader Bromus tectorum (cheatgrass) on seed fates of two native grass species, Elymus elymoides and Pseudoroegneria spicata, by removing B. tectorum and by adding inoculum of the shared seed pathogen Pyrenophora semeniperda in factorial experiments at xeric and mesic field sites. We also included a supplemental watering treatment to increase emergence and also the potential for pathogen escape. We recorded emergence and survival of native seedlings and also determined the fate of unemerged seeds. At the xeric site, Pyrenophora-caused mortality was high (34%), and effects of other pathogens and failed emergence of germinants were smaller. Cheatgrass removal negatively affected both emergence (35 vs. 25%) and spring survival (69 vs. 42%). Pyrenophora-caused seed mortality increased with inoculum augmentation for both species (22 vs. 47% overall), but emergence was negatively impacted only for P. spicata (20 vs. 34%). At the mesic site, Pyrenophora-caused mortality was low (6%). Cheatgrass removal doubled emergence (26 vs. 14%). Seed mortality increased significantly with inoculum augmentation for P. spicata (12 vs. 5%) but not E. elymoides, while emergence was not significantly affected in either species. A large fraction of seeds produced germinants that failed to emerge (37%), while another large fraction (35%) was killed by other pathogens. We conclude that facilitation by cheatgrass at the xeric site but interference at the mesic site was probably mediated through litter effects that could be ameliorative or suppressive. Apparent competition between cheatgrass and native grasses could occur through Pyrenophora, especially in a xeric environment, but effects were weak or absent at emergence. This was probably because Pyrenophora attacks the same slow-germinating fraction that is subject to pre-emergence mortality from

  10. Fire and nitrogen effects on Purple Threeawn (Aristida purpurea)abundance in northern mixed-grass prairie old fields

    Science.gov (United States)

    Purple threeawn (Aristida purpurea Nutt. varieties) is a native grass capable of increasing on rangelands, forming near monocultures, and creating a stable state. Productive rangelands throughout the Great Plains and Intermountain West have experienced increases in purple threeawn abundance, reduci...

  11. NPP Grassland: Konza Prairie, USA, 1984-1990, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three ASCII files (.txt format). Two files contain above-ground biomass and productivity data for a humid temperate tall-grass prairie...

  12. Interspecific nutrient transfer in a tallgrass prairie plant community

    International Nuclear Information System (INIS)

    Walter, L.E.F.; Hartnett, D.C.; Hetrick, B.A.D.; Schwab, A.P.

    1996-01-01

    Interplant nutrient transfer may be an important ecological process in grasslands, and may significantly influence plant neighborhood interactions. We investigated the potential for phosphorus transfer between the dominant grass Andropogon gerardii and several neighboring plant species in tallgrass prairie via a field 32PO4 labelling experiment. The mean amount of 32P received from donor shoots differed significantly among neighboring species and decreased with increasing distance from the donor. In general, forbs and cool-season C3 grasses received more labelled 32P than warm-season C4 grasses. Phosphorus transfer occurred over distances up to 0.5 m. The effects of species and distance on movement of phosphorus changed with increasing time after labelling. The relative mass of receiver and donor shoots did not affect amounts of 32P transfer. A benomyl fungicide treatment, applied to suppress mycorrhizal activity, likely did not affect existing vegetative hyphae and did not affect the amount of 32P transferred. These studies demonstrate that: (1) phosphorus is transferred among neighboring species in tallgrass prairie plant communities, (2) phosphorus may be transferred over significantly greater distances than reported in other grasslands, and (3) there is differential transfer among co-occurring species. Hypothesized mechanisms accounting for these patterns in tallgrass prairie include mycorrhizal hyphal interconnections and/or extensive and differential root and rhizosphere overlap among neighboring species

  13. MT and WY Tamarix soil properties influence germination and early growth of three native grass species

    Science.gov (United States)

    As a riparian invader, Tamarix spp. often leads to native species (e.g., plains cottonwood and willows, grasses) decline and lower habitat quality. Since Tamarix excretes excess salt and has high salt tolerance, negative soil feedback via high soil salinity may negatively affect native plants. Howev...

  14. Accelerated development in Johnsongrass seedlings (Sorghum halepense suppresses the growth of native grasses through size-asymmetric competition.

    Directory of Open Access Journals (Sweden)

    Susanne Schwinning

    Full Text Available Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense, big bluestem (Andropogon gerardii, little bluestem (Schizachyrium scoparius and switchgrass (Panicum virgatum. We predicted that a the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b competitive effect and response would be negatively correlated and c soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass < big bluestem < little bluestem/switchgrass, while Johnsongrass responded more strongly to competition from Johnsongrass than from native species. At final harvest, native plants growing with Johnsongrass attained between 2-5% of their single-plant non-root biomass, while Johnsongrass growing with native species attained 89% of single-plant non-root biomass. Fertilization enhanced Johnsongrass' competitive effects on native species, but added little to the already severe competitive suppression. Accelerated early growth of Johnsongrass seedlings relative to native seedlings appeared to enable subsequent resource pre-emption. Size-asymmetric competition and resource

  15. Establishment of prairies

    International Nuclear Information System (INIS)

    Lotero Cadavid, J.

    2001-01-01

    Are analyzed the establishment of prairies, such as the selection of the species, the factors of the environment, the impact in the establishment and forage production and its relation to the soil, the precipitation, the temperature, the light and the biotic factors. It is indicated that the selection of the species to settle down, is directly related with the climate and the soil and they group to be tolerant to drought, tolerant to flood soils, tolerant to humid soils, tolerant to soils very acids, moderately acids and saline. It is noticed that a bad establishment of the grasses can be due to the bad quality of the seed, a temperature and unfavorable humidity can cause low germination; equally seeds planted very deeply in heavy soils with excess of humidity. Considerations are made about the establishment and growth of the prairies in connection with the germination, cultures, sowing density and sowing on time, as well as for the soil preparation, the sowing in terrestrial mechanic and non mechanic and the use of cultivations forms of low cost and fertilization systems; equally the establishment of leguminous in mixture with gramineous, the renovation of prairies and the establishment of pastures

  16. FUEL CONDITIONS ASSOCIATED WITH NATIVE AND EXOTIC GRASSES IN A SUBTROPICAL DRY FOREST IN PUERTO RICO

    Science.gov (United States)

    Jarrod M. Thaxton; Skip J. Van Bloem; Stefanie Whitmire

    2012-01-01

    Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of...

  17. Establishment of Native Grasses with Biosolids on Abandoned Croplands in Chihuahua, Mexico

    Directory of Open Access Journals (Sweden)

    Pedro Jurado-Guerra

    2013-01-01

    Full Text Available The objective of the work was to evaluate establishment and forage production of native grasses with application of biosolids, a byproduct of waste-water treatment, at an abandoned field, in Ejido Nuevo Delicias, Chihuahua, Mexico. Four biosolids rates from 0 (control to 30 dry Mg ha−1 and two methods of application, surface applied (BioSur and soil incorporated (BioInc, were evaluated. Seedbed preparation included plowing and harrowing before rainfall. Field plots of 5 × 5 m were manually sown with a mix of blue grama (Bouteloua gracilis (50% and green sprangletop (Leptochloa dubia (50% in early August 2005. Experimental design was a randomized block with a split plot arrangement. Grass density, height, and forage production were estimated for three years. Data were analyzed with mixed linear models and repeated measures. Green sprangletop density increased under all biosolids rates regardless of method of application, while blue grama density slightly decreased. Biosolids were more beneficial for green sprangletop height than for blue grama height. Blue grama forage production slightly increased, while green sprangletop forage production increased the most at 10 Mg ha−1 biosolids rate under BioSur method. It was concluded that BioSur application at 10 and 20 Mg ha−1 rates had positive effects on the establishment and forage production of native grasses, especially green sprangletop.

  18. Establishment of native and exotic grasses on mine overburden and topsoil in the Hunter Valley, New South Wales

    Energy Technology Data Exchange (ETDEWEB)

    Huxtable, C.H.A.; Koen, T.B.; Waterhouse, D. [DNR, Dangar, NSW (Australia)

    2005-07-01

    Current recommendations for rehabilitation of open-cut coal mines in the Hunter Valley involve the sowing of exotic pasture species to reinstate mined land to Class IV and V under the Rural Land Capability System. Despite the importance of native grasses in the pre-mined landscape, they are currently not widely included in mine rehabilitation. To address this issue a project was conducted between 1994 and 2000 to research the use of native grasses for rehabilitation of open-cut coal mines in the Hunter Valley. This paper reports on 2 mine site experiments that aimed to assess establishment and persistence of a broad range of native and exotic grass species from an autumn sowing in both topsoil and raw spoil over a period of 61 months. The most promising natives in terms of early establishment, persistence and spread over time, included six C-3 accessions (five Austrodanthonia spp. and Austrostipa bigeniculata) and one C-4 accession (Cynodon dactylon). Persistence of these accessions was better in raw spoil than topsoil, despite initial low numbers, due to a lack of weed competition and their ability to spread by self-seeding. In topsoil, and in the absence of any biomass reduction, native species were mostly out-competed by vigorous exotic perennial grasses which were sown in these experiments and from seed influx from adjacent rehabilitation areas or from the soil seed bank. The effects of climatic conditions and differences in soil physical, chemical and seed bank characteristics at the 2 mine sites are also discussed.

  19. Accelerated development in Johnsongrass seedlings (Sorghum halepense) suppresses the growth of native grasses through size-asymmetric competition.

    Science.gov (United States)

    Schwinning, Susanne; Meckel, Heather; Reichmann, Lara G; Polley, H Wayne; Fay, Philip A

    2017-01-01

    Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense), big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparius) and switchgrass (Panicum virgatum). We predicted that a) the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b) competitive effect and response would be negatively correlated and c) soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding) ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass critical mechanism by which exotic invasive species displace functionally similar native species and alter the functional dynamics of native communities.

  20. Investigation of the Transcriptome of Prairie Cord Grass, a New Cellulosic Biomass Crop

    Directory of Open Access Journals (Sweden)

    Kristene Gedye

    2010-09-01

    Full Text Available Prairie cordgrass ( Bosc ex Link is being developed as a cellulosic biomass crop. Development of this species will require numerous steps, including breeding, agronomy, and characterization of the species genome. The research in this paper describes the first investigation of the transcriptome of prairie cordgrass via Next Generation Sequencing Technology, 454 GS FLX. A total of 556,198 expressed sequence tags (ESTs were produced from four prairie cordgrass tissues: roots, rhizomes, immature inflorescence, and hooks. These ESTs were assembled into 26,302 contigs and 71,103 singletons. From these data were identified, EST–SSR (simple sequence repeat regions and cell wall biosynthetic pathway genes suitable for the development of molecular markers which can aid the breeding process of prairie cordgrass by means of marker assisted selection.

  1. Investigation of the Transcriptome of Prairie Cord Grass, a New Cellulosic Biomass Crop

    KAUST Repository

    Gedye, Kristene

    2010-09-15

    Prairie cordgrass (Spartina pectinata Bosc ex Link) is being developed as a cellulosic biomass crop. Development of this species will require numerous steps, including breeding, agronomy, and characterization of the species genome. The research in this paper describes the first investigation of the transcriptome of prairie cordgrass via Next Generation Sequencing Technology, 454 GS FLX. A total of 556,198 expressed sequence tags (ESTs) were produced from four prairie cordgrass tissues: roots, rhizomes, immature inflorescence, and hooks. These ESTs were assembled into 26,302 contigs and 71,103 singletons. From these data were identified, EST-SSR (simple sequence repeat) regions and cell wall biosynthetic pathway genes suitable for the development of molecular markers which can aid the breeding process of prairie cordgrass by means of marker assisted selection.

  2. Ecophysiological Responses of Invasive and Native Grass Communities with Simulated Warming

    Science.gov (United States)

    Quade, B.; Ravi, S.; Huxman, T. E.

    2010-12-01

    William Quade1, Sujith Ravi2, Ashley Weide2, Greg Barron-Gafford2, Katerina Dontsova2 and Travis E Huxman2 1Carthage College, WI 2 B2 Earthscience & UA Biosphere 2, University of Arizona, Tucson. Abstract Climate change, anthropogenic disturbances and lack of proper management practices have rendered many arid regions susceptible to invasions by exotic grasses with consequent ecohydrological, biogeochemical and socio economic implications. Thus, understanding the ecophysiological processes driving these large-scale vegetation shifts in drylands, in the context of rising temperatures and recurrent droughts is fundamental to global change research. Using the Biosphere 2 facility to maintain distinct temperature treatments of ambient and predicted warmer conditions (+ 4o C) inside, we compared the physiological (e.g. photosynthesis, stomatal conductance, biomass) responses of a native grass - Heteropogan contortus (Tanglehead) and an invasive grass - Pennisetum ciliare (Buffelgrass) growing in single and mixed communities. The results indicate that Buffelgrass can assimilate more CO2 per unit leaf area under current conditions, though warming seems to inhibit the performance when looking at biomass, photosynthesis and stomatal conductance. Under similar moisture regimes Buffelgrass performed better than Tangle head in mixed communities regardless of the temperature. Both grasses had decrease in stomatal conductance with warmer conditions, however the Buffel grass did not have the same decrease of conductance when planted in a mixed communities. Key words: Buffelgrass, Tanglehead, Biosphere 2, stomatal conductance, climate change

  3. Investigation of the Transcriptome of Prairie Cord Grass, a New Cellulosic Biomass Crop

    KAUST Repository

    Gedye, Kristene; Gonzalez-Hernandez, Jose; Ban, Yuguang; Ge, Xijin; Thimmapuram, Jyothi; Sun, Fengjie; Wright, Chris; Ali, Shahjahan; Boe, Arvid; Owens, Vance

    2010-01-01

    in this paper describes the first investigation of the transcriptome of prairie cordgrass via Next Generation Sequencing Technology, 454 GS FLX. A total of 556,198 expressed sequence tags (ESTs) were produced from four prairie cordgrass tissues: roots, rhizomes

  4. Understanding the Impacts of AFEX™ Pretreatment and Densification on the Fast Pyrolysis of Corn Stover, Prairie Cord Grass, and Switchgrass.

    Science.gov (United States)

    Sundaram, Vijay; Muthukumarappan, Kasiviswanathan; Gent, Stephen

    2017-03-01

    Lignocellulosic feedstocks corn stover, prairie cord grass, and switchgrass were subjected to ammonia fiber expansion (AFEX™) pretreatment and densified using extrusion pelleting and ComPAKco densification technique. The effects of AFEX™ pretreatment and densification were studied on the fast pyrolysis product yields. Feedstocks were milled in a hammer mill using three different screen sizes (2, 4, and 8 mm) and were subjected to AFEX™ pretreatment. The untreated and AFEX™-pretreated feedstocks were moisture adjusted at three levels (5, 10, and 15 % wb) and were extruded using a lab-scale single screw extruder. The barrel temperature of the extruder was maintained at 75, 100, and 125 °C. Durability of the extruded pellets made from AFEX™-pretreated corn stover, prairie cord grass, and switchgrass varied from 94.5 to 99.2, 94.3 to 98.7, and 90.1 to 97.5 %, respectively. Results of the thermogravimetric analysis showed the decrease in the decomposition temperature of the all the feedstocks after AFEX™ pretreatment indicating the increase in thermal stability. Loose and densified feedstocks were subjected to fast pyrolysis in a lab-scale reactor, and the yields (bio-oil and bio-char) were measured. Bio-char obtained from the AFEX™-pretreated feedstocks exhibited increased bulk and particle density compared to the untreated feedstocks. The properties of the bio-oil were statistically similar for the untreated, AFEX™-pretreated, and AFEX™-pretreated densified feedstocks. Based on the bio-char and bio-oil yields, the AFEX™-pretreated feedstocks and the densified AFEX™-pretreated feedstocks (pellets and PAKs) exhibited similar behavior. Hence, it can be concluded that densifying the AFEX™-pretreated feedstocks could be a viable option in the biomass-processing depots to reduce the transportation costs and the logistical impediments without affecting the product yields.

  5. Impact of Prairie Cover on Hydraulic Conductivity and Storm Water Runoff

    Science.gov (United States)

    Herkes, D. M. G.; Gori, A.; Juan, A.

    2017-12-01

    Houston has long struggled to find effective solutions to its historic flooding problems. Conventional strategies have revolved around constructing hard infrastructure such as levees or regional detention ponds to reduce flood impacts. However, there has been a recent shift to explore the implementation of nature-based solutions in reducing flood impacts. This is due to the price of structural mechanisms, as well as their failure to adequately protect areas from flooding during the latest flood events. One alternative could be utilizing the natural water retention abilities of native Texas prairies. This study examines the effect of Texas prairie areas in increasing soil infiltration capacities, thereby increasing floodwater storage and reducing surface runoff. For this purpose, an infiltration study of 15 sites was conducted on lands owned by the Katy Prairie Conservancy within Cypress Creek watershed. Located in Northwest Houston, it is an area which had been heavily impacted by recent flood events. Each sampling site was selected to represent a particular land cover or vegetation type, ranging from developed open space to native prairies. Field test results are then compared to literature values of soil infiltration capacity in order to determine the infiltration benefit of each vegetation type. Test results show that certain vegetation, especially prairies, significantly increase the infiltration capacity of the underlying soil. For example, the hydraulic conductivity of prairie on sandy loam soil is approximately an order of magnitude higher than that of the soil itself. Finally, a physics-based hydrologic model is utilized to evaluate the flood reduction potential of native Texas prairie. This model represents Cypress Creek watershed in gridded cell format, and allows varying hydraulic and infiltration parameters at each cell. Design storms are run to obtain flow hydrographs for selected watch points in the study area. Two scenarios are simulated and compared

  6. Model estimation of land-use effects on water levels of northern Prairie wetlands

    Science.gov (United States)

    Voldseth, R.A.; Johnson, W.C.; Gilmanov, T.; Guntenspergen, G.R.; Millett, B.V.

    2007-01-01

    Wetlands of the Prairie Pothole Region exist in a matrix of grassland dominated by intensive pastoral and cultivation agriculture. Recent conservation management has emphasized the conversion of cultivated farmland and degraded pastures to intact grassland to improve upland nesting habitat. The consequences of changes in land-use cover that alter watershed processes have not been evaluated relative to their effect on the water budgets and vegetation dynamics of associated wetlands. We simulated the effect of upland agricultural practices on the water budget and vegetation of a semipermanent prairie wetland by modifying a previously published mathematical model (WETSIM). Watershed cover/land-use practices were categorized as unmanaged grassland (native grass, smooth brome), managed grassland (moderately heavily grazed, prescribed burned), cultivated crops (row crop, small grain), and alfalfa hayland. Model simulations showed that differing rates of evapotranspiration and runoff associated with different upland plant-cover categories in the surrounding catchment produced differences in wetland water budgets and linked ecological dynamics. Wetland water levels were highest and vegetation the most dynamic under the managed-grassland simulations, while water levels were the lowest and vegetation the least dynamic under the unmanaged-grassland simulations. The modeling results suggest that unmanaged grassland, often planted for waterfowl nesting, may produce the least favorable wetland conditions for birds, especially in drier regions of the Prairie Pothole Region. These results stand as hypotheses that urgently need to be verified with empirical data.

  7. Plant composition in oak savanna and woodland restoration at Prairie Fork Conservation Area in Missouri

    Science.gov (United States)

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek; Jamie Coe; Warren Taylor

    2007-01-01

    The wooded areas of the Prairie Fork Conservation Area in central Missouri are typical of the oak/hickory forest/prairie transition zone that will require active management to restore pre-settlement, grass dominated savannas and open woodlands to improve habitat for wildlife. We initiated a management program to restore savannas and woodlands by reducing the midstory (...

  8. A Prairie Dog Abatement Program in San Juan County, Utah

    OpenAIRE

    Messmer, Terry A.; Keyes, Jim; McDonald, Roy

    1993-01-01

    Four species of prairie dogs are native to the plains and plateaus of the western United States. The most abundant and widely distributed of these is the blacktailed prairie dog, (Cynomys ludovicianus). This species has been a frequent topic of discussion at previous Great Plains Wildlife Damage Control workshops. Black-tailed prairie dog ecology and management was the topic of a panel discussion held at the Fifth Great Plains Wildlife Damage Control Workshop, in Lincoln, Nebraska (Timm and J...

  9. Exotic Annual Grasses in Western Rangelands: Predicting Resistance and Resilience of Native Ecosystems to Invasion (Draft)

    National Research Council Canada - National Science Library

    Belnap, Jayne; Evans, R. D; Phillips, Susan L; Reheis, Merith; Reynolds, Rich; Sanford, Robert; Webb, Bruce

    2004-01-01

    Bromus tectorum (hereafter referred to as Bromus) is a non-native annual grass from the Mediterranean region that arrived in the United States in the late 19th century and soon spread throughout the western states...

  10. Preserving prairies: Understanding temporal and spatial patterns of invasive annual bromes in the Northern Great Plains

    Science.gov (United States)

    Ashton, Isabel; Symstad, Amy J.; Davis, Christopher; Swanson, Daniel J.

    2016-01-01

    Two Eurasian invasive annual brome grasses, cheatgrass (Bromus tectorum) and Japanese brome (Bromus japonicus), are well known for their impact in steppe ecosystems of the western United States where these grasses have altered fire regimes, reduced native plant diversity and abundance, and degraded wildlife habitat. Annual bromes are also abundant in the grasslands of the Northern Great Plains (NGP), but their impact and ecology are not as well studied. It is unclear whether the lessons learned from the steppe will translate to the mixed-grass prairie where native plant species are adapted to frequent fires and grazing. Developing a successful annual brome management strategy for National Park Service units and other NGP grasslands requires better understanding of (1) the impact of annual bromes on grassland condition; (2) the dynamics of these species through space and time; and (3) the relative importance of environmental factors within and outside managers' control for these spatiotemporal dynamics. Here, we use vegetation monitoring data collected from 1998 to 2015 in 295 sites to relate spatiotemporal variability of annual brome grasses to grassland composition, weather, physical environmental characteristics, and ecological processes (grazing and fire). Concern about the impact of these species in NGP grasslands is warranted, as we found a decline in native species richness with increasing annual brome cover. Annual brome cover generally increased over the time of monitoring but also displayed a 3- to 5-yr cycle of reduction and resurgence. Relative cover of annual bromes in the monitored areas was best predicted by park unit, weather, extant plant community, slope grade, soil composition, and fire history. We found no evidence that grazing reduced annual brome cover, but this may be due to the relatively low grazing pressure in our study. By understanding the consequences and patterns of annual brome invasion, we will be better able to preserve and restore

  11. Prairie Monitoring Protocol Development: North Coast and Cascades Network

    Science.gov (United States)

    McCoy, Allen; Dalby, Craig

    2009-01-01

    The purpose of the project was to conduct research that will guide development of a standard approach to monitoring several components of prairies within the North Coast and Cascades Network (NCCN) parks. Prairies are an important element of the natural environment at many parks, including San Juan Island National Historical Park (NHP) and Ebey's Landing National Historical Reserve (NHR). Forests have been encroaching on these prairies for many years, and so monitoring of the prairies is an important resource issue. This project specifically focused on San Juan Island NHP. Prairies at Ebey's Landing NHR will be monitored in the future, but that park was not mapped as part of this prototype project. In the interest of efficiency, the Network decided to investigate two main issues before launching a full protocol development effort: (1) the imagery requirements for monitoring prairie components, and (2) the effectiveness of software to assist in extracting features from the imagery. Several components of prairie monitoring were initially identified as being easily tracked using aerial imagery. These components included prairie/forest edge, broad prairie composition (for example, shrubs, scattered trees), and internal exclusions (for example, shrubs, bare ground). In addition, we believed that it might be possible to distinguish different grasses in the prairies if the imagery were of high enough resolution. Although the areas in question at San Juan Island NHP are small enough that mapping on the ground with GPS (Global Positioning System) would be feasible, other applications could benefit from aerial image acquisition on a regular, recurring basis and thereby make the investment in aerial imagery worthwhile. The additional expense of orthorectifying the imagery also was determined to be cost-effective.

  12. Effects of sexual dimorphism and landscape composition on the trophic behavior of Greater Prairie-Chicken.

    Directory of Open Access Journals (Sweden)

    Beatriz Blanco-Fontao

    Full Text Available Partitioning of ecological niche is expected in lekking species that show marked sexual size dimorphism as a consequence of sex-specific ecological constraints. However, niche partitioning is uncertain in species with moderate sexual dimorphism. In addition, the ecological niche of a species may also be affected by landscape composition; particularly, agricultural fragmentation may greatly influence the trophic behavior of herbivores. We studied trophic niche variation in Greater Prairie-Chickens (Tympanuchus cupido, a grouse species that shows moderate sex-dimorphism. Greater Prairie-Chickens are native to tallgrass prairies of North America, although populations persist in less natural mosaics of cropland and native habitats. We used stable isotope analysis of carbon and nitrogen in blood, claws and feathers to assess seasonal differences in trophic niche breadth and individual specialization between male and female Greater Prairie-Chickens, and between birds living in continuous and fragmented landscapes. We found that females showed broader niches and higher individual specialization than males, especially in winter and autumn. However, differences between females and males were smaller in spring when birds converge at leks, suggesting that females and males may exhibit similar feeding behaviors during the lekking period. In addition, we found that birds living in native prairies showed greater annual trophic variability than conspecifics in agricultural mosaic landscapes. Native habitats may provide greater dietary diversity, resulting in greater diversity of feeding strategies.

  13. Citizen knowledge and perception of black-tailed prairie dog management: Report to respondents

    Science.gov (United States)

    Sexton, Natalie R.; Brinson, Ayeisha; Ponds, Phadrea D.; Cline, Kurt; Lamb, Berton L.

    2001-01-01

    What do citizens know about black-tailed prairie dogs, and where do they get their information? When management decisions need to be made regarding an animal such as the black-tailed prairie dog, an understanding of the species and its relationship to humans is necessary. This includes knowing the biology of the animal, where it lives, and how it interacts with other animals. But it is equally important for those making decisions about the species to understand citizens’ knowledge and perceptions so managers can effectively communicate with the public and help the public participate in planning and decision making activities. Unfortunately, what is known about public knowledge, perception, and preferences concerning prairie dog management is limited to data from only a few areas. This study attempts to answer the question: What do people in the short-grass prairie region of the United States know and think about black-tailed prairie dogs?

  14. Valuing ecosystem and economic services across land-use scenarios in the Prairie Pothole Regions of the Dakotas, USA

    Science.gov (United States)

    Gascoigne, William R.; Hoag, Dana; Koontz, Lynne; Tangen, Brian A.; Shaffer, Terry L.; Gleason, Robert A.

    2011-01-01

    This study uses biophysical values derived for the Prairie Pothole Region (PPR) of North and South Dakota, in conjunction with value transfer methods, to assess environmental and economic tradeoffs under different policy-relevant land-use scenarios over a 20-year period. The ecosystem service valuation is carried out by comparing the biophysical and economic values of three focal services (i.e. carbon sequestration, reduction in sedimentation, and waterfowl production) across three focal land uses in the region [i.e. native prairie grasslands, lands enrolled in the Conservation Reserve and Wetlands Reserve Programs (CRP/WRP), and cropland]. This study finds that CRP/WRP lands cannot mitigate (hectare for hectare) the loss of native prairie from a social welfare standpoint. Land use scenarios where native prairie loss was minimized, and CRP/WRP lands were increased, provided the most societal benefit. The scenario modeling projected native prairie conversion to cropland over the next 20 years would result in a social welfare loss valued at over $4 billion when considering the study's three ecosystem services, and a net loss of about $3.4 billion when reductions in commodity production are accounted for.

  15. Invasive plants affect prairie soil biology

    Science.gov (United States)

    Non-native or exotic plants often cause ecological and environmental damage in ecosystems where they invade and become established. These invasive plants may be the most serious threat to plant diversity in prairies, especially those in scattered remnants, which may be particularly vulnerable to rap...

  16. Native plants fare better against an introduced competitor with native microbes and lower nitrogen availability.

    Science.gov (United States)

    Gaya Shivega, W; Aldrich-Wolfe, Laura

    2017-01-24

    While the soil environment is generally acknowledged as playing a role in plant competition, the relative importance of soil resources and soil microbes in determining outcomes of competition between native and exotic plants has rarely been tested. Resilience of plant communities to invasion by exotic species may depend on the extent to which native and exotic plant performance are mediated by abiotic and biotic components of the soil. We used a greenhouse experiment to compare performance of two native prairie plant species and one exotic species, when grown in intraspecific competition and when each native was grown in interspecific competition with the exotic species, in the presence and absence of a native prairie soil community, and when nitrogen availability was elevated or was maintained at native prairie levels. We found that elevated nitrogen availability was beneficial to the exotic species and had no effect on or was detrimental to the native plant species, that the native microbial community was beneficial to the native plant species and either had no effect or was detrimental to the exotic species, and that intraspecific competition was stronger than interspecific competition for the exotic plant species and vice-versa for the natives. Our results demonstrate that soil nitrogen availability and the soil microbial community can mediate the strength of competition between native and exotic plant species. We found no evidence for native microbes enhancing the performance of the exotic plant species. Instead, loss of the native soil microbial community appears to reinforce the negative effects of elevated N on native plant communities and its benefits to exotic invasive species. Resilience of plant communities to invasion by exotic plant species is facilitated by the presence of an intact native soil microbial community and weakened by anthropogenic inputs of nitrogen. Published by Oxford University Press on behalf of the Annals of Botany Company.

  17. Study of atmospheric stratification influence on pollutants dispersion using a numerical fluid mechanics model. Code-Saturne validation with the Prairie Grass experiment/Study of atmospheric stratification influence on pollutants dispersion using a numerical fluid mechanics software

    International Nuclear Information System (INIS)

    Coulon, Fanny

    2010-09-01

    A validation of Code-Saturne, a computational fluids dynamics model developed by EDF, is proposed for stable conditions. The goal is to guarantee the performance of the model in order to use it for impacts study. A comparison with the Prairie Grass data field experiment and with two Gaussian plume models will be done [fr

  18. When perception reflects reality: Non-native grass invasion alters small mammal risk landscapes and survival

    Science.gov (United States)

    Ceradnini, Joseph P.; Chalfoun, Anna

    2017-01-01

    Modification of habitat structure due to invasive plants can alter the risk landscape for wildlife by, for example, changing the quality or availability of refuge habitat. Whether perceived risk corresponds with actual fitness outcomes, however, remains an important open question. We simultaneously measured how habitat changes due to a common invasive grass (cheatgrass, Bromus tectorum) affected the perceived risk, habitat selection, and apparent survival of a small mammal, enabling us to assess how well perceived risk influenced important behaviors and reflected actual risk. We measured perceived risk by nocturnal rodents using a giving-up density foraging experiment with paired shrub (safe) and open (risky) foraging trays in cheatgrass and native habitats. We also evaluated microhabitat selection across a cheatgrass gradient as an additional assay of perceived risk and behavioral responses for deer mice (Peromyscus maniculatus) at two spatial scales of habitat availability. Finally, we used mark-recapture analysis to quantify deer mouse apparent survival across a cheatgrass gradient while accounting for detection probability and other habitat features. In the foraging experiment, shrubs were more important as protective cover in cheatgrass-dominated habitats, suggesting that cheatgrass increased perceived predation risk. Additionally, deer mice avoided cheatgrass and selected shrubs, and marginally avoided native grass, at two spatial scales. Deer mouse apparent survival varied with a cheatgrass–shrub interaction, corresponding with our foraging experiment results, and providing a rare example of a native plant mediating the effects of an invasive plant on wildlife. By synthesizing the results of three individual lines of evidence (foraging behavior, habitat selection, and apparent survival), we provide a rare example of linkage between behavioral responses of animals indicative of perceived predation risk and actual fitness outcomes. Moreover, our results

  19. Symbiosis in the Context of an Invasive, Non-Native Grass: Fungal Biodiversity and Student Engagement

    Science.gov (United States)

    Lehr, Gavin

    Grasslands in the western United States face severe environmental threats including those brought about by climate change, such as changes in precipitation regimes and altered fire cycles; land-use conversion and development; and the introduction, establishment, and spread of non-native species. Lehmann's lovegrass (Eragrostis lehmanniana) was introduced to the southwestern United States in the early 1900s. Since its introduction, it has become the dominant grass in the mid-elevation grasslands of southern Arizona, including the Santa Rita Experimental Range (SRER), where it has displaced native grasses including Arizona cottontop, three awns, and gramas. Like all plants in terrestrial ecosystems, this grass harbors fungal symbionts that can be important for its establishment and persistence. This thesis focuses on fungal symbionts of Lehmann's lovegrass and has two components. First, the diversity and distributions of endophytes in Lehmann's lovegrass are evaluated in the context of biotic and abiotic factors in the SRER. Culturing from roots and shoots of Lehmann's lovegrass at points beneath and outside the canopy of native mesquites, which are encroaching on grasslands over time, provides insight into how a single plant species can exhibit local variation in the composition of its symbionts. Second, the thesis is used as the basis for engagement of students in science, technology, engineering, and mathematics (STEM) through the development and implementation of classroom- and field activities centered on endophytes, which help high school students address core learning aims while also gaining real research experience. Engaging students in important questions relevant to their local environment can catalyze interest in science and help students cross the threshold into research. The contributions of such approaches with respect to learning not only fulfills key next-generation science standards and common core objectives, but provides students with a meaningful

  20. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks

    Science.gov (United States)

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested

  1. Southern marl prairies conceptual ecological model

    Science.gov (United States)

    Davis, S.M.; Loftus, W.F.; Gaiser, E.E.; Huffman, A.E.

    2005-01-01

    About 190,000 ha of higher-elevation marl prairies flank either side of Shark River Slough in the southern Everglades. Water levels typically drop below the ground surface each year in this landscape. Consequently, peat soil accretion is inhibited, and substrates consist either of calcitic marl produced by algal periphyton mats or exposed limestone bedrock. The southern marl prairies support complex mosaics of wet prairie, sawgrass sawgrass (Cladium jamaicense), tree islands, and tropical hammock communities and a high diversity of plant species. However, relatively short hydroperiods and annual dry downs provide stressful conditions for aquatic fauna, affecting survival in the dry season when surface water is absent. Here, we present a conceptual ecological model developed for this landscape through scientific concensus, use of empirical data, and modeling. The two major societal drivers affecting the southern marl prairies are water management practices and agricultural and urban development. These drivers lead to five groups of ecosystem stressors: loss of spatial extent and connectivity, shortened hydroperiod and increased drought severity, extended hydroperiod and drying pattern reversals, introduction and spread of non-native trees, and introduction and spread of non-native fishes. Major ecological attributes include periphyton mats, plant species diversity and community mosaic, Cape Sable seaside sparrow (Ammodramus maritimus mirabilis), marsh fishes and associated aquatic fauna prey base, American alligator (Alligator mississippiensis), and wading bird early dry season foraging. Water management and development are hypothesized to have a negative effect on the ecological attributes of the southern marl prairies in the following ways. Periphyton mats have decreased in cover in areas where hydroperiod has been significantly reduced and changed in community composition due to inverse responses to increased nutrient availability. Plant species diversity and

  2. Butterfly responses to prairie restoration through fire and grazing

    Science.gov (United States)

    Vogel, Jennifer A.; Debinski, Diane M.; Koford, Rolf R.; Miller, J.R.

    2007-01-01

    The development of land for modern agriculture has resulted in losses of native prairie habitat. The small, isolated patches of prairie habitat that remain are threatened by fire suppression, overgrazing, and invasion by non-native species. We evaluated the effects of three restoration practices (grazing only, burning only, and burning and grazing) on the vegetation characteristics and butterfly communities of remnant prairies. Total butterfly abundance was highest on prairies that were managed with burning and grazing and lowest on those that were only burned. Butterfly species richness did not differ among any of the restoration practices. Butterfly species diversity was highest on sites that were only burned. Responses of individual butterfly species to restoration practices were highly variable. In the best predictive regression model, total butterfly abundance was negatively associated with the percent cover of bare ground and positively associated with the percent cover of forbs. Canonical correspondence analysis revealed that sites with burned only and grazed only practices could be separated based on their butterfly community composition. Butterfly communities in each of the three restoration practices are equally species rich but different practices yield compositionally different butterfly communities. Because of this variation in butterfly species responses to different restoration practices, there is no single practice that will benefit all species or even all species within habitat-specialist or habitat-generalist habitat guilds. ?? 2007 Elsevier Ltd. All rights reserved.

  3. Recovery of native prairie after pipeline construction in the Sand Hills region of Saskatchewan

    International Nuclear Information System (INIS)

    Walker, D.; Kremer, L.; Marshall, W.

    1996-01-01

    Land reclamation measures taken after construction of a large diameter natural gas pipeline in the Great Sand Hills region of southwestern Saskatchewan were detailed. Mitigation measures included modified construction procedures to minimize the size of the disturbance, worker educational programs to sensitize them to the prevailing fragile environment, dormant season construction, efforts to salvage topsoil seedbank, fertilizer application, straw bale wind barriers, brush mulch wind barriers, surface manipulation with the Hodder Gouger, fencing-out cattle, and the application of a seed mixture of agronomic legumes and native grasses. Vegetation and soil erosion were monitored over a period of four years. After four years the canopy cover was 88 per cent native species. On low-lying, protected sites vegetation was stable enough to support cattle grazing. Exposed sites will not reach this level of vegetation stability for some years to come due soil erosion by wind

  4. Impacts of mesquite distribution on seasonal space use of lesser prairie-chickens

    Science.gov (United States)

    Boggie, Matthew A.; Strong, Cody R.; Lusk, Daniel; Carleton, Scott A.; Gould, William R.; Howard, Randy L.; Nichols, Clay T.; Falkowski, Michael J.; Hagen, Christian A.

    2017-01-01

    Loss of native grasslands by anthropogenic disturbances has reduced availability and connectivity of habitat for many grassland species. A primary threat to contiguous grasslands is the encroachment of woody vegetation, which is spurred by disturbances that take on many forms from energy development, fire suppression, and grazing. These disturbances are exacerbated by natural- and human-driven cycles of changes in climate punctuated by drought and desertification conditions. Encroachment of honey mesquite (Prosopis glandulosa) into the prairies of southeastern New Mexico has potentially limited habitat for numerous grassland species, including lesser prairie-chickens (Tympanuchus pallidicinctus). To determine the magnitude of impacts of distribution of mesquite and how lesser prairie-chickens respond to mesquite presence on the landscape in southeastern New Mexico, we evaluated seasonal space use of lesser prairie-chickens in the breeding and nonbreeding seasons. We derived several remotely sensed spatial metrics to characterize the distribution of mesquite. We then used these data to create population-level resource utilization functions and predict intensity of use of lesser prairie-chickens across our study area. Home ranges were smaller in the breeding season compared with the nonbreeding season; however, habitat use was similar across seasons. During both seasons, lesser prairie-chickens used areas closer to leks and largely avoided areas with mesquite. Relative to the breeding season, during the nonbreeding season habitat use suggested a marginal increase in mesquite within areas of low intensity of use, yet aversion to mesquite was strong in areas of medium to high intensity of use. To our knowledge, our study is the first to demonstrate a negative behavioral response by lesser prairie-chickens to woody encroachment in native grasslands. To mitigate one of the possible limiting factors for lesser prairie-chickens, we suggest future conservation

  5. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    Energy Technology Data Exchange (ETDEWEB)

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  6. Land use effects on pesticides in sediments of prairie pothole wetlands in North and South Dakota

    Science.gov (United States)

    McMurry, Scott T.; Belden, Jason B.; Smith, Loren M.; Morrison, Shane A.; Daniel, Dale W.; Euliss, Betty R.; Euliss, Ned H. Jr.; Kensinger, Bart J.; Tangen, Brian

    2016-01-01

    Prairie potholes are the dominant wetland type in the intensively cultivated northern Great Plains of North America, and thus have the potential to receive pesticide runoff and drift. We examined the presence of pesticides in sediments of 151 wetlands split among the three dominant land use types, Conservation Reserve Program (CRP), cropland, and native prairie, in North and South Dakota in 2011. Herbicides (glyphosate and atrazine) and fungicides were detected regularly, with no insecticide detections. Glyphosate was the most detected pesticide, occurring in 61% of all wetlands, with atrazine in only 8% of wetlands. Pyraclostrobin was one of five fungicides detected, but the only one of significance, being detected in 31% of wetlands. Glyphosate was the only pesticide that differed by land use, with concentrations in cropland over four-times that in either native prairie or CRP, which were equal in concentration and frequency of detection. Despite examining several landscape variables, such as wetland proximity to specific crop types, watershed size, and others, land use was the best variable explaining pesticide concentrations in potholes. CRP ameliorated glyphosate in wetlands at concentrations comparable to native prairie and thereby provides another ecosystem service from this expansive program.

  7. Restoring sand shinnery oak prairies with herbicide and grazing in New Mexico

    Science.gov (United States)

    Zavaleta, Jennifer C.; Haukos, David A.; Grisham, Blake A.; Boal, Clint W.; Dixon, Charles

    2016-01-01

    Sand shinnery oak (Quercus havardii) prairies are increasingly disappearing and increasingly degraded in the Southern High Plains of Texas and New Mexico. Restoring and managing sand shinnery oak prairie can support biodiversity, specific species of conservation concern, and livestock production. We measured vegetation response to four treatment combinations of herbicide (tebuthiuron applied at 0.60 kg/ha) and moderate-intensity grazing (50% removal of annual herbaceous production) over a 10-year period in a sand shinnery oak prairie of eastern New Mexico. We compared the annual vegetation response to the historical climax plant community (HCPC) as outlined by the U.S. Department of Agriculture Ecological Site Description. From 2 to 10 years postapplication, tebuthiuron-treated plots had reduced shrub cover with twice as much forb and grass cover as untreated plots. Tebuthiuron-treated plots, regardless of the presence of grazing, most frequently met HCPC. Tebuthiuron and moderate-intensity grazing increased vegetation heterogeneity and, based on comparison of the HCPC, successfully restored sand shinnery oak prairie to a vegetation composition similar to presettlement.

  8. Nesting ecology and nest survival of lesser prairie-chickens on the Southern High Plains of Texas

    Science.gov (United States)

    Grisham, Blake A.; Borsdorf, Philip K.; Boal, Clint W.; Boydston, Kathy K.

    2014-01-01

    The decline in population and range of lesser prairie-chickens (Tympanuchus pallidicinctus) throughout the central and southern Great Plains has raised concerns considering their candidate status under the United States Endangered Species Act. Baseline ecological data for lesser prairie-chickens are limited, especially for the shinnery oak-grassland communities of Texas. This information is imperative because lesser prairie-chickens in shinnery oak grasslands occur at the extreme southwestern edge of their distribution. This geographic region is characterized by hot, arid climates, less fragmentation, and less anthropogenic development than within the remaining core distribution of the species. Thus, large expanses of open rangeland with less anthropogenic development and a climate that is classified as extreme for ground nesting birds may subsequently influence nest ecology, nest survival, and nest site selection differently compared to the rest of the distribution of the species. We investigated the nesting ecology of 50 radio-tagged lesser prairie-chicken hens from 2008 to 2011 in the shinnery oak-grassland communities in west Texas and found a substantial amount of inter-annual variation in incubation start date and percent of females incubating nests. Prairie-chickens were less likely to nest near unimproved roads and utility poles and in areas with more bare ground and litter. In contrast, hens selected areas dominated by grasses and shrubs and close to stock tanks to nest. Candidate models including visual obstruction best explained daily nest survival; a 5% increase in visual obstruction improved nest survival probability by 10%. The model-averaged probability of a nest surviving the incubation period was 0.43 (SE = 0.006; 95% CI: 0.23, 0.56). Our findings indicate that lesser prairie-chicken reproduction during our study period was dynamic and was correlated with seasonal weather patterns that ultimately promoted greater grass growth earlier in the

  9. GUI development for GRASS GIS

    Directory of Open Access Journals (Sweden)

    Martin Landa

    2007-12-01

    Full Text Available This article discusses GUI development for GRASS GIS. Sophisticated native GUI for GRASS is one of the key points (besides the new 2D/3D raster library, vector architecture improvements, etc. for the future development of GRASS. In 2006 the GRASS development team decided to start working on the new generation of GUI instead of improving the current GUI based on Tcl/Tk.

  10. Comparison of silage and hay of dwarf Napier grass (Pennisetum purpureum) fed to Thai native beef bulls.

    Science.gov (United States)

    Mapato, Chaowarit; Wanapat, Metha

    2018-03-23

    Both quantity and quality of forages are important in dry season feeding. Eight Thai native beef bulls were arranged in a Completely randomized design to evaluate dwarf Napier namely Sweet grass (Pennisetum purpureum cv. Mahasarakham) preserved as silage or hay on feed intake, digestibility, and rumen fermentation. The animals were fed with forage ad libitum supplemented with concentrate mixture at 1.0% of BW for 21 days; data were collected during the last 7 days. The results showed that there were differences (P  0.05) in animals fed silage and hay. Sweet grass is better preserved as hay rather than silage.

  11. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  12. Root proliferation in native perennial grasses of arid Patagonia, Argentina

    Institute of Scientific and Technical Information of China (English)

    Yanina A. TORRES; Mara M. MUJICA; Sandra S. BAIONI; Jos ENTO; Mara N. FIORETTI; Guillermo TUCAT; Carlos A. BUSSO; Oscar A. MONTENEGRO; Leticia ITHURRART; Hugo D. GIORGETTI; Gustavo RODRGUEZ; Diego BENTIVEGNA; Roberto E. BREVEDAN; Osvaldo A. FERNNDEZ

    2014-01-01

    Pappophorum vaginatum is the most abundant C4 perennial grass desirable to livestock in rangelands of northeastern Patagonia, Argentina. We hypothesized that (1) defoliation reduce net primary productivity, and root length density and weight in the native species, and (2) root net primary productivity, and root length density and weight, are greater in P. vaginatum than in the other, less desirable, native species (i.e., Aristida spegazzinii, A. subulata and Sporobolus cryptandrus). Plants of all species were either exposed or not to a severe defoliation twice a year during two growing seasons. Root proliferation was measured using the cylinder method. Cylindrical, iron structures, wrapped up using nylon mesh, were buried diagonally from the periphery to the center on individual plants. These structures, initially filled with soil without any organic residue, were dug up from the soil on 25 April 2008, after two successive defoliations in mid-spring 2007. During the second growing season (2008-2009), cylinders were destructively harvested on 4 April 2009, after one or two defoliations in mid-and/or late-spring, respectively. Roots grown into the cylinders were obtained after washing the soil manually. Defoliation during two successive years did reduce the study variables only after plants of all species were defoliated twice, which supported the first hypothesis. The greater root net primary productivity, root length den-sity and weight in P. vaginatum than in the other native species, in support of the second hypothesis, could help to explain its greater abundance in rangelands of Argentina.

  13. Predicting Greater Prairie-Chicken Lek Site Suitability to Inform Conservation Actions.

    Directory of Open Access Journals (Sweden)

    Torre J Hovick

    Full Text Available The demands of a growing human population dictates that expansion of energy infrastructure, roads, and other development frequently takes place in native rangelands. Particularly, transmission lines and roads commonly divide rural landscapes and increase fragmentation. This has direct and indirect consequences on native wildlife that can be mitigated through thoughtful planning and proactive approaches to identifying areas of high conservation priority. We used nine years (2003-2011 of Greater Prairie-Chicken (Tympanuchus cupido lek locations totaling 870 unique leks sites in Kansas and seven geographic information system (GIS layers describing land cover, topography, and anthropogenic structures to model habitat suitability across the state. The models obtained had low omission rates (0.81, indicating high model performance and reliability of predicted habitat suitability for Greater Prairie-Chickens. We found that elevation was the most influential in predicting lek locations, contributing three times more predictive power than any other variable. However, models were improved by the addition of land cover and anthropogenic features (transmission lines, roads, and oil and gas structures. Overall, our analysis provides a hierarchal understanding of Greater Prairie-Chicken habitat suitability that is broadly based on geomorphological features followed by land cover suitability. We found that when land features and vegetation cover are suitable for Greater Prairie-Chickens, fragmentation by anthropogenic sources such as roadways and transmission lines are a concern. Therefore, it is our recommendation that future human development in Kansas avoid areas that our models identified as highly suitable for Greater Prairie-Chickens and focus development on land cover types that are of lower conservation concern.

  14. Progress report: baseline monitoring of indicator species (butterflies) at tallgrass prairie restorations

    Science.gov (United States)

    Allain, Larry; Vidrine, Malcolm

    2014-01-01

    This project provides baseline data of butterfly populations at two coastal prairie restoration sites in Louisiana, the Duralde Unit of Lacassine National Wildlife Refuge (hereafter, the Duralde site) and the Cajun Prairie Restoration Project in Eunice (hereafter, the Eunice site). In all, four distinct habitat types representing different planting methods were sampled. These data will be used to assess biodiversity and health of native grasslands and also provide a basis for adaptive management.

  15. Soils mediate the impact of fine woody debris on invasive and native grasses as whole trees are mechanically shredded into firebreaks in piñon-juniper woodlands

    Science.gov (United States)

    Aanderud, Zachary T.; Schoolmaster, Donald R.; Rigby, Deborah; Bybee, Jordon; Campbell, Tayte; Roundy, Bruce A.

    2017-01-01

    To stem wildfires, trees are being mechanically shredded into firebreaks with the resulting fine woody debris (FWD) potentially exerting immense control over soil and plants. We linked FWD-induced changes in microbial activity and nutrient availability to the frequency of Bromus tectorum and three native, perennial grasses across 31 piñon-juniper woodlands, UT, USA. Using a series of mixed models, we found that FWD increased the frequency of three of the four grasses by at least 12%. Deep, as opposed to shallow, soils mediated frequencies following FWD additions but only partially explained the variation in Bromus and Pseudoroegneria spicata. Although fertile areas associated with tree-islands elicited no response, FWD-induced increases in nitrogen mineralization in deep soils (15–17 cm) caused the frequency of the exotic and Pseudoroegneria to rise. Higher phosphorus availability in FWD-covered surface soils (0–2 cm) had no impact on grasses. FWD altered deep soil respiration, and deep and shallow microbial biomass structuring Pseudoroegneria frequencies, suggesting that microorganism themselves regulated Pseudoroegneria. The positive effects of FWD on grass frequencies intensified over time for natives but diminished for Bromus. Our results demonstrate that microorganisms in deeper soils helped mediate species-specific responses to disturbance both facilitating exotic invasion and promoting native establishment.

  16. An experimental analysis of grasshopper community responses to fire and livestock grazing in a northern mixed-grass prairie.

    Science.gov (United States)

    Branson, David H; Sword, Gregory A

    2010-10-01

    The outcomes of grasshopper responses to both vertebrate grazing and fire vary across grassland ecosystems, and are strongly influenced by local climactic factors. Thus, the possible application of grazing and fire as components of an ecologically based grasshopper management strategy must be investigated in regional studies. In this study, we examined the effects of grazing and fire on grasshopper population density and community composition in a northern Great Plains mixed-grass prairie. We employed a large-scale, replicated, and fully-factorial manipulative experimental design across 4 yr to examine the separate and interactive effects of three grazing systems in burned and unburned habitats. Grasshopper densities were low throughout the 4-yr study and 1 yr of pretreatment sampling. There was a significant fire by grazing interaction effect on cumulative density and community composition, resulting from burned season long grazing pastures having higher densities than unburned pastures. Shannon diversity and grasshopper species richness were significantly higher with twice-over rotational livestock grazing. The ability to draw strong conclusions regarding the nature of species composition shifts and population changes in the presence of fire and grazing is complicated by the large site differences and low grasshopper densities. The results reinforce the importance of long-term research to examine the effects of habitat manipulation on grasshopper population dynamics.

  17. Gene Expression Profiling of Grass Carp (Ctenopharyngodon idellus and Crisp Grass Carp

    Directory of Open Access Journals (Sweden)

    Ermeng Yu

    2014-01-01

    Full Text Available Grass carp (Ctenopharyngodon idellus is one of the most important freshwater fish that is native to China, and crisp grass carp is a kind of high value-added fishes which have higher muscle firmness. To investigate biological functions and possible signal transduction pathways that address muscle firmness increase of crisp grass carp, microarray analysis of 14,900 transcripts was performed. Compared with grass carp, 127 genes were upregulated and 114 genes were downregulated in crisp grass carp. Gene ontology (GO analysis revealed 30 GOs of differentially expressed genes in crisp grass carp. And strong correlation with muscle firmness increase of crisp grass carp was found for these genes from differentiation of muscle fibers and deposition of ECM, and also glycolysis/gluconeogenesis pathway and calcium metabolism may contribute to muscle firmness increase. In addition, a number of genes with unknown functions may be related to muscle firmness, and these genes are still further explored. Overall, these results had been demonstrated to play important roles in clarifying the molecular mechanism of muscle firmness increase in crisp grass carp.

  18. Exudate Chemical Profiles Derived from Lespedeza and Other Tallgrass Prairie Plant Species

    Science.gov (United States)

    2017-05-01

    Chemical Profiles Derived from Lespedeza and Other Tall- grass Prairie Plant Species. ERDC TN-17-1. Vicksburg, MS: U.S. Army Engineer Re- search and...200-1-52. Washington, DC: U.S. Army Corps of Engineers Headquarters, Civil Works. https://www.wbdg.org/ffc/army-coe/public-works-technical-bulletins...ERDC TN-17-1 May 2017 Approved for public release; distribution is unlimited. Exudate Chemical Profiles Derived from Lespedeza and Other

  19. Overview of the 2013 FireFlux II grass fire field experiment

    Science.gov (United States)

    C.B. Clements; B. Davis; D. Seto; J. Contezac; A. Kochanski; J.-B. Fillipi; N. Lareau; B. Barboni; B. Butler; S. Krueger; R. Ottmar; R. Vihnanek; W.E. Heilman; J. Flynn; M.A. Jenkins; J. Mandel; C. Teske; D. Jimenez; J. O' Brien; B. Lefer

    2014-01-01

    In order to better understand the dynamics of fire-atmosphere interactions and the role of micrometeorology on fire behaviour the FireFlux campaign was conducted in 2006 on a coastal tall-grass prairie in southeast Texas, USA. The FireFlux campaign dataset has become the international standard for evaluating coupled fire-atmosphere model systems. While FireFlux is one...

  20. A common-garden study of resource-island effects on a native and an exotic, annual grass after fire

    Science.gov (United States)

    Hoover, Amber N.; Germino, Matthew J.

    2012-01-01

    Plant-soil variation related to perennial-plant resource islands (coppices) interspersed with relatively bare interspaces is a major source of heterogeneity in desert rangelands. Our objective was to determine how native and exotic grasses vary on coppice mounds and interspaces (microsites) in unburned and burned sites and underlying factors that contribute to the variation in sagebrush-steppe rangelands of the Idaho National Lab, where interspaces typically have abiotic crusts. We asked how the exotic cheatgrass (Bromus tectorum L.) and native bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve) were distributed among the microsites and measured their abundances in three replicate wildfires and nearby unburned areas. We conducted a common-garden study in which soil cores from each burned microsite type were planted with seed of either species to determine microsite effects on establishment and growth of native and exotic grasses. We assessed soil physical properties in the common-garden study to determine the intrinsic properties of each microsite surface and the retention of microsite soil differences following transfer of soils to the garden, to plant growth, and to wetting/drying cycles. In the field study, only bluebunch wheatgrass density was greater on coppice mounds than interspaces, in both unburned and burned areas. In the common-garden experiment, there were microsite differences in soil physical properties, particularly in crust hardness and its relationship to moisture, but soil properties were unaffected by plant growth. Also in the experiment, both species had equal densities yet greater dry mass production on coppice-mound soils compared to interspace soils, suggesting microsite differences in growth but not establishment (likely related to crust weakening resulting from watering). Coppice-interspace patterning and specifically native-herb recovery on coppices is likely important for postfire resistance of this rangeland to cheatgrass.

  1. Influence of resource availability on Juniperus virginiana expansion in a forest–prairie ecotone

    Science.gov (United States)

    Despite being native to the United States, Juniperus virginiana has rapidly expanded in prairie ecosystems bringing detrimental ecological effects and increased wildfire risk. We transplanted J. virginiana seedlings in three plant communities to investigate mechanisms driving J. ...

  2. Invasive grasses change landscape structure and fire behavior in Hawaii

    Science.gov (United States)

    Lisa M. Ellsworth; Creighton M. Litton; Alexander P. Dale; Tomoaki Miura

    2014-01-01

    How does potential fire behavior differ in grass-invaded non-native forests vs open grasslands? How has land cover changed from 1950–2011 along two grassland/forest ecotones in Hawaii with repeated fires? A study on non-native forest with invasive grass understory and invasive grassland (Megathyrsus maximus) ecosystems on Oahu, Hawaii, USA was...

  3. Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna.

    Science.gov (United States)

    Rossiter-Rachor, N A; Setterfield, S A; Douglas, M M; Hutley, L B; Cook, G D; Schmidt, S

    2009-09-01

    Invasion by the African grass Andropogon gayanus is drastically altering the understory structure of oligotrophic savannas in tropical Australia. We compared nitrogen (N) relations and phenology of A. gayanus and native grasses to examine the impact of invasion on N cycling and to determine possible reasons for invasiveness of A. gayanus. Andropogon gayanus produced up to 10 and four times more shoot phytomass and root biomass, with up to seven and 2.5 times greater shoot and root N pools than native grass understory. These pronounced differences in phytomass and N pools between A. gayanus and native grasses were associated with an altered N cycle. Most growth occurs in the wet season when, compared with native grasses, dominance of A. gayanus was associated with significantly lower total soil N pools, lower nitrification rates, up to three times lower soil nitrate availability, and up to three times higher soil ammonium availability. Uptake kinetics for different N sources were studied with excised roots of three grass species ex situ. Excised roots of A. gayanus had an over six times higher-uptake rate of ammonium than roots of native grasses, while native grass Eriachne triseta had a three times higher uptake rate of nitrate than A. gayanus. We hypothesize that A. gayanus stimulates ammonification but inhibits nitrification, as was shown to occur in its native range in Africa, and that this modification of the soil N cycle is linked to the species' preference for ammonium as an N source. This mechanism could result in altered soil N relations and could enhance the competitive superiority and persistence of A. gayanus in Australian savannas.

  4. Long-term prairie falcon population changes in relation to prey abundance, weather, land uses, and habitat conditions

    Science.gov (United States)

    Steenhof, Karen; Kochert, Michael N.; Carpenter, L.B.; Lehman, Robert N.

    1999-01-01

    We studied a nesting population of Prairie Falcons (Falco mexicanus) in the Snake River Birds of Prey National Conservation Area (NCA) from 1974-1997 to identify factors that influence abundance and reproduction. Our sampling period included two major droughts and associated crashes in Townsend's ground squirrel (Spermophilus townsendii) populations. The number of Prairie Falcon pairs found on long-term survey segments declined significantly from 1976-1997. Early declines were most severe at the eastern end of the NCA, where fires and agriculture have changed native shrubsteppe habitat. More recent declines occurred in the portion of canyon near the Orchard Training Area (OTA), where the Idaho Army National Guard conducts artillery firing and tank maneuvers. Overall Prairie Falcon reproductive rates were tied closely to annual indexes of ground squirrel abundance, but precipitation before and during the breeding season was related inversely to some measures of reproduction. Most reproductive parameters showed no significant trends over time, but during the 1990s, nesting success and productivity were lower in the stretch of canyon near the OTA than in adjacent areas. Extensive shrub loss, by itself, did not explain the pattern of declines in abundance and reproduction that we observed. Recent military training activities likely have interacted with fire and livestock grazing to create less than favorable foraging opportunities for Prairie Falcons in a large part of the NCA. To maintain Prairie Falcon populations in the NCA, managers should suppress wildfires, restore native plant communities, and regulate potentially incompatible land uses.

  5. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.

    Science.gov (United States)

    Roberts, David A; Cole, Andrew J; Paul, Nicholas A; de Nys, Rocky

    2015-09-15

    In most countries the mining industry is required to rehabilitate disturbed land with native vegetation. A typical approach is to stockpile soils during mining and then use this soil to recreate landforms after mining. Soil that has been stockpiled for an extended period typically contains little or no organic matter and nutrient, making soil rehabilitation a slow and difficult process. Here, we take freshwater macroalgae (Oedogonium) cultivated in waste water at a coal-fired power station and use it as a feedstock for the production of biochar, then use this biochar to enhance the rehabilitation of two types of stockpiled soil - a ferrosol and a sodosol - from the adjacent coal mine. While the biomass had relatively high concentrations of some metals, due to its cultivation in waste water, the resulting biochar did not leach metals into the pore water of soil-biochar mixtures. The biochar did, however, contribute essential trace elements (particularly K) to soil pore water. The biochar had very strong positive effects on the establishment and growth of a native plant (Kangaroo grass, Themeda australis) in both of the soils. The addition of the algal biochar to both soils at 10 t ha(-1) reduced the time to germination by the grass and increased the growth and production of plant biomass. Somewhat surprisingly, there was no beneficial effect of a higher application rate (25 t ha(-1)) of the biochar in the ferrosol, which highlights the importance of matching biochar application rates to the requirements of different types of soil. Nevertheless, we demonstrate that algal biochar can be produced from biomass cultivated in waste water and used at low application rates to improve the rehabilitation of a variety of soils typical of coal mines. This novel process links biomass production in waste water to end use of the biomass in land rehabilitation, simultaneously addressing two environmental issues associated with coal-mining and processing. Copyright © 2015

  6. Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium.

    Science.gov (United States)

    Faeth, Stanley H; Gardner, Dale R; Hayes, Cinnamon J; Jani, Andrea; Wittlinger, Sally K; Jones, Thomas A

    2006-02-01

    The native North American perennial grass Achnatherum robustum (Vasey) Barkworth [= Stipa robusta (Vasey) Scribn.] or sleepygrass is toxic and narcotic to livestock. The causative agents are alkaloidal mycotoxins produced from infections by a systemic and asexual Neotyphodium endophyte. Recent studies suggest that toxicity is limited across the range of sleepygrass in the Southwest USA. We sampled 17 populations of sleepygrass with varying distance from one focal population known for its high toxicity levels near Cloudcroft, NM, USA. For some, we sampled individual plants twice within the same growing season and over successive years (2001-2004). We also determined infection levels in each population. In general, all populations were highly infected, but infection levels were more variable near the focal population. Only infected plants within populations near the Cloudcroft area produced alkaloids. The ergot alkaloid, ergonovine, comprised the bulk of the alkaloids, with lesser amounts of lysergic and isolysergic acid amides and ergonovinine alkaloids. Levels of all alkaloids were positively correlated among individual plants within and between growing seasons. Infected plants that produced no alkaloids in 1 yr did not produce any alkaloids within the same growing season or in other years. Levels of alkaloids in sleepygrass populations declined with distance from the Cloudcroft population, although infection levels increased. Infected plants in populations in northern New Mexico and southern Colorado produced no alkaloids at all despite 100% infectivity. Our results suggest that only specific Neotyphodium haplotypes or specific Neotyphodium-grass combinations produce ergot alkaloids in sleepygrass. The Neotyphodium haplotype or host-endophyte combination that produces toxic levels of alkaloids appears restricted to one locality across the range of sleepygrass. Because of the wide variation in alkaloid levels among populations, interactions between the endophyte

  7. Competition and facilitation between a native and a domestic herbivore: trade-offs between forage quantity and quality.

    Science.gov (United States)

    Augustine, David J; Springer, Tim L

    2013-06-01

    Potential competition between native and domestic herbivores is a major consideration influencing the management and conservation of native herbivores in rangeland ecosystems. In grasslands of the North American Great Plains, black-tailed prairie dogs (Cynomys ludovicianus) are widely viewed as competitors with cattle but are also important for biodiversity conservation due to their role in creating habitat for other native species. We examined spatiotemporal variation in prairie dog effects on growing-season forage quality and quantity using measurements from three colony complexes in Colorado and South Dakota and from a previous study of a fourth complex in Montana. At two complexes experiencing below-average precipitation, forage availability both on and off colonies was so low (12-54 g/m2) that daily forage intake rates of cattle were likely constrained by instantaneous intake rates and daily foraging time. Under these dry conditions, prairie dogs (1) substantially reduced forage availability, thus further limiting cattle daily intake rates, and (2) had either no or a small positive effect on forage digestibility. Under such conditions, prairie dogs are likely to compete with cattle in direct proportion to their abundance. For two complexes experiencing above-average precipitation, forage quantity on and off colonies (77-208 g/m2) was sufficient for daily forage intake of cattle to be limited by digestion rather than instantaneous forage intake. At one complex where prairie dogs enhanced forage digestibility and [N] while having no effect on forage quantity, prairie dogs are predicted to facilitate cattle mass gains regardless of prairie dog abundance. At the second complex where prairie dogs enhanced digestibility and [N] but reduced forage quantity, effects on cattle can vary from competition to facilitation depending on prairie dog abundance. Our findings show that the high spatiotemporal variation in vegetation dynamics characteristic of semiarid grasslands

  8. Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in eastern Australia.

    Directory of Open Access Journals (Sweden)

    Aisuo Wang

    Full Text Available Invasive grass weeds reduce farm productivity, threaten biodiversity, and increase weed control costs. Identification of invasive grasses from native grasses has generally relied on the morphological examination of grass floral material. DNA barcoding may provide an alternative means to identify co-occurring native and invasive grasses, particularly during early growth stages when floral characters are unavailable for analysis. However, there are no universal loci available for grass barcoding. We herein evaluated the utility of six candidate loci (atpF intron, matK, ndhK-ndhC, psbE-petL, ETS and ITS for barcode identification of several economically important invasive grass species frequently found among native grasses in eastern Australia. We evaluated these loci in 66 specimens representing five invasive grass species (Chloris gayana, Eragrostis curvula, Hyparrhenia hirta, Nassella neesiana, Nassella trichotoma and seven native grass species. Our results indicated that, while no single locus can be universally used as a DNA barcode for distinguishing the grass species examined in this study, two plastid loci (atpF and matK showed good distinguishing power to separate most of the taxa examined, and could be used as a dual locus to distinguish several of the invasive from the native species. Low PCR success rates were evidenced among two nuclear loci (ETS and ITS, and few species were amplified at these loci, however ETS was able to genetically distinguish the two important invasive Nassella species. Multiple loci analyses also suggested that ETS played a crucial role in allowing identification of the two Nassella species in the multiple loci combinations.

  9. Screening of salt-tolerance potential of some native forage grasses from the eastern part of Terai-Duar grasslands in India

    Directory of Open Access Journals (Sweden)

    Swarnendu Roy

    2017-09-01

    Full Text Available The salt tolerance of 12 native forage grasses from the eastern part of Terai-Duar grasslands was assessed using a rapid method of leaf disc senescence bioassay. Samples of these grasses were grown in untreated water as well as 100 and 200 mM NaCl solutions for periods of 3, 6 and 9 days. Discs of fresh leaf were then placed in untreated water as well as in 100 and 200 mM NaCl solutions for 96 hours. Quantitative effects were measured as the effects on chlorophyll concentration in leaves in response to exposure to the varying solutions. From these results, the salt sensitivity index (SSI of the individual grasses was determined. The SSI values indicated that Imperata cylindrica, Digitaria ciliaris and Cynodon dactylon were most salt-tolerant of all grasses tested. Further characterization of the grasses was done by observing the changes in 6 biomarkers for salinity tolerance: relative water content, total sugar concentration, proline concentration, electrolyte leakage, membrane lipid peroxidation and H2O2 concentration following exposure to 100 and 200 mM NaCl concentrations for 3, 6 and 9 days. Finally, hierarchical cluster analysis using the software CLUSTER 3.0 was used to represent the inter-relations among the physiological parameters and to group the grasses on the basis of their salinity tolerance. The overall results indicated that Imperata cylindrica, Eragrostis amabilis, Cynodon dactylon and Digitaria ciliaris were potentially salt-tolerant grasses and should be planted on saline areas to verify our results. On the other hand, Axonopus compressus, Chrysopogon aciculatus, Oplismenus burmanni and Thysanolaena latifolia were found to be highly salt-sensitive and would be unsuitable for use in saline areas. 

  10. Pastures to Prairies to Pools: An Update on Natural Resource Damages Settlement Projects at the Fernald Preserve - 13198

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Jane [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States); Schneider, Tom [Fernald Project Manager, Ohio Environmental Protection Agency, Dayton, Ohio (United States); Hertel, Bill [Project Manager, S.M. Stoller Corporation, Harrison, Ohio (United States); Homer, John [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States)

    2013-07-01

    The DOE Office of Legacy Management oversees implementation and monitoring of two ecological restoration projects at the Fernald Preserve, Fernald, Ohio, that are funded through a CERCLA natural resource damage settlement. Planning and implementation of on-property ecological restoration projects is one component of compensation for natural resource injury. The Paddys Run Tributary Project involves creation of vernal pool wetland habitat with adjacent forest restoration. The Triangle Area Project is a mesic tall-grass prairie establishment, similar to other efforts at the Fernald Preserve. The goal of the Fernald Natural Resource Trustees is to establish habitat for Ambystomatid salamander species, as well as grassland birds. Field implementation of these projects was completed in May 2012. Herbaceous cover and woody vegetation survival was determined in August and September 2012. Results show successful establishment of native vegetation. Additional monitoring will be needed to determine whether project goals have been met. As with the rest of the Fernald Preserve, ecological restoration has helped turn a DOE liability into a community asset. (authors)

  11. Pastures to Prairies to Pools: An Update on Natural Resource Damages Settlement Projects at the Fernald Preserve - 13198

    International Nuclear Information System (INIS)

    Powell, Jane; Schneider, Tom; Hertel, Bill; Homer, John

    2013-01-01

    The DOE Office of Legacy Management oversees implementation and monitoring of two ecological restoration projects at the Fernald Preserve, Fernald, Ohio, that are funded through a CERCLA natural resource damage settlement. Planning and implementation of on-property ecological restoration projects is one component of compensation for natural resource injury. The Paddys Run Tributary Project involves creation of vernal pool wetland habitat with adjacent forest restoration. The Triangle Area Project is a mesic tall-grass prairie establishment, similar to other efforts at the Fernald Preserve. The goal of the Fernald Natural Resource Trustees is to establish habitat for Ambystomatid salamander species, as well as grassland birds. Field implementation of these projects was completed in May 2012. Herbaceous cover and woody vegetation survival was determined in August and September 2012. Results show successful establishment of native vegetation. Additional monitoring will be needed to determine whether project goals have been met. As with the rest of the Fernald Preserve, ecological restoration has helped turn a DOE liability into a community asset. (authors)

  12. Leaf gas exchange and water status responses of a native and non-native grass to precipitation across contrasting soil surfaces in the Sonoran Desert.

    Science.gov (United States)

    Ignace, Danielle D; Huxman, Travis E; Weltzin, Jake F; Williams, David G

    2007-06-01

    Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and at the peak of the monsoon (in August) for 2002 and 2003. We measured responses of pre-dawn water potential, photosynthetic rate, and stomatal conductance of native (Heteropogon contortus) and non-native (Eragrostis lehmanniana) C(4) bunchgrasses on sandy and clay-rich soil surfaces. Soil surface did not always amplify differences in plant response to a pulse event. A June pulse event lead to an increase in plant water status and photosynthesis. Whereas the August pulse did not lead to an increase in plant water status and photosynthesis, due to favorable soil moisture conditions facilitating high plant performance during this period. E. lehmanniana did not demonstrate heightened photosynthetic performance over the native species in response to pulses across both soil surfaces. Overall accumulated leaf-level CO(2) response to a pulse event was dependent on antecedent soil moisture during the August pulse event, but not during the June pulse event. This work highlights the need to understand how desert species respond to pulse events across contrasting soil surfaces in water-limited systems that are predicted to experience changes in climate.

  13. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands.

    Science.gov (United States)

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of "nurse plants" an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  14. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    International Nuclear Information System (INIS)

    Fantozzi, L.; Ferrara, R.; Dini, F.; Tamburello, L.; Pirrone, N.; Sprovieri, F.

    2013-01-01

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m −2 h −1 ) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m −2 h −1 ) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m −2 h −1 , which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ► Mercury air/surface exchange from grass covered soil is

  15. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, L., E-mail: l.fantozzi@iia.cnr.it [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy); Ferrara, R., E-mail: romano.ferrara@pi.ibf.cnr.it [CNR-Institute of Biophysics, San Cataldo Research Area, Via G. Moruzzi 1, 56124 Pisa (Italy); Dini, F., E-mail: fdiniprotisti@gmail.com [University of Pisa, Department of Biology, Via A. Volta 4, 56126 Pisa (Italy); Tamburello, L., E-mail: ltamburello@biologia.unipi.it [University of Pisa, Department of Biology, Via Derna 1, I-56126 Pisa (Italy); Pirrone, N.; Sprovieri, F. [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy)

    2013-08-15

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup −2} h{sup −1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup −2} h{sup −1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup −2} h{sup −1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ► Mercury air/surface exchange

  16. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    Science.gov (United States)

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  17. The effects of energy grass plantations on biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T; Slater, F

    2005-07-01

    The ecological impact on local wildlife of biomass plantations of three different species of grasses has been monitored in the years 2002 to 2004 inclusive at farms in Herefordshire UK. Two of the grasses were not native to Britain. Wildlife monitored included ground flora, beetles, insects, birds, small mammals, butterflies, bees and hoverflies. The results provide a baseline of biodiversity data from biomass farms in England, although due to poor crop growth, the data from the switch-grass plantation was incomplete. The surveys were carried out by Cardiff University supported financially by the DTI.

  18. The effects of energy grass plantations on biodiversity

    International Nuclear Information System (INIS)

    Semere, T.; Slater, F.

    2005-01-01

    The ecological impact on local wildlife of biomass plantations of three different species of grasses has been monitored in the years 2002 to 2004 inclusive at farms in Herefordshire UK. Two of the grasses were not native to Britain. Wildlife monitored included ground flora, beetles, insects, birds, small mammals, butterflies, bees and hoverflies. The results provide a baseline of biodiversity data from biomass farms in England, although due to poor crop growth, the data from the switch-grass plantation was incomplete. The surveys were carried out by Cardiff University supported financially by the DTI

  19. Management techniques for the control of Melinis minutiflora P. Beauv. (molasses grass: ten years of research on an invasive grass species in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Carlos Romero Martins

    2017-09-01

    Full Text Available ABSTRACT The invasion of exotic species is considered to be a major threat to the preservation of biodiversity. In the Parque Nacional de Brasília (National Park of Brasília, the invasive Melinis minutiflora (molasses grass occupies more than 10 % of the area of the park. The present, long-term, study compared two treatments of exposure to molasses grass: 1 fire and 2 integrated management (fire + herbicide sprays + manual removal. The aerial biomass of molasses grass in the experimental area initially represented ca. 55 % of the total aerial biomass, a percentage that apparently did not influence native plant species richness at this site. Fire alone was not sufficient to control molasses grass, which attained its pre-treatment biomass values after two years. Integrated management reduced, and maintained, biomass to less than 1 % of its original value after ten years, and maintained this level throughout the study, demonstrating that it is a promising strategy for the recovery of areas invaded by molasses grass in the Cerrado. However, because of the recolonization by molasses grass, long-term monitoring efforts are targeting outbreaks, which would require immediate intervention in order to maintain the native biological diversity of the region.

  20. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    OpenAIRE

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-01-01

    Abstract Background We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We f...

  1. Climate Effects on Plant Range Distributions and Community Structure of Pacific Northwest Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Bridgham, Scott D. [Univ. of Oregon, Eugene, OR (United States); Johnson, Bart [Univ. of Oregon, Eugene, OR (United States)

    2013-09-26

    Pacific Northwest (PNW) prairies are an imperiled ecosystem that contain a large number of plant species with high fidelity to this habitat. The few remaining high-quality PNW prairies harbor a number of sensitive, rare, and endangered plant species that may be further at-risk with climate change. Thus, PNW prairies are an excellent model system to examine how climate change will affect the distribution of native plant species in grassland sites. Our experimental objectives were to determine: (i) how climate change will affect the range distribution of native plant species; (ii) what life history stages are most sensitive to climate change in a group of key indicator native species; (iii) the robustness of current restoration techniques and suites of species to changing climate, and in particular, the relative competitiveness of native species versus exotic invasive species; and (iv) the effects of climate change on carbon and nutrient cycling and soil-microbial-plant feedbacks. We addressed these objectives by experimentally increasing temperature 2.5 to 3.0 ºC above ambient with overhead infrared lamps and increasing wet-season precipitation by 20% above ambient in three upland prairie sites in central-western Washington, central-western Oregon, and southwestern Oregon from fall 2010 through 2012. Additional precipitation was applied within 2 weeks of when it fell so precipitation intensity was increased, particularly during the winter rainy season but with minimal additions during the summer dry season. These three sites also represent a 520-km natural climate gradient of increasing degree of severity of Mediterranean climate from north to south. After removing the extant vegetation, we planted a diverse suite of 12 native species that have their northern range limit someplace within the PNW in each experimental plot. An additional 20 more wide-spread native species were also planted into each plot. We found that recruitment of plant species within their ranges

  2. Lesser prairie-chicken nest site selection, microclimate, and nest survival in association with vegetation response to a grassland restoration program

    Science.gov (United States)

    Boal, Clint W.; Grisham, Blake A.; Haukos, David A.; Zavaleta, Jennifer C.; Dixon, Charles

    2014-01-01

    captured at individual leks, and then for all leks pooled. There was no clear pattern of selection for treatment type for nest placement among hens associated with individual leks; however, when hens from all leks were pooled, we found nesting lesser prairie-chickens selected control plots for nesting over plots that were grazed, treated with tebuthiuron, or were both grazed and treated with tebuthiuron. Overall, the probability of a nest surviving the incubation period was 0.57 for this study and did not vary significantly among treatment types. In contrast to nesting preference for untreated habitats, lek use exhibited no noticeable selection of treatment type. Over the 10 years of the habitat management study, there was 91 percent less sand shinnery oak (Quercus havardii) in treated areas than untreated areas. The removal of sand shinnery oak made environmental soil moisture more available for grasses and forbs to germinate and grow. Grasses increased by 149 percent and forbs increased by 257 percent in treated areas as compared to untreated areas throughout the study period. Our combined results, including our habitat selection analysis at the individual lek level, indicated that reduced rates of herbicide and short-duration grazing treatments were not detrimental to nesting lesser prairie-chickens and that populations of lesser prairie-chickens in shrub-dominated ecosystems may benefit from reduced rates of herbicide application and short duration of grazing that results in increased habitat heterogeneity.

  3. Native grass hydroseed development : establishment protocols for three native Hawaiian plants on roadside areas.

    Science.gov (United States)

    2012-08-01

    The biggest mistake with using native plants on Hawaiis roadways is to assume that native plants do not require : nutrient enhancement or supplemental water to establish on these sites. The establishment of native plants will : require a detailed ...

  4. NITROGEN CONTENT AND DRY-MATTER DIGESTIBILITY OF GUINEA AND SABI GRASSES AS INFLUENCED BY TREE LEGUME CANOPY

    Directory of Open Access Journals (Sweden)

    Andi Lagaligo Amar

    2012-08-01

    Full Text Available A research study was undertaken to study the grass layer across a mini landscape dominated by tree legume Albizia lebbeck to explore the nutritional differences of two introduced grasses, guinea grass (Panicum maximum and sabi grass (Urochloa mosambicensis, paying particular attention to the presence or absence of tree legume canopy of Albizia lebbeck. The two grass species showed a tendency to replace the native spear grass (Heteropogon contortus; their dominance was more or less complete under tree canopies but was increasing in open areas between trees. Nutritional differences were examined by nitrogen concentration and dry matter digestibility. For comparison, Heteropogon contortus, a native species only found in the open, was included in the nutritional determination using the same methods as the guinea and sabi grasses. The quality parameters of the pasture species were statistically compared (LSD, P=0.05. The quality of herbage was different between the species. Urochloa mosambicensis was better than Panicum maximum. In the open, sabi grass has higher N content (0.62% than guinea grass (0.55%, but they were similar when grown under the canopy (0.69% and 0.72%, respectively. Sabi grass has consistently higher dry matter digestibility (41.39% and 36.83%, respectively under the canopy and in the open, than guinea grass (27.78% and 24.77%. These two species are much higher in both N concentration and dry matter digestibility than the native spear grass. The native species has contained 0.28% N, and 17.65% digestible dry matter. The feeding values of herbage were influenced by the canopy factor. Both guinea and sabi grasses have better quality when grown under the tree canopies than in between canopies. Nitrogen concentration and dry matter digestibility of the guinea grass under canopy were, 0.72% and 27.78%, respectively, significantly higher than those from the open area, 0.55% and 24.77%. Similarly, herbage of sabi grass under canopy has 0

  5. Preliminary study of prairies forested with Eucalyptus sp. at the northwestern Uruguayan soils

    International Nuclear Information System (INIS)

    Carrasco-Letelier, L.; Eguren, G.; Castineira, C.; Parra, O.; Panario, D.

    2004-01-01

    The forestation of Uruguayan natural prairie soil does not always ensure an increase of soil carbon sink. - The land cover change of Uruguayan Forestal Plan provoked biogeochemical changes on horizon Au 1 of Argiudols; in native prairies which were replaced by monoculture Eucalyptus sp. plantation with 20 year rotations as trees. Five fields forested and six natural prairies were compared. The results not only show a statistical significant soil acidification, diminution of soil organic carbon, increase of aliphaticity degree of humic substances, and increase of affinity and capacity of hydrolytic activity from soil microbial communities for forested sites with Eucalyptus sp. but also, a tendency of podzolization and/or mineralization by this kind of land cover changes, with a net soil organic lost of 16.6 tons ha -1 in the horizon Au 1 of soil under Eucalyptus sp. plantation compared with prairie. Besides, these results point out the necessity of correction of the methodology used by assigned Uruguayan commission to assess the national net emission of greenhouse gases, since the mineralization and/or podzolization process detected in forested soil imply a overestimation of soil organic carbon. The biochemical parameters show a statistical significant correlation between the soil organic carbon status and these parameters which were presented as essential for the correct evaluation of Uruguayan soil carbon sink

  6. A multivariate analysis of biophysical parameters of tallgrass prairie among land management practices and years

    Science.gov (United States)

    Griffith, J.A.; Price, K.P.; Martinko, E.A.

    2001-01-01

    Six treatments of eastern Kansas tallgrass prairie - native prairie, hayed, mowed, grazed, burned and untreated - were studied to examine the biophysical effects of land management practices on grasslands. On each treatment, measurements of plant biomass, leaf area index, plant cover, leaf moisture and soil moisture were collected. In addition, measurements were taken of the Normalized Difference Vegetation Index (NDVI), which is derived from spectral reflectance measurements. Measurements were taken in mid-June, mid-July and late summer of 1990 and 1991. Multivariate analysis of variance was used to determine whether there were differences in the set of variables among treatments and years. Follow-up tests included univariate t-tests to determine which variables were contributing to any significant difference. Results showed a significant difference (p treatments in the composite of parameters during each of the months sampled. In most treatment types, there was a significant difference between years within each month. The univariate tests showed, however, that only some variables, primarily soil moisture, were contributing to this difference. We conclude that biomass and % plant cover show the best potential to serve as long-term indicators of grassland condition as they generally were sensitive to effects of different land management practices but not to yearly change in weather conditions. NDVI was insensitive to precipitation differences between years in July for most treatments, but was not in the native prairie. Choice of sampling time is important for these parameters to serve effectively as indicators.

  7. Conversion of native terrestrial ecosystems in Hawai‘i to novel grazing systems: a review

    Science.gov (United States)

    Leopold, Christina R.; Hess, Steven C.

    2017-01-01

    The remote oceanic islands of Hawai‘i exemplify the transformative effects that non-native herbivorous mammals can bring to isolated terrestrial ecosystems. We reviewed published literature containing systematically collected, analyzed, and peer-reviewed original data specifically addressing direct effects of non-native hoofed mammals (ungulates) on terrestrial ecosystems, and indirect effects and interactions on ecosystem processes in Hawai‘i. The effects of ungulates on native vegetation and ecosystems were addressed in 58 original studies and mostly showed strong short-term regeneration of dominant native trees and understory ferns after ungulate removal, but unassisted recovery was dependent on the extent of previous degradation. Ungulates were associated with herbivory, bark-stripping, disturbance by hoof action, soil erosion, enhanced nutrient cycling from the interaction of herbivory and grasses, and increased pyrogenicity and competition between native plants and pasture grasses. No studies demonstrated that ungulates benefitted native ecosystems except in short-term fire-risk reduction. However, non-native plants became problematic and continued to proliferate after release from herbivory, including at least 11 species of non-native pasture grasses that had become established prior to ungulate removal. Competition from non-native grasses inhibited native species regeneration where degradation was extensive. These processes have created novel grazing systems which, in some cases, have irreversibly altered Hawaii’s terrestrial ecology. Non-native plant control and outplanting of rarer native species will be necessary for recovery where degradation has been extensive. Lack of unassisted recovery in some locations should not be construed as a reason to not attempt restoration of other ecosystems.

  8. Taxonomic studies of grasses and their indigenous uses in the salt ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... countries like United States, the principal sources of meat ... Many species of native and introduced grasses are utilized in improved ... turning northwest to cross the river Indus near Kalabagh. (Ahmad and ... Key to the identification of grasses of Salt Range of Pakistan. S. No ...... Under shade of trees.

  9. Ecological consequences of shifting the timing of burning tallgrass prairie.

    Directory of Open Access Journals (Sweden)

    E Gene Towne

    Full Text Available In the Kansas Flint Hills, grassland burning is conducted during a relatively narrow window because management recommendations for the past 40 years have been to burn only in late spring. Widespread prescribed burning within this restricted time frame frequently creates smoke management issues downwind. A potential remedy for the concentrated smoke production in late spring is to expand burning to times earlier in the year. Yet, previous research suggested that burning in winter or early spring reduces plant productivity and cattle weight gain while increasing the proportion of undesirable plant species. In order to better understand the ecological consequences of burning at different times of the year, plant production and species abundance were measured for 20 years on ungrazed watersheds burned annually in autumn, winter, or spring. We found that there were no significant differences in total grass production among the burns on either upland or lowland topographic positions, although spring burned watersheds had higher grass culm production and lower forb biomass than autumn and winter burned watersheds. Burning in autumn or winter broadened the window of grass productivity response to precipitation, which reduces susceptibility to mid-season drought. Burning in autumn or winter also increased the phenological range of species by promoting cool-season graminoids without a concomitant decrease in warm-season grasses, potentially widening the seasonal window of high-quality forage. Incorporating autumn and winter burns into the overall portfolio of tallgrass prairie management should increase the flexibility in managing grasslands, promote biodiversity, and minimize air quality issues caused by en masse late-spring burning with little negative consequences for cattle production.

  10. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Science.gov (United States)

    Haukos, David A.; Spencer, David; Hagen, Christian A.; Daniels, Melinda D.; Goodin, Doug

    2017-01-01

    Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus) has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1) document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population) from the 1950s to 2013 using remotely sensed data and (2) assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP) to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s). Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful in

  11. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Directory of Open Access Journals (Sweden)

    David Spencer

    2017-01-01

    Full Text Available Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1 document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population from the 1950s to 2013 using remotely sensed data and (2 assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s. Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful

  12. No positive feedback between fire and a nonnative perennial grass

    Science.gov (United States)

    Erika L. Geiger; Guy R. McPherson

    2005-01-01

    Semi-desert grasslands flank the “Sky Island” mountains in southern Arizona and Northern Mexico. Many of these grasslands are dominated by nonnative grasses, which potentially alter native biotic communities. One specific concern is the potential for a predicted feedback between nonnative grasses and fire. In a large-scale experiment in southern Arizona we investigated...

  13. Harvesting Effects on Species Composition and Distribution of Cover Attributes in Mixed Native Warm-Season Grass Stands

    Directory of Open Access Journals (Sweden)

    Vitalis W. Temu

    2015-05-01

    Full Text Available Managing grasslands for forage and ground-nesting bird habitat requires appropriate defoliation strategies. Subsequent early-summer species composition in mixed stands of native warm-season grasses (Indiangrass (IG, Sorghastrum nutans, big bluestem (BB, Andropogon gerardii and little bluestem (LB, Schizachyrium scoparium responding to harvest intervals (treatments, 30, 40, 60, 90 or 120 d and durations (years in production was assessed. Over three years, phased May harvestings were initiated on sets of randomized plots, ≥90 cm apart, in five replications (blocks to produce one-, two- and three-year-old stands. Two weeks after harvest, the frequencies of occurrence of plant species, litter and bare ground, diagonally across each plot (line intercept, were compared. Harvest intervals did not influence proportions of dominant plant species, occurrence of major plant types or litter, but increased that of bare ground patches. Harvest duration increased the occurrence of herbaceous forbs and bare ground patches, decreased that of tall-growing forbs and litter, but without affecting that of perennial grasses, following a year with more September rainfall. Data suggest that one- or two-year full-season forage harvesting may not compromise subsequent breeding habitat for bobwhites and other ground-nesting birds in similar stands. It may take longer than a year’s rest for similar stands to recover from such changes in species composition.

  14. Summer bird/vegetation associations in Tamarisk and native habitat along the Pecos River, southeastern New Mexico

    Science.gov (United States)

    M. F. Livingston; S. D. Schemnitz

    1996-01-01

    The middle Pecos River lies in the short-grass prairie ecotype and lacked a substantial woodland community prior to tamarisk (Tamarisk chinensis) invasion. Tamarisk control is a concern for land managers on the Pecos River and other Southwestern riparian systems. Our research is part of a long term study investigating hydrological and wildlife response to tamarisk...

  15. Neonicotinoid insecticide removal by prairie strips in row-cropped watersheds with historical seed coating use

    Science.gov (United States)

    Hladik, Michelle L.; Bradbury, Steven; Schulte, Lisa A.; Helmers, Matthew; Witte, Christopher; Kolpin, Dana W.; Garrett, Jessica D.; Harris, Mary

    2017-01-01

    Neonicotinoids are a widely used class of insecticides that are commonly applied as seed coatings for agricultural crops. Such neonicotinoid use may pose a risk to non-target insects, including pollinators and natural enemies of crop pests, and ecosystems. This study assessed neonicotinoid residues in groundwater, surface runoff water, soil, and native plants adjacent to corn and soybean crop fields with a history of being planted with neonicotinoid-treated seeds from 2008-2013. Data from six sites with the same crop management history, three with and three without in-field prairie strips, were collected in 2015-2016, 2-3 years after neonicotinoid (clothianidin and imidacloprid) seed treatments were last used. Three of the six neonicotinoids analyzed were detected in at least one environmental matrix: the two applied as seed coatings on the fields (clothianidin and imidacloprid) and another widely used neonicotinoid (thiamethoxam). Sites with prairie strips generally had lower concentrations of neonicotinoids: groundwater and footslope soil neonicotinoid concentrations were significantly lower in the sites with prairie strips than those without; mean concentrations for groundwater were 11 and 20 ng/L (p = 0.048) and <1 and 6 ng/g (p = 0.0004) for soil, respectively. Surface runoff water concentrations were not significantly (p = 0.38) different for control sites (44 ng/L) or sites with prairie strips (140 ng/L). Consistent with the decreased inputs of neonicotinoids, concentrations tended to decrease over the sampling timeframe. Two sites recorded concentration increases, however, potentially due to disturbance of previous applications or influence from nearby fields where use of seed treatments continued. There were no detections (limit of detection: 1 ng/g) of neonicotinoids in the foliage or roots of plants comprising prairie strips, indicating a low likelihood of exposure to pollinators and other insects visiting these plants following the cessation of seed

  16. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    Science.gov (United States)

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  17. Reproductive biology of the native forage grass Trichloris crinita (Poaceae, Chloridoideae).

    Science.gov (United States)

    Kozub, P C; Barboza, K; Galdeano, F; Quarin, C L; Cavagnaro, J B; Cavagnaro, P F

    2017-05-01

    Trichloris crinita is a perennial forage grass species native to arid regions of the American continent. Due to its extensive area of distribution, good forage quality and resistance to drought and grazing, this species is widely utilised as forage and for revegetation purposes in environments with low water availability. Despite its importance, genetic improvement of T. crinita has been very limited, partly as consequence of the lack of knowledge on its mode of reproduction. In the present work, we studied the reproductive biology of T. crinita by means of embryological analyses, flow cytometric seed screen (FCSS), self-compatibility tests and progeny testing with morphological and molecular markers. Cytological analyses revealed embryo sacs with eight nuclei and of Polygonum type for all T. crinita accessions analysed. FCSS histograms exhibited two clear peaks corresponding to 2C and 3C DNA content, indicating embryo sacs of sexual origin. Controlled pollination experiments designed to evaluate seed set (%) demonstrated that T. crinita is self-compatible, whereas results from morphological and simple sequence repeat (SSR) marker analysis of progeny revealed lack of outcrossing. Together, these results indicate that T. crinita reproduces sexually. It is a self-compatible and autogamous species. It is expected that these data will have a positive impact in the genetics and breeding of this species, and therefore contribute to its proper utilisation in arid regions. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Ecology, genetics, and biological control of invasive annual grasses in the Great Basin

    Science.gov (United States)

    Several annual grass species native to Eurasia, including cheatgrass (Bromus tectorum), red brome (B. rubens), and medusahead (Taeniatherum caput-medusae) have become invasive in the western USA. These invasive species degrade rangelands by compromising forage, outcompeting native flora, and exacerb...

  19. Assessing the biophysical naturalness of grassland in eastern North Dakota with hyperspectral imagery

    Science.gov (United States)

    Zhou, Qiang

    Over the past two decades, non-native species within grassland communities have quickly developed due to human migration and commerce. Invasive species like Smooth Brome grass (Bromus inermis) and Kentucky Blue Grass (Poa pratensis), seriously threaten conservation of native grasslands. This study aims to discriminate between native grasslands and planted hayfields and conservation areas dominated by introduced grasses using hyperspectral imagery. Hyperspectral imageries from the Hyperion sensor on EO-1 were acquired in late spring and late summer on 2009 and 2010. Field spectra for widely distributed species as well as smooth brome grass and Kentucky blue grass were collected from the study sites throughout the growing season. Imagery was processed with an unmixing algorithm to estimate fractional cover of green and dry vegetation and bare soil. As the spectrum is significantly different through growing season, spectral libraries for the most common species are then built for both the early growing season and late growing season. After testing multiple methods, the Adaptive Coherence Estimator (ACE) was used for spectral matching analysis between the imagery and spectral libraries. Due in part to spectral similarity among key species, the results of spectral matching analysis were not definitive. Additional indexes, "Level of Dominance" and "Band variance", were calculated to measure the predominance of spectral signatures in any area. A Texture co-occurrence analysis was also performed on both "Level of Dominance" and "Band variance" indexes to extract spatial characteristics. The results suggest that compared with disturbed area, native prairie tend to have generally lower "Level of Dominance" and "Band variance" as well as lower spatial dissimilarity. A final decision tree model was created to predict presence of native or introduced grassland. The model was more effective for identification of Mixed Native Grassland than for grassland dominated by a single

  20. Does crotalaria (Crotalaria breviflora or pumpkin (Cucurbita moschata inter-row cultivation in restoration plantings control invasive grasses?

    Directory of Open Access Journals (Sweden)

    Ricardo Gomes César

    2013-08-01

    Full Text Available Alternative methods to control invasive fodder grasses are necessary to reduce the use of herbicides in forest restoration, which has been carried out primarily in riparian zones. We sought to investigate if inter-row cultivation of crotalaria (Crotalaria breviflora DC or pumpkin (Cucurbita moschata Duschene ex. Poir with native tree species is an efficient strategy to control invasive fodder grasses in restoration plantings. We tested five treatments in a randomized block design, namely (1 control of brachiaria grass (Urochloa decumbens (Stapf. Webster with glyphosate in the implementation and post-planting grass control of the reforestation, (2 and 3 glyphosate use in the implementation and inter-row sowing of crotalaria (2 or pumpkin (3, and control of brachiaria by mowing in the post-planting phase, (4 and 5 mowing in the implementation and inter-row sowing of crotalaria (4 or pumpkin (5, and control of brachiaria by mowing in the post-planting phase. Post-planting grass control was carried out four and nine months after tree seedling planting. Throughout 13 months, we evaluated the percentage of ground cover by brachiaria grass, pumpkin production, and native tree seedling mortality, height and crown cover. The exclusive use of glyphosate, without inter-row sowing of pumpkin or crotalaria showed the most favorable results for controlling brachiaria grass and, consequently, for tree seedling development. Hence, inter-row cultivation of green manure or short-lived crop species is not enough to control invasive grasses in restoration plantings, and complementary weeding is necessary to reduce the highly competitive potential of C4 grasses for supporting native species seedlings growth.

  1. Microsatellite Markers in the Western Prairie Fringed Orchid, Platanthera praeclara (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Andrew A. Ross

    2013-04-01

    Full Text Available Premise of the study: Primers for 31 microsatellite-containing loci were developed for the threatened orchid Platanthera praeclara to enable characterization of the population genetics of this tallgrass prairie native. Methods and Results: Sixteen polymorphic microsatellite loci were identified from four populations. Six of these loci were not in linkage disequilibrium. The average number of alleles per locus per population ranged from 6.4 to 8.9. Conclusions: The results indicate that six of the polymorphic loci will be useful in future studies of population structure, gene flow, and genetic diversity.

  2. Status of exotic grasses and grass-like vegetation and potential impacts on wildlife in New England

    Science.gov (United States)

    DeStefano, Stephen

    2013-01-01

    The Northeastern section of the United States, known as New England, has seen vast changes in land cover and human population over the past 3 centuries. Much of the region is forested; grasslands and other open-land cover types are less common, but provide habitat for many species that are currently declining in abundance and distribution. New England also consists of some of the most densely populated and developed states in the country. The origin, distribution, and spread of exotic species are highly correlated with human development. As such, exotics are common throughout much of New England, including several species of graminoids (grasses and grass-like plants such as sedges and rushes). Several of the more invasive grass species can form expansive dense mats that exclude native plants, alter ecosystem structure and functions, and are perceived to provide little-to-no value as wildlife food or cover. Although little research has been conducted on direct impacts of exotic graminoids on wildlife populations in New England, several studies on the common reed (Phragmites australis) in salt marshes have shown this species to have variable effects as cover for birds and other wildlife, depending on the distribution of the plant (e.g., patches and borders of reeds are used more by wildlife than expansive densely growing stands). Direct impacts of other grasses on wildlife populations are largely unknown. However, many of the invasive graminoid species that are present in New England have the capability of outcompeting native plants and thereby potentially affecting associated fauna. Preservation, protection, and restoration of grassland and open-land cover types are complex but necessary challenges in the region to maintain biological and genetic diversity of grassland, wetland, and other open-land obligate species.

  3. Glyphosate (Ab)sorption by Shoots and Rhizomes of Native versus Hybrid Cattail (Typha).

    Science.gov (United States)

    Zheng, Tianye; Sutton, Nora B; de Jager, Pim; Grosshans, Richard; Munira, Sirajum; Farenhorst, Annemieke

    2017-11-01

    Wetlands in the Prairie Pothole Region of North America are integrated with farmland and contain mixtures of herbicide contaminants. Passive nonfacilitated diffusion is how most herbicides can move across plant membranes, making this perhaps an important process by which herbicide contaminants are absorbed by wetland vegetation. Prairie wetlands are dominated by native cattail (Typha latifolia) and hybrid cattail (Typha x glauca). The objective of this batch equilibrium study was to compare glyphosate absorption by the shoots and rhizomes of native versus hybrid cattails. Although it has been previously reported for some pesticides that passive diffusion is greater for rhizome than shoot components, this is the first study to demonstrate that the absorption capacity of rhizomes is species dependent, with the glyphosate absorption being significantly greater for rhizomes than shoots in case of native cattails, but with no significant differences in glyphosate absorption between rhizomes and shoots in case of hybrid cattails. Most importantly, glyphosate absorption by native rhizomes far exceeded that of the absorption occurring for hybrid rhizomes, native shoots and hybrid shoots. Glyphosate has long been used to manage invasive hybrid cattails in wetlands in North America, but hybrid cattail expansions continue to occur. Since our results showed limited glyphosate absorption by hybrid shoots and rhizomes, this lack of sorption may partially explain the poorer ability of glyphosate to control hybrid cattails in wetlands.

  4. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.

    Science.gov (United States)

    Alofs, Karen M; Fowler, Norma L

    2013-03-01

    Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent

  5. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie.

    Science.gov (United States)

    Manning, George C; Baer, Sara G; Blair, John M

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies (P soil bulk density were also higher in grazed prairie soil over all fire frequencies (P soil N were positively correlated with FQI (P soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  6. Climate change and the invasion of California by grasses

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dangremond, Emily

    2012-01-01

    Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily...... invaded. We used a novel, trait-based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait...

  7. The prairie dog as a keystone species

    Science.gov (United States)

    Kotliar, Natasha B.; Miller, Brian J.; Reading, Richard P.; Clark, Timothy W.; Hoogland, John L.

    2006-01-01

    The prairie dog has a pronounced impact on its grassland ecosystem (King 1955; Uresk and Bjugstad 1983; Miller et al. 1994; Society for Conservation Biology 1994; Wuerthner 1997; Johnsgard 2005). They maintain short vegetation by their grazing and by selective removal of tall plants and shrubs; provide shelter, foraging grounds, and nesting habitat for a diverse array of animals; serve as prey for many predators; and alter soil chemistry.Do these impacts mean that the prairie dog is a keystone species? To investigate, we first scrutinize the definition for a keystone species. We then document both vertebrates and invertebrates that associate with prairie dogs and their colony-sites. We examine ecosystem processes at colony-sites, and then assess whether the prairie dog is a legitimate keystone species. Finally, we explore the implications of keystone status for the conservation of prairie dogs.

  8. The role of ecotypic variation and the environment on biomass and nitrogen in a dominant prairie grass.

    Science.gov (United States)

    Mendola, Meredith L; Baer, Sara G; Johnson, Loretta C; Maricle, Brian R

    2015-09-01

    Knowledge of the relative strength of evolution and the environment on a phenotype is required to predict species responses to environmental change and decide where to source plant material for ecological restoration. This information is critically needed for dominant species that largely determine the productivity of the central U.S. grassland. We established a reciprocal common garden experiment across a longitudinal gradient to test whether ecotypic variation interacts with the environment to affect growth and nitrogen (N) storage in a dominant grass. We predicted plant growth would increase from west to east, corresponding with increasing precipitation, but differentially among ecotypes due to local adaptation in all ecotypes and a greater range of growth response in ecotypes originating from west to east. We quantified aboveground biomass, root biomass, belowground net primary production (BNPP), root C:N ratio, and N storage in roots of three ecotypes of Andropogon gerardii collected from and reciprocally planted in central Kansas, eastern Kansas, and s6uthern Illinois. Only the ecotype from the most mesic region (southern Illinois) exhibited more growth from west to east. There was evidence for local adaptation in the southern Illinois ecotype by means of the local vs. foreign contrast within a site and the home vs. away contrast when growth in southern Illinois was compared to the most distant 'site in central Kansas. Root biomass of the eastern Kansas ecotype was higher at home than at either away site. The ecotype from the driest region, central Kansas, exhibited the least response across the environmental gradient, resulting in a positive relationship between the range of biomass response and precipitation in ecotype region of origin. Across all sites, ecotypes varied in root C:N ratio (highest in the driest-origin ecotype) and N storage in roots (highest in the most mesic-origin ecotype). The low and limited range of biomass, higher C:N ratio of roots

  9. Sylvatic plague vaccine and management of prairie dogs

    Science.gov (United States)

    Rocke, Tonie E.

    2012-01-01

    Scientists at the USGS National Wildlife Health Center (NWHC), in collaboration with colleagues at the University of Wisconsin (UW), have developed a sylvatic plague vaccine that shows great promise in protecting prairie dogs against plague (Mencher and others, 2004; Rocke and others, 2010). Four species of prairie dogs reside in the United States and Canada, and all are highly susceptible to plague and regularly experience outbreaks with devastating losses. Along with habitat loss and poisoning, plague has contributed to a significant historical decline in prairie dog populations. By some estimates, prairie dogs now occupy only 1 to 2 percent of their former range (Proctor and others, 2006), with prairie dog colonies being now much smaller and fragmented than they were historically, making individual colonies more vulnerable to elimination by plague (Antolin and others, 2002). At least one species, the Utah prairie dog (Cynomys parvidens) is listed by the U.S. Fish and Wildlife Service (FWS) as "threatened." Controlling plague is a vital concern for ongoing management and conservation efforts for prairie dogs. Current efforts to halt the spread of plague in prairie dog colonies typically rely on dusting individual prairie dog burrows with pesticides to kill plague-infected fleas. Although flea-control insecticides, such as deltamethrin, are useful in stopping plague outbreaks in these prairie dog colonies, dusting of burrows is labor intensive and time consuming and may affect other insects and arthropods. As an alternative approach, NWHC and UW scientists developed a sylvatic plague vaccine (SPV) for prairie dogs that can be delivered via oral bait. Laboratory studies have shown that consumption of this vaccine-laden bait by different prairie dog species results in significant protection against plague infection that can last for at least 9 months (Rocke and others, 2010; Rocke, unpublished). Work has now shifted to optimizing baits and distribution methods for

  10. Black-tailed prairie dog status and future conservation planning

    Science.gov (United States)

    Daniel W. Mulhern; Craig J. Knowles

    1997-01-01

    The black-tailed prairie dog is one of five prairie dog species estimated to have once occupied up to 100 million ha or more in North America. The area occupied by black-tailed prairie dogs has declined to approximately 2% of its former range. Conversion of habitat to other land uses and widespread prairie dog eradication efforts combined with sylvatic plague,

  11. Prairie Chicken

    Data.gov (United States)

    Kansas Data Access and Support Center — An outline of the general range occupied by greayter and lesser prairie chickens. The range was delineated by expert opinion, then varified by local wildlife...

  12. Diet Switching by Mammalian Herbivores in Response to Exotic Grass Invasion.

    Directory of Open Access Journals (Sweden)

    Carolina Bremm

    Full Text Available Invasion by exotic grasses is a severe threat to the integrity of grassland ecosystems all over the world. Because grasslands are typically grazed by livestock and wildlife, the invasion is a community process modulated by herbivory. We hypothesized that the invasion of native South American grasslands by Eragrostis plana Nees, an exotic tussock-forming grass from Africa, could be deterred by grazing if grazers switched dietary preferences and included the invasive grass as a large proportion of their diets. Bos taurus (heifers and Ovis aries (ewes grazed plots with varying degrees of invasion by E. plana in a replicated manipulative experiment. Animal positions and species grazed were observed every minute in 45-min grazing session. Proportion of bites and steps in and out of E. plana tussocks were measured and used to calculate several indices of selectivity. Both heifers and ewes exhibited increasing probability of grazing E. plana as the proportion of area covered by tussocks increased, but they behaved differently. In agreement with expectations based on the allometry of dietary preferences and morphology, ewes consumed a low proportion of E. plana, except in areas that had more than 90% E. plana cover. Heifers consumed proportionally more E. plana than ewes. Contrary to our hypothesis, herbivores did not exhibit dietary switching towards the invasive grass. Moreover, they exhibited avoidance of the invasive grass and preference for short-statured native species, both of which should tend to enhance invasion. Unless invasive plants are highly palatable to livestock, the effect of grazing to deter the invasion is limited, due to the inherent avoidance of the invasive grass by the main grazers in the ecosystem, particularly sheep.

  13. Developing a framework for evaluating tallgrass prairie reconstruction methods and management

    Science.gov (United States)

    Larson, Diane L.; Ahlering, Marissa; Drobney, Pauline; Esser, Rebecca; Larson, Jennifer L.; Viste-Sparkman, Karen

    2018-01-01

    The thousands of hectares of prairie reconstructed each year in the tallgrass prairie biome can provide a valuable resource for evaluation of seed mixes, planting methods, and post-planting management if methods used and resulting characteristics of the prairies are recorded and compiled in a publicly accessible database. The objective of this study was to evaluate the use of such data to understand the outcomes of reconstructions over a 10-year period at two U.S. Fish and Wildlife Service refuges. Variables included number of species planted, seed source (combine-harvest or combine-harvest plus hand-collected), fire history, and planting method and season. In 2015 we surveyed vegetation on 81 reconstructions and calculated proportion of planted species observed; introduced species richness; native species richness, evenness and diversity; and mean coefficient of conservatism. We conducted exploratory analyses to learn how implied communities based on seed mix compared with observed vegetation; which seeding or management variables were influential in the outcome of the reconstructions; and consistency of responses between the two refuges. Insights from this analysis include: 1) proportion of planted species observed in 2015 declined as planted richness increased, but lack of data on seeding rate per species limited conclusions about value of added species; 2) differing responses to seeding and management between the two refuges suggest the importance of geographic variability that could be addressed using a public database; and 3) variables such as fire history are difficult to quantify consistently and should be carefully evaluated in the context of a public data repository.

  14. Mechanisms for dominance in an early successional old field by the invasive non-native Lespedeza cuneata (Dum. Cours.) G. Don

    Science.gov (United States)

    Brandon, A.L.; Gibson, D.J.; Middleton, B.A.

    2004-01-01

    Researchers studying invasive plants often concentrate their efforts on predictive models thought to allow invasive plants to dominate native landscapes. However, if an invasive is already well established then experimental research is necessary to provide the information necessary to effectively manage the species. Prescribing appropriate management strategies without prior experimental research may not only be ineffective but also may squander limited resources or have the unintended consequence of furthering spread. Lespedeza cuneata (Dum. Cours.) G. Don. is a well-established invasive plant of old fields and tall-grass prairie in the US. Managers suspect this species shades-out native plants and this is proposed as its primary mechanism for dominance. Using field experiments we tested probable factors allowing the speices to establish itself and once established, interfere in old field plant communities. We also examined the effects of two common anthropogenic disturbances (mowing and nutrients) on L. cuneata growth and establishment. When L. cuneata was treated (clipping, herbicide and stem pull-back) there was a significant increase in species richness and native speices cover. Stem density and canopy cover of L. cuneata increased significantly with mowing frequency but decreased with nutrient input. We suggest that mowing benefits L. cuneata while also hindering woody competition. Results also indicate L. cuneata is less prevalent on nutrient enriched soils than on unamended soil. Lespedeza cuneata appears to suppress native plants by shading them out and it can subsequently take over grassland communities. Since it has a varying response to human induced disturbances and may actually benefit from mowing, land managers should be cautious when utilizing this as a management tool.

  15. Cover Image Identification of Plant Species for Crop Pollinator Habitat Enhancement in the Northern Prairies

    Directory of Open Access Journals (Sweden)

    Diana Bizecki Robson

    2014-09-01

    Full Text Available Wild pollinators have a positive impact on the productivity of insect-pollinated crops. Consequently, landowners are being encouraged to maintain and grow wildflower patches to provide habitat for important pollinators. Research on plant-pollinator interaction matrices indicates that a small number of “core” plants provide a disproportionately high amount of pollen and nectar to insects. This matrix data can be used to help design wildflower plantings that provide optimal resources for desirable pollinators. Existing interaction matrices from three tall grass prairie preserves in the northern prairies were used to identify core plant species that are visited by wild pollinators of a common insect-pollinated crop, namely canola (Brassica napus L.. The wildflower preferences of each insect taxon were determined using quantitative insect visitation and floral abundance data. Phenology data were used to calculate the degree of floral synchrony between the wildflowers and canola. Using this information I ranked the 41 wildflowers that share insect visitors with canola according to how useful they are for providing pollinators with forage before and after canola flowers. The top five species were smooth blue aster (Symphyotrichum laeve (L. A. & D. Löve, stiff goldenrod (Solidago rigida L., wild bergamot (Monarda fistulosa L., purple prairie-clover (Dalea purpurea Vent. and Lindley’s aster (Symphyotrichum ciliolatum (Lindl. A. & D. Löve. By identifying the most important wild insects for crop pollination, and determining when there will be “pollen and nectar gaps”, appropriate plant species can be selected for companion plantings to increase pollinator populations and crop production.

  16. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie

    Science.gov (United States)

    Manning, George C.; Baer, Sara G.; Blair, John M.

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies ( P total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies ( P total organic C, and total soil N were positively correlated with FQI ( P quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  17. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands

    Science.gov (United States)

    Mosier, A.; Bronson, K.; Schimel, D.; Valentine, D.; Parton, W.

    1991-03-01

    Measurements of CH4 uptake and N2O emissions in native, nitrogen-fertilized, and wheat-growing prairie soils from spring to late autumn, 1990 are reported. It is found that nitrogen fertilization and cultivation can both decrease CH4 uptake and increase N2O production, thereby contributing to the increasing atmospheric concentrations of these gases.

  18. Evaluating winter/spring seeding of a native perennial bunchgrass in the sagebrush steppe

    Science.gov (United States)

    Sagebrush (Artemisia tridentata Nutt.) plant communities in the US Great Basin region are being severely impacted by increasingly frequent wildfires in association with the expansion of exotic annual grasses. Maintenance of native perennial bunchgrasses is key to controlling annual grass expansion,...

  19. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    Science.gov (United States)

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. © 2015 Society for Conservation Biology.

  20. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.

    2015-01-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research.

  1. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    Science.gov (United States)

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  2. Spatially explicit modeling of lesser prairie-chicken lek density in Texas

    Science.gov (United States)

    Timmer, Jennifer M.; Butler, M.J.; Ballard, Warren; Boal, Clint W.; Whitlaw, Heather A.

    2014-01-01

    As with many other grassland birds, lesser prairie-chickens (Tympanuchus pallidicinctus) have experienced population declines in the Southern Great Plains. Currently they are proposed for federal protection under the Endangered Species Act. In addition to a history of land-uses that have resulted in habitat loss, lesser prairie-chickens now face a new potential disturbance from energy development. We estimated lek density in the occupied lesser prairie-chicken range of Texas, USA, and modeled anthropogenic and vegetative landscape features associated with lek density. We used an aerial line-transect survey method to count lesser prairie-chicken leks in spring 2010 and 2011 and surveyed 208 randomly selected 51.84-km(2) blocks. We divided each survey block into 12.96-km(2) quadrats and summarized landscape variables within each quadrat. We then used hierarchical distance-sampling models to examine the relationship between lek density and anthropogenic and vegetative landscape features and predict how lek density may change in response to changes on the landscape, such as an increase in energy development. Our best models indicated lek density was related to percent grassland, region (i.e., the northeast or southwest region of the Texas Panhandle), total percentage of grassland and shrubland, paved road density, and active oil and gas well density. Predicted lek density peaked at 0.39leks/12.96km(2) (SE=0.09) and 2.05leks/12.96km(2) (SE=0.56) in the northeast and southwest region of the Texas Panhandle, respectively, which corresponds to approximately 88% and 44% grassland in the northeast and southwest region. Lek density increased with an increase in total percentage of grassland and shrubland and was greatest in areas with lower densities of paved roads and lower densities of active oil and gas wells. We used the 2 most competitive models to predict lek abundance and estimated 236 leks (CV=0.138, 95% CI=177-306leks) for our sampling area. Our results suggest that

  3. Spatial and temporal variability of guinea grass (Megathyrsus maximus) fuel loads and moisture on Oahu, Hawaii

    Science.gov (United States)

    Lisa M. Ellsworth; Creighton M. Litton; Andrew D. Taylor; J. Boone Kauffman

    2013-01-01

    Frequent wildfires in tropical landscapes dominated by non-native invasive grasses threaten surrounding ecosystems and developed areas. To better manage fire, accurate estimates of the spatial and temporal variability in fuels are urgently needed. We quantified the spatial variability in live and dead fine fuel loads and moistures at four guinea grass (...

  4. Interspecific comparisons of sylvatic plague in prairie dogs

    Science.gov (United States)

    Cully, J.F.; Williams, E.S.

    2001-01-01

    Of the 3 major factors (habitat loss, poisoning, and disease) that limit abundance of prairie dogs today, sylvatic plague caused by Yersinia pestis is the 1 factor that is beyond human control. Plague epizootics frequently kill >99% of prairie dogs in infected colonies. Although epizootics of sylvatic plague occur throughout most of the range of prairie dogs in the United States and are well described, long-term maintenance of plague in enzootic rodent species is not well documented or understood. We review dynamics of plague in white-tailed (Cynomys leucurus), Gunnison's (C. gunnisoni), and black-tailed (C. ludovicianus) prairie dogs, and their rodent and flea associates. We use epidemiologic concepts to support an enzootic hypothesis in which the disease is maintained in a dynamic state, which requires transmission of Y. pestis to be slower than recruitment of new susceptible mammal hosts. Major effects of plague are to reduce colony size of black-tailed prairie dogs and increase intercolony distances within colony complexes. In the presence of plague, black-tailed prairie dogs will probably survive in complexes of small colonies that are usually >3 km from their nearest neighbor colonies.

  5. Herbaceous Legume Encroachment Reduces Grass Productivity and Density in Arid Rangelands.

    Directory of Open Access Journals (Sweden)

    Thomas C Wagner

    Full Text Available Worldwide savannas and arid grasslands are mainly used for livestock grazing, providing livelihood to over a billion people. While normally dominated by perennial C4 grasses, these rangelands are increasingly affected by the massive spread of native, mainly woody legumes. The consequences are often a repression of grass cover and productivity, leading to a reduced carrying capacity. While such encroachment by woody plants has been extensively researched, studies on similar processes involving herbaceous species are rare. We studied the impact of a sustained and massive spread of the native herbaceous legume Crotalaria podocarpa in Namibia's escarpment region on the locally dominant fodder grasses Stipagrostis ciliata and Stipagrostis uniplumis. We measured tussock densities, biomass production of individual tussocks and tussock dormancy state of Stipagrostis on ten 10 m x 10 m plots affected and ten similarly-sized plots unaffected by C. podocarpa over eight consecutive years and under different seasonal rainfalls and estimated the potential relative productivity of the land. We found the percentage of active Stipagrostis tussocks and the biomass production of individual tussocks to increase asymptotically with higher seasonal rainfall reaching a maximum around 300 mm while the land's relative productivity under average local rainfall conditions reached only 40% of its potential. Crotalaria podocarpa encroachment had no effect on the proportion of productive grass tussocks, but reduced he productivity of individual Stipagrostis tussocks by a third. This effect of C. podocarpa on grass productivity was immediate and direct and was not compensated for by above-average rainfall. Besides this immediate effect, over time, the density of grass tussocks declined by more than 50% in areas encroached by C. podocarpa further and lastingly reducing the lands carrying capacity. The effects of C. podocarpa on grass productivity hereby resemble those of woody

  6. Radiative surface temperatures of the burned and unburned areas in a tallgrass prairie

    International Nuclear Information System (INIS)

    Asrar, G.; Harris, T.R.; Lapitan, R.L.; Cooper, D.I.

    1988-01-01

    This study was conducted in a natural tallgrass prairie area in the Flint Hills of Kansas. Our objective was to evaluate the surface radiative temperatures of burned and unburned treatments of the grassland as a means of delineating the areas covered by each treatment. Burning is used to remove the senescent vegetation resulting from the previous year's growth. Surface temperatures were obtained in situ and by an airborne scanner. Burned and unburned grass canopies had distinctly different diurnal surface radiative temperatures. Measurements of surface energy balance components revealed a difference in partitioning of the available energy between the two canopies, which resulted in the difference in their measured surface temperatures. The magnitude of this difference is dependent on the time of measurements and topographic conditions. (author)

  7. PHYTOREMEDIATION OF PESTICIDE MIXTURES WITH NATIVE PRAIRIE GRASSES. (R825549C045)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.

    Science.gov (United States)

    Fuentes-Ramirez, Andres; Veldman, Joseph W; Holzapfel, Claus; Moloney, Kirk A

    2016-10-01

    Novel fire regimes are an important cause and consequence of global environmental change that involve interactions among biotic, climatic, and human components of ecosystems. Plant flammability is key to these interactions, yet few studies directly measure flammability or consider how multiple species with different flammabilities interact to produce novel fire regimes. Deserts of the southwestern United States are an ideal system for exploring how novel fire regimes can emerge when fire-promoting species invade ecosystems comprised of species that did not evolve with fire. In these deserts, exotic annual grasses provide fuel continuity across landscapes that did not historically burn. These fires often ignite a keystone desert shrub, the fire-intolerant creosote bush, Larrea tridentata (DC.) Coville. Ignition of Larrea is likely catalyzed by fuels produced by native plants that grow beneath the shrubs. We hypothesize that invasive and native species exhibit distinct flammability characteristics that in combination determine spatial patterns of fire spread and intensity. We measured flammability metrics of Larrea, two invasive grasses, Schismus arabicus and Bromus madritensis, and two native plants, the sub-shrub Ambrosia dumosa and the annual herb Amsinckia menziesii. Results of laboratory experiments show that the grasses carry fire quickly (1.32 cm/s), but burn for short duration (0.5 min) at low temperatures. In contrast, native plants spread fire slowly (0.12 cm/s), but burn up to eight times longer (4 min) and produced hotter fires. Additional experiments on the ignition requirements of Larrea suggest that native plants burn with sufficient temperature and duration to ignite dead Larrea branches (time to ignition, 2 min; temperature at ignition 692°C). Once burning, these dead branches ignite living branches in the upper portions of the shrub. Our study provides support for a conceptual model in which exotic grasses are "spreaders" of fire and native

  9. Spatial and temporal soil moisture resource partitioning by trees and grasses in a temperate savanna, Arizona, USA.

    Science.gov (United States)

    Weltzin, Jake F; McPherson, Guy R

    1997-10-01

    Stable isotope analysis was used to determine sources of water used by coexisting trees and grasses in a temperate savanna dominated by Quercus emoryi Torr. We predicted that (1) tree seedlings and bunchgrasses utilize shallow sources of soil water, (2) mature savanna trees use deeper sources of water, and (3) trees switch from shallow to deep water sources within 1 year of germination. We found that Q. emoryi trees, saplings, and seedlings (about 2 months, 1 year, and 2 years old), and the dominant bunchgrass [Trachypogon montufari (H.B.K.) Nees.] utilized seasonally available moisture from different depths within the soil profile depending on size/age relationships. Sapling and mature Q. emoryi acquired water from >50 cm deep, 2-month-old seedlings utilized water from emoryi within extant stands of native grasses. The potential for subsequent interaction between Q. emoryi and native grasses was evidenced by similar patterns of soil water use by 1- and 2-year-old seedlings and grasses. Q. emoryi seedlings did not switch from shallow to deep sources of soil water within 2 years of germination: water use by these seedlings apparently becomes independent of water use by grasses after 2 years of age. Finally, older trees (saplings, mature trees) use water from deeper soil layers than grasses, which may facilitate the stable coexistence of mature trees and grasses. Potential shifts in the seasonality of precipitation may alter interactions between woody plants and grasses within temperate savannas characterized by bimodal precipitation regimes: reductions in summer precipitation or soil moisture may be particularly detrimental to warm-season grasses and seedlings of Q. emoryi.

  10. Restoration and winter avian use of isolated prairies in eastern Texas

    Science.gov (United States)

    D. Craig Rudolph; Dave E. Plair; Dan Jones; J. Howard Williamson; Clifford E. Shackelford; Richard R. Schaefer; Joshua B. Pierce

    2014-01-01

    Numerous isolated prairies exist, or existed, on the West Gulf Coastal Plain east of the main distribution of the prairie ecosystem. Changing land-use patterns and suppression of wildfire have destroyed almost all of these small prairie occurrences. Intensified restoration and management of degraded prairie habitat on the Sam Houston National Forest in southeastern...

  11. Prairie dogs increase fitness by killing interspecific competitors.

    Science.gov (United States)

    Hoogland, John L; Brown, Charles R

    2016-03-30

    Interspecific competition commonly selects for divergence in ecology, morphology or physiology, but direct observation of interspecific competition under natural conditions is difficult. Herbivorous white-tailed prairie dogs (Cynomys leucurus) employ an unusual strategy to reduce interspecific competition: they kill, but do not consume, herbivorous Wyoming ground squirrels (Urocitellus elegans) encountered in the prairie dog territories. Results from a 6-year study in Colorado, USA, revealed that interspecific killing of ground squirrels by prairie dogs was common, involving 47 different killers; 19 prairie dogs were serial killers in the same or consecutive years, and 30% of female prairie dogs killed at least one ground squirrel over their lifetimes. Females that killed ground squirrels had significantly higher annual and lifetime fitness than non-killers, probably because of decreased interspecific competition for vegetation. Our results document the first case of interspecific killing of competing individuals unrelated to predation (IK) among herbivorous mammals in the wild, and show that IK enhances fitness for animals living under natural conditions. © 2016 The Author(s).

  12. Soil change induced by prairie dogs across three ecological sites

    Science.gov (United States)

    Prairie dogs (Cynomys spp.) can influence vegetation dynamics and landscape hydrology by altering soil properties, yet few studies have evaluated soil responses to prairie dog activities across a range of soil types. This study was conducted to quantify prairie dog effects on soil properties within...

  13. Effects of Altered Seasonality of Precipitation on Grass Production and Grasshopper Performance in a Northern Mixed Prairie.

    Science.gov (United States)

    Branson, David H

    2017-06-01

    Climatic changes are leading to differing patterns and timing of precipitation in grassland ecosystems, with the seasonal timing of precipitation affecting plant biomass and plant composition. No previous studies have examined how drought seasonality affects grasshopper performance and the impact of herbivory on vegetation. We modified seasonal patterns of precipitation and grasshopper density in a manipulative experiment to examine if seasonality of drought combined with herbivory affected plant biomass, nitrogen content, and grasshopper performance. Grass biomass was affected by both precipitation and grasshopper density treatments, while nitrogen content of grass was higher with early-season drought. Proportional survival was negatively affected by initial density, while survival was higher with early drought than with full-season drought. Drought timing affected the outcome, with early summer drought increasing grass nitrogen content and grasshopper survival, while season-long and late-season drought did not. The results support arguments that our knowledge of plant responses to seasonal short-term variation in climate is limited and illustrate the importance of experiments manipulating precipitation phenology. The results confirm that understanding the season of drought is critical for predicting grasshopper population dynamics, as extreme early summer drought may be required to strongly affect Melanoplus sanguinipes (F.) performance. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  14. Avoidance behavior by prairie grouse: implications for development of wind energy.

    Science.gov (United States)

    Pruett, Christin L; Patten, Michael A; Wolfe, Donald H

    2009-10-01

    New wind-energy facilities and their associated power transmission lines and roads are being constructed at a rapid pace in the Great Plains of North America. Nevertheless, little is known about the possible negative effects these anthropogenic features might have on prairie birds, one of the most threatened groups in North America. We examined radiotelemetry tracking locations of Lesser Prairie-Chickens (Tympanuchus pallidicinctus) and Greater Prairie-Chickens (T. cupido) in two locations in Oklahoma to determine whether these birds avoided or changed movement behavior near power lines and paved highways. We tracked 463 Lesser Prairie-Chickens (15,071 tracking locations) and 216 Greater Prairie-Chickens (5,750 locations) for 7 and 3 years, respectively. Individuals of both species avoided power lines by at least 100 m and Lesser Prairie-Chickens avoided one of the two highways by 100 m. Prairie-chickens crossed power lines less often than expected if birds moved randomly (p 0.05). In addition, home ranges of Lesser Prairie-Chickens overlapped the power line less often than would be expected by chance placement of home ranges; this result was supported by kernel-density estimation of home ranges. It is likely that new power lines (and other tall structures such as wind turbines) will lead to avoidance of previously suitable habitat and will serve as barriers to movement. These two factors will likely increase fragmentation in an already fragmented landscape if wind energy development continues in prairie habitats.

  15. Physiologic Reference Ranges for Captive Black-Tailed Prairie Dogs (Cynomys ludovicianus)

    Science.gov (United States)

    Keckler, M Shannon; Gallardo-Romero, Nadia F; Langham, Gregory L; Damon, Inger K; Karem, Kevin L; Carroll, Darin S

    2010-01-01

    The black-tailed prairie dog (Cynomys ludovicianus) is a member of the order Rodentia and the family Sciuridae. Ecologically, prairie dogs are a keystone species in prairie ecology. This species is used as an animal model for human gallbladder disease and diseases caused by infection with Clostridium difficile, Yersinia pestis, Francisella tularensis, and most recently, Orthopoxvirus. Despite increasing numbers of prairie dogs used in research and kept as pets, few data are available on their baseline physiology in animal facility housing conditions. To establish baseline physiologic reference ranges, we designed a study using 18 wild-caught black-tailed prairie dogs. Telemetry data were analyzed to establish circadian rhythms for activity and temperature. In addition, hematologic and serum chemistry analyses were performed. Baseline measurements were used to establish the mean for each animal, which then were compiled and analyzed to determine the reference ranges. Here we present physiologic data on serum chemistry and hematology profiles, as well as weight, core body temperature, and daily activity patterns for black-tailed prairie dogs. These results reflect the use of multiple measurements from species- and age-matched prairie dogs and likely will be useful to ecologists, scientists interested in using this animal model in research, and veterinarians caring for pet prairie dogs. PMID:20587156

  16. Lesser prairie-chicken avoidance of trees in a grassland landscape

    Science.gov (United States)

    Lautenbach, Joseph M.; Plumb, Reid T.; Robinson, Samantha G.; Hagen, Christian A.; Haukos, David A.; Pitman, James C.

    2016-01-01

    Grasslands are among the most imperiled ecosystems in North America. Reasons that grasslands are threatened include conversion to row-crop agriculture, fragmentation, and changes in fire regimes. The reduction of fire processes in remaining prairies has resulted in tree encroachment and establishment in grasslands, further reducing grassland quantity and quality. Grassland birds have been experiencing precipitous population declines in recent decades, commensurate with landscape changes to grasslands. The lesser prairie-chicken (Tympanuchus pallidicinctus Ridgway) is a declining species of prairie grouse of conservation concern. We used second- and third-order habitat selection metrics to test if female lesser prairie-chickens avoid grasslands where trees were present. Our results indicated that female lesser prairie-chickens selected habitats avoiding the nearest trees by 283 m on average, nearly twice as far as would be expected at random. Lesser prairie-chickens were 40 times more likely to use habitats with tree densities of 0 trees ∙ ha− 1 than habitats with 5 trees ∙ ha− 1. Probability of use indicated that lesser prairie-chickens were 19 times more likely to use habitats 1000 m from the nearest tree when compared with using habitats 0 m from the nearest tree. Nest survival was not affected at densities 2 trees ∙ ha− 1. Avoidance of trees could be due to perceived increased predation risk, reduced habitat quality, or a combination of these potentially confounding factors. Preventing further establishment and expansion of trees in landscapes occupied by lesser prairie-chickens could contribute to the continued persistence of the species. Additionally, restoring grasslands through tree removal may facilitate conservation efforts for grassland species such as the lesser prairie-chicken by improving habitat quality and promoting expansion of occupied range.

  17. Paltry past-precipitation: Predisposing prairie dogs to plague?

    Science.gov (United States)

    Eads, David; Biggins, Dean E.

    2017-01-01

    The plague bacterium Yersinia pestis was introduced to California in 1900 and spread rapidly as a sylvatic disease of mammalian hosts and flea vectors, invading the Great Plains in the United States by the 1930s to 1940s. In grassland ecosystems, plague causes periodic, devastating epizootics in colonies of black-tailed prairie dogs (Cynomys ludovicianus), sciurid rodents that create and maintain subterranean burrows. In doing so, plague inhibits prairie dogs from functioning as keystone species of grassland communities. The rate at which fleas transmit Y. pestis is thought to increase when fleas are abundant. Flea densities can increase during droughts when vegetative production is reduced and herbivorous prairie dogs are malnourished and have weakened defenses against fleas. Epizootics of plague have erupted frequently in prairie dogs during years in which precipitation was plentiful, and the accompanying cool temperatures might have facilitated the rate at which fleas transmitted Y. pestis. Together these observations evoke the hypothesis that transitions from dry-to-wet years provide conditions for plague epizootics in prairie dogs. Using generalized linear models, we analyzed a 24-year dataset on the occurrence of plague epizootics in 42 colonies of prairie dogs from Colorado, USA, 1982–2005. Of the 33 epizootics observed, 52% erupted during years with increased precipitation in summer. For the years with increased summer precipitation, if precipitation in the prior growing season declined from the maximum of 502 mm to the minimum of 200 mm, the prevalence of plague epizootics was predicted to increase 3-fold. Thus, reduced precipitation may have predisposed prairie dogs to plague epizootics when moisture returned. Biologists sometimes assume dry conditions are detrimental for plague. However, 48% of epizootics occurred during years in which precipitation was scarce in summer. In some cases, an increased abundance of fleas during dry years might

  18. Short-term responses of reptile assemblages to fire in native and weedy tropical savannah

    Directory of Open Access Journals (Sweden)

    Rickard Abom

    2016-04-01

    Full Text Available Fire is frequently used as a management tool to reduce the cover of weeds, to reduce the amount of fuel available for future fires, and to create succession mosaics that may enhance biodiversity. We determined the influence of fire on wildlife, by quantifying reptile assemblage composition in response to fire in a weedy environment characterised by very short-term fire return intervals (<2 years. We used reptiles because they are often understudied, and are only moderately vagile compared to other vertebrates, and they respond strongly to changes in vegetation structure. We repeatedly sampled 24 replicate sampling sites after they had been unburned for two years, just prior to burning (pre-burnt, just after burning (post-burnt, and up to 15 months after burning (revegetated and monitored vegetation structure and reptile richness, abundance and assemblage composition. Our sites were not spatially auto-correlated, and were covered by native kangaroo grass (Themeda triandra, black spear grass (Heteropogon contortus, or an invasive weed (grader grass, Themeda quadrivalvis. Reptile abundance and richness were highest when sites had been unburned for 2 years, and greatly reduced in all areas post burning. The lowest reptile abundances occurred in sites dominated by the weed. Reptile abundance and richness had recovered in all grass types 15 months after burning, but assemblage composition changed. Some species were present only in before our focus fire in native grass, and their populations did not recover even 15 months post-burning. Even in fire-prone, often-burnt habitats such as our study sites, in which faunal richness and abundance were not strongly influenced by fire, reptile assemblage composition was altered. To maintain faunal biodiversity in fire-prone systems, we suggest reducing the frequency of prescribed fires, and (if possible excluding fire from weedy invasions if it allows native grasses to return.

  19. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    Science.gov (United States)

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  20. Recommended methods for range-wide monitoring of prairie dogs in the United States

    Science.gov (United States)

    McDonald, Lyman L.; Stanley, Thomas R.; Otis, David L.; Biggins, Dean E.; Stevens, Patricia D.; Koprowski, John L.; Ballard, Warren

    2011-01-01

    One of the greatest challenges for conserving grassland, prairie scrub, and shrub-steppe ecosystems is maintaining prairie dog populations across the landscape. Of the four species of prairie dogs found in the United States, the Utah prairie dog (Cynomys parvidens) is listed under the Endangered Species Act (ESA) as threatened, the Gunnison's prairie dog (C. gunnisoni) is a candidate for listing in a portion of its range, and the black-tailed prairie dog (C. ludovicianus) and white-tailed prairie dog (C. leucurus) have each been petitioned for listing at least once in recent history. Although the U.S. Fish and Wildlife Service (USFWS) determined listing is not warranted for either the black-tailed prairie dog or white-tailed prairie dog, the petitions and associated reviews demonstrated the need for the States to monitor and manage for self-sustaining populations. In response to these findings, a multi-State conservation effort was initiated for the nonlisted species which included the following proposed actions: (1) completing an assessment of each prairie dog species in each State, (2) developing a range-wide monitoring protocol for each species using a statistically valid sampling procedure that would allow comparable analyses across States, and (3) monitoring prairie dog status every 3-5 years depending upon the species. To date, each State has completed an assessment and currently is monitoring prairie dog status; however, for some species, the inconsistency in survey methodology has made it difficult to compare data year-to-year or State-to-State. At the Prairie Dog Conservation Team meeting held in November 2008, there was discussion regarding the use of different methods to survey prairie dogs. A recommendation from this meeting was to convene a panel in a workshop-type forum and have the panel review the different methods being used and provide recommendations for range-wide monitoring protocols for each species of prairie dog. Consequently, the Western

  1. Disease limits populations: plague and black-tailed prairie dogs

    Science.gov (United States)

    Cully, Jack F.; Johnson, T.; Collinge, S.K.; Ray, C.

    2010-01-01

    Plague is an exotic vector-borne disease caused by the bacterium Yersinia pestis that causes mortality rates approaching 100% in black-tailed prairie dogs (Cynomys ludovicianus). We mapped the perimeter of the active portions of black-tailed prairie dog colonies annually between 1999 and 2005 at four prairie dog colony complexes in areas with a history of plague, as well as at two complexes that were located outside the distribution of plague at the time of mapping and had therefore never been affected by the disease. We hypothesized that the presence of plague would significantly reduce overall black-tailed prairie dog colony area, reduce the sizes of colonies on these landscapes, and increase nearest-neighbor distances between colonies. Within the region historically affected by plague, individual colonies were smaller, nearest-neighbor distances were greater, and the proportion of potential habitat occupied by active prairie dog colonies was smaller than at plague-free sites. Populations that endured plague were composed of fewer large colonies (>100 ha) than populations that were historically plague free. We suggest that these differences among sites in colony size and isolation may slow recolonization after extirpation. At the same time, greater intercolony distances may also reduce intercolony transmission of pathogens. Reduced transmission among smaller and more distant colonies may ultimately enhance long-term prairie dog population persistence in areas where plague is present.

  2. Black-tailed prairie dogs, cattle, and the conservation of North America's arid grasslands.

    Directory of Open Access Journals (Sweden)

    Rodrigo Sierra-Corona

    Full Text Available Prairie dogs (Cynomys spp. have been eliminated from over 95% of their historic range in large part from direct eradication campaigns to reduce their purported competition with cattle for forage. Despite the longstanding importance of this issue to grassland management and conservation, the ecological interactions between cattle and prairie dogs have not been well examined. We address this issue through two complementary experiments to determine if cattle and prairie dogs form a mutualistic grazing association similar to that between prairie dogs and American bison. Our experimental results show that cattle preferentially graze along prairie dog colony edges and use their colony centers for resting, resembling the mutualistic relationship prairie dogs have with American bison. Our results also show that prairie dog colonies are not only an important component of the grassland mosaic for maintaining biodiversity, but also provide benefits to cattle, thereby challenging the long-standing view of prairie dogs as an undesirable pest species in grasslands.

  3. Song and Male Quality in Prairie Warblers

    Science.gov (United States)

    Bruce E. Byers; Michael E. Akresh; David I. King; W. Koenig

    2016-01-01

    To determine if the songs of male prairie warblers could potentially reveal to female listeners information about the quality of singers, we compared various aspects of prairie warbler song structure and performance to attributes that might reflect a male singer's potential to enhance the fitness of his mate. We found that all the tested male attributes—arrival...

  4. Improving a native pasture with the legume Arachis pintoi in the humid tropics of México

    NARCIS (Netherlands)

    Castillo Gallegos, E.

    2003-01-01

    The objective of this study was to determine the effect of introducing the legume Arachis pintoi CIAT 17434 into a native pasture where native grasses dominated the botanical composition, on establishment, persistence, standing dry matter, botanical composition, soil variables, animal performance,

  5. Factors influencing uptake of sylvatic plague vaccine baits by prairie dogs

    Science.gov (United States)

    Abbott, Rachel C.; Russell, Robin E.; Richgels, Katherine; Tripp, Daniel W.; Matchett, Marc R.; Biggins, Dean E.; Rocke, Tonie E.

    2017-01-01

    Sylvatic plague vaccine (SPV) is a virally vectored bait-delivered vaccine expressing Yersinia pestis antigens that can protect prairie dogs (Cynomys spp.) from plague and has potential utility as a management tool. In a large-scale 3-year field trial, SPV-laden baits containing the biomarker rhodamine B (used to determine bait consumption) were distributed annually at a rate of approximately 100–125 baits/hectare along transects at 58 plots encompassing the geographic ranges of four species of prairie dogs. We assessed site- and individual-level factors related to bait uptake in prairie dogs to determine which were associated with bait uptake rates. Overall bait uptake for 7820 prairie dogs sampled was 70% (95% C.I. 69.9–72.0). Factors influencing bait uptake rates by prairie dogs varied by species, however, in general, heavier animals had greater bait uptake rates. Vegetation quality and day of baiting influenced this relationship for black-tailed, Gunnison’s, and Utah prairie dogs. For these species, baiting later in the season, when normalized difference vegetation indices (a measure of green vegetation density) are lower, improves bait uptake by smaller animals. Consideration of these factors can aid in the development of species-specific SPV baiting strategies that maximize bait uptake and subsequent immunization of prairie dogs against plague.

  6. Feasibility of Invasive Grass Detection in a Desertscrub Community Using Hyperspectral Field Measurements and Landsat TM Imagery

    OpenAIRE

    Olsson, Aaryn D.; Leeuwen, Willem J.D. van; Marsh, Stuart E.

    2011-01-01

    Invasive species’ phenologies often contrast with those of native species, representing opportunities for detection of invasive species with multi-temporal remote sensing. Detection is especially critical for ecosystem-transforming species that facilitate changes in disturbance regimes. The African C4 grass, Pennisetum ciliare, is transforming ecosystems on three continents and a number of neotropical islands by introducing a grass-fire cycle. However, previous attempts at discriminating P. c...

  7. Vegetation of wetlands of the prairie pothole region

    Science.gov (United States)

    Kantrud, H.A.; Millar, J.B.; Van Der Valk, A.G.; van der Valk, A.

    1989-01-01

    Five themes dominate the literature dealing with the vegetation of palustrine and lacustrine wetlands of the prairie pothole region: environmental conditions (water or moisture regime, salinity), agricultural disturbances (draining, grazing, burning, sedimentation, etc.), vegetation dynamics, zonation patterns, and classification of the wetlands.The flora of a prairie wetland is a function of its water regime, salinity, and disturbance by man. Within a pothole, water depth and duration determines distribution of species. In potholes deep enough to have standing water even during droughts, the central zone will be dominated by submersed species (open water). In wetlands that go dry during periods of drought or annually, the central zone will be dominated by either tall emergent species (deep marsh) or midheight emergents (shallow marsh), respectively. Potholes that are only flooded briefly in the spring are dominated by grasses, sedges, and forbs (wet meadow). Within a pothole, the depth of standing water in the deepest, usually central, part of the basin determines how many zones will be present. Lists of species associated with different water regimes and salinity levels are presented.Disturbances due to agricultural activities have impacted wetlands throughout the region. Drainage has eliminated many potholes, particularly in the southern and eastern parts of the region. Grazing, mowing, and burning have altered the composition of pothole vegetation. The composition of different vegetation types impacted by grazing, haying, and cultivation is presented in a series of tables. Indirect impacts of agriculture (increased sediment, nutrient, and pesticide inputs) are widespread over the region, but their impacts on the vegetation have never been studied.Because of the periodic droughts and wet periods, many palustrine and lacustrine wetlands undergo vegetation cycles associated with water-level changes produced by these wet-dry cycles. Periods of above normal

  8. Small mammals in successional prairie woodlands of the northern Great Plains

    Science.gov (United States)

    Mark A. Rumble; John E. Gobeille

    2001-01-01

    Prairie woodlands comprise about 1 percent of the landscape in the northern Great Plains. However, prairie woodlands provide habitat for far more than 1 percent of the wildlife species that occur in the prairie region. With increasing pressures on natural resources, managers need methods for managing wildlife habitat and biodiversity that are based on ecological...

  9. Sound transmission at ground level in a short-grass prairie habitat and its implications for long-range communication in the swift fox Vulpes velox

    DEFF Research Database (Denmark)

    Darden, Safi K; Pedersen, Simon B; Larsen, Ole N

    2008-01-01

    The acoustic environment of swift foxes Vulpes velox vocalizing close to the ground and the effect of propagation on individual identity information in vocalizations were quantified in a transmission experiment in prairie habitat. Sounds were propagated (0.45 m above the ground) at distances up t...

  10. Bison grazing increases arthropod abundance and diversity in a tallgrass prairie.

    Science.gov (United States)

    Moran, Matthew D

    2014-10-01

    How grazing-induced ecosystem changes by ungulates indirectly affect other consumers is a question of great interest. I investigated the effect of grazing by American Bison (Bos bison L.) on an arthropod community in tallgrass prairie. Grazing increased the abundance of arthropods, an increase that was present in both herbivorous and carnivorous assemblages, but not in detritivores. The increase in herbivores and reduction in plant biomass from grazing resulted in an arthropod herbivore load almost three times higher in grazed plots compared with controls. Among herbivores, the sap-feeding insect guild was dramatically more abundant, while chewing herbivores were not affected. Herbivorous and carnivorous arthropod richness was higher in grazed plots, although the response was strongest among herbivores. Arthropod abundance on individual grasses and forbs was significantly higher in grazed areas, while plant type had no effect on abundance, indicating that the change was ecosystem-wide and not simply in response to a reduction in grass biomass from grazing. The response of arthropods to grazing was strongest in the early part of the growing season. Published research shows that ungulate grazing, although decreasing available biomass to other consumers, enhances plant quality by increasing nitrogen level in plants. The arthropod results of this study suggest higher plant quality outweighs the potential negative competitive effects of plant biomass removal, although other activities of bison could not be ruled out as the causative mechanism. Because arthropods are extremely abundant organisms in grasslands and a food source for other consumers, bison may represent valuable management tools for maintaining biodiversity.

  11. 78 FR 17224 - Environmental Impact Statement; Proposed South Puget Sound Prairie Habitat Conservation Plan...

    Science.gov (United States)

    2013-03-20

    ... sizable portion of South Puget Sound Prairie habitat is located in the urban-rural interface and in the...-FF01E00000] Environmental Impact Statement; Proposed South Puget Sound Prairie Habitat Conservation Plan... permit application would be associated the South Puget Sound Prairie Habitat Conservation Plan (Prairie...

  12. Proceedings of the third prairie conservation and endangered species workshop

    Energy Technology Data Exchange (ETDEWEB)

    Holroyd, G.L.; Diskson, H.L.; Regnier, M.; Smith, H.C. (eds.)

    1993-01-01

    The Canadian prairies support a major agricultural economy and a declining abundance of wildlife. Soil erosion and water quality threaten the long-term viability of agriculture; half of Canada's endangered and threatened birds and mammals share the prairies. Wise policies of resource management are needed to solve these problems. A workshop was held to address the issue of how to manage the prairies to promote sustained agriculture and to conserve the wildlife that are in jeopardy. Papers were presented on the relationships between agriculture and wildlife, land restoration, climate change, pesticides, the Prairie Conservation Action Plan, plant conservation, amphibians, reptiles, migratory birds and other wildfowl, and mammals. Separate abstracts have been prepared for two papers from this workshop.

  13. Two decades of prairie restoration at Fermilab, Batavia, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Betz, R.F. [Northeastern Illinois Univ., Chicago, IL (United States); Lootens, R.J.; Becker, M.K. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1996-12-31

    Successional Restoration is the method being used to restore the prairie at Fermilab on the former agricultural fields. This involves an initial planting, using aggressive species that have wide ecological tolerances which will grow well on abandoned agricultural fields. Collectively, these species are designated as the prairie matrix. The species used for this prairie matrix compete with and eventually eliminate most weedy species. They also provide an adequate fuel load capable of sustaining a fire within a few years after a site has been initially planted. Associated changes in the biological and physical structure of the soil help prepare the way for the successful introduction of plants of the later successional species. Only after the species of the prairie matrix are well established, is the species diversity increased by introducing species with narrower ecological tolerances. These species are thus characteristic of the later successional stages.

  14. Public knowledge and perceptions of black-tailed prairie dogs

    Science.gov (United States)

    Lamb, B.L.; Cline, K.

    2003-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) historically occupied an 11-state region of the United States. We surveyed 1,900 residents (response rate 56%) of this region to understand citizen knowledge and perceptions about prairie dogs and their management. Those who have direct experience - e.g., those who live very close to prairie dog colonies or know the location of the nearest colony - have higher levels of knowledge. A significantly higher level of knowledge was documented among those who were politically active when compared with the general public. Those who found environmental issues difficult to understand were associated with lower knowledge. People with direct experience were likely to hold negative views, whereas those holding environmentalist values were likely to express positive attitudes toward the species. Although those with higher education reported more knowledge, there was no link between a person's level of knowledge and perceptions of prairie dog management.

  15. Germination timing and rate of locally collected western wheatgrass and smooth brome grass: the role of collection site and light sensitivity along a riparian corridor

    Science.gov (United States)

    The ecological integrity of riparian areas is reduced by biological plant invaders like smooth brome grass (Bromus inermis). Smooth brome actively invades recently disturbed riparian zones by its high seed production and fast seedling establishment. Restoring native perennial grasses to these regio...

  16. Perennial Grass and Native Wildflowers: A Synergistic Approach to Habitat Management

    Directory of Open Access Journals (Sweden)

    Shereen S. Xavier

    2017-09-01

    Full Text Available Marginal agricultural land provides opportunities to diversify landscapes by producing biomass for biofuel, and through floral provisioning that enhances arthropod-mediated ecosystem service delivery. We examined the effects of local spatial context (adjacent to woodland or agriculture and irrigation (irrigation or no irrigation on wildflower bloom and visitation by arthropods in a biofeedstocks-wildflower habitat buffer design. Twenty habitat buffer plots were established containing a subplot of Napier grass (Pennisetum perpureum Schumach for biofeedstock, three commercial wildflower mix subplots, and a control subplot containing spontaneous weeds. Arthropods and flowers were visually observed in quadrats throughout the season. At the end of the season we measured soil nutrients and harvested Napier biomass. We found irrespective of buffer location or irrigation, pollinators were observed more frequently early in the season and on experimental plots with wildflowers than on weeds in the control plots. Natural enemies showed a tendency for being more common on plots adjacent to a wooded border, and were also more commonly observed early in the season. Herbivore visits were infrequent and not significantly influenced by experimental treatments. Napier grass yields were high and typical of first-year yields reported regionally, and were not affected by location context or irrigation. Our results suggest habitat management designs integrating bioenergy crop and floral resources provide marketable biomass and habitat for beneficial arthropods.

  17. Rehabilitating downy brome (Bromus tectorum)-invaded scrublands using imazapic and seeding with native shrubs

    Science.gov (United States)

    Suzanne M. Owen; Carolyn Hull Sieg; Catherine A. Gehring

    2011-01-01

    Rehabilitation of downy brome-infested shrublands is challenging once this invasive grass dominates native communities. The effectiveness of imazapic herbicide in reducing downy brome cover has been variable, and there is uncertainty about the impacts of imazapic on native species. We used a before-after-control-impact (BACI) field experiment and greenhouse studies to...

  18. Woody structure facilitates invasion of woody plants by providing perches for birds.

    Science.gov (United States)

    Prather, Chelse M; Huynh, Andrew; Pennings, Steven C

    2017-10-01

    Woody encroachment threatens prairie ecosystems globally, and thus understanding the mechanisms that facilitate woody encroachment is of critical importance. Coastal tallgrass prairies along the Gulf Coast of the US are currently threatened by the spread of several species of woody plants. We studied a coastal tallgrass prairie in Texas, USA, to determine if existing woody structure increased the supply of seeds from woody plants via dispersal by birds. Specifically, we determined if (i) more seedlings of an invasive tree ( Tridacia sebifera ) are present surrounding a native woody plant ( Myrica cerifera ); (ii) wooden perches increase the quantity of seeds dispersed to a grassland; and (iii) perches alter the composition of the seed rain seasonally in prairie habitats with differing amounts of native and invasive woody vegetation, both underneath and away from artificial wooden perches. More T. sebifera seedlings were found within M. cerifera patches than in graminoid-dominated areas. Although perches did not affect the total number of seeds, perches changed the composition of seed rain to be less dominated by grasses and forbs. Specifically, 20-30 times as many seeds of two invasive species of woody plants were found underneath perches independent of background vegetation, especially during months when seed rain was highest. These results suggest that existing woody structure in a grassland can promote further woody encroachment by enhancing seed dispersal by birds. This finding argues for management to reduce woody plant abundance before exotic plants set seeds and argues against the use of artificial perches as a restoration technique in grasslands threatened by woody species.

  19. Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities.

    Science.gov (United States)

    Starchenka, S; Bell, A J; Mwange, J; Skinner, M A; Heath, M D

    2017-01-01

    Subcutaneous allergen immunotherapy (SCIT) is a well-documented treatment for allergic disease which involves injections of native allergen or modified (allergoid) extracts. The use of allergoid vaccines is a growing sector of the allergy immunotherapy market, associated with shorter-course therapy. The aim of this study was the structural and immunological characterisation of group 1 (Lol p 1) IgG-binding epitopes within a complex mix grass allergoid formulation containing rye grass. HP-SEC was used to resolve a mix grass allergoid preparation of high molecular weight into several distinct fractions with defined molecular weight and elution profiles. Allergen verification of the HP-SEC allergoid fractions was confirmed by mass spectrometry analysis. IgE and IgG immunoreactivity of the allergoid preparations was explored and Lol p 1 specific IgG-binding epitopes mapped by SPOT synthesis technology (PepSpot™) with structural analysis based on a Lol p 1 homology model. Grass specific IgE reactivity of the mix grass modified extract (allergoid) was diminished in comparison with the mix grass native extract. A difference in IgG profiles was observed between an intact mix grass allergoid preparation and HP-SEC allergoid fractions, which indicated enhancement of accessible reactive IgG epitopes across size distribution profiles of the mix grass allergoid formulation. Detailed analysis of the epitope specificity showed retention of six Lol p 1 IgG-binding epitopes in the mix grass modified extract. The structural and immunological changes which take place following the grass allergen modification process was further unravelled revealing distinct IgG immunological profiles. All epitopes were mapped on the solvent exposed area of Lol p 1 homology model accessible for IgG binding. One of the epitopes was identified as an 'immunodominant' Lol p 1 IgG-binding epitope (62-IFKDGRGCGSCFEIK-76) and classified as a novel epitope. The results from this study support the concept

  20. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    Energy Technology Data Exchange (ETDEWEB)

    Sandercock, Brett K. [Kansas State University

    2013-05-22

    abandoned lek sites were located <5 km from turbines. Probability of lek persistence was significantly related to habitat and number of males. Leks had a higher probability of persistence in grasslands than agricultural fields, and increased from ~0.2 for leks of 5 males, to >0.9 for leks of 10 or more males. Large leks in grasslands should be a higher priority for conservation. Overall, wind power development had a weak effect on the annual probability of lek persistence. 3. We used molecular methods to investigate the mating behavior of prairie chickens. The prevailing view for lek-mating grouse is that females mate once to fertilize the clutch and that conspecific nest parasitism is rare. We found evidence that females mate multiple times to fertilize the clutch (8-18% of broods, 4-38% of chicks) and will parasitize nests of other females during egg-laying (~17% of nests). Variable rates of parentage were highest in the fragmented landscapes at the Smoky Hills field site, and were lower at the Flint Hills field site. Comparisons of the pre- and postconstruction periods showed that wind energy development did not affect the mating behaviors of prairie chickens. 4. We examined use of breeding habitats by radio-marked females and conducted separate analyses for nest site selection, and movements of females not attending nests or broods. The landscape was a mix of native prairie and agricultural habitats, and nest site selection was not random because females preferred to nest in grasslands. Nests tended to be closer to turbines during the postconstruction period and there was no evidence of behavioral avoidance of turbines by females during nest site selection. Movements of females not attending nests or broods showed that females crossed the site of the wind power development at higher rates during the preconstruction period (20%) than the postconstruction period (11%), and that movements away from turbines were more frequent during the postconstruction period. Thus, wind

  1. Predation of artificial ground nests on white-tailed prairie dog colonies

    Science.gov (United States)

    Baker, B.W.; Stanley, T.R.; Sedgwick, J.A.

    1999-01-01

    Prairie dog (Cynomys spp.) colonies are unique to prairie and shrub-steppe landscapes. However, widespread eradication, habitat loss, and sylvatic plague (Yersinia pestis) have reduced their numbers by 98% since historical times. Birds associated with prairie dogs also are declining. Potential nest predators, such as coyotes (Canis latrans), swift foxes (Vulpes velox), and badgers (Taxidea taxus), may be attracted to colonies where a high concentration of prairie dogs serve as available prey. Increased abundance of small mammals, including prairie dogs, also may increase the risk of predation for birds nesting on colonies. Finally, because grazing by prairie dogs may decrease vegetation height and canopy cover, bird nests may be easier for predators to locate. In this study, we placed 1,444 artificial ground nests on and off 74 white-tailed prairie dog (C. leucurus) colonies to test the hypothesis that nest predation rates are higher on colonies than at nearby off sites (i.e., uncolonized habitat). We sampled colonies from 27 May to 16 July 1997 at the following 3 complexes: Coyote Basin, Utah and Colorado; Moxa Arch, Wyoming; and Shirley Basin, Wyoming. Differences in daily predation rates between colonies and paired off sites averaged 1.0% (P = 0.060). When converted to a typical 14-day incubation period, predation rates averaged 14% higher on colonies (57.7 ?? 2.7%; ?? ?? SE) than at off sites (50.4 ?? 3.1%). Comparisons of habitat variables on colonies to off sites showed percent canopy cover of vegetation was similar (P = 0.114), percent bare ground was higher on colonies (P 0.288). Although we found the risk of nest predation was higher on white-tailed prairie dog colonies than at off sites, fitness of birds nesting on colonies might depend on other factors that influence foraging success, reproductive success, or nestling survival.

  2. Evaluating poverty grass (Danthonia spicata L.) for use in tees, fairways, or rough areas in golf courses in the midwest

    Science.gov (United States)

    Nadia E. Navarrete-Tindall; Brad Fresenburg; J.W. Van Sambeek

    2007-01-01

    Poverty grass (Danthonia spicata L.), a native, cool-season perennial bunchgrass with wide distribution in the United States, is being evaluated for its suitability for use on golf courses. The goal is to identify practices to improve seed germination and successfully establish field plots as monocultures or with other native species to mimic natural...

  3. Restoring fire as an ecological process in shortgrass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons.

    Science.gov (United States)

    Brockway, Dale G; Gatewood, Richard G; Paris, Randi B

    2002-06-01

    Prior to Anglo-European settlement, fire was a major ecological process influencing the structure, composition and productivity of shortgrass prairie ecosystems on the Great Plains. However during the past 125 years, the frequency and extent of grassland fire has dramatically declined as a result of the systematic heavy grazing by large herds of domestic cattle and sheep which reduced the available levels of fine fuel and organized fire suppression efforts that succeeded in altering the natural fire regime. The greatly diminished role of recurrent fire in these ecosystems is thought to be responsible for ecologically adverse shifts in the composition, structure and diversity of these grasslands, leading specifically to the rise of ruderal species and invasion by less fire-tolerant species. The purpose of this study was to evaluate the ecological effects of fire season and frequency on the shortgrass prairie and to determine the means by which prescribed fire can best be restored in this ecosystem to provide the greatest benefit for numerous resource values. Plant cover, diversity, biomass and nutrient status, litter cover and soil chemistry were measured prior to and following fire treatments on a buffalograss-blue grama shortgrass prairie in northeastern New Mexico. Dormant-season fire was followed by increases in grass cover, forb cover, species richness and concentrations of foliar P, K, Ca, Mg and Mn. Growing-season fire produced declines in the cover of buffalograss, graminoids and forbs and increases in litter cover and levels of foliar P, K, Ca and Mn. Although no changes in soil chemistry were observed, both fire treatments caused decreases in herbaceous production, with standing biomass resulting from growing-season fire approximately 600 kg/ha and dormant-season fire approximately 1200 kg/ha, compared with controls approximately 1800 kg/ha. The initial findings of this long-term experiment suggest that dormant-season burning may be the preferable method

  4. Precipitation, Climate Change, and Parasitism of Prairie Dogs by Fleas that Transmit Plague.

    Science.gov (United States)

    Eads, David A; Hoogland, John L

    2017-08-01

    Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that can reduce the fitness of vertebrate hosts. Laboratory populations of fleas decline under dry conditions, implying that populations of fleas will also decline when precipitation is scarce under natural conditions. If precipitation and hence vegetative production are reduced, however, then herbivorous hosts might suffer declines in body condition and have weakened defenses against fleas, so that fleas will increase in abundance. We tested these competing hypotheses using information from 23 yr of research on 3 species of colonial prairie dogs in the western United States: Gunnison's prairie dog (Cynomys gunnisoni, 1989-1994), Utah prairie dog (Cynomys parvidens, 1996-2005), and white-tailed prairie dog (Cynomys leucurus, 2006-2012). For all 3 species, flea-counts per individual varied inversely with the number of days in the prior growing season with >10 mm of precipitation, an index of the number of precipitation events that might have caused a substantial, prolonged increase in soil moisture and vegetative production. Flea-counts per Utah prairie dog also varied inversely with cumulative precipitation of the prior growing season. Furthermore, flea-counts per Gunnison's and white-tailed prairie dog varied inversely with cumulative precipitation of the just-completed January and February. These results complement research on black-tailed prairie dog (Cynomys ludovicianus) and might have important ramifications for plague, a bacterial disease transmitted by fleas that devastates populations of prairie dogs. In particular, our results might help to explain why, at some colonies, epizootics of plague, which can kill >95% of prairie dogs, are more likely to occur during or shortly after periods of reduced precipitation. Climate change is projected to increase the frequency of droughts in the grasslands of western North America. If so, then climate change might affect the occurrence of plague epizootics

  5. Vulnerability of shortgrass prairie bird assemblages to climate change

    Science.gov (United States)

    Skagen, Susan K.; Dreitz, Victoria; Conrey, Reesa Y.; Yackel, Amy; Panjabi, Arvind O.; Knuffman, Lekha

    2016-01-01

    The habitats and resources needed to support grassland birds endemic to North American prairie ecosystems are seriously threatened by impending climate change. To assess the vulnerability of grassland birds to climate change, we consider various components of vulnerability, including sensitivity, exposure, and adaptive capacity (Glick et al. 2011). Sensitivity encompasses the innate characteristics of a species and, in this context, is related to a species’ tolerance to changes in weather patterns. Groundnesting birds, including prairie birds, are particularly responsive to heat waves combined with drought conditions, as revealed by abundance and distribution patterns (Albright et al. 2010). To further assess sensitivity, we estimated reproductive parameters of nearly 3000 breeding attempts of a suite of prairie birds relative to prevailing weather. Fluctuations in weather conditions in eastern Colorado, 1997-2014, influenced breeding performance of a suite of avian species endemic to the shortgrass prairie, many of which have experienced recent population declines. High summer temperatures and intense rain events corresponded with lower nest survival for most species. Although dry conditions favored nest survival of Burrowing Owls and Mountain Plovers (Conrey 2010, Dreitz et al. 2012), drought resulted in smaller clutch sizes and lower nest survival for passerines (Skagen and Yackel Adams 2012, Conrey et al. in review). Declining summer precipitation may reduce the likelihood that some passerine species can maintain stable breeding populations in this region of the shortgrass prairie.

  6. Carbon storage potential increases with increasing ratio of C4 to C3 grass cover and soil productivity in restored tallgrass prairies.

    Science.gov (United States)

    Spiesman, Brian J; Kummel, Herika; Jackson, Randall D

    2018-02-01

    Long-term soil carbon (C) storage is essential for reducing CO 2 in the atmosphere. Converting unproductive and environmentally sensitive agricultural lands to grasslands for bioenergy production may enhance C storage. However, a better understanding of the interacting effects of grass functional composition (i.e., relative abundance of C 4 and C 3 grass cover) and soil productivity on C storage will help guide sustainable grassland management. Our objective was to examine the relationship between grass functional composition and potential C storage and how it varies with potential soil productivity. We estimated C inputs from above- and belowground net primary productivity (ANPP and BNPP), and heterotrophic respiration (R H ) to calculate net ecosystem production (NEP), a measure of potential soil C storage, in grassland plots of relatively high- and low-productivity soils spanning a gradient in the ratio of C 4 to C 3 grass cover (C 4 :C 3 ). NEP increased with increasing C 4 :C 3 , but only in potentially productive soils. The positive relationship likely stemmed from increased ANPP, rather than BNPP, which was possibly related to efficient resource-use and physiological/anatomical advantages of C 4 plants. R H was negatively correlated with C 4 :C 3 , possibly because of changes in microclimate or plant-microbe interactions. It is possible that in potentially productive soils, C storage can be enhanced by favoring C 4 over C 3 grasses through increased ANPP and BNPP and reduced R H . Results also suggest that potential C storage gains from C 4 productivity would not be undermined by a corresponding increase in R H .

  7. Breaking sod or breaking even? Flax on the northern Great Plains and Prairies, 1889-1930.

    Science.gov (United States)

    MacFayden, Joshua D

    2009-01-01

    A new thirst for paint and color in cities made extensive flax production profitable in the northern Great Plains and Prairies and contributed to the cultivation of the most fragile grassland ecosystems. The production of flax seed for linseed oil became an early spin-off of the Prairie wheat economy but, unlike wheat, flax vanished from old land after one or two rotations and reappeared in districts with the most new breaking. Officials explained the migrant crop as preparing native grasslands for cultivation or exhausting soil in old land, but farmers brought flax to their new breaking for other reasons. Producers would only put flax on any land when a range of economic and environmental conditions were in place. It was never sown without promise of adequately high prices or in the absence of affordable seed and other inputs. When price allowed, it usually appeared on new breaking because it could be planted later and transported further without upsetting the balance of other activities and without farmers learning many new techniques. Scientists discovered that diseased soil drove flax off old land, not soil exhaustion. Circumventing the disease was possible but costly, and farmers simply replaced flax with the next most lucrative commodity.

  8. Resistance to plague among black-tailed prairie dog populations

    Science.gov (United States)

    Rocke, Tonie E.; Williamson, Judy; Cobble, Kacy R.; Busch, Joseph D.; Antolin, Michael F.; Wagner, David M.

    2012-01-01

    In some rodent species frequently exposed to plague outbreaks caused by Yersinia pestis, resistance to the disease has evolved as a population trait. As a first step in determining if plague resistance has developed in black-tailed prairie dogs (Cynomys ludovicianus), animals captured from colonies in a plague-free region (South Dakota) and two plague-endemic regions (Colorado and Texas) were challenged with Y. pestis at one of three doses (2.5, 250, or 2500 mouse LD50s). South Dakota prairie dogs were far more susceptible to plague than Colorado and Texas prairie dogs (pdogs were quite similar in their response, with overall survival rates of 50% and 60%, respectively. Prairie dogs from these states were heterogenous in their response, with some animals dying at the lowest dose (37% and 20%, respectively) and some surviving even at the highest dose (29% and 40%, respectively). Microsatellite analysis revealed that all three groups were distinct genetically, but further studies are needed to establish a genetic basis for the observed differences in plague resistance.

  9. Prairie Change Analysis 1991-2008

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset displays the results of a prairie/savanna change analysis study completed in May 2010. The area reviewed consists of 1,521 sites identified by Minnesota...

  10. resistance of napier grass clones to napier grass stunt disease

    African Journals Online (AJOL)

    ACSS

    Napier grass (Pennisetum purpureum Schumach) is the major livestock fodder under intensive and semi-intensive systems in East Africa. However, the productivity of the grass is constrained by Napier grass Stunt Disease. (NSD). The purpose of this study was to identify Napier grass clones with resistance to NSD.

  11. Resistance of Napier grass clones to Napier grass Stunt Disease ...

    African Journals Online (AJOL)

    Napier grass (Pennisetum purpureum Schumach) is the major livestock fodder under intensive and semi-intensive systems in East Africa. However, the productivity of the grass is constrained by Napier grass Stunt Disease (NSD). The purpose of this study was to identify Napier grass clones with resistance to NSD.

  12. Shade treatment affects structure and recovery of invasive C4 African grass Echinochloa pyramidalis.

    Science.gov (United States)

    López Rosas, Hugo; Moreno-Casasola, Patricia; Espejel González, Verónica E

    2015-03-01

    Echinochloa pyramidalis (Lam.) Hitchc. & Chase is an African grass with C4 photosynthesis, high biomass production, and high vegetative propagation that is tolerant to grazing and able to grow in flooded and dry conditions. Thus, it is highly invasive in tropical freshwater marshes where it is intentionally planted by ranchers to increase cattle production. This invasion is reducing plant biodiversity by increasing the invader's aerial coverage, changing wetland hydrology and causing soil physicochemical changes such as vertical accretion. Reducing the dominance of this species and increasing the density of native wetland species is a difficult, expensive, and time-consuming process. We applied a series of disturbance treatments aimed at eliminating E. pyramidalis and recovering the native vegetation of a partially invaded freshwater marsh. Treatments included physical (cutting, soil disking, transplanting individuals of the key native species Sagittaria lancifolia subsp. media (Micheli) Bogin, and/or reducing light with shade mesh) and/or chemical (spraying Round-Up™ herbicide) disturbances. At the end of the experiment, four of the five treatments used were effective in increasing the cover and biomass of native species and reducing that of E. pyramidalis. The combination of these treatments should be used to generate a proposal for the restoration of tropical wetlands invaded by non-native grasses. A promising treatment is using soil disked to soften the soil and destroy belowground structures such as roots and rhizomes. This treatment would be more promising if combined with the use of shade cloth. If it is desirable not to impact the soil or if there is not enough budget to make an effort to include active restoration disking soil, the use of shade cloth will suffice, although the recovery of native vegetation will be slower.

  13. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie.

    Directory of Open Access Journals (Sweden)

    Joseph D Coolon

    Full Text Available Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion. The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have

  14. 75 FR 21649 - Endangered and Threatened Wildlife and Plants; Attwater's Prairie-Chicken (Tympanuchus cupido...

    Science.gov (United States)

    2010-04-26

    ...] Endangered and Threatened Wildlife and Plants; Attwater's Prairie-Chicken (Tympanuchus cupido attwateri... availability of the Attwater's Prairie-Chicken (Tympanuchus cupido attwateri) Recovery Plan, Second Revision. A recovery plan was originally completed for the Attwater's prairie-chicken in 1983 and revised in 1993...

  15. Ecological and Landscape Drivers of Neonicotinoid Insecticide Detections and Concentrations in Canada's Prairie Wetlands.

    Science.gov (United States)

    Main, Anson R; Michel, Nicole L; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2015-07-21

    Neonicotinoids are commonly used seed treatments on Canada's major prairie crops. Transported via surface and subsurface runoff into wetlands, their ultimate aquatic fate remains largely unknown. Biotic and abiotic wetland characteristics likely affect neonicotinoid presence and environmental persistence, but concentrations vary widely between wetlands that appear ecologically (e.g., plant composition) and physically (e.g., depth) similar for reasons that remain unclear. We conducted intensive surveys of 238 wetlands, and documented 59 wetland (e.g., dominant plant species) and landscape (e.g., surrounding crop) characteristics as part of a novel rapid wetland assessment system. We used boosted regression tree (BRT) analysis to predict both probability of neonicotinoid analytical detection and concentration. BRT models effectively predicted the deviance in neonicotinoid detection (62.4%) and concentration (74.7%) from 21 and 23 variables, respectively. Detection was best explained by shallow marsh plant species identity (34.8%) and surrounding crop (13.9%). Neonicotinoid concentration was best explained by shallow marsh plant species identity (14.9%) and wetland depth (14.2%). Our research revealed that plant composition is a key indicator and/or driver of neonicotinoid presence and concentration in Prairie wetlands. We recommend wetland buffers consisting of diverse native vegetation be retained or restored to minimize neonicotinoid transport and retention in wetlands, thereby limiting their potential effects on wetland-dependent organisms.

  16. 76 FR 77245 - Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX...

    Science.gov (United States)

    2011-12-12

    ...-FF02R06000] Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX... (EA) for Attwater Prairie Chicken National Wildlife Refuge (Refuge, NWR), located approximately 60... Prairie Chicken NWR draft CCP and EA'' in the subject line of the message. Fax: Attn: Monica Kimbrough...

  17. Grass-Shrub Associations over a Precipitation Gradient and Their Implications for Restoration in the Great Basin, USA.

    Directory of Open Access Journals (Sweden)

    Maike F Holthuijzen

    Full Text Available As environmental stress increases positive (facilitative plant interactions often predominate. Plant-plant associations (or lack thereof can indicate whether certain plant species favor particular types of microsites (e.g., shrub canopies or plant-free interspaces and can provide valuable insights into whether "nurse plants" will contribute to seeding or planting success during ecological restoration. It can be difficult, however, to anticipate how relationships between nurse plants and plants used for restoration may change over large-ranging, regional stress gradients. We investigated associations between the shrub, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis, and three common native grasses (Poa secunda, Elymus elymoides, and Pseudoroegneria spicata, representing short-, medium-, and deep-rooted growth forms, respectively, across an annual rainfall gradient (220-350 mm in the Great Basin, USA. We hypothesized that positive shrub-grass relationships would become more frequent at lower rainfall levels, as indicated by greater cover of grasses in shrub canopies than vegetation-free interspaces. We sampled aerial cover, density, height, basal width, grazing status, and reproductive status of perennial grasses in canopies and interspaces of 25-33 sagebrush individuals at 32 sites along a rainfall gradient. We found that aerial cover of the shallow rooted grass, P. secunda, was higher in sagebrush canopy than interspace microsites at lower levels of rainfall. Cover and density of the medium-rooted grass, E. elymoides were higher in sagebrush canopies than interspaces at all but the highest rainfall levels. Neither annual rainfall nor sagebrush canopy microsite significantly affected P. spicata cover. E. elymoides and P. spicata plants were taller, narrower, and less likely to be grazed in shrub canopy microsites than interspaces. Our results suggest that exploring sagebrush canopy microsites for restoration of native perennial

  18. Impact of native ungulates and beaver on riparian communities in the intermountain west

    OpenAIRE

    Kay, Charles E.

    1994-01-01

    This paper reviews the impact native ungulates, primarily elk and moose, and beaver can have on riparian communities in the Western United States. In Yellowstone National Park and in other areas where ungulates are not managed, repeated browsing has reduced tall willow, aspen, and cottonwood communities by approximately 95 percent since the late 1800's. Native ungulates can also severely reduce or eliminate palatable grasses and forbs from herbaceous riparian communities. By eliminating woody...

  19. Chicago's Columbus Park: The Prairie Idealized. Teaching with Historic Places.

    Science.gov (United States)

    Bachrach, Julia Sniderman; Nathan, Jo Ann

    Twenty-four year old Jens Jensen came to the United States, settled in Chicago (Illinois), and promptly fell in love with the Midwest's prairie landscape. Although some thought that prairie was boring, monotonous, and ordinary, Jensen saw great beauty in the tree-filled groves, long winding rivers, natural rock formations and waterfalls, and the…

  20. Beneficial Insect Borders Provide Northern Bobwhite Brood Habitat

    Science.gov (United States)

    Moorman, Christopher E.; Plush, Charles J.; Orr, David B.; Reberg-Horton, Chris

    2013-01-01

    Strips of fallow vegetation along cropland borders are an effective strategy for providing brood habitat for declining populations of upland game birds (Order: Galliformes), including northern bobwhite (Colinus virginianus), but fallow borders lack nectar-producing vegetation needed to sustain many beneficial insect populations (e.g., crop pest predators, parasitoids, and pollinator species). Planted borders that contain mixes of prairie flowers and grasses are designed to harbor more diverse arthropod communities, but the relative value of these borders as brood habitat is unknown. We used groups of six human-imprinted northern bobwhite chicks as a bioassay for comparing four different border treatments (planted native grass and prairie flowers, planted prairie flowers only, fallow vegetation, or mowed vegetation) as northern bobwhite brood habitat from June-August 2009 and 2010. All field border treatments were established around nine organic crop fields. Groups of chicks were led through borders for 30-min foraging trials and immediately euthanized, and eaten arthropods in crops and gizzards were measured to calculate a foraging rate for each border treatment. We estimated arthropod prey availability within each border treatment using a modified blower-vac to sample arthropods at the vegetation strata where chicks foraged. Foraging rate did not differ among border treatments in 2009 or 2010. Total arthropod prey densities calculated from blower-vac samples did not differ among border treatments in 2009 or 2010. Our results showed plant communities established to attract beneficial insects should maximize the biodiversity potential of field border establishment by providing habitat for beneficial insects and young upland game birds. PMID:24376759

  1. Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum.

    Science.gov (United States)

    Saleh, A A; Ahmed, H U; Todd, T C; Travers, S E; Zeller, K A; Leslie, J F; Garrett, K A

    2010-01-01

    Agricultural and wild ecosystems may interact through shared pathogens such as Macrophomina phaseolina, a generalist clonal fungus with more than 284 plant hosts that is likely to become more important under climate change scenarios of increased heat and drought stress. To evaluate the degree of subdivision in populations of M. phaseolina in Kansas agriculture and wildlands, we compared 143 isolates from maize fields adjacent to tallgrass prairie, nearby sorghum fields, widely dispersed soybean fields and isolates from eight plant species in tallgrass prairie. Isolate growth phenotypes were evaluated on a medium containing chlorate. Genetic characteristics were analysed based on amplified fragment length polymorphisms and the sequence of the rDNA-internal transcribed spacer (ITS) region. The average genetic similarity was 58% among isolates in the tallgrass prairie, 71% in the maize fields, 75% in the sorghum fields and 80% in the dispersed soybean fields. The isolates were divided into four clusters: one containing most of the isolates from maize and soybean, two others containing isolates from wild plants and sorghum, and a fourth containing a single isolate recovered from Solidago canadensis in the tallgrass prairie. Most of the sorghum isolates had the dense phenotype on media containing chlorate, while those from other hosts had either feathery or restricted phenotypes. These results suggest that the tallgrass prairie supports a more diverse population of M. phaseolina per area than do any of the crop species. Subpopulations show incomplete specialization by host. These results also suggest that inoculum produced in agriculture may influence tallgrass prairie communities, and conversely that different pathogen subpopulations in tallgrass prairie can interact there to generate 'hybrids' with novel genetic profiles and pathogenic capabilities.

  2. Prairie dog decline reduces the supply of ecosystem services and leads to desertification of semiarid grasslands.

    Directory of Open Access Journals (Sweden)

    Lourdes Martínez-Estévez

    Full Text Available Anthropogenic impacts on North American grasslands, a highly endangered ecosystem, have led to declines of prairie dogs, a keystone species, over 98% of their historical range. While impacts of this loss on maintenance of grassland biodiversity have been widely documented, much less is known about the consequences on the supply of ecosystem services. Here we assessed the effect of prairie dogs in the supply of five ecosystem services by comparing grasslands currently occupied by prairie dogs, grasslands devoid of prairie dogs, and areas that used to be occupied by prairie dogs that are currently dominated by mesquite scrub. Groundwater recharge, regulation of soil erosion, regulation of soil productive potential, soil carbon storage and forage availability were consistently quantitatively or qualitatively higher in prairie dog grasslands relative to grasslands or mesquite scrub. Our findings indicate a severe loss of ecosystem services associated to the absence of prairie dogs. These findings suggest that contrary to a much publicize perception, especially in the US, prairie dogs are fundamental in maintaining grasslands and their decline have strong negative impacts in human well - being through the loss of ecosystem services.

  3. Assessment of lesser prairie-chicken use of wildlife water guzzlers

    Science.gov (United States)

    Boal, Clint W.; Borsdorf, Philip K.; Gicklhorn, Trevor S.

    2014-01-01

    Man-made water sources have been used as a management tool for wildlife, especially in arid regions, but the value of these water sources for wildlife populations is not well understood. In particular, the value of water as a conservation tool for Lesser Prairie-Chickens (Tympanuchus pallidicinctus) is unknown. However, this is a relevant issue due to a heightened conservation concern for the species and its occupancy of an arid landscape anticipated to experience warmer, drier springs and winters. We assessed if Lesser Prairie-Chickens would use commercially available wildlife water guzzlers and if there was any apparent selection between two design types. We confirmed that Lesser Prairie-Chickens would use bird friendly designed wildlife water guzzlers. Use was primarily during the lekking-nesting period (March–May) and the brood rearing period (June–July) and primarily by males. Although both designs were used, we found significantly greater use of a design that had a wider water trough and ramp built into the tank cover compared to a design that had a longer, narrower trough extending from the tank.Although we were unable to assess the physiological need of surface water by Lesser Prairie-Chickens, we were able to verify that they will use wildlife water guzzlers to access surface water. If it is found surface water is beneficial for Lesser Prairie-Chickens, game bird friendly designed guzzlers may be a useful conservation tool for the species.

  4. Climate change and prairie pothole wetlands: mitigating water-level and hydroperiod effects through upland management

    Science.gov (United States)

    Renton, David A.; Mushet, David M.; DeKeyser, Edward S.

    2015-01-01

    Prairie pothole wetlands offer crucial habitat for North America’s waterfowl populations. The wetlands also support an abundance of other species and provide ecological services valued by society. The hydrology of prairie pothole wetlands is dependent on atmospheric interactions. Therefore, changes to the region’s climate can have profound effects on wetland hydrology. The relevant literature related to climate change and upland management effects on prairie pothole wetland water levels and hydroperiods was reviewed. Climate change is widely expected to affect water levels and hydroperiods of prairie pothole wetlands, as well as the biota and ecological services that the wetlands support. In general, hydrologic model projections that incorporate future climate change scenarios forecast lower water levels in prairie pothole wetlands and longer periods spent in a dry condition, despite potential increases in precipitation. However, the extreme natural variability in climate and hydrology of prairie pothole wetlands necessitates caution when interpreting model results. Recent changes in weather patterns throughout much of the Prairie Pothole Region have been in increased precipitation that results in increased water inputs to wetlands above losses associated with warmer temperatures. However, observed precipitation increases are within the range of natural climate variability and therefore, may not persist. Identifying management techniques with the potential to affect water inputs to prairie pothole wetlands would provide increased options for managers when dealing with the uncertainties associated with a changing climate. Several grassland management techniques (for example, grazing and burning) have the potential to affect water levels and hydroperiods of prairie pothole by affecting infiltration, evapotranspiration, and snow deposition.

  5. Influence of richness and seeding density on invasion resistance in experimental tallgrass prairie restorations

    Science.gov (United States)

    Nemec, Kristine T.; Allen, Craig R.; Helzer, Christopher J.; Wedin, David A.

    2013-01-01

    In recent years, agricultural producers and non-governmental organizations and agencies have restored thousands of hectares of cropland to grassland in the Great Plains of the United States. However, little is known about the relationships between richness and seeding density in these restorations and resistance to invasive plant species. We assessed the effects of richness and seeding density on resistance to invasive and other unseeded plant species in experimental tallgrass prairie plots in central Nebraska. In 2006, twenty-four 55 m × 55 m plots were planted with six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Conservation Reserve Program mix, CP25), at low and high seeding densities. There was a significant negative relationship between richness and basal cover of unseeded perennial forbs/legumes and unseeded perennial/annual grasses, abundance of bull thistle (Cirsium vulgare), and the number of inflorescences removed from smooth brome (Bromus inermis) transplants. Invasion resistance may have been higher in the high richness treatments because of the characteristics of the dominant species in these plots or because of greater interspecific competition for limiting resources among forbs/legumes with neighboring plants belonging to the same functional group. Seeding density was not important in affecting invasion resistance, except in the cover of unseeded grasses. Increasing seed mix richness may be more effective than increasing the seeding density for decreasing invasion by unseeded perennial species, bull thistle, and smooth brome.

  6. Health economic comparison of SLIT allergen and SCIT allergoid immunotherapy in patients with seasonal grass-allergic rhinoconjunctivitis in Germany.

    Science.gov (United States)

    Verheggen, Bram G; Westerhout, Kirsten Y; Schreder, Carl H; Augustin, Matthias

    2015-01-01

    Allergoids are chemically modified allergen extracts administered to reduce allergenicity and to maintain immunogenicity. Oralair® (the 5-grass tablet) is a sublingual native grass allergen tablet for pre- and co-seasonal treatment. Based on a literature review, meta-analysis, and cost-effectiveness analysis the relative effects and costs of the 5-grass tablet versus a mix of subcutaneous allergoid compounds for grass pollen allergic rhinoconjunctivitis were assessed. A Markov model with a time horizon of nine years was used to assess the costs and effects of three-year immunotherapy treatment. Relative efficacy expressed as standardized mean differences was estimated using an indirect comparison on symptom scores extracted from available clinical trials. The Rhinitis Symptom Utility Index (RSUI) was applied as a proxy to estimate utility values for symptom scores. Drug acquisition and other medical costs were derived from published sources as well as estimates for resource use, immunotherapy persistence, and occurrence of asthma. The analysis was executed from the German payer's perspective, which includes payments of the Statutory Health Insurance (SHI) and additional payments by insurants. Comprehensive deterministic and probabilistic sensitivity analyses and different scenarios were performed to test the uncertainty concerning the incremental model outcomes. The applied model predicted a cost-utility ratio of the 5-grass tablet versus a market mix of injectable allergoid products of € 12,593 per QALY in the base case analysis. Predicted incremental costs and QALYs were € 458 (95% confidence interval, CI: € 220; € 739) and 0.036 (95% CI: 0.002; 0.078), respectively. Compared to the allergoid mix the probability of the 5-grass tablet being the most cost-effective treatment option was predicted to be 76% at a willingness-to-pay threshold of € 20,000. The results were most sensitive to changes in efficacy estimates, duration of the pollen season, and

  7. Drought, Climate Change and the Canadian Prairies

    Science.gov (United States)

    Stewart, R. E.

    2010-03-01

    The occurrence of drought is a ubiquitous feature of the global water cycle. Such an extreme does not necessarily lead to an overall change in the magnitude of the global water cycle but it of course affects the regional cycling of water. Droughts are recurring aspects of weather and climate extremes as are floods and tornadoes, but they differ substantially since they have long durations and lack easily identified onsets and terminations. Drought is a relatively common feature of the North American and Canadian climate system and all regions of the continent are affected from time-to-time. However, it tends to be most common and severe over the central regions of the continent. The Canadian Prairies are therefore prone to drought. Droughts in the Canadian Prairies are distinctive in North America. The large scale atmospheric circulations are influenced by blocking from intense orography to the west and long distances from all warm ocean-derived atmospheric water sources; growing season precipitation is generated by a highly complex combination of frontal and convective systems; seasonality is severe and characterized by a relatively long snow-covered and short growing seasons; local surface runoff is primarily produced by snowmelt water; there is substantial water storage potential in the poorly drained, post-glacial topography; and aquifers are overlain by impermeable glacial till, but there are also important permeable aquifers. One example of Prairie drought is the recent one that began in 1999 with cessation of its atmospheric component in 2004/2005 and many of its hydrological components in 2005. This event produced the worst drought for at least a hundred years in parts of the Canadian Prairies. Even in the dust bowl of the 1930s, no single year over the central Prairies were drier than in 2001. The drought affected agriculture, recreation, tourism, health, hydro-electricity, and forestry in the Prairies. Gross Domestic Product fell some 5.8 billion and

  8. The role of plant-soil feedbacks in driving native-species recovery.

    Science.gov (United States)

    Yelenik, Stephanie G; Levine, Jonathan M

    2011-01-01

    The impacts of exotic plants on soil nutrient cycling are often hypothesized to reinforce their dominance, but this mechanism is rarely tested, especially in relation to other ecological factors. In this manuscript we evaluate the influence of biogeochemically mediated plant-soil feedbacks on native shrub recovery in an invaded island ecosystem. The introduction of exotic grasses and grazing to Santa Cruz Island, California, USA, converted native shrublands (dominated by Artemisia californica and Eriogonum arborescens) into exotic-dominated grasslands (dominated by Avena barbata) over a century ago, altering nutrient-cycling regimes. To test the hypothesis that exotic grass impacts on soils alter reestablishment of native plants, we implemented a field-based soil transplant experiment in three years that varied widely in rainfall. Our results showed that growth of Avena and Artemisia seedlings was greater on soils influenced by their heterospecific competitor. Theory suggests that the resulting plant-soil feedback should facilitate the recovery of Artemisia in grasslands, although four years of monitoring showed no such recovery, despite ample seed rain. By contrast, we found that species effects on soils lead to weak to negligible feedbacks for Eriogonum arborescens, yet this shrub readily colonized the grasslands. Thus, plant-soil feedbacks quantified under natural climate and competitive conditions did not match native-plant recovery patterns. We also found that feedbacks changed with climate and competition regimes, and that these latter factors generally had stronger effects on seedling growth than species effects on soils. We conclude that even when plant-soil feedbacks influence the balance between native and exotic species, their influence may be small relative to other ecological processes.

  9. Factors that affect parasitism of black-tailed prairie dogs by fleas

    Science.gov (United States)

    Eads, David A.; Hoogland, John L.

    2016-01-01

    Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that feed on vertebrate hosts. Fleas can reduce the fitness of hosts by interfering with immune responses, disrupting adaptive behaviors, and transmitting pathogens. The negative effects of fleas on hosts are usually most pronounced when fleas attain high densities. In lab studies, fleas desiccate and die under dry conditions, suggesting that populations of fleas will tend to decline when precipitation is scarce under natural conditions. To test this hypothesis, we compared precipitation vs. parasitism of black-tailed prairie dogs (Cynomys ludovicianus) by fleas at a single colony during May and June of 13 consecutive years (1976–1988) at Wind Cave National Park, South Dakota, USA. The number of fleas on prairie dogs decreased with increasing precipitation during both the prior growing season (April through August of the prior year) and the just-completed winter–spring (January through April of current year). Due to the reduction in available moisture and palatable forage in dry years, herbivorous prairie dogs might have been food-limited, with weakened behavioral and immunological defenses against fleas. In support of this hypothesis, adult prairie dogs of low mass harbored more fleas than heavier adults. Our results have implications for the spread of plague, an introduced bacterial disease, transmitted by fleas, that devastates prairie dog colonies and, in doing so, can transform grassland ecosystems.

  10. Facilitation of a native pest of rice, Stenotus rubrovittatus (Hemiptera: Miridae), by the non-native Lolium multiflorum (Cyperales: Poaceae) in an agricultural landscape.

    Science.gov (United States)

    Yoshioka, Akira; Takada, Mayura; Washitani, Izumi

    2011-10-01

    Source populations of polyphagous pests often occur on host plants other than the economically damaged crop. We evaluated the contribution of patches of a non-native meadow grass, Lolium multiflorum Lam. (Poaceae), and other weeds growing in fallow fields or meadows as source hosts of an important native pest of rice, Stenotus rubrovittatus (Matsumura) (Hemiptera: Miridae), in an agricultural landscape of northern Japan. Periodical censuses of this mirid bug by using the sweeping method, vegetation surveys, and statistical analysis revealed that L. multiflorum was the only plant species that was positively correlated with the density of adult S. rubrovittatus through two generations and thus may be the most stable and important host of the mirid bug early in the season before the colonization of rice paddies. The risk and cost of such an indirect negative effect on a crop plant through facilitation of a native pest by a non-native plant in the agricultural landscape should not be overlooked.

  11. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress.

    Directory of Open Access Journals (Sweden)

    Gyoungju Nah

    Full Text Available Prairie cordgrass (Spartina pectinata, a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY. The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation.

  12. Spatial variation in keystone effects: Small mammal diversity associated with black-tailed prairie dog colonies

    Science.gov (United States)

    Cully, J.F.; Collinge, S.K.; Van Nimwegen, R. E.; Ray, C.; Johnson, W.C.; Thiagarajan, Bala; Conlin, D.B.; Holmes, B.E.

    2010-01-01

    Species with extensive geographic ranges may interact with different species assemblages at distant locations, with the result that the nature of the interactions may vary spatially. Black-tailed prairie dogs Cynomys ludovicianus occur from Canada to Mexico in grasslands of the western Great Plains of North America. Black-tailed prairie dogs alter vegetation and dig extensive burrow systems that alter grassland habitats for plants and other animal species. These alterations of habitat justify the descriptor " ecological engineer," and the resulting changes in species composition have earned them status as a keystone species. We examined the impact of black-tailed prairie dogs on small mammal assemblages by trapping at on- and off-colony locations at eight study areas across the species' geographic range. We posed 2 nested hypotheses: 1) prairie dogs function as a keystone species for other rodent species; and 2) the keystone role varies spatially. Assuming that it does, we asked what are the sources of the variation? Black-tailed prairie dogs consistently functioned as a keystone species in that there were strong statistically significant differences in community composition on versus off prairie dog colonies across the species range in prairie grassland. Small mammal species composition varied along both latitudinal and longitudinal gradients, and species richness varied from 4 to 11. Assemblages closer together were more similar; such correlations approximately doubled when including only on- or off-colony grids. Black-tailed prairie dogs had a significant effect on associated rodent assemblages that varied regionally, dependent upon the composition of the local rodent species pool. Over the range of the black-tailed prairie dog, on-colony rodent richness and evenness were less variable, and species composition was more consistent than off-colony assemblages. ?? 2010 The Authors.

  13. Field-level financial assessment of contour prairie strips for enhancement of environmental quality.

    Science.gov (United States)

    Tyndall, John C; Schulte, Lisa A; Liebman, Matthew; Helmers, Matthew

    2013-09-01

    The impacts of strategically located contour prairie strips on sediment and nutrient runoff export from watersheds maintained under an annual row crop production system have been studied at a long-term research site in central Iowa. Data from 2007 to 2011 indicate that the contour prairie strips utilized within row crop-dominated landscapes have greater than proportionate and positive effects on the functioning of biophysical systems. Crop producers and land management agencies require comprehensive information about the Best Management Practices with regard to performance efficacy, operational/management parameters, and the full range of financial parameters. Here, a farm-level financial model assesses the establishment, management, and opportunity costs of contour prairie strips within cropped fields. Annualized, depending on variable opportunity costs the 15-year present value cost of utilizing contour prairie strips ranges from $590 to $865 ha(-1) year(-1) ($240-$350 ac(-1) year(-1)). Expressed in the context of "treatment area" (e.g., in this study 1 ha of prairie treats 10 ha of crops), the costs of contour prairie strips can also be viewed as $59 to about $87 per treated hectare ($24-$35 ac(-1)). If prairie strips were under a 15-year CRP contract, total per acre cost to farmers would be reduced by over 85 %. Based on sediment, phosphorus, and nitrogen export data from the related field studies and across low, medium, and high land rent scenarios, a megagram (Mg) of soil retained within the watershed costs between $7.79 and $11.46 mg(-1), phosphorus retained costs between $6.97 and $10.25 kg(-1), and nitrogen retained costs between $1.59 and $2.34 kg(-1). Based on overall project results, contour prairie strips may well become one of the key conservation practices used to sustain US Corn Belt agriculture in the decades to come.

  14. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  15. Spent fuel storage at Prairie Island: January 1995 status

    International Nuclear Information System (INIS)

    Closs, J.; Kress, L.

    1995-01-01

    The disposal of spent nuclear fuel has been an issue for the US since the inception of the commercial nuclear power industry. In the past decade, it has become a critical factor in the continued operation of some nuclear power plants, including the two units at Prairie Island. As the struggles and litigation over storage alternatives wage on, spent fuel pools continue to fill and plants edge closer to premature shutdown. Due to the delays in the construction of a federal repository, many nuclear power plants have had to seek interim storage alternatives. In the case of Prairie Island, the safest and most feasible option is dry cask storage. This paper discusses the current status of the Independent Spent Fuel Storage Installation (ISFSI) Project at Prairie Island. It provides a historical background to the project, discusses the notable developments over the past year, and presents the projected plans of the Northern States Power Company (NSP) in regards to spent fuel storage

  16. Ecology of fire in shortgrass prairie of the southern Great Plains

    Science.gov (United States)

    Paulette L. Ford; Guy R. McPherson

    1996-01-01

    The ecology of fire in shortgrass prairie of the southern Great Plains includes a complex interaction between the shortgrass prairie ecosystem and its inhabitants, all inextricably linked to land-use patterns. The history of the relationship between man and fire has been filled with ambivalence and mistrust, along with an appreciation of the power of fire as a...

  17. Treatment with grass allergen peptides improves symptoms of grass pollen-induced allergic rhinoconjunctivitis.

    Science.gov (United States)

    Ellis, Anne K; Frankish, Charles W; O'Hehir, Robyn E; Armstrong, Kristen; Steacy, Lisa; Larché, Mark; Hafner, Roderick P

    2017-08-01

    Synthetic peptide immunoregulatory epitopes are a new class of immunotherapy to treat allergic rhinoconjunctivitis (ARC). Grass allergen peptides, comprising 7 synthetic T-cell epitopes derived from Cyn d 1, Lol p 5, Dac g 5, Hol l 5, and Phl p 5, is investigated for treatment of grass pollen-induced ARC. We sought to evaluate the efficacy, safety, and tolerability of intradermally administered grass allergen peptides. A multicenter, randomized, double-blind, placebo-controlled study evaluated 3 regimens of grass allergen peptides versus placebo in patients with grass pollen-induced allergy (18-65 years). After a 4-day baseline challenge to rye grass in the environmental exposure unit (EEU), subjects were randomized to receive grass allergen peptides at 6 nmol at 2-week intervals for a total of 8 doses (8x6Q2W), grass allergen peptides at 12 nmol at 4-week intervals for a total of 4 doses (4x12Q4W), or grass allergen peptides at 12 nmol at 2-week intervals for a total of 8 doses (8x12Q2W) or placebo and treated before the grass pollen season. The primary efficacy end point was change from baseline in total rhinoconjunctivitis symptom score across days 2 to 4 of a 4-day posttreatment challenge (PTC) in the EEU after the grass pollen season. Secondary efficacy end points and safety were also assessed. Two hundred eighty-two subjects were randomized. Significantly greater improvement (reduction of total rhinoconjunctivitis symptom score from baseline to PTC) occurred across days 2 to 4 with grass allergen peptide 8x6Q2W versus placebo (-5.4 vs -3.8, respectively; P = .0346). Greater improvement at PTC also occurred for grass allergen peptide 8x6Q2W versus placebo (P = .0403) in patients with more symptomatic ARC. No safety signals were detected. Grass allergen peptide 8x6Q2W significantly improved ARC symptoms after rye grass allergen challenge in an EEU with an acceptable safety profile. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  18. Interactions among American badgers, black-footed ferrets, and prairie dogs in the grasslands of western North America

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Grassel, Shaun M.; Livieri, Travis M.; Licht, Daniel S.; Proulx, Gilbert; Do Linh San, Emmanuel

    2016-01-01

    American badgers (Taxidea taxus) and black-footed ferrets (Mustela nigripes) sometimes occur sympatrically within colonies of prairie dogs (Cynomys spp.) in the grasslands of western North America. From the perspective of a simplified food web, badgers are consumers of ferrets and, to a greater extent, prairie dogs; ferrets are specialized consumers of prairie dogs; and prairie dogs are consumers of vegetation. We review information on the predatory behaviours of badgers, which collectively demonstrate that badgers exhibit complex hunting strategies to improve their probability of capturing prairie dogs and, perhaps, ferrets. We also review studies of interactions between badgers and ferrets, which suggest that there is selective pressure on badgers to compete with ferrets, and pressure on ferrets to compete with and avoid badgers. We then speculate as to how prairie dogs might shape interactions between badgers and ferrets, and how badgers could spread the plague bacterium (Yersinia pestis) among prairie dog colonies. Lastly, we provide recommendations for research on this tractable system of semi-fossorial predators and prey.

  19. Resting state brain networks in the prairie vole.

    Science.gov (United States)

    Ortiz, Juan J; Portillo, Wendy; Paredes, Raul G; Young, Larry J; Alcauter, Sarael

    2018-01-19

    Resting state functional magnetic resonance imaging (rsfMRI) has shown the hierarchical organization of the human brain into large-scale complex networks, referred as resting state networks. This technique has turned into a promising translational research tool after the finding of similar resting state networks in non-human primates, rodents and other animal models of great value for neuroscience. Here, we demonstrate and characterize the presence of resting states networks in Microtus ochrogaster, the prairie vole, an extraordinary animal model to study complex human-like social behavior, with potential implications for the research of normal social development, addiction and neuropsychiatric disorders. Independent component analysis of rsfMRI data from isoflurane-anestethized prairie voles resulted in cortical and subcortical networks, including primary motor and sensory networks, but also included putative salience and default mode networks. We further discuss how future research could help to close the gap between the properties of the large scale functional organization and the underlying neurobiology of several aspects of social cognition. These results contribute to the evidence of preserved resting state brain networks across species and provide the foundations to explore the use of rsfMRI in the prairie vole for basic and translational research.

  20. Vegetation development and native species establishment in reclaimed coal mine lands in Alberta : directions for reclamation planning

    Energy Technology Data Exchange (ETDEWEB)

    Longman, P. [Calgary Univ., AB (Canada). Faculty of Environmental Design

    2010-07-01

    This paper discussed a study undertaken to evaluate reclamation vegetation at Coal Valley Mine in Alberta with respect to expected vegetation changes over time, establishing a successional model of vegetation development, and factors contributing to the observed patterns. Most of the expected vegetation trends were evident, including lower grass cover and height, lower legume cover, a higher degree of native plant species richness, and the establishment of woody species. Four vegetation communities (2 graminoid-dominated and 2 conifer-dominated) were identified in the study, for which a possible successional model was constructed. Vegetation dynamics for agronomic grasses, legumes, and tree cover were discussed. Areas with Lodgepole Pine were found to have higher species richness and cover. Concerns were raised that the identified trends may not in fact supply the expected opportunities for native species establishment. In order to facilitate the establishment of native species and better manage reclamation vegetation development, the author recommended that a conifer overstory be established to increase native richness and native cover, and that more appropriate seeding mixes be developed as certain agronomic species are detrimental to long-term goals. The author also recommended that site-specific seed mixes be developed according to end land-use goals, that a planting program for native plants and shrubs be developed, and that a monitoring program be established to better inform future reclamation efforts. The recommendations were designed to bring reclamation efforts into line with reclamation goals. 12 refs., 4 tabs., 2 figs.

  1. Demography of black-tailed prairie dog populations reoccupying sites treated with rodenticide

    Science.gov (United States)

    R. P. Cincotta; Daniel W. Uresk; R. M. Hansen

    1987-01-01

    A rodenticide, zinc phosphide, was applied to remove black-tailed prairie dogs (Cynomys ludovicianus) from 6 haofa prairie dog colony in southwestern South Dakota. Another adjacent 6 ha was left untreated. The removal experiment was repeated two consecutive years. Contingency table analysis showed that the resultant population was not homogeneous;...

  2. A proposal to conserve black-footed ferrets and the prairie dog ecosystem

    Science.gov (United States)

    Miller, Brian; Wemmer, Christen; Biggins, Dean; Reading, Richard

    1990-11-01

    Prairie dogs ( Cynomys spp.) have been poisoned throughout this century because of grazing competition with livestock. Recent evidence showed these early claims were exaggerated, but animal control was already entrenched in government policy. As a result, ongoing government subsidized poisoning has reduced prairie dogs to about 2% of their former distribution. The reduction of prairie dogs diminished species diversity in the arid grasslands of North America, including the potential extinction of the black-footed ferret ( Mustela nigripes). Cost-benefit analysis revealed that poisoning costs more than any grazing benefits accrued. This analysis did not consider the long-term costs of reversing ecosystem degradation, the intangible value of biological diversity as a public benefit, or the depletion of biotic resources as a loss of actual or potential wealth. The government presently finances the poisoning policy and the preservation of endangered species like the black-footed ferret, two apparently conflicting programs. We, therefore, propose an integrated management plan that considers both interests. We propose that federal monies allocated to the poisoning program be converted into a rebate for ranchers who manage livestock while preserving the prairie dog community. This would redirect funds and personnel already allocated to prairie dog eradication to an incentive for ranchers who manage for livestock and wildlife. Livestock interests and grassland biotic diversity would both benefit.

  3. Effect of an Invasive Grass on Ambient Rates of Decomposition and Microbial Community Structure: A Search for Causality

    Science.gov (United States)

    In sutu decomposition of above and below ground plant biomass of the native grass species Andropogon glmoeratus (Walt.) B.S.P and exotic Imperata cylindrica (L.) Beauv. (cogongrass) was investigated using litter bags over the course of a 12 month period. The above and below ground biomass of the inv...

  4. Power and limitation of soil properties as predictors of rangeland health and ecosystem functioning in a Northern mixed-grass prairie[Abstract

    Science.gov (United States)

    Soil properties are thought to affect rangeland ecosystem functioning (e.g. primary productivity, hydrology), and thus soil variables that are consistently correlated with key ecosystem functions may be general indicators of rangeland health. We summarize results from several studies in mixed-grass...

  5. Lesser prairie-chicken fence collision risk across its northern distribution

    Science.gov (United States)

    Robinson, Samantha G.; Haukos, David A.; Plumb, Reid T.; Hagen, Christian A.; Pitman, James C.; Lautenbach, Joseph M.; Sullins, Daniel S.; Kraft, John D.; Lautenbach, Jonathan D.

    2016-01-01

    Livestock fences have been hypothesized to significantly contribute to mortality of lesser prairie-chickens (Tympanuchus pallidicinctus); however, quantification of mortality due to fence collisions is lacking across their current distribution. Variation in fence density, landscape composition and configuration, and land use could influence collision risk of lesser prairie-chickens. We monitored fences within 3 km of known leks during spring and fall and surveyed for signs of collision occurrence within 20 m of fences in 6 study sites in Kansas and Colorado, USA during 2013 and 2014. We assessed mortality locations of radio-tagged birds (n = 286) for evidence of fence collisions and compared distance to fence relative to random points. Additionally, we quantified locations, propensity, and frequency of fences crossed by lesser prairie-chickens. We tested for landscape and vegetative characteristics that influenced fence-cross propensity and frequency of global positioning system (GPS)-marked birds. A minimum of 12,706 fence crossings occurred by GPS-marked lesser prairie-chickens. We found 3 carcasses and 12 additional possible instances of evidence of collision during >2,800 km of surveyed fences. We found evidence for a single suspected collision based on carcass evidence for 148 mortalities of transmittered birds. Mortality locations of transmittered birds were located at distances from fences 15% farther than expected at random. Our data suggested minimal biological significance and indicated that propensity and frequency of fence crossings were random processes. Lesser prairie-chickens do not appear to be experiencing significant mortality risk due to fence collisions in Kansas and Colorado. Focusing resources on other limiting factors (i.e., habitat quality) has greater potential for impact on population demography than fence marking and removal.

  6. Environmental Impact Study of the Northern Section of the Upper Mississippi River. Pool 1.

    Science.gov (United States)

    1973-11-01

    grass P Poa pratensis Blue grass Setaria viridis Green foxtail P P P P D Setaria sp. Bristly foxtail P Spartina pectinata Prairie cord grass P...Agrimonia pubescens Cocklebur Alchemilla sp. Lady’s mantle P Fragaria vesca Wild strawberry Oewn canadense White avens Gewn laciniatun Avens Geum

  7. Mountain plover nest survival in relation to prairie dog and fire dynamics in shortgrass steppe

    Science.gov (United States)

    Augustine, David J.; Skagen, Susan K.

    2014-01-01

    Disturbed xeric grasslands with short, sparse vegetation provide breeding habitat for mountain plovers (Charadrius montanus) across the western Great Plains. Maintaining local disturbance regimes through prairie dog conservation and prescribed fire may contribute to the sustainability of recently declining mountain plover populations, but these management approaches can be controversial. We estimated habitat-specific mountain plover densities and nest survival rates on black-tailed prairie dog (Cynomys ludovicianus) colonies and burns in the shortgrass steppe of northeastern Colorado. Mountain plover densities were similar on prairie dog colonies (5.9 birds/km2; 95% CI = 4.7–7.4) and sites burned during the preceding dormant season (6.7 birds/km2; 95% CI = 4.6–9.6), whereas the 29-day nest survival rate was greater on prairie dog colonies (0.81 in 2011 and 0.39 in 2012) compared to the burned sites (0.64 in 2011 and 0.17 in 2012). Reduced nest survival in 2012 compared to 2011 was associated with higher maximum daily temperatures in 2012, consistent with a previous weather-based model of mountain plover nest survival in the southern Great Plains. Measurements of mountain plover density relative to time since disturbance showed that removal of prairie dog disturbance by sylvatic plague reduced mountain plover density by 70% relative to active prairie dog colonies after 1 year. Plover densities declined at a similar rate (by 78%) at burned sites between the first and second post-burn growing season. Results indicate that black-tailed prairie dog colonies are a particularly important nesting habitat for mountain plovers in the southern Great Plains. In addition, findings suggest that prescribed burning can be a valuable means to create nesting habitat in landscapes where other types of disturbances (such as prairie dog colonies) are limited in distribution and size. 

  8. 78 FR 75306 - Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken as a Threatened...

    Science.gov (United States)

    2013-12-11

    ...; 4500030113] RIN 1018-AY21 Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken... the conservation of the lesser prairie-chicken (Tympanuchus pallidicinctus). In addition, we announce... prairie-chicken as a threatened species under the Act. We also announce the availability of the final...

  9. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA.

    Science.gov (United States)

    Tripp, Daniel W; Rocke, Tonie E; Streich, Sean P; Abbott, Rachel C; Osorio, Jorge E; Miller, Michael W

    2015-04-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  10. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Abbott, Rachel C.; Osorio, Jorge E.; Miller, Michael W.

    2015-01-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  11. Omorgus suberosus and Polynoncus bifurcatus (Coleoptera: Scarabaeoidea: Trogidae in exotic and native environments of Brazil

    Directory of Open Access Journals (Sweden)

    César M. A. Correa

    2013-04-01

    Full Text Available Trogidae beetles are important for the decomposition of organic material in ecosystems. In the Neotropical region, little is known about this family, except for their taxonomy. In this study, we report the presence of Omorgus suberosus (Fabricius, 1775 and Polynoncus bifurcatus (Vaurie, 1962 in exotic and native environments of Brazil, sampled with different baits. The beetles were captured in pastures with introduced grass (Brachiaria spp. and in patches of native forest (Brazilian savanna. We used pitfall traps baited with carrion and human feces every two weeks, from January to December 2011, and with carrion, cow dung, human feces and pig manure at the beginning of the rainy season (October 2011. Over the course of one year, 24 individuals of O. suberosus were captured, 16 in the exotic and eight in the native environment, respectively. In the sampling performed at the beginning of the rainy season, 32 individuals of O. suberosus and seven of P. bifurcatus were obtained. Omorgus suberosus specimens were sampled in both environments, suggesting a possible tolerance to anthropogenic environments, as in the case of introduced grasses. Polynoncus bifurcatus individuals were captured only in native environments, which may indicate a strong relationship with more heterogeneous and/or relatively preserved habitats. We discuss such relationships in light of published data and new information provided here.

  12. 78 FR 26302 - Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken as a Threatened...

    Science.gov (United States)

    2013-05-06

    ...; 4500030113] RIN 1018-AY21 Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken... the lesser prairie-chicken (Tympanuchus pallidicinctus). In addition, we announce the reopening of the public comment period on the December 11, 2012, proposed rule to list the lesser prairie-chicken as a...

  13. 77 FR 24975 - Endangered and Threatened Wildlife and Plants; Revised Recovery Plan for the Utah Prairie Dog

    Science.gov (United States)

    2012-04-26

    ...-FF06E00000] Endangered and Threatened Wildlife and Plants; Revised Recovery Plan for the Utah Prairie Dog... Utah prairie dog (Cynomys parvidens). This species is federally listed as threatened under the... recovery plan for the Utah prairie dog. The Service and other Federal agencies also will take these...

  14. 75 FR 57055 - Endangered and Threatened Wildlife and Plants; Draft Revised Recovery Plan for Utah Prairie Dog

    Science.gov (United States)

    2010-09-17

    ...] Endangered and Threatened Wildlife and Plants; Draft Revised Recovery Plan for Utah Prairie Dog AGENCY: Fish... recovery plan for the Utah prairie dog (Cynomys parvidens). This species is federally listed as threatened... and peer reviewers in an appendix to the approved recovery plan. The Utah prairie dog (Cynomys...

  15. The role of prairie dogs as a keystone species: response to Stapp

    Science.gov (United States)

    B. Miller; R. Reading; J. Hoogland; T. Clark; G. Ceballos; R. List; S. Forrest; L. Hanebury; P. Manzano; J. Pacheco; D. Uresk

    2000-01-01

    Stapp (1998) recently argued that it was premature to characterize prairie dogs (Cynomys spp.) as keystone species. In particular, Stapp directed much of his criticism at a paper some of us wrote (Miller et al. 1994). He mistakenly interprets the main objective of our paper as providing evidence that prairie dogs are keystone species. Rather, the...

  16. Prairie chicken populations of the Sheyenne Delta in North Dakota, 1961-1987

    Science.gov (United States)

    Jerry D. Kobriger; David P. Vollink; Michael E. Mcneill; Kenneth F. Higgins

    1988-01-01

    Prairie chickens (Tympanuchus cupido pinnatus) were first censused on the Sheyenne Grasslands in 1961. The population was extremely low in the 1960's, gradually increased in the 1970's, and reached a peak of 410 in 1980. Sufficient evidence exists to link the increase in numbers of prairie chickens on the grasslands from 1961 through 1987...

  17. Grand Forks - East Grand Forks Urban Water Resources Study. Social and Environmental Inventory.

    Science.gov (United States)

    1979-01-01

    porcupine grass, mat muhly, fescue sedge and meadow sedge. Common and secondary bird species of the taligrass prairie, including the plovers, western...eliminated by hunting pressure and stand in small protected herds as relics of the post. Prairie chickens exist as threatened species in protected

  18. The development and adoption of conservation tillage systems on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    L. Awada

    2014-03-01

    Full Text Available One of the major agricultural innovations on the Canadian Prairies over the last 40 years has been the introduction of conservation tillage (CT. Conservation tillage-a system that includes minimum and zero tillage (ZT -was introduced as an alternative to traditional (conventional tillage (TT to control soil degradation and to promote agricultural sustainability. The development and adoption of CT systems involved pioneer farmers, engineers, scientists, and farmer associations. By the end of the 1970s, CT started to take shape on the Prairies, but for a number of economic, technical, political and social reasons, the adoption of CT did not occur on any major scale before the 1990s. Today, more than 75% of the Prairie's cropland is under some form of CT with more than 50% under ZT. In this paper, the factors behind the development and adoption of conservation tillage technology on the Prairies in the period between 1930 and 2011 are reviewed. Then, some of the benefits of the adoption of CT on the Prairies are highlighted. The data show that CT and ZT became profitable for the majority of farmers during and after the 1990s, and that the increased use of CT contributed to the dramatic decrease in the area under summerfallow and to the increase in the area sown to canola and pulse crops. These changes contributed to the reduction of all forms of land degradation and to decreases in agricultural greenhouse gas (GHG emissions.

  19. Changes in salt-marsh carabid assemblages after an invasion by the native grass Elymus athericus (Link Kerguélen

    Directory of Open Access Journals (Sweden)

    Anita Georges

    2011-05-01

    Full Text Available As a result of an invasion by the native grass Elymus athericus (Link Kerguélen (Poaceae in the last 10 years, a major change in vegetation cover has occurred in salt marshes of the Mont Saint-Michel bay, Western France. The impact of such an invasion on carabid assemblages, a dominant group of terrestrial arthropods in these habitats and containing several stenotopic species, is investigated here. In our study site, carabid data are available from 1983 and 1984, allowing a comparison of species distribution ranges in salt marshes before (1983–1984 and after (2002 the E. athericus invasion. A total of 16,867 adults belonging to 40 species were caught. By considering the presence-absence of species shared between studies, we show that the invasion by E. athericus promoted the progression of non-coastal species (mainly Pterostichus s.l. spp.. This did however not interfere with resident species distributions, finally resulting in higher carabid species richness in the entire area. The species composition and abundances of carabid assemblages were also compared between natural and invaded stations in 2002. The main result is that abundances of some halophilic species decreased in one invaded plot (in case of Pogonus chalceus (Marsham 1802 whereas the opposite pattern was observed for other species (e.g., Bembidion minimum (Fabricius 1792. Invaded habitats were characterized by lower percentages of halophilic species and higher total species richness.

  20. A novel approach for assessing density and range-wide abundance of prairie dogs

    Science.gov (United States)

    Aaron N. Facka; Paulette L. Ford; Gary W. Roemer

    2008-01-01

    Habitat loss, introduced disease, and government-sponsored eradication programs have caused population declines in all 5 species of prairie dogs. Black-tailed prairie dogs (Cynomys ludovicianus) currently occupy only about 2% of an extensive geographic range (160 million hectares) and were recently considered for listing under the United States...

  1. Prerequisites for understanding climate-change impacts on northern prairie wetlands

    Science.gov (United States)

    Anteau, Michael J.; Wiltermuth, Mark T.; Post van der Burg, Max; Pearse, Aaron T.

    2016-01-01

    The Prairie Pothole Region (PPR) contains ecosystems that are typified by an extensive matrix of grasslands and depressional wetlands, which provide numerous ecosystem services. Over the past 150 years the PPR has experienced numerous landscape modifications resulting in agricultural conversion of 75–99 % of native prairie uplands and drainage of 50–90 % of wetlands. There is concern over how and where conservation dollars should be spent within the PPR to protect and restore wetland basins to support waterbird populations that will be robust to a changing climate. However, while hydrological impacts of landscape modifications appear substantial, they are still poorly understood. Previous modeling efforts addressing impacts of climate change on PPR wetlands have yet to fully incorporate interacting or potentially overshadowing impacts of landscape modification. We outlined several information needs for building more informative models to predict climate change effects on PPR wetlands. We reviewed how landscape modification influences wetland hydrology and present a conceptual model to describe how modified wetlands might respond to climate variability. We note that current climate projections do not incorporate cyclical variability in climate between wet and dry periods even though such dynamics have shaped the hydrology and ecology of PPR wetlands. We conclude that there are at least three prerequisite steps to making meaningful predictions about effects of climate change on PPR wetlands. Those evident to us are: 1) an understanding of how physical and watershed characteristics of wetland basins of similar hydroperiods vary across temperature and moisture gradients; 2) a mechanistic understanding of how wetlands respond to climate across a gradient of anthropogenic modifications; and 3) improved climate projections for the PPR that can meaningfully represent potential changes in climate variability including intensity and duration of wet and dry periods. Once

  2. Timber resource of Missouri's Prairie, 1972.

    Science.gov (United States)

    Jerold T. Hahn; Alexander Vasilevsky

    1975-01-01

    The third timber inventory of Missouri's Prairie Forest Survey Unit shows substantial declines in both growing-stock and sawtimber volumes between 1959 and 1972. Commercial forest area declined by one-fifth. Presents highlights and statistics on forest area and timber volume, growth, mortality, ownership, and use in 1972.

  3. Toxic and feeding deterrent effects of native aquatic macrophytes on exotic grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Murphy, Joseph E; Beckmen, Kimberlee B; Johnson, Julie K; Cope, Rhian B; Lawmaster, Todd; Beasley, Val R

    2002-08-01

    Declines of amphibians have been attributed to many factors including habitat degradation. The introduction of grass carp (Ctenopharyngodon idella) as a biological agent for aquatic plant control in ponds and lakes managed narrowly for human recreation has likely contributed to amphibian declines through massive plant removal and associated habitat simplification and thus degradation. This research examined the interactions among grass carp and three Midwestern aquatic plants (Jussiaea repens, Ranunculus longirostris, and R. flabellaris) that may be of value in rehabilitation of habitats needed by amphibians. The feeding preference study found that C. idella avoided eating both J. repens and R. longirostris. Ranunculus species studied to date contain a vesicant toxin called ranunculin that is released upon mastication. The study that compared the effects of R. flabellaris, J. repens and a control food administered by tube feeding to C. idella found significant lesions only in the mucosal epithelium of the individuals exposed to R.flabellaris. The avoidance by C. idella of J. repens and R. longirostris in the feeding preference study, and the significant toxicity of R. flabellaris demonstrated by the dosing study, indicate these plants warrant further examination as to their potential effectiveness in aquatic amphibian habitat rehabilitation.

  4. Effect of mid-summer haying on growth and reproduction in prairie forbs

    Science.gov (United States)

    Becky Begay; Helen M. Alexander; Erin Questad

    2011-01-01

    Mid-summer haying is a common management practice for prairies; plant species could differ in the effect of haying on subsequent growth and reproduction. We examined the effect of haying on prairie species by performing a clipping experiment. For each of seven species, sixteen plants were chosen and half were randomly assigned to a clipping treatment and half to a...

  5. Season and application rates affect vaccine bait consumption by prairie dogs in Colorado and Utah, USA

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Brown, Nathanael L.; Fernandez, Julia Rodriguez-Ramos; Miller, Michael W.

    2014-01-01

    Plague, a zoonotic disease caused by the bacterium Yersinia pestis, causes high rates of mortality in prairie dogs (Cynomys spp.). An oral vaccine against plague has been developed for prairie dogs along with a palatable bait to deliver vaccine and a biomarker to track bait consumption. We conducted field trials between September 2009 and September 2012 to develop recommendations for bait distribution to deliver plague vaccine to prairie dogs. The objectives were to evaluate the use of the biomarker, rhodamine B, in field settings to compare bait distribution strategies, to compare uptake of baits distributed at different densities, to assess seasonal effects on bait uptake, and to measure bait uptake by nontarget small mammal species. Rhodamine B effectively marked prairie dogs' whiskers during these field trials. To compare bait distribution strategies, we applied baits around active burrows or along transects at densities of 32, 65, and 130 baits/ha. Distributing baits at active burrows or by transect did not affect uptake by prairie dogs. Distributing baits at rates of ≥65/ha (or ≥1 bait/active burrow) produced optimal uptake, and bait uptake by prairie dogs in the autumn was superior to uptake in the spring. Six other species of small mammals consumed baits during these trials. All four species of tested prairie dogs readily consumed the baits, demonstrating that vaccine uptake will not be an obstacle to plague control via oral vaccination.

  6. Uptake and Transformation of the Propellants 2,4-DNT, Perchlorate and Nitroglycerin by Grasses

    Science.gov (United States)

    2006-07-31

    they stabilize and prevent contamination from spreading. Grasses native to a region tend to grow rapidly and can be easily cultivated without digging...to the live soil. The alternative of cultivating strictly sterile plants was deemed too difficult. In addition problems often result from experiments...Lu Yu, Jaclyn E.Cafias, Cobb G.P., Jackson W.A. Anderson T.A. "Uptake of perchlorate in terrestrial plants." Ecotoxicology and Environmental Safety 58

  7. 77 FR 75119 - Dakota Prairie Grasslands, North Dakota; Oil and Gas Development Supplemental Environmental...

    Science.gov (United States)

    2012-12-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Dakota Prairie Grasslands, North Dakota; Oil and Gas... to prepare a supplemental environmental impact statement. SUMMARY: In June of 2003, the Dakota... Dakota Prairie Grasslands Land and Resource Management Plan, based on the 2001 Northern Great Plains...

  8. Black-tailed prairie dog (Cynomys ludovicianus) response to seasonality and frequency of fire

    Science.gov (United States)

    Felicia D. Archuleta

    2014-01-01

    Fragmentation of the landscape, habitat loss, and fire suppression, all a result of European settlement and activities, have precipitated both the decline of Black-tailed prairie dog (Cynomys ludovicianus) populations and the occurrence of fire throughout the Great Plains, including the Shortgrass steppe of northeastern New Mexico. The presence of Black-tailed prairie...

  9. Longitudinal Trajectories and Inter-parental Dynamics of Prairie Vole Biparental Care

    Directory of Open Access Journals (Sweden)

    Forrest D. Rogers

    2018-06-01

    Full Text Available For altricial mammalian species, early life social bonds are constructed principally between offspring and their mothers, and the mother-offspring relationship sets the trajectory for offspring bio-behavioral development. In the rare subset of monogamous and biparental species, offspring experience an expanded social network which includes a father. Accordingly, in biparental species fathers also have the potential to influence trajectories of offspring development. Previous semi-natural and laboratory study of one monogamous and biparental species, the prairie vole (Microtus ochrogaster, has given insight into the role that mothers and fathers play in shaping behavioral phenotypes of offspring. Of particular interest is the influence of biparental care in the development of monogamous behavior in offspring. Here, we first briefly review that influence. We then present novel research which describes how parental investment in prairie voles changes across sequential litters of pups, and the extent to which it is coordinated between mothers and fathers. We use approximately 6 years of archival data on prairie vole parenting to investigate trajectories and inter-parent dynamics in prairie vole parenting. We use a series of latent growth models to assess the stability of parental investment across the first 4 l. Our findings suggest that prairie voles display sexually dimorphic patterns of change in parental behavior: mothers' investment declines linearly whereas fathers' pattern of change is characterized by initial decline between litters 1 and 2 with subsequent increase from litters 2 to 4. Our findings also support a conclusion that prairie vole paternal care may be better characterized as compensatory—that is, fathers may compensate for decline in maternal investment. Opposing trends in investment between mothers and fathers ultimately imply stability in offspring investment across sequential litters. These findings, combined with previous

  10. Decline of Hesperia ottoe (Lepidoptera: Hesperiidae in Northern Tallgrass Prairie Preserves

    Directory of Open Access Journals (Sweden)

    Ann B. Swengel

    2013-11-01

    Full Text Available We counted butterflies on transect surveys during Hesperia ottoe flight period in 1988–2011 at tallgrass prairie preserves in four states (Illinois, Iowa, Minnesota, Wisconsin, divided into units cross-referenced to vegetation type and management history. H. ottoe occurred only in dry and sand prairie types, and was significantly more abundant in undegraded than semi-degraded prairie, and in discontinuous sod (with numerous unvegetated areas due to bare sand and/or rock outcrops than in continuous sod. This skipper was significantly more abundant in small sites compared to medium and large sites, even when the analysis was limited to undegraded prairie analyzed separately by sod type. H. ottoe was significantly under-represented in year-burn 0 (the first growing season after fire compared to an expected distribution proportional to survey effort. However, H. ottoe was also over-represented in fire-managed units compared to non-fire-managed units. However, by far most units and sites were in fire management and most populations declined to subdetection during this study. Peak abundance post-fire occurred in a later year-burn in discontinuous sod and was much higher than in continuous sod. We also analyze H. ottoe status and trend in midwestern prairie preserves by compiling a dataset of our and others’ butterfly surveys from 1974 to 2011. Only 1/9 sites with continuous sod had detectable H. ottoe in recent year(s. In discontinuous sod, 2/6 did, with two sites lacking data for the last few years. The number of years H. ottoe was still detectable after preservation and the number of years to consistent non-detection were both significantly higher in discontinuous than continuous sod. Both measures of population persistence averaged over twice as long in discontinuous than continuous sod, and correlated negatively with prairie size. The year when consistent non-detection began varied over several decades among sites. Despite the currently urgent

  11. Decline of Hesperia ottoe (Lepidoptera: Hesperiidae) in Northern Tallgrass Prairie Preserves.

    Science.gov (United States)

    Swengel, Ann B; Swengel, Scott R

    2013-11-20

    We counted butterflies on transect surveys during Hesperia ottoe flight period in 1988-2011 at tallgrass prairie preserves in four states (Illinois, Iowa, Minnesota, Wisconsin), divided into units cross-referenced to vegetation type and management history. H. ottoe occurred only in dry and sand prairie types, and was significantly more abundant in undegraded than semi-degraded prairie, and in discontinuous sod (with numerous unvegetated areas due to bare sand and/or rock outcrops) than in continuous sod. This skipper was significantly more abundant in small sites compared to medium and large sites, even when the analysis was limited to undegraded prairie analyzed separately by sod type. H. ottoe was significantly under-represented in year-burn 0 (the first growing season after fire) compared to an expected distribution proportional to survey effort. However, H. ottoe was also over-represented in fire-managed units compared to non-fire-managed units. However, by far most units and sites were in fire management and most populations declined to subdetection during this study. Peak abundance post-fire occurred in a later year-burn in discontinuous sod and was much higher than in continuous sod. We also analyze H. ottoe status and trend in midwestern prairie preserves by compiling a dataset of our and others' butterfly surveys from 1974 to 2011. Only 1/9 sites with continuous sod had detectable H. ottoe in recent year(s). In discontinuous sod, 2/6 did, with two sites lacking data for the last few years. The number of years H. ottoe was still detectable after preservation and the number of years to consistent non-detection were both significantly higher in discontinuous than continuous sod. Both measures of population persistence averaged over twice as long in discontinuous than continuous sod, and correlated negatively with prairie size. The year when consistent non-detection began varied over several decades among sites. Despite the currently urgent need to identify

  12. Strong genetic differentiation in the invasive annual grass Bromus tectorum across the Mojave-Great Basin ecological transition zone

    Science.gov (United States)

    Susan E. Meyer; Elizabeth A. Leger; Desiree R. Eldon; Craig E. Coleman

    2016-01-01

    Bromus tectorum, an inbreeding annual grass, is a dominant invader in sagebrush steppe habitat in North America. It is also common in warm and salt deserts, displaying a larger environmental tolerance than most native species. We tested the hypothesis that a suite of habitat-specific B. tectorum lineages dominates warm desert habitats. We sampled 30 B....

  13. The predicted influence of climate change on lesser prairie-chicken reproductive parameters

    Science.gov (United States)

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, D.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Nina events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  14. Tuberculosis transmission in the Indigenous peoples of the Canadian prairies.

    Science.gov (United States)

    Patel, Smit; Paulsen, Catherine; Heffernan, Courtney; Saunders, Duncan; Sharma, Meenu; King, Malcolm; Hoeppner, Vernon; Orr, Pamela; Kunimoto, Dennis; Menzies, Dick; Christianson, Sara; Wolfe, Joyce; Boffa, Jody; McMullin, Kathleen; Lopez-Hille, Carmen; Senthilselvan, Ambikaipakan; Long, Richard

    2017-01-01

    The prairie provinces of Canada. To characterize tuberculosis (TB) transmission among the Indigenous and non-Indigenous Canadian-born peoples of the prairie provinces of Canada. A prospective epidemiologic study of consecutively diagnosed adult (age ≥ 14 years) Canadian-born culture-positive pulmonary TB cases on the prairies, hereafter termed "potential transmitters," and the transmission events generated by them. "Transmission events" included new positive tuberculin skin tests (TSTs), TST conversions, and secondary cases among contacts. In the years 2007 and 2008, 222 potential transmitters were diagnosed on the prairies. Of these, the vast majority (198; 89.2%) were Indigenous peoples who resided in either an Indigenous community (135; 68.2%) or a major metropolitan area (44; 22.2%). Over the 4.5-year period between July 1st, 2006 and December 31st 2010, 1085 transmission events occurred in connection with these potential transmitters. Most of these transmission events were attributable to potential transmitters who identified as Indigenous (94.5%). With a few notable exceptions most transmitters and their infected contacts resided in the same community type. In multivariate models positive smear status and a higher number of close contacts were associated with increased transmission; adjusted odds ratios (ORs) and 95% confidence intervals (CIs), 4.30 [1.88, 9.84] and 2.88 [1.31, 6.34], respectively. Among infected contacts, being Indigenous was associated with disease progression; OR and 95% CI, 3.59 [1.27, 10.14] and 6.89 [2.04, 23.25] depending upon Indigenous group, while being an infected casual contact was less likely than being a close contact to be associated with disease progression, 0.66 [0.44, 1.00]. In the prairie provinces of Canada and among Canadian-born persons, Indigenous peoples account for the vast majority of cases with the potential to transmit as well as the vast majority of infected contacts. Active case finding and preventative therapy

  15. Social transfer of alcohol withdrawal-induced hyperalgesia in female prairie voles.

    Science.gov (United States)

    Walcott, Andre T; Smith, Monique L; Loftis, Jennifer M; Ryabinin, Andrey E

    2018-03-27

    The expression of pain serves as a way for animals to communicate potential dangers to nearby conspecifics. Recent research demonstrated that mice undergoing alcohol or morphine withdrawal, or inflammation, could socially communicate their hyperalgesia to nearby mice. However, it is unknown whether such social transfer of hyperalgesia can be observed in other species of rodents. Therefore, the present study investigated if the social transfer of hyperalgesia occurs in the highly social prairie vole (Microtus ochrogaster). We observe that adult female prairie voles undergoing withdrawal from voluntary two-bottle choice alcohol drinking display an increase in nociception. This alcohol withdrawal-induced hypersensitiity is socially transferred to female siblings within the same cage and female strangers housed in separate cages within the same room. These experiments reveal that the social transfer of pain phenomenon is not specific to inbred mouse strains and that prairie voles display alcohol withdrawal and social transfer-induced hyperalgesia.

  16. Magnetic minerals in soils across the forest-prairie ecotone in NW Minnesota

    Science.gov (United States)

    Maxbauer, D.; Feinberg, J. M.; Fox, D. L.; Nater, E. A.

    2016-12-01

    Soil pedogenesis results in a complex assemblage of iron oxide minerals that can be disentangled successfully using sensitive magnetic techniques to better delineate specific soil processes. Here, we evaluate the variability in soil processes within forest, prairie, and transitional soils along an 11 km transect of anthropogenically unaltered soils that span the forest-to-prairie ecotone in NW Minnesota. All soils in this study developed on relatively uniform topography, similar glacial till parent material, under a uniform climate, and presumably over similar time intervals. The forest-to-prairie transition zone in this region is controlled by naturally occurring fires, affording the opportunity to evaluate differences in soil processes related to vegetation (forest versus prairie) and burning (prairie and transitional soils). Results suggest that the pedeogenic fraction of magnetite/maghemite in soils is similar in all specimens and is independent of soil type, vegetation, and any effects of burning. Magnetically enhanced horizons have 45% of remanence held by a low-coercivity pedogenic component (likely magnetite/maghemite) regardless of vegetation cover and soil type. Enhancement ratios for magnetic susceptibility and low-field remanences, often used as indicators of pedogenic magnetic minerals, are more variable but remain statistically equivalent across the transect. These results support the hypothesis that pedogenic magnetic minerals in soils mostly reflect ambient climatic conditions regardless of the variability in soil processes related to vegetation and soil type. The non-pedogenic magnetic mineral assemblage shows clear distinctions between the forest, prairie, and transitional soils in hysteresis properties (remanence and coercivity ratios; Mr/Ms and Bc/Bcr, respectively), suggesting that variable processes in these settings influence the local magnetic mineral assemblage, and that it may be possible to use magnetic minerals in paleosols to constrain

  17. Review of black-tailed prairie dog reintroduction strategies and site selection: Arizona reintroduction

    Science.gov (United States)

    Sarah L. Hale; John L. Koprowski; Holly Hicks

    2013-01-01

    The black-tailed prairie dog (Cynomys ludovicianus) was once widely distributed throughout the western United States; however, anthropogenic influences have reduced the species’ numbers to 2 percent of historical populations. Black-tailed prairie dogs are described as a keystone species in the grassland ecosystem, and provide many unique services, including burrows for...

  18. 76 FR 31906 - Endangered and Threatened Wildlife and Plants; Revising the Special Rule for the Utah Prairie Dog

    Science.gov (United States)

    2011-06-02

    ... Special Rule for the Utah Prairie Dog AGENCY: Fish and Wildlife Service, Interior. ACTION: Proposed rule... prairie dog. We are proposing to revise the existing limits on take, and we also propose a new incidental... dogs see: http://www.fws.gov/mountain-prairie/species/mammals/UTprairiedog or http://ecos.fws.gov...

  19. 77 FR 46157 - Endangered and Threatened Wildlife and Plants; Revising the Special Rule for the Utah Prairie Dog

    Science.gov (United States)

    2012-08-02

    ... Utah Prairie Dog; Final Rule #0;#0;Federal Register / Vol. 77 , No. 149 / Thursday, August 2, 2012...-AW02 Endangered and Threatened Wildlife and Plants; Revising the Special Rule for the Utah Prairie Dog... special regulations for the conservation of the Utah prairie dog. We are revising our special regulations...

  20. SQ grass sublingual allergy immunotherapy tablet for disease-modifying treatment of grass pollen allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Dahl, Ronald; Roberts, Graham; de Blic, Jacques

    2016-01-01

    BACKGROUND: Allergy immunotherapy is a treatment option for allergic rhinoconjunctivitis (ARC). It is unique compared with pharmacotherapy in that it modifies the immunologic pathways that elicit an allergic response. The SQ Timothy grass sublingual immunotherapy (SLIT) tablet is approved in North...... America and throughout Europe for the treatment of adults and children (≥5 years old) with grass pollen-induced ARC. OBJECTIVE: The clinical evidence for the use of SQ grass SLIT-tablet as a disease-modifying treatment for grass pollen ARC is discussed in this review. METHODS: The review included...... the suitability of SQ grass SLIT-tablet for patients with clinically relevant symptoms to multiple Pooideae grass species, single-season efficacy, safety, adherence, coseasonal initiation, and cost-effectiveness. The data from the long-term SQ grass SLIT-tablet clinical trial that evaluated a clinical effect 2...

  1. Grooming behaviors of black-tailed prairie dogs are influenced by flea parasitism, conspecifics, and proximity to refuge

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Eads, Samantha L.

    2017-01-01

    Grooming is a common animal behavior that aids in ectoparasite defense. Ectoparasites can stimulate grooming, and natural selection can also favor endogenous mechanisms that evoke periodic bouts of “programmed” grooming to dislodge or kill ectoparasites before they bite or feed. Moreover, grooming can function as a displacement or communication behavior. We compared the grooming behaviors of adult female black-tailed prairie dogs (Cynomys ludovicianus) on colonies with or without flea control via pulicide dust. Roughly 91% of the prairie dogs sampled on the non-dusted colony carried at least one flea, whereas we did not find fleas on two dusted colonies. During focal observations, prairie dogs on the non-dusted colony groomed at higher frequencies and for longer durations than prairie dogs on the dusted colonies, lending support to the hypothesis that fleas stimulated grooming. However, the reduced amount of time spent grooming on the dusted colonies suggested that approximately 25% of grooming might be attributed to factors other than direct stimulation from ectoparasites. Non-dusted colony prairie dogs rarely autogroomed when near each other. Dusted colony prairie dogs autogroomed for shorter durations when far from a burrow opening (refuge), suggesting a trade-off between self-grooming and antipredator defense. Allogrooming was detected only on the non-dusted colony and was limited to adult females grooming young pups. Grooming appears to serve an antiparasitic function in C. ludovicianus. Antiparasitic grooming might aid in defense against fleas that transmit the plague bacterium Yersinia pestis. Plague was introduced to North America ca. 1900 and now has a strong influence on most prairie dog populations, suggesting a magnified effect of grooming on prairie dog fitness.

  2. Proceedings of the symposium on the management of prairie dog complexes for the reintroduction of the black-footed ferret

    Science.gov (United States)

    Oldemeyer, John L.; Biggins, Dean E.; Miller, Brian J.; Crete, Ronald

    1993-01-01

    The workshop featured a review of current knowledge in the biology of prairie dogs in the context of managing black-footed ferret habitat. The review addressed two main components. The first consisted of a series of papers on prairie dog habitat and biology. The second component of the workshop was a summary of the participants' discussion about managing prairie dog complexes. This discussion was based on the previously identified papers and profited from the participants' expertise on the ecology of black-footed ferrets and prairie dogs. The report provides current and comprehensive information about management of habitat for prairie dogs and black-footed ferrets and is a useful guide for agencies and individuals that manage black-footed ferrets.

  3. Landscape composition creates a threshold influencing Lesser Prairie-Chicken population resilience to extreme drought

    Science.gov (United States)

    Ross, Beth E.; Haukos, David A.; Hagen, Christian A.; Pitman, James C.

    2016-01-01

    Habitat loss and degradation compound the effects of climate change on wildlife, yet responses to climate and land cover change are often quantified independently. The interaction between climate and land cover change could be intensified in the Great Plains region where grasslands are being converted to row-crop agriculture concurrent with increased frequency of extreme drought events. We quantified the combined effects of land cover and climate change on a species of conservation concern in the Great Plains, the Lesser Prairie-Chicken (Tympanuchus pallidicinctus  ). We combined extreme drought events and land cover change with lek count surveys in a Bayesian hierarchical model to quantify changes in abundance of male Lesser Prairie-Chickens from 1978 to 2014 in Kansas, the core of their species range. Our estimates of abundance indicate a gradually decreasing population through 2010 corresponding to drought events and reduced grassland areas. Decreases in Lesser Prairie-Chicken abundance were greatest in areas with increasing row-crop to grassland land cover ratio during extreme drought events, and decreased grassland reduces the resilience of Lesser Prairie-Chicken populations to extreme drought events. A threshold exists for Lesser Prairie-Chickens in response to the gradient of cropland:grassland land cover. When moving across the gradient of grassland to cropland, abundance initially increased in response to more cropland on the landscape, but declined in response to more cropland after the threshold (δ=0.096, or 9.6% cropland). Preservation of intact grasslands and continued implementation of initiatives to revert cropland to grassland should increase Lesser Prairie-Chicken resilience to extreme drought events due to climate change.

  4. Sylvatic plague vaccine partially protects prairie dogs (Cynomys spp.) in field trials

    Science.gov (United States)

    Rocke, Tonie E.; Tripp, Daniel W.; Russell, Robin E.; Abbott, Rachel C.; Richgels, Katherine; Matchett, Marc R.; Biggins, Dean E.; Griebel, Randall; Schroeder, Greg; Grassel, Shaun M.; Pipkin, David R.; Cordova, Jennifer; Kavalunas, Adam; Maxfield, Brian; Boulerice, Jesse; Miller, Michael W.

    2017-01-01

    Sylvatic plague, caused by Yersinia pestis, frequently afflicts prairie dogs (Cynomys spp.), causing population declines and local extirpations. We tested the effectiveness of bait-delivered sylvatic plague vaccine (SPV) in prairie dog colonies on 29 paired placebo and treatment plots (1–59 ha in size; average 16.9 ha) in 7 western states from 2013 to 2015. We compared relative abundance (using catch per unit effort (CPUE) as an index) and apparent survival of prairie dogs on 26 of the 29 paired plots, 12 with confirmed or suspected plague (Y. pestis positive carcasses or fleas). Even though plague mortality occurred in prairie dogs on vaccine plots, SPV treatment had an overall positive effect on CPUE in all three years, regardless of plague status. Odds of capturing a unique animal were 1.10 (95% confidence interval [C.I.] 1.02–1.19) times higher per trap day on vaccine-treated plots than placebo plots in 2013, 1.47 (95% C.I. 1.41–1.52) times higher in 2014 and 1.19 (95% C.I. 1.13–1.25) times higher in 2015. On pairs where plague occurred, odds of apparent survival were 1.76 (95% Bayesian credible interval [B.C.I.] 1.28–2.43) times higher on vaccine plots than placebo plots for adults and 2.41 (95% B.C.I. 1.72–3.38) times higher for juveniles. Our results provide evidence that consumption of vaccine-laden baits can protect prairie dogs against plague; however, further evaluation and refinement are needed to optimize SPV use as a management tool.

  5. Mine spoil prairies expand critical habitat for endangered and threatened amphibian and reptile species

    Science.gov (United States)

    Lannoo, Michael J.; Kinney, Vanessa C.; Heemeyer, Jennifer L.; Engbrecht, Nathan J.; Gallant, Alisa L.; Klaver, Robert W.

    2009-01-01

    Coal extraction has been occurring in the Midwestern United States for over a century. Despite the pre-mining history of the landscape as woodlands, spent surface coalfields are often reclaimed to grasslands. We assessed amphibian and reptile species on a large tract of coal spoil prairie and found 13 species of amphibians (nine frog and four salamander species) and 19 species of reptiles (one lizard, five turtle, and 13 snake species). Two state-endangered and three state species of special concern were documented. The amphibian diversity at our study site was comparable to the diversity found at a large restored prairie situated 175 km north, within the historic prairie peninsula.

  6. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    Science.gov (United States)

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  7. Age at Vaccination May Influence Response to Sylvatic Plague Vaccine (SPV) in Gunnison's Prairie Dogs (Cynomys gunnisoni).

    Science.gov (United States)

    Rocke, Tonie E; Tripp, Dan; Lorenzsonn, Faye; Falendysz, Elizabeth; Smith, Susan; Williamson, Judy; Abbott, Rachel

    2015-06-01

    Gunnison's prairie dogs (Cynomys gunnisoni) have been considered at greater risk from Yersinia pestis (plague) infection in the montane portion of their range compared to populations at lower elevations, possibly due to factors related to flea transmission of the bacteria or greater host susceptibility. To test the latter hypothesis and determine whether vaccination against plague with an oral sylvatic plague vaccine (SPV) improved survival, we captured prairie dogs from a C. g. gunnisoni or "montane" population and a C. g. zuniensis or "prairie" population for vaccine efficacy and challenge studies. No differences (P = 0.63) were found in plague susceptibility in non-vaccinated animals between these two populations; however, vaccinates from the prairie population survived plague challenge at significantly higher rates (P plague challenge at a much higher rate than adults (P plague in the C. g. gunnisoni or "montane" populations of Gunnison's prairie dogs, and that SPV could be a useful plague management tool for this species, particularly if targeted at younger cohorts.

  8. The effect of restored and native oxbows on hydraulic loads of nutrients and stream water quality

    Science.gov (United States)

    Kalkhoff, Stephen J.; Hubbard, Laura E.; Joseph P.Schubauer-Berigan,

    2016-01-01

    The use of oxbow wetlands has been identified as a potential strategy to reduce nutrient transport from agricultural drainage tiles to streams in Iowa. In 2013 and 2014, a study was conducted in north-central Iowa in a native oxbow in the Lyons Creek watershed and two restored oxbow wetlands in the Prairie Creek watershed (Smeltzer west and Smeltzer east) to assess their effectiveness at reducing nitrogen and phosphorus loads. The tile line inlets carrying agricultural runoff to the oxbows, the outfall from the oxbows, and the surface waters in the streams receiving the outfall water were monitored for discharge and nutrients from February 2013 to September 2015. Smeltzer west and east also had four monitoring wells each, two in the upland and two between the oxbow and Prairie Creek to monitor surface water-groundwater interaction. The Smeltzer west and east oxbow sites also were instrumented to continuously measure the nitrate concentration. Rainfall was measured at one Lyons Creek and one Smeltzer site. Daily mean nitrate-N concentrations in Lyons Creek in 2013 ranged from 11.8 mg/L to 40.9 mg/L, the median daily mean nitrate-N concentration was 33.0 mg/L. Daily mean nitrate-N concentrations in Prairie Creek in 2013 ranged from 0.07 mg/L in August to 32.2 mg/L in June. In 2014, daily mean nitrate-N concentrations in Prairie Creek ranged from 0.17 mg/L in April to 26.7 mg/L in July; the daily mean nitrate-N concentration for the sampled period was 9.78 mg/L. Nutrient load reduction occurred in oxbow wetlands in Lyons and Prairie Creek watersheds in north-central Iowa but efficiency of reduction was variable. Little nutrient reduction occurred in the native Lyons Creek oxbow during 2013. Concentrations of all nutrient constituents were not significantly (P>0.05, Wilcoxon rank sum) different in water discharging from the tile line than in water leaving the Lyons Creek oxbow. A combination of physical features and flow conditions suggest that the residence time of

  9. Trichostatin A (TSA) facilitates formation of partner preference in male prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Duclot, F; Wang, H; Youssef, C; Liu, Y; Wang, Z; Kabbaj, M

    2016-05-01

    In the socially monogamous prairie voles (Microtus ochrogaster), the development of a social bonding is indicated by the formation of partner preference, which involves a variety of environmental and neurochemical factors and brain structures. In a most recent study in female prairie voles, we found that treatment with the histone deacetylase inhibitor trichostatin A (TSA) facilitates the formation of partner preference through up-regulation of oxytocin receptor (OTR) and vasopressin V1a receptor (V1aR) genes expression in the nucleus accumbens (NAcc). In the present study, we tested the hypothesis that TSA treatment also facilitates partner preference formation and alters OTR and V1aR genes expression in the NAcc in male prairie voles. We thus observed that central injection of TSA dose-dependently promoted the formation of partner preference in the absence of mating in male prairie voles. Interestingly, TSA treatment up-regulated OTR, but not V1aR, gene expression in the NAcc similarly as they were affected by mating - an essential process for naturally occurring partner preference. These data, together with others, not only indicate the involvement of epigenetic events but also the potential role of NAcc oxytocin in the regulation of partner preference in both male and female prairie voles. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Looking above the prairie: localized and upward acute vision in a native grassland bird.

    Science.gov (United States)

    Tyrrell, Luke P; Moore, Bret A; Loftis, Christopher; Fernández-Juricic, Esteban

    2013-12-02

    Visual systems of open habitat vertebrates are predicted to have a band of acute vision across the retina (visual streak) and wide visual coverage to gather information along the horizon. We tested whether the eastern meadowlark (Sturnella magna) had this visual configuration given that it inhabits open grasslands. Contrary to our expectations, the meadowlark retina has a localized spot of acute vision (fovea) and relatively narrow visual coverage. The fovea projects above rather than towards the horizon with the head at rest, and individuals modify their body posture in tall grass to maintain a similar foveal projection. Meadowlarks have relatively large binocular fields and can see their bill tips, which may help with their probe-foraging technique. Overall, meadowlark vision does not fit the profile of vertebrates living in open habitats. The binocular field may control foraging while the fovea may be used for detecting and tracking aerial stimuli (predators, conspecifics).

  11. Timber resource of Minnesota's Prairie unit, 1977.

    Science.gov (United States)

    Jerold T. Hahn; W. Brad Smith

    1980-01-01

    The fourth inventory of Minnesota's Prairie Unit shows that although commercial forest area decreased 31.7% between 1962 and 1977, growing-stock volume increased 22%. This report gives statistical highlights and contains detailed tables of forest area as well as timber volume, growth, mortality, ownership, and use.

  12. Multiple mechanisms enable invasive species to suppress native species.

    Science.gov (United States)

    Bennett, Alison E; Thomsen, Meredith; Strauss, Sharon Y

    2011-07-01

    Invasive plants represent a significant threat to ecosystem biodiversity. To decrease the impacts of invasive species, a major scientific undertaking of the last few decades has been aimed at understanding the mechanisms that drive invasive plant success. Most studies and theories have focused on a single mechanism for predicting the success of invasive plants and therefore cannot provide insight as to the relative importance of multiple interactions in predicting invasive species' success. We examine four mechanisms that potentially contribute to the success of invasive velvetgrass Holcus lanatus: direct competition, indirect competition mediated by mammalian herbivores, interference competition via allelopathy, and indirect competition mediated by changes in the soil community. Using a combination of field and greenhouse approaches, we focus on the effects of H. lanatus on a common species in California coastal prairies, Erigeron glaucus, where the invasion is most intense. We found that H. lanatus had the strongest effects on E. glaucus via direct competition, but it also influenced the soil community in ways that feed back to negatively influence E. glaucus and other native species after H. lanatus removal. This approach provided evidence for multiple mechanisms contributing to negative effects of invasive species, and it identified when particular strategies were most likely to be important. These mechanisms can be applied to eradication of H. lanatus and conservation of California coastal prairie systems, and they illustrate the utility of an integrated set of experiments for determining the potential mechanisms of invasive species' success.

  13. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  14. Black-footed ferrets and recreational shooting influence the attributes of black-tailed prairie dog burrows

    Science.gov (United States)

    Biggins, Dean E.; Ramakrishnan, Shantini; Goldberg, Amanda R.; Eads, David A.

    2012-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) plug burrows occupied by black-footed ferrets (Mustela nigripes), and they also plug burrows to entomb dead prairie dogs. We further evaluated these phenomena by sampling connectivity and plugging of burrow openings on prairie dog colonies occupied by ferrets, colonies where recreational shooting was allowed, and colonies with neither shooting nor ferrets. We counted burrow openings on line surveys and within plots, classified surface plugging, and used an air blower to examine subsurface connectivity. Colonies with ferrets had lower densities of openings, fewer connected openings (suggesting increased subsurface plugging), and more surface plugs compared to colonies with no known ferrets. Colonies with recreational shooting had the lowest densities of burrow openings, and line-survey data suggested colonies with shooting had intermediate rates of surface plugging. The extent of surface and subsurface plugging could have consequences for the prairie dog community by changing air circulation and escape routes of burrow systems and by altering energetic relationships. Burrow plugging might reduce prairie dogs' risk of predation by ferrets while increasing risk of predation by American badgers (Taxidea taxus); however, the complexity of the trade-off is increased if plugging increases the risk of predation on ferrets by badgers. Prairie dogs expend more energy plugging and digging when ferrets or shooting are present, and ferrets increase their energy expenditures when they dig to remove those plugs. Microclimatic differences in plugged burrow systems may play a role in flea ecology and persistence of the flea-borne bacterium that causes plague (Yersinia pestis).

  15. Midcontinent Prairie-Pothole wetlands and climate change: An Introduction to the Supplemental Issue

    Science.gov (United States)

    Mushet, David M.

    2016-01-01

    The multitude of wetlands in the Prairie Pothole Region of North America forms one of Earth’s largest wetland complexes. The midcontinent location exposes this ecologically and economically important wetland system to a highly variable climate, markedly influencing ponded-water levels, hydroperiods, chemical characteristics, and biota of individual basins. Given their dominance on the landscape and recognized value, great interest in how projected future changes in climate will affect prairie-pothole wetlands has developed and spawned much scientific research. On June 2, 2015, a special symposium, “Midcontinent Prairie-Pothole Wetlands: Influence of a Changed Climate,” was held at the annual meeting of the Society of Wetland Scientists in Providence, Rhode Island, USA. The symposium’s twelve presenters covered a wide range of relevant topics delivered to a standing-room-only audience. Following the symposium, the presenters recognized the need to publish their presented papers as a combined product to facilitate widespread distribution. The need for additional papers to more fully cover the topic of prairie-pothole wetlands and climate change was also identified. This supplemental issue of Wetlands is the realization of that vision.

  16. Raptor community composition in the Texas Southern High Plains lesser prairie-chicken range

    Science.gov (United States)

    Behney, A.C.; Boal, Clint W.; Whitlaw, Heather A.; Lucia, D.R.

    2012-01-01

    Predation can be a factor in preventing prey population growth and sustainability when prey populations are small and fragmented, and when predator density is unrelated to the density of the single prey species. We conducted monthly raptor surveys from February 2007 to May 2009 in adjacent areas of the Texas Southern High Plains (USA) that do and do not support lesser prairie-chickens (Tympanuchus pallidicinctus), a candidate for protection under the Endangered Species Act. During the summer period corresponding to prairie-chicken nesting and brood-rearing, Swainson's hawks (Buteo swainsoni) were the most abundant raptor. During the lekking and overwintering period, the raptor community was diverse, with northern harriers (Circus cyaneus) being the most abundant species. Raptor abundance peaked during the early autumn and was lowest during the spring. Utility poles were a significant predictor of raptor density at survey points and Swainson's hawks and all raptors, pooled, were found in greater densities in non-prairie-chicken habitat dominated by mesquite (Prosopis glandulosa). Avian predation risk on prairie-chickens, based on presence and abundance of raptors, appears to be greatest during winter when there is a more abundant and diverse raptor community, and in areas with utility poles.

  17. Why is Taeniatherum caput-medusae (medusahead) Invasive in North America and not in its Native Eurasia?

    Science.gov (United States)

    Taeniatherum caput-medusae (medusahead) is an exotic annual grass introduced to North America in 1887 that has since invaded an estimated four million ha of rangelands. Contrary, in its native ranges of Eurasia, T. caput-medusae is not considered to be invasive. Why is it that T. caput-medusae expre...

  18. A native species with invasive behaviour in coastal dunes: evidence for progressing decay and homogenization of habitat types

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Degn, Hans Jørgen; Damgaard, Christian

    2011-01-01

    A new species has recently invaded coastal dune ecosystems in North West Europe. The native and expansive inland grass, Deschampsia flexuosa, progressively dominating inland heaths, has recently invaded coastal dunes in Denmark, occasionally even as a dominant species. A total of 222 coastal loca...

  19. Habitat edge, land management, and rates of brood parasitism in tallgrass prairie.

    Science.gov (United States)

    Patten, Michael A; Shochat, Eyal; Reinking, Dan L; Wolfe, Donald H; Sherrod, Steve K

    2006-04-01

    Bird populations in North America's grasslands have declined sharply in recent decades. These declines are traceable, in large part, to habitat loss, but management of tallgrass prairie also has an impact. An indirect source of decline potentially associated with management is brood parasitism by the Brown-headed Cowbird (Molothrus ater), which has had substantial negative impacts on many passerine hosts. Using a novel application of regression trees, we analyzed an extensive five-year set of nest data to test how management of tallgrass prairie affected rates of brood parasitism. We examined seven landscape features that may have been associated with parasitism: presence of edge, burning, or grazing, and distance of the nest from woody vegetation, water, roads, or fences. All five grassland passerines that we included in the analyses exhibited evidence of an edge effect: the Grasshopper Sparrow (Ammodramus savannarum), Henslow's Sparrow (A. henslowii), Dickcissel (Spiza americana), Red-winged Blackbird (Agelaius phoeniceus), and Eastern Meadowlark (Sturnella magna). The edge was represented by narrow strips of woody vegetation occurring along roadsides cut through tallgrass prairie. The sparrows avoided nesting along these woody edges, whereas the other three species experienced significantly higher (1.9-5.3x) rates of parasitism along edges than in prairie. The edge effect could be related directly to increase in parasitism rate with decreased distance from woody vegetation. After accounting for edge effect in these three species, we found evidence for significantly higher (2.5-10.5x) rates of parasitism in grazed plots, particularly those burned in spring to increase forage, than in undisturbed prairie. Regression tree analysis proved to be an important tool for hierarchically parsing various landscape features that affect parasitism rates. We conclude that, on the Great Plains, rates of brood parasitism are strongly associated with relatively recent road cuts

  20. Prairie rattlesnake envenomation in 27 New World camelids.

    Science.gov (United States)

    Sonis, J M; Hackett, E S; Callan, R J; Holt, T N; Hackett, T B

    2013-01-01

    Morbidity and case fatality from rattlesnake envenomation is regionally specific because of variability in relative toxicity of the species of snake encountered. A previous report of rattlesnake envenomation in New World camelids (NWC) from the western coastal United States documented high case fatality rates and guarded prognosis for survival. To describe clinical findings, treatments, and outcome of NWC with prairie rattlesnake (Crotalus viridis viridis) envenomation in the Rocky Mountain region of the United States. Twenty-seven NWC admitted to the Colorado State University Veterinary Teaching Hospital for evaluation of acute rattlesnake envenomation between 1992 and 2012. Medical records of NWC evaluated for rattlesnake envenomation as coded by the attending clinician and identified by a database search were reviewed retrospectively. Month of admission, signalment, area of bite, clinical and clinicopathologic data, treatments, and outcome were recorded. Twenty-five llamas and 2 alpacas were admitted for envenomation. Llamas were overrepresented compared to hospital caseload. The face was the most common site of envenomation, observed in 96% of recorded cases. Presenting clinical signs included fever, tachypnea, tachycardia, and respiratory distress. Nine animals required a tracheotomy. Median hospitalization time was 3 days and overall survival rate was 69%. Case fatality rate for prairie rattlesnake envenomation in NWC was lower than that reported in the Western coastal region of the United States and similar to that reported for prairie rattlesnake envenomation in horses. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  1. Presence and abundance of non-native plant species associated with recent energy development in the Williston Basin

    Science.gov (United States)

    Preston, Todd M.

    2015-01-01

    The Williston Basin, located in the Northern Great Plains, is experiencing rapid energy development with North Dakota and Montana being the epicenter of current and projected development in the USA. The average single-bore well pad is 5 acres with an estimated 58,485 wells in North Dakota alone. This landscape-level disturbance may provide a pathway for the establishment of non-native plants. To evaluate potential influences of energy development on the presence and abundance of non-native species, vegetation surveys were conducted at 30 oil well sites (14 ten-year-old and 16 five-year-old wells) and 14 control sites in native prairie environments across the Williston Basin. Non-native species richness and cover were recorded in four quadrats, located at equal distances, along four transects for a total of 16 quadrats per site. Non-natives were recorded at all 44 sites and ranged from 5 to 13 species, 7 to 15 species, and 2 to 8 species at the 10-year, 5-year, and control sites, respectively. Respective non-native cover ranged from 1 to 69, 16 to 76, and 2 to 82 %. Total, forb, and graminoid non-native species richness and non-native forb cover were significantly greater at oil well sites compared to control sites. At oil well sites, non-native species richness and forb cover were significantly greater adjacent to the well pads and decreased with distance to values similar to control sites. Finally, non-native species whose presence and/or abundance were significantly greater at oil well sites relative to control sites were identified to aid management efforts.

  2. Interactions of raptors and Lesser Prairie-Chickens at leks in the Texas Southern High Plains

    Science.gov (United States)

    Behney, Adam C.; Boal, Clint W.; Whitlaw, Heather A.; Lucia, Duane R.

    2011-01-01

    We examined behavioral interactions of raptors, Chihuahuan Ravens (Corvus cryptoleucus), and Lesser Prairie-Chickens (Tympanuchus pallidicinctus) at leks in the Texas Southern High Plains. Northern Harriers (Circus cyaneus) and Swainson's Hawks (Buteo swainsoni) were the most common raptors observed at leks. Only 15 of 61 (25%) raptor encounters at leks (0.09/hr) resulted in a capture attempt (0.02/hr). Mean (± SD) time for Lesser Prairie-Chickens to return to lekking behavior following a raptor encounter was 4.2 ± 5.5 min suggesting the disturbance had little influence on lekking behaviors. Lesser Prairie-Chickens engaged in different escape behaviors depending on raptor species and, generally, did not respond to ravens suggesting they are able to assess different predation risks. The raptors in our study area posed little predation risk to lekking prairie-chickens. Behavioral disturbance at leks appears minimal due to the lack of successful predation events, low raptor encounter rates, and short time to return to lekking behavior.

  3. A comparison of cellulosic fuel yields and separated soil-surface CO2 fluxes in maize and prairie biofuel cropping systems

    Science.gov (United States)

    Nichols, Virginia A.

    It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize

  4. Carcass Search & Recovery Guidelines for Black Tailed Prairie Dogs

    Science.gov (United States)

    The availability of dead or intoxicated prairie dogs above ground will be monitored, recorded and these carcasses will be properly disposed of, in accordance with the procedures described on this page.

  5. Managing prairie dogs by managing plague: a vaccine for the future?

    Science.gov (United States)

    Johnson, Terry B.; Rocke, Tonie E.; Gober, Pete; Van Pelt, Bill E.; Miller, Michael W.; Tripp, Daniel W.; Abbott, Rachel C.; Bergman, David L.

    2014-01-01

    The Black-footed Ferret Recovery Implementation Team Executive Committee is conducting a project to develop,and (hopefully) eventually implement, a plague vaccination program for prairie dogs. The project is a component of the WesternAssociation of Fish and Wildlife Agencies Grasslands Conservation Initiative. An effective, field-worthy vaccine against plaguecould be the biggest breakthrough in recovery efforts for the black-footed ferret since the 1981 rediscovery of wild ferrets nearMeeteetse, Wyoming. If proven efficacious, the vaccine could help agencies and stakeholder cooperators maintain specificpopulations of prairie dogs at robust levels, thus enhancing range-wide conservation of those species, as well recovery of the ferret,while enabling control of other prairie dog populations to resolve site-specific agricultural and human health concerns. The resultsof laboratory and field-testing in the early stages of developing this vaccine are preliminary but mostly encouraging. A plan forbroad-scale application is being developed for possible use when testing has been completed and (if warranted) the vaccine isregistered for governmental use. An overview of all aspects of the project is discussed.

  6. Investigation of climate change impacts on Prairie's petroleum industry in Canada

    International Nuclear Information System (INIS)

    Li, J.B.; Huang, G.H.; Chakma, A.; Huang, Y.F.; Zeng, G.M.

    2002-01-01

    Alberta, Saskatchewan, and Manitoba, the three Prairie provinces of Canada, and their economies strongly depend on the petroleum industry. However, climate change may have potential impacts on the sector that could reverberate onto the socio-economic fabric of the provinces. The petroleum industry in the Prairies is faced with a big challenge: how to adapt to the changing climatic conditions so that they maintain or improve their economic and environmental efficiencies. The attitudes of the different stakeholders concerning climate change and the appropriate measures to be implemented by the petroleum industry were obtained through a questionnaire-based survey conducted between February and June 2001. Based on the responses received, a Chi-square statistical test was applied to look at the complex interactions in the results. An analysis of a number of petroleum-related processes and activities vulnerable to climate change was performed. A sound foundation was obtained for the decision-making process on the climate change measures required in the petroleum industry in the Prairies. 14 refs., 7 tabs

  7. Effects of an invasive grass on the demography of the Caribbean cactus Harrisia portoricensis: Implications for cacti conservation

    Science.gov (United States)

    Rojas-Sandoval, Julissa; Meléndez-Ackerman, Elvia

    2012-05-01

    The impact of exotic species around the world is among the primary threats to the conservation and management of rare and endangered species. In this work we asked whether or not the presence of the African grass Megathyrsus maximus on Mona Island was associated with negative impacts on the demography of the endangered Caribbean cactus Harrisia portoricensis. To address this question we performed field observations where we compared demographic data collected at un-manipulated areas invaded by Megathyrsus with un-manipulated areas non-invaded by this exotic grass. Additionally, demographic data were also collected in areas in which we removed the exotic grass biomass using two alternative treatments: complete and partial grass removal. Results demonstrated that the presence of Megathyrsus has negative effects on demographic parameters of Harrisia at various stages throughout its life cycle. In general, the survival, growth, and reproduction of Harrisia plants were depressed under the presence of Megathyrsus. Growth and survival of seedlings and juveniles of Harrisia were more impacted by the presence of Megathyrsus than adult performance and seedling recruitment only occurred in areas with grass absence. Our combined results suggest that modifications of the micro-environment by the presence of Megathyrsus may add an additional level of vulnerability to the persistence of Harrisia, and as such this factor must be considered when designing conservation strategies for this endangered species. This study highlights the need for a greater emphasis on understanding the interactions between invasive grass species and native cacti, and the importance of such information in designing conservation strategies for cacti species elsewhere.

  8. Summer water use by California coastal prairie grasses: fog, drought, and community composition.

    Science.gov (United States)

    Corbin, Jeffrey D; Thomsen, Meredith A; Dawson, Todd E; D'Antonio, Carla M

    2005-10-01

    Plants in the Mediterranean climate region of California typically experience summer drought conditions, but correlations between zones of frequent coastal fog inundation and certain species' distributions suggest that water inputs from fog may influence species composition in coastal habitats. We sampled the stable H and O isotope ratios of water in non-photosynthetic plant tissue from a variety of perennial grass species and soil in four sites in northern California in order to determine the proportion of water deriving from winter rains and fog during the summer. The relationship between H and O stable isotopes from our sample sites fell to the right of the local meteoric water line (LMWL) during the summer drought, providing evidence that evaporation of water from the soil had taken place prior to the uptake of water by vegetation. We developed a novel method to infer the isotope values of water before it was subjected to evaporation in which we used experimental data to calculate the slope of the deltaH versus deltaO line versus the LMWL. After accounting for evaporation, we then used a two-source mixing model to evaluate plant usage of fog water. The model indicated that 28-66% of the water taken up by plants via roots during the summer drought came from fog rather than residual soil water from winter rain. Fog use decreased as distance from the coast increased, and there were significant differences among species in the use of fog. Rather than consistent differences in fog use by species whose distributions are limited to the coast versus those with broader distributions, species responded individualistically to summer fog. We conclude that fogwater inputs can mitigate the summer drought in coastal California for many species, likely giving an advantage to species that can use it over species that cannot.

  9. Common mycelial networks impact competition in an invasive grass.

    Science.gov (United States)

    Workman, Rachael E; Cruzan, Mitchell B

    2016-06-01

    Mycorrhizal hyphal complexes can connect multiple host plants to form common mycelial networks (CMNs) that may affect plant competitive outcomes and community composition through differential resource allocation. The impacts of CMN interactions on invasive plants are not well understood and could be crucial to the understanding of invasive plant establishment and success. We grew the invasive grass Brachypodium sylvaticum in intra- and interspecific pairings with native grass Bromus vulgaris in a greenhouse and controlled for the effects of CMN and root interactions by manipulating the belowground separation between competitors. Comparison of plant growth in pots that allowed CMN interactions and excluded root competition and vice versa, or both, allowed us to delineate the effects of network formation and root competition on invasive plant establishment and performance. Brachypodium sylvaticum grown in pots allowing for only hyphal interactions, but no root competition, displayed superior growth compared with conspecifics in other treatments. Invasive performance was poorest when pairs were not separated by a barrier. Shoot nitrogen content in B. sylvaticum was higher in mycorrhizal plants only when connections were allowed between competitors. Our results indicate that the presence of CMN networks can have positive effects on B. sylvaticum establishment and nutrient status, which may affect plant competition and invasion success. © 2016 Botanical Society of America.

  10. Camel spider (Solifugae) use of prairie dog colonies

    Science.gov (United States)

    Solifugids (camel spiders) are widespread throughout arid regions of western North America and are thought to be important in structuring desert arthropod communities. Despite the ubiquity of camel spiders, little is known about their ecology. Black-tailed prairie dogs (Cynomys ludovicianus) are als...

  11. Deltamethrin flea-control preserves genetic variability of black-tailed prairie dogs during a plague outbreak

    Science.gov (United States)

    Jones, P.H.; Biggins, D.E.; Eads, D.A.; Eads, S.L.; Britten, H.B.

    2012-01-01

    Genetic variability and structure of nine black-tailed prairie dog (BTPD, Cynomys ludovicianus) colonies were estimated with 15 unlinked microsatellite markers. A plague epizootic occurred between the first and second years of sampling and our study colonies were nearly extirpated with the exception of three colonies in which prairie dog burrows were previously dusted with an insecticide, deltamethrin, used to control fleas (vectors of the causative agent of plague, Yersinia pestis). This situation provided context to compare genetic variability and structure among dusted and non-dusted colonies pre-epizootic, and among the three dusted colonies pre- and post-epizootic. We found no statistical difference in population genetic structures between dusted and non-dusted colonies pre-epizootic. On dusted colonies, gene flow and recent migration rates increased from the first (pre-epizootic) year to the second (post-epizootic) year which suggested dusted colonies were acting as refugia for prairie dogs from surrounding colonies impacted by plague. Indeed, in the dusted colonies, estimated densities of adult prairie dogs (including dispersers), but not juveniles (non-dispersers), increased from the first year to the second year. In addition to preserving BTPDs and many species that depend on them, protecting colonies with deltamethrin or a plague vaccine could be an effective method to preserve genetic variability of prairie dogs. ?? 2011 Springer Science+Business Media B.V.

  12. Annual Fire, Mowing and Fertilization Effects on Two Cicada Species (Homoptera: Cicadidae) in Tallgrass Prairie

    Science.gov (United States)

    Mac A. Callaham; Matt R. Whiles; John M. Blair

    2002-01-01

    In tallgrass prairie, cicadas emerge annually, are abundant and their emergence can be an important flux of energy and nutrients. However, factors influencing the distribution and abundance of these cicadas are virtually unknown. We examined cicada emergence in plots from a long-term (13 y) experimental manipulation involving common tallgrass prairie management...

  13. Can native plant species be preserved in an anthropogenic forest landscape dominated by aliens? A case study from Mediterranean Chile

    Directory of Open Access Journals (Sweden)

    Steffi Heinrichs

    2016-06-01

    Full Text Available Plantations with fast growing exotic tree species can negatively affect native plant species diversity and promote the spread of alien species. Mediterranean Chile experienced major landscape changes with a vast expansion of industrial plantations of Pinus radiata in the past. However, with increasing knowledge of biodiversity effects on ecosystem services Chilean forest owners now aim to integrate the conservation of native biodiversity into forest management, but data on native species diversity and establishment within a plantation landscape is scarce. Here we investigated plant species diversity and composition in four forest management options applied within a landscape dominated by P. radiata plantations in comparison to an unmanaged reference: (i a clear cut, (ii a strip cut, (iii a native canopy of Nothofagus glauca and (iv a young P. radiata plantation. We wanted to assess if native plant species can be maintained either by natural regeneration or by planting of native tree species (Nothofagus glauca, N. obliqua, Quillaja saponaria within this landscape. Results show a high diversity of native and forest plant species within the different management options indicating a high potential for native biodiversity restoration within an anthropogenic landscape. In particular, herbaceous species can benefit from management. They are rare in unmanaged natural forests that are characterized by low light conditions and a thick litter layer. Management, however, also promoted a diversity of alien species. The rapid spread of alien grass species after management can deter an initial establishment of native tree species or the survival and growth after planting mainly under dry but less under sufficient moisture conditions. The most unsuccessful option for promoting native plant species was clear cutting in a dry area where alien grasses were abundant. For drought-tolerant tree species such as Quillaja saponaria, though

  14. Effects of Nitrogen and Phosphorus Fertilizer and Topsoil Amendment on Native Plant Cover in Roadside Revegetation Projects.

    Science.gov (United States)

    Hillhouse, Heidi L; Schacht, Walter H; Soper, Jonathan M; Wienhold, Carol E

    2018-01-01

    Establishing vegetation on roadsides following construction can be challenging, especially for relatively slow growing native species. Topsoil is generally removed during construction, and the surface soil following construction ("cut-slope soils") is often compacted and low in nutrients, providing poor growing conditions for vegetation. Nebraska Department of Transportation (NDOT) protocols have historically called for nitrogen (N) and phosphorus (P) fertilization when planting roadside vegetation following construction, but these recommendations were developed for cool-season grass plantings and most current plantings use slower-establishing, native warm-season grasses that may benefit less than expected from current planting protocols. We evaluated the effects of nitrogen and phosphorus fertilization, and also topsoil amendment, on the foliar cover of seeded and non-seeded species planted into two post-construction roadside sites in eastern Nebraska. We also examined soil movement to determine how planting protocols and plant growth may affect erosion potential. Three years after planting, we found no consistent effects of N or P fertilization on foliar cover. Plots receiving topsoil amendment had 14% greater cover of warm-season grasses, 10% greater total foliar cover, and 4-13% lower bare ground (depending on site) than plots without topsoil. None of the treatments consistently affected soil movement. We recommend that NDOT change their protocols to remove N and P fertilization and focus on stockpiling and spreading topsoil following construction.

  15. Effects of Nitrogen and Phosphorus Fertilizer and Topsoil Amendment on Native Plant Cover in Roadside Revegetation Projects

    Science.gov (United States)

    Hillhouse, Heidi L.; Schacht, Walter H.; Soper, Jonathan M.; Wienhold, Carol E.

    2018-01-01

    Establishing vegetation on roadsides following construction can be challenging, especially for relatively slow growing native species. Topsoil is generally removed during construction, and the surface soil following construction ("cut-slope soils") is often compacted and low in nutrients, providing poor growing conditions for vegetation. Nebraska Department of Transportation (NDOT) protocols have historically called for nitrogen (N) and phosphorus (P) fertilization when planting roadside vegetation following construction, but these recommendations were developed for cool-season grass plantings and most current plantings use slower-establishing, native warm-season grasses that may benefit less than expected from current planting protocols. We evaluated the effects of nitrogen and phosphorus fertilization, and also topsoil amendment, on the foliar cover of seeded and non-seeded species planted into two post-construction roadside sites in eastern Nebraska. We also examined soil movement to determine how planting protocols and plant growth may affect erosion potential. Three years after planting, we found no consistent effects of N or P fertilization on foliar cover. Plots receiving topsoil amendment had 14% greater cover of warm-season grasses, 10% greater total foliar cover, and 4-13% lower bare ground (depending on site) than plots without topsoil. None of the treatments consistently affected soil movement. We recommend that NDOT change their protocols to remove N and P fertilization and focus on stockpiling and spreading topsoil following construction.

  16. Herbivory more limiting than competition on early and established native plants in an invaded meadow.

    Science.gov (United States)

    Gonzales, Emily K; Arcese, Peter

    2008-12-01

    The dominance of nonnative plants coupled with declines of native plants suggests that competitive displacement drives extinctions, yet empirical examples are rare. Herbivores, however, can alter vegetation structure and reduce diversity when abundant. Herbivores may act on mature, reproductive life stages whereas some of the strongest competitive effects might occur at early life stages that are difficult to observe. For example, competition by perennial nonnative grasses can interfere with the establishment of native seeds. We contrasted the effects of ungulate herbivory and competition by neighboring plants on the performance of native plant species at early and established life stages in invaded oak meadows. We recorded growth, survival, and flowering in two native species transplanted as established plants, six native species grown from seed, and five extant lily species as part of two 2 x 2 factorial experiments that manipulated herbivory and competition. Herbivory reduced the performance of nearly all focal native species at early and established life stages, whereas competition had few measurable effects. Our results suggest that herbivory has a greater local influence on native plant species than competition and that reducing herbivore impacts will be required to successfully restore endangered oak meadows where ungulates are now abundant.

  17. Lack of adaptation from standing genetic variation despite the presence of putatively adaptive alleles in introduced sweet vernal grass (Anthoxanthum odoratum).

    Science.gov (United States)

    Gould, B; Geber, M

    2016-01-01

    Population genetic theory predicts that the availability of appropriate standing genetic variation should facilitate rapid evolution when species are introduced to new environments. However, few tests of rapid evolution have been paired with empirical surveys for the presence of previously identified adaptive genetic variants in natural populations. In this study, we examined local adaptation to soil Al toxicity in the introduced range of sweet vernal grass (Anthoxanthum odoratum), and we genotyped populations for the presence of Al tolerance alleles previously identified at the long-term ecological Park Grass Experiment (PGE, Harpenden, UK) in the species native range. We found that markers associated with Al tolerance at the PGE were present at appreciable frequency in introduced populations. Despite this, there was no strong evidence of local adaptation to soil Al toxicity among populations. Populations demonstrated significantly different intrinsic root growth rates in the absence of Al. This suggests that selection on correlated root growth traits may constrain the ability of populations to evolve significantly different root growth responses to Al. Our results demonstrate that genotype-phenotype associations may differ substantially between the native and introduced parts of a species range and that adaptive alleles from a native species range may not necessarily promote phenotypic differentiation in the introduced range. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  18. Prairies Water Management on Corps Lands

    Science.gov (United States)

    2009-02-01

    infiltration, autogenic mechanisms can lead to the recovery of essential soil processes. The Role of Organic Matter in Soil Formation. In a prairie...management in EP-1130-2-540 (USACE 2005), and does not have a fire management training program in place (USACE 2008). Some Corps resource managers...are trained and partner with other entities to conduct prescribed burns on Corps grasslands. However, prescribed burning as a management strategy is

  19. Dynamic Disturbance Processes Create Dynamic Lek Site Selection in a Prairie Grouse.

    Directory of Open Access Journals (Sweden)

    Torre J Hovick

    Full Text Available It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993-2012 of Greater Prairie-Chicken (Tympanuchus cupido lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy's Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65% moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken's distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas and management plans not view lek

  20. Analysis of the soil food web structure under grass and grass clover

    NARCIS (Netherlands)

    Eekeren, van N.J.M.; Smeding, F.W.; Vries, de F.T.; Bloem, J.

    2006-01-01

    The below ground biodiversity of soil organisms plays an important role in the functioning of the the soil ecosystem, and consequently the above ground plant production. The objective of this study is to investigate the effect of grass or grass-clover in combination with fertilisation on the soil

  1. Using a prescribed fire to test custom and standard fuel models for fire behaviour prediction in a non-native, grass-invaded tropical dry shrubland

    Science.gov (United States)

    Andrew D. Pierce; Sierra McDaniel; Mark Wasser; Alison Ainsworth; Creighton M. Litton; Christian P. Giardina; Susan Cordell; Ralf Ohlemuller

    2014-01-01

    Questions: Do fuel models developed for North American fuel types accurately represent fuel beds found in grass-invaded tropical shrublands? Do standard or custom fuel models for firebehavior models with in situ or RAWS measured fuel moistures affect the accuracy of predicted fire behavior in grass-invaded tropical shrublands? Location: Hawai’i Volcanoes National...

  2. Allelopathic exudates of cogongrass (Imperata cylindrica): implications for the performance of native pine savanna plant species in the southeastern US.

    Science.gov (United States)

    Hagan, Donald L; Jose, Shibu; Lin, Chung-Ho

    2013-02-01

    We conducted a greenhouse study to assess the effects of cogongrass (Imperata cylindrica) rhizochemicals on a suite of plants native to southeastern US pine savanna ecosystems. Our results indicated a possible allelopathic effect, although it varied by species. A ruderal grass (Andropogon arctatus) and ericaceous shrub (Lyonia ferruginea) were unaffected by irrigation with cogongrass soil "leachate" (relative to leachate from mixed native species), while a mid-successional grass (Aristida stricta Michx. var. beyrichiana) and tree (Pinus elliottii) were negatively affected. For A. stricta, we observed a 35.7 % reduction in aboveground biomass, a 21.9 % reduction in total root length, a 24.6 % reduction in specific root length and a 23.5 % reduction in total mycorrhizal root length, relative to the native leachate treatment. For P. elliottii, there was a 19.5 % reduction in percent mycorrhizal colonization and a 20.1 % reduction in total mycorrhizal root length. Comparisons with a DI water control in year two support the possibility that the treatment effects were due to the negative effects of cogongrass leachate, rather than a facilitative effect from the mixed natives. Chemical analyses identified 12 putative allelopathic compounds (mostly phenolics) in cogongrass leachate. The concentrations of most compounds were significantly lower, if they were present at all, in the native leachate. One compound was an alkaloid with a speculated structure of hexadecahydro-1-azachrysen-8-yl ester (C23H33NO4). This compound was not found in the native leachate. We hypothesize that the observed treatment effects may be attributable, at least partially, to these qualitative and quantitative differences in leachate chemistry.

  3. Phenotypic and genotypic analysis of a U.S. native fine-leaved Festuca population portends its potential use for low-input urban landscapes

    Science.gov (United States)

    Continued reduction in limited natural resources worldwide increasingly necessitates the incorporation of low maintenance and input plant materials into urban landscapes. Although some fine-leaved Festuca grass species have been utilized in formal gardens and native urban landscapes because of thei...

  4. Direct and indirect responses of tallgrass prairie butterflies to prescribed burning

    Science.gov (United States)

    Vogel, Jennifer A.; Koford, Rolf R.; Debinski, Diane M.

    2010-01-01

    Fire is an important tool in the conservation and restoration of tallgrass prairie ecosystems. We investigated how both the vegetation composition and butterfly community of tallgrass prairie remnants changed in relation to the elapsed time (in months) since prescribed fire. Butterfly richness and butterfly abundance were positively correlated with the time since burn. Habitat-specialist butterfly richness recovery time was greater than 70 months post-fire and habitat-specialist butterfly abundance recovery time was approximately 50 months post-fire. Thus, recovery times for butterfly populations after prescribed fires in our study were potentially longer than those previously reported. We used Path Analysis to evaluate the relative contributions of the direct effect of time since fire and the indirect effects of time since fire through changes in vegetation composition on butterfly abundance. Path models highlighted the importance of the indirect effects of fire on habitat features, such as increases in the cover of bare ground. Because fire return intervals on managed prairie remnants are often less than 5 years, information on recovery times for habitat-specialist insect species are of great importance. ?? 2010 Springer Science+Business Media B.V.

  5. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    Directory of Open Access Journals (Sweden)

    Neville Paul

    2006-12-01

    Full Text Available Abstract Background We conducted Geographic Information System (GIS habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We found 16% of suitable habitat (6% of the study area distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82% occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM. We identified 88,190 ha (10% of the study area of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Conclusion Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  6. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico.

    Science.gov (United States)

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-12-04

    We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. We found 16% of suitable habitat (6% of the study area) distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area) distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82%) occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM). We identified 88,190 ha (10% of the study area) of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA) contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  7. The cost of feeding bred dairy heifers on native warm-season grasses and harvested feedstuffs.

    Science.gov (United States)

    Lowe, J K; Boyer, C N; Griffith, A P; Waller, J C; Bates, G E; Keyser, P D; Larson, J A; Holcomb, E

    2016-01-01

    Heifer rearing is one of the largest production expenses for dairy cattle operations, which is one reason milking operations outsource heifer rearing to custom developers. The cost of harvested feedstuffs is a major expense in heifer rearing. A possible way to lower feed costs is to graze dairy heifers, but little research exists on this topic in the mid-south United States. The objectives of this research were to determine the cost of feeding bred dairy heifers grazing native warm-season grasses (NWSG), with and without legumes, and compare the cost of grazing with the cost of rearing heifers using 3 traditional rations. The 3 rations were corn silage with soybean meal, corn silage with dry distillers grain, and a wet distillers grain-based ration. Bred Holstein heifers between 15- and 20-mo-old continuously grazed switchgrass (SG), SG with red clover (SG+RC), a big bluestem and Indiangrass mixture (BBIG), and BBIG with red clover (BBIG+RC) in Tennessee during the summer months. Total grazing days were calculated for each NWSG to determine the average cost/animal per grazing day. The average daily gain (ADG) was calculated for each NWSG to develop 3 harvested feed rations that would result in the same ADG over the same number of grazing day as each NWSG treatment. The average cost/animal per grazing day was lowest for SG ($0.48/animal/grazing d) and highest for BBIG+RC ($1.10/animal/grazing d). For both BBIG and SG, legumes increased the average cost/animal per grazing day because grazing days did not increase enough to account for the additional cost of the legumes. No difference was observed in ADG for heifers grazing BBIG (0.85 kg/d) and BBIG+RC (0.94 kg/d), and no difference was observed in ADG for heifers grazing SG (0.71 kg/d) and SG+RC (0.70 kg/d). However, the ADG for heifers grazing SG and SG+RC was lower than the ADG for heifers grazing either BBIG or BBIG+RC. The average cost/animal per grazing day was lower for all NWSG treatments than the average cost

  8. Climate impacts on the agribusiness sectors of a prairie economy

    International Nuclear Information System (INIS)

    Arthur, L.M.; Kooten, G.C. Van.

    1992-01-01

    Global warming is likely to result in increased agricultural output on the Canadian prairies. However, using input-output analysis, it is shown that the potential impact of global warming on agribusiness, while significant, is both uncertain and relatively small compared to the impact of government agricultural policies pertaining to the grain and livestock sectors. Furthermore, caution is required in deciding whether or not western Canada and prairie agribusinesses are net beneficiaries of a greenhouse effect because climate-induced changes in agricultural output elsewhere in the world still need to be taken into account. Most previous studies on American and European agriculture under the greenhouse effect predict reduced yields of current crops, which could mean improved markets for Canadian crops. 27 refs., 4 figs., 2 tabs

  9. Using occupancy models to investigate the prevalence of ectoparasitic vectors on hosts: an example with fleas on prairie dogs

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Doherty, Paul F.; Gage, Kenneth L.; Huyvaert, Kathryn P.; Long, Dustin H.; Antolin, Michael F.

    2013-01-01

    Ectoparasites are often difficult to detect in the field. We developed a method that can be used with occupancy models to estimate the prevalence of ectoparasites on hosts, and to investigate factors that influence rates of ectoparasite occupancy while accounting for imperfect detection. We describe the approach using a study of fleas (Siphonaptera) on black-tailed prairie dogs (Cynomys ludovicianus). During each primary occasion (monthly trapping events), we combed a prairie dog three consecutive times to detect fleas (15 s/combing). We used robust design occupancy modeling to evaluate hypotheses for factors that might correlate with the occurrence of fleas on prairie dogs, and factors that might influence the rate at which prairie dogs are colonized by fleas. Our combing method was highly effective; dislodged fleas fell into a tub of water and could not escape, and there was an estimated 99.3% probability of detecting a flea on an occupied host when using three combings. While overall detection was high, the probability of detection was always dogs, flea occupancy was heightened in old/natural colonies of prairie dogs, and on hosts that were in poor condition. Occupancy was initially low in plots with high densities of prairie dogs, but, as the study progressed, the rate of flea colonization increased in plots with high densities of prairie dogs in particular. Our methodology can be used to improve studies of ectoparasites, especially when the probability of detection is low. Moreover, the method can be modified to investigate the co-occurrence of ectoparasite species, and community level factors such as species richness and interspecific interactions.

  10. Meadow-grass gall midge

    DEFF Research Database (Denmark)

    Hansen, Lars Monrad

    The area with meadow-grass (Poa pratensis, L.) grown for seed production in Den-mark is a significant proportion of the entire seed production. The meadow-grass gall midge (Mayetiola schoberi, Barnes 1958) is of considerable economic importance since powerful attacks can reduce the yield...

  11. Phytostabilisation of copper-contaminated soil in Katanga: an experiment with three native grasses and two amendments.

    OpenAIRE

    Ngoy Shutcha; Mpundu Mubemba; Michel-Pierre Faucon; Michel Ngongo Luhembwe; Marjolein Visser; G Colinet; Pierre Jacques Meerts

    2010-01-01

    This study evaluates the feasibility of using the grass species Rendlia altera, Monocymbium ceresiiforme, Cynodon dactylon, and amendments (compost and lime) for the phytostabilisation of soils contaminated by Cu in the province of Katanga (Democratic Republic of Congo). Species were grown on control and Cu-contaminated plots (artificially contaminated with 2,500 mg kg-1 Cu) unamended (NA), amended with 4.5 kg compost m-2 or 0.2 kg lime m-2. R. altera was also grown on contaminated plots amen...

  12. Prairie Restoration Project: Alternatives for Identifying Gifted Students

    Science.gov (United States)

    Salisbury, Katie E.; Rule, Audrey C.; Vander Zanden, Sarah M.

    2016-01-01

    An authentic, challenging curriculum engaged middle school students from an urban district in exploratory work related to restoring a small prairie at the school. Integrated science-literacy-arts activities were coupled with a system of thinking skills that helped students view issues from different perspectives. Impassioned guest speakers and an…

  13. Overview of Prairie Planting Techniques and Maintenance Requirements

    Science.gov (United States)

    2007-02-01

    districts have these drills 6 ERDC TN-EMRRP-ER-05 February 2007 available for rent. A three-point broadcast seeder or a fertilizer spreader can...lengthens the growing season for prairie plants but shortens it for many weedy species (Pauly 1997). Fire allows for nutrient recycling in the ecosystem by

  14. Nutritional value of cabbage and kikuyu grass as food for grass carp ...

    African Journals Online (AJOL)

    and digestibility coefficients were obtained for the protein, fibre, ash and fat contents of both ... Cabbage is a superior feed compared to grass for raising grass carp and a suitable low-cost alternative ... Materials and Methods ... from jumping out and was fitted with an air lift under- .... In: Aquatic weeds in South East Asia.

  15. Estimating grass and grass silage degradation characteristics by in situ and in vitro gas production methods

    Directory of Open Access Journals (Sweden)

    Danijel Karolyi

    2010-01-01

    Full Text Available Fermentation characteristics of grass and grass silage at different maturities were studied using in situ and in vitro gas production methods. In situ data determined difference between grass and silage. Degradable fraction decreased as grass matured while the undegradable fraction increased. Rate of degradation (kd was slower for silage than fresh grass. Gas production method (GP data showed that fermentation of degradable fraction was different between stage of maturity in both grass and silage. Other data did not show any difference with the exception for the rate of GP of soluble and undegradable fraction. The in situ degradation characteristics were estimated from GP characteristics. The degradable and undegradable fractions could be estimated by multiple relationships. Using the three-phases model for gas production kd and fermentable organic matter could be estimated from the same parameters. The only in situ parameter that could not be estimated with GP parameters was the soluble fraction. The GP method and the three phases model provided to be an alternative to the in situ method for animal feed evaluations.

  16. High green fodder yielding new grass varieties

    OpenAIRE

    C. Babu, K. Iyanar and A. Kalamani

    2014-01-01

    Two high biomass yielding forage grass varieties one each in Cumbu Napier hybrid and Guinea grass have been evolved at the Department of Forage Crops, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore and identified for release at national (All India) level as Cumbu Napier hybrid grass CO (BN) 5 and Guinea grass CO (GG) 3 during 2012 and 2013 respectively. Cumbu Napier hybrid grass CO (BN) 5 secured first rank at all national level with reference to green ...

  17. Des broussailles dans les prairies alpines

    Directory of Open Access Journals (Sweden)

    Olivier Camacho

    2009-03-01

    Full Text Available Landscape closing due to the decline in agricultural activity is considered to be a major problem in the Alps. Abondance Valley provides a good example of this phenomenon and is also representative of a paradox commonly found in the Northern French Alps: the mountainsides and alpine pastures are still used, whereas they are becoming increasingly afforested. Environmental conditions play a major role in the localisation of agricultural land uses, but they are not sufficient to explain why pastures still in use are being invaded by shrub. Even if cutting makes it possible to effectively control the encroachment by woody species, this is not true for uncut pastures where grazing is not able to keep up with grass production. This situation is repeated every year and is the likely cause of the colonisation by woody species. To ensure their forage system and to simplify their work, farmers tend to establish grazing units that are oversized in relation to the needs of their animals. They implement compensatory practices that consist of mechanical maintenance as a complement to grazing to limit the dynamics of woody species. These labour-intensive practices are not used on all of the pastures. The analysis of farmers’ practices by agronomists is therefore a useful complement to studies of physical and socio-economic environments, at the level of the grazed field as well as at that of the valley as a whole.La dégradation des paysages par suite du recul de l’activité agricole est considérée comme un enjeu majeur dans les Alpes. La vallée d’Abondance illustre bien ce phénomène de fermeture de l’espace mais elle est en outre représentative d’un paradoxe assez répandu dans les Alpes du nord françaises : les versants et les alpages sont encore exploités et pourtant ils se boisent progressivement. Les conditions de milieux jouent un rôle majeur sur la localisation des usages agricoles de l'espace, mais elles ne peuvent pas suffire pour

  18. Enhancing GRASS data communication with videographic technology

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.G. [Argonne National Lab., IL (United States); Gerdes, D.; Youngs, D. [Army Construction Engineering Research Lab., Champaign, IL (United States)

    1992-07-01

    Research at Argonne National Laboratory and the US Army Construction Engineering Research Laboratory has shown that computer videographic technology can be used to assist visualization and communication of GIS-generated geographic information. Videographic tools can be used to make results of GRASS analyses clear to decision-makers and to public interest groups, as well as to help GRASS users visualize geographic data more easily. Useful videographic visualization tools include graphic overlay of GRASS layers onto panchromatic images, allowing landscape features to be associated with GIS classifications; draping of GIS layers onto terrain models to create shaded relief maps; and incorporation of photographic imagery into GIS graphics. Useful videographic communications capabilities include convenient, direct interface to video formats, allowing incorporation of live video into GRASS graphics and output of GRASS graphics to video; convenient output of high-quality slides and prints; and enhanced labeling and editing of GRASS images. Conversion of GRASS imagery to standard videographic file formats also facilitates incorporation of GRASS images into other software programs, such as database and work-processing packages.

  19. Enhancing GRASS data communication with videographic technology

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.G. (Argonne National Lab., IL (United States)); Gerdes, D.; Youngs, D. (Army Construction Engineering Research Lab., Champaign, IL (United States))

    1992-01-01

    Research at Argonne National Laboratory and the US Army Construction Engineering Research Laboratory has shown that computer videographic technology can be used to assist visualization and communication of GIS-generated geographic information. Videographic tools can be used to make results of GRASS analyses clear to decision-makers and to public interest groups, as well as to help GRASS users visualize geographic data more easily. Useful videographic visualization tools include graphic overlay of GRASS layers onto panchromatic images, allowing landscape features to be associated with GIS classifications; draping of GIS layers onto terrain models to create shaded relief maps; and incorporation of photographic imagery into GIS graphics. Useful videographic communications capabilities include convenient, direct interface to video formats, allowing incorporation of live video into GRASS graphics and output of GRASS graphics to video; convenient output of high-quality slides and prints; and enhanced labeling and editing of GRASS images. Conversion of GRASS imagery to standard videographic file formats also facilitates incorporation of GRASS images into other software programs, such as database and work-processing packages.

  20. Alcohol’s Effects on Pair-Bond Maintenance in Male Prairie Voles

    Directory of Open Access Journals (Sweden)

    Andre T. Walcott

    2017-11-01

    Full Text Available Alcohol abuse can have devastating effects on social relationships. In particular, discrepant patterns of heavy alcohol consumption are associated with increased rates of separation and divorce. Previous studies have attempted to model these effects of alcohol using socially monogamous prairie voles. These studies showed that alcohol consumption can inhibit the formation of pair bonds in this species. While these findings indicated that alcohol’s effects on social attachments can involve biological mechanisms, the formation of pair bonds does not properly model long-term human attachments. To overcome this caveat, this study explored whether discordant or concordant alcohol consumption between individuals within established pairs affects maintenance of pair bonds in male prairie voles. Male and female prairie voles were allowed to form a pair bond for 1 week. Following this 1-week cohabitation period, males received access to 10% continuous ethanol; meanwhile, their female partners had access to either alcohol and water or just water. When there was a discrepancy in alcohol consumption, male prairie voles showed a decrease in partner preference (PP. Conversely, when concordant drinking occurred, males showed no inhibition in PP. Further analysis revealed a decrease in oxytocin immunoreactivity in the paraventricular nucleus of alcohol-exposed males that was independent of the drinking status of their female partners. On the other hand, only discordant alcohol consumption resulted in an increase of FosB immunoreactivity in the periaqueductal gray of male voles, a finding suggesting a potential involvement of this brain region in the effects of alcohol on maintenance of pair bonds. Our studies provide the first evidence that alcohol has effects on established pair bonds and that partner drinking status plays a large role in these effects.

  1. Geospatial assessment of bioenergy land use and its impacts on soil erosion in the U.S. Midwest.

    Science.gov (United States)

    SooHoo, William M; Wang, Cuizhen; Li, Huixuan

    2017-04-01

    Agricultural land use change, especially corn expansion since 2000s, has been accelerating to meet the growing bioenergy demand of the United States. This study identifies the environmentally sensitive lands (ESLs) in the U.S. Midwest using the distance-weighted Revised Universal Soil Loss Equation (RUSLE) associated with bioenergy land uses extracted from USDA Cropland Data Layers. The impacts of soil erosion to downstream wetlands and waterbodies in the river basin are counted in the RUSLE with an inverse distance weighting approach. In a GIS-ranking model, the ESLs in 2008 and 2011 (two representative years of corn expansion) are ranked based on their soil erosion severity in crop fields. Under scenarios of bioenergy land use change (corn to grass and grass to corn) on two land types (ESLs and non-ESLs) at three magnitudes (5%, 10% and 15% change), this study assesses the potential environmental impacts of bioenergy land use at a basin level. The ESL distributions and projected trends vary geographically responding to different agricultural conversions. Results support the idea of re-planting native prairie grasses in the identified High and Severe rank ESLs for sustainable bioenergy management in this important agricultural region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Transformation of Chlorpyrifos and Chlorpyrifos-Methyl in Prairie Pothole Porewaters

    Science.gov (United States)

    Anderson, R. M.; Chin, Y. P.

    2014-12-01

    The prairie pothole region (PPR) extends over approximately 700,000 km2 in the Great Plains region in United States and Canada and is a critical breeding ground for migratory waterfowl, as well as an important ecosystem for diverse invertebrates and aquatic plants (van der Valk, 2003). Consisting of up to 12 million permanent and temporary depressional wetlands, the PPR is negatively impacted by non-point source pesticide pollution due to extensive agricultural development in the region. Recent studies have shown that high (mM) levels of sulfate in the pothole lakes are capable of abiotically reducing dinitroaniline and chloroacetanilide pesticides (Zeng, 2011; Zeng, 2012). In this study the transformation of the organophosphorus pesticide chlorpyrifos (CP) and its analog chlorpyrifos-methyl (CPM) was studied using pore waters sampled from two pothole lakes. CP and CPM have been found to react in the laboratory with sulfur species via a SN2 mechanism, with degradation by sulfur compounds occurring faster than hydrolysis at high pH (Wu, 2006). To date the reaction of CP and CPM in natural environments with sulfur species has not been studied. Chlorpyrifos-methyl underwent rapid degradation in the presence of reduced sulfur species in pore water, while chlorpyrifos degradation occurred at significantly slower rates. Both CP and CPM degradation occurred at comparable rates to what has been previously observed in the laboratory (Wu, 2006). References van der Valk, Arnold G., and Roger L. Pederson. "The SWANCC decision and its implications for prairie potholes." Wetlands 23.3 (2003): 590-596. Wu, Tong, Qiu Gan, and Urs Jans. "Nucleophilic Substitution of Phosphorothionate Ester Pesticides with Bisulfide (HS-) and Polysulfides (Sn2-)." Environmental science & technology 40.17 (2006): 5428-5434. Zeng, Teng, et al. "Pesticide processing potential in prairie pothole porewaters."Environmental science & technology 45.16 (2011): 6814-6822. Zeng, Teng, Yu-Ping Chin, and William

  3. The influence of environment, sex, and innate timing mechanisms on body temperature patterns of free-ranging black-tailed prairie dogs (Cynomys ludovicianus).

    Science.gov (United States)

    Lehmer, Erin M; Bossenbroek, Jonathan M; Van Horne, Beatrice

    2003-01-01

    Mechanisms that influence body temperature patterns in black-tailed prairie dogs are not well understood. Previous research on both free-ranging and laboratory populations of black-tailed prairie dogs (Cynomys ludovicianus) has suggested that reductions in ambient temperature and food and water deprivation are the primary factors that stimulate torpor in this species. In other species, however, torpor has been shown to be influenced by a multitude of factors, including innate circadian and circannual timing mechanisms, energy status, and reproductive behaviors. Our objective was to clarify the influence of weather, sex, and intrinsic timing mechanisms on the body temperature patterns of free-ranging black-tailed prairie dogs. We monitored body temperatures of eight adult (>1 yr) prairie dogs from November 1999 to June 2000. Prairie dogs showed distinct daily and seasonal body temperature patterns, which reflected changes in ambient temperatures that occurred during these periods. These patterns of daily and seasonal heterothermy suggest that body temperature patterns of black-tailed prairie dogs may be driven by an innate timing mechanism. All prairie dogs entered torpor intermittently throughout winter and spring. Torpor bouts appeared to be influenced by precipitation and reductions in ambient temperature. Our results also suggest that reproductive behaviors and circadian timing may influence torpor in this species.

  4. Forage preferences in two species of prairie dog (Cynomys parvidens and Cynomus ludovicianus): Implications for hibernation and facultative heterothermy

    Science.gov (United States)

    Lehmer, E.M.; Biggins, D.E.; Antolin, M.F.

    2006-01-01

    Several laboratory studies have shown that the ingestion of dietary linoleic (18:2 ??6) acid before winter can promote deep and continuous torpor, whereas excess consumption of ??-linolenic acid (18:3 ??3) can interfere with an animal's ability to reach and maintain low body temperatures during torpor. As mammalian heterotherms obtain linoleic and ??-linolenic acid strictly from the diet, diet selection has been proposed as a mechanism that allows hibernators to ingest levels of linoleic and ??-linolenic acid that promote favorable torpor patterns. Here diet, dietary nutrient content and patterns of forage preference of a representative hibernator, the Utah prairie dog Cynomys parvidens, and a facultative heterotherm, the black-tailed prairie dog Cynomys ludovicianus, were examined under natural field conditions. Diets of black-tailed (BTPD) and Utah prairie dogs (UTPD) differed across seasons (BTPD F26,108=9.59, Pplant species relative to their abundance on colonies in any season. Black-tailed prairie dogs did not consume or avoid consumption of plant species based on levels of total lipids, linoleic acid, ??-linolenic acid or nitrogen. Considering only the plants consumed, black-tailed prairie dogs appeared to prefer plants with low levels of ??-linolenic acid (F1,19=5.81, P=0.03), but there were no detectable relationships between preference and other nutrients. Utah prairie dogs consumed plants higher in ??-linolenic acid (t=1.98, P=0.05) and avoided plants high in linoleic acid (t=-2.02, P=0.04), but consumption-avoidance decisions did not appear to be related to nitrogen or total lipids. Of the plants consumed, Utah prairie dogs again preferred plants high in ??-linolenic acid (F1,17=4.62, P=0.05). Levels of linoleic and ??-linolenic acid were positively correlated in plants consumed by prairie dogs (BTPD Pearson r=0.66, P<0.01; UTPD Pearson r=0.79, P<0.01), reducing the opportunity for independent selection of either lipid. ?? 2006 The Authors.

  5. Different techniques to study rumen fermentation characteristics of maturing grass and grass silage

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Soliman, I.A.; Visser, de H.; Vuuren, van A.M.

    1999-01-01

    Grass samples were harvested during the 1993 growing season after a precut on April 27, 1993 and were stored frozen or left to ensile in 30-L buckets. Effects on chemical composition and fermentation kinetics of the maturation of the grass and of ensiling were investigated. Chemical composition and

  6. Density mediates grasshopper performance in response to temperature manipulation and spider predation in tallgrass prairie.

    Science.gov (United States)

    Laws, A N; Joern, A

    2017-04-01

    Species interactions are often context-dependent, where outcomes require an understanding of influences among multiple biotic and abiotic factors. However, it remains unclear how abiotic factors such as temperature combine with important biotic factors such as density-dependent food limitation and predation to influence species interactions. Using a native grassland - grasshopper - wolf spider model food chain in tallgrass prairie, we conducted a manipulative field experiment to examine how predator-prey interactions respond to manipulations of temperature, grasshopper density, and food chain length. We find that grasshopper performance responses to temperature and predator treatments were density dependent. At high densities, grasshopper survival decreased with increased temperature when no spiders were present. When spiders were present, grasshopper survival was reduced, and this effect was strongest in the cooled treatment. In contrast, grasshopper survival did not vary significantly with spider presence or among temperature treatments at low grasshopper densities. Our results indicate that context-dependent species interactions are common and highlight the importance of understanding how and when key biotic and abiotic factors combine to influence species interactions.

  7. Oxytocin reduces alcohol consumption in prairie voles.

    Science.gov (United States)

    Stevenson, J R; Wenner, S M; Freestone, D M; Romaine, C C; Parian, M C; Christian, S M; Bohidar, A E; Ndem, J R; Vogel, I R; O'Kane, C M

    2017-10-01

    Alcohol use disorder (AUD) negatively affects millions of people every year in the United States, and effective treatments for AUD are still needed. The neuropeptide oxytocin has shown promise for reducing alcohol drinking in mice and rats. Because oxytocin also plays a key role in complex prosocial behaviors like bonding and attachment, we tested the effect of oxytocin on alcohol drinking in prairie voles, a species that both consumes high amounts of alcohol and forms oxytocin dependent social bonds in a manner similar to humans. Oxytocin treatment (1.0, 3.0, and 10.0mg/kg, i.p.) reduced alcohol consumption in male and female prairie voles in animals that had access to 15% ethanol vs water every other day for 12 alcohol drinking sessions. In animals with continuous access to 15% alcohol and water, oxytocin (3.0mg/kg) reduced alcohol consumption only in the first hour of access after treatment, with no significant effects on consumption over the 24-hr period. In an open field locomotor test, oxytocin (1.0, 3.0, and 10.0mg/kg, i.p.) did not affect overall locomotor activity; however, ethanol (2g/kg, i.p.) increased locomotor activity in males and females, and produced anxiolytic effects (increased time in the center of an open field) in females only. Because prairie voles have been shown to match the alcohol consumption of their cage mate, we evaluated the relationship between cage mates' alcohol drinking. There was an overall pattern of social facilitation (consumption by one cage mate predicted consumption by the other cage mate); however, we found significant individual differences across cages in which many cages did not show significant matching, and, in some cases one cage mate's consumption negatively predicted the other cage mate's consumption. Overall, our data provide support for the potential of oxytocin as a treatment to reduce alcohol consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations

    Directory of Open Access Journals (Sweden)

    Paul W. Barnes

    2017-08-01

    Full Text Available Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV-B (280–315 nm radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8 and non-native (mean = 5.8%; n = 11 species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees were represented solely by native species whereas herbaceous growth forms (grasses and forbs were dominated by non-native species. Along an elevation gradient spanning 2600–3800 m, TUV A was variable (mean range = 6.0–11.2% and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3% and did not vary with elevation in the native

  9. 75 FR 70021 - South Dakota Prairie Winds Project; Partial Term Relinquishment and Release of Easement for Wind...

    Science.gov (United States)

    2010-11-16

    ... requested financing for the project from the RUS. PW SD1 has also submitted an application to the Service to...] South Dakota Prairie Winds Project; Partial Term Relinquishment and Release of Easement for Wind Energy... impact statement (FEIS) on the South Dakota Prairie Winds Project issued by the Department of Energy's...

  10. Widespread Use and Frequent Detection of Neonicotinoid Insecticides in Wetlands of Canada's Prairie Pothole Region

    OpenAIRE

    Main, Anson R.; Headley, John V.; Peru, Kerry M.; Michel, Nicole L.; Cessna, Allan J.; Morrissey, Christy A.

    2014-01-01

    Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola). The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concent...

  11. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Science.gov (United States)

    Beery, Annaliese K.; Christensen, Jennifer D; Lee, Nicole S.; Blandino, Katrina L.

    2018-01-01

    Social behavior is often described as a unified concept, but highly social (group-living) species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster) are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex) during extended choice tests, although short-term preferences are not known. Mice (Mus musculus) are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT) typically used in mice (short, no direct contact), and the partner preference test (PPT) used in voles (long, direct contact). A subset of voles also underwent a PPT using barriers (long, no direct contact). In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of selective social

  12. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Directory of Open Access Journals (Sweden)

    Annaliese K. Beery

    2018-03-01

    Full Text Available Social behavior is often described as a unified concept, but highly social (group-living species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex during extended choice tests, although short-term preferences are not known. Mice (Mus musculus are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT typically used in mice (short, no direct contact, and the partner preference test (PPT used in voles (long, direct contact. A subset of voles also underwent a PPT using barriers (long, no direct contact. In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of

  13. Spread of plague among black-tailed prairie dogs is associated with colony spatial characteristics

    Science.gov (United States)

    Johnson, T.L.; Cully, J.F.; Collinge, S.K.; Ray, C.; Frey, C.M.; Sandercock, B.K.

    2011-01-01

    Sylvatic plague (Yersinia pestis) is an exotic pathogen that is highly virulent in black-tailed prairie dogs (Cynomys ludovicianus) and causes widespread colony losses and individual mortality rates >95%. We investigated colony spatial characteristics that may influence inter-colony transmission of plague at 3 prairie dog colony complexes in the Great Plains. The 4 spatial characteristics we considered include: colony size, Euclidean distance to nearest neighboring colony, colony proximity index, and distance to nearest drainage (dispersal) corridor. We used multi-state mark-recapture models to determine the relationship between these colony characteristics and probability of plague transmission among prairie dog colonies. Annual mapping of colonies and mark-recapture analyses of disease dynamics in natural colonies led to 4 main results: 1) plague outbreaks exhibited high spatial and temporal variation, 2) the site of initiation of epizootic plague may have substantially influenced the subsequent inter-colony spread of plague, 3) the long-term effect of plague on individual colonies differed among sites because of how individuals and colonies were distributed, and 4) colony spatial characteristics were related to the probability of infection at all sites although the relative importance and direction of relationships varied among sites. Our findings suggest that conventional prairie dog conservation management strategies, including promoting large, highly connected colonies, may need to be altered in the presence of plague. ?? 2011 The Wildlife Society.

  14. Grassland canopy parameters and their relationships to remotely sensed vegetation indices in the Nebraska Sand Hills

    Science.gov (United States)

    Wylie, Bruce K.; DeJong, Donovan D.; Tieszen, Larry L.; Biondini, Mario E.

    1996-01-01

    Relationships among spectral vegetation indices and grassland biophysical parameters including the effects of varying levels of standing dead vegetation, range sites, and range plant communities were examined. Range plant communities consisting of northern mixed grass prairie and a smooth brome field as well as range sites and management in a Sand Hills bluestem prairie were sampled with a ground radiometer and for LAI, biomass, chlorophy

  15. The relative contribution of climate to changes in lesser prairie-chicken abundance

    Science.gov (United States)

    Ross, Beth E.; Haukos, David A.; Hagen, Christian A.; Pitman, James

    2016-01-01

    Managing for species using current weather patterns fails to incorporate the uncertainty associated with future climatic conditions; without incorporating potential changes in climate into conservation strategies, management and conservation efforts may fall short or waste valuable resources. Understanding the effects of climate change on species in the Great Plains of North America is especially important, as this region is projected to experience an increased magnitude of climate change. Of particular ecological and conservation interest is the lesser prairie-chicken (Tympanuchus pallidicinctus), which was listed as “threatened” under the U.S. Endangered Species Act in May 2014. We used Bayesian hierarchical models to quantify the effects of extreme climatic events (extreme values of the Palmer Drought Severity Index [PDSI]) relative to intermediate (changes in El Niño Southern Oscillation) and long-term climate variability (changes in the Pacific Decadal Oscillation) on trends in lesser prairie-chicken abundance from 1981 to 2014. Our results indicate that lesser prairie-chicken abundance on leks responded to environmental conditions of the year previous by positively responding to wet springs (high PDSI) and negatively to years with hot, dry summers (low PDSI), but had little response to variation in the El Niño Southern Oscillation and the Pacific Decadal Oscillation. Additionally, greater variation in abundance on leks was explained by variation in site relative to broad-scale climatic indices. Consequently, lesser prairie-chicken abundance on leks in Kansas is more strongly influenced by extreme drought events during summer than other climatic conditions, which may have negative consequences for the population as drought conditions intensify throughout the Great Plains.

  16. Breeding for Grass Seed Yield

    DEFF Research Database (Denmark)

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected...... by agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  17. Post-ruminal digestibility of crude protein from grass and grass silages in cows

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Mathijssen-Kamman, A.A.; Hindle, V.A.

    2006-01-01

    Grass samples were grown on a clay or sandy soil, fertilised with 150 or 300 kg N/ha per year, and harvested on different days during two consecutive growing seasons. The grass samples were stored frozen or ensiled after wilting to approximately 250 or 450 g DM/kg. The recoveries of crude protein

  18. The innate immune response may be important for surviving plague in wild Gunnison's prairie dogs

    Science.gov (United States)

    Busch, Joseph D.; Van Andel, Roger; Stone, Nathan E.; Cobble, Kacy R.; Nottingham, Roxanne; Lee, Judy; VerSteeg, Michael; Corcoran, Jeff; Cordova, Jennifer; Van Pelt, William E.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Keim, Paul; Smith, Susan; Rodriguez-Ramos, Julia; Williamson, Judy L.; Rocke, Tonie E.; Wagner, David M.

    2013-01-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis, with ≥99% mortality reported from multiple studies of plague epizootics. A colony of Gunnison's prairie dogs (Cynomys gunnisoni) in the Aubrey Valley (AV) of northern Arizona appears to have survived several regional epizootics of plague, whereas nearby colonies have been severely affected by Y. pestis. To examine potential mechanisms accounting for survival in the AV colony, we conducted a laboratory Y. pestis challenge experiment on 60 wild-caught prairie dogs from AV and from a nearby, large colony with frequent past outbreaks of plague, Espee (n = 30 per colony). Test animals were challenged subcutaneously with the fully virulent Y. pestis strain CO92 at three doses: 50, 5,000, and 50,000 colony-forming units (cfu); this range is lethal in black-tailed prairie dogs (Cynomys ludovicianus). Contrary to our expectations, only 40% of the animals died. Although mortality trended higher in the Espee colony (50%) compared with AV (30%), the differences among infectious doses were not statistically significant. Only 39% of the survivors developed moderate to high antibody levels to Y. pestis, indicating that mechanisms other than humoral immunity are important in resistance to plague. The ratio of neutrophils to lymphocytes was not correlated with plague survival in this study. However, several immune proteins with roles in innate immunity (VCAM-1, CXCL-1, and vWF) were upregulated during plague infection and warrant further inquiry into their role for protection against this disease. These results suggest plague resistance exists in wild populations of the Gunnison's prairie dog and provide important directions for future studies.

  19. Land use history, ecosystem type and species composition drive water use efficiency in annual maize and perennial grasslands in a humid temperate climate

    Science.gov (United States)

    Gelfand, I.; Abraha, M.; Chen, J.; Shao, C.; Su, Y. J.; Hamilton, S. K.; Robertson, G. P.

    2015-12-01

    Water use efficiency (WUE), carbon gained per unit water lost, is a fundamental plant and ecosystem function that regulates plant productivity, global hydrology and carbon cycles. We examined ecosystem (E) and intrinsic (i) WUEs derived from eddy covariance (EC) measurements and plant carbon isotope discrimination, respectively, to study how WUE is affected by land-use history, ecosystem type, and plants community composition. We measured EWUE and iWUE of three perennial grasslands planted to mixed-prairie, switchgrass and brome grass as compared to a fields planted to corn. Each of studied ecosystems was replicated on two fields with contrasting land-use histories: one field was managed under the USDA Conservation Reserve Program (CRP, planted to bromgrass) and another was in conventional agriculture (AGR) corn/soybean rotation for few decades before start of the experiment. In 2009, all but one CRP field were converted to no-till soybean. In 2010, the converted CRP and AGR fields were planted to mixed-prairie (C3 and C4 grasses), switchgrass (C4 grass), and no-till corn (C4 grass). During 2009-2013, we measured carbon and water exchange over each field using an EC technique and sampled plant tissue for 13C isotopes analysis. Land-use history, ecosystem type, and species composition had large effects on EWUEs. Intrinsic WUE of individual C3 grass species, however, was similar across the study period, despite drought in 2012. Corn and brome grass had the highest and lowest overall mean EWUE, 4.1 and 2.2 g C kg-1 H2O, respectively. Restored prairie on former AGR land had a mean EWUE of 3.0 g C kg-1 H2O, significantly greater than on former CRP land with a EWUE of 2.5 g C kg-1 H2O. Land use history had no effect on interannual variability of EWUE of corn. Prairie and switchgrass established on former CRP land exhibited no change of EWUE, as well. Same ecosystems established on former AGR land, oppositely, increased their WUEs over the study period from ~ 2.5 g C kg-1

  20. Selected hydrologic data, Camas Prairie, south-central Idaho

    Science.gov (United States)

    Young, H.W.; Backsen, R.L.; Kenyon, K.S.

    1978-01-01

    This report presents data collected during a 1-year study of the water resources of Camas Prairie, Idaho. Included are records of wells, discharge measurements of streams, hydrographs of water levels in wells, water-quality data, and drillers ' logs of wells. The data are conveniently made available to supplement an interpretive report, which will be published separately. (Woodard-USGS)

  1. Release from native root herbivores and biotic resistance by soil pathogens in a new habitat both affect the alien Ammophila arenaria in South Africa

    NARCIS (Netherlands)

    Knevel, IC; Lans, T; Menting, FBJ; Hertling, UM; van der Putten, WH

    2004-01-01

    Many native communities contain exotic plants that pose a major threat to indigenous vegetation and ecosystem functioning. Therefore the enemy release hypothesis (ERH) and biotic resistance hypothesis (BRH) were examined in relation to the invasiveness of the introduced dune grass Ammophila arenaria

  2. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  3. Students' Perceptions of a Highly Controversial yet Keystone Species, the Black-Tailed Prairie Dog: A Case Study

    Science.gov (United States)

    Fox-Parrish, Lynne; Jurin, Richard R.

    2008-01-01

    The authors used a case-study methodology to explore the perceptions of 30 9th-grade biology students relative to black-tailed prairie dogs. The case study, which involved classroom- and field-based experiences that focused on black-tailed prairie dogs, revealed 3 major themes: apathy, egocentrism, and naive conceptions. The authors had hoped that…

  4. Macroinvertebrates in North American tallgrass prairie soils: effects of fire, mowing, and fertilization on density and biomass

    Science.gov (United States)

    M.A. Callaham; J.M. Blair; T.C. Todd; D.J. Kitchen; M.R. Whiles

    2003-01-01

    The responses of tallgrass prairie plant communities and ecosystem processes to fire and grazing are well characterized. However, responses of invertebrate consumer groups. and particularly soil-dwelling organisms, to these disturbances are not well known. At Konza Prairie Biological Station. we sampled soil macroinvertebrates in 1994 and 1999 as part of a long-term...

  5. Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils

    International Nuclear Information System (INIS)

    Doherty, Jennifer H.; Ji Baoming; Casper, Brenda B.

    2008-01-01

    Ecotypes of Sorghastrum nutans from a naturally metalliferous serpentine grassland and the tallgrass prairie were assessed for Ni tolerance and their utility in remediation of Ni-polluted soils. Plants were inoculated with serpentine arbuscular mycorrhizal (AM) root inoculum or whole soil microbial communities, originating from either prairie or serpentine, to test their effects on plant performance in the presence of Ni. Serpentine plants had marginally higher Ni tolerance as indicated by higher survival. Ni reduced plant biomass and AM root colonization for both ecotypes. The serpentine AM fungi and whole microbial community treatments decreased plant biomass relative to uninoculated plants, while the prairie microbial community had no effect. Differences in how the soil communities affect plant performance were not reflected in patterns of root colonization by AM fungi. Thus, serpentine plants may be suited for reclamation of Ni-polluted soils, but AM fungi that occur on serpentine do not improve Ni tolerance. - Ni tolerance of Sorghastrum nutans differs slightly between serpentine and prairie populations and is negatively affected by serpentine soil and root inoculation

  6. Continuous Long-Term Modeling of Shallow Groundwater-Surface Water Interaction: Implications for a Wet Prairie Restoration

    Science.gov (United States)

    Wijayarathne, D. B.; Gomezdelcampo, E.

    2017-12-01

    The existence of wet prairies is wholly dependent on the groundwater and surface water interaction. Any process that alters this interaction has a significant impact on the eco-hydrology of wet prairies. The Oak Openings Region (OOR) in Northwest Ohio supports globally rare wet prairie habitats and the precious few remaining have been drained by ditches, altering their natural flow and making them an unusually variable and artificial system. The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model from the US Army Engineer Research and Development Center was used to assess the long-term impacts of land-use change on wet prairie restoration. This study is the first spatially explicit, continuous, long-term modeling approach for understanding the response of the shallow groundwater system of the OOR to human intervention, both positive and negative. The GSSHA model was calibrated using a 2-year weekly time series of water table elevations collected with an array of piezometers in the field. Basic statistical analysis indicates a good fit between observed and simulated water table elevations on a weekly level, though the model was run on an hourly time step and a pixel size of 10 m. Spatially-explicit results show that removal of a local ditch may not drastically change the amount of ponding in the area during spring storms, but large flooding over the entire area would occur if two other ditches are removed. This model is being used by The Nature Conservancy and Toledo Metroparks to develop different scenarios for prairie restoration that minimize its effect on local homeowners.

  7. Grass pollen immunotherapy induces highly cross-reactive IgG antibodies to group V allergen from different grass species

    NARCIS (Netherlands)

    van Ree, R.; Brewczyński, P. Z.; Tan, K. Y.; Mulder-Willems, H. J.; Widjaja, P.; Stapel, S. O.; Aalberse, R. C.; Kroon, A. M.

    1995-01-01

    Sera from two groups of patients receiving grass pollen immunotherapy were tested on IgG reactivity with group V allergen from six different grass species. One group of patients was treated with a mixture of 10 grass species, and the other with a mixture of five. Only Lolium perenne, Dactylis

  8. Spatiotemporal Variation in the Environmental Controls of C4-Grass Origin and Ecology: Insights from Grass-Pollen δ13C Data

    Science.gov (United States)

    Nelson, D. M.; Urban, M.; Hu, F.

    2014-12-01

    Understanding the environmental factors controlling the origin and shifting abundance of C4 grasses in Earth's history is useful for projecting the response of C4-grass dominated grasslands to future environmental change. Unfortunately, grass pollen is typically morphologically indistinct, making palynological analysis a blunt tool for studying C4-grasses in the paleorecord. δ13C of individual grass-pollen grains using a spooling wire microcombustion device interfaced with an isotope ratio mass spectrometer (Single Pollen Isotope Ratio AnaLysis, SPIRAL) overcomes this challenge and the potential biases of δ13C data from other substrates (e.g. leaf waxes). To assess the presence and relative abundance of C3- and C4-grass pollen in samples of unknown composition, we developed a hierarchical Bayesian model, trained with ~1,900 δ13C values from pollen grains of 31 grass species. Surface-sediment data from Africa, Australia, and North America demonstrate the reliability of this technique for quantifying C4-grass abundance on the landscape. To investigate the timing and control of the origin of C4-grasses we analyzed samples from the Oligocene-Miocene from Europe and from the Eocene from North America. Results indicate that C4 grasses appeared on the landscape of southwest Europe no later than the early Oligocene, implying that low atmospheric pCO2 may not have been the main driver and/or precondition for the development of C4 photosynthesis in the grass family. In contrast, we found no evidence for C4 grasses in the southeast United States before pCO2 fell. In application of SPIRAL to the late Quaternary, we found that shifts in pCO2 and moisture balance exerted key controls on the relative abundance of C3 and C4 grasses in Africa and Australia. Overall, our results imply that as in the past, future changes in the C3/C4 composition of grass-dominated ecosystems will likely exhibit striking spatiotemporal variability as a result of differing combinations of

  9. Prioritizing bird conservation actions in the Prairie Hardwood transition of the Midwestern United States

    Science.gov (United States)

    Thogmartin, Wayne E.; Crimmins, Shawn M.; Pearce, Jennie

    2014-01-01

    Large-scale planning for the conservation of species is often hindered by a poor understanding of factors limiting populations. In regions with declining wildlife populations, it is critical that objective metrics of conservation success are developed to ensure that conservation actions achieve desired results. Using spatially explicit estimates of bird abundance, we evaluated several management alternatives for conserving bird populations in the Prairie Hardwood Transition of the United States. We designed landscapes conserving species at 50% of their current predicted abundance as well as landscapes attempting to achieve species population targets (which often required the doubling of current abundance). Conserving species at reduced (half of current) abundance led to few conservation conflicts. However, because of extensive modification of the landscape to suit human use, strategies for achieving regional population targets for forest bird species would be difficult under even ideal circumstances, and even more so if maintenance of grassland bird populations is also desired. Our results indicated that large-scale restoration of agricultural lands to native grassland and forest habitats may be the most productive conservation action for increasing bird population sizes but the level of landscape transition required to approach target bird population sizes may be societally unacceptable.

  10. Grasshopper fecundity responses to grazing and fire in a tallgrass prairie.

    Science.gov (United States)

    Laws, Angela N; Joern, Anthony

    2011-10-01

    Grasshopper abundance and diversity vary with management practices such as fire and grazing. Understanding how grasshopper life history traits such as fecundity respond to management practices is key to predicting grasshopper population dynamics in heterogeneous environments. Landscape-level experimental fire and bison grazing treatments at the Konza Prairie Biological Station (Manhattan, KS) provide an opportunity to examine how management affects grasshopper fecundity. Here we report on grasshopper fecundity for nine common species at Konza Prairie. From 2007 to 2009, adult female grasshoppers were collected every 3 wk from eight watersheds that varied in fire and grazing treatments. Fecundity was measured by examining female reproductive tracts, which contain a record of past and current reproductive activity. Body size was a poor predictor of fecundity for all species. Despite large differences in vegetation structure and composition with management regime (grazing and fire interval), we observed little effect of management on grasshopper fecundity. Habitat characteristics (grasshopper density, vegetation biomass, and vegetation quality; measured in 2008 and 2009) were better predictors of past fecundity than current fecundity, with species-specific responses. Fecundity increased throughout the summer, indicating that grasshoppers were able to acquire sufficient nutritional resources for egg production in the early fall when vegetation quality is generally low. Because fecundity did not vary across management treatments, population stage structure may be more important for determining population level reproduction than management regime at Konza Prairie.

  11. Anticoagulant Prairie Dog Bait Risk Mitigation Measures to Protect Endangered Species

    Science.gov (United States)

    This Web page contains information on how certified pesticide applicators can use anticoagulant prairie dog bait products such as Rozol and Kaput-D while minimizing exposure risks to listed and non-target species.

  12. Food habits of nesting prairie falcons in Campbell County

    Science.gov (United States)

    John R. Squires; Stanley H. Anderson; Robert Oakleaf

    1989-01-01

    Fifteen species of prey were utilized by nesting Prairie Falcons (Falco mexicanus) as determined through pellet analysis. Thirteen-lined Ground Squirrels (Spermophilus tridecemlineatus), the most common prey, were present in 91% of the pellets, followed by Western Meadowlarks (Sturnella neglecta) which were present in 56% of pellets. Horned Larks (Eremophila...

  13. Feasibility of Invasive Grass Detection in a Desertscrub Community Using Hyperspectral Field Measurements and Landsat TM Imagery

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2011-10-01

    Full Text Available Invasive species’ phenologies often contrast with those of native species, representing opportunities for detection of invasive species with multi-temporal remote sensing. Detection is especially critical for ecosystem-transforming species that facilitate changes in disturbance regimes. The African C4 grass, Pennisetum ciliare, is transforming ecosystems on three continents and a number of neotropical islands by introducing a grass-fire cycle. However, previous attempts at discriminating P. ciliare in North America using multi-spectral imagery have been unsuccessful. In this paper, we integrate field measurements of hyperspectral plant species signatures and canopy cover with multi-temporal spectral analysis to identify opportunities for detection using moderate-resolution multi-spectral imagery. By applying these results to Landsat TM imagery, we show that multi-spectral discrimination of P. ciliare in heterogeneous mixed desert scrub is feasible, but only at high abundance levels that may have limited value to land managers seeking to control invasion. Much higher discriminability is possible with hyperspectral shortwave infrared imagery because of differences in non-photosynthetic vegetation in uninvaded and invaded landscapes during dormant seasons but these spectra are unavailable in multispectral sensors. Therefore, we recommend hyperspectral imagery for distinguishing invasive grass-dominated landscapes from uninvaded desert scrub.

  14. Grass leaves as potential hominin dietary resources.

    Science.gov (United States)

    Paine, Oliver C C; Koppa, Abigale; Henry, Amanda G; Leichliter, Jennifer N; Codron, Daryl; Codron, Jacqueline; Lambert, Joanna E; Sponheimer, Matt

    2018-04-01

    Discussions about early hominin diets have generally excluded grass leaves as a staple food resource, despite their ubiquity in most early hominin habitats. In particular, stable carbon isotope studies have shown a prevalent C 4 component in the diets of most taxa, and grass leaves are the single most abundant C 4 resource in African savannas. Grass leaves are typically portrayed as having little nutritional value (e.g., low in protein and high in fiber) for hominins lacking specialized digestive systems. It has also been argued that they present mechanical challenges (i.e., high toughness) for hominins with bunodont dentition. Here, we compare the nutritional and mechanical properties of grass leaves with the plants growing alongside them in African savanna habitats. We also compare grass leaves to the leaves consumed by other hominoids and demonstrate that many, though by no means all, compare favorably with the nutritional and mechanical properties of known primate foods. Our data reveal that grass leaves exhibit tremendous variation and suggest that future reconstructions of hominin dietary ecology take a more nuanced approach when considering grass leaves as a potential hominin dietary resource. Copyright © 2017. Published by Elsevier Ltd.

  15. Age at vaccination may influence response to sylvatic plague vaccine (SPV) in Gunnison’s prairie dogs (Cynomys gunnisoni)

    Science.gov (United States)

    Rocke, Tonie E.; Tripp, Daniel W.; Lorenzsonn, Faye; Falendysz, Elizabeth A.; Smith, Susan; Williamson, Judy L.; Abbott, Rachel C.

    2015-01-01

    Gunnison’s prairie dogs (Cynomys gunnisoni) have been considered at greater risk from Yersinia pestis (plague) infection in the montane portion of their range compared to populations at lower elevations, possibly due to factors related to flea transmission of the bacteria or greater host susceptibility. To test the latter hypothesis and determine whether vaccination against plague with an oral sylvatic plague vaccine (SPV) improved survival, we captured prairie dogs from a C. g. gunnisoni or “montane” population and a C. g. zuniensis or “prairie” population for vaccine efficacy and challenge studies. No differences (P = 0.63) were found in plague susceptibility in non-vaccinated animals between these two populations; however, vaccinates from the prairie population survived plague challenge at significantly higher rates (P age, as the prairie group was much younger on average than the montane group. Vaccinates that were juveniles or young adults survived plague challenge at a much higher rate than adults (P ages. These results suggest that host susceptibility is probably not related to the assumed greater risk from plague in the C. g. gunnisoni or “montane” populations of Gunnison’s prairie dogs, and that SPV could be a useful plague management tool for this species, particularly if targeted at younger cohorts.

  16. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles

    OpenAIRE

    Grippo, Angela J.; Gerena, Davida; Huang, Jonathan; Kumar, Narmda; Shah, Maulin; Ughreja, Raj; Carter, C. Sue

    2007-01-01

    Supportive social interactions may be protective against stressors and certain mental and physical illness, while social isolation may be a powerful stressor. Prairie voles are socially monogamous rodents that model some of the behavioral and physiological traits displayed by humans, including sensitivity to social isolation. Neuroendocrine and behavioral parameters, selected for their relevance to stress and depression, were measured in adult female and male prairie voles following 4 weeks o...

  17. Effects of wind energy development on nesting ecology of greater prairie-chickens in fragmented grasslands.

    Science.gov (United States)

    McNew, Lance B; Hunt, Lyla M; Gregory, Andrew J; Wisely, Samantha M; Sandercock, Brett K

    2014-08-01

    Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for development of renewable energy may overlap with important habitats of declining populations of grassland birds. Greater Prairie-Chickens (Tympanuchus cupido) are an obligate grassland bird species predicted to respond negatively to energy development. We used a modified before-after control-impact design to test for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We located 59 and 185 nests before and after development, respectively, of a 201 MW wind energy facility in Greater Prairie-Chicken nesting habitat and assessed nest site selection and nest survival relative to proximity to wind energy infrastructure and habitat conditions. Proximity to turbines did not negatively affect nest site selection (β = 0.03, 95% CI = -1.2-1.3) or nest survival (β = -0.3, 95% CI = -0.6-0.1). Instead, nest site selection and survival were strongly related to vegetative cover and other local conditions determined by management for cattle production. Integration of our project results with previous reports of behavioral avoidance of oil and gas facilities by other species of prairie grouse suggests new avenues for research to mitigate impacts of energy development. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  18. Intrusion of soil covered uranium mill tailings by whitetail prairie dogs and Richardson's ground squirrels

    International Nuclear Information System (INIS)

    Shuman, R.

    1984-01-01

    The primary objective of the reclamation of uranium mill tailings is the long-term isolation of the matrial from the biosphere. Fossorial and semi-fossorial species represent a potentially disruptive influence as a result of their burrowing habits. The potential for intrusion was investigated with respect to two sciurids, the whitetail prairie dog (Cynomys leucurus) and Richardson's ground squirrel (Spermophilus richardsonii). Populations of prairie dogs were established on a control area, lacking a tailings layer, and two experimental areas, underlain by a waste layer, in southeastern Wyoming. Weekly measurements of prairie dog mound surface activities were conducted to demonstrate penetration, or lack thereof, of the tailings layer. Additionally, the impact of burrowing upon radon flux was determined. Limited penetration of the waste layer was noted after which frequency of inhabitance of the intruding burrow system declined. No significant changes in radon flux were detected. In another experiment, it was found that Richardson's ground squirrels burrowed to less extreme depths when confronted by mill tailings. Additional work at an inactive tailings pile in western Colorado revealed repeated intrusion through a shallow cover, and subsequent transport of radioactive material to the ground surface by prairie dogs. Radon flux from burrow entrances was significantly greater than that from undisturbed ground. Data suggested that textural and pH properties of tailings material may act to discourage repeated intrusion at some sites. 58 references

  19. Fine-scale habitat use of reintroduced black-footed ferrets on prairie dog colonies in New Mexico

    Science.gov (United States)

    Chipault, Jennifer G.; Biggins, Dean E.; Detling, James K.; Long, Dustin H.; Reich, Robin M.

    2012-01-01

    Black-footed ferrets (Mustela nigripes) are among the most endangered animals in North America. Reintroductions of captive-born ferrets onto prairie dog (Cynomys spp.) colonies are crucial to the conservation of the species. In September 2007, captive-born ferrets were released on a black-tailed prairie dog (Cynomys ludovicianus) colony at the Vermejo Park Ranch, New Mexico. Ferret kits experimentally released in areas of comparatively low and high prairie dog burrow densities were located via spotlight surveys. Some maturing ferret kits were subsequently translocated to areas of low and high burrow densities on nearby prairie dog colonies. For 2 months, fine-scale habitat use was quantified by mapping all burrow openings within a 30-m radius of each ferret location. Spatial statistics accounted for autocorrelation in the burrow densities in areas used by ferrets. It was hypothesized that ferrets would select areas of high burrow densities within colonies; however, burrow densities in areas used by ferrets were generally similar to the available burrow densities. Because ferrets used areas with burrow densities similar to densities available at the colony level and because of the potential energetic benefits for ferrets using areas with high burrow densities, releasing ferrets on colonies with high burrow densities might increase reintroduction success.

  20. EFFECT OF MULCH AND MIXED CROPPING GRASS - LEGUME AT SALINE SOIL ON GROWTH, FORAGE YIELD AND NUTRITIONAL QUALITY OF GUINEA GRASS

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The research was conducted to evaluate the effect of mulch and mixed cropping grass – legume atsaline soil on growth, forage yield and nutritional quality of guinea grass. Saline soil used in thisresearch was classified into strongly saline soil with low soil fertility. The research was arrranged inrandomized complete block design with 3 blocks. The treatments were : M1 = guinea grassmonoculture, without mulch; M2 = guinea grass monoculture, 3 ton/ha mulch; M3 = guinea grassmonoculture, 6 ton/ha mulch, M4 = mixed cropping grass with Sesbania grandiflora, without mulch;M5 = mixed cropping grass with Sesbania grandiflora, 3 ton/ha mulch; M6 = mixed cropping grass withSesbania grandiflora, 6 ton/ha mulch. Data were analyzed using analysis of variance, then followed byDuncan's Multiple Range Test. The highest soil moisture content was achieved at mixed cropping grasslegumewith 6 ton/ha of mulch. The effect of mulch at saline soil significantly increased plant growth,forage yield and nutritional quality of guinea grass. Application of 3 ton/ha mulch increased plantgrowth, forage yield and nutritional quality of guinea grass. Plant growth, forage yield and nutritionalquality of guinea grass were not affected by monoculture or mixed cropping with Sesbania at saline soil.

  1. Evaluation of Seasonality in Shallow Groundwater Dynamics and Storage in an Urban Prairie Nature Preserve Using a High-Frequency Sensing Network

    Science.gov (United States)

    Rivera, V. A.; Hernandez-Gonzalez, L. M.; Phillips, C. B.; Nair, A.; Negri, M. C.; Gnaedinger, K. J.; Miller, W. M.; Packman, A. I.

    2017-12-01

    Changing regional climate applies stresses to urban areas in the form of altered weather patterns, requiring new strategies for stormwater runoff management and flood mitigation. At the same time, the proportion of people residing in urban areas is increasing and cities are turning to greenspace as a tool for managing runoff. Gensburg Markham Prairie (GMP), located in Markham, Illinois south of Chicago, is an urban prairie nature preserve and a U.S. National Natural Landmark. Owned by Northeastern Illinois University and managed by the Nature Conservancy, GMP receives runoff from surrounding urban areas and provides valuable stormwater storage, while also hosting high biodiversity and providing critical habitat for sensitive and endemic. A successful management strategy for GMP should preserve both of these valuable ecosystem services. To understand GMP's role within the urban environment, we installed a suite of instruments in 2016 and 2017 to measure surface and groundwater levels, rainfall, soil moisture, and electrical conductivity throughout the prairie. This monitoring network includes 40 sensors collecting high frequency data (every 30 minutes). We are also collecting monthly distributed surface and groundwater samples to quantify a range of anions and cations that signal potentially detrimental anthropogenic impacts on the prairie. In addition, we are using historical and ongoing plant distribution surveys to explore the interactions between spatial patterns in vegetation and water dynamics in the prairie. The high measurement frequency and large diversity of sensor types supports holistic investigation of the response of the prairie to diverse events, including summer thunderstorms, winter road salt runoff, and spring snowmelt. The 18 months of data collected to date reveals clear patterns in response to weather events with influence from soil type and spatial variables. We are using time-series analysis with MODFLOW modelling to explore surface

  2. Evaluating grasses as a long-term energy resource

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.G.; Riche, A.B.

    2001-07-01

    The work reported here is part of an ongoing project that aims to evaluate the yields of three perennial rhizomatous grasses and determine their suitability as bio-energy crops. The work began in 1993, and the grasses have been monitored continuously since that time. This report covers the period 1999/2000, and includes: the performance of plots of the energy grasses Miscanthus grass, switchgrass and reed canary grass seven years after they were planted; assessment of the yield of 15 genotypes of Miscanthus planted in 1997; monitoring all the species throughout the growing period for the presence of pests, weeds and diseases; measurement of the amount of nitrate leached from below Miscanthus grass; investigating the occurrence of lodging in switchgrass. (Author)

  3. The Then and Now of Reference Conditions in Streams of the Central Plains

    Science.gov (United States)

    Huggins, D.; Angelo, R.; Baker, D. S.; Welker, G.

    2005-05-01

    Models of contemporary and pre-settlement reference conditions were constructed for streams that once drained the tallgrass prairies of Iowa, Nebraska, Kansas and Missouri (e.g. Western Corn Belt Plains ecoregion), and for streams within the heart of the mixed grass prairie (e.g. Southwestern Tablelands ecoregion). Data on watershed, habitat, chemistry and biology compiled for existing reference streams (least or minimally impacted systems) were used to characterize contemporary reference conditions. Contemporary reference conditions within these two prairie regions are contrasted against hypothetical pre-settlement conditions using information from the best streams (upper 25%) of the current reference population, historical accounts, museum records, natural heritage programs, Public Land Survey and current remote sensing data. Similar comparisons were made between historical and current reference conditions for the Southwestern Tablelands located in central Kansas and Oklahoma. Much of this region remains in mixed grass prairie; has limited hydrological alterations (e.g. impoundments, dewatering) and low human and livestock densities. Within the tablelands these factors have preserved reference conditions that resemble historic conditions. Qualitative and quantitative comparisons indicate that many regions within the Central Plains require caution when using "least disturbed" reference streams and conditions to identify regional biological integrity goals relative to the Clean Water Act.

  4. Genetic compatibility determines endophyte-grass combinations.

    Directory of Open Access Journals (Sweden)

    Kari Saikkonen

    Full Text Available Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1 and F(2 generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1 genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2 these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars.

  5. Greenhouse gas fluxes of grazed and hayed wetland catchments in the U.S. Prairie Pothole Ecoregion

    Science.gov (United States)

    Finocchiaro, Raymond G.; Tangen, Brian A.; Gleason, Robert A.

    2014-01-01

    Wetland catchments are major ecosystems in the Prairie Pothole Region (PPR) and play an important role in greenhouse gases (GHG) flux. However, there is limited information regarding effects of land-use on GHG fluxes from these wetland systems. We examined the effects of grazing and haying, two common land-use practices in the region, on GHG fluxes from wetland catchments during 2007 and 2008. Fluxes of methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), along with soil water content and temperature, were measured along a topographic gradient every other week during the growing season near Ipswich, SD, USA. Closed, opaque chambers were used to measure fluxes of soil and plant respiration from native sod catchments that were grazed or left idle, and from recently restored catchments which were seeded with native plant species; half of these catchments were hayed once during the growing season. Catchments were adjacent to each other and had similar soils, soil nitrogen and organic carbon content, precipitation, and vegetation. When compared with idle catchments, grazing as a land-use had little effect on GHG fluxes. Likewise, haying had little effect on fluxes of CH4 and N2O compared with non-hayed catchments. Haying, however, did have a significant effect on combined soil and vegetative CO2 flux in restored wetland catchments owing to the immediate and comprehensive effect haying has on plant productivity. This study also examined soil conditions that affect GHG fluxes and provides cumulative annual estimates of GHG fluxes from wetland catchment in the PPR.

  6. Production of germline transgenic prairie voles (Microtus ochrogaster) using lentiviral vectors.

    Science.gov (United States)

    Donaldson, Zoe R; Yang, Shang-Hsun; Chan, Anthony W S; Young, Larry J

    2009-12-01

    The study of alternative model organisms has yielded tremendous insights into the regulation of behavioral and physiological traits not displayed by more widely used animal models, such as laboratory rats and mice. In particular, comparative approaches often exploit species ideally suited for investigating specific phenomenon. For instance, comparative studies of socially monogamous prairie voles and polygamous meadow voles have been instrumental toward gaining an understanding of the genetic and neurobiological basis of social bonding. However, laboratory studies of less commonly used organisms, such as prairie voles, have been limited by a lack of genetic tools, including the ability to manipulate the genome. Here, we show that lentiviral vector-mediated transgenesis is a rapid and efficient approach for creating germline transgenics in alternative laboratory rodents. Injection of a green fluorescent protein (GFP)-expressing lentiviral vector into the perivitelline space of 23 single-cell embryos yielded three live offspring (13 %), one of which (33%) contained germline integration of a GFP transgene driven by the human ubiquitin-C promoter. In comparison, transfer of 23 uninjected embryos yielded six live offspring (26%). Green fluorescent protein is present in all tissues examined and is expressed widely in the brain. The GFP transgene is heritable and stably expressed until at least the F(2) generation. This technology has the potential to allow investigation of specific gene candidates in prairie voles and provides a general protocol to pursue germline transgenic manipulation in many different rodent species.

  7. Regional Variation in mtDNA of the Lesser Prairie-Chicken

    Science.gov (United States)

    Hagen, Christian A.; Pitman, James C.; Sandercock, Brett K.; Wolfe, Don H.; Robel, Robel J.; Applegate, Roger D.; Oyler-McCance, Sara J.

    2010-01-01

    Cumulative loss of habitat and long-term decline in the populations of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) have led to concerns for the species' viability throughout its range in the southern Great Plains. For more efficient conservation past and present distributions of genetic variation need to be understood. We examined the distribution of mitochondrial DNA (mtDNA) variation in the Lesser Prairie-Chicken across Kansas, Colorado, Oklahoma, and New Mexico. Throughout the range we found little genetic differentiation except for the population in New Mexico, which was significantly different from most other publications. We did, however, find significant isolation by distance at the rangewide scale (r=0.698). We found no relationship between haplotype phylogeny and geography, and our analyses provide evidence for a post-glacial population expansion within the species that is consistent with the idea that speciation within Tympanuchus is recent. Conservation actions that increase the likelihood of genetically viable populations in the future should be evaluated for implementation.

  8. Preliminary Results of Clover and Grass Coverage and Total Dry Matter Estimation in Clover-Grass Crops Using Image Analysis

    Directory of Open Access Journals (Sweden)

    Anders K. Mortensen

    2017-12-01

    Full Text Available The clover-grass ratio is an important factor in composing feed ratios for livestock. Cameras in the field allow the user to estimate the clover-grass ratio using image analysis; however, current methods assume the total dry matter is known. This paper presents the preliminary results of an image analysis method for non-destructively estimating the total dry matter of clover-grass. The presented method includes three steps: (1 classification of image illumination using a histogram of the difference in excess green and excess red; (2 segmentation of clover and grass using edge detection and morphology; and (3 estimation of total dry matter using grass coverage derived from the segmentation and climate parameters. The method was developed and evaluated on images captured in a clover-grass plot experiment during the spring growing season. The preliminary results are promising and show a high correlation between the image-based total dry matter estimate and the harvested dry matter ( R 2 = 0.93 with an RMSE of 210 kg ha − 1 .

  9. SEASON OF DELTAMETHRIN APPLICATION AFFECTS FLEA AND PLAGUE CONTROL IN WHITE-TAILED PRAIRIE DOG (CYNOMYS LEUCURUS) COLONIES, COLORADO, USA.

    Science.gov (United States)

    Tripp, Daniel W; Streich, Sean P; Sack, Danielle A; Martin, Daniel J; Griffin, Karen A; Miller, Michael W

    2016-07-01

    In 2008 and 2009, we evaluated the duration of prophylactic deltamethrin treatments in white-tailed prairie dog ( Cynomys leucurus ) colonies and compared effects of autumn or spring dust application in suppressing flea numbers and plague. Plague occurred before and during our experiment. Overall, flea abundance tended to increase from May or June to September, but it was affected by deltamethrin treatment and plague dynamics. Success in trapping prairie dogs (animals caught/trap days) declined between June and September at all study sites. However, by September trap success on dusted sites (19%; 95% confidence interval [CI] 16-22%) was about 15-fold greater than on undusted control sites (1%; CI 0.3-4%; P≤0.0001). Applying deltamethrin dust as early as 12 mo prior seemed to afford some protection to prairie dogs. Our data showed that dusting even a portion of a prairie dog colony can prolong its persistence despite epizootic plague. Autumn dusting may offer advantages over spring in suppressing overwinter or early-spring flea activity, but timing should be adjusted to precede the annual decline in aboveground activity for hibernating prairie dog species. Large colony complexes or collections of occupied but fragmented habitat may benefit from dusting some sites in spring and others in autumn to maximize flea suppression in a portion of the complex or habitat year-round.

  10. Nutrient removal by prairie filter strips in agricultural landscapes

    Science.gov (United States)

    X. Zhou; M.J. Helmers; H. Asbjornsen; R. Kolka; M.D. Tomer; R.M. Cruse

    2014-01-01

    Nitrogen (N) and phosphorus (P) from agricultural landscapes have been identified as primary sources of excess nutrients in aquatic systems. The main objective of this study was to evaluate the effectiveness of prairie filter strips (PFS) in removing nutrients from cropland runoff in 12 small watersheds in central Iowa. Four treatments with PFS of different spatial...

  11. Warm season grass establishment (in one year without the weeds)

    International Nuclear Information System (INIS)

    Downing, D.

    1998-01-01

    Native warm season grasses, big bluestem and indian, were established by the broadcast method on a relatively large area (130 acres) of reclaimed coal surface-mined land in Perry County, Illinois. Existing vegetation was controlled using two quarts of Round-Up and 12 ounces of Plateau per acre the first week of May. Five pounds of pure live seed of both species were applied by airflow using 100 pounds per acre of 0-46-0 and 100 pounds per acre of 0-0-60, primarily to carry the seed. The surface was cultipacked to insure good seed to soil contact. Planting was initiated and completed the last week of June. An estimated 95% to 100% ground cover was evident by mid to late August. By mid September, numerous big blue stem flower/seed stalks were noticeable

  12. Prescribed Grassland Burning Smoke Emission Measurements in the Northern Flint Hills Region

    Science.gov (United States)

    Historically, frequent wildfires were essential for the maintenance of native prairie fire adapted ecosystems. Today prescribed fires are used to control invasive woody species and potentially improve forage production in these same prairie ecosystems for the beef-cattle industry...

  13. Characterization of the oxytocin system regulating affiliative behavior in female prairie voles.

    Science.gov (United States)

    Ross, H E; Cole, C D; Smith, Y; Neumann, I D; Landgraf, R; Murphy, A Z; Young, L J

    2009-09-15

    Oxytocin regulates partner preference formation and alloparental behavior in the socially monogamous prairie vole (Microtus ochrogaster) by activating oxytocin receptors in the nucleus accumbens of females. Mating facilitates partner preference formation, and oxytocin-immunoreactive fibers in the nucleus accumbens have been described in prairie voles. However, there has been no direct evidence of oxytocin release in the nucleus accumbens during sociosexual interactions, and the origin of the oxytocin fibers is unknown. Here we show for the first time that extracellular concentrations of oxytocin are increased in the nucleus accumbens of female prairie vole during unrestricted interactions with a male. We further show that the distribution of oxytocin-immunoreactive fibers in the nucleus accumbens is conserved in voles, mice and rats, despite remarkable species differences in oxytocin receptor binding in the region. Using a combination of site-specific and peripheral infusions of the retrograde tracer Fluorogold, we demonstrate that the nucleus accumbens oxytocin-immunoreactive fibers likely originate from paraventricular and supraoptic hypothalamic neurons. This distribution of retrogradely labeled neurons is consistent with the hypothesis that striatal oxytocin fibers arise from collaterals of magnocellular neurons of the neurohypophysial system. If correct, this may serve to coordinate peripheral and central release of oxytocin with appropriate behavioral responses associated with reproduction, including pair bonding after mating, and maternal responsiveness following parturition and during lactation.

  14. Regional differences in mu and kappa opioid receptor G-protein activation in brain in male and female prairie voles.

    Science.gov (United States)

    Martin, T J; Sexton, T; Kim, S A; Severino, A L; Peters, C M; Young, L J; Childers, S R

    2015-12-17

    Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins in signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [(35)S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brains by [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin (DAMGO) and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in the forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens (NAc) in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for NAc core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Jorrín, J.; González-Fernández, P.

    2016-11-01

    The seminatural prairie of the Raña of Cañamero (Spain) is a degraded and unproductive agrosystem with acid and stony soils, and low coverage of xerophytic grasses. In a project about secondary reconversion of the raña-prairie to a more productive cropland, an experimental field (EF) was established to assess the effect on plot-productivity of the interaction between correction of soil pH (liming) with three cropping systems: a no-tilled and annually fertilized and improved prairies, and a conventionally-tilled forage crop. The EF model of management was designed as plant-conservative, because no herbicide was applied after seeding to preserve the post-emergence of wild herbs and the natural grass diversity of the prairie. Between 2008 and 2012, we analysed the effect of managing factors (initial conventional-tillage, fertilization, liming and cropping) and agricultural predictors (pH, C:N ratio, soil bulk density and herbaceous biomass) on the alpha(α)-diversity of one of the major group of soil animals, the oribatids. In relation to the raña-prairie, all EF-plots improved their soil bulk density (ρs) and herbaceous biomass (t/ha), and enhanced desirable α-diversity values (richness, abundance and community equity). We conclude that the plant-conservative model: i) do not affect statistically the species richness of the prairie; ii) the desirable α-diversity responses are negatively correlated with soil bulk density and positively with herbaceous biomass, and iii) the low input or minimum intervention model, of an initial and conventional till and annual fertilisation, is the threshold and optimal model of agricultural management to improving oribatids diversity of the raña-soil. (Author)

  16. Grass Biomethane for Agriculture and Energy

    DEFF Research Database (Denmark)

    Korres, N.E.; Thamsiriroj, T.; Smith, B.

    2011-01-01

    have advanced the role of grassland as a renewable source of energy in grass biomethane production with various environmental and socio-economic benefits. It is underlined that the essential question whether the gaseous biofuel meets the EU sustainability criteria of 60% greenhouse gas emission savings...... by 2020 can be met since savings up to 89.4% under various scenarios can be achieved. Grass biomethane production compared to other liquid biofuels either when these are produced by indigenous of imported feedstocks is very promising. Grass biomethane, given the mature and well known technology...

  17. Land-use change, economics, and rural well-being in the Prairie Pothole Region of the United States

    Science.gov (United States)

    Gascoigne, William R.; Hoag, Dana L.K.; Johnson, Rex R.; Koontz, Lynne M.; Thomas, Catherine Cullinane

    2013-01-01

    This fact sheet highlights findings included in a comprehensive new report (see USGS Professional Paper 1800) which investigated land-use change, economic characteristics, and rural community well-being in the Prairie Pothole Region of the United States. Once one of the largest grassland-wetlands ecosystems on earth, the North American prairie has experienced extensive conversion to cultivated agriculture, with farming becoming the dominant land use in the region over the last century. Both perennial habitat lands and agricultural croplands retain importance economically, socially, and culturally. Greatly increased oil and gas development in recent years brought rises in employment and income but also stressed infrastructure, cost of living, and crime rates. Research described in these reports focuses on land-use dynamics and illuminates how economic variables and rural development in the Prairie Pothole Region might be influenced as land uses change.

  18. Competitive effects of introduced annual weeds on some native and reclamation species in the Powder River Basin, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.B.; Knight, D.H.

    1980-01-01

    Four experiments were conducted to examine the competitive effects of introduced annual weeds on certain native and reclamation species. The first experiment was initiated by discing three sites in the Powder River Basin, Wyoming, at three distances from introduced weed seed sources. Introduced weed colonization was greatest when a seed source was located nearby. Higher weed cover resulted in reductions of percent cover, density, and richness of the native species. The second experiment was conducted in the greenhouse and was designed to determine if there are changes in response of S. kali and the native grasses Agropyron smithii and Bouteloua gracilis to competition and water regime. Both grass species had lower biomass and higher stomatal resistance when growing in mixed culture with S. kali than in pure culture in the dry regime, but there were no significant differences in the wet regime. In general, the difference in plant response between mixed and pure cultures was more pronounced in the dry than in the wet regime. The third study was a greenhouse experiment on germination and competition of S. kali (a C/sub 4/ species) with native species Lepidium densiflorum (C/sub 3/), Chenopodium pratericola (C/sub 3/), A. smithii (C/sub 3/), and B. gracilis (C/sub 4/) under May, June, and July temperature regimes. Salsola kali germinated equally well in all three regimes, but the other C/sub 4/ species had highest germination in the July regime and the C/sub 3/ species in the May and June regimes. The fourth study was designed to examine the effect of weed colonization on the success of mine reclamation. Little effect was observed, but colonization by introduced annuals was very low. (ERB)

  19. Determining the regional potential for a grass biomethane industry

    International Nuclear Information System (INIS)

    Smyth, Beatrice M.; Smyth, Henry; Murphy, Jerry D.

    2011-01-01

    Research highlights: → We identified assessment criteria for determining the regional potential for grass biomethane. → Grass biomethane is distributed via the natural gas grid. → The criteria include: land use; grass yields; gas grid coverage; availability of co-substrates. → The county with the highest potential can fuel 50% of cars or supply 130% of domestic gas consumption. - Abstract: Grass biogas/biomethane has been put forward as a renewable energy solution and it has been shown to perform well in terms of energy balance, greenhouse gas emissions and policy constraints. Biofuel and energy crop solutions are country-specific and grass biomethane has strong potential in countries with temperate climates and a high proportion of grassland, such as Ireland. For a grass biomethane industry to develop in a country, suitable regions (i.e. those with the highest potential) must be identified. In this paper, factors specifically related to the assessment of the potential of a grass biogas/biomethane industry are identified and analysed. The potential for grass biogas and grass biomethane is determined on a county-by-county basis using multi-criteria decision analysis. Values are assigned to each county and ratings and weightings applied to determine the overall county potential. The potential for grass biomethane with co-digestion of slaughter waste (belly grass) is also determined. The county with the highest potential (Limerick) is analysed in detail and is shown to have ready potential for production of gaseous biofuel to meet either 50% of the vehicle fleet or 130% of the domestic natural gas demand, through 25 facilities at a scale of ca. 30 kt yr -1 of feedstock. The assessment factors developed in this paper can be used in other resource studies into grass biomethane or other energy crops.

  20. Direct and indirect effects of climate change on a prairie plant community.

    Directory of Open Access Journals (Sweden)

    Peter B Adler

    2009-09-01

    Full Text Available Climate change directly affects species by altering their physical environment and indirectly affects species by altering interspecific interactions such as predation and competition. Recent studies have shown that the indirect effects of climate change may amplify or counteract the direct effects. However, little is known about the the relative strength of direct and indirect effects or their potential to impact population persistence.We studied the effects of altered precipitation and interspecific interactions on the low-density tiller growth rates and biomass production of three perennial grass species in a Kansas, USA mixed prairie. We transplanted plugs of each species into local neighborhoods of heterospecific competitors and then exposed the plugs to a factorial manipulation of growing season precipitation and neighbor removal. Precipitation treatments had significant direct effects on two of the three species. Interspecific competition also had strong effects, reducing low-density tiller growth rates and aboveground biomass production for all three species. In fact, in the presence of competitors, (log tiller growth rates were close to or below zero for all three species. However, we found no convincing evidence that per capita competitive effects changed with precipitation, as shown by a lack of significant precipitation x competition interactions.We found little evidence that altered precipitation will influence per capita competitive effects. However, based on species' very low growth rates in the presence of competitors in some precipitation treatments, interspecific interactions appear strong enough to affect the balance between population persistence and local extinction. Therefore, ecological forecasting models should include the effect of interspecific interactions on population growth, even if such interaction coefficients are treated as constants.

  1. New insights into the phylogenetics and population structure of the prairie falcon (Falco mexicanus)

    Science.gov (United States)

    Doyle, Jacqueline M.; Bell, Douglas A.; Bloom, Peter H.; Emmons, Gavin; Fesnock, Amy; Katzner, Todd; LePre, Larry; Leonard, Kolbe; SanMiguel, Phillip; Westerman, Rick; DeWoody, J. Andrew

    2018-01-01

    BackgroundManagement requires a robust understanding of between- and within-species genetic variability, however such data are still lacking in many species. For example, although multiple population genetics studies of the peregrine falcon (Falco peregrinus) have been conducted, no similar studies have been done of the closely-related prairie falcon (F. mexicanus) and it is unclear how much genetic variation and population structure exists across the species’ range. Furthermore, the phylogenetic relationship of F. mexicanus relative to other falcon species is contested. We utilized a genomics approach (i.e., genome sequencing and assembly followed by single nucleotide polymorphism genotyping) to rapidly address these gaps in knowledge.ResultsWe sequenced the genome of a single female prairie falcon and generated a 1.17 Gb (gigabases) draft genome assembly. We generated maximum likelihood phylogenetic trees using complete mitochondrial genomes as well as nuclear protein-coding genes. This process provided evidence that F. mexicanus is an outgroup to the clade that includes the peregrine falcon and members of the subgenus Hierofalco. We annotated > 16,000 genes and almost 600,000 high-quality single nucleotide polymorphisms (SNPs) in the nuclear genome, providing the raw material for a SNP assay design featuring > 140 gene-associated markers and a molecular-sexing marker. We subsequently genotyped ~ 100 individuals from California (including the San Francisco East Bay Area, Pinnacles National Park and the Mojave Desert) and Idaho (Snake River Birds of Prey National Conservation Area). We tested for population structure and found evidence that individuals sampled in California and Idaho represent a single panmictic population.ConclusionsOur study illustrates how genomic resources can rapidly shed light on genetic variability in understudied species and resolve phylogenetic relationships. Furthermore, we found evidence of a single, randomly mating

  2. Post-treatment efficacy of discontinuous treatment with 300IR 5-grass pollen sublingual tablet in adults with grass pollen-induced allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Didier, A; Malling, H-J; Worm, Marcel

    2013-01-01

    Sustained efficacy over three pollen seasons of pre- and co-seasonal treatment with 300IR 5-grass pollen sublingual tablet has been demonstrated in adults with moderate-severe grass pollen-associated allergic rhinoconjunctivitis.......Sustained efficacy over three pollen seasons of pre- and co-seasonal treatment with 300IR 5-grass pollen sublingual tablet has been demonstrated in adults with moderate-severe grass pollen-associated allergic rhinoconjunctivitis....

  3. The effect of listing the lesser prairie chicken as a threatened species on rural property values.

    Science.gov (United States)

    Wietelman, Derek C; Melstrom, Richard T

    2017-04-15

    This paper estimates the effect of Endangered Species Act protections for the lesser prairie chicken (Tympanuchus pallidicinctus) on rural property values in Oklahoma. The political and legal controversy surrounding the listing of imperiled species raises questions about the development restrictions and opportunity costs the Endangered Species Act imposes on private landowners. Examining parcel-level sales data before and after the listing of the endemic lesser prairie chicken, we employ difference-in-differences (DD) regression to measure the welfare costs of these restrictions. While our basic DD regression provides evidence the listing was associated with a drop in property values, this finding does not hold up in models that control for latent county and year effects. The lack of a significant price effect is confirmed by several robustness checks. Thus, the local economic costs of listing the lesser prairie chicken under the Endangered Species Act appear to have been small. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Does hybridization of endophytic symbionts in a native grass increase fitness in resource-limited environments?

    DEFF Research Database (Denmark)

    Faeth, Stanley H.; Oberhofer, Martina; Saari, Susanna Talvikki

    2017-01-01

    to their grass hosts, especially in stressful environments. We tested the hybrid fitness hypothesis (HFH) that hybrid endophytes enhance fitness in stressful environments relative to non-hybrid endophytes. In a long-term field experiment, we monitored growth and reproduction of hybrid-infected (H+), non......-hybrid infected (NH+), naturally endophyte free (E-) plants and those plants from which the endophyte had been experimentally removed (H- and NH-) in resource-rich and resource-poor environments. Infection by both endophyte species enhanced growth and reproduction. H+ plants outperformed NH+ plants in terms...... of growth by the end of the experiment, supporting HFH. However, H+ plants only outperformed NH+ plants in the resource-rich treatment, contrary to HFH. Plant genotypes associated with each endophyte species had strong effects on growth and reproduction. Our results provide some support the HFH hypothesis...

  5. Abundance and density of lesser prairie-chickens and leks in Texas

    Science.gov (United States)

    Timmer, Jennifer M.; Butler, M.J.; Ballard, Warren; Boal, Clint W.; Whitlaw, Heather A.

    2013-01-01

    Lesser prairie-chickens (LEPCs; Tympanuchus pallidicinctus) have experienced population declines due to both direct and indirect habitat loss, including conversion of native rangeland to cropland and disturbance from energy development. Our objectives were to 1) determine the current density of LEPC leks and LEPCs within the Texas (USA) occupied range, including areas with high potential for wind-energy development; and 2) find new leks. To estimate lek and LEPC density, we employed a line-transect-based aerial survey method using a Robinson 22 helicopter to count leks. We surveyed 26,810.9 km of transect in the spring of 2010 and 2011 and we detected 96 leks. We estimated a density of 2.0 leks/100 km(2) (90% CI = 1.4-2.7 leks/100 km(2)) and 12.3 LEPCs/100 km(2) (90% CI = 8.5-17.9 LEPCs/100 km(2)) and an abundance of 293.6 leks (90% CI = 213.9-403.0 leks) and 1,822.4 LEPCs (90% CI = 1,253.7-2,649.1 LEPCs) for our sampling frame. Our best model indicated that lek size and lek type (AIC(c) wt = 0.235) influenced lek detectability. Lek detectability was greater for larger leks and natural leks versus man-made leks. Our statewide survey efforts provide wildlife managers and biologists with population estimates, new lek locations, and areas to target for monitoring and conservation.

  6. Grasses for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising grasses for energy production. The aim of the report is to help interested parties decide if a location is suitable for planting energy grasses by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of energy grasses compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of energy grasses and notes that, in some situations, there will be considerable uncertainty in predictions of water use and the magnitude of the associated hydrological impacts.

  7. Implementation of an advanced digital feedwater control system at the Prairie Island nuclear generating station

    International Nuclear Information System (INIS)

    Paris, R.E.; Gaydos, K.A.; Hill, J.O.; Whitson, S.G.; Wirkkala, R.

    1990-05-01

    EPRI Project RP2126-4 was a cooperative effort between TVA, EPRI, and Westinghouse which resulted in the demonstration of a prototype of a full range, fully automatic feedwater control system, using fault tolerant digital technology, at the TVA Sequoyah simulator site. That prototype system also included advanced signal validation algorithms and an advanced man-machine interface that used CRT-based soft-control technology. The Westinghouse Advanced Digital Feedwater Control System (ADFCS) upgrade, which contains elements that were part of that prototype system, has since been installed at Northern States Power's Prairie Island Unit 2. This upgrade was very successful due to the use of an advanced control system design and the execution of a well coordinated joint effort between the utility and the supplier. The project experience is documented in this report to help utilities evaluate the technical implications of such a project. The design basis of the Prairie Island ADFCS signal validation for input signal failure fault tolerance is outlined first. Features of the industry-proven system control algorithms are then described. Pre-shipment hardware-in-loop and factory acceptance testing of the Prairie Island system are summarized. Post-shipment site testing, including preoperational and plant startup testing, is also summarized. Plant data from the initial system startup is included. The installation of the Prairie Island ADFCS is described, including both the feedwater control instrumentation and the control board interface. Modification of the plant simulator and operator and I ampersand C personnel training are also discussed. 6 refs., 14 figs., 3 tabs

  8. Environmental Assessment: Black-Tailed Prairie Dog Management Cannon Air Force Base and Melrose Air Force Range, New Mexico

    Science.gov (United States)

    2005-12-01

    requirements are met by metabolizing grazed vegetation. Prairie dogs dig burrows to an average depth of 2-3 meters with some tunnels interconnecting with...the potential to impact non- target species such as mice, kangaroo rats, and some songbirds. Establishing control zones at CAFB and MAFR could not be...Gutierrezia sarothrae), and Russian thistle (Salsola iberica). Water requirements are met by metabolizing grazed vegetation. Prairie dogs dig burrows

  9. Seeding method influences warm-season grass abundance and distribution but not local diversity in grassland restoration

    Science.gov (United States)

    Yurkonis, Kathryn A.; Wilsey, Brian J.; Moloney, Kirk A.; Drobney, Pauline; Larson, Diane L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands.

  10. Native fruit traits may mediate dispersal competition between native and non-native plants

    Directory of Open Access Journals (Sweden)

    Clare Aslan

    2012-02-01

    Full Text Available Seed disperser preferences may mediate the impact of invasive, non-native plant species on their new ecological communities. Significant seed disperser preference for invasives over native species could facilitate the spread of the invasives while impeding native plant dispersal. Such competition for dispersers could negatively impact the fitness of some native plants. Here, we review published literature to identify circumstances under which preference for non-native fruits occurs. The importance of fruit attraction is underscored by several studies demonstrating that invasive, fleshy-fruited plant species are particularly attractive to regional frugivores. A small set of studies directly compare frugivore preference for native vs. invasive species, and we find that different designs and goals within such studies frequently yield contrasting results. When similar native and non-native plant species have been compared, frugivores have tended to show preference for the non-natives. This preference appears to stem from enhanced feeding efficiency or accessibility associated with the non-native fruits. On the other hand, studies examining preference within existing suites of co-occurring species, with no attempt to maximize fruit similarity, show mixed results, with frugivores in most cases acting opportunistically or preferring native species. A simple, exploratory meta-analysis finds significant preference for native species when these studies are examined as a group. We illustrate the contrasting findings typical of these two approaches with results from two small-scale aviary experiments we conducted to determine preference by frugivorous bird species in northern California. In these case studies, native birds preferred the native fruit species as long as it was dissimilar from non-native fruits, while non-native European starlings preferred non-native fruit. However, native birds showed slight, non-significant preference for non-native fruit

  11. Developing native grass seed industries for revegetation in Australia and the western United States: A contrast in production and adoption

    Science.gov (United States)

    C. M. Waters; N. L. Shaw

    2003-01-01

    Globally, an increased desire to restore, rehabilitate or revegetate with native plants represents a shift toward more ecologically focused restoration goals. In the Australian rangelands, an increasing need to address revegetation is not being matched by an availability of seed material. This contrasts with the United States where a well-structured native seed...

  12. Phenotypic and genetic characterization of wildland collections of western and Searls prairie clovers for rangeland revegetation in the western USA

    Science.gov (United States)

    Kishor Bhattarai

    2010-01-01

    Western prairie clover [Dalea ornata (Douglas ex Hook.) Eaton & J. Wright] is a perennial legume that occurs in the northern Great Basin, Snake River Basin, and southern Columbia Plateau, whereas Searls prairie clover [Dalea searlsiae (A. Gray) Barneby], also a perennial legume, occurs in the southern Great Basin and surrounding areas. Understanding the genetic and...

  13. Sodium co-limits and catalyzes macronutrients in a prairie food web

    DEFF Research Database (Denmark)

    Kaspari, Michael; Roeder, Karl A.; Benson, Brittany

    2017-01-01

    Nitrogen and phosphorus frequently limit terrestrial plant production, but have a mixed record in regulating the abundance of terrestrial invertebrates. We contrasted four ways that Na could interact with an NP fertilizer to shape the plants and invertebrates of an inland prairie. We applied NP a...

  14. Assessing the Impact of Climate Variability on Cropland Productivity in the Canadian Prairies Using Time Series MODIS FAPAR

    Directory of Open Access Journals (Sweden)

    Taifeng Dong

    2016-03-01

    Full Text Available Cropland productivity is impacted by climate. Knowledge on spatial-temporal patterns of the impacts at the regional scale is extremely important for improving crop management under limiting climatic factors. The aim of this study was to investigate the effects of climate variability on cropland productivity in the Canadian Prairies between 2000 and 2013 based on time series of MODIS (Moderate Resolution Imaging Spectroradiometer FAPAR (Fraction of Absorbed Photosynthetically Active Radiation product. Key phenological metrics, including the start (SOS and end of growing season (EOS, and the cumulative FAPAR (CFAPAR during the growing season (between SOS and EOS, were extracted and calculated from the FAPAR time series with the Parametric Double Hyperbolic Tangent (PDHT method. The Mann-Kendall test was employed to assess the trends of cropland productivity and climatic variables, and partial correlation analysis was conducted to explore the potential links between climate variability and cropland productivity. An assessment using crop yield statistical data showed that CFAPAR can be taken as a surrogate of cropland productivity in the Canadian Prairies. Cropland productivity showed an increasing trend in most areas of Canadian Prairies, in general, during the period from 2000 to 2013. Interannual variability in cropland productivity on the Canadian Prairies was influenced positively by rainfall variation and negatively by mean air temperature.

  15. Droughts may increase susceptibility of prairie dogs to fleas: Incongruity with hypothesized mechanisms of plague cycles in rodents

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Long, Dustin H.; Gage, Kenneth L.; Antolin, Michael F.

    2016-01-01

    Plague is a reemerging, rodent-associated zoonosis caused by the flea-borne bacterium Yersinia pestis. As a vector-borne disease, rates of plague transmission may increase when fleas are abundant. Fleas are highly susceptible to desiccation under hot-dry conditions; we posited that their densities decline during droughts. We evaluated this hypothesis with black-tailed prairie dogs (Cynomys ludovicianus) in New Mexico, June–August 2010–2012. Precipitation was relatively plentiful during 2010 and 2012 but scarce during 2011, the driest spring–summer on record for the northeastern grasslands of New Mexico. Unexpectedly, fleas were 200% more abundant in 2011 than in 2010 and 2012. Prairie dogs were in 27% better condition during 2010 and 2012, and they devoted 287% more time to grooming in 2012 than in 2011. During 2012, prairie dogs provided with supplemental food and water were in 23% better condition and carried 40% fewer fleas. Collectively, these results suggest that during dry years, prairie dogs are limited by food and water, and they exhibit weakened defenses against fleas. Long-term data are needed to evaluate the generality of whether droughts increase flea densities and how changes in flea abundance during sequences of dry and wet years might affect plague cycles in mammalian hosts.

  16. Resource selection models are useful in predicting fine-scale distributions of black-footed ferrets in prairie dog colonies

    Science.gov (United States)

    Eads, David A.; Jachowski, David S.; Biggins, Dean E.; Livieri, Travis M.; Matchett, Marc R.; Millspaugh, Joshua J.

    2012-01-01

    Wildlife-habitat relationships are often conceptualized as resource selection functions (RSFs)—models increasingly used to estimate species distributions and prioritize habitat conservation. We evaluated the predictive capabilities of 2 black-footed ferret (Mustela nigripes) RSFs developed on a 452-ha colony of black-tailed prairie dogs (Cynomys ludovicianus) in the Conata Basin, South Dakota. We used the RSFs to project the relative probability of occurrence of ferrets throughout an adjacent 227-ha colony. We evaluated performance of the RSFs using ferret space use data collected via postbreeding spotlight surveys June–October 2005–2006. In home ranges and core areas, ferrets selected the predicted "very high" and "high" occurrence categories of both RSFs. Count metrics also suggested selection of these categories; for each model in each year, approximately 81% of ferret locations occurred in areas of very high or high predicted occurrence. These results suggest usefulness of the RSFs in estimating the distribution of ferrets throughout a black-tailed prairie dog colony. The RSFs provide a fine-scale habitat assessment for ferrets that can be used to prioritize releases of ferrets and habitat restoration for prairie dogs and ferrets. A method to quickly inventory the distribution of prairie dog burrow openings would greatly facilitate application of the RSFs.

  17. Native plant recovery in study plots after fennel (Foeniculum vulgare) control on Santa Cruz Island

    Science.gov (United States)

    Power, Paula; Stanley, Thomas R.; Cowan, Clark; Robertson, James R.

    2014-01-01

    Santa Cruz Island is the largest of the California Channel Islands and supports a diverse and unique flora which includes 9 federally listed species. Sheep, cattle, and pigs, introduced to the island in the mid-1800s, disturbed the soil, browsed native vegetation, and facilitated the spread of exotic invasive plants. Recent removal of introduced herbivores on the island led to the release of invasive fennel (Foeniculum vulgare), which expanded to become the dominant vegetation in some areas and has impeded the recovery of some native plant communities. In 2007, Channel Islands National Park initiated a program to control fennel using triclopyr on the eastern 10% of the island. We established replicate paired plots (seeded and nonseeded) at Scorpion Anchorage and Smugglers Cove, where notably dense fennel infestations (>10% cover) occurred, to evaluate the effectiveness of native seed augmentation following fennel removal. Five years after fennel removal, vegetative cover increased as litter and bare ground cover decreased significantly (P species increased at Scorpion Anchorage in both seeded and nonseeded plots. At Smugglers Cove, exotic cover decreased significantly (P = 0.0001) as native cover comprised of Eriogonum arborescensand Leptosyne gigantea increased significantly (P < 0.0001) in seeded plots only. Nonseeded plots at Smugglers Cove were dominated by exotic annual grasses, primarily Avena barbata. The data indicate that seeding with appropriate native seed is a critical step in restoration following fennel control in areas where the native seed bank is depauperate.

  18. Water resources of the Prairie Island Indian Reservation, Minnesota, 1994-97

    Science.gov (United States)

    Cowdery, Timothy K.

    1999-01-01

    This evaluation of the water resources on the Prairie Island Indian Reservation includes data collected from 8 surface-water sites and 22 wells during 1994–97 and historical data. The Mississippi River and the lakes and wetlands connected to it are separated from the Vermillion River and the lakes and wetlands connected to it by the surficial aquifer on Prairie Island and by Lock and Dam Number 3. These surface-water groups form hydrologic boundaries of the surficial aquifer. The aquifer is 130–200 feet thick, extends to bedrock (the Franconia Formation, which is also an aquifer), and is composed primarily of sand and gravel, but also contains thin, isolated lenses of finer-grained material. Flow in the surficial aquifer is normally from the Mississippi River to the Vermillion River (southwest). During spring snowmelt or heavy rains, a ground-water mound forms in the center of the study area and causes radial ground-water flow toward the surrounding surface waters.

  19. Climate variability and change and water supply on the Canadian Prairies

    International Nuclear Information System (INIS)

    Nicholaichuk, W.

    1991-01-01

    The status of water resources on the Canadian Prairies, the related results of recent climate change studies, and research needs, are reviewed. With climate change, it is expected that farming practices will be pushed northwards, the precipitation/evapotranspiration balance will shift, and changes will occur in streamflow, flood risk and water quality. While all models show a warming trend on the Prairies, they differ on changes that might be expected. Some indicate increases in precipitation while others indicate decreases. Required research needed to improve understanding of the issues includes: models to improve computations of evapotranspiration and evaporation over large areas; reliable models of glacier behavior and responses to climatic variation and change; improved areal measurements for precipitation, evaporation, soil moisture, groundwater and runoff; improvements in global circulation models that include feedback mechanisms based on physical land/atmosphere processes; validation of hydrological processes at different levels; and assessment of the role of landscape in regional processes under natural conditions and human influence. 6 refs., 1 tab

  20. VAM populations in relation to grass invasion associated with forest decline.

    Science.gov (United States)

    Vosatka, M; Cudlin, P; Mejstrik, V

    1991-01-01

    Spruce stands in Northern Bohemia forests, damaged to various degrees by industrial pollution, have shown establishment of grass cover following tree defoliation. Populations of vesicular-arbuscular mycorrhizal (VAM) fungi were studied under this grass cover in four permanent plots with spruce under different levels of pollution stress. Soil and root samples were collected in April and June within each plot as follows: (1) sites without grass, (2) sites with initial stages of grass invasion, and (3) sites with fully developed grass cover. In all plots, the highest number of propagules were recovered from samples taken from sites having full grass cover. Mycorrhizal infection of grass was highest in the plot with the severest pollution damage and lowest in the least damaged plot. The development of grass cover and VAM infection of grass increased with tree defoliation caused by air pollution.

  1. Grass survey of the Itremo Massif records endemic central highland ...

    African Journals Online (AJOL)

    Twenty species are endemic to the central highlands, and a further 1 4 species are restricted to Madagascar. Five ecological groups of grasses were identified in the Itremo Massif: shade species in gallery forests, open wet area species, fire grasses, anthropogenic disturbance associated grasses and rock-dwelling grasses.

  2. Rumen escape protein in grass and grass silage deterimened with a nylon bag and an enzymatic technique

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Mathijssen-Kamman, A.A.; Hindle, V.A.

    2004-01-01

    Rumen escape protein (REP) was determined for six grasses and 16 grass silages using a nylon bag technique and an in vitro technique using a proteolytic enzyme preparation of Streptomyces griseus. In vitro, the samples were incubated for 0, 1, 6 and 24 h. The highest correlation observed between

  3. EroGRASS : Failure of grass cover layers at seaward and shoreward dike slopes. design, construction and performance

    NARCIS (Netherlands)

    Verhagen, H.J.; Verheij, H.J.; Cao, T.M.; Dassanayake, D.; Roelvink, D.; Piontkowitz, T.

    2009-01-01

    A large number of the dikes in the North Sea and Baltic Sea regions are covered with grass that is exposed to hydraulic loading from waves and currents during storm surges. During previous storm surges the grass cover layers often showed large strength and remained undamaged. A clear physical

  4. Investigation of Desso GrassMaster® as application in hydraulic engineering

    NARCIS (Netherlands)

    Steeg, van der P.; Paulissen, M.P.C.P.; Roex, E.; Mommer, L.

    2015-01-01

    Dessa GrassMaster® is a reinforced grass system which is applied successfully on sports fields and enables to use a sports field more intensively than a normal grass field. In this report the possibility of an application of Dessa GrassMaster®in hydraulic conditions, with a focus on grass dikes, is

  5. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada's Prairie Pothole Region.

    Science.gov (United States)

    Main, Anson R; Headley, John V; Peru, Kerry M; Michel, Nicole L; Cessna, Allan J; Morrissey, Christy A

    2014-01-01

    Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola). The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concentrations in wetlands to measure four active ingredients (clothianidin, thiamethoxam, imidacloprid and acetamiprid). From 2009 to 2012, neonicotinoid use was increasing; by 2012, applications covered an estimated ∼11 million hectares (44% of Prairie cropland) with >216,000 kg of active ingredients. Thiamethoxam, followed by clothianidin, were the dominant seed treatments by mass and area. Areas of high neonicotinoid use were identified as high density canola or soybean production. Water sampled four times from 136 wetlands (spring, summer, fall 2012 and spring 2013) across four rural municipalities in Saskatchewan similarly revealed clothianidin and thiamethoxam in the majority of samples. In spring 2012 prior to seeding, 36% of wetlands contained at least one neonicotinoid. Detections increased to 62% in summer 2012, declined to 16% in fall, and increased to 91% the following spring 2013 after ice-off. Peak concentrations were recorded during summer 2012 for both thiamethoxam (range: Wetlands situated in barley, canola and oat fields consistently contained higher mean concentrations of neonicotinoids than in grasslands, but no individual crop singularly influenced overall detections or concentrations. Distribution maps indicate neonicotinoid use is increasing and becoming more widespread with concerns for environmental loading, while frequently detected neonicotinoid concentrations in Prairie wetlands suggest high persistence and transport into wetlands.

  6. Autonomic substrates of the response to pups in male prairie voles.

    Directory of Open Access Journals (Sweden)

    William M Kenkel

    Full Text Available Caregiving by nonparents (alloparenting and fathers is a defining aspect of human social behavior, yet this phenomenon is rare among mammals. Male prairie voles (Microtus ochrogaster spontaneously exhibit high levels of alloparental care, even in the absence of reproductive experience. In previous studies, exposure to a pup was selectively associated with increased activity in oxytocin and vasopressin neurons along with decreased plasma corticosterone. In the present study, physiological, pharmacological and neuroanatomical methods were used to explore the autonomic and behavioral consequences of exposing male prairie voles to a pup. Reproductively naïve, adult male prairie voles were implanted with radiotransmitters used for recording ECG, temperature and activity. Males responded with a sustained increase in heart-rate during pup exposure. This prolonged increase in heart rate was not explained by novelty, locomotion or thermoregulation. Although heart rate was elevated during pup exposure, respiratory sinus arrhythmia (RSA did not differ between these males and males exposed to control stimuli indicating that vagal inhibition of the heart was maintained. Blockade of beta-adrenergic receptors with atenolol abolished the pup-induced heart rate increase, implicating sympathetic activity in the pup-induced increase in heart rate. Blockade of vagal input to the heart delayed the males' approach to the pup. Increased activity in brainstem autonomic regulatory nuclei was also observed in males exposed to pups. Together, these findings suggest that exposure to a pup activates both vagal and sympathetic systems. This unique physiological state (i.e. increased sympathetic excitation of the heart, while maintaining some vagal cardiac tone associated with male caregiving behavior may allow males to both nurture and protect infants.

  7. Monkeypox disease transmission in an experimental setting: prairie dog animal model.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox virus (MPXV is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox. MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively. Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission.

  8. Interannual water-level fluctuations and the vegetation of prairie potholes: Potential impacts of climate change

    Science.gov (United States)

    van der Valk, Arnold; Mushet, David M.

    2016-01-01

    Mean water depth and range of interannual water-level fluctuations over wet-dry cycles in precipitation are major drivers of vegetation zone formation in North American prairie potholes. We used harmonic hydrological models, which require only mean interannual water depth and amplitude of water-level fluctuations over a wet–dry cycle, to examine how the vegetation zones in a pothole would respond to small changes in water depth and/or amplitude of water-level fluctuations. Field data from wetlands in Saskatchewan, North Dakota, and South Dakota were used to parameterize harmonic models for four pothole classes. Six scenarios in which small negative or positive changes in either mean water depth, amplitude of interannual fluctuations, or both, were modeled to predict if they would affect the number of zones in each wetland class. The results indicated that, in some cases, even small changes in mean water depth when coupled with a small change in amplitude of water-level fluctuations can shift a prairie pothole wetland from one class to another. Our results suggest that climate change could alter the relative proportion of different wetland classes in the prairie pothole region.

  9. Germination of Themeda triandra (Kangaroo grass) as affected by ...

    African Journals Online (AJOL)

    Low rainfall in range areas restricts germination, growth and development of majority of range grasses. However, germination and establishment potential of forage grasses vary and depends on environmental conditions. Themeda triandra is an excellent known grass to grow under different environmental conditions.

  10. The importance of cross-reactivity in grass pollen allergy

    Directory of Open Access Journals (Sweden)

    Aleksić Ivana

    2014-01-01

    Full Text Available According to the data obtained from in vivo and in vitro testing in Serbia, a significant number of patients have allergic symptoms caused by grass pollen. We examined the protein composition of grass pollens (Dactylis glomerata, Lolium perenne and Phleum pratense and cross-reactivity in patients allergic to grass pollen from our region. The grass pollen allergen extract was characterized by SDS-PAGE, while cross-reactivity of single grass pollens was revealed by immunoblot analysis. A high degree of cross-reactivity was demonstrated for all three single pollens in the sera of allergic patients compared to the grass pollen extract mixture. Confirmation of the existence of cross-reactivity between different antigenic sources facilitates the use of monovalent vaccines, which are easier to standardize and at the same time prevent further sensitization of patients and reduces adverse reactions. [Projekat Ministarstva nauke Republike Srbije, br. 172049 i br. 172024

  11. Thermogravimetric analysis of forest understory grasses

    Science.gov (United States)

    Thomas Elder; John S. Kush; Sharon M. Hermann

    2011-01-01

    Forest understory grasses are of significance in the initiation, establishment and maintenance of fire, whether used as a management tool or when occurring as wildfire. The fundamental thermal properties of such grasses are critical to their behavior in fire situations and have been investigated in the current work by the application of thermogravimetric analysis (TGA...

  12. Negative impacts of invasive plants on conservation of sensitive desert wildlife

    Science.gov (United States)

    Drake, K. Kristina; Bowen, Lizabeth; Nussear, Kenneth E.; Esque, Todd C.; Berger, Andrew J.; Custer, Nathan; Waters, Shannon C.; Johnson, Jay D.; Miles, A. Keith; Lewison, Rebecca L.

    2016-01-01

    Habitat disturbance from development, resource extraction, off-road vehicle use, and energy development ranks highly among threats to desert systems worldwide. In the Mojave Desert, United States, these disturbances have promoted the establishment of nonnative plants, so that native grasses and forbs are now intermixed with, or have been replaced by invasive, nonnative Mediterranean grasses. This shift in plant composition has altered food availability for Mojave Desert tortoises (Gopherus agassizii), a federally listed species. We hypothesized that this change in forage would negatively influence the physiological ecology, immune competence, and health of neonatal and yearling tortoises. To test this, we monitored the effects of diet on growth, body condition, immunological responses (measured by gene transcription), and survival for 100 captive Mojave tortoises. Tortoises were assigned to one of five diets: native forbs, native grass, invasive grass, and native forbs combined with either the native or invasive grass. Tortoises eating native forbs had better body condition and immune functions, grew more, and had higher survival rates (>95%) than tortoises consuming any other diet. At the end of the experiment, 32% of individuals fed only native grass and 37% fed only invasive grass were found dead or removed from the experiment due to poor body conditions. In contrast, all tortoises fed either the native forb or combined native forb and native grass diets survived and were in good condition. Health and body condition quickly declined for tortoises fed only the native grass (Festuca octoflora) or invasive grass (Bromus rubens) with notable loss of fat and muscle mass and increased muscular atrophy. Bromus rubens seeds were found embedded in the oral mucosa and tongue in most individuals eating that diet, which led to mucosal inflammation. Genes indicative of physiological, immune, and metabolic functions were transcribed at lower levels for individuals fed B

  13. Names of Southern African grasses: Name changes and additional ...

    African Journals Online (AJOL)

    The main reasons for changes in botanical names are briefly reviewed, with examples from the lists. At this time, about 1040 grass species and subspecific taxa are recognized in the subcontinent. Keywords: botanical research; botanical research institute; botany; grass; grasses; identification; name change; nomenclature; ...

  14. Forage yield and nitrogen nutrition dynamics of warm-season native forage genotypes under two shading levels and in full sunlight

    OpenAIRE

    Barro,Raquel Santiago; Varella,Alexandre Costa; Lemaire,Gilles; Medeiros,Renato Borges de; Saibro,João Carlos de; Nabinger,Carlos; Bangel,Felipe Villamil; Carassai,Igor Justin

    2012-01-01

    The successful achievement of a highly productive understorey pasture in silvopastoral systems depends on the use of well-adapted forage genotypes, showing good agronomic performance and persistence under shading and grazing. In this study, the herbage dry matter yield (DMY) and nitrogen nutrition dynamics were determined in three native warm-season grasses (Paspalum regnellii, Paspalum dilatatum and Paspalum notatum) and a forage legume (Arachis pintoi) under two shading levels compared with...

  15. Do interactions of land use and climate affect productivity of waterbirds and prairie-pothole wetlands?

    Science.gov (United States)

    Anteau, Michael J.

    2012-01-01

    Availability of aquatic invertebrates on migration and breeding areas influences recruitment of ducks and shorebirds. In wetlands of Prairie Pothole Region (PPR), aquatic invertebrate production primarily is driven by interannual fluctuations of water levels in response to wet-dry cycles in climate. However, this understanding comes from studying basins that are minimally impacted by agricultural landscape modifications. In the past 100–150 years, a large proportion of wetlands within the PPR have been altered; often water was drained from smaller to larger wetlands at lower elevations creating consolidated, interconnected basins. Here I present a case study and I hypothesize that large basins receiving inflow from consolidation drainage have reduced water-level fluctuations in response to climate cycles than those in undrained landscapes, resulting in relatively stable wetlands that have lower densities of invertebrate forage for ducks and shorebirds and also less foraging habitat, especially for shorebirds. Furthermore, stable water-levels and interconnected basins may favor introduced or invasive species (e.g., cattail [Typha spp.] or fish) because native communities "evolved" in a dynamic and isolated system. Accordingly, understanding interactions between water-level fluctuations and landscape modifications is a prerequisite step to modeling effects of climate change on wetland hydrology and productivity and concomitant recruitment of waterbirds.

  16. Status and management of non-native plant invasion in three of the largest national parks in the United States

    Directory of Open Access Journals (Sweden)

    Scott Abella

    2015-06-01

    Full Text Available Globally, invasion by non-native plants threatens resources that nature reserves are designated to protect. We assessed the status of non-native plant invasion on 1,662, 0.1-ha plots in Death Valley National Park, Mojave National Preserve, and Lake Mead National Recreation Area. These parks comprise 2.5 million ha, 23% of the national park land in the contiguous USA. At least one non-native species inhabited 82% of plots. Thirty-one percent of plots contained one non-native species, 30% two, 17% three, and 4% four to ten non-native species. Red brome (Bromus rubens, an ‘ecosystem engineer’ that alters fire regimes, was most widespread, infesting 60% of plots. By identifying frequency of species through this assessment, early detection and treatment can target infrequent species or minimally invaded sites, while containment strategies could focus on established invaders. We further compared two existing systems for prioritizing species for management and found that a third of species on plots had no rankings available. Moreover, rankings did not always agree between ranking systems for species that were ranked. Presence of multiple non-native species complicates treatment, and while we found that 40% of plots contained both forb and grass invaders, exploiting accelerated phenology of non-natives (compared to native annuals might help manage multi-species invasions. Large sizes of these parks and scale of invasion are formidable challenges for management. Yet, precisely because of their size, these reserves represent opportunities to conserve large landscapes of native species by managing non-native plant invasions.

  17. Effects of shallow natural gas well structures and associated roads on grassland songbird reproductive success in Alberta, Canada.

    Directory of Open Access Journals (Sweden)

    Jenny Yoo

    Full Text Available Grassland songbird populations across North America have experienced dramatic population declines due to habitat loss and degradation. In Canada, energy development continues to fragment and disturb prairie habitat, but effects of oil and gas development on reproductive success of songbirds in North American mixed-grass prairies remains largely unknown. From 2010-2012, in southeastern Alberta, Canada, we monitored 257 nests of two ground-nesting grassland songbird species, Savannah sparrow (Passerculus sandwichensis and chestnut-collared longspur (Calcarius ornatus. Nest locations varied with proximity to and density of conventional shallow gas well structures and associated roads in forty-two 258-ha mixed-grass prairie sites. We estimated the probabilities of nest success and clutch size relative to gas well structures and roads. There was little effect of distance to or density of gas well structure on nest success; however, Savannah sparrow experienced lower nest success near roads. Clutch sizes were lower near gas well structures and cattle water sources. Minimizing habitat disturbance surrounding gas well structures, and reducing abundance of roads and trails, would help minimize impacts on reproductive success for some grassland songbirds.

  18. The indirect effects of cheatgrass invasion: Grasshopper herbivory on native grasses determined by neighboring cheatgrass abundance

    Science.gov (United States)

    Julie Beckstead; Susan E. Meyer; Carol K. Augsperger

    2008-01-01

    Invasion biology has focused on the direct effects of plant invasion and has generally overlooked indirect interactions. Here we link theories of invasion biology and herbivory to explore an indirect effect of one invading species on associational herbivory (the effect of neighboring plants on herbivory) of native species. We studied a Great Basin shadscale (...

  19. Non-Native & Native English Teachers

    Directory of Open Access Journals (Sweden)

    İrfan Tosuncuoglu

    2017-12-01

    Full Text Available In many countries the primary (mother tongue language is not English but there is a great demand for English language teachers all over the world. The demand in this field is try to be filled largely by non-native English speaking teachers who have learned English in the country or abroad, or from another non native English peaking teachers. In some countries, particularly those where English speaking is a a sign of status, the students prefer to learn English from a native English speaker. The perception is that a non-native English speaking teacher is a less authentic teacher than a native English speaker and their instruction is not satifactory in some ways. This paper will try to examine the literature to explore whether there is a difference in instructional effectiveness between NNESTs and native English teachers.

  20. The parasitic eyeworm Oxyspirura petrowi as a possible cause of decline in the threatened lesser prairie-chicken (Tympanuchus pallidicinctus.

    Directory of Open Access Journals (Sweden)

    Nicholas R Dunham

    Full Text Available Lesser prairie-chickens (Tympanuchus pallidicinctus have been declining range wide since the early 1900's despite efforts to establish conservation and improve their habitat. In early 2014, the lesser prairie-chicken was listed as a threatened species under the U.S Endangered Species Act and the need to find out why they are declining is more important than ever. Nine hunter shot lesser prairie-chickens were donated and sampled for the presence or absence of the eyeworm Oxyspirura petrowi, a known parasite that can cause damage to the eye of its host, and common environmental contaminants. Eyeworm infection was found in 7 of 9 birds (78% infection rate with an infection range between 0-16 O. petrowi per bird. Breast, liver, and fat tissue samples from the lesser prairie-chickens were analyzed for the frequency of 20 organochlorine pesticides. Femurs and livers were also tested on these birds for metal contaminants. Pesticides were found in several samples above the detection limits but were still in the low ng/g range. Notable was the ubiquitous presence of endrin aldehyde across all tissues. One femur showed 5.66 µg/g of lead (Pb but this is still relatively low. No liver samples had elevated mercury (Hg above detection limits. The presence of these organochlorines is consistent with the historic use of pesticides in this region. With pesticide and metals found in such low levels and parasitic nematode infections at rather high levels, it is recommended that these parasites be further evaluated as a contributing factor to the decline of the lesser prairie-chicken.

  1. Diversity and biomass of native macrophytes are negatively related to dominance of an invasive Poaceae in Brazilian sub-tropical streams

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Gonçalves Fernandes

    2013-06-01

    Full Text Available Besides exacerbated exploitation, pollution, flow alteration and habitats degradation, freshwater biodiversity is also threatened by biological invasions. This paper addresses how native aquatic macrophyte communities are affected by the non-native species Urochloa arrecta, a current successful invader in Brazilian freshwater systems. We compared the native macrophytes colonizing patches dominated and non-dominated by this invader species. We surveyed eight streams in Northwest Paraná State (Brazil. In each stream, we recorded native macrophytes' richness and biomass in sites where U. arrecta was dominant and in sites where it was not dominant or absent. No native species were found in seven, out of the eight investigated sites where U. arrecta was dominant. Thus, we found higher native species richness, Shannon index and native biomass values in sites without dominance of U. arrecta than in sites dominated by this invader. Although difficult to conclude about causes of such differences, we infer that the elevated biomass production by this grass might be the primary reason for alterations in invaded environments and for the consequent impacts on macrophytes' native communities. However, biotic resistance offered by native richer sites could be an alternative explanation for our results. To mitigate potential impacts and to prevent future environmental perturbations, we propose mechanical removal of the invasive species and maintenance or restoration of riparian vegetation, for freshwater ecosystems have vital importance for the maintenance of ecological services and biodiversity and should be preserved.

  2. Flea abundance, diversity, and plague in Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in northern New Mexico

    Science.gov (United States)

    Megan M. Friggens; Robert R. Parmenter; Michael Boyden; Paulette L. Ford; Kenneth Gage; Paul Keim

    2010-01-01

    Plague, a flea-transmitted infectious disease caused by the bacterium Yersinia pestis, is a primary threat to the persistence of prairie dog populations (Cynomys spp.). We conducted a 3-yr survey (2004-2006) of fleas from Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in Valles Caldera National Preserve in New Mexico. Our...

  3. Soil nutrient content, soil moisture and yield of Katumani maize in a ...

    African Journals Online (AJOL)

    Administrator

    natural ecosystem of mesquite trees than in arable fields of maize and beans in the central highlands of Mexico. They attributed this to the higher ... Carbon and nitrogen mineralization in tall grass prairie and agricultural soil profiles. Soil. Sci.

  4. Dose-response relationship of a new Timothy grass pollen allergoid in comparison with a 6-grass pollen allergoid.

    Science.gov (United States)

    Pfaar, O; Hohlfeld, J M; Al-Kadah, B; Hauswald, B; Homey, B; Hunzelmann, N; Schliemann, S; Velling, P; Worm, M; Klimek, L

    2017-11-01

    Subcutaneous allergen immunotherapy with grass pollen allergoids has been proven to be effective and safe in the treatment of patients with allergic rhinoconjunctivitis. Based on the extensive cross-reactivity among Pooideae species, it has been suggested that grass pollen extracts could be prepared from a single species, rather than from a multiple species mixture. To find the optimal dose of a Phleum pratense (P. pratense) allergoid preparation and compare its efficacy and safety to a 6-grass pollen allergoid preparation. In this double-blind, placebo-controlled study (EudraCT: 2011-000674-58), three doses of P. pratense allergoid (1800 therapeutic units (TU), standard-dose 6000 TU and 18 000 TU) were compared with placebo and the marketed 6-grass pollen allergoid (6000 TU). In a pre-seasonal dosing regimen, 102 patients were randomized to five treatment groups and received nine subcutaneous injections. The primary efficacy endpoint was the change in weal size (late-phase reaction [LPR]) in response to the intracutaneous testing (ICT) before and after treatment, comparing the active allergoids to placebo. Secondary outcomes were the change in Total Nasal Symptom Score (TNSS) assessed in the allergen exposure chamber (AEC), the changes in P. pratense-serum-specific IgG 4 and the incidence of adverse events (AEs). All three doses of the P. pratense and the 6-grass pollen allergoid preparations were significantly superior to placebo for the primary outcome, whereas there were no significant differences in the change in TNSS. Compared to the standard-dose, the high-dose of P. pratense did not produce any additional significant benefit, but showed a slight increase in AEs. Yet this increase in AEs was lower than for the 6-grass pollen preparation. The standard-dose of the new P. pratense allergoid was comparable to the marketed 6-grass pollen preparation at equal dose for the parameters measured. © 2017 The Authors. Clinical & Experimental Allergy Published by John

  5. GRASS GIS: The first Open Source Temporal GIS

    Science.gov (United States)

    Gebbert, Sören; Leppelt, Thomas

    2015-04-01

    GRASS GIS is a full featured, general purpose Open Source geographic information system (GIS) with raster, 3D raster and vector processing support[1]. Recently, time was introduced as a new dimension that transformed GRASS GIS into the first Open Source temporal GIS with comprehensive spatio-temporal analysis, processing and visualization capabilities[2]. New spatio-temporal data types were introduced in GRASS GIS version 7, to manage raster, 3D raster and vector time series. These new data types are called space time datasets. They are designed to efficiently handle hundreds of thousands of time stamped raster, 3D raster and vector map layers of any size. Time stamps can be defined as time intervals or time instances in Gregorian calendar time or relative time. Space time datasets are simplifying the processing and analysis of large time series in GRASS GIS, since these new data types are used as input and output parameter in temporal modules. The handling of space time datasets is therefore equal to the handling of raster, 3D raster and vector map layers in GRASS GIS. A new dedicated Python library, the GRASS GIS Temporal Framework, was designed to implement the spatio-temporal data types and their management. The framework provides the functionality to efficiently handle hundreds of thousands of time stamped map layers and their spatio-temporal topological relations. The framework supports reasoning based on the temporal granularity of space time datasets as well as their temporal topology. It was designed in conjunction with the PyGRASS [3] library to support parallel processing of large datasets, that has a long tradition in GRASS GIS [4,5]. We will present a subset of more than 40 temporal modules that were implemented based on the GRASS GIS Temporal Framework, PyGRASS and the GRASS GIS Python scripting library. These modules provide a comprehensive temporal GIS tool set. The functionality range from space time dataset and time stamped map layer management

  6. Social isolation disrupts innate immune responses in both male and female prairie voles and enhances agonistic behavior in female prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Scotti, Melissa-Ann L; Carlton, Elizabeth D; Demas, Gregory E; Grippo, Angela J

    2015-04-01

    Psychosocial stress, specifically social isolation, is an important risk factor for the development of a variety of psychological and physiological disorders. Changes in immune function have been hypothesized to mediate this relationship. The current study used the prairie vole (Microtus ochrogaster) model of isolation-induced depressive-like behavior to test whether social isolation led to changes in innate immune function. Specifically, we used hemolytic complement (CH50) and bacteria killing assays to assess innate immunity, in paired or singly housed male and female prairie voles. Further, in a second experiment we tested whether females exposed to an additional short-term social stressor, a resident-intruder trial, would show changes in immune function as well as enhanced hypothalamic pituitary axis (HPA) activity as indicated by elevated plasma corticosterone levels. Socially isolated animals, regardless of sex, had significantly reduced CH50s and bacteria killing ability. Socially isolated females exposed to a resident-intruder stressor also showed reduced CH50s and bacteria killing ability as well as significant increases in aggressive behavior, however, they did not show elevated circulating corticosterone levels. Collectively, these data will help inform our understanding of the relationship between social isolation and physiological and psychological health. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. MACRO NUTRIENTS UPTAKE OF FORAGE GRASSES AT DIFFERENT SALINITY STRESSES

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The high concentration of sodium chloride (NaCl in saline soils has negative effects on the growth ofmost plants. The experiment was designed to evaluate macro nutrient uptake (Nitrogen, Phosphorus andPotassium of forage grasses at different NaCl concentrations in growth media. The experiment wasconducted in a greenhouse at Forage Crops Laboratory of Animal Agriculture Faculty, Diponegoro University.Split plot design was used to arrange the experiment. The main plot was forage grasses (Elephant grass(Pennisetum purpureum and King grass (Pennisetum hybrida. The sub plot was NaCl concentrationin growth media (0, 150, and 300 mM. The nitrogen (N, phosphorus (P and potassium (K uptake in shootand root of plant were measured. The result indicated increasing NaCl concentration in growth mediasignificantly decreased the N, P and K uptake in root and shoot of the elephant grass and king grass. Thepercentage reduction percentage of N, P and K uptake at 150 mM and 300 mM were high in elephant grassand king grass. It can be concluded that based on nitrogen, phosphorus and potassium uptake, elephantgrass and king grass are not tolerant to strong and very strong saline soil.

  8. Grasses as invasive plants in South Africa revisited: Patterns, pathways and management

    Directory of Open Access Journals (Sweden)

    Vernon Visser

    2017-03-01

    Full Text Available Background: In many countries around the world, the most damaging invasive plant species are grasses. However, the status of grass invasions in South Africa has not been documented recently. Objectives: To update Sue Milton’s 2004 review of grasses as invasive alien plants in South Africa, provide the first detailed species level inventory of alien grasses in South Africa and assess the invasion dynamics and management of the group. Method: We compiled the most comprehensive inventory of alien grasses in South Africa to date using recorded occurrences of alien grasses in the country from various literature and database sources. Using historical literature, we reviewed past efforts to introduce alien grasses into South Africa. We sourced information on the origins, uses, distributions and minimum residence times to investigate pathways and patterns of spatial extent. We identified alien grasses in South Africa that are having environmental and economic impacts and determined whether management options have been identified, and legislation created, for these species. Results: There are at least 256 alien grass species in the country, 37 of which have become invasive. Alien grass species richness increased most dramatically from the late 1800s to about 1940. Alien grass species that are not naturalised or invasive have much shorter residence times than those that have naturalised or become invasive. Most grasses were probably introduced for forage purposes, and a large number of alien grass species were trialled at pasture research stations. A large number of alien grass species in South Africa are of Eurasian origin, although more recent introductions include species from elsewhere in Africa and from Australasia. Alien grasses are most prevalent in the south-west of the country, and the Fynbos Biome has the most alien grasses and the most widespread species. We identified 11 species that have recorded environmental and economic impacts in the

  9. Anthracnose disease of switchgrass caused by the novel fungal species Colletotrichum navitas.

    Science.gov (United States)

    Crouch, Jo Anne; Beirn, Lisa A; Cortese, Laura M; Bonos, Stacy A; Clarke, Bruce B

    2009-12-01

    In recent years perennial grasses such as the native tallgrass prairie plant Panicum virgatum (switchgrass) have taken on a new role in the North American landscape as a plant-based source of renewable energy. Because switchgrass is a native plant, it has been suggested that disease problems will be minimal, but little research in this area has been conducted. Recently, outbreaks of switchgrass anthracnose disease have been reported from the northeastern United States. Incidences of switchgrass anthracnose are known in North America since 1886 through herbarium specimens and disease reports, but the causal agent of this disease has never been experimentally determined or taxonomically evaluated. In the present work, we evaluate the causal agent of switchgrass anthracnose, a new species we describe as Colletotrichum navitas (navitas=Latin for energy). Multilocus molecular phylogenetics and morphological characters show C. navitas is a novel species in the falcate-spored graminicolous group of the genus Colletotrichum; it is most closely related to the corn anthracnose pathogen Colletotrichum graminicola. We present a formal description and illustrations for C. navitas and provide experimental confirmation that this organism is responsible for switchgrass anthracnose disease.

  10. Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole.

    Science.gov (United States)

    Modi, Meera E; Inoue, Kiyoshi; Barrett, Catherine E; Kittelberger, Kara A; Smith, Daniel G; Landgraf, Rainer; Young, Larry J

    2015-07-01

    The central melanocortin (MC) system has been widely studied for its effects on food intake and sexual behavior. However, the MC system, and more specifically the MC4 receptor (MC4R), also interacts with neurochemical systems that regulate socioemotional behaviors, including oxytocin (OT) and dopamine. In monogamous prairie voles, OT and dopamine interact to promote partner preference formation, a laboratory measure of an enduring social bond between mates. Here we investigated the effects of MC receptor activation on partner preference formation in prairie voles, as well as the interaction between the MC and OT systems during this process. Peripheral administration of the brain penetrant MC3/4R receptor peptide agonist, Melanotan II (MTII), and the highly selective, small-molecule MC4R agonist, Pf-446687, enhanced partner preference formation in the prairie vole, but not in the non-monogamous meadow vole. MTII-induced partner preferences were enduring, as they were present 1 week after drug manipulation. The prosocial effects of MCR agonists may be mediated, in part, through modulation of OT, as coadministration of an OT receptor antagonist prevented MTII-induced partner preferences. MTII also selectively activated hypothalamic OT neurons and potentiated central OT release. As OT has been shown to enhance some aspects of social cognition in humans, our data suggest that the MC4R may be a viable therapeutic target for enhancing social function in psychiatric disorders, including autism spectrum disorders and schizophrenia, potentially through activation of the OT system.

  11. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada's Prairie Pothole Region.

    Directory of Open Access Journals (Sweden)

    Anson R Main

    Full Text Available Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola. The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concentrations in wetlands to measure four active ingredients (clothianidin, thiamethoxam, imidacloprid and acetamiprid. From 2009 to 2012, neonicotinoid use was increasing; by 2012, applications covered an estimated ∼11 million hectares (44% of Prairie cropland with >216,000 kg of active ingredients. Thiamethoxam, followed by clothianidin, were the dominant seed treatments by mass and area. Areas of high neonicotinoid use were identified as high density canola or soybean production. Water sampled four times from 136 wetlands (spring, summer, fall 2012 and spring 2013 across four rural municipalities in Saskatchewan similarly revealed clothianidin and thiamethoxam in the majority of samples. In spring 2012 prior to seeding, 36% of wetlands contained at least one neonicotinoid. Detections increased to 62% in summer 2012, declined to 16% in fall, and increased to 91% the following spring 2013 after ice-off. Peak concentrations were recorded during summer 2012 for both thiamethoxam (range:

  12. Lessons learned in managing alfalfa-grass mixtures

    Science.gov (United States)

    Grass-alfalfa mixtures have a number of benefits that make them attractive to producers. However, they can be problematic to establish and maintain. Research programs have made progress in understanding the benefits and challenges of alfalfa-grass mixtures. Mixtures may have greater winter survival ...

  13. Status of black-tailed prairie dog (Cynomys ludovicianus) in Sonora, Mexico

    Science.gov (United States)

    Reyna A. Castillo-Gamez; Rafael Arenas-Wong; Luis Castillo-Quijada; Verónica Coronado-Peraza; Abigail Enríquez-Munguia; Mirna Federico-Ortega; Alejandra García-Urrutia; Alba Lozano-Gámez; Romeo Méndez-Estrella; Laura Ochoa-Figueroa; J. R. Romo-León; Guy Kruse-Llergo; Iván Parra-Salazar

    2005-01-01

    Prairie dog is a keystone species throughout the habitat where it occurs, but its populations have declined about 98% in the last century. This species has been considered of international importance for the United States of America, Canada, and Mexico. Only two populations are recorded for Mexico, and the westernmost (isolated by Sierra Madre...

  14. Vegetation dynamics of restored and remnant Willamette Valley, OR wet prairie wetlands

    Science.gov (United States)

    Wet prairie wetlands are now one of the rarest habitat types in the Willamette Valley of Oregon, USA. Less than two percent of their historic extent remains, with most having been converted into agricultural fields (Christy and Alverson 2011, ONHP 1983). This habitat is the obl...

  15. Gallbladder contractility and mucus secretion after cholesterol feeding in the prairie dog

    NARCIS (Netherlands)

    Li, Y. F.; Moody, F. G.; Weisbrodt, N. W.; Zalewsky, C. A.; Coelho, J. C.; Senninger, N.; Gouma, D.

    1986-01-01

    The purpose of our study was to evaluate changes in gallbladder contractility and mucus secretion in vitro during the early stages of gallstone formation in prairie dogs. Thirty-two animals were divided into five groups. Control animals were fed a trace cholesterol diet. Experimental animals were

  16. Variation in important pasture grasses: I. Morphological and ...

    African Journals Online (AJOL)

    Variation in important pasture grasses: I. Morphological and geographical variation. ... Seven species are important pasture grasses throughout the western Transvaal, Orange Free State, northern Cape and Natal. ... Language: English.

  17. Groundwater connectivity of upland-embedded wetlands in the Prairie Pothole Region

    Science.gov (United States)

    Neff, Brian; Rosenberry, Donald O.

    2018-01-01

    Groundwater connections from upland-embedded wetlands to downstream waterbodies remain poorly understood. In principle, water from upland-embedded wetlands situated high in a landscape should flow via groundwater to waterbodies situated lower in the landscape. However, the degree of groundwater connectivity varies across systems due to factors such as geologic setting, hydrologic conditions, and topography. We use numerical models to evaluate the conditions suitable for groundwater connectivity between upland-embedded wetlands and downstream waterbodies in the prairie pothole region of North Dakota (USA). Results show groundwater connectivity between upland-embedded wetlands and other waterbodies is restricted when these wetlands are surrounded by a mounding water table. However, connectivity exists among adjacent upland-embedded wetlands where water–table mounds do not form. In addition, the presence of sand layers greatly facilitates groundwater connectivity of upland-embedded wetlands. Anisotropy can facilitate connectivity via groundwater flow, but only if it becomes unrealistically large. These findings help consolidate previously divergent views on the significance of local and regional groundwater flow in the prairie pothole region.

  18. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations

    Science.gov (United States)

    Nemec, Kristine T.; Allen, Craig R.; Danielson, Stephen D.; Helzer, Christopher J.

    2014-01-01

    In recent decades, agricultural producers and non-governmental organizations have restored thousands of hectares of former cropland in the central United States with native grasses and forbs. However, the ability of these grassland restorations to attract predatory invertebrates has not been well documented, even though predators provide an important ecosystem service to agricultural producers by naturally regulating herbivores. This study assessed the effects of plant richness and seeding density on the richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground (ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots were planted to six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and high seeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetles were sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spiders showed no response to seed mix richness or seeding density but there was a significant positive effect of richness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetle and spider species richness and Shannon–Weaver diversity. These results may be related to differences in the plant species composition and relative amount of grass basal cover among the treatments rather than richness.

  19. Evaluation of monkeypox virus infection of prairie dogs (Cynomys ludovicianus) using in vivo bioluminescent imaging

    Science.gov (United States)

    Falendysz, Elizabeth A.; Londoño-Navas, Angela M.; Meteyer, Carol U.; Pussini, Nicola; Lopera, Juan G.; Osorio, Jorge E.; Rocke, Tonie E.

    2014-01-01

    Monkeypox (MPX) is a re-emerging zoonotic disease that is endemic in Central and West Africa, where it can cause a smallpox-like disease in humans. Despite many epidemiologic and field investigations of MPX, no definitive reservoir species has been identified. Using recombinant viruses expressing the firefly luciferase (luc) gene, we previously demonstrated the suitability of in vivo bioluminescent imaging (BLI) to study the pathogenesis of MPX in animal models. Here, we evaluated BLI as a novel approach for tracking MPX virus infection in black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs were affected during a multistate outbreak of MPX in the US in 2003 and have since been used as an animal model of this disease. Our BLI results were compared with PCR and virus isolation from tissues collected postmortem. Virus was easily detected and quantified in skin and superficial tissues by BLI before and during clinical phases, as well as in subclinical secondary cases, but was not reliably detected in deep tissues such as the lung. Although there are limitations to viral detection in larger wild rodent species, BLI can enhance the use of prairie dogs as an animal model of MPX and can be used for the study of infection, disease progression, and transmission in potential wild rodent reservoirs.

  20. Partner Loss in Monogamous Rodents: Modulation of Pain and Emotional Behavior in Male Prairie Voles.

    Science.gov (United States)

    Osako, Yoji; Nobuhara, Reiko; Arai, Young-Chang P; Tanaka, Kenjiro; Young, Larry J; Nishihara, Makoto; Mitsui, Shinichi; Yuri, Kazunari

    2018-01-01

    Pain is modulated by psychosocial factors, and social stress-induced hyperalgesia is a common clinical symptom in pain disorders. To provide a new animal model for studying social modulation of pain, we examined pain behaviors in monogamous prairie voles experiencing partner loss. After cohabitation with novel females, males (n = 79) were divided into two groups on the basis of preference test scores. Half of the males of each group were separated from their partner (loss group), whereas the other half remained paired (paired group). Thus, males from both groups experienced social isolation. Open field tests, plantar tests, and formalin tests were then conducted on males to assess anxiety and pain-related behaviors. Loss males showing partner preferences (n = 20) displayed a significant increase in anxiety-related behavior in the open-field test (central area/total distance: 13.65% [1.58%] for paired versus 6.45% [0.87%] for loss; p partner preferences (r = 0.15). Results indicate that social bonds and their disruption, but not social housing without bonding followed by isolation, modulate pain and emotion in male prairie voles. The prairie vole is a useful model for exploring the neural mechanisms by which social relationships contribute to pain and nociceptive processing in humans.

  1. Genome-Wide Analysis of Syntenic Gene Deletion in the Grasses

    Science.gov (United States)

    Schnable, James C.; Freeling, Michael; Lyons, Eric

    2012-01-01

    The grasses, Poaceae, are one of the largest and most successful angiosperm families. Like many radiations of flowering plants, the divergence of the major grass lineages was preceded by a whole-genome duplication (WGD), although these events are not rare for flowering plants. By combining identification of syntenic gene blocks with measures of gene pair divergence and different frequencies of ancient gene loss, we have separated the two subgenomes present in modern grasses. Reciprocal loss of duplicated genes or genomic regions has been hypothesized to reproductively isolate populations and, thus, speciation. However, in contrast to previous studies in yeast and teleost fishes, we found very little evidence of reciprocal loss of homeologous genes between the grasses, suggesting that post-WGD gene loss may not be the cause of the grass radiation. The sets of homeologous and orthologous genes and predicted locations of deleted genes identified in this study, as well as links to the CoGe comparative genomics web platform for analyzing pan-grass syntenic regions, are provided along with this paper as a resource for the grass genetics community. PMID:22275519

  2. Responses to invasion and invader removal differ between native and exotic plant groups in a coastal dune.

    Science.gov (United States)

    Magnoli, Susan M; Kleinhesselink, Andrew R; Cushman, J Hall

    2013-12-01

    The spread of exotic, invasive species is a global phenomenon that is recognized as a major source of environmental change. Although many studies have addressed the effects of exotic plants on the communities they invade, few have quantified the effects of invader removal on plant communities, or considered the degree to which different plant groups vary in response to invasion and invader removal. We evaluated the effects of an exotic succulent, iceplant (Carpobrotus edulis), on a coastal dune plant community in northern California, as well as the community responses to its removal. To assess possible mechanisms by which iceplant affects other plants, we also evaluated its above- and belowground influences on the germination and growth of a dominant exotic annual grass, Bromus diandrus. We found that iceplant invasion was associated with reduced native plant cover as well as increased cover and density of some exotic plants-especially exotic annual grasses. However, iceplant removal did not necessarily lead to a reversal of these effects: removal increased the cover and density of both native and exotic species. We also found that B. diandrus grown in iceplant patches, or in soil where iceplant had been removed, had poorer germination and growth than B. diandrus grown in soil not influenced by iceplant. This suggests that the influence of iceplant on this dune plant community occurs, at least in part, due to belowground effects, and that these effects remain after iceplant has been removed. Our study demonstrates the importance of considering how exotic invasive plants affect not only native species, but also co-occurring exotic taxa. It also shows that combining observational studies with removal experiments can lead to important insights into the influence of invaders and the mechanisms of their effects.

  3. Sediment removal by prairie filter strips in row-cropped ephemeral watersheds

    Science.gov (United States)

    Matthew J. Helmers; Xiaobo Zhou; Heidi Asbjornsen; Randy Kolka; Mark D. Tomer; Richard M. Cruse

    2012-01-01

    Twelve small watersheds in central Iowa were used to evaluate the eff ectiveness of prairie filter strips (PFS) in trapping sediment from agricultural runoff. Four treatments with PFS of different size and location (100% rowcrop, 10% PFS of total watershed area at footslope, 10% PFS at footslope and in contour strips, 20% PFS at footslope and in contour strips)...

  4. Size and shape information serve as labels in the alarm calls of Gunnison's prairie dogs Cynomys gunnisoni

    Directory of Open Access Journals (Sweden)

    C. N. SLOBODCHIKOFF, William R. BRIGGS, Patricia A DENNIS, Anne-Marie C. HODGE

    2012-10-01

    Full Text Available Some animals have the capacity to produce different alarm calls for terrestrial and aerial predators. However, it is not clear what cognitive processes are involved in generating these calls. One possibility is the position of the predator: Anything on the ground receives a terrestrial predator call, and anything in the air receives an aerial predator call. Another possibility is that animals are able to recognize the physical features of predators and incorporate those into their calls. As a way of elucidating which of these mechanisms plays a primary role in generating the structure of different calls, we performed two field experiments with Gunnison’s prairie dogs. First, we presented the prairie dogs with a circle, a triangle, and a square, each moving across the colony at the same height and speed. Second, we presented the prairie dogs with two squares of differing sizes. DFA statistics showed that 82.6 percent of calls for the circle and 79.2 percent of the calls for the triangle were correctly classified, and 73.3 percent of the calls for the square were classified as either square or circle. Also, 100 percent of the calls for the larger square and 90 percent of the calls for the smaller square were correctly classified. Because both squares and circles are features of terrestrial predators and triangles are features of aerial predators, our results suggest that prairie dogs might have a cognitive mechanism that labels the abstract shape and size of different predators, rather than the position of the predator [Current Zoology 58 (5: 741-748, 2012].

  5. Grass-on-grass competition along a catenal gradient in mesic ...

    African Journals Online (AJOL)

    Three aboveground treatments (full light competition, no light competition and clipping to simulate grazing), and two belowground treatments (full belowground competition and belowground competition excluded by a root tube), were used. On all soil depths the three grass species differed in mean mass, with E. racemosa ...

  6. Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy.

    Science.gov (United States)

    Valovirta, Erkka; Petersen, Thomas H; Piotrowska, Teresa; Laursen, Mette K; Andersen, Jens S; Sørensen, Helle F; Klink, Rabih

    2018-02-01

    Allergy immunotherapy targets the immunological cause of allergic rhinoconjunctivitis and allergic asthma and has the potential to alter the natural course of allergic disease. The primary objective was to investigate the effect of the SQ grass sublingual immunotherapy tablet compared with placebo on the risk of developing asthma. A total of 812 children (5-12 years), with a clinically relevant history of grass pollen allergic rhinoconjunctivitis and no medical history or signs of asthma, were included in the randomized, double-blind, placebo-controlled trial, comprising 3 years of treatment and 2 years of follow-up. There was no difference in time to onset of asthma, defined by prespecified asthma criteria relying on documented reversible impairment of lung function (primary endpoint). Treatment with the SQ grass sublingual immunotherapy tablet significantly reduced the risk of experiencing asthma symptoms or using asthma medication at the end of trial (odds ratio = 0.66, P year posttreatment follow-up, and during the entire 5-year trial period. Also, grass allergic rhinoconjunctivitis symptoms were 22% to 30% reduced (P years). At the end of the trial, the use of allergic rhinoconjunctivitis pharmacotherapy was significantly less (27% relative difference to placebo, P < .001). Total IgE, grass pollen-specific IgE, and skin prick test reactivity to grass pollen were all reduced compared to placebo. Treatment with the SQ grass sublingual immunotherapy tablet reduced the risk of experiencing asthma symptoms and using asthma medication, and had a positive, long-term clinical effect on rhinoconjunctivitis symptoms and medication use but did not show an effect on the time to onset of asthma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A GIS-based groundwater travel time model to evaluate stream nitrate concentration reductions from land use change

    Science.gov (United States)

    Schilling, K.E.; Wolter, C.F.

    2007-01-01

    Excessive nitrate-nitrogen (nitrate) loss from agricultural watersheds is an environmental concern. A common conservation practice to improve stream water quality is to retire vulnerable row croplands to grass. In this paper, a groundwater travel time model based on a geographic information system (GIS) analysis of readily available soil and topographic variables was used to evaluate the time needed to observe stream nitrate concentration reductions from conversion of row crop land to native prairie in Walnut Creek watershed, Iowa. Average linear groundwater velocity in 5-m cells was estimated by overlaying GIS layers of soil permeability, land slope (surrogates for hydraulic conductivity and gradient, respectively) and porosity. Cells were summed backwards from the stream network to watershed divide to develop a travel time distribution map. Results suggested that groundwater from half of the land planted in prairie has reached the stream network during the 10 years of ongoing water quality monitoring. The mean travel time for the watershed was estimated to be 10.1 years, consistent with results from a simple analytical model. The proportion of land in the watershed and subbasins with prairie groundwater reaching the stream (10-22%) was similar to the measured reduction of stream nitrate (11-36%). Results provide encouragement that additional nitrate reductions in Walnut Creek are probable in the future as reduced nitrate groundwater from distal locations discharges to the stream network in the coming years. The high spatial resolution of the model (5-m cells) and its simplicity may make it potentially applicable for land managers interested in communicating lag time issues to the public, particularly related to nitrate concentration reductions over time. ?? 2007 Springer-Verlag.

  8. Assessing changes in biomass, productivity, and C and N stores following Juniperus virginiana forest expansion into tallgrass prairie

    Energy Technology Data Exchange (ETDEWEB)

    Norris, M. D.; Blair, J. M.; Johnson, L. C. [Kansas State Univ., Manhattan, KS (United States); McKane, R. B. [Environmental Protection Agency, Western Ecology Division, Corvallis, OR (United States)

    2001-11-01

    The objective of this study was to assess changes in plant productivity and above-ground plant biomass associated with red cedar forest expansion into areas formerly dominated by tallgrass prairie. Regionally appropriate allometric biomass regression equations were developed for the nondestructive estimation of red cedar biomass in eastern Kansas, followed by quantification of the carbon and nitrogen content of selected biomass components. The equations were applied, along with measurements of leaf litter production, to selected local stands of mature closed-canopy red cedars to estimate above-ground biomass, standing stocks of carbon and nitrogen and annual above-ground net primary productivity. Above-ground plant biomass for these red cedar-dominated sites ranged from 114,100 kg/ha for the youngest stand to 210,700 kg/ha for the oldest. Annual above-ground net primary productivity (ANPP) ranged from 7,250 to 10,440 kg/ha/yr for the oldest and younger red cedar stands respectively. The ANPP in comparable tallgrass prairie sites in this region averages 3,690 k/ha/yr, indicating a large increase in carbon uptake and above-ground storage as a result of the change from prairie to red cedar forests. Comparing these results with similar published data from other sites led to the conclusion that the widespread change from tallgrass to red cedars across the woodland-prairie ecotone has important consequences for regional carbon storage.37 refs., 3 tabs., 3 figs.

  9. Convex relationships in ecosystems containing mixtures of trees and grass

    CSIR Research Space (South Africa)

    Scholes, RJ

    2003-12-01

    Full Text Available The relationship between grass production and the quantity of trees in mixed tree-grass ecosystems (savannas) is convex for all or most of its range. In other words, the grass production declines more steeply per unit increase in tree quantity...

  10. Facilitation and interference of seedling establishment by a native legume before and after wildfire.

    Science.gov (United States)

    Goergen, Erin; Chambers, Jeanne C

    2012-01-01

    In semi-arid ecosystems, heterogeneous resources can lead to variable seedling recruitment. Existing vegetation can influence seedling establishment by modifying the resource and physical environment. We asked how a native legume, Lupinus argenteus, modifies microenvironments in unburned and burned sagebrush steppe, and if L. argenteus presence facilitates seedling establishment of native species and the non-native annual grass, Bromus tectorum. Field treatments examined mechanisms by which L. argenteus likely influences establishment: (1) live L. argenteus; (2) dead L. argenteus; (3) no L. argenteus; (4) no L. argenteus with L. argenteus litter; (5) no L. argenteus with inert litter; and (6) mock L. argenteus. Response variables included soil nitrogen, moisture, temperature, solar radiation, and seedling establishment of the natives Elymus multisetus and Eriogonum umbellatum, and non-native B. tectorum. In both unburned and burned communities, there was higher spring soil moisture, increased shade and reduced maximum temperatures under L. argenteus canopies. Adult L. argenteus resulted in greater amounts of soil nitrogen (N) only in burned sagebrush steppe, but L. argenteus litter increased soil N under both unburned and burned conditions. Although L. argenteus negatively affected emergence and survival of B. tectorum overall, its presence increased B. tectorum biomass and reproduction in unburned plots. However, L. argenteus had positive facilitative effects on size and survival of E. multisetus in both unburned and burned plots. Our study indicates that L. argenteus can facilitate seedling establishment in semi-arid systems, but net effects depend on the species examined, traits measured, and level of abiotic stress.

  11. Characteristics of lesser prairie-chicken (Tympanuchus pallidicinctus) long-distance movements across their distribution

    Science.gov (United States)

    Earl, Julia E.; Fuhlendorf, Samuel D.; Haukos, David A.; Tanner, Ashley M.; Elmore, Dwayne; Carleton, Scott A.

    2016-01-01

    Long-distance movements are important adaptive behaviors that contribute to population, community, and ecosystem connectivity. However, researchers have a poor understanding of the characteristics of long-distance movements for most species. Here, we examined long-distance movements for the lesser prairie-chicken (Tympanuchus pallidicinctus), a species of conservation concern. We addressed the following questions: (1) At what distances could populations be connected? (2) What are the characteristics and probability of dispersal movements? (3) Do lesser prairie-chickens display exploratory and round-trip movements? (4) Do the characteristics of long-distance movements vary by site? Movements were examined from populations using satellite GPS transmitters across the entire distribution of the species in New Mexico, Oklahoma, Kansas, and Colorado. Dispersal movements were recorded up to 71 km net displacement, much farther than hitherto recorded. These distances suggest that there may be greater potential connectivity among populations than previously thought. Dispersal movements were displayed primarily by females and had a northerly directional bias. Dispersal probabilities ranged from 0.08 to 0.43 movements per year for both sexes combined, although these movements averaged only 16 km net displacement. Lesser prairie-chickens displayed both exploratory foray loops and round-trip movements. Half of round-trip movements appeared seasonal, suggesting a partial migration in some populations. None of the long-distance movements varied by study site. Data presented here will be important in parameterizing models assessing population viability and informing conservation planning, although further work is needed to identify landscape features that may reduce connectivity among populations.

  12. Functional consequences of climate change-induced plant species loss in a tallgrass prairie.

    Science.gov (United States)

    Craine, Joseph M; Nippert, Jesse B; Towne, E Gene; Tucker, Sally; Kembel, Steven W; Skibbe, Adam; McLauchlan, Kendra K

    2011-04-01

    Future climate change is likely to reduce the floristic diversity of grasslands. Yet the potential consequences of climate-induced plant species losses for the functioning of these ecosystems are poorly understood. We investigated how climate change might alter the functional composition of grasslands for Konza Prairie, a diverse tallgrass prairie in central North America. With species-specific climate envelopes, we show that a reduction in mean annual precipitation would preferentially remove species that are more abundant in the more productive lowland positions at Konza. As such, decreases in precipitation could reduce productivity not only by reducing water availability but by also removing species that inhabit the most productive areas and respond the most to climate variability. In support of this prediction, data on species abundance at Konza over 16 years show that species that are more abundant in lowlands than uplands are preferentially reduced in years with low precipitation. Climate change is likely to also preferentially remove species from particular functional groups and clades. For example, warming is forecast to preferentially remove perennials over annuals as well as Cyperaceae species. Despite these predictions, climate change is unlikely to unilaterally alter the functional composition of the tallgrass prairie flora, as many functional traits such as physiological drought tolerance and maximum photosynthetic rates showed little relationship with climate envelope parameters. In all, although climatic drying would indirectly alter grassland productivity through species loss patterns, the insurance afforded by biodiversity to ecosystem function is likely to be sustained in the face of climate change.

  13. Mapping wetlands and surface water in the Prairie Pothole Region of North America: Chapter 16

    Science.gov (United States)

    Rover, Jennifer R.; Mushet, David M.

    2015-01-01

    The Prairie Pothole Region (PPR) is one of the most highly productive wetland regions in the world. Prairie Pothole wetlands serve as a primary feeding and breeding habitat for more than one-half of North America’s waterfowl population, as well as a variety of songbirds, waterbirds, shorebirds, and other wildlife. During the last century, extensive land conversions from grassland with wetlands to cultivated cropland and grazed pastureland segmented and reduced wetland habitat. Inventorying and characterizing remaining wetland habitat is critical for the management of wetland ecosystem services. Remote sensing technologies are often utilized for mapping and monitoring wetlands. This chapter presents background specific to the PPR and discusses approaches employed in mapping its wetlands before presenting a case study.

  14. Estimating grass-clover ratio variations caused by traffic intensities using image analysis

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Nyholm; Sørensen, Claus Grøn; Green, Ole

    Grass and especially clover have a negative yield response as a function of  traffic intensity.  Conventional grass-clover production for silage have high traffic intensity due to fertilizing with slurry, cutting the grass, rolling the grass into swaths, and collecting and chopping the grass...... to fulfill the aim [1]http://www.ruralni.gov.uk/index/publications/press_articles/dairy-2/role-of-clover.htm...

  15. Controlling grass weeds on hard surfaces

    DEFF Research Database (Denmark)

    Rask, Anne Merete; Kristoffersen, Palle; Andreasen, Christian

    2012-01-01

    An experiment was conducted on a specially designed hard surface to study the impact of time interval between flaming treatments on the regrowth and flower production of two grass weeds. The goal of this experiment was to optimize the control of annual bluegrass and perennial ryegrass, both species...... that are very difficult to control without herbicides. Aboveground biomass from 72 plants per treatment was harvested and dry weights were recorded at regular intervals to investigate how the plants responded to flaming. Regrowth of the grasses was measured by harvesting aboveground biomass 2 wk after......, as they did not increase the reduction of aboveground biomass compared with the 7-d treatment interval. Knowledge on the regrowth of grass weeds after flaming treatments provided by this study can help improve recommendations given to road keepers and park managers for management on these weeds. Nomenclature...

  16. Microbial protein synthesis, digestion and lactation responses of cows to grass or grass-red clover silage diet supplemented with barley or oats

    Directory of Open Access Journals (Sweden)

    A. VANHATALO

    2008-12-01

    Full Text Available The study was conducted to evaluate effects of silage type (grass-red clover vs. pure grass and grain supplement (oats vs. barley on rumen fermentation, post-ruminal nutrient flows, diet digestion and milk production. Four primiparous Finnish Ayrshire cows fitted with cannulae in the rumen and duodenum were used in a 4 × 4 Latin square experiment with four 28-d experimental periods and 2 × 2 factorial arrangements of treatments. Using red clover-containing (40% silage rather than pure grass silage had minor effects on rumen fermentation or diet digestion but increased non-ammonia nitrogen (N flow in terms of increased flows of microbial and dietary N entering to the small intestine. This was reflected as a reduced ruminal N degradability on grass-red clover diets. Furthermore, grass-red clover diets in comparison to grass silage diets increased milk lactose concentration and yields of milk, protein and lactose. Feeding oats in replacement for barley had minor effects on rumen fermentation or post-ruminal non-ammonia N flows but reduced digestibility of organic matter and neutral detergent fibre in the diet. Using oats rather than barley increased yields of milk and lactose but reduced milk protein concentration. Oats also increased proportions of C18:0 and C18:1 in milk fat and reduced those of C10:0 to C16:0. It is concluded that inclusion of red clover and replacement of barley with oats in grass silage based diets have beneficial effects in dairy cow production.;

  17. Weed-biocontrol insects reduce native-plant recruitment through second-order apparent competition.

    Science.gov (United States)

    Pearson, Dean E; Callaway, Ragan M

    2008-09-01

    Small-mammal seed predation is an important force structuring native-plant communities that may also influence exotic-plant invasions. In the intermountain West, deer mice (Peromyscus maniculatus) are prominent predators of native-plant seeds, but they avoid consuming seeds of certain widespread invasives like spotted knapweed (Centaurea maculosa). These mice also consume the biological-control insects Urophora spp. introduced to control C. maculosa, and this food resource substantially increases deer mouse populations. Thus, mice may play an important role in the invasion and management of C. maculosa through food-web interactions. We examined deer mouse seed predation and its effects on seedling emergence and establishment of a dominant native grass, Pseudoroegneria spicata, and forb, Balsamorhiza sagittata, in C. maculosa-invaded grasslands that were treated with herbicide to suppress C. maculosa or left untreated as controls. Deer mice readily took seeds of both native plants but removed 2-20 times more of the larger B. sagittata seeds than the smaller P. spicata seeds. Seed predation reduced emergence and establishment of both species but had greater impacts on B. sagittata. The intensity of seed predation corresponded with annual and seasonal changes in deer mouse abundance, suggesting that abundance largely determined mouse impacts on native-plant seeds. Accordingly, herbicide treatments that reduced mouse abundance by suppressing C. maculosa and its associated biocontrol food subsidies to mice also reduced seed predation and decreased the impact of deer mice on B. sagittata establishment. These results provide evidence that Urophora biocontrol agents may exacerbate the negative effects of C. maculosa on native plants through a form of second-order apparent competition-a biocontrol indirect effect that has not been previously documented. Herbicide suppressed C. maculosa and Urophora, reducing mouse populations and moderating seed predation on native plants

  18. Estimating the energy requirements and CO{sub 2} emissions from production of the perennial grasses miscanthus, switchgrass and reed canary grass

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M.; Metcalfe, P.

    2001-07-01

    The perennial grasses miscanthus, reed canary and swithchgrass have attractions as energy crops in the United Kingdom: all have low demand for fertilizer and pesticide, and are harvested annually. Research on energy ratios and carbon ratios of the grasses is reported. A Microsoft Excel-based model was developed (from an ADAS database) and the input calculations and assumptions are explained. The study demonstrated the attractions of theses grasses as a source of fuel. The results agreed with those from a model developed for the SRC.

  19. Northern Prairie Wildlife Research Center—Celebrating 50 years of science

    Science.gov (United States)

    Austin, Jane E.; Shaffer, Terry L.; Igl, Lawrence D.; Johnson, Douglas H.; Krapu, Gary L.; Larson, Diane L.; Mech, L. David; Mushet, David M.; Sovada, Marsha A.

    2017-10-30

    The Northern Prairie Wildlife Research Center (NPWRC) celebrated its 50-year anniversary in 2015. This report is written in support of that observance. We document why and how the NPWRC came to be and describe some of its many accomplishments and the influence the Center’s research program has had on natural resource management. The history is organized by major research themes, proceeds somewhat chronologically within each theme, and covers the Center’s first 50 years of research. During that period, Center scientists authored more than 1,700 publications and reports. More than 1,000 seasonal or temporary field personnel, and more than 100 graduate students, contributed to the Center’s success; many went on to have exemplary careers in natural resource management, conservation, and education. The mission of the Northern Prairie Wildlife Research Center today remains true to the original vision: to provide the knowledge needed to understand, conserve, and manage the Nation’s natural resources for current and future generations, with an emphasis on species and ecosystems of the northern Great Plains. The Center’s first 50 years of applied biological research provides a deep scientific foundation on which to address emerging issues for the natural resources in the northern Great Plains and beyond.

  20. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming

    Science.gov (United States)

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L.; Cully, Jack F.

    2008-01-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.