WorldWideScience

Sample records for national laboratory facility

  1. The Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies

  2. Los Alamos National Laboratory plans for a laboratory microfusion facility

    International Nuclear Information System (INIS)

    Harris, D.B.

    1988-01-01

    Los Alamos National Laboratory is actively participating in the National Laboratory Microfusion Facility (LMF) Scoping Study. We are currently performing a conceptual design study of a krypton-fluoride laser system that appears to meet all of the diver requirements for the LMF. A new theory of amplifier module scaling has been developed recently and it appears that KrF amplifier modules can be scaled up to output energies much larger than thought possible a few years ago. By using these large amplifier modules, the reliability and availability of the system is increased and its cost and complexity is decreased. Final cost figures will be available as soon as the detailed conceptual design is complete

  3. High energy laser facilities at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Holmes, N.C.

    1981-06-01

    High energy laser facilities at Lawrence Livermore National Laboratory are described, with special emphasis on their use for equation of state investigations using laser-generated shockwaves. Shock wave diagnostics now in use are described. Future Laboratory facilities are also discussed

  4. Recent developments in the target facilities at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Greene, J.P.; Thomas, G.E.

    1989-01-01

    A description is given of recent developments in the target facility at Argonne National Laboratory (ANL). Highlights include equipment upgrades which enable us to provide enhanced capabilities for support of the Argonne Heavy-Ion ATLAS Accelerator Project. Also, future plans and additional equipment acquisitions will be discussed. (orig.)

  5. Recent developments in the target facilities at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Greene, J.P.; Thomas, G.E.

    1988-01-01

    A description is given of recent developments in the target facility at Argonne National Laboratory. Highlights include equipment upgrades which enables us to provide enhanced capabilities for support of the Argonne Heavy-Ion ATLAS Accelerator Project. Also future plans and additional equipment acquisitions will be discussed. 3 refs., 3 tabs

  6. Idaho National Engineering Laboratory irradiation facilities and their applications

    International Nuclear Information System (INIS)

    Gupta, V.P.; Herring, J.S.; Korenke, R.E.; Harker, Y.D.

    1986-05-01

    Although there is a growing need for neutron and gamma irradiation by governmental and industrial organizations in the United States and in other countries, the number of facilities providing such irradiations are limited. At the Idaho National Engineering Laboratory, there are several unique irradiation facilities producing high neutron and gamma radiation environments. These facilities could be readily used for nuclear research, materials testing, radiation hardening studies on electronic components/circuitry and sensors, and production of neutron transmutation doped (NTD) silicon and special radioisotopes. In addition, a neutron radiography unit, suitable for examining irradiated materials and assemblies, is also available. This report provides a description of the irradiation facilities and the neutron radiography unit as well as examples of their unique applications

  7. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  8. Isotopes facilities deactivation project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Eversole, R.E.

    1997-05-01

    The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation`s Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program.

  9. Isotopes facilities deactivation project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Eversole, R.E.

    1997-01-01

    The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation's Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program

  10. The national ignition facility: path to ignition in the laboratory

    International Nuclear Information System (INIS)

    Moses, E.I.; Bonanno, R.E.; Haynam, C.A.; Kauffman, R.L.; MacGowan, B.J.; Patterson Jr, R.W.; Sawicki, R.H.; Van Wonterghem, B.M.

    2007-01-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at Lawrence Livermore National Laboratory. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition of deuterium-tritium plasmas in ICF (Inertial Confinement Fusion) targets and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. The NIF facility will consist of 2 laser bays, 4 capacitor areas, 2 laser switchyards, the target area and the building core. The laser is configured in 4 clusters of 48 beams, 2 in each laser bay. Four of the NIF beams have been already commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF has demonstrated on a single-beam basis that it will meet its performance goals and has demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed 4 important experiments for ICF and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition. (authors)

  11. Proposal for a slow positron facility at Jefferson National Laboratory

    Science.gov (United States)

    Mills, Allen P.

    2018-05-01

    One goal of the JPos-17 International Workshop on Physics with Positrons was to ascertain whether it would be a good idea to expand the mission of the Thomas Jefferson National Accelerator Facility (JLab) to include science with low energy (i.e. "slow") spin polarized positrons. It is probably true that experimentation with slow positrons would potentially have wide-ranging benefits comparable to those obtained with neutron and x-ray scattering, but it is certain that the full range of these benefits will never be fully available without an infrastructure comparable to that of existing neutron and x-ray facilities. The role for Jefferson Laboratory would therefore be to provide and maintain (1) a dedicated set of machines for making and manipulating high intensity, high brightness beams of polarized slow positrons; (2) a suite of unique and easily used instruments of wide utility that will make efficient use of the positrons; and (3) a group of on-site positron scientists to provide scientific leadership, instrument development, and user support. In this note some examples will be given of the science that might make a serious investment in a positron facility worthwhile. At the same time, the lessons learned from various proposed and successful positron facilities will be presented for consideration.

  12. DECOMMISSIONING THE BROOKHAVEN NATIONAL LABORATORY BUILDING 830 GAMMA IRRADIATION FACILITY.

    Energy Technology Data Exchange (ETDEWEB)

    BOWERMAN, B.S.; SULLIVAN, P.T.

    2001-08-13

    The Building 830 Gamma Irradiation Facility (GIF) at Brookhaven National Laboratory (BNL) was decommissioned because its design was not in compliance with current hazardous tank standards and its cobalt-60 sources were approaching the end of their useful life. The facility contained 354 stainless steel encapsulated cobalt-60 sources in a pool, which provided shielding. Total cobalt-60 inventory amounted to 24,000 Curies when the sources were shipped for disposal. The decommissioning project included packaging, transport, and disposal of the sources and dismantling and disposing of all other equipment associated with the facility. Worker exposure was a major concern in planning for the packaging and disposal of the sources. These activities were planned carefully according to ALARA (As Low As Reasonably Achievable) principles. As a result, the actual occupational exposures experienced during the work were within the planned levels. Disposal of the pool water required addressing environmental concerns, since the planned method was to discharge the slightly contaminated water to the BNL sewage treatment plant. After the BNL evaluation procedure for discharge to the sewage treatment plant was revised and reviewed by regulators and BNL's Community Advisory Council, the pool water was discharged to the Building 830 sanitary system. Because the sources were sealed and the pool water contamination levels were low, most of the remaining equipment was not contaminated; therefore disposal was straightforward, as scrap metal and construction debris.

  13. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL's assessment of the need for further remedial attention

  14. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL`s assessment of the need for further remedial attention.

  15. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL's assessment of the need for further remedial attention.

  16. The Sodium Process Facility at Argonne National Laboratory-West

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1998-01-01

    Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal

  17. The Sodium Process Facility at Argonne National Laboratory-West

    Energy Technology Data Exchange (ETDEWEB)

    Michelbacher, J.A.; Henslee, S.P. McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1998-07-01

    Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal.

  18. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    Science.gov (United States)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  19. In vivo neutron activation facility at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R.; Yasumura, Seiichi; Dilmanian, F.A.

    1997-11-01

    Seven important body elements, C, N, Ca, P, K, Na, and Cl, can be measured with great precision and accuracy in the in vivo neutron activation facilities at Brookhaven National Laboratory. The facilities include the delayed-gamma neutron activation, the prompt-gamma neutron activation, and the inelastic neutron scattering systems. In conjunction with measurements of total body water by the tritiated-water dilution method several body compartments can be defined from the contents of these elements, also with high precision. In particular, body fat mass is derived from total body carbon together with total body calcium and nitrogen; body protein mass is derived from total body nitrogen; extracellular fluid volume is derived from total body sodium and chlorine; lean body mass and body cell mass are derived from total body potassium; and, skeletal mass is derived from total body calcium. Thus, we suggest that neutron activation analysis may be valuable for calibrating some of the instruments routinely used in clinical studies of body composition. The instruments that would benefit from absolute calibration against neutron activation analysis are bioelectric impedance analysis, infrared interactance, transmission ultrasound, and dual energy x-ray/photon absorptiometry.

  20. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, M.Y.; Shields, K.D.

    1999-04-02

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

  1. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    International Nuclear Information System (INIS)

    Ballinger, M.Y.; Shields, K.D.

    1999-01-01

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP

  2. The sodium process facility at Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1997-01-01

    Argonne National Laboratory - West (ANL-W) has approximately 680,000 liters (180,000 gallons) of raw sodium stored in facilities on site. As mandated by the State of Idaho and the United States Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The SPF was designed to react elemental sodium to sodium carbonate through two-stages involving caustic process and carbonate process steps. The sodium is first reacted to sodium hydroxide in the caustic process step. The caustic process step involves the injection of sodium into a nickel reaction vessel filled with a 50 wt% solution of sodium hydroxide. Water is also injected, controlling the boiling point of the solution. In the carbonate process, the sodium hydroxide is reacted with carbon dioxide to form sodium carbonate. This dry powder, similar in consistency to baking soda, is a waste form acceptable for burial in the State of Idaho as a non-hazardous, radioactive waste. The caustic process was originally designed and built in the 1980s for reacting the 290,000 liters (77,000 gallons) of primary sodium from the Fermi-1 Reactor to sodium hydroxide. The hydroxide was slated to be used to neutralize acid products from the PUREX process at the Hanford site. However, changes in the DOE mission precluded the need for hydroxide and the caustic process was never operated. With the shutdown of the Experimental Breeder Reactor-II (EBR-II), the necessity for a facility to react sodium was identified. In order to comply with Resource Conservation and Recovery Act (RCRA) requirements, the sodium had to be converted into a waste form acceptable for disposal in a Sub-Title D low-level radioactive waste disposal facility. Sodium hydroxide is a RCRA

  3. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Marcel Y.; Gervais, Todd L.

    2004-11-15

    The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are

  4. Decommissioning of surplus facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stout, D.S.

    1995-01-01

    Decommissioning Buildings 3 and 4 South at Technical Area 21, Los Alamos National Laboratory, involves the decontamination, dismantlement, and demolition of two enriched-uranium processing buildings containing process equipment and ductwork holdup. The Laboratory has adopted two successful management strategies to implement this project: Rather than characterize an entire site, upfront, investigators use the ''observational approach,'' in which they collect only enough data to begin decommissioning activities and then determine appropriate procedures for further characterization as the work progresses. Project leaders augment work packages with task hazard analyses to fully define specific tasks and inform workers of hazards; all daily work activities are governed by specific work procedures and hazard analyses

  5. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  6. Magnetotelluric soundings on the Idaho National Engineering Laboratory facility, Idaho

    International Nuclear Information System (INIS)

    Stanley, W.D.

    1982-01-01

    The magnetotelluric (MT) method was used as one of several geophysical tools to study part of the Idaho Engineering Laboratory (INEL) facility. The purpose of the geophysical study on INEL was to investigate the facility for a possible site to drill a geothermal exploration well. The initial interpretation of the MT sounding data was done with one-dimensional models consisting of four or five layers, the minimum number required to fit the data. After the test well (INEL-1) was completed, the electric log was used to guide an improved one-dimensional ID interpretation of the MT sounding data. Profile models derived from the well log provided good agreement with velocity models derived from refraction seismic data. A resolution study using generalized inverse techniques shows that the resolution of resistive layers in the lower part of the MT models is poor, as is the definition of a shallow, altered basalt unit. The only major structure observed on the MT data was the faulted contact between the SNRP and basin and range structures on the west. Modeling of the data near this structure with a two-dimensional computer program showed that the MT data near the fault require a model similar to the seismic refraction models and that structure on a deep crustal conductor is also required

  7. Environmental restoration plan for the transfer of surplus facilities to the Facility Transition Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-08-01

    This report will provide guidance on management, coordination, and integration of plans to transition facilities to the Facility Transition Program and activities as related to the Oak Ridge National Laboratory (ORNL) Environmental Restoration Program facilities. This report gives (1) guidance on the steps necessary for identifying ORNL surplus facilities, (2) interfaces of Surveillance and Maintenance (S and M) and Isotope Facility Deactivation program managers, (3) roles and responsibilities of the facility managers, and (4) initial S and M requirements upon acceptance into the Facility Transition Program

  8. Materials Science Division HVEM-Tandem Facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Taylor, A.

    1981-10-01

    The ANL-Materials Science Division High Voltage Electron Microscope-Tandem Facility is a unique national research facility available to scientists from industry, universities, and other national laboratories, following a peer evaluation of their research proposals by the Facility Steering Committee. The principal equipment consists of a Kratos EM7 1.2-MV high voltage electron microscope, a 300-kV Texas Nuclear ion accelerator, and a National Electrostatics 2-MV Tandem accelerator. Ions from both accelerators are transmitted into the electron microscope through the ion-beam interface. Recent work at the facility is summarized

  9. Operation of the Brookhaven national laboratory accelerator test facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; Van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-01-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program. (Author) 5 refs., 4 figs., tab

  10. Operation of the Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-01-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program

  11. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J.D. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given.

  12. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1996-01-01

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given

  13. The Wastewater Treatment Test Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Richardson, S.A.; Kent, T.E.; Taylor, P.A.

    1995-01-01

    The Wastewater Treatment Test Facility (WTTF) contains 0.5 L/min test systems which provide a wide range of physical and chemical separation unit operations. The facility is a modified 48 foot trailer which contains all the unit operations of the ORNL's Process Waste Treatment Plant and Nonradiological Wastewater Treatment Plant including chemical precipitation, clarification, filtration, ion-exchange, air stripping, activated carbon adsorption, and zeolite system. This facility has been used to assess treatability of potential new wastewaters containing mixed radioactive, hazardous organic, and heavy metal compounds. With the ability to simulate both present and future ORNL wastewater treatment systems, the WTTF has fast become a valuable tool in solving wastewater treatment problems at the Oak Ridge reservation

  14. Supplement analysis for paleontological excavation at the National Ignition Facility at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1997-01-01

    On December 15, 1997, contractor workers supporting the National Ignition Facility (NIF) construction uncovered bones suspected to be of paleontological importance. The NIF workers were excavating a utility trench near the southwest corner of the NIF footprint area, located at the northeast corner of the Lawrence Livermore National Laboratory (LLNL) Livermore Site, and were excavating at a depth of approximately 30 feet. Upon the discovery of bone fragments, the excavation in the immediate vicinity was halted and the LLNL archaeologist was notified. The archaeologist determined that there was no indication of cultural resources. Mark Goodwin, Senior Curator for the University of California Museum of Paleontology at the University of California, Berkeley, was then contacted. Mr. Goodwin visited the site on December 16th and confirmed that the bones consisted of a section of the skull, a portion of the mandible, several teeth, upper palate, and possibly the vertebrae of a mammoth, genus Mammuthus columbi. This supplement analysis evaluates the potential for adverse impacts of excavating skeletal remains, an activity that was only generally assessed by the NIF Project-Specific Analysis in the Final Programmatic Environmental impact Statement for Stockpile Stewardship and Management (SS and M PEIS) published in September 1996 (DOE/EIS-0236) and its Record of Decision published on December 19, 1996. This supplement analysis has been prepared pursuant to the DOE regulations implementing the National Environmental Policy Act (10 CFR 1021.314)

  15. Environmental monitoring for EG and G Idaho facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Tkachyk, J.W.; Wright, K.C.; Wilhelmsen, R.N.

    1990-08-01

    This report describes the 1989 environmental-monitoring activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G-operated facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Additional monitoring activities performed by Environmental Monitoring are also discussed, including drinking-water monitoring and nonradiological liquid-effluent monitoring, as well as data management. The primary purposes of monitoring are to evaluate environmental conditions and to provide and interpret data, in compliance with applicable regulations, to ensure protection of human health and the environment. This report compares 1989 environmental-monitoring data with derived concentration guides and with data from previous years. This report also presents results of sampling performed by the Radiological and Environmental Sciences Laboratory and by the United States Geological Survey. 17 refs., 49 figs., 11 tabs

  16. Alpha-Gamma Hot-Cell Facility at Argonne National Laboratory East

    International Nuclear Information System (INIS)

    Neimark, L.A.; Jackson, W.D.; Donahue, D.A.

    1979-01-01

    The Alpha-Gamma Hot-Cell Facility has been in operation at Argonne National Laboratory East (ANL-E) for 15 years. The facility was designed for plutonium research in support of ANL's LMFBR program. The facility consists of a kilocurie, nitrogen-atmosphere alpha-gamma hot cell and supporting laboratories. Modifications to the facility and its equipment have been made over the years as the workload and nature of the work changed. These modifications included inerting the entire hot cell, adding four work stations, modifying in-loading procedures and examination equipment to handle longer test articles, and changing to a new sodium-vapor lighting system. Future upgrading includes the addition of a decontamination and repair facility, use of radio-controlled transfer carts, refurbishment of the zinc bromide windows, and the installation of an Auger microprobe

  17. Stabilization and shutdown of Oak Ridge National Laboratory's Radioisotopes Production Facility

    International Nuclear Information System (INIS)

    Eversole, R.E.

    1992-01-01

    The Oak Ridge National Laboratory (ORNL) has been involved in the production and distribution of a variety of radioisotopes for medical, scientific and industrial applications since the late 1940s. Production of these materials was concentrated in a number of facilities primarily built in the 1950s and 1960s. Due to the age and deteriorating condition of these facilities, it was determined in 1989 that it would not be cost effective to upgrade these facilities to bring them into compliance with contemporary environmental, safety and health standards. The US Department of Energy (DOE) instructed ORNL to halt the production of isotopes in these facilities and maintain the facilities in safe standby condition while preparing a stabilization and shutdown plan. The goal was to place the former isotope production facilities in a radiologically and industrially safe condition to allow a 5-year deferral of the initiation of environmental restoration (ER) activities. In response to DOE's instructions, ORNL identified 17 facilities for shutdown, addressed the shutdown requirements for each facility, and prepared and implemented a three-phase, 4-year plan for shutdown of the facilities. The Isotopes Facilities Shutdown Program (IFSP) office was created to execute the stabilization and shutdown plan. The program is entering its third year in which the actual shutdown of the facilities is initiated. Accomplishments to date have included consolidation of all isotopes inventory into one facility, DOE approval of the IFSP Environmental Assessment (EA), and implementation of a detailed management plan for the shutdown of the facilities

  18. Role of the laboratory for laser energetics in the National Ignition Facility Project

    International Nuclear Information System (INIS)

    Soures, J.M.; Loucks, S.J.; McCrory, R.L.

    1996-01-01

    The National Ignition Facility (NIF) is a 192-beam, 1.8-MJ (ultraviolet) laser facility that is currently planned to start operating in 2002. The NIF mission is to provide data critical to this Nation's science-based stockpile stewardship (SBSS) program and to advance the understanding of inertial confinement fusion and assess its potential as an energy source. The NIF project involves a collaboration among the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester's Laboratory for Laser Energetics (UR/LLE). In this paper, the role of the University of Rochester in the research, development, and planning required to assure the success of the NIF will be presented. The principal roles of the UR/LLE in the NIF are (1) validation of the direct-drive approach to NIF using the OMEGA 60-beam, 40-kJ UV laser facility; (2) support of indirect-drive physics experiments using OMEGA in collaboration with LLNL and LANL; (3) development of plasma diagnostics for NIF; (4) development of beam-smoothing techniques; and (5) development of thin-film coatings for NIF and cryogenic-fuel-layer targets for eventual application to NIF. 3 refs., 6 figs

  19. Environment | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National Security User Facilities Science Work with Us Environment Atmospheric and Climate Science Ecological

  20. Environmental monitoring of subsurface low-level waste disposal facilities at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Hicks, D.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) generates low-level waste (LLW) as part of its research and isotope production activities. This waste is managed in accordance with US Department of Energy (DOE) Order 5820.2A. Solid LLW management includes disposal in above-ground, tumulus-type facilities as well as in various types of subsurface facilities. Since 1986, subsurface disposal has been conducted using various designs employing greater-confinement-disposal (GCD) techniques. The purpose of this paper is to present monitoring results that document the short-term performance of these GCD facilities

  1. Safety analysis of IFR fuel processing in the Argonne National Laboratory Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Charak, I; Pedersen, D.R.; Forrester, R.J.; Phipps, R.D.

    1993-01-01

    The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory (ANL) includes on-site processing and recycling of discharged core and blanket fuel materials. The process is being demonstrated in the Fuel Cycle Facility (FCF) at ANL's Idaho site. This paper describes the safety analyses that were performed in support of the FCF program; the resulting safety analysis report was the vehicle used to secure authorization to operate the facility and carry out the program, which is now under way. This work also provided some insights into safety-related issues of a commercial IFR fuel processing facility. These are also discussed

  2. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    International Nuclear Information System (INIS)

    Barfuss, Brad C.; Barnett, J. M.; Ballinger, Marcel Y.

    2009-01-01

    Battelle-Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy's Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided

  3. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barfuss, Brad C.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2009-04-08

    Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  4. Construction and operation of an improved radiation calibration facility at Brookhaven National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1994-10-01

    Calibration of instruments used to detect and measure ionizing radiation has been conducted over the last 20 years at Brookhaven National Laboratory's (BNL) Radiation Calibration Facility, Building 348. Growth of research facilities, projects in progress, and more stringent Department of Energy (DOE) orders which involve exposure to nuclear radiation have placed substantial burdens on the existing radiation calibration facility. The facility currently does not meet the requirements of DOE Order 5480.4 or American National Standards Institute (ANSI) N323-1978, which establish calibration methods for portable radiation protection instruments used in the detection and measurement of levels of ionizing radiation fields or levels of radioactive surface contaminations. Failure to comply with this standard could mean instrumentation is not being calibrated to necessary levels of sensitivity. The Laboratory has also recently obtained a new neutron source and gamma beam irradiator which can not be made operational at existing facilities because of geometry and shielding inadequacies. These sources are needed to perform routine periodic calibrations of radiation detecting instruments used by scientific and technical personnel and to meet BNL's substantial increase in demand for radiation monitoring capabilities. To place these new sources into operation, it is proposed to construct an addition to the existing radiation calibration facility that would house all calibration sources and bring BNL calibration activities into compliance with DOE and ANSI standards. The purpose of this assessment is to identify potential significant environmental impacts associated with the construction and operation of an improved radiation calibration facility at BNL

  5. Safety research experiment facilities, Idaho National Engineering Laboratory, Idaho. Final environmental impact statement

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1977-09-01

    This environmental statement was prepared for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evaluation of some design options and in the assessment of the long-term potential risk associated with wide-acale deployment of the FBR

  6. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W. [and others

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report.

  7. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  8. National laboratories

    International Nuclear Information System (INIS)

    Moscati, G.

    1983-01-01

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.) [pt

  9. Decommissioning of the nuclear facilities at Risoe National Laboratory. Descriptions and cost assessment. Danish summary

    International Nuclear Information System (INIS)

    Lauridsen, Kurt

    2001-02-01

    The report gives a brief description of relevant aspects of the decommissioning of all nuclear facilities at Risoe National Laboratory, including the necessary operations to be performed and the associated costs. Together with a more detailed report, written in English, this report is the result of a project initiated by Risoe in the summer of 2000. The English report has undergone an international review, the results of which are summarised in the present report. (au)

  10. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    International Nuclear Information System (INIS)

    Salazar, M.D.

    1998-01-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel

  11. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.D.

    1998-12-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

  12. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Defense Systems & Assessments: About Us Sandia National Laboratories Exceptional service in ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  13. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  14. Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-04-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  15. Radiation protection calibration facilities at the National Radiation Laboratory, New Zealand

    International Nuclear Information System (INIS)

    Foote, B.J.

    1995-01-01

    The National Radiation Laboratory (NRL), serving under the Ministry of Health, provides radiation protection services to the whole of New Zealand. Consequently it performs many functions that are otherwise spread amongst several organizations in larger countries. It is the national regulatory body for radiation protection. It writes and enforces codes of safe practice, and conducts safety inspections of all workplaces using radiation. It provides a personal monitoring service for radiation workers. It also maintains the national primary standards for x-ray exposure and 60 Co air kerma. These standards are transferred to hospitals through a calibration service. The purpose of this report is to outline the primary standards facilities at NRL, and to discuss the calibration of dosemeters using these facilities. (J.P.N.)

  16. Cleanup of a Department of Energy Nonreactor Nuclear Facility: Experience at the Los Alamos National Laboratory High Pressure Tritium Laboratory

    International Nuclear Information System (INIS)

    Horak, H.L.

    1995-01-01

    On October 25, 1990, Los Alamos National Laboratory (LANL) ceased programmatic operations at the High Pressure Tritium Laboratory (HPTL). Since that time, LANL has been preparing the facility for transfer into the Department of Energy's (DOE's) Decontamination and Decommissioning Program. LANL staff now has considerable operational experience with the cleanup of a 40-year-old facility used exclusively to conduct experiments in the use of tritium, the radioactive isotope of hydrogen. Tritium and its compounds have permeated the HPTL structure and equipment, have affected operations and procedures, and now dominate efforts at cleanup and disposal. At the time of shutdown, the HPTL still had a tritium inventory of over 100 grams in a variety of forms and containers

  17. Scientific user facilities at Oak Ridge National Laboratory: New research capabilities and opportunities

    Science.gov (United States)

    Roberto, James

    2011-10-01

    Over the past decade, Oak Ridge National Laboratory (ORNL) has transformed its research infrastructure, particularly in the areas of neutron scattering, nanoscale science and technology, and high-performance computing. New facilities, including the Spallation Neutron Source, Center for Nanophase Materials Sciences, and Leadership Computing Facility, have been constructed that provide world-leading capabilities in neutron science, condensed matter and materials physics, and computational physics. In addition, many existing physics-related facilities have been upgraded with new capabilities, including new instruments and a high- intensity cold neutron source at the High Flux Isotope Reactor. These facilities are operated for the scientific community and are available to qualified users based on competitive peer-reviewed proposals. User facilities at ORNL currently welcome more than 2,500 researchers each year, mostly from universities. These facilities, many of which are unique in the world, will be reviewed including current and planned research capabilities, availability and operational performance, access procedures, and recent research results. Particular attention will be given to new neutron scattering capabilities, nanoscale science, and petascale simulation and modeling. In addition, user facilities provide a portal into ORNL that can enhance the development of research collaborations. The spectrum of partnership opportunities with ORNL will be described including collaborations, joint faculty, and graduate research and education.

  18. Safety Research Experiment Facilities, Idaho National Engineering Laboratory, Idaho. Draft environmental statement

    International Nuclear Information System (INIS)

    1977-01-01

    This environmental statement was prepared in accordance with the National Environmental Policy Act of 1969 (NEPA) in support of the Energy Research and Development Administration's (ERDA) proposal for legislative authorization and appropriations for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evalution of some design options and in the assessment of the long-term potential risk associated with wide-scale deployment of the FBR

  19. National Nanotechnology Laboratory (LNNano) open facilities for scientific community: new methods for polymeric materials characterization

    International Nuclear Information System (INIS)

    Silva, Cristiane A.; Santos, Ramon H.Z. dos; Bernardes, Juliana S.; Gouveia, Rubia F.

    2015-01-01

    National Nanotechnology Laboratory (LNNano) at the National Center for Energy and Materials (CNPEM) presents open facilities for scientific public in some areas. In this work will be discussed the facilities for mainly the polymeric community, as well as new methods for the characterization. Low density polyethylene (LDPE) surfaces were characterized by X-ray microtomography and X-ray photoelectron spectroscopy (XPS). The results obtained by microtomography have shown that these surfaces present different contrasts when compared with the bulk. These differences are correlated with the formation of an oxidized layer at the polymer surface, which consequently have a greater X-ray attenuation. This hypothesis is confirmed by XPS, which shows LDPE surface layers are richer in carbonyl, carboxyl and vinyl groups than the bulk. This work presents that microtomography can be used as a new method for detection and characterization of polymer surface oxidation. (author)

  20. Decommissioning of the nuclear facilities at Risoe National Laboratory. Descriptions and cost assessment

    International Nuclear Information System (INIS)

    Lauridsen, Kurt

    2001-02-01

    The report is the result of a project initiated by Risoe National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risoe National Laboratory to be decommissioned and gives an assessment of the work to be done and the costs incurred. Three decommissioning scenarios were considered with decay times of 10, 25 and 40 years for the DR 3 reactor. The assessments conclude, however, that there will not be much to gain by allowing for the longer decay periods; some operations still will need to be performed remotely. Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to be transferred to a Danish repository. (au)

  1. Decommissioning of the nuclear facilities at Risoe National Laboratory. Descriptions and cost assessment[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt [ed.

    2001-02-01

    The report is the result of a project initiated by Risoe National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risoe National Laboratory to be decommissioned and gives an assessment of the work to be done and the costs incurred. Three decommissioning scenarios were considered with decay times of 10, 25 and 40 years for the DR 3 reactor. The assessments conclude, however, that there will not be much to gain by allowing for the longer decay periods; some operations still will need to be performed remotely. Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to be transferred to a Danish repository. (au)

  2. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.

  3. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-07-01

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated

  4. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements

  5. Cultural Resource Investigations for the Remote Handled Low Level Waste Facility at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace; Hollie Gilbert; Julie Braun Williams; Clayton Marler; Dino Lowrey; Cameron Brizzee

    2010-06-01

    The U. S. Department of Energy, Idaho Operations Office is considering options for construction of a facility for disposal of Idaho National Laboratory (INL) generated remote-handled low-level waste. Initial screening has resulted in the identification of two recommended alternative locations for this new facility: one near the Advanced Test Reactor (ATR) Complex and one near the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility (ICDF). In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, intensive archaeological field surveys, and initial coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by new construction within either one of these candidate locations. This investigation showed that construction within the location near the ATR Complex may impact one historic homestead and several historic canals and ditches that are potentially eligible for nomination to the National Register of Historic Places. No resources judged to be of National Register significance were identified in the candidate location near the ICDF. Generalized tribal concerns regarding protection of natural resources were also documented in both locations. This report outlines recommendations for protective measures to help ensure that the impacts of construction on the identified resources are not adverse.

  6. Remote Operation and Maintenance Demonstration Facility at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Burgess, T.W.

    1986-01-01

    The Remote Operation and Maintenance Demonstration (ROMD) Facility at the Oak Ridge National Laboratory has been developed by the Consolidated Fuel Reprocessing Program to demonstrate remote handling concepts on advanced nuclear fuel reprocessing equipment and for other programs of national interest. The ROMD facility is a large-volume high-bay area that encloses a complete, technologically advanced remote maintenance system and full-scale development reprocessing equipment. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the US Department of Energy (DOE), the Power Reactor and Nuclear Fuels Development Corporation of Japan, the US Navy, and the National Aeronautics and Space Administration. Extensive tests of manipulative systems and remote maintainability of process equipment have been performed. This paper describes the ROMD facility and key remote maintenance equipment and presents a summary of major experimental activities. 7 refs., 6 figs

  7. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  8. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  9. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria

  10. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year

  11. Site characterization report for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-01-01

    Several Old Hydrofracture Facility (OHF) structures (i.e., Building 7852, the bulk storage bins, the pump house, water tank T-5, and pump P-3) are surplus facilities at Oak Ridge National Laboratory (ORNL) slated for decontamination and decommissioning (D and D). OHF was constructed in 1963 to allow experimentation and operations with an integrated solids storage, handling, mixing, and grout injection facility. It was shut down in 1980 and transferred to ORNL's Surveillance and Maintenance Program. The hydrofracture process was a unique disposal method that involved injecting waste materials mixed with grout and additives under pumping pressures of 2,000 psi or greater into a deep, low-permeability shale formation. The injected slurry spread along fractures and bedding planes for hundreds of feet from the injection points, forming thin grout sheets (often less than 1/8 in. thick). The grout ostensibly immobilized and solidified the liquid wastes. Site characterization activities were conducted in the winter and spring of 1994 to collect information necessary to plan the D and D of OHF structures. This site characterization report documents the results of the investigation of OHF D and D structures, presenting data from the field investigation and laboratory analyses in the form of a site description, as-built drawings, summary tables of radiological and chemical contaminant concentrations, and a waste volume estimate. 25 refs., 54 figs., 17 tabs

  12. Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Brown, Jason H.; Walker, Brian A.

    2012-04-01

    Battelle–Pacific Northwest Division operates numerous research and development (R&D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)’s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

  13. Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required

  14. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Phyllis C. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The

  15. Gamma Irradiation Facility at Sandia National Laboratories, Albuquerque, New Mexico. Final environmental assessment

    International Nuclear Information System (INIS)

    1995-11-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed construction and operation of a new Gamma Irradiation Facility (GIF) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to: enhance capabilities to assure technical excellence in nuclear weapon radiation environments testing, component development, and certification; comply with all applicable ES and H safeguards, standards, policies, and regulations; reduce personnel radiological exposure to comply with ALARA limits in accordance with DOE orders and standards; consolidate major gamma ray sources into a central, secured area; and reduce operational risks associated with operation of the GIF and LICA in their present locations. This proposed action provides for the design, construction, and operation of a new GIF located within TA V and the removal of the existing GIF and Low Intensity Cobalt Array (LICA). The proposed action includes potential demolition of the gamma shield walls and removal of equipment in the existing GIF and LICA. The shielding pool used by the existing GIF will remain as part of the ACRR facility. Transportation of the existing 60 Co sources from the existing LICA and GIF to the new facility is also included in the proposed action. Relocation of the gamma sources to the new GIF will be accomplished by similar techniques to those used to install the sources originally

  16. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    Science.gov (United States)

    de Angelis, Giacomo; Fiorentini, Gianni

    2016-11-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ-ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ-detector array based on γ-ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes.

  17. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    International Nuclear Information System (INIS)

    De Angelis, Giacomo; Fiorentini, Gianni

    2016-01-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ -ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ -detector array based on γ -ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes. (invited comment)

  18. Sandia National Laboratories/New Mexico Facilities and Safety Information Document [NOTE: Volume II, Chapter 12

    International Nuclear Information System (INIS)

    March, F.; Guerrero, J.V.; Johns, W.H.; Schetnan, R.; Bayliss, L.S.; Kuzio, K.A.

    1999-01-01

    Operations in Tech Area IV commenced in 1980 with the construction of Buildings 980 and 981 and the Electron Beam Fusion Accelerator, which at the time was a major facility in SNL's Inertial Confinement Fusion Program. The Electron Beam Fusion Accelerator was a third-generation fusion accelerator that followed Proto I and Proto II, which were operated in Tech Area V. Another accelerator, the Particle Beam Fusion Accelerator I, was constructed in Tech Area IV because there was not enough room in Tech Area V, a highly restricted area that contains SNL's reactor facilities. In the early 1980s, more fusion-related facilities were constructed in Tech Area IV. Building 983 was built to house a fourth-generation fusion accelerator, the Particle Beam Fusion Accelerator II, now called Z Machine, and Buildings 960 and 961 were built to house office space, electrical and mechanical laboratories, and highbay space for pulsed power research and development. In the mid 1980s, Building 970 was constructed to house the Simulation Technology Laboratory. The main facility in the Simulation Technology Laboratory is the High-Energy Radiation Megavolt Electron Source (HERMES) III, a third-generation gamma ray accelerator that is used primarily for the simulation of gamma rays produced by nuclear weapons. The previous generations, HERMES I and HERMES II, had been located in Tech Area V. In the late 1980s, Proto II was moved from Tech Area V to the Simulation Technology Laboratory and modified to function as an x-ray simulation accelerator, and construction of Buildings 962 and 963 began. These buildings comprised the Strategic Defense Facility, which was initially intended to support the nation's Strategic Defense Initiative or ''Star Wars'' program. It was to house a variety of pulsed power-related facilities to conduct research in such areas as directed-energy weapons (electron beams, lasers, and microwaves) and an earth-to-orbit launcher. With the reduction of the Strategic Defense

  19. Safety analysis report upgrade program at the Plutonium Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.

    1993-01-01

    Plutonium research and development activities have resided at the Los Alamos National Laboratory (LANL) since 1943. The function of the Plutonium Facility (PF-4) has been to perform basic special nuclear materials research and development and to support national defense and energy programs. The original Final Safety Analysis Report (FSAR) for PF-4 was approved by DOE in 1978. This FSAR analyzed design-basis and bounding accidents. In 1986, DOE/AL published DOE/AL Order 5481.1B, ''Safety Analysis and Review System'', as a requirement for preparation and review of safety analyses. To meet the new DOE requirements, the Facilities Management Group of the Nuclear Material Technology Division submitted a draft FSAR to DOE for approval in April 1991. This draft FSAR analyzed the new configurations and used a limited-scope probabilistic risk analysis for accident analysis. During the DOE review of the draft FSAR, DOE Order 5480.23 ''Nuclear Safety Analysis Reports'', was promulgated and was later officially released in April 1992. The new order significantly expands the scope, preparation, and maintenance efforts beyond those required in DOE/AL Order 5481.1B by requiring: description of institutional and human-factor safety programs; clear definitions of all facility-specific safety commitments; more comprehensive and detailed hazard assessment; use of new safety analysis methods; and annual updates of FSARs. This paper describes the safety analysis report (SAR) upgrade program at the Plutonium Facility in LANL. The SAR upgrade program is established to meet the requirements in DOE Order 5480.23. Described in this paper are the SAR background, authorization basis for operations, hazard classification, and technical program elements

  20. Material handling for the Los Alamos National Laboratory Nuclear Storage Facility

    International Nuclear Information System (INIS)

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-01-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels

  1. Development and Implementation of a Scaled Saltstone Facility at Savannah River National Laboratory - 13346

    International Nuclear Information System (INIS)

    Reigel, Marissa M.; Fowley, Mark D.; Hansen, Erich K.; Hera, Kevin R.; Marzolf, Athneal D.; Cozzi, Alex D.

    2013-01-01

    The Savannah River National Laboratory (SRNL) has supported the Saltstone Production Facility (SPF) since its conception. However, bench scaled tests have not always provided process or performance data related to the mixing, transfer, and other operations utilized in the SPF. A need was identified to better understand the SPF processes and to have the capabilities at SRNL to simulate the SPF unit operations to support an active low-level radioactive waste (LLW) processing facility. At the SPF, the dry premix is weighed, mixed and transferred to the Readco '10-inch' continuous mixer where it is mixed with the LLW salt solution from the Salt Feed Tank (SFT) to produce fresh Saltstone slurry. The slurry is discharged from the mixer into a hopper. The hopper feeds the grout pump that transfers the slurry through at least 457.2 meters of piping and discharges it into the Saltstone Disposal Units (SDU) for permanent disposal. In conjunction with testing individual SPF processes over several years, SRNL has designed and fabricated a scaled Saltstone Facility. Scaling of the system is primarily based on the volume capacity of the mixer and maintaining the same shear rate and total shear at the wall of the transfer line. At present, SRNL is utilizing the modular capabilities of the scaled Saltstone Facility to investigate the erosion issues related to the augers and paddles inside the SPF mixer. Full implementation of the scaled Saltstone Facility is still ongoing, but it is proving to be a valuable resource for testing alternate Saltstone formulations, cleaning sequences, the effect of pumping Saltstone to farther SDU's, optimization of the SPF mixer, and other operational variables before they are implemented in the SPF. (authors)

  2. Preliminary shielding estimates for the proposed Oak Ridge National Laboratory (ORNL) Radioactive Ion Beam Facility (RIBF)

    International Nuclear Information System (INIS)

    Johnson, J.O.; Gabriel, T.A.; Lillie, R.A.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) has proposed designing and implementing a new target-ion source for production and injection of negative radioactive ion beams into the Hollifield tandem accelerator. This new facility, referred to as the Radioactive Ion Beam Facility (RIBF), will primarily be used to advance the scientific communities' capabilities for performing state-of-the-art cross-section measurements. Beams of protons or other light, stable ions from the Oak Ridge Isochronous Cyclotron (ORIC) will be stopped in the RIBF target ion source and the resulting radioactive atoms will be ionized, charge exchanged, accelerated, and injected into the tandem accelerator. The ORIC currently operates with proton energies up to 60 MeV and beam currents up to 100 microamps with a maximum beam power less than 2.0 kW. The proposed RIBF will require upgrading the ORIC to generate proton energies up to 200 MeV and beam currents up to 200 microamps for optimum performance. This report summarizes the results of a preliminary one-dimensional shielding analysis of the proposed upgrade to the ORIC and design of the RIBF. The principal objective of the shielding analysis was to determine the feasibility of such an upgrade with respect to existing shielding from the facility structure, and additional shielding requirements for the 200 MeV ORIC machine and RIBF target room

  3. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    OSCAR, DEBBY S.; WALKER, SHARON ANN; HUNTER, REGINA LEE; WALKER, CHERYL A.

    1999-01-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2

  4. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  5. MaRIE; a proposed materials facility at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, M.A.M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2009-06-15

    This presentation will describe the current definition of a proposed new facility called MaRIE at Los Alamos National Laboratory. The concept is of decadal scope and is predicated on the collocation of a fourth-generation X-ray light source with a proton accelerator spallation neutron source and complementary synthesis and characterization capabilities. MaRIE is an acronym which stands for Matter-Radiation Interactions in Extremes. The facility has been conceived partly in response to the increasing role that control science is expected to play in materials research compared to observation science. If new materials are to be implemented in a timely fashion for the most aggressive conditions of proposed fission and fusion energy applications they will have to rely, at least in part, on models, simulations and scientific insight. Validation of these models will require measurements at spatial and temporal scales that have only recently become enabled by the latest generations of light sources. A hallmark of the MaRIE concept is an emphasis on in situ studies (under extreme neutron, photon and ion irradiation conditions) of the phenomena that lead to swelling, phase transformations, thermal properties and corrosion. Insights and data, relevant to atomistic and quantum mechanical models, are major goals, as well as the facilitation of rapid materials discovery. It is hoped that this presentation will solicit input on aspects of the facility definition that should be strengthened or diminished to meet the needs of the fission community. (authors)

  6. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  7. Success in behaviour-based safety at Los Alamos National Laboratory's plutonium facility

    International Nuclear Information System (INIS)

    Wieneke, R.E.; Balkey, J.J.; Kleinsteuber, J.F.

    2001-01-01

    Los Alamos National Laboratory's (LANL's) Plutonium Facility is responsible for a wide variety of actinide processing operations in support of the United States Department of Energy's (DOE's) stockpile stewardship of the nation's nuclear arsenal. Both engineered and administrative controls are used to mitigate hazards inherent in these activities. Nuclear facilities have engineered safety systems that are extensively evaluated and documented, and are monitored regularly for operability and performance. Personnel undergo comprehensive training, including annual recertification of their operations. They must thoroughly understand the hazards involved in their work and the controls that are in place to mitigate those hazards. A series of hazard-control plans and work instructions are used to define and authorize the work that is done. Primary hazards associated with chemicals and radioactive materials are well controlled with minimal risk to the workforce and public. The majority of injuries are physical or ergonomic in nature. In an effort to increase safety awareness and to decrease accidents and incidents, a program focusing on the identification and elimination of unsafe behaviours was initiated. Workers are trained on how to conduct safety observations and given guidance on specific behaviours to note. Observations are structured to have minimal impact upon workload and are shared by the entire workforce. This program has effectively decreased a low accident rate and will make long-term sustainability possible. (author)

  8. Success in behaviour-based safety at Los Alamos National Laboratory's plutonium facility

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, R E [Los Alamos National Laboratory, NMT Division, Los Alamos, NM (United States); Balkey, J J; Kleinsteuber, J F [Los Alamos National Laboratory, NMT Division, Los Alamos, NM (United States)

    2001-07-01

    Los Alamos National Laboratory's (LANL's) Plutonium Facility is responsible for a wide variety of actinide processing operations in support of the United States Department of Energy's (DOE's) stockpile stewardship of the nation's nuclear arsenal. Both engineered and administrative controls are used to mitigate hazards inherent in these activities. Nuclear facilities have engineered safety systems that are extensively evaluated and documented, and are monitored regularly for operability and performance. Personnel undergo comprehensive training, including annual recertification of their operations. They must thoroughly understand the hazards involved in their work and the controls that are in place to mitigate those hazards. A series of hazard-control plans and work instructions are used to define and authorize the work that is done. Primary hazards associated with chemicals and radioactive materials are well controlled with minimal risk to the workforce and public. The majority of injuries are physical or ergonomic in nature. In an effort to increase safety awareness and to decrease accidents and incidents, a program focusing on the identification and elimination of unsafe behaviours was initiated. Workers are trained on how to conduct safety observations and given guidance on specific behaviours to note. Observations are structured to have minimal impact upon workload and are shared by the entire workforce. This program has effectively decreased a low accident rate and will make long-term sustainability possible. (author)

  9. Special case waste located at Oak Ridge National Laboratory facilities: Survey report

    International Nuclear Information System (INIS)

    Forgy, J.R. Jr.

    1995-11-01

    Between October 1994 and October 1995, a data base was established at the Oak Ridge National Laboratory (ORNL) to provide a current inventory of the radioactive waste materials, located at ORNL, for which the US Department of Energy (DOE) has no definite planned disposal alternatives. DOE refers to these waste materials as special case waste. To assist ORNL and DOE management in future planning, an inventory system was established and a baseline inventory prepared. This report provides the background of the ORNL special case waste survey project, as well as special case waste category definitions, both current and anticipated sources and locations of special case waste materials, and the survey and data management processes. Special case waste will be that waste material which, no matter how much practical characterization, treatment, and packaging is made, will never meet the acceptance criteria for permanent disposal at ORNL, and does not meet the criteria at a currently planned off-site permanent disposal facility

  10. Enhancement of the basic seismic assessment of the Los Alamos National Laboratory facilities and buildings

    International Nuclear Information System (INIS)

    Fritz-de la Orta, G.O.

    1995-01-01

    This paper presents the results of a comparison of values obtained for the seismic security of 479 buildings and facilities at Los Alamos National Laboratory following the methodology adapted from Dr. Otto Frit's original System, and the requirements contained both in FEMA-154 ''Rapid Visual Screening of Buildings for Potential Hazards: A Handbook'' and FEMA-187 ''NEHRP Handbook for the Seismic Evaluation of Existing Buildings.'' These comparisons were made from five buildings chosen randomly illustrating a wide variety of construction types and building configurations. Each building is divided into sectors, defined as portions of it that are attached additions to the original building, or portions separated by an expansion joint between the structural systems. The five buildings studied contain a total of sixteen sectors. The paper is divided into the following sections: Introduction; Basic Concepts of the LANL Methodology; Basic Concepts of FEMA-178; Highlights of the Comparison; Comments on the Results; and Final Words

  11. A Large Neutrino Detector Facility at the Spallation Neutron Source at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Efremenko, Y.V.

    1999-01-01

    The ORLaND (Oak Ridge Large Neutrino Detector) collaboration proposes to construct a large neutrino detector in an underground experimental hall adjacent to the first target station of the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory. The main mission of a large (2000 ton) Scintillation-Cherenkov detector is to measure bar ν μ -> bar ν e neutrino oscillation parameters more accurately than they can be determined in other experiments, or significantly extending the covered parameter space below (sin'20 le 10 -4 ). In addition to the neutrino oscillation measurements, ORLaND would be capable of making precise measurements of sin 2 θ W , search for the magnetic moment of the muon neutrino, and investigate the anomaly in the KARMEN time spectrum, which has been attributed to a new neutral particle. With the same facility an extensive program of measurements of neutrino nucleus cross sections is also planned to support nuclear astrophysics

  12. RCRA Facilities Assessment (RFA), Oak Ridge National Laboratory, container storage accumulation areas

    International Nuclear Information System (INIS)

    1987-01-01

    The Oak Ridge National Laboratory (ORNL) remedial action strategy is based on a memorandum from the Environmental Protection Agency (EPA) to the Department of Energy (DOE) in which EPA elected to enforce regulatory requirements for ORNL through its amended Resource Conservation and Recovery Act (RCRA) authority. This report, which completes the requirements of II.A.1 of the Hazardous and Solid Waste Amendments (HSWA) permit, identifies areas near the point of waste generation in which wastes are accumulated before they are transferred into the permitted waste storage facilities. In includes background information on each area and an assessment of the need for further remedial attention. The waste accumulation areas described in this addendum bear identification numbers indicative of the WAGs of which they are a part. Waste accumulation areas that are located inside a building and in which there is no potential for releases to the environment are not included in this report

  13. Seismic engineering for an expanded tritium facility at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Volkman, D.E.; Olive, W.B.; Endebrocid, E.E.; Khan, P.K.; Rebillet, W.R.

    1997-10-01

    An existing complex of three single story concrete and masonry shear wall buildings will be integrated into an expanded tritium facility for neutron tube target loading. Known as the NTTL Project, the expanded plant is a major element of the Department of Energy's tritium program at the Los Alamos National Laboratory. This paper describes seismic evaluation and upgrade modifications for the 1950's concrete shear wall building; drift analyses of two 1980's CMU [concrete masonry unit] shear wall buildings; design of a new CMU shear wall building linking existing structures and providing personnel change room services; and design of a new steel frame building housing HVAC and electrical power and communication equipment for the complex. All buildings are closely adjacent and drift analysis to establish separation to prevent pounding is a major seismic engineering concern for the project

  14. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    International Nuclear Information System (INIS)

    1993-10-01

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document

  15. Addressing Waste Management Issues for D and D of Excess Facilities at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.; Patton, B.D.; Robinson, S.M. [Oak Ridge National Laboratory (United States)

    2009-06-15

    Since the Manhattan Project, Oak Ridge National Laboratory (ORNL) has been engaged in developing and demonstrating nuclear and radiochemical processes at the laboratory and pilot plant scale. Many of these processes were later implemented in Department of Energy (DOE) production facilities across the U.S. and in producing radioisotopes for medical and industrial applications. These activities have resulted in a large variety of unique remote handled legacy wastes and contaminated hot cell facilities. The DOE has established the Integrated Facility Disposition Project (IFDP) to dispose of the legacy waste and to deactivate, decontaminate and decommission (D and D) {approx}300 facilities no longer needed for the Oak Ridge mission. The IFDP will be required to characterize, treat, package, and dispose of a variety of waste streams, including remote handled solid waste streams for which no treatment capability currently exists at ORNL. In addition, the existing waste management systems at ORNL are thirty plus years old and are reaching the end of their design life. They will require replacement and/or significant upgrades in order to meet the future needs of the IFDP. Difficult-to-handle remote handled solid materials that must be dispositioned include materials that contain approximately 27 million curies (Sr-90 equivalents) with dose rates as high as one million R/hr. The materials that must be handled range from less than inch in all dimensions to extremely large components; the largest identified to date are 9'x9'x9', 34 ton casks. Included in this list are a number of Radioisotope Thermoelectric Generators (RTG) containing {approx}10{sup 4}-10{sup 6} curies of cesium or strontium and hazardous components (e.g., mercury and other heat transfer and heat sensing materials) that must be dismantled to allow recovery and segregation of the radioisotope from the hazardous materials and repackaging of the materials to meet waste acceptance criteria. A

  16. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21

  17. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Midkiff, W.S.; Romero, R.L.; Suazo, I.L.; Garcia, R.; Parsons, R.M.

    1993-01-01

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value

  18. Physics Division Argonne National Laboratory description of the programs and facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1999-05-24

    The ANL Physics Division traces its roots to nuclear physics research at the University of Chicago around the time of the second world war. Following the move from the University of Chicago out to the present Argonne site and the formation of Argonne National Laboratory: the Physics Division has had a tradition of research into fundamental aspects of nuclear and atomic physics. Initially, the emphasis was on areas such as neutron physics, mass spectrometry, and theoretical studies of the nuclear shell model. Maria Goeppert Maier was an employee in the Physics Division during the time she did her Nobel-Prize-winning work on the nuclear shell model. These interests diversified and at the present time the research addresses a wide range of current problems in nuclear and atomic physics. The major emphasis of the current experimental nuclear physics research is in heavy-ion physics, centered around the ATLAS facility (Argonne Tandem-Linac Accelerator System) with its new injector providing intense, energetic ion beams over the fill mass range up to uranium. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. A small program continues in accelerator development. In addition, the Division has a strong program in medium-energy nuclear physics carried out at a variety of major national and international facilities. The nuclear theory research in the Division spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national and international scale. The Physics Division traditionally has strong connections with the nation's universities. We have many visiting faculty members and we encourage students to participate in our

  19. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau

  20. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Reneau, S.L.; Raymond, R. Jr. [eds.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  1. CHARACTERIZATION OF CURRENTLY GENERATED TRANUSRANIC WASTE AT THE LOS ALAMOS NATIONAL LABORATORY'S PLUTONIUM PRODUCTION FACILITY

    International Nuclear Information System (INIS)

    Dodge, Robert L.; Montoya, Andy M.

    2003-01-01

    By the time the Waste Isolation Pilot Plant (WIPP) completes its Disposal Phase in FY 2034, the Department of Energy (DOE) will have disposed of approximately 109,378 cubic meters (m3) of Transuranic (TRU) waste in WIPP (1). If DOE adheres to its 2005 Pollution Prevention Goal of generating less than 141m3/yr of TRU waste, approximately 5000 m3 (4%) of that TRU waste will be newly generated (2). Because of the overwhelming majority (96%) of TRU waste destined for disposal at WIPP is legacy waste, the characterization and certification requirements were developed to resolve those issues related to legacy waste. Like many other DOE facilities Los Alamos National Laboratory (LANL) has a large volume (9,010m3) of legacy Transuranic Waste in storage (3). Unlike most DOE facilities LANL will generate approximately 140m3 of newly generated TRU waste each year3. LANL's certification program was established to meet the WIPP requirements for legacy waste and does not take advantage of the fundamental differences in waste knowledge between newly generated and legacy TRU waste

  2. Oak Ridge National Laboratory West End Treatment Facility simulated sludge vitrification demonstration, Revision 1

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-01-01

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert hazardous and mixed wastes to a form suitable for permanent disposal. Vitrification, which has been declared the Best Demonstrated Available Technology for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment. These wastes are typically wastewater treatment sludges that are categorized as listed wastes due to the process origin or organic solvent content, and usually contain only small amounts of hazardous constituents. The Oak Ridge National Laboratory's (ORNL) West End Treatment Facility's (WETF) sludge is considered on of these representative wastes. The WETF is a liquid waste processing plant that generates sludge from the biodenitrification and precipitation processes. An alternative wasteform is needed since the waste is currently stored in epoxy coated carbon steel tanks, which have a limited life. Since this waste has characteristics that make it suitable for vitrification with a high likelihood of success, it was identified as a suitable candidate by the Mixed Waste Integrated Program (MWIP) for testing at CU. The areas of special interest with this sludge are (1) minimum nitrates, (2) organic destruction, and (3) waste water treatment sludges containing little or no filter aid

  3. Mixed waste study, Lawrence Livermore National Laboratory Hazardous Waste Management facilities

    International Nuclear Information System (INIS)

    1990-11-01

    This document addresses the generation and storage of mixed waste at Lawrence Livermore National Laboratory (LLNL) from 1984 to 1990. Additionally, an estimate of remaining storage capacity based on the current inventory of low-level mixed waste and an approximation of current generation rates is provided. Section 2 of this study presents a narrative description of Environmental Protection Agency (EPA) and Department of Energy (DOE) requirements as they apply to mixed waste in storage at LLNL's Hazardous Waste Management (HWM) facilities. Based on information collected from the HWM non-TRU radioactive waste database, Section 3 presents a data consolidation -- by year of storage, location, LLNL generator, EPA code, and DHS code -- of the quantities of low-level mixed waste in storage. Related figures provide the distribution of mixed waste according to each of these variables. A historical review follows in Section 4. The trends in type and quantity of mixed waste managed by HWM during the past five years are delineated and graphically illustrated. Section 5 provides an estimate of remaining low-level mixed waste storage capacity at HWM. The estimate of remaining mixed waste storage capacity is based on operational storage capacity of HWM facilities and the volume of all waste currently in storage. An estimate of the time remaining to reach maximum storage capacity is based on waste generation rates inferred from the HWM database and recent HWM documents. 14 refs., 18 figs., 9 tabs

  4. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO)

  5. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  6. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  7. Remediation Approach for the Integrated Facility Disposition Project at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kirk, P.G.; Stephens, Jr.J.M.

    2009-01-01

    The Integrated Facility Disposition Project (IFDP) is a multi-billion-dollar remediation effort being conducted by the U.S. Department of Energy (DOE) Office of Environmental Management in Oak Ridge, Tennessee. The scope of the IFDP encompasses remedial actions related to activities conducted over the past 65 years at the Oak Ridge National Laboratory (ORNL) and the Y-12 National Security Complex (Y-12). Environmental media and facilities became contaminated as a result of operations, leaks, spills, and past waste disposal practices. ORNL's mission includes energy, environmental, nuclear security, computational, and materials research and development. Remediation activities will be implemented at ORNL as part of IFDP scope to meet remedial action objectives established in existing and future decision documents. Remedial actions are necessary (1) to comply with environmental regulations to reduce human health and environmental risk and (2) to release strategic real estate needed for modernization initiatives at ORNL. The scope of remedial actions includes characterization, waste management, transportation and disposal, stream restoration, and final remediation of contaminated soils, sediments, and groundwater. Activities include removal of at or below-grade substructures such as slabs, underground utilities, underground piping, tanks, basins, pits, ducts, equipment housings, manholes, and concrete-poured structures associated with equipment housings and basement walls/floors/columns. Many interim remedial actions involving groundwater and surface water that have not been completed are included in the IFDP remedial action scope. The challenges presented by the remediation of Bethel Valley at ORNL are formidable. The proposed approach to remediation endeavors to use the best available technologies and technical approaches from EPA and other federal agencies and lessons learned from previous cleanup efforts. The objective is to minimize cost, maximize remedial

  8. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube

  9. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  10. Estimate of aircraft crash hit frequencies on to facilities at the Lawrence Livermore National Laboratory (LLNL) Site 200

    International Nuclear Information System (INIS)

    Kimura, C.Y.

    1997-01-01

    Department of Energy (DOE) nuclear facilities are required by DOE Order 5480.23, Section 8.b.(3)(k) to consider external events as initiating events to accidents within the scope of their Safety Analysis Reports (SAR). One of the external initiating events which should be considered within the scope of a SAR is an aircraft accident, i.e., an aircraft crashing into the nuclear facility with the related impact and fire leading to penetration of the facility and to the release of radioactive and/or hazardous materials. This report presents the results of an Aircraft Crash Frequency analysis performed for the Materials Management Area (MMA), and the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) Site 200. The analysis estimates only the aircraft crash hit frequency on to the analyzed facilities. No initial aircraft crash hit frequency screening structural response calculations of the facilities to the aircraft impact, or consequence analysis of radioactive/hazardous materials released following the aircraft impact are performed. The method used to estimate the aircraft crash hit frequencies on to facilities at the Lawrence Livermore National Laboratory (LLNL) generally follows the procedure given by the DOE Standard 3014-96 on Aircraft Crash Analysis. However, certain adjustments were made to the DOE Standard procedure because of the site specific fight environment or because of facility specific characteristics

  11. Sandia National Laboratories Facilities Management and Operations Center Design Standards Manual

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Timothy L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    At Sandia National Laboratories in New Mexico (SNL/NM), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/NM applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. The safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule. These design standards generally apply to all disciplines on all SNL/NM projects. Architectural and engineering design must be both functional and cost-effective. Facility design must be tailored to fit its intended function, while emphasizing low-maintenance, energy-efficient, and energy-conscious design. Design facilities that can be maintained easily, with readily accessible equipment areas, low maintenance, and quality systems. To promote an orderly and efficient appearance, architectural features of new facilities must complement and enhance the existing architecture at the site. As an Architectural and Engineering (A/E) professional, you must advise the Project Manager when this approach is prohibitively expensive. You are encouraged to use professional judgment and ingenuity to produce a coordinated interdisciplinary design that is cost-effective, easily contractible or buildable, high-performing, aesthetically pleasing, and compliant with applicable building codes. Close coordination and development of civil, landscape, structural, architectural, fire

  12. Environmental surveillance for EG ampersand G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    International Nuclear Information System (INIS)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG ampersand G Idaho, Inc., performed at EG ampersand G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years

  13. Annual report -- 1992: Environmental surveillance for EG ampersand G Idaho Waste Management Facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.

    1993-08-01

    This report describes the 1992 environmental surveillance activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G Idaho-operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are some results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1992 environmental surveillance data with DOE derived concentration guides, and with data from previous years

  14. Linear induction accelerators at the Los Alamos National Laboratory DARHT facility

    International Nuclear Information System (INIS)

    Nath, Subrata

    2010-01-01

    The Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) at Los Alamos National Laboratory consists of two linear induction accelerators at right angles to each other. The First Axis, operating since 1999, produces a nominal 20-MeV, 2-kA single beam-pulse with 60-nsec width. In contrast, the DARHT Second Axis, operating since 2008, produces up to four pulses in a variable pulse format by slicing micro-pulses out of a longer ∼1.6-microseconds (flat-top) pulse of nominal beam-energy and -current of 17 MeV and 2 kA respectively. Bremsstrahlung x-rays, shining on a hydro-dynamical experimental device, are produced by focusing the electron beam-pulses onto a high-Z target. Variable pulse-formats allow for adjustment of the pulse-to-pulse doses to record a time sequence of x-ray images of the explosively driven imploding mock device. Herein, we present a sampling of the numerous physics and engineering aspects along with the current status of the fully operational dual axes capability. First successful simultaneous use of both the axes for a hydrodynamic experiment was achieved in 2009.

  15. Geology of the host formation for the new hydraulic fracturing facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.; Zucker, C.L.; University of Tennessee, Knoxville)

    1985-01-01

    Liquid low-level radioactive wastes are disposed of at Oak Ridge National Laboratory (ORNL) by the hydrofracture process. Wastes are mixed with cement and other additives to form a slurry that is injected into a low permeability shale at 300-m depth. Important properties for a host shale formation at a hydrofracture facility include: (1) predictable fracture behavior; (2) hydrologic isolation; and (3) favorable mineralogy and geochemistry to retard radionuclide migration and enhance grout stability. The stratigraphy, petrology, diagenesis, structural geology, and hydrology of the Pumpkin Valley Shale host formation at the ORNL site are summarized and discussed in light of these three properties. Empirical data from hydrofracture operations at ORNL over the past 25 years suggest that many aspects of the Pumpkin Valley Shale make it favorable for use as a host. This observation agrees with analysis of several aspects of the Pumpkin Valley Shale geology at the ORNL site. Although presently available data suggest that the permeability of the Pumpkin Valley Shale is low and that it should provide sufficient hydrologic isolation, more data are needed to properly evaluate this aspect of host formation performance

  16. Decontamination and decommissioning of the Argonne National Laboratory Building 350 Plutonium Fabrication Facility. Final report

    International Nuclear Information System (INIS)

    Kline, W.H.; Moe, H.J.; Lahey, T.J.

    1985-02-01

    In 1973, Argonne National Laboratory began consolidating and upgrading its plutonium-handling operations with the result that the research fuel-fabrication facility located in Building 350 was shut down and declared surplus. Sixteen of the twenty-three gloveboxes which comprised the system were disassembled and relocated for reuse or placed into controlled storage during 1974 but, due to funding constraints, full-scale decommissioning did not start until 1978. Since that time the fourteen remaining contaminated gloveboxes, including all internal and external equipment as well as the associated ventilation systems, have been assayed for radioactive content, dismantled, size reduced to fit acceptable packaging and sent to a US Department of Energy (DOE) transuranic retrievable-storage site or to a DOE low-level nuclear waste burial ground. The project which was completed in 1983, required 5 years to accomplish, 32 man years of effort, produced some 540 m 3 (19,000 ft 3 ) of radioactive waste of which 60% was TRU, and cost 2.4 million dollars

  17. Air quality investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    International Nuclear Information System (INIS)

    Gutman, W.M.; Silver, R.J.

    1994-12-01

    The air quality implications of the test and evaluation activities at the Sandia National Laboratories Sol se Mete Aerial Cable Facility are examined. All facets of the activity that affect air quality are considered. Air contaminants produced directly include exhaust products of rocket motors used to accelerate test articles, dust and gas from chemical explosives, and exhaust gases from electricity generators in the test arenas. Air contaminants produced indirectly include fugitive dust and exhaust contaminants from vehicles used to transport personnel and material to the test area, and effluents produced by equipment used to heat the project buildings. Both the ongoing program and the proposed changes in the program are considered. Using a reliable estimate of th maximum annual testing level, the quantities of contaminants released by project activities ar computed either from known characteristics of test items or from EPA-approved emission factors Atmospheric concentrations of air contaminants are predicted using EPA dispersion models. The predicted quantities and concentrations are evaluated in relation to Federal, New Mexico, an Bernalillo County air quality regulations and the human health and safety standards of the American Conference of Governmental Industrial Hygienists

  18. Final report for the Idaho National Engineering Laboratory Central Facilities Area Landfill 2

    International Nuclear Information System (INIS)

    Doornbos, M.H.; Morgan, M.E.; Hubbell, J.M.

    1991-04-01

    This report summarize activities completed during FY-88 through FY-91 for the US Department of Energy's (DOE's) Hazardous Waste Remedial Actions Program (HAZWRAP) at the Idaho National Engineering Laboratory (INEL) Central Facilities Area (CFA) Landfill 2. The objectives of this program are to demonstrate new technologies or innovative uses of existing technologies for the identification and remediation of hazardous wastes within a municipal-type landfill. The site was chosen as a candidate site because it represents a problem typical of both DOE and public landfills. The HAZWRAP Technology Demonstration Project began at the INEL CFA Landfill 2 in 1987. During characterization and identification activities, several organic ''hotspots'' or anomalies were identified. Proposals were then solicited from the private sector for innovative technologies to remediate the isolated areas. Remediation was planned to be implemented using horizontal wells installed underneath a portion of the landfill. These innovative technologies and the well installation were planned to support the current goals of the DOE and the Environmental Protection Agency to treat hazardous waste in place. 2 refs., 2 figs., 2 tabs

  19. Hazards and accident analyses, an integrated approach, for the Plutonium Facility at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.; Goen, L.K.; Letellier, B.C.; Sasser, M.K.

    1995-01-01

    This paper describes an integrated approach to perform hazards and accident analyses for the Plutonium Facility at Los Alamos National Laboratory. A comprehensive hazards analysis methodology was developed that extends the scope of the preliminary/process hazard analysis methods described in the AIChE Guidelines for Hazard Evaluations. Results fro the semi-quantitative approach constitute a full spectrum of hazards. For each accident scenario identified, there is a binning assigned for the event likelihood and consequence severity. In addition, each accident scenario is analyzed for four possible sectors (workers, on-site personnel, public, and environment). A screening process was developed to link the hazard analysis to the accident analysis. Specifically the 840 accident scenarios were screened down to about 15 accident scenarios for a more through deterministic analysis to define the operational safety envelope. The mechanics of the screening process in the selection of final scenarios for each representative accident category, i.e., fire, explosion, criticality, and spill, is described

  20. 2015 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2014, through October 31, 2015.

  1. 2015 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    International Nuclear Information System (INIS)

    Lewis, Michael George

    2016-01-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2014, through October 31, 2015.

  2. Proposed Californium-252 User Facility for Neutron Science at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Martin, R.C.; Laxson, R.R.; Knauer, J.B.

    1996-01-01

    The Radiochemical Engineering Development Center (REDC) at ORNL has petitioned to establish a Californium-252 User Facility for Neutron Science for academic, industrial, and governmental researchers. The REDC Californium Facility (CF) stores the national inventory of sealed 252 Cf neutron source for university and research loans. Within the CF, the 252 Cf storage pool and two uncontaminated hot cells currently in service for the Californium Program will form the physical basis for the User Facility. Relevant applications include dosimetry and experiments for neutron tumor therapy; fast and thermal neutron activation analysis of materials; experimental configurations for prompt gamma neutron activation analysis; neutron shielding and material damage studies; and hardness testing of radiation detectors, cameras, and electronics. A formal User Facility simplifies working arrangements and agreements between US DOE facilities, academia, and commercial interests

  3. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  4. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory's hazardous waste management facility

    International Nuclear Information System (INIS)

    Dionne, B.J.; Morris, S. III; Baum, J.W.

    1998-03-01

    The Department of Energy's (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory's Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an open-quotes As Low as Reasonably Achievableclose quotes (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique

  5. Biological investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M.

    1994-10-01

    This report provides results of a comprehensive biological field survey performed on the Sandia National Laboratories Aerial Cable Facility, at the east end of Kirtland Air Force Base (KAFB), Bernalillo County, New Mexico. This survey was conducted late September through October, 1991. ACF occupies a 440-acre tract of land withdrawn by the US Forest Service (USFS) for use by KAFB, and in turn placed under operational control of SNL by the Department of Energy (DOE). All land used by SNL for ACF is part of a 15,851-acre tract of land withdrawn by the US Forest Service. In addition, a number of different organizations use the 15,851-acre area. The project area used by SNL encompasses portions of approximately six sections (3,840 acres) of US Forest Service land located within the foothills of the west side of the Manzano Mountains (East Mesa). The biological study area is used by the KAFB, the US Department of Interior, and SNL. This area includes: (1) Sol se Mete Springs and Canyon, (2) East Anchor Access Road, (3) East Anchor Site, (4) Rocket Sled Track, (5) North Arena, (6) East Instrumentation Site and Access Road, (7) West Anchor Access Road, (8) West Anchor Site, (9) South Arena, (10) Winch Sites, (11) West Instrumentation Sites, (12) Explosive Assembly Building, (13) Control Building, (14) Lurance Canyon Road and vicinity. Although portions of approximately 960 acres of withdrawn US Forest Service land have been altered, only 700 acres have been disturbed by activities associated with ACF; approximately 2,880 acres consist of natural habitat. Absence of grazing by livestock and possibly native ungulates, and relative lack of human disturbance have allowed this area to remain in a more natural vegetative state relative to the condition of private range lands throughout New Mexico. This report evaluates threatened and endangered species found on ACF, as well as a comprehensive assessment of biological habitats.

  6. Criticality safety strategy for the Fuel Cycle Facility electrorefiner at Argonne National Laboratory, West

    International Nuclear Information System (INIS)

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.; Turski, R.B.; Fujita, E.K.

    1993-01-01

    The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutonium products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality

  7. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  8. Pollution prevention opportunity assessment for MicroFab and SiFab facilities at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Gerard, Morgan Evan

    2011-12-01

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the MicroFab and SiFab facilities at Sandia National Laboratories/New Mexico in Fiscal Year 2011. The primary purpose of this PPOA is to provide recommendations to assist organizations in reducing the generation of waste and improving the efficiency of their processes and procedures. This report contains a summary of the information collected, the analyses performed, and recommended options for implementation. The Sandia National Laboratories Environmental Management System (EMS) and Pollution Prevention (P2) staff will continue to work with the organizations to implement the recommendations.

  9. Preliminary siting criteria for the proposed mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Jorgenson-Waters, M.

    1992-09-01

    The Mixed and Low-Level Waste Treatment Facility project was established in 1991 by the US Department of Energy Idaho Field Office. This facility will provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies the siting requirements imposed on facilities that treat and store these waste types by Federal and State regulatory agencies and the US Department of Energy. Site selection criteria based on cost, environmental, health and safety, archeological, geological and service, and support requirements are presented. These criteria will be used to recommend alternative sites for the new facility. The National Environmental Policy Act process will then be invoked to evaluate the alternatives and the alternative sites and make a final site determination

  10. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S ampersand M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed

  11. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  12. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    International Nuclear Information System (INIS)

    Butterworth, St.W.; Shaw, M.R.

    2009-01-01

    Significant progress continued at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) with the completion of the closure process to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks had historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Four of the large storage tanks remain in use for waste storage while the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. During 2008 over seven miles of underground process piping along with associated tank valve boxes and secondary containment systems was stabilized with grout. Lessons learned were compiled and implemented during the closure process and will be utilized on the remaining four 1,135.6-kL (300,000-gal) underground stainless steel storage tanks. Significant progress has been made to clean and close emptied tanks at the INTEC TFF. Between 2002 and 2005, seven of the eleven 1,135.6-kL (300,000-gal) tanks and all four 113.5-kL (30,000-gal) tanks were cleaned and prepared

  13. BROOKHAVEN NATIONAL LABORATORY INSTRUMENTATION DIVISION, R AND D PROGRAMS, FACILITIES, STAFF

    International Nuclear Information System (INIS)

    INSTRUMENTATION DIVISION STAFF

    1999-01-01

    To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientists from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations

  14. BROOKHAVEN NATIONAL LABORATORY INSTRUMENTATION DIVISION, R AND D PROGRAMS, FACILITIES, STAFF.

    Energy Technology Data Exchange (ETDEWEB)

    INSTRUMENTATION DIVISION STAFF

    1999-06-01

    To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientists from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations.

  15. Interactive radiopharmaceutical facility between Yale Medical Center and Brookhaven National Laboratory. Progress report, October 1976-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, A.

    1979-01-01

    DOE Contract No. EY-76-S-02-4078 was started in October 1976 to set up an investigative radiochemical facility at the Yale Medical Center which would bridge the gap between current investigation with radionuclides at the Yale School of Medicine and the facilities in the Chemistry Department at the Brookhaven National Laboratory. To facilitate these goals, Dr. Mathew L. Thakur was recruited who joined the Yale University faculty in March of 1977. This report briefly summarizes our research accomplishments through the end of June 1979. These can be broadly classified into three categories: (1) research using indium-111 labelled cellular blood components; (2) development of new radiopharmaceuticals; and (3) interaction with Dr. Alfred Wolf and colleagues in the Chemistry Department of Brookhaven National Laboratory.

  16. Interactive radiopharmaceutical facility between Yale Medical Center and Brookhaven National Laboratory. Progress report, October 1976-June 1979

    International Nuclear Information System (INIS)

    Gottschalk, A.

    1979-01-01

    DOE Contract No. EY-76-S-02-4078 was started in October 1976 to set up an investigative radiochemical facility at the Yale Medical Center which would bridge the gap between current investigation with radionuclides at the Yale School of Medicine and the facilities in the Chemistry Department at the Brookhaven National Laboratory. To facilitate these goals, Dr. Mathew L. Thakur was recruited who joined the Yale University faculty in March of 1977. This report briefly summarizes our research accomplishments through the end of June 1979. These can be broadly classified into three categories: (1) research using indium-111 labelled cellular blood components; (2) development of new radiopharmaceuticals; and (3) interaction with Dr. Alfred Wolf and colleagues in the Chemistry Department of Brookhaven National Laboratory

  17. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation

  18. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data

  19. Department of Energy’s ARM Climate Research Facility External Data Center Operations Plan Located At Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cialella, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gregory, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lazar, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liang, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ma, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tilp, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wagener, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-01

    The External Data Center (XDC) Operations Plan describes the activities performed to manage the XDC, located at Brookhaven National Laboratory (BNL), for the Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. It includes all ARM infrastructure activities performed by the Data Management and Software Engineering Group (DMSE) at BNL. This plan establishes a baseline of expectation within the ARM Operations Management for the group managing the XDC.

  20. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training.

  1. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training

  2. Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-11-01

    This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site

  3. Automation of process accountability flow diagrams at Los Alamos National Laboratory's Plutonium Facility

    International Nuclear Information System (INIS)

    Knepper, P.; Whiteson, R.; Strittmatter, R.; Mousseau, K.

    1999-01-01

    Many industrial processes (including reprocessing activities; nuclear fuel fabrication; and material storage, measurement and transfer) make use of process flow diagrams. These flows can be used for material accountancy and for data analysis. At Los Alamos National Laboratory (LANL), the Technical Area (TA)-55 Plutonium Facility is home to various research and development activities involving the use of special nuclear material (SNM). A facility conducting research and development (R and D) activities using SNM must satisfy material accountability guidelines. All processes involving SNM or tritium processing, at LANL, require a process accountability flow diagram (PAFD). At LANL a technique was developed to generate PAFDs that can be coupled to a relational database for use in material accountancy. These techniques could also be used for propagation of variance, measurement control, and inventory difference analysis. The PAFD is a graphical representation of the material flow during a specific process. PAFDs are currently stored as PowerPoint files. In the PowerPoint format, the data captured by the PAFD are not easily accessible. Converting the PAFDs to an accessible electronic format is desirable for several reasons. Any program will be able to access the data contained in the PAFD. For the PAFD data to be useful in applications such as an expert system for data checking, SNM accountability, inventory difference evaluation, measurement control, and other kinds of analysis, it is necessary to interface directly with the information contained within the PAFD. The PAFDs can be approved and distributed electronically, eliminating the paper copies of the PAFDs and ensuring that material handlers have the current PAFDs. Modifications to the PAFDs are often global. Storing the data in an accessible format would eliminate the need to manually update each of the PAFDs when a global change has occurred. The goal was to determine a software package that would store the

  4. Comprehensive work plan for the Well Driller's Steam Cleaning Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    The purpose of this Comprehensive Work Plan is to address the history of the site as well as the scope, roles and responsibilities, documentation, training, environmental compliance requirements, and field actions needed to close the Oak Ridge National Laboratory (ORNL) Well Driller's Steam Cleaning Facility, hereinafter referred to as the Facility. The Facility was constructed in 1989 to provide a central area suitable to conduct steam cleaning operations associated with cleaning drilling equipment, containment boxes, and related accessories. Three basins were constructed of crushed stone (with multiple plastic and fabric liners) over a soil foundation to collect drill cuttings and wastewater generated by the cleaning activities. The scope of this task will be to demolish the Facility by using a bulldozer and backhoe to recontour and dismantle the area

  5. Safety analysis report for the mixed waste storage facility and portable storage units at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Peatross, R.

    1997-01-01

    The Mixed Waste Storage Facility (MWSF) including the Portable Storage Units (PSUs) is a government-owned contractor-operated facility located at the Idaho National Engineering Laboratory (INEL). Lockheed Martin Idaho Technologies Company (LMITCO) is the current operating contractor and facility Architect/Engineer as of September 1996. The operating contractor is referred to as open-quotes the Companyclose quotes or open-quotes Companyclose quotes throughout this document. Oversight of MWSF is provided by the Department of Energy Idaho Operations Office (DOE-ID). The MWSF is located in the Power Burst Facility (PBF) Waste Reduction Operations Complex (WROC) Area, approximately 10.6 km (6.6 mi) from the southern INEL boundary and 4 km (2.5 mi) from U.S. Highway 20

  6. Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  7. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  8. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Atchley, Adam Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Elizabeth D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-24

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis (PA/CA) maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the PA/CA are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2016 annual review for Area G.

  9. Decontamination and decommissioning of the Argonne National Laboratory East Area radioactively contaminated surplus facilities: Final report

    International Nuclear Information System (INIS)

    Kline, W.H.; Fassnacht, G.F.; Moe, H.J.

    1987-07-01

    ANL has decontaminated and decommissioned (D and D) seven radiologically contaminated surplus facilities at its Illinois site: a ''Hot'' Machine Shop (Building 17) and support facilities; Fan House No. 1 (Building 37), Fan House No. 2 (Building 38), the Pangborn Dust Collector (Building 41), and the Industrial Waste Treatment Plant (Building 34) for exhaust air from machining of radioactive materials. Also included were a Nuclear Materials Storage Vault (Building 16F) and a Nuclear Research Laboratory (Building 22). The D and D work involved dismantling of all process equipment and associated plumbing, ductwork, drain lines, etc. After radiation surveys, floor and wall coverings, suspended ceilings, room partitions, pipe, conduit and electrical gear were taken down as necessary. In addition, underground sewers were excavated. The grounds around each facility were also thoroughly surveyed. Contaminated materials and soil were packaged and shipped to a low-level waste burial site, while nonactive debris was buried in the ANL landfill. Clean, reusable items were saved, and clean metal scrap was sold for salvage. After the decommissioning work, each building was torn down and the site relandscaped. The project was completed in 1985, ahead of schedule, with substantial savings

  10. The mixed waste management facility: Cost-benefit for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Brinker, S.D.; Streit, R.D.

    1996-04-01

    The Mixed Waste Management Facility, or MWMF, has been proposed as a national testbed facility for the demonstration and evaluation of technologies that are alternatives to incineration for the treatment of mixed low-level waste. The facility design will enable evaluation of technologies at pilot scale, including all aspects of the processes, from receiving and feed preparation to the preparation of final forms for disposal. The MWMF will reduce the risk of deploying such technologies by addressing the following: (1) Engineering development and scale-up. (2) Process integration and activation of the treatment systems. (3) Permitting and stakeholder issues. In light of the severe financial constraints imposed on the DOE and federal programs, DOE/HQ requested a study to assess the cost benefit for the MWMF given other potential alternatives to meet waste treatment needs. The MVVMF Project was asked to consider alternatives specifically associated with commercialization and privatization of the DOE site waste treatment operations and the acceptability (or lack of acceptability) of incineration as a waste treatment process. The result of this study will be one of the key elements for a DOE decision on proceeding with the MWMF into Final Design (KD-2) vs. proceeding with other options

  11. The National Ignition Facility

    International Nuclear Information System (INIS)

    Hogan, W.J.; Moses, E.; Warner, B.; Sorem, M.; Soures, J.M.

    2001-01-01

    The National Ignition Facility (NIF) is the largest construction project ever undertaken at Lawrence Livermore National Laboratory (LLNL). NIF consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. NIF is being designed and built by an LLNL-led team from Los Alamos National Laboratory, Sandia National Laboratories, the University of Rochester, and LLNL. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This paper will discuss the status of the NIF project and the plans for completion. (author)

  12. Single Event Effects Test Facility Options at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Riemer, Bernie [ORNL; Gallmeier, Franz X [ORNL; Dominik, Laura J [ORNL

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of integrated circuits (ICs) and systems for use in radiation environments requires the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.

  13. Weapons Engineering Tritium Facility, Building 205, Technical Area 16: Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1991-04-01

    The Weapons Engineering Tritium Facility (WETF) was planned by the US Department of Energy (DOE) to retain at Los Alamos National Laboratory the capability of repackaging small quantities of tritium to exacting specifications. Small quantities of tritium are required for energy research and development activities and for research on nuclear weapons test devices carried out as part of the laboratory mission. The WETF is an improved design proposed to replace an aging Los Alamos facility where tritium has been repackaged for many years. This Environmental Assessment evaluates the environmental consequences to be expected from operating the new facility, for which construction was completed in 1984, compared with those from continuing to operate the old facility. The document was prepared for compliance with NEPA. In operation, the WETF will incorporate state-of-the-art systems for containing tritium in glove boxes and capturing any tritium released into the glove box exhaust system and the laboratory atmosphere. Liquid discharges from the WETF would contain less than 1% of the tritium found in effluents from the present facility. Effluent streams would be surface discharges and would not enter the aquifer from which municipal water supplies are drawn. The quantity of solid radioactive waste generated at the WETF would be approximately the same as that generated at the present facility. The risk to the public from normal tritium-packaging operations would be significantly less from the WETF than from the present facility. The proposed action will reduce the adverse environmental impacts caused by tritium repackaging by substantially reducing the amount of tritium that escapes to the environment. 35 refs., 3 figs., 21 tabs

  14. Lifecycle baseline summary for ADS 6504IS isotopes facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-08-01

    The scope of this Activity Data Sheet (ADS) is to provide a detailed plan for the Isotopes Facilities Deactivation Project (IFDP) at the Oak Ridge National Laboratory (ORNL). This project places the former isotopes production facilities in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) until the facilities are included in the Decontamination and Decommissioning (D ampersand D) Program. The facilities included within this deactivation project are Buildings 3026-C, 3026-D, 3028, 3029, 3038-AHF, 3038-E, 3038-M, 3047, 3517, 7025, and the Center Circle Facilities (Buildings 3030, 3031, 3032, 3033, 3033-A, 3034, and 3118). The scope of deactivation identified in this Baseline Report include surveillance and maintenance activities for each facility, engineering, contamination control and structural stabilization of each facility, radioluminescent (RL) light removal in Building 3026, re-roofing Buildings 3030, 3118, and 3031, Hot Cells Cleanup in Buildings 3047 and 3517, Yttrium (Y) Cell and Barricades Cleanup in Building 3038, Glove Boxes ampersand Hoods Removal in Buildings 3038 and 3047, and Inventory Transfer in Building 3517. For a detailed description of activities within this Work Breakdown Structure (WBS) element, see the Level 6 and Level 7 Element Definitions in Section 3.2 of this report

  15. Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream

    International Nuclear Information System (INIS)

    Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

    1998-03-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility's mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC

  16. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory's hazardous waste management facility

    International Nuclear Information System (INIS)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W.

    1998-01-01

    The Department of Energy's (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory's Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an open-quotes As Low as Reasonably Achievableclose quotes (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report

  17. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

  18. Decontamination Project for Cell G of the Metal Recovery Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mandry, G.J.; Grisham, R.W.

    1994-02-01

    The goal of the decontamination effort in Cell G at the Metal Recovery Facility, Building 3505, located at the Oak Ridge National Laboratory, was two-fold: to determine the effectiveness of the dry decontamination technique employed and to provide data required to assess whether additional decontamination using this method would be beneficial in the eventual decommissioning of the facility. Allied Technology Group (ATG) was contracted to remove a portion of the concrete surface in Cell G by a technique known as scabbling. Some metallic cell components were also scabbled to remove paint and other surface debris. Generally, the scabbling operation was a success. Levels of contamination were greatly reduced. The depth of contaminant penetration into the concrete surfaces of certain areas was much greater than had been anticipated, necessitating the removal of additional concrete and extending ATG's period of performance. Scabbling and other related techniques will be extremely useful in the decontamination and decommissioning of other nuclear facilities with similar radiological profiles

  19. The Los Alamos National Laboratory Chemistry and Metallurgy Research Facility upgrades project - A model for waste minimization

    International Nuclear Information System (INIS)

    Burns, M.L.; Durrer, R.E.; Kennicott, M.A.

    1996-07-01

    The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently undergoing a major, multi-year construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D ampersand D) job and are identical to the requirements of any of several upgrades projects anticipated for LANL and other Department of Energy (DOE) sites. For these reasons the CMR Upgrades Project is seen as an ideal model facility - to test the application, and measure the success of - waste minimization techniques which could be brought to bear on any of the similar projects. The purpose of this paper will be to discuss the past, present, and anticipated waste minimization applications at the facility and will focus on the development and execution of the project's open-quotes Waste Minimization/Pollution Prevention Strategic Plan.close quotes

  20. In situ ion irradiation/implantation studies in the HVEM-Tandem Facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Allen, C.W.; Funk, L.L.; Ryan, E.A.; Taylor, A.

    1988-09-01

    The HVEM-Tandem User Facility at Argonne National Laboratory interfaces two ion accelerators, a 2 MV tandem accelerator and a 650 kV ion implanter, to a 1.2 MV high voltage electron microscope. This combination allows experiments involving simultaneous ion irradiation/ion implantation, electron irradiation and electron microscopy/electron diffraction to be performed. In addition the availability of a variety of microscope sample holders permits these as well as other types of in situ experiments to be performed at temperatures ranging from 10-1300 K, with the sample in a stressed state or with simultaneous determination of electrical resistivity of the specimen. This paper summarizes the details of the Facility which are relevant to simultaneous ion beam material modification and electron microscopy, presents several current applications and briefly describes the straightforward mechanism for potential users to access this US Department of Energy supported facility. 7 refs., 1 fig., 1 tab

  1. Historic preservation requirements and the evaluation of cold war era nuclear facilities at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Wescott, K. L.

    1999-01-01

    Project design for the decontamination and decommissioning (D and D) of federal facilities must address the requirements of the National Environmental Policy Act which includes compliance with the National Historic Preservation Act (NHPA). Section 106 of the NHPA requires that Federal agencies consider any effect their activities may have on historic properties. While a cultural property is not usually considered historic until it has reached an age of 50 years or older, special consideration is given to younger properties if they are of exceptional importance in demonstrating unique development in American history, architecture, archaeology, engineering, or culture. As part of the U.S. Department of Energy's (DOE's) D and D program at Argonne National Laboratory-East (ANL-E), site properties are evaluated within the context of the Cold War Era and within themes associated with nuclear technology. Under this program, ANL-E staff have conducted archival research on three nuclear reactor facilities, one accelerator, and one laboratory building. DOE and ANL-E have been working closely with the Illinois Historic Preservation Agency (IHPA) to determine the eligibility of these properties for listing on the National Register of Historic Places. In 1998, in consultation with the IHPA, the DOE determined that the reactor facilities were eligible. Memoranda of Agreement were signed between the DOE and the IHPA stipulating mitigation requirements for the recordation of two of these properties. The laboratory building was recently determined eligible and will likely undergo similar documentation procedures. The accelerator was determined not eligible. Similar studies and determinations will be required for all future D and D projects

  2. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  3. Waste Characterization Facility at the Idaho National Engineering Laboratory. Environmental Assessment

    International Nuclear Information System (INIS)

    1995-02-01

    DOE has prepared an Environmental Assessment (EA) on the proposed construction and operation of a Waste Characterization Facility (WCF) at INEL. This facility is needed to examine and characterize containers of transuranic (TRU) waste to certify compliance with transport and disposal criteria; to obtain information on waste constituents to support proper packaging, labeling, and storage; and to support development of treatment and disposal plans for waste that cannot be certified. The proposed WCF would be constructed at the Radioactive Waste Management Complex (RWMC). In accordance with the Council on Environmental Quality (CEQ) requirements in 40 CFR Parts 1500-1508, the EA examined the potential environmental impacts of the proposed WCF and discussed potential alternatives. Based on the analyses in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, and CEQ regulations at 40 CFR 1508.18 and 1508.27. Therefore, an Environmental Impact Statement is not required, and DOE is issuing this Finding of No Significant Impact

  4. STAR - Research Experiences at National Laboratory Facilities for Pre-Service and Early Career Teachers

    Science.gov (United States)

    Keller, J. M.; Rebar, B.; Buxner, S.

    2012-12-01

    The STEM Teacher and Researcher (STAR) Program provides pre-service and beginning teachers the opportunity to develop identity as both teachers and researchers early in their careers. Founded and implemented by the Center for Excellence in Science and Mathematics Education (CESaME) at California Polytechnic State University on behalf of the California State University (CSU) system, STAR provides cutting edge research experiences and career development for students affiliated with the CSU system. Over the past three summers, STAR has also partnered with the NSF Robert Noyce Teacher Scholarship Program to include Noyce Scholars from across the country. Key experiences are one to three summers of paid research experience at federal research facilities associated with the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Association (NOAA), and the National Optical Astronomy Observatory (NOAO). Anchoring beginning teachers in the research community enhances participant understanding of what it means to be both researchers and effective teachers. Since its inception in 2007, the STAR Program has partnered with 15 national lab facilities to provide 290 research experiences to 230 participants. Several of the 68 STAR Fellows participating in the program during Summer 2012 have submitted abstracts to the Fall AGU Meeting. Through continued partnership with the Noyce Scholar Program and contributions from outside funding sources, the CSU is committed to sustaining the STAR Program in its efforts to significantly impact teacher preparation. Evaluation results from the program continue to indicate program effectiveness in recruiting high quality science and math majors into the teaching profession and impacting their attitudes and beliefs towards the nature of science and teaching through inquiry. Additionally, surveys and interviews are being conducted of participants who are now teaching in the classroom as

  5. Superconducting magnet development capability of the LLNL [Lawrence Livermore National Laboratory] High Field Test Facility

    International Nuclear Information System (INIS)

    Miller, J.R.; Shen, S.; Summers, L.T.

    1990-02-01

    This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility

  6. Contaminant monitoring of biota downstream of a radioactive liquid waste treatment facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Bennett, K.D.; Biggs, J.R.; Fresquez, P.R.

    1996-01-01

    Small mammals, plants, and sediments were sampled at one upstream location (Site 1) and two downstream locations (Site 2 and Site 3) from the National Pollution Discharge Elimination System (NPDES) outfall number-sign 051-051 in Mortandad Canyon, Los Alamos National Laboratory, Los Alamos, New Mexico. The purpose of the sampling was to identify radionuclides potentially present, to quantitatively estimate and compare the amount of radionuclide uptake at specific locations (Site 2 and Site 3) within Mortandad Canyon to an upstream site (Site 1), and to identify the primary mode (inhalation/ingestion or surface contact) of contamination to small mammals. Three composite samples of at least five animals per sample were collected at each site. The pelt was separated from the carcass of each animal and both were analyzed independently. In addition, three composite samples were also collected for plants and sediments at each site. Samples were analyzed for americium ( 241 Am), strontium ( 90 Sr), plutonium ( 238 Pu and 239 Pu), and total uranium (U). With the exception of total U, all mean radionuclide concentrations in small mammal carcasses and sediments were significantly higher at Site 2 than Site 1 or Site 3. No differences were detected in the mean radionuclide concentration of plant samples between sites. However, some radionuclide concentrations found at all three sites were higher than regional background. No differences were found between mean carcass radionuclide concentrations and mean pelt radionuclide concentrations, indicating that the two primary modes of contamination may be equally occurring

  7. Final environmental impact statement. Proton--Proton Storage Accelerator Facility (ISABELLE), Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    1978-08-01

    An Environmental Impact Statement for a proposed research facility (ISABELLE) to be built at Brookhaven National Laboratory (BNL) is presented. It was prepared by the Department of Energy (DOE) following guidelines issued for such analyses. In keeping with DOE policy, this statement presents a concise and issues-oriented analysis of the significant environmental effects associated with the proposed action. ISABELLE is a proposed physics research facility where beams of protons collide providing opportunities to study high energy interactions. The facility would provide two interlaced storage ring proton accelerators, each with an energy up to 400 GeV intersecting in six experimental areas. The rings are contained in a tunnel with a circumference of 3.8 km (2.3 mi). The facility will occupy 250 ha (625 acres) in the NW corner of the existing BNL site. A draft Environmental Impact Statement for this proposed facility was issued for public review and comment by DOE on February 21, 1978. The principal areas of concern expressed were in the areas of radiological impacts and preservation of cultural values. After consideration of these comments, appropriate actions were taken and the text of the statement has been amended to reflect the comments. The text was annotated to indicate the origin of the comment. The Appendices contain a glossary of terms and listings of metric prefixes and conversions and symbols and abbreviations

  8. Sandia National Laboratories Facilities Management and Operations Center Design Standards Manual

    Energy Technology Data Exchange (ETDEWEB)

    Fattor, Steven [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The manual contains general requirements that apply to nonnuclear and nonexplosive facilities. For design and construction requirements for modifications to nuclear or explosive facilities, see the project-specific design requirements noted in the Design Criteria.

  9. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options

    International Nuclear Information System (INIS)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J.; Parma, Edward J.Jr; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-01-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents

  10. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  11. Completion Summary for Well NRF-16 near the Naval Reactors Facility, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Twining, Brian V.; Fisher, Jason C.; Bartholomay, Roy C.

    2010-01-01

    In 2009, the U.S. Geological Survey in cooperation with the U.S. Department of Energy's Naval Reactors Laboratory Field Office, Idaho Branch Office cored and completed well NRF-16 for monitoring the eastern Snake River Plain (SRP) aquifer. The borehole was initially cored to a depth of 425 feet below land surface and water samples and geophysical data were collected and analyzed to determine if well NRF-16 would meet criteria requested by Naval Reactors Facility (NRF) for a new upgradient well. Final construction continued after initial water samples and geophysical data indicated that NRF-16 would produce chemical concentrations representative of upgradient aquifer water not influenced by NRF facility disposal, and that the well was capable of producing sustainable discharge for ongoing monitoring. The borehole was reamed and constructed as a Comprehensive Environmental Response Compensation and Liability Act monitoring well complete with screen and dedicated pump. Geophysical and borehole video logs were collected after coring and final completion of the monitoring well. Geophysical logs were examined in conjunction with the borehole core to identify primary flow paths for groundwater, which are believed to occur in the intervals of fractured and vesicular basalt and to describe borehole lithology in detail. Geophysical data also were examined to look for evidence of perched water and the extent of the annular seal after cement grouting the casing in place. Borehole videos were collected to confirm that no perched water was present and to examine the borehole before and after setting the screen in well NRF-16. Two consecutive single-well aquifer tests to define hydraulic characteristics for well NRF-16 were conducted in the eastern SRP aquifer. Transmissivity and hydraulic conductivity averaged from the aquifer tests were 4.8 x 103 ft2/d and 9.9 ft/d, respectively. The transmissivity for well NRF-16 was within the range of values determined from past aquifer

  12. Creating stars, supernovae, and the big bang in the laboratory: Nuclear Astrophysics with the National Ignition Facility

    International Nuclear Information System (INIS)

    Mathews, G.J.

    1994-02-01

    This talk has been prepared for the Symposium on Novel Approaches to Nuclear Astrophysics hosted by the ACS Division of Nuclear Chemistry and Technology for the San Diego ACS meeting. This talk indeed describes a truly novel approach. It discusses a proposal for the construction of the National Ignition Facility which could provide the most powerful concentration of laser energy yet attempted. The energy from such a facility could be concentrated in such a way as to reproduce, for the first time in a terrestrial laboratory, an environment which nearly duplicates that which occurs within stars and during the first few moments of cosmic creation during the big bang. These miniature versions of cosmic explosions may allow us to understand better the tumultuous astrophysical environments which have profoundly influenced the origin and evolution of the universe

  13. Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Ashworth

    2000-02-27

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  14. Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, Samuel Clay; Wood, R. A.; Taylor, D. D.; Sieme, D. D.

    2000-03-01

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  15. Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calciner Facility

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    2000-01-01

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended

  16. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  17. Recent developments in the Los Alamos National Laboratory Plutonium Facility Waste Tracking System-automated data collection pilot project

    International Nuclear Information System (INIS)

    Martinez, B.; Montoya, A.; Klein, W.

    1999-01-01

    The waste management and environmental compliance group (NMT-7) at the Los Alamos National Laboratory has initiated a pilot project for demonstrating the feasibility and utility of automated data collection as a solution for tracking waste containers at the Los Alamos National Laboratory Plutonium Facility. This project, the Los Alamos Waste Tracking System (LAWTS), tracks waste containers during their lifecycle at the facility. LAWTS is a two-tiered system consisting of a server/workstation database and reporting engine and a hand-held data terminal-based client program for collecting data directly from tracked containers. New containers may be added to the system from either the client unit or from the server database. Once containers are in the system, they can be tracked through one of three primary transactions: Move, Inventory, and Shipment. Because LAWTS is a pilot project, it also serves as a learning experience for all parties involved. This paper will discuss many of the lessons learned in implementing a data collection system in the restricted environment. Specifically, the authors will discuss issues related to working with the PPT 4640 terminal system as the data collection unit. They will discuss problems with form factor (size, usability, etc.) as well as technical problems with wireless radio frequency functions. They will also discuss complications that arose from outdoor use of the terminal (barcode scanning failures, screen readability problems). The paper will conclude with a series of recommendations for proceeding with LAWTS based on experience to date

  18. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  19. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  20. Life cycle baseline summary for ADS 6504IS Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-11-01

    The purpose of the Isotopes Facility Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. This baseline plan establishes the official target schedule for completing the deactivation work and the associated budget required for deactivation and the necessary S ampersand M. Deactivation of the facilities 3026C, 3026D, 3028, 3029, 3038E, 3038M, and 3038AHF, the Center Circle buildings 3047, 3517, and 7025 will continue though Fiscal Year (FY) 1999. The focus of the project in the early years will be on the smaller buildings that require less deactivation and can bring an early return in reducing S ampersand M costs. This baseline plan covers the period from FY1995 throughout FY2000. Deactivation will continue in various facilities through FY1999. A final year of S ampersand M will conclude the project in FY2000. The estimated total cost of the project during this period is $51M

  1. Removal site evaluation report on the Tower Shielding Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    This removal site evaluation report for the Tower Shielding Facility (TSF) at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Tower Shielding Facility pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and if remedial site evaluations or removal actions are, therefore, required. The scope of the project included a review of historical evidence regarding operations and use of the facility; interviews with facility personnel concerning current and past operating practices; a site inspection; and identification of hazard areas requiring maintenance, removal, or remedial actions. Based an the findings of this removal site evaluation, adequate efforts are currently being made at the TSF to contain and control existing contamination and hazardous substances on site in order to protect human health and the environment No conditions requiring maintenance or removal actions to mitigate imminent or potential threats to human health and the environment were identified during this evaluation. Given the current conditions and status of the buildings associated with the TSF, this removal site evaluation is considered complete and terminated according to the requirements for removal site evaluation termination

  2. Development of the Los Alamos National Laboratory Plutonium Facility decontamination room

    International Nuclear Information System (INIS)

    Mosso, J.S.; Smith, F.E.; Owen, M.J.; Treadaway, W.A.

    1987-01-01

    For several years the Health Protection Group attempted to remedy the problem of a facility to adequately handle personnel plutonium contamination incidents. Through the efforts of our Quality Circle a presentation was made to management, which immediately appropriated space and funds for the construction of a complete decontamination facility. 9 refs

  3. Human factors aspects of the major upgrade to control systems at the Los Alamos National Laboratory Plutonium Facility

    International Nuclear Information System (INIS)

    Higgins, J.; Pope, N.

    1997-01-01

    The Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL) has been in operation for over 15 years. It handles projects such as: stockpile maintenance, surveillance, and dismantlement; pit rebuild; plutonium power source fabrication for long duration spacecraft missions (e.g., Cassini); nuclear materials technology research; nuclear materials storage; and remediation of nuclear waste. The Operations Center of TA-55 is the nerve center of the facility where operators are on duty around the clock and monitor several thousand data points using the Facility Control System (FCS). The FCS monitors, displays, alarms, and provides some limited control of the following systems; HVAC, fire detection and suppression, radiation detection, electrical, and other miscellaneous systems. The FCS was originally based on late 1970s digital technology, which is not longer supported by the vendors. Additionally, the equipment failure rates increased notably in the 1990s. Thus, plans were put into place to upgrade and replace the FCS hardware, software, and display components with modernized equipment. The process was complicated by the facts that: the facility was operational and could not be totally closed for the modifications; complete documentation was not available for the existing system; the Safety Analyses for the facility were in the process of being upgraded at the same time; and of course limited time and budgets. This paper will discuss the human factors aspects of the design, installation, and testing of the new FCS within the above noted constraints. Particular items to be discussed include the functional requirements definition, operating experience review, screen designs, test program, operator training, and phased activation of the new circuits in an operational facility

  4. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    Science.gov (United States)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  5. Sandia National Laboratories/New Mexico existing environmental analyses bounding environmental test facilities.

    Energy Technology Data Exchange (ETDEWEB)

    May, Rodney A.; Bailey-White, Brenda E. (Sandia Staffing Alliance, LLC, Albuquerque, NM); Cantwell, Amber (Sandia Staffing Alliance, LLC, Albuquerque, NM)

    2009-06-01

    This report identifies current environmental operating parameters for the various test and support facilities at SNL/NM. The intent of this report is solely to provide the limits which bound the facilities' operations. Understanding environmental limits is important to maximizing the capabilities and working within the existing constraints of each facility, and supports the decision-making process in meeting customer requests, cost and schedule planning, modifications to processes, future commitments, and use of resources. Working within environmental limits ensures that mission objectives will be met in a manner that protects human health and the environment. It should be noted that, in addition to adhering to the established limits, other approvals and permits may be required for specific projects.

  6. Energy | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries and Energy Storage Energy Systems Modeling Materials for Energy Nuclear Energy Renewable Energy Smart Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National

  7. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    International Nuclear Information System (INIS)

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S ampersand A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S ampersand A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs

  8. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report describes the borehole geophysical logging performed at selected monitoring wells at waste area grouping (WAG) 6 of Oak Ridge National Laboratory in support of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI). It identifies the locations and describes the methods, equipment used in the effort, and the results of the activity. The actual logs for each well logged are presented in Attachment 1 through 4 of the TM. Attachment 5 provide logging contractor service literature and Attachment 6 is the Oak Ridge National Laboratory (ORNL) Procedure for Control of a Nuclear Source Utilized in Geophysical logging. The primary objectives of the borehole geophysical logging program were to (1) identify water-bearing fractured bedrock zones to determine the placement of the screen and sealed intervals for subsequent installation, and (2) further characterize local bedrock geology and hydrogeology and gain insight about the deeper component of the shallow bedrock aquifer flow system. A secondary objective was to provide stratigraphic and structural correlations with existing logs for Hydraulic Head Monitoring Station (HHMS) wells, which display evidence of faulting

  9. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  10. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report provides a detailed summary of the activities carried out to sample groundwater at Waste Area Grouping (WAG) 6. The analytical results for samples collected during Phase 1, Activity 2 of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI) are also presented. In addition, analytical results for Phase 1, activity sampling events for which data were not previously reported are included in this TM. A summary of the groundwater sampling activities of WAG 6, to date, are given in the Introduction. The Methodology section describes the sampling procedures and analytical parameters. Six attachments are included. Attachments 1 and 2 provide analytical results for selected RFI groundwater samples and ORNL sampling event. Attachment 3 provides a summary of the contaminants detected in each well sampled for all sampling events conducted at WAG 6. Bechtel National Inc. (BNI)/IT Corporation Contract Laboratory (IT) RFI analytical methods and detection limits are given in Attachment 4. Attachment 5 provides the Oak Ridge National Laboratory (ORNL)/Analytical Chemistry Division (ACD) analytical methods and detection limits and Resource Conservation and Recovery Act (RCRA) quarterly compliance monitoring (1988--1989). Attachment 6 provides ORNL/ACD groundwater analytical methods and detection limits (for the 1990 RCRA semi-annual compliance monitoring)

  11. Results of Surveys for Special Status Reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Woollett, J J

    2008-09-18

    The purpose of this report is to present the results of a live-trapping and visual surveys for special status reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory (LLNL). The survey was conducted under the authority of the Federal recovery permit of Swaim Biological Consulting (PRT-815537) and a Memorandum of Understanding issued from the California Department of Fish and Game. Site 300 is located between Livermore and Tracy just north of Tesla road (Alameda County) and Corral Hollow Road (San Joaquin County) and straddles the Alameda and San Joaquin County line (Figures 1 and 2). It encompasses portions of the USGS 7.5 minute Midway and Tracy quadrangles (Figure 2). Focused surveys were conducted for four special status reptiles including the Alameda whipsnake (Masticophis lateralis euryxanthus), the San Joaquin Whipsnake (Masticophis Hagellum ruddock), the silvery legless lizard (Anniella pulchra pulchra), and the California horned lizard (Phrynosoma coronanum frontale).

  12. After Action Report:Idaho National Laboratory (INL) 2014 Multiple Facility Beyond Design Basis (BDBE) Evaluated Drill October 21, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, V. Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    On October 21, 2014, Idaho National Laboratory (INL), in coordination with local jurisdictions, and Department of Energy (DOE) Idaho Operations Office (DOE ID) conducted an evaluated drill to demonstrate the ability to implement the requirements of DOE O 151.1C, “Comprehensive Emergency Management System” when responding to a beyond design basis event (BDBE) scenario as outlined in the Office of Health, Safety, and Security Operating Experience Level 1 letter (OE-1: 2013-01). The INL contractor, Battelle Energy Alliance, LLC (BEA), in coordination with CH2M-WG Idaho, LLC (CWI), and Idaho Treatment Group LLC (ITG), successfully demonstrated appropriate response measures to mitigate a BDBE event that would impact multiple facilities across the INL while protecting the health and safety of personnel, the environment, and property. Offsite response organizations participated to demonstrate appropriate response measures.

  13. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P.

    1994-12-01

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects.

  14. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    McKone, T.E.; Brand, K.P.

    1994-12-01

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects

  15. Hot Cell Facility modifications at Sandia National Laboratories to support 99Mo production

    International Nuclear Information System (INIS)

    Vernon, M.; Philbin, J.; Berry, D.

    1997-01-01

    In September, 1996, following the completion of an extensive Environmental Impact Statement (EIS), a record of decision (ROD) was issued by DOE selecting Sandia as the facility to take on the 99 Mo production mission. 99 Mo is the precursor to 99m Tc which is used in 36,000 medical procedures per day in the US. to meet US 99 Mo medical demands, 20 kCi of 99 Mo must be delivered to the pharmaceutical companies each week. This could be accomplished by the processing of twenty-five targets (total fission product of 15 kCi/target) each week within the SNL Hot Cell Facility (HCF). To accomplish this new mission, significant modifications to the HCF will have to be undertaken. This paper presents a brief history of the HCF, and describes modifications necessary to achieve DOE directives

  16. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  17. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    International Nuclear Information System (INIS)

    Boris, G.F.; Bamberger, J.A.

    1999-01-01

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove approximately98% of the waste, approximately3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing borehole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team

  18. Removal site evaluation report on the bulk shielding facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    This removal site evaluation report on the Bulk Shielding Facility (BSF) at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around BSF buildings pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and whether remedial site evaluations or removal actions are, therefore, required. A removal site evaluation was conducted at nine areas associated with the BSF. The scope of each evaluation included (1) a search for, and review of, readily available historical records regarding operations and use of the facility (including hazardous substance usage and existing contamination); (2) interviews with facility personnel concerning current and past practices; and (3) a brief walk-through to visually inspect the facility and identify existing hazard areas requiring maintenance actions or remedial evaluation. The results of the removal site evaluation indicate that no substantial risks exist from contaminants present because adequate efforts are being made to contain and control existing contamination and hazardous substances and to protect human health and the environment. At Building 3004, deteriorated and peeling exterior paint has a direct pathway to the storm water drainage system and can potentially impact local surface water during periods of storm water runoff. The paint is assumed to be lead based, thus posing a potential problem. The paint should be sampled and analyzed to determine its lead content and to assess whether a hazard exists. If so, a maintenance action will be necessary to prevent further deterioration and dislodging of the paint. In addition, if the paint contains lead, then a remedial site evaluation should be conducted to determine whether lead from fallen chips has impacted soils in the immediate area of the building

  19. Safety Analysis (SA) of the decontamination facility, Building 419, at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Odell, B.N.

    1980-01-01

    This safety analysis was performed for the Manager, Plant Services at LLNL and fulfills the requirements of DOE Order 5481.1. The analysis was based on field inspections, document review, computer calculations, and extensive input from Waste Management personnel. It was concluded that the maximum quantities of radioactive materials that safety procedures allow to be handled in this building do not pose undue risks on- or off-site even in postulated severe accidents. Risk from the various hazards at this facility vary from low to moderate as specified in DOE Order 5481.1. Recommendations are made for improvements that will reduce risks even further

  20. Seismic procurement requirements at the FPR (Fuel Processing Restoration) facility at INEL (Idaho National Engineering Laboratory)

    International Nuclear Information System (INIS)

    Bingham, G.E.; Hardy, G.S.; Griffin, M.J.

    1989-01-01

    Traditional methods used to seismically qualify equipment for new facilities has been either by testing or analysis. Testing programs are generally expensive and their input loadings are conservative. It is also generally recognized that standard seismic analysis techniques produce overly conservative results. Seismic loads and response levels for equipment are typically calculated that far exceed the values actually experienced in earthquakes. A more efficient method for demonstrating the seismic adequacy of equipment has been developed which is based on conclusions derived from studying the performance of equipment that has been subjected to actual earthquake excitations. The earthquake experience data concludes that damage or malfunction to most types of equipment subjected to earthquakes is far less than that predicted by traditional testing and analysis techniques. The use of conclusions derived from experience data provides a more realistic approach in assessing the seismic ruggedness of equipment. By recognizing this inherently higher capacity that exists in specific classes of equipment, vendors can often supply off the shelf equipment without the need to perform expensive modifications to meet requirements imposed by conservative qualification analyses. This paper will describe the development of the experienced based method for equipment seismic qualification and its application at the FPR facility

  1. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  2. Dismantlement and removal of Old Hydrofracture Facility bulk storage bins and water tank, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    The Old Hydrofracture Facility (OHF), located at Oak Ridge National Laboratory (ORNL), was constructed in 1963 to allow experimentation and operations with an integrated solid storage, mixing, and grout injection facility. During its operation, OHF blended liquid low-level waste with grout and used a hydrofracture process to pump the waste into a deep low-permeable shale formation. Since the OHF Facility was taken out of service in 1980, the four bulk storage bins located adjacent to Building 7852 had deteriorated to the point that they were a serious safety hazard. The ORNL Surveillance and Maintenance Program requested and received permission from the US Department of Energy to dismantle the bins as a maintenance action and send the free-released metal to an approved scrap metal vendor. A 25,000-gal stainless steel water tank located at the OHF site was included in the scope. A fixed-price subcontract was signed with Allied Technology Group, Inc., to remove the four bulk storage bins and water tank to a staging area where certified Health Physics personnel could survey, segregate, package, and send the radiologically clean scrap metal to an approved scrap metal vendor. All radiologically contaminated metal and metal that could not be surveyed was packaged and staged for later disposal. Permissible personnel exposure limits were not exceeded, no injuries were incurred, and no health and safety violations occurred throughout the duration of the project. Upon completion of the dismantlement, the project had generated 53,660 lb of clean scrap metal (see Appendix D). This resulted in $3,410 of revenue generated and a cost avoidance of an estimated $100,000 in waste disposal fees

  3. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report presents data and information related to remedial investigation studies for Oak Ridge National Laboratory (ORNL). Information is included on a soil gas survey, surface radiological investigations of waste areas, and well installation for ground water monitoring

  4. Waste reduction efforts through the evaluation and procurement of a digital camera system for the Alpha-Gamma Hot Cell Facility at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Bray, T. S.; Cohen, A. B.; Tsai, H.; Kettman, W. C.; Trychta, K.

    1999-01-01

    The Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory-East is a research facility where sample examinations involve traditional photography. The AGHCF documents samples with photographs (both Polaroid self-developing and negative film). Wastes generated include developing chemicals. The AGHCF evaluated, procured, and installed a digital camera system for the Leitz metallograph to significantly reduce labor, supplies, and wastes associated with traditional photography with a return on investment of less than two years

  5. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-03

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL`s current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency`s (EPA`s) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL`s existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility.

  6. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1995-01-01

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL's current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency's (EPA's) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL's existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility

  7. Contingency plan for the Old Hydrofracture Facility tanks sluicing project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-10-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), plans to begin a sluicing (flushing) and pumping project to remove the contents from five inactive, underground storage tanks at the Old Hydrofracture Facility (OHF) at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The tank contents will be transferred to the Melton Valley Storage Tanks, which are part of the active waste treatment system at ORNL. The purpose of the project is to minimize the risk of leaking the highly radioactive material to the environment. The five OHF tanks each contain a layer of sludge and a layer of supernatant. Based on a sampling project undertaken in 1995, the sludge in the tanks has been characterized as transuranic and mixed waste and the supernatants have been characterized as mixed waste. The combined radioactivity of the contents of the five tanks is approximately 29,500 Ci. This contingency plan is based on the preliminary design for the project and describes a series of potential accident/release scenarios for the project. It outlines Energy Systems' preliminary plans for prevention, detection, and mitigation. Prevention/detection methods range from using doubly contained pipelines to alarmed sensors and automatic pump cutoff systems. Plans for mitigation range from pumping leaked fluids from the built-in tank drainage systems and cleaning up spilled liquids to personnel evacuation

  8. Installation and instrumentation of a test-trench facility in the unsaturated zone at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Lewis, B.D.

    1984-01-01

    Two simulated waste trenches have been constructed just north of the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory. Sections of culvert occupy part of these trenches and are accessible through vertical caissons. These structures therefore allow personnel access for installing instrumentation, maintenance, and observation. Instrumented simulated waste containers will occupy the remainder of the trenches, in order that soil-moisture migration may be observed in relation to waste container forms. The installation will be used to determine, under actual and simulated conditions at a shallow land-burial site in an arid environment, typical soil-moisture content, unsaturated hydraulic conductivity, matric potential, soil-moisture flux, and soil-moisture velocity. The information will be collected using instrumentation located in disturbed and undisturbed soils, simulated waste containers, and the underlying basalt layer. Therefore, data collected from the facility will (a) help characterize the hydrogeologic and geochemical properties of the surficial sediments, (b) contribute to understanding the hydrogeologic phenomena associated with buried waste (including leachate formation and radionuclide migration), (c) provide information on water and solute movement at the sediment/basalt interface, and (d) be used in a radionuclide migration model

  9. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    WAG 6 comprises a shallow land burial facility used for disposal of low-level radioactive wastes (LLW) and, until recently, chemical wastes. As such, the site is subject to regulation under RCRA and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). To comply with these regulations, DOE, in conjunction with the Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), developed a strategy for closure and remediation of WAG 6 by 1997. A key component of this strategy was to complete an RFI by September 1991. The primary objectives of the RFI were to evaluate the site's potential human health and environmental impacts and to develop a preliminary list of alternatives to mitigate these impacts. The WAG 6 one of three solid waste management units evaluated Oak Ridge National Laboratory (ORNL) existing waste disposal records and sampling data and performed the additional sampling and analysis necessary to: describe the nature and extent of contamination; characterize key contaminant transport pathways; and assess potential risks to human health and the environment by developing and evaluating hypothetical receptor scenarios. Estimated excess lifetime cancer risks as a result for exposure to radionuclides and chemicals were quantified for each hypothetical human receptor. For environmental receptors, potential impacts were qualitatively assessed. Taking into account regulatory requirements and base line risk assessment results, preliminary site closure and remediation objectives were identified, and a preliminary list of alternatives for site closure and remediation was developed

  10. Design assessment for the Melton Valley Storage Tanks capacity increase at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-11-01

    This project was initiated to find ways to increase storage capacity for the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory and satisfy the Federal Facility Agreement (FFA) requirement for the transfer of LLW from existing tank systems not in full FFA compliance

  11. Construction and operation of a 10 MeV electron accelerator and associated experimental facilities at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    International Nuclear Information System (INIS)

    1994-02-01

    The purpose of this environmental impact statement is to determine whether there would be significant environmental impacts associated with the construction of an experimental facility at Brookhaven National Laboratory for radiation chemistry research and operation of the 10-MeV electron accelerator proposed for it. The document describes the need for action, alternative actions, the affected environment, and potential environmental impacts

  12. Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois

    International Nuclear Information System (INIS)

    W. C. Adams

    2007-01-01

    Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratory's Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007). Argonne National Laboratory-East (ANL-E) is owned by the U.S. Department of Energy (DOE) and is operated under a contract with the University of Chicago. Fundamental and applied research in the physical, biomedical, and environmental sciences are conducted at ANL-E and the laboratory serves as a major center of energy research and development. Building 315, which was completed in 1962, contained two cells, Cells 5 and 4, for holding Zero Power Reactor (ZPR)-6 and ZPR-9, respectively. These reactors were built to increase the knowledge and understanding of fast reactor technology. ZPR-6 was also referred to as the Fast Critical Facility and focused on fast reactor studies for civilian power production. ZPR-9 was used for nuclear rocket and fast reactor studies. In 1967, the reactors were converted for plutonium use. The reactors operated from the mid-1960's until 1982 when they were both shut down. Low levels of radioactivity were expected to be present due to the operating power levels of the ZPR's being restricted to well below 1,000 watts. To evaluate the presence of radiological contamination, DOE characterized the ZPRs in 2001. Currently, the Melt Attack and Coolability Experiments (MACE) and Melt Coolability and Concrete Interaction (MCCI) Experiments are being conducted in Cell 4 where the ZPR-9 is located (ANL 2002 and 2006). ANL has performed final

  13. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  14. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project

  15. Highlighting High Performance: National Renewable Energy Laboratory's Thermal Test Facility, Golden, Colorado. Office of Building Technology State and Community Programs (BTS) Brochure

    International Nuclear Information System (INIS)

    Burgert, S.

    2001-01-01

    The National Renewable Energy Laboratory's Thermal Test Facility in Golden, Colorado, was designed using a whole-building approach-looking at the way the building's systems worked together most efficiently. Researchers monitor the performance of the 11,000-square-foot building, which boasts an energy cost savings of 63% for heating, cooling, and lighting. The basic plan of the building can be adapted to many needs, including retail and warehouse space. The Thermal Test Facility contains office and laboratory space; research focuses on the development of energy-efficiency and renewable energy technologies that are cost-effective and environmentally friendly

  16. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P. [Lawrence Livermore National Lab., CA (United States). Health and Ecological Assessment Div.; Shan, C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime.

  17. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    International Nuclear Information System (INIS)

    McKone, T.E.; Brand, K.P.; Shan, C.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime

  18. Program management assessment of Federal Facility Compliance Agreement regarding CAA-40 C.F.R. Part 61, Subpart H at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1997-01-01

    An assessment of Los Alamos National Laboratory's management system related to facility compliance with an element of the Clean Air Act was performed under contract by a team from Northern Arizona University. More specifically, a Federal Facilities Compliance Agreement (FFCA) was established in 1996 to bring the Laboratory into compliance with emissions standards of radionuclides, commonly referred to as Rad/NESHAP. In the fall of 1996, the four-person team of experienced environmental managers evaluated the adequacy of relevant management systems to implement the FFCA provisions. The assessment process utilized multiple procedures including document review, personnel interviews and re-interviews, and facility observations. The management system assessment was completed with a meeting among team members, Laboratory officials and others on November 1, 1996 and preparation of an assessment report

  19. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  20. Contingency plan for the Old Hydrofracture Facility Tanks Sluicing Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-06-01

    This revised contingency plan addresses potential scenarios involving the release of radioactively contaminated waste from the Old Hydrofracture Facility Tanks Contents Removal project to the environment. The tanks are located at the Oak Ridge National Laboratory. The project involves sluicing the contents of the five underground tanks to mix the sludge and supernatant layers, and pumping the mixture to the Melton Valley Storage Tanks (MVST) for future processing. The sluicing system to be used for the project consists of a spray nozzle designated the open-quotes Borehole Miner,close quotes with an associated pump; in-tank submersible pumps to transfer tank contents from the sluice tanks to the recycle tank; high-pressure pumps providing slurry circulation and slurry transport to the MVST; piping; a ventilation system; a process water system; an instrumentation and control system centered around a programmable logic controller; a video monitoring system; and auxiliary equipment. The earlier version of this plan, which was developed during the preliminary design phase of the project, identified eight scenarios in which waste from the tanks might be released to the environment as a result of unanticipated equipment failure or an accident (e.g., vehicular accident). One of those scenarios, nuclear criticality, is no longer addressed by this plan because the tank waste will be isotopically diluted before sluicing begins. The other seven scenarios have been combined into three, and a fourth, Borehole Miner Failure, has been added as follows: (1) underground release from the tanks; (2) aboveground release or spill from the sluicing system, a tank riser, or the transfer pipeline; (3) release of unfiltered air through the ventilation system; and (4) Borehole Miner arm retraction failure. Methods for preventing, detecting, and responding to each release scenario are set out in the plan

  1. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by

  2. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    International Nuclear Information System (INIS)

    Alton, G.D.; Beene, J.R.

    1998-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBs). The reconfiguration, construction, and equipment commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target ion source related problems, endemic to the production of specific short lived RIBs will be discussed. In addition, plans, which involve either a 200 MeV or a 1 GeV proton linac driver for a second generation ISOL facility, will be presented

  3. Science | Argonne National Laboratory

    Science.gov (United States)

    Security Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Scientific Publications Researchers Postdocs Exascale Computing Institute for Molecular Engineering at Argonne Work with Us About Safety News Careers Education Community Diversity Directory Argonne National Laboratory

  4. Annual summary report on surveillance and maintenance activities of the surplus contaminated facilities program at Oak Ridge National Laboratory for period ending September 30, 1991

    International Nuclear Information System (INIS)

    Cannon, T.R.; Ford, M.K.; Holder, L. Jr.

    1991-09-01

    The Surplus Contaminated Facilities Program (SCFP) was established at the Oak Ridge National Laboratory (ORNL) in 1985 to provide support for inactive contaminated facilities that were largely abandoned by the programs which they formerly served. This support provides for routine surveillance and maintenance (S ampersand M) and special projects beyond a routine nature when such actions are needed to ensure adequate protection of personnel or the environment. The facilities included in the program had been used for research, technology development, isotope production and processing, and waste management. Support for facilities in the SCFP has previously been provided by the Department of Energy's (DOE's) Office of Energy Research: Multiprogram Energy Laboratories -- Facilities Support (ERKG) because of multiprogram use of the facilities or because of the landlord responsibility of Energy Research. Recently, an integrated Decontamination and Decommissioning (D ampersand D) program within the DOE Office of Environmental Restoration and Waste Management has been established to collectively manage the former Surplus Facilities Management Program, Defense D ampersand D Program, and the KG-funded, ORNL-originated SCFP. This report gives an overview of the S ampersand M planning, routine S ampersand M, and special maintenance project activities which have occurred at the SCFP facilities during the 1991 Fiscal Year

  5. Idaho National Engineering Laboratory response to the December 13, 1991, Congressional inquiry on offsite release of hazardous and solid waste containing radioactive materials from Department of Energy facilities

    International Nuclear Information System (INIS)

    Shapiro, C.; Garcia, K.M.; McMurtrey, C.D.; Williams, K.L.; Jordan, P.J.

    1992-05-01

    This report is a response to the December 13, 1991, Congressional inquiry that requested information on all hazardous and solid waste containing radioactive materials sent from Department of Energy facilities to offsite facilities for treatment or disposal since January 1, 1981. This response is for the Idaho National Engineering Laboratory. Other Department of Energy laboratories are preparing responses for their respective operations. The request includes ten questions, which the report divides into three parts, each responding to a related group of questions. Part 1 answers Questions 5, 6, and 7, which call for a description of Department of Energy and contractor documentation governing the release of waste containing radioactive materials to offsite facilities. ''Offsite'' is defined as non-Department of Energy and non-Department of Defense facilities, such as commercial facilities. Also requested is a description of the review process for relevant release criteria and a list of afl Department of Energy and contractor documents concerning release criteria as of January 1, 1981. Part 2 answers Questions 4, 8, and 9, which call for information about actual releases of waste containing radioactive materials to offsite facilities from 1981 to the present, including radiation levels and pertinent documentation. Part 3 answers Question 10, which requests a description of the process for selecting offsite facilities for treatment or disposal of waste from Department of Energy facilities. In accordance with instructions from the Department of Energy, the report does not address Questions 1, 2, and 3

  6. Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Battersby, C.; Dickson, R.; Jennings, R.; Kimmons, J.; Kozlowski, M. R.; Maricle, S.; Mouser, R.; Runkel, M.; Schwartz, S.; Sheehan, L. M.; Weinzapfel, C.

    1998-01-01

    The Laser Program at LLNL has developed automated facilities for damage testing optics up to 1 meter in diameter. The systems were developed to characterize the statistical distribution of localized damage performance across large-aperture National Ignition Facility optics. Full aperture testing is a key component of the quality assurance program for several of the optical components. The primary damage testing methods used are R:1 mapping and raster scanning. Automation of these test methods was required to meet the optics manufacturing schedule. The automated activities include control and diagnosis of the damage-test laser beam as well as detection and characterization of damage events

  7. An Applied Study on the Decontamination and Decommissioning of the Map Tube Facility 317 Area Argonne National Laboratory, Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff; Rusch, Chris [NAC International, Henley-on-Thames (United Kingdom)

    2005-01-01

    The Map Tube Facility (MTF) was a large concrete block structure constructed in 1952 at the Argonne National Laboratory site in the United States, for the purpose of storing radioactive waste. The block contained 129 storage tubes that were positioned vertically in the block during construction. From 1952 though the early 1980s, the MTF was used to store containers of highly radioactive materials. The items stored included: - Nuclear fuel elements, - Nuclear reactor components, - Materials samples, - Irradiated metal objects (bolts, wire, rods, etc), - Concrete-encased objects. After MTF operations were discontinued in the early 1980s, most of the materials were removed from most of the tubes. Decontamination and decommissioning of the MTF tool place in 1994. The objective was to eliminate the radiological and chemical materials within the MTF tubes to prevent ground water and soil contamination. Once these materials were removed, the block would no longer be a source of contamination (chemical or radioactive) and could then remain in place without risk to the environment. The decontamination scope included the following actions. 1. Mechanically clean each tube (wire brush), 2. Dewater each tube, 3. Remove the debris and sludge from the bottom of each tube, 4. Fill each tube with concrete, 5. Remove the tubes using a core drilling technique. Project constraints precluded the use of excavation around the facility and sectioning of the MTF block or simple demolition, which led to the use of the core drilling technique. The cost of decommissioning the MTF was approximately $2.6 million (1994 money values). Escalating this at 2.5 percent per year to January 2005 and converting to Swedish currency at the current exchange rate (July 2005 approximately 7.6 SEK/$) gives an equivalent cost today of MSEK 25. The AT facility in Studsvik is considerably larger than the MTF facility in Argonne, between six and seven times in terms of volume but with storage tube depth somewhat

  8. An Applied Study on the Decontamination and Decommissioning of the Map Tube Facility 317 Area Argonne National Laboratory, Chicago

    International Nuclear Information System (INIS)

    Varley, Geoff; Rusch, Chris

    2005-01-01

    The Map Tube Facility (MTF) was a large concrete block structure constructed in 1952 at the Argonne National Laboratory site in the United States, for the purpose of storing radioactive waste. The block contained 129 storage tubes that were positioned vertically in the block during construction. From 1952 though the early 1980s, the MTF was used to store containers of highly radioactive materials. The items stored included: - Nuclear fuel elements, - Nuclear reactor components, - Materials samples, - Irradiated metal objects (bolts, wire, rods, etc), - Concrete-encased objects. After MTF operations were discontinued in the early 1980s, most of the materials were removed from most of the tubes. Decontamination and decommissioning of the MTF tool place in 1994. The objective was to eliminate the radiological and chemical materials within the MTF tubes to prevent ground water and soil contamination. Once these materials were removed, the block would no longer be a source of contamination (chemical or radioactive) and could then remain in place without risk to the environment. The decontamination scope included the following actions. 1. Mechanically clean each tube (wire brush), 2. Dewater each tube, 3. Remove the debris and sludge from the bottom of each tube, 4. Fill each tube with concrete, 5. Remove the tubes using a core drilling technique. Project constraints precluded the use of excavation around the facility and sectioning of the MTF block or simple demolition, which led to the use of the core drilling technique. The cost of decommissioning the MTF was approximately $2.6 million (1994 money values). Escalating this at 2.5 percent per year to January 2005 and converting to Swedish currency at the current exchange rate (July 2005 approximately 7.6 SEK/$) gives an equivalent cost today of MSEK 25. The AT facility in Studsvik is considerably larger than the MTF facility in Argonne, between six and seven times in terms of volume but with storage tube depth somewhat

  9. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Manuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential

  10. Australian national proton facility

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities and apart from the Harvard Cyclotron Laboratory and some low energy machines for eye treatment, only small numbers of patients were treated in each centre and conditions were less than optimal. Limited beam time and lack of support facilities restricted the type of patient treated and conventional fractionation could not be used. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. Since the development of hospital-based facilities, such as the one in Loma Linda in California, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or intensity modulated radiotherapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in the low dose volume is likely to be particularly

  11. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3. Appendixes 1 through 8

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  12. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2. Sections 4 through 9

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  13. Guide to user facilities at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1984-04-01

    Lawrence Berkeley Laboratories' user facilities are described. Specific facilities include: the National Center for Electron Microscopy; the Bevalac; the SuperHILAC; the Neutral Beam Engineering Test Facility; the National Tritium Labeling Facility; the 88 inch Cyclotron; the Heavy Charged-Particle Treatment Facility; the 2.5 MeV Van de Graaff; the Sky Simulator; the Center for Computational Seismology; and the Low Background Counting Facility

  14. Project management plan for Waste Area Grouping 5 Old Hydrofracture Facility tanks content removal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-07-01

    The purpose of the Old Hydrofracture Facility (OHF) tanks content removal project is to transfer inventory from the five OHF tanks located in Waste Area Grouping (WAG) 5 at Oak Ridge National Laboratory (ORNL) to the Melton Valley Storage Tanks (MVST) liquid low-level (radioactive) waste (LLLW) storage facility, and remediate the remaining OHF tank shells. The major activities involved are identified in this document along with the organizations that will perform the required actions and their roles and responsibilities for managing the project

  15. 2013 Annual Site Environmental Report for Sandia National Laboratories Tonopah Test Range Nevada & Kauai Test Facility Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy Rene [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Li, Jun [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); White, Nancy [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Minitrez, Alexandra [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Avery, Penny [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Catechis, Christopher [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); duMond, Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Forston, William [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Herring, III, Allen [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Lantow, Tiffany [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Martinez, Reuben [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Miller, Amy [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Payne, Jennifer [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Peek, Dennis [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ricketson, Sherry [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Field Office (SFO), in Albuquerque, New Mexico, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Navarro Research and Engineering subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report summarizes data and the compliance status of the sustainability, environmental protection, and monitoring program at TTR and KTF through Calendar Year 2013. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, Environmental Restoration (ER) cleanup activities, and the National Environmental Policy Act. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Field Office retains responsibility for the cleanup and management of TTR ER sites. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  16. Careers | Argonne National Laboratory

    Science.gov (United States)

    community. Learn More » Life at Argonne Our diverse community values work-life balance. Find your niche ; enjoy life at work! Learn More » Back to top Twitter Flickr Facebook Linked In YouTube Pinterest Google National Security User Facilities Science Work with Us About Safety News Careers Apply for a Job External

  17. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Gerstner, Douglas M.

    2009-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 'flux traps' (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop's temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation

  18. Los Alamos National Laboratory Facilities, Security and Safeguards Division, Safeguards and Security Program Office, Protective Force Oversight Program

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this document is to identify and describe the duties and responsibilities of Facility Security and Safeguards (FSS) Safeguards and Security (SS) organizations (groups/offices) with oversight functions over the Protection Force (PF) subcontractor. Responsible organizations will continue their present PF oversight functions under the Cost Plus Award Fee (CPAF) assessment, but now will be required to also coordinate, integrate, and interface with other FSS S and S organizations and with the PF subcontractor to measure performance, assess Department of Energy (DOE) compliance, reduce costs, and minimize duplication of effort. The role of the PF subcontractor is to provide the Laboratory with effective and efficient protective force services. PF services include providing protection for the special nuclear material, government property and classified or sensitive information developed and/or consigned to the Laboratory, as well as protection for personnel who work or participate in laboratory activities. FSS S and S oversight of both performance and compliance standards/metrics is essential for these PF objectives to be met

  19. The impact of two Department of Energy orders on the design and cost of select plutonium facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Rey, V.C.

    1999-01-01

    The Los Alamos National Laboratory (LANL) is a research and development facility in northern New Mexico, owned by the federal government and operated for the US Department of Energy (DOE) by the University of California (UC). LANL conducts research and experiments in many arenas including plutonium. Its plutonium facilities are required to meet the facility design and safety criteria of applicable DOE orders as specified in the UC contract. Although DOE 420.1, Facility Safety, superseded DOE 6430.1A, General Design Criteria, the UC contract requires LANL to adhere to DOE 6430.1A, Division 13 in its special nuclear facilities. A comparison of costs and savings relative to installation of double-wall piping at two LANL plutonium facilities is demonstrated. DOE 6430.1A is prescriptive in its design criteria whereas DOE 420.1 is a performance-based directive. The differences in these orders impact time and design costs in nuclear construction projects. LANL's approach to integrated quality and conduct of operations for design, needs to be re-evaluated. In conclusion, there is a need for highly-technical, knowledgeable people and an integrated, quality/conduct of operations-based approach to assure that nuclear facilities are designed and constructed in a safe and cost-effective manner

  20. Status of the Oak Ridge National Laboratory new hydrofracture facility: Implications for the disposal of liquid low-level radioactive wastes by underground injection

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.

    1987-01-01

    From 1982 to 1984, Oak Ridge National Laboratory (ORNL) disposed of approximately 2.8 x 10/sup 16/ Bq (7.5 x 10/sup 5/ Ci) of liquid low-level radioactive wastes by underground injection at its new hydrofracture facility. This paper summarizes the regulatory and operational status of that ORNL facility and discusses its future outlook. Operational developments and regulatory changes that have raised major questions about the continued operation and the new hydrofracture facility include: (1) significant /sup 90/Sr contamination of some groundwater in the injection formation; (2) questions about the design of the injection well, completed prior to the application of the underground injection control (UIC) regulations to the ORNL facility; (3) questions about the integrity of the reconfigured injection well put into service following the loss of the initial injection well; and (4) implementation of UIC regulations. Ultimately, consideration of the regulatory and operational factors led to the decision in early 1986 not to proceed with a UIC permit application for the ORNL facility. There are no plans to reactivate the hydrofracture process. Subsequent to the decision not to proceed with a UIC permit application, closure activities were initiated for the ORNL hydrofracture facility. Closure of the facility will occur under both state of Tennessee and federal UIC regulations and under provision 3004(u) of the Resource Conservation and Recovery Act

  1. Evaluation of technologies for remediation of disposed radioactive and hazardous wastes in a facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Reno, H.W.; Martin, D.D.; Rasmussen, T.L.

    1989-01-01

    For the past twenty years the US Department of Energy has been investigating and evaluating technologies for the long term management of disposed transuranic contaminated wastes at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. More than fifty technologies have been investigated and evaluated and three technologies have been selected for feasibility study demonstration at the complex. This paper discusses the evaluation of those technologies and describes the three technologies selected for demonstration. The paper further suggests that future actions under the Comprehensive Environmental Response, Compensation, and Liability Act should build from previous evaluations completed heretofore. 18 refs., 3 figs., 1 tab

  2. Location | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  3. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  4. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    International Nuclear Information System (INIS)

    1997-01-01

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns

  5. Status of the Oak Ridge National Laboratory new hydrofracture facility: Implications for the disposal of liquid low-level radioactive wastes by underground injection

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.

    1987-01-01

    From 1982 to 1984, Oak Ridge National Laboratory (ORNL) disposed of approximately 2.8 x 10 16 Bq (7.5 x 10 5 Ci) of liquid low-level radioactive wastes by underground injection at its new hydrofracture facility. This paper summarizes the regulatory and operational status of that ORNL facility and discusses its future outlook. Operational developments and regulatory changes that have raised major questions about the continued operation of the new hydrofracture facility include: (1) significant 90 Sr contamination of some groundwater in the injection formation; (2) questions about the design of the injection well, completed prior to the application of the underground injection control (UIC) regulations to the ORNL facility; (3) questions about the integrity of the reconfigured injection well put into service following the loss of the initial injection well; and (4) implementation of UIC regulations. Ultimately, consideration of the regulatory and operational factors led to the decision in early 1986 not to proceed with a UIC permit application for the ORNL facility. Subsequent to the decision not to proceed with a UIC permit application, closure activities were initiated for the ORNL hydrofracture facility. Closure of the facility will occur under both state of Tennessee and federal UIC regulations. The facility also falls under the provisions of part 3004(u) of the Resource Conservation and Recovery Act pertaining to corrective actions. Nationally, there is an uncertain outlook for the disposal of wastes by underground injection. All wells used for the injection of hazardous wastes (Class I wells) are being reviewed. 8 refs., 4 figs., 2 tabs

  6. The Risoe National Laboratory, Denmark

    International Nuclear Information System (INIS)

    Majborn, B.

    2001-01-01

    The Risoe National Laboratory of Denmark started as a nuclear research centre, under the Atomic Energy Commission in 1955, with research reactors, an accelerator and related facilities. The research component, aimed at the introduction of nuclear power plants in Denmark, was wound up in 1985 with the country deciding to forego nuclear power in its energy planning. From 1993 the centre is under the jurisdiction of the Ministry of Research with three main areas of work: i) research on high international level; ii) train researchers; and iii) provide service to industry. The centre is funded up to 53% by the Danish Government and 47% by contract earnings. Some areas of current research include: i) materials science; ii) optics and sensor systems; iii) plant production and ecology; and iv) systems analysis. The nuclear component of the research centre is related to the operation of the nuclear facilities and for maintaining national expertise in nuclear safety and radiation protection. (author)

  7. Floristic composition and plant succession on near-surface radioactive-waste-disposal facilities in the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Tierney, G.D.; Foxx, T.S.

    1982-03-01

    Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized by the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora

  8. Floristic composition and plant succession on near-surface radioactive-waste-disposal facilities in the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, G.D.; Foxx, T.S.

    1982-03-01

    Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized by the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora.

  9. The Design Fabrication Installation & Evaluation of the Balance Probe Monitor for Large Centrifuges at a National Laboratory Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, Jonathan Michael [Univ. of Texas, Austin, TX (United States)

    2016-11-01

    Balance Probe Monitors were designed, fabricated, installed, and evaluated at Sandia National Laboratories (SNL) for the 22,600 g kg (50,000 g lb) direct drive electromotor driven large centrifuges. These centrifuges provide a high onset/decay rate g environment. The Balance Probe Monitor is physically located near a centrifuge’s Capacitance Probe, a crucial sensor for the centrifuge’s sustainability. The Balance Probe Monitor will validate operability of the centrifuge. Most importantly, it is used for triggering a kill switch under the condition that the centrifuge displacement value exceeds allowed tolerances. During operational conditions, the Capacitance Probe continuously detects the structural displacement of the centrifuge and an adjoining AccuMeasure 9000 translates this displacement into an output voltage.

  10. Implementation Plan for Liquid Low-Level Radioactive Waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-09-01

    This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). These commitments were initially submitted in ES/ER-17 ampersand Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were submitted in ES/ER-17 ampersand Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in this document. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5

  11. Implementation plan for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-06-01

    Plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL) were initially submitted in ES/ER-17 ampersand D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. The information presented in the current document summarizes the progress that has been made to date and provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present the plans and schedules associated with the remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. A comprehensive program is under way at ORNL to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be submitted to the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation (EPA/TDEC) as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were originally submitted in ES/ER-17 ampersand D 1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in the present document. Chapter I provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5

  12. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  13. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S ampersand M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S ampersand M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S ampersand M effort would be required to maintain the building safety envelope. Other than the minimal S ampersand M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S ampersand M until decommissioning activities begin

  14. Project management plan for Waste Area Grouping 5 Old Hydrofracture Facility tanks contents removal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-06-01

    On January 1, 1992, the US Department of Energy (DOE), the US Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC) signed a Federal Facility Agreement (FFA) concerning the Oak Ridge Reservation. The FFA requires that inactive liquid low-level (radioactive) waste (LLLW) tanks at Oak Ridge National Laboratory (ORNL) be remediated in accordance with requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This revision is to update the schedule and designation of responsibilities for the Old Hydrofracture Facility (OHF) tanks contents removal project. The scope of this project is to transfer inventory from the five inactive LLLW tanks at the OHF into the active LLLW system

  15. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling

  16. Ambient air sampling for radioactive air contaminants at Los Alamos National Laboratory: A large research and development facility

    International Nuclear Information System (INIS)

    Eberhart, C.F.

    1998-01-01

    This paper describes the ambient air sampling program for collection, analysis, and reporting of radioactive air contaminants in and around Los Alamos National Laboratory (LANL). Particulate matter and water vapor are sampled continuously at more than 50 sites. These samples are collected every two weeks and then analyzed for tritium, and gross alpha, gross beta, and gamma ray radiation. The alpha, beta, and gamma measurements are used to detect unexpected radionuclide releases. Quarterly composites are analyzed for isotopes of uranium ( 234 U, 235 U, 238 U), plutonium ( 238 Pu, 239/249 Pu), and americium ( 241 Am). All of the data is stored in a relational database with hard copies as the official records. Data used to determine environmental concentrations are validated and verified before being used in any calculations. This evaluation demonstrates that the sampling and analysis process can detect tritium, uranium, plutonium, and americium at levels much less than one percent of the public dose limit of 10 millirems. The isotopic results also indicate that, except for tritium, off-site concentrations of radionuclides potentially released from LANL are similar to typical background measurements

  17. Implementation plan for liquid low-level radioactive waste tank systems for fiscal year 1995 at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-06-01

    This document is the third annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in 1992 as ES/ER-17 ampersand D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW System as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. Chapter 1 provides general background information and philosophies that led to the plans and schedules that appear in Chaps. 2 through 5

  18. Implementation plan for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-06-01

    This document is an annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in ES/ER-17 ampersand D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chapters 2 through 5

  19. Lawrence Livermore National Laboratory Decontamination and Waste Treatment Facility: Documentation of impact analysis for design alternatives presented in the Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1988-05-01

    Lawrence Livermore National Laboratory (LLNL) is proposing to construct and operate a new Decontamination and Waste Treatment Facility (DWTF). The proposed DWTF would replace the existing Hazardous Waste Management (HWM) facilities at LLNL. The US Department of Energy (DOE) is preparing a Draft Environmental Impact Statement (DEIS) to assess the environmental consequences of the proposed DWTF and its alternatives. This report presents the assumptions, methodologies, and analyses used to estimate the waste flows, air emissions, ambient air quality impacts, and public health risks that are presented in the DEIS. Two DWTF design alternatives (Level I and Level II) have been designated as reasonable design alternatives considering available technologies, environmental regulations, and current and future LLNL waste generation. Both design alternatives would include new, separate radioactive and nonradioactive liquid waste treatment systems, a solidification unit, a new decontamination facility, storage and treatment facilities for reactive materials, a radioactive waste storage area, receiving and classification areas, and a uranium burn pan. The Level I design alternative would include a controlled-air incinerator system, while the Level II design alternative would include a rotary kiln incinerator system. 43 refs., 4 figs., 24 tabs

  20. Health and safety plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    This HASP describes the process for identifying the requirements, written safety documentation, and procedures for protecting personnel involved in the Isotopes Facilities Deactivation Project. Objective of this project is to place 19 former isotope production facilities at ORNL in a safe condition in anticipation of an extended period of minimum surveillance and maintenance

  1. 2016 Annual Site Environmental report Sandia National Laboratories Tonopah Test Range Nevada & Kaua'i Test Facility Hawai'i.

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Angela Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA) under contract DE-NA0003525. The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the SNL, Tonopah Test Range (SNL/TTR) in Nevada and the SNL, Kaua‘i Test Facility (SNL/KTF) in Hawai‘i. SNL personnel manage and conduct operations at SNL/TTR in support of the DOE/NNSA’s Weapons Ordnance Program and have operated the site since 1957. Navarro Research and Engineering personnel perform most of the environmental programs activities at SNL/TTR. The DOE/NNSA/Nevada Field Office retains responsibility for cleanup and management of SNL/TTR Environmental Restoration sites. SNL personnel operate SNL/KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/TTR and SNL/KTF during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and biological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and as required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.

  2. Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S&M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed.

  3. Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S ampersand M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed

  4. Laboratory facilities increased by gifts

    International Nuclear Information System (INIS)

    1968-01-01

    As a result of gifts from two Member States facilities at the Agency's research centre at Seibersdorf, Austria, have been increased. New equipment has been provided by France and Romania. The French equipment is a coincidence counter to be operated in conjunction with a computer and is valued at $35 000. It can give automatically an exact measurement of radioactivity in a chemical solution containing radioisotopes. This means that a sample of the solution can be sent to another laboratory to be used for calibrating instruments and checking results of research work. Since 1963 nearly 8 000 radioactive solutions to be used as standards have been sent from Seibersdorf to research laboratories and hospitals in 56 countries. The demand continues to grow, and in order to meet it the equipment was developed by the Saclay Research Centre of the Commissariat a l'Energie Atomique in collaboration with Seibersdorf. From Romania have come six electronic measuring instruments worth $6 000 to assist nuclear research, surveying and prospecting. Three are electronic scalers for experimental work involving the counting of radioactive emissions, and three are survey meters for detecting the presence of radioactivity in geological samples. (author)

  5. Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Balkey, J.J.; Robinson, M.A.; Boak, J.

    1997-12-01

    The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO{sub 2}, Mg(OH){sub 2} precipitation, supercritical H{sub 2}O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination & Decommissioning (D&D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations.

  6. Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Balkey, J.J.; Robinson, M.A.; Boak, J.

    1997-01-01

    The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO 2 , Mg(OH) 2 precipitation, supercritical H 2 O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination ampersand Decommissioning (D ampersand D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations

  7. Low-level waste drum staging building at Weapons Engineering Tritium Facility, TA-16, Los Alamos National Laboratory, Los Alamos, New Mexico. Environmental Assessment

    International Nuclear Information System (INIS)

    1994-08-01

    The proposed action is to place a 3 meter (m) by 4.5 m (10 ft x 15 ft) prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium Facility (WETF) at Technical Area (TA-) 16, Los Alamos National Laboratory (LANL), and to use the building as a staging site for sealed 55 galllon drums of noncompactible waste contaminated with low levels of tritium (LLW). Up to eight drums of waste would be accumulated before the waste is moved by LANL Waste Management personnel to the existing on-site LLW disposal area at TA-54. The drum staging building would be placed on a bermed asphalt pad, near other existing accumulation structures for office trash and compactible LLW. The no-action alternative is to continue storing drums of LLW in the WETF laboratories where they occupy valuable work space, hamper movement of personnel and equipment, and require waste management personnel to enter those laboratories in order to remove filled drums. No new waste would be generated by implementing the proposed action; no changes or increases in WETF operations or waste production rate are anticipated as a result of staging drums of LLW outside the main laboratory building. The site for the LLW drum staging building would not impact any sensitive areas. Tritium emissions from the drums of LLW were included within the source term for normal operations at the WETF; the cumulative impacts would not be increased

  8. Project management plan for the isotopes facilities deactivation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    Purpose of the deactivation project is to place former isotopes production facilities at ORNL in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance. This management plan was prepared to document project objectives, define organizational relationships and responsibilities, and outline the management control systems. The project has adopted the strategy of deactivating the simple facilities first. The plan provides a road map for the quality assurance program and identifies other documents supporting the Isotopes Facilities Deactivation Project

  9. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  10. Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste

  11. Power source evaluation capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  12. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report

    International Nuclear Information System (INIS)

    Wiese, E. C.

    1998-01-01

    The Building 594 D and D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 microCi (175 kBq). The radionuclides of concern were Co 60 , Cs 137 , and Am 241 . The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr)

  13. HAZWOPER project documents for demolition of the Waste Evaporator Facility, Building 3506, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document, in support of the Waste Evaporator Facility (WEF) demolition project and contains the Project Work Plan and the Project Health and Safety Plan for demolition and partial remediation actions by ATG at the Waste Evaporator Facility, Building 3506. Various activities will be conducted during the course of demolition, and this plan provides details on the work steps involved, the identification of hazards, and the health and safety practices necessary to mitigate these hazards. The objective of this document is to develop an approach for implementing demolition activities at the WEF. This approach is based on prior site characterization information and takes into account all of the known hazards at this facility. The Project Work Plan provides instructions and requirements for identified work steps that will be utilized during the performance of demolition, while the Health and Safety Plan addresses the radiological, hazardous material exposure, and industrial safety concerns that will be encountered.

  14. HAZWOPER project documents for demolition of the Waste Evaporator Facility, Building 3506, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-03-01

    This document, in support of the Waste Evaporator Facility (WEF) demolition project and contains the Project Work Plan and the Project Health and Safety Plan for demolition and partial remediation actions by ATG at the Waste Evaporator Facility, Building 3506. Various activities will be conducted during the course of demolition, and this plan provides details on the work steps involved, the identification of hazards, and the health and safety practices necessary to mitigate these hazards. The objective of this document is to develop an approach for implementing demolition activities at the WEF. This approach is based on prior site characterization information and takes into account all of the known hazards at this facility. The Project Work Plan provides instructions and requirements for identified work steps that will be utilized during the performance of demolition, while the Health and Safety Plan addresses the radiological, hazardous material exposure, and industrial safety concerns that will be encountered

  15. A national biomedical tracer facility (NBTF)

    International Nuclear Information System (INIS)

    Erb, D.E.; Moody, D.; Peterson, E.; Mausner, L.; Atcher, R.

    1991-01-01

    The production, supply, and sale of isotopes and related services originating in Department of Energy production and research facilities has been a long-standing activity of DOE and predecessor organizations (AEC and ERDA). The authority for this activity is derived from the Atomic Energy Act of 1954, as amended. Stable isotopes and radioisotopes, together with related services, are now being produced in many DOE production and research facilities at several DOE installations which presently include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), EG ampersand G Mound Laboratories (Mound), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Westinghouse Hanford Company (WHC), and the Pacific Northwest Laboratories (PNL) at Richland, Washington. The products and services are, in many instances, unique in that their production and processing can be performed only in production and research facilities owned by, and operated for, DOE. In some instances, DOE is the sole supplier of such isotope products and services in the Western World

  16. Los Alamos National Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Lab has a proud history and heritage of almost 70 years of science and innovation. The people at the Laboratory work on advanced technologies to provide the best...

  17. Final deactivation report on the tritium target facility, Building 7025, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    This report includes a history and profile of Bldg. 7025 before and after completion of deactivation. It also discusses turnover items, such as the Postdeactivation Surveillance ampersand Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation in the EM-60 Turnover package. Other than minimal S ampersand M activities, the building will be unoccupied and the exterior doors locked (access only for the required S ampersand M)

  18. Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, James L., Jr. (.,; .); Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline

    2006-06-01

    The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

  19. Issues and Recommendations Arising from the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility Composite Analysis - 13374

    Energy Technology Data Exchange (ETDEWEB)

    Rood, Arthur S.; Schafer, Annette L.; Sondrup, A. Jeff [Idaho National Laboratory, Battelle Energy Alliance, P.O. Box 1625, Idaho Falls, ID 83401-2107 (United States)

    2013-07-01

    Development of the composite analysis (CA) for the Idaho National Laboratory's (INLs) proposed remote-handled (RH) low-level waste (LLW) disposal facility has underscored the importance of consistency between analyses conducted for site-specific performance assessments (PAs) for LLW disposal facilities, sites regulated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [1], and residual decontamination and decommissioning (D and D) inventories. Consistency is difficult to achieve because: 1) different legacy sources and compliance time-periods were deemed important for each of the sites evaluated at INL (e.g., 100 years for CERCLA regulated facilities vs. 1,000 years for LLW disposal facilities regulated under U.S. Department of Energy (DOE) Order 435.1 [2]); 2) fate and transport assumptions, parameters, and models have evolved through time at the INL including the use of screening-level parameters vs. site-specific values; and 3) evaluation objectives for the various CERCLA sites were inconsistent with those relevant to either the PA or CA including the assessment of risk rather than effective dose. The proposed single site-wide CA approach would provide needed consistency, allowing ready incorporation of new information and/or facilities in addition to being cost effective in terms of preparation of CAs and review by the DOE. A single site-wide CA would include a central database of all existing INL sources, including those from currently operating LLW facilities, D and D activities, and those from the sites evaluated under CERCLA. The framework presented for the INL RH-LLW disposal facility allows for development of a single CA encompassing air and groundwater impacts. For groundwater impacts, a site-wide MODFLOW/MT3D-MS model was used to develop unit-response functions for all potential sources providing responses for a grid of receptors. Convolution and superposition of the response functions are used to compute

  20. ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.

    2001-01-01

    After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key cost

  1. Auditable safety analysis: High Radiation Level Chemical Development Facility (Buildings 4507 and 4556), Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Platfoot, J.H.

    1998-07-01

    The High-Radiation-Level Chemical Development Facility includes Buildings 4507 and 4556. Building 4507, located immediately to the west of Building 4500N and to the south of Building 4505, is a doubly contained three-level structure constructed in 1957. The most recent use of the facility was for recovery of multi-gram quantities of 244 Cm during the early 1970s and for Liquid Metal Fast Breeder Reactor (LMFBR) fuel studies in the late 1970s. It has remained in safe standby since 1980. Building 4556 is a below-grade filter pit located to the southwest of Building 4507 and was constructed in 1972. Ventilation from the cells in Building 4507 is passed through high-efficiency particulate air (HEPA) filtration in this building prior to being exhausted to the Building 3039 stack system. This building remains in operation to support ventilation requirements for Building 4507. This Auditable Safety Analysis (ASA) was developed in accordance with the requirements in Energy Systems Program Description FS-103PD, Safety Documentation, Revision 1. This ASA identifies and screens all hazards associated with Buildings 4507 and 4556. The only hazard not screened out and requiring further analysis following the initial screening process is radioactive material in the form of surface contamination. The results of this ASA indicate that the hazards associated with Buildings 4507 and 4556 do not pose a significant threat to workers, the public, or the environment

  2. ALARA plan for the Old Hydrofracture Facility tanks contents removal project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-04-01

    The purpose of the Old Hydrofracture Facility (OHF) Tanks Contents Removal Project is to remove the liquid low-level waste from the five underground storage tanks located at OHF and transfer the resulting slurry to the Melton Valley Storage Tanks facility for treatment and disposal. Among the technical objectives for the OHF Project, there is a specific provision to maintain personnel exposures as low as reasonably achievable (ALARA) during each activity of the project and to protect human health and the environment. The estimated doses and anticipated conditions for accomplishing this project are such that an ALARA Plan is necessary to facilitate formal radiological review of the campaign. This ALARA Plan describes the operational steps necessary for accomplishing the job together with the associated radiological impacts and planned controls. Individual and collective dose estimates are also provided for the various tasks. Any significant changes to this plan (i.e., planned exposures that are greater than 10% of original dose estimates) will require formal revision and concurrence from all parties listed on the approval page. Deviations from this plan (i.e., work outside the scope covered by this plan) also require the preparation of a task-specific ALARA Review that will be amended to this plan with concurrence from all parties listed on the approval page

  3. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  4. Annual status report on Federal Facility Agreement compliance for the Liquid Low-Level Waste tank systems at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-09-01

    This annual report summarizes the status of Federal Facility Agreement (FFA) compliance activities at Oak Ridge National Laboratory (ORNL) and describes the progress made over the past fiscal year. In fiscal 1994, ORNL issued the final submittal of the risk characterization data for the inactive tanks, the secondary containment design demonstration report for Category B piping, and the FFA Implementation Plan. In addition, two new LLLW tanks serving Building 2026 and the Transported Waste Receiving Facility were installed; leak testing was initiated for all active, singly contained tanks and piping; sources of inflow to inactive tanks were investigated and diversion to process waste was begun; and the W-12 tank system was repaired and a request to allow its temporary use was approved by EPA/TDEC. Programmatic improvements were also made during the year: a system for improved communication of FFA plans and activities was implemented in October 1993, a survey was conducted to ensure that all inactive drains are identified and sealed, and two meetings of the ORNL FFA Technical Advisory Group were held

  5. Data Sharing Report for the Quantification of Removable Activity in Various Surveillance and Maintenance Facilities at the Oak Ridge National Laboratory Oak Ridge TN

    Energy Technology Data Exchange (ETDEWEB)

    King, David A. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (OR-EM) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using American Recovery and Reinvestment Act (ARRA) funds. Specifically, DOE OR-EM requested that ORAU plan and implement a sampling and analysis campaign targeting potential removable radiological contamination that may be transferrable to future personal protective equipment (PPE) and contamination control materials—collectively referred to as PPE throughout the remainder of this report—used in certain URS|CH2M Oak Ridge, LLC (UCOR) Surveillance and Maintenance (S&M) Project facilities at the Oak Ridge National Laboratory (ORNL). Routine surveys in Bldgs. 3001, 3005, 3010, 3028, 3029, 3038, 3042, 3517, 4507, and 7500 continuously generate PPE. The waste is comprised of Tyvek coveralls, gloves, booties, Herculite, and other materials used to prevent worker exposure or the spread of contamination during routine maintenance and monitoring activities. This report describes the effort to collect and quantify removable activity that may be used by the ORNL S&M Project team to develop radiation instrumentation “screening criteria.” Material potentially containing removable activity was collected on smears, including both masselin large-area wipes (LAWs) and standard paper smears, and analyzed for site-related constituents (SRCs) in an analytical laboratory. The screening criteria, if approved, may be used to expedite waste disposition of relatively clean PPE. The ultimate objectives of this effort were to: 1) determine whether screening criteria can be developed for these facilities, and 2) provide process knowledge information for future site planners. The screening criteria, if calculated, must be formally approved by Federal Facility Agreement parties prior to use for

  6. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    International Nuclear Information System (INIS)

    French, Sean B.; Shuman, Robert

    2012-01-01

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  7. Precise leveling determination of surface uplift patterns at the New Hydraulic Fracturing Facility, Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.

    1988-05-01

    Surface uplift patterns were determined for five grout injections at the New Hydrofracture Facility (NHF) during the period July 1983 through January 1984. The uplift patterns are complex. In plan view, they are elliptical to almost circular and exhibit varying degrees of cross-sectional asymmetry with one side steeper than the other. The long axis of the ellipse is more or less parallel to geological strike. The uplift patterns vary in size, shape and asymmetry from injection to injection. The region of maximum uplift is typically offset with respect to the injection point, suggesting that most hydrofracture injections dip to the south-southeast. Approximately 40 to 60% of the uplift measured 5 days after an injection subsided within 30 to 45 days. In one case, all of the uplift subsided within 70 days of injection. Modeling of the uplift patterns by simple models, based on homogeneous, isotropic subsurface conditions, suggests that hydrofractures produced by the injections are either horizontal or have shallow dips to the south-southeast. Such orientations are consistent with the hydrofracture orientations determined by gamma-ray logging in observation wells surrounding the NHF site. 19 refs., 17 figs., 1 tab

  8. Assessment of the measurement control program for solution assay instruments at the Los Alamos National Laboratory Plutonium Facility

    International Nuclear Information System (INIS)

    Goldman, A.S.

    1985-05-01

    This report documents and reviews the measurement control program (MCP) over a 27-month period for four solution assay instruments (SAIs) Facility. SAI measurement data collected during the period January 1982 through March 1984 were analyzed. The sources of these data included computer listings of measurements emanating from operator entries on computer terminals, logbook entries of measurements transcribed by operators, and computer listings of measurements recorded internally in the instruments. Data were also obtained from control charts that are available as part of the MCP. As a result of our analyses we observed agreement between propagated and historical variances and concluded instruments were functioning properly from a precision aspect. We noticed small, persistent biases indicating slight instrument inaccuracies. We suggest that statistical tests for bias be incorporated in the MCP on a monthly basis and if the instrument bias is significantly greater than zero, the instrument should undergo maintenance. We propose the weekly precision test be replaced by a daily test to provide more timely detection of possible problems. We observed that one instrument showed a trend of increasing bias during the past six months and recommend a randomness test be incorporated to detect trends in a more timely fashion. We detected operator transcription errors during data transmissions and advise direct instrument transmission to the MCP to eliminate these errors. A transmission error rate based on those errors that affected decisions in the MCP was estimated as 1%. 11 refs., 10 figs., 4 tabs

  9. Sandia National Laboratories:

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  10. Report of exploratory trenching for the Decontamination and Waste Treatment Facility at Lawrence Livermore National Laboratory, Livermore, California

    International Nuclear Information System (INIS)

    Dresen, M.D.; Weiss, R.B.

    1985-12-01

    Three exploratory trenches, totaling about 1,300 ft in length were excavated and logged across the site of a proposed Decontamination and Waste Treatment Facility (DWTF), to assess whether or not active Greenville fault zone, located about 4100 ft to the northeast, pass through or within 200 ft of the site. The layout of the trenches (12-16 ft deep) was designed to provide continuous coverage across the DWTF site and an area within 200 ft northeast and southwest of the site. Deposits exposed in the trench walls are primarily of clay, and are typical of weakly cemented silty sand to sandy silt with the alluvial deposits in the area. Several stream channels were encountered that appear to have an approximated east-west orintation. The channel deposits consist of well-sorted, medium to coarse-grained sand and gravel. A well-developed surface soil is laterally continuous across all three trenches. The soil reportedly formed during late Pleistocene time (about 35,000 to 40,000 yr before present) based on soil stratigraphic analyses. A moderately to well-developed buried soil is laterally continuous in all three trenches, except locally where it has been removed by channelling. This buried soil apparently formed about 100,000 yr before present. At least one older, discontinuous soil is present below the 100,000-yr-old soil in some locations. The age of the older soil is unknown. At several locations, two discontinuous buried soils were observed between the surface soil and the 100,000-yr-old soil. Various overlapping stratigraphic units could be traced across the trenches providing a continuous datum of at least 100,000 yr to assess the presence or absence of faulting. The continuity of stratigraphic units in all the trenches demonstrated that no active faults pass through or within 200 ft of the proposed DWTF site

  11. Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility - R&D Requirements, Design Criteria, Design Concept, and Concept Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Loewen; Paul Demkowicz

    2005-05-01

    The Idaho National Laboratory Lead-Bismuth Eutectic Test Facility will advance the state of nuclear technology relative to heavy-metal coolants (primarily Pb and Pb-Bi), thereby allowing the U.S. to maintain the pre-eminent position in overseas markets and a future domestic market. The end results will be a better qualitative understanding and quantitative measure of the thermal physics and chemistry conditions in the molten metal systems for varied flow conditions (single and multiphase), flow regime transitions, heat input methods, pumping requirements for varied conditions and geometries, and corrosion performance. Furthering INL knowledge in these areas is crucial to sustaining a competitive global position. This fundamental heavy-metal research supports the National Energy Policy Development Group’s stated need for energy systems to support electrical generation.1 The project will also assist the Department of Energy in achieving goals outlined in the Nuclear Energy Research Advisory Committee Long Term Nuclear Technology Research and Development Plan,2 the Generation IV Roadmap for Lead Fast Reactor development, and Advanced Fuel Cycle Initiative research and development. This multi-unit Lead-Bismuth Eutectic Test Facility with its flexible and reconfigurable apparatus will maintain and extend the U.S. nuclear knowledge base, while educating young scientists and engineers. The uniqueness of the Lead-Bismuth Eutectic Test Facility is its integrated Pool Unit and Storage Unit. This combination will support large-scale investigation of structural and fuel cladding material compatibility issues with heavy-metal coolants, oxygen chemistry control, and thermal hydraulic physics properties. Its ability to reconfigure flow conditions and piping configurations to more accurately approximate prototypical reactor designs will provide a key resource for Lead Fast Reactor research and development. The other principal elements of the Lead-Bismuth Eutectic Test Facility

  12. National Ignition Facility project acquisition plan

    International Nuclear Information System (INIS)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF

  13. Batteries and Energy Storage | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries Security User Facilities Science Work with Us Energy Batteries and Energy Storage Energy Systems Modeling Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans

  14. Applied programs at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This document overviews the areas of current research at Brookhaven National Laboratory. Technology transfer and the user facilities are discussed. Current topics are presented in the areas of applied physics, chemical science, material science, energy efficiency and conservation, environmental health and mathematics, biosystems and process science, oceanography, and nuclear energy. (GHH)

  15. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Field Office (DOE-OR), the US Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section 9 and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review or approval. The initial issue of this document in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. The current revision of this document updates the plans, schedules, and strategy for achieving compliance with the FFA, and it summarizes the progress that has been made over the past year. Chapter 1 describes the history and operation of the ORNL LLLW System, the objectives of the FFA, the organization that has been established to bring the system into compliance, and the plans for achieving compliance. Chapters 2 through 7 of this report contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress

  16. Site characterization summary report for Waste Area Grouping 10 Wells at the Old Hydrofracture Facility, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-03-01

    The Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is operated for the Department of Energy (DOE) by Martin Marietta Energy Systems (Energy Systems). As part of its DOE mission, ORNL has pioneered waste disposal technologies throughout the years of site operations since World War II. In the late 1950s, efforts were made to develop a permanent disposal alternative to the surface impoundments at ORNL at the request of the National Academy of Sciences. One such technology, the hydrofracture process, involved forming fractures in an underlying geologic host formation (a low-permeability shale) at depths of up to 1000 ft and subsequently injecting a grout slurry containing low-level liquid waste, cement, and other additives at an injection pressure of about 2000 psi. The objective of the effort was to develop a grout slurry that could be injected as a liquid but would solidify after injection, thereby immobilizing the radioisotopes contained in the low-level liquid waste. The scope of this site characterization was the access, sampling, logging, and evaluation of observation wells near the Old Hydrofracture Facility (OHF) in preparation for plugging, recompletion, or other final disposition of the wells

  17. National Ignition Facility Target Chamber

    International Nuclear Information System (INIS)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-01-01

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  18. The National Ignition Facility Project. Revision 1

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  19. News | Argonne National Laboratory

    Science.gov (United States)

    to give second life to EV batteries Yemen News National Lab Licensing Hydrogen Refueling Method Could Computing Center Centers, Institutes, and Programs RISCRisk and Infrastructure Science Center Other

  20. Marc Snir | Argonne National Laboratory

    Science.gov (United States)

    Computer Science Energy and Global Security ESEnergy Systems GSSGlobal Security Sciences NENuclear National Security User Facilities Science Work with Us About Safety News Careers Education Community Outreach OutLoud Lecture Series Our Impact Education Environmental Protection Sustainability Diversity

  1. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Virginia Latta [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  2. National Biomedical Tracer Facility: Project definition study

    International Nuclear Information System (INIS)

    Heaton, R.; Peterson, E.; Smith, P.

    1995-01-01

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design

  3. National Biomedical Tracer Facility: Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  4. Sandia National Laboratories: Research

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD and decision-making. Materials science Leading the nation in the knowledge of materials engineering success is our foundational scientific research, which provides us with knowledge and capabilities that

  5. The National Ignition Facility and industry

    International Nuclear Information System (INIS)

    Harri, J.G.; Lowdermilk, W.H.; Paisner, J.A.; Boyes, J.D.; Kumpan, S.A.; Sorem, M.S.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of national construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project

  6. Demonstration of the iodine and NO/sub x/ removal systems in the Oak Ridge National Laboratory integrated equipment test facility

    International Nuclear Information System (INIS)

    Lewis, B.E.; Jubin, R.T.

    1987-03-01

    This report summarizes the findings from three sets of experiments on iodine and NO/sub x/ removal performance using dual downdraft condensers in the dissolver off-gas line. The initial experiments were conducted in the laboratory using glassware in proof-of-principle tests. Two additional sets of condenser experiments were conducted using equipment prototyical for a 0.5-t/d plant in the Integrated Equipment Test (IET) facility at the Oak Ridge National Laboratory. This report also describes the NO/sub x/ removal performance of a packed scrubber in the IET during the dissolution of depleted uranium oxides. The overall iodine pass-through efficiency of the condensers in the IET was high as desired. Removal efficiencies ranged from only 0.35 to 6.29%, indicating that the bulk of the iodine in the off-gas will be transferred on through the condensers to the iodox process for final disposal rather than recycled to the dissolver. The optimum operating temperature for the first condenser was in the range of 50 to 70 0 C, with the temperature of the second condenser held near 20 0 C. The NO/sub x/ removal performance of the combined dual condensers and packed scrubber resulted in effluent off-gas stream NO/sub x/ compositions of ∼0.4 to 1.0%, which are acceptable levels for the iodox process. The NO/sub x/ removal efficiency of the condensers ranged from ∼5 to 58%, but was generally around 20%. The removal efficiency of the packed tower scrubber was observed to be in the range of 40 to 60%. The NO/sub x/ removal performance of the condensers tended to complement the performance of the scrubber in that the condenser removal afficiency was high when the scrubber efficiency was low and vice versa

  7. Chemical and Radiochemical Constituents in Water from Wells in the Vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho, 1997-98

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay; L. L. Knobel; B. J. Tucker; B. V. Twining (USGS)

    2000-06-01

    The US Geological Survey, in response to a request from the U.S Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled water from 13 wells during 1997-98 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho. Water samples were analyzed for naturally occurring constituents and man-made contaminants. A total of 91 samples were collected from the 13 monitoring wells. The routine samples contained detectable concentrations of total cations and dissolved anions, and nitrite plus nitrate as nitrogen. Most of the samples also had detectable concentrations of gross alpha- and gross beta-particle radioactivity and tritium. Fourteen quality-assurance samples were also collected and analyzed; seven were field-blank samples, and seven were replicate samples. Most of the field blank samples contained less than detectable concentrations of target constituents; however some blank samples did contain detectable concentrations of calcium, magnesium, barium, copper, manganese, nickel, zinc, nitrite plus nitrate, total organic halogens, tritium, and selected volatile organic compounds.

  8. Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1990--91

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Knobel, L.L.; Tucker, B.J.

    1993-01-01

    The US Geological Survey, in response to a request from the US Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 12 wells as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. Sixty samples were collected from eight groundwater monitoring wells and four production wells. Ten quality-assurance samples also were collected and analyzed. Most of the samples contained concentrations of total sodium and dissolved anions that exceeded reporting levels. The predominant category of nitrogen-bearing compounds was nitrite plus nitrate as nitrogen. Concentrations of total organic carbon ranged from less than 0.1 to 2.2 milligrams per liter. Total phenols in 52 of 69 samples ranged from 1 to 8 micrograms per liter. Extractable acid and base/neutral organic compounds were detected in water from 16 of 69 samples. Concentrations of dissolved gross alpha- and gross beta-particle radioactivity in all samples exceeded the reporting level. Radium-226 concentrations were greater than the reporting level in 63 of 68 samples

  9. Safety analysis report for the gunite and associated tanks project remediation of the South Tank Farm, facility 3507, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Platfoot, J.H.

    1998-02-01

    The South Tank Farm (STF) is a series of six, 170,000-gal underground, domed storage tanks, which were placed into service in 1943. The tanks were constructed of a concrete mixture known as gunite. They were used as a portion of the Liquid Low-Level Waste System for the collection, neutralization, storage, and transfer of the aqueous portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at Oak Ridge National Laboratory (ORNL). The last of the tanks was taken out of service in 1986, but the tanks have been shown by structural analysis to continue to be structurally sound. An attempt was made in 1983 to empty the tanks; however, removal of all the sludge from the tanks was not possible with the equipment and schedule available. Since removal of the liquid waste in 1983, liquid continues to accumulate within the tanks. The in-leakage is believed to be the result of groundwater dripping into the tanks around penetrations in the domes. The tanks are currently being maintained under a Surveillance and Maintenance Program that includes activities such as level monitoring, vegetation control, High Efficiency Particulate Air (HEPA) filter leakage requirement testing/replacement, sign erection/repair, pump-out of excessive liquids, and instrument calibration/maintenance. These activities are addressed in ORNL/ER-275

  10. Los Alamos National Laboratory A National Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  11. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical

  12. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns

  13. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  14. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  15. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  16. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  17. Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  18. Safety overview of the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.J.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.

    1996-01-01

    The National Ignition Facility (NIF) is a proposed US Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium- tritium target located at the center of a spherical target chamber. The NIF mission is to achieve inertial confinement fusion (ICF) ignition, access physical conditions in matter of interest to nuclear weapons physics, provide an above ground simulation capability for nuclear weapons effects testing, and contribute to the development of inertial fusion for electrical power production. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996. This paper summarizes the safety issues associated with the operation of the NIF. It provides an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low

  19. Defense Waste Processing Facility prototypic analytical laboratory

    International Nuclear Information System (INIS)

    Policke, T.A.; Bryant, M.F.; Spencer, R.B.

    1991-01-01

    The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R ampersand D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R ampersand D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy

  20. The National Ignition Facility and Industry

    Science.gov (United States)

    Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.

    1994-09-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.

  1. Conceptual design of the National Ignition Facility

    International Nuclear Information System (INIS)

    Paisner, J.A.; Kumpan, S.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.

    1995-01-01

    DOE commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KDO), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 μm) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program's site, and issued a 7,000-page, 27-volume CDR in May 1994.2 Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a Key Decision One (KD1) for the NIF, which approved the Project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. The Project will cost approximately $1.1 billion and will be completed at the end of FY 2002

  2. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  3. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  4. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  5. Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.R.

    1995-01-31

    This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios.

  6. Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Green, J.R.

    1995-01-01

    This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios

  7. Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Benson, Jeff; Thelen, Mary Catherine

    2011-01-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  8. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  9. Target Visualization at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Daniel Abraham [Univ. of California, Davis, CA (United States)

    2011-01-01

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

  10. Lawrence Livermore National Laboratory Environmental Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, V. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Veseliza, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  11. Lawrence Livermore National Laboratory Environmental Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Henry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Armstrong, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, Rick G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, Nicholas A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, Steven J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, Craig [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, Valerie R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, Jennifer L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, Allen R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, Kelly R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hollister, Rod K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, Gene [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, Donald H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, Jennifer C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, Heather L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, Lisa E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, Crystal A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, Alison A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, Anthony M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, Kent R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, Jim S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-19

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  12. Decommissioning of the nuclear facilities at Risoe National Laboratory. Descriptions and cost assessment. Danish summary[Denmark]; Dekommissionering af Risoes nukleare anlaeg - vurdering af opgaver og omkostninger. Dansk sammenfatning

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt

    2001-02-01

    The report gives a brief description of relevant aspects of the decommissioning of all nuclear facilities at Risoe National Laboratory, including the necessary operations to be performed and the associated costs. Together with a more detailed report, written in English, this report is the result of a project initiated by Risoe in the summer of 2000. The English report has undergone an international review, the results of which are summarised in the present report. (au)

  13. Argonne National Laboratory 1985 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A. (ED.); Hale, M.R. (comp.)

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  14. Argonne National Laboratory 1985 publications

    International Nuclear Information System (INIS)

    Kopta, J.A.; Hale, M.R.

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index

  15. National Ignition Facility site requirements

    International Nuclear Information System (INIS)

    1996-07-01

    The Site Requirements (SR) provide bases for identification of candidate host sites for the National Ignition Facility (NIF) and for the generation of data regarding potential actual locations for the facilities. The SR supplements the NIF Functional Requirements (FR) with information needed for preparation of responses to queries for input to HQ DOE site evaluation. The queries are to include both documents and explicit requirements for the potential host site responses. The Sr includes information extracted from the NIF FR (for convenience), data based on design approaches, and needs for physical and organization infrastructure for a fully operational NIF. The FR and SR describe requirements that may require new construction or may be met by use or modification of existing facilities. The SR do not establish requirements for NIF design or construction project planning. The SR document does not constitute an element of the NIF technical baseline

  16. Oak Ridge National Laboratory Review

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.; Pearce, J.; Zucker, A. (eds.)

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  17. The Australian National Proton Facility

    International Nuclear Information System (INIS)

    Jackson, M.; Rozenfeld, A.; Bishop, J.

    2002-01-01

    Full text: Protons have been used in the treatment of cancer since 1954 and over 30,000 patients have been treated around the world. Their precise dose distribution allows the treatment of small tumours in critical locations such as the base of skull and orbit and is an alternative to stereotactic radiotherapy in other sites. With the development of hospital-based systems in the 1990's, common tumours such as prostate, breast and lung cancer can now also be treated using simple techniques. The therapeutic ratio is improved as the dose to the tumour can be increased while sparing normal tissues. The well defined high dose region and low integral dose compared with photon treatments is a particular advantage in children and other situations where long-term survival is expected and when used in combination with chemotherapy. In January 2002, the NSW Health Department initiated a Feasibility Study for an Australian National Proton Facility. This Study will address the complex medical, scientific, engineering, commercial and legal issues required to design and build a proton facility in Australia. The Facility will be mainly designed for patient treatment but will also provide facilities for biological, physical and engineering research. The proposed facility will have a combination of fixed and rotating beams with an energy range of 70-250 MeV. Such a centre will enable the conduct of randomised clinical trials and a comparison with other radiotherapy techniques such as Intensity Modulated Radiation Therapy. Cost-utility comparisons with other medical treatments will also be made and further facilities developed if the expected benefit is confirmed. When patients are not being treated, the beam will be available for commercial and research purposes. This presentation will summarize the progress of the Study and discuss the important issues that need to be resolved before the Facility is approved and constructed

  18. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    International Nuclear Information System (INIS)

    Shields, K.D.; Ballinger, M.Y.

    1999-03-01

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities

  19. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  20. National Low-Temperature Neutron-Irradiation Facility

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.; Klabunde, C.E.; Young, F.W. Jr.

    1983-08-01

    The Materials Sciences Division of the United States Department of Energy will establish a National Low Temperature Neutron Irradiation Facility (NLTNIF) which will utilize the Bulk Shielding Reactor (BSR) located at Oak Ridge National Laboratory. The facility will provide high radiation intensities and special environmental and testing conditions for qualified experiments at no cost to users. This report describes the planned experimental capabilities of the new facility

  1. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  2. Idaho National Engineering Laboratory site development plan

    International Nuclear Information System (INIS)

    1994-09-01

    This plan briefly describes the 20-year outlook for the Idaho National Engineering Laboratory (INEL). Missions, workloads, worker populations, facilities, land, and other resources necessary to fulfill the 20-year site development vision for the INEL are addressed. In addition, the plan examines factors that could enhance or deter new or expanded missions at the INEL. And finally, the plan discusses specific site development issues facing the INEL, possible solutions, resources required to resolve these issues, and the anticipated impacts if these issues remain unresolved

  3. Argonne National Laboratory 1986 publications

    International Nuclear Information System (INIS)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index

  4. Argonne National Laboratory 1986 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  5. Sandia National Laboratories embraces ISDN

    Energy Technology Data Exchange (ETDEWEB)

    Tolendino, L.F.; Eldridge, J.M.

    1994-08-01

    Sandia National Laboratories (Sandia), a multidisciplinary research and development laboratory located on Kirtland Air Force Base, has embraced Integrated Services Digital Network technology as an integral part of its communication network. Sandia and the Department of Energy`s Albuquerque Operations Office have recently completed the installation of a modernized and expanded telephone system based, on the AT&T 5ESS telephone switch. Sandia is committed to ISDN as an integral part of data communication services, and it views ISDN as one part of a continuum of services -- services that range from ISDN`s asynchronous and limited bandwidth Ethernet (250--1000 Kbps) through full bandwidth Ethernet, FDDI, and ATM at Sonet rates. Sandia has demonstrated this commitment through its use of ISDN data features to support critical progmmmatic services such as access to corporate data base systems. In the future, ISDN will provide enhanced voice, data communication, and video services.

  6. Refurbishment of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Rosenberg, K.; Henslee, S.P.; Michelbacher, J.A.; Coleman, R.M.

    1997-01-01

    An Analytical Laboratory Hot Cell (ALHC) Facility at Argonne National Laboratory-West (ANL-W) was in service for nearly thirty years. In order to comply with DOE regulations governing such facilities and meet ANL-W programmatic requirements, a major refurbishment effort was undertaken. All penetrations within the facility were sealed; the ventilation system was redesigned, upgraded and replaced; the manipulators were replaced; the hot cell windows were removed, refurbished, and reinstalled; all hot cell utilities were replaced; a lead-shielded glovebox housing an Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES) System was interfaced with the hot cells, and a new CO2 fire suppression system and other ALHC support equipment were installed

  7. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC ampersand FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate

  8. Feasibility of processing the experimental breeder reactor-II driver fuel from the Idaho National Laboratory through Savannah River Site's H-Canyon facility

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-28

    Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium, and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.

  9. National Nanotechnology Laboratory (LNNano) open facilities for scientific community: new methods for polymeric materials characterization; Instalacoes abertas a comunidade cientifica no Laboratorio Nacional de Nanotecnologia (LNNano): novos metodos de caracterizacao de materiais polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiane A.; Santos, Ramon H.Z. dos; Bernardes, Juliana S.; Gouveia, Rubia F., E-mail: rubia.gouveia@lnnano.cnpem.br [Centro Nacional de Pesquisa em Energia e Materiais (LNNano/CNPEM), Campinas, SP (Brazil). Laboratorio Nacional de Nanotecnologia

    2015-07-01

    National Nanotechnology Laboratory (LNNano) at the National Center for Energy and Materials (CNPEM) presents open facilities for scientific public in some areas. In this work will be discussed the facilities for mainly the polymeric community, as well as new methods for the characterization. Low density polyethylene (LDPE) surfaces were characterized by X-ray microtomography and X-ray photoelectron spectroscopy (XPS). The results obtained by microtomography have shown that these surfaces present different contrasts when compared with the bulk. These differences are correlated with the formation of an oxidized layer at the polymer surface, which consequently have a greater X-ray attenuation. This hypothesis is confirmed by XPS, which shows LDPE surface layers are richer in carbonyl, carboxyl and vinyl groups than the bulk. This work presents that microtomography can be used as a new method for detection and characterization of polymer surface oxidation. (author)

  10. New facilities of the ECN hot cell laboratory

    International Nuclear Information System (INIS)

    Duijves, K.A.; Konings, R.J.M.

    1996-04-01

    A description is given of two recent expansions of the ECN Hot Cell Laboratory in Petten; a production facility for molybdenum-99 and an actinide laboratory, a special facility to investigate unirradiated alpha- and beta-active samples. (orig.)

  11. Design and operations at the National Tritium Labelling Facility

    International Nuclear Information System (INIS)

    Morimoto, H.; Williams, P.G.

    1991-09-01

    The National Tritium Labelling Facility (NTLF) is a multipurpose facility engaged in tritium labeling research. It offers to the biomedical research community a fully equipped laboratory for the synthesis and analysis of tritium labeled compounds. The design of the tritiation system, its operations and some labeling techniques are presented

  12. National Storage Laboratory: a collaborative research project

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  13. Alpha-contained laboratory scale pulse column facility for SRL

    International Nuclear Information System (INIS)

    Reif, D.J.; Cadieux, J.R.; Fauth, D.J.; Thompson, M.C.

    1980-01-01

    For studying solvent extraction processes, a laboratory-sized pulse column facility was constructed at the Savannah River Laboratory. This facility, in conjunction with existing miniature mixer-settler equipment and the centrifugal contactor facility currently under construction at SRL, provides capability for cross comparison of solvent extraction technology. This presentation describes the design and applications of the Pulse Column Facility at SRL

  14. Decommissioning three nuclear reactors at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Montoya, G.M.; Salazar, M.

    1992-01-01

    Three nuclear reactors, including the historic water boiler reactor, were decommissioned at Los Alamos National Laboratory (LANL). The decommissioning of the facilities involved removing the reactors and their associated components. Planning for the decommissioning operation included characterizing the facilities, estimating the costs of decommissioning operations, preparing environmental documentation, establishing systems to track costs and work progress, and preplanning to correct health and safety concerns in each facility

  15. Remedial site evaluation report for the waste area grouping 10 wells associated with the new hydrofracture facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    International Nuclear Information System (INIS)

    1996-08-01

    The Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is operated for the U.S. Department of Energy (DOE) by Lockheed Martin Energy System (Energy Systems). ORNL has pioneered waste disposal technologies since World War II as part of its DOE mission. In the late 1950s, at the request of the National Academy of Sciences, efforts were made to develop a permanent disposal alternative to the surface and tanks at ORNL. One such technology, the hydrofracture process, involved inducing fractures in a geologic host formation (a low-permeability shale) at depths of up to 1100 ft and injecting a radioactive grout slurry containing low-level liquid or tank sludge waste, cement, and other additives at an injection pressure of 2000 to 8500 psi. The objective of the effort was to develop a grout dig could be injected as a slurry and would solidify after injection, thereby entombing the radioisotopes contained in the low-level liquid or tank sludge waste. Four sites at ORNL were used: two experimental (HF-1 and HF-2); one developmental, later converted to batch process [Old Hydrofracture Facility (BF-3)]; and one production facility [New Hydrofracture Facility (BF-4)]. This document provides the environmental, restoration program with information about the the results of an evaluation of WAG 10 wells associated with the New Hydrofracture Facility at ORNL

  16. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.

    2000-10-01

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

  17. Inertial confinement fusion at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Lindman, E.; Baker, D.; Barnes, C.; Bauer, B.; Beck, J.B.

    1997-01-01

    The Los Alamos National Laboratory is contributing to the resolution of key issues in the US Inertial-Confinement-Fusion Program and plans to play a strong role in the experimental program at the National Ignition Facility when it is completed

  18. Decontamination of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; Rosenberg, K.E.; Coleman, R.M.

    1995-11-01

    An Analytical Laboratory Hot Cell Facility at Argonne National Laboratory-West (ANL-W) had been in service for nearly thirty years. In order to comply with current DOE regulations governing such facilities and meet programmatic requirements, a major refurbishment effort was mandated. Due to the high levels of radiation and contamination within the cells, a decontamination effort was necessary to provide an environment that permitted workers to enter the cells to perform refurbishment activities without receiving high doses of radiation and to minimize the potential for the spread of contamination. State-of-the-art decontamination methods, as well as time-proven methods were utilized to minimize personnel exposure as well as maximize results

  19. Safety analysis report for the Mixed Waste Storage Facility and portable storage units at the Idaho National Engineering Laboratory. Revision 4

    International Nuclear Information System (INIS)

    Peatross, R.

    1997-01-01

    This revision contains Section 2 only which gives a description of the Mixed Waste Storage Facility (MWSF) and its operations. Described are the facility location, services and utilities, process description and operation, and safety support systems. The MWSF serves as a storage and repackaging facility for low-level mixed waste

  20. Human factors at the Department of Energy National Laboratories

    International Nuclear Information System (INIS)

    Pond, D.J.; Waters, R.M.

    1991-01-01

    After World War II, a system of national laboratories was created to foster a suitable environment for scientific research. This paper reports that today, human factors activities are in evidence at most of the nine U.S. Department of Energy multi-program national laboratories as well as at a number of special program facilities. This paper provides historical and future perspectives on the DOE's human factors programs

  1. Virtual laboratories: Collaborative environments and facilities-on-line

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E. Jr. [Oak Ridge National Lab., TN (United States). I and C Div.; Cavallini, J.S.; Seweryniak, G.R.; Kitchens, T.A.; Hitchcock, D.A.; Scott, M.A.; Welch, L.C. [Dept. of Energy, Germantown, MD (United States). Mathematical Information, and Computational Sciences Div.; Aiken, R.J. [Dept. of Energy, Germantown, MD (United States). Mathematical Information, and Computational Sciences Div.]|[Lawrence Livermore National Lab., CA (United States); Stevens, R.L. [Argonne National Lab., IL (United States). Mathematics and Computer Sciences Div.

    1995-07-01

    The Department of Energy (DOE) has major research laboratories in a number of locations in the US, typically co-located with large research instruments or research facilities valued at tens of millions to even billions of dollars. Present budget exigencies facing the entire nation are felt very deeply at DOE, just as elsewhere. Advances over the last few years in networking and computing technologies make virtual collaborative environments and conduct of experiments over the internetwork structure a possibility. The authors believe that development of these collaborative environments and facilities-on-line could lead to a ``virtual laboratory`` with tremendous potential for decreasing the costs of research and increasing the productivity of their capital investment in research facilities. The majority of these cost savings would be due to increased productivity of their research efforts, better utilization of resources and facilities, and avoiding duplication of expensive facilities. A vision of how this might all fit together and a discussion of the infrastructure necessary to enable these developments is presented.

  2. National Cryo-Electron Microscopy Facility

    Science.gov (United States)

    Information about the National Cryo-EM Facility at NCI, created to provide researchers access to the latest cryo-EM technology for high resolution imaging. Includes timeline for installation and how to access the facility.

  3. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory Volume 1: Report of Results

    International Nuclear Information System (INIS)

    Gallegos, G; Daniels, J; Wegrecki, A

    2006-01-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as ''high explosives'' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the on-site test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and

  4. Neutronics analysis of the Laboratory Microfusion Facility

    International Nuclear Information System (INIS)

    Tobin, M.T.; Singh, M.S.; Meier, W.R.

    1988-01-01

    The radiological safety hazards of the experimental area (EA) for the proposed Inertial Confinement Fusion (ICF) Laboratory Microfusion Facility (LMF) have been examined. The EA includes those structures required to establish the proper pre-shot environment, point the beams, contain the pellet yield, and measure many different facets of the experiments. The radiation dose rates from neutron activation of representative target chamber materials, the laser beam tubes and the argon gas they contain, the air surrounding the chamber, and the concrete walls of the experimental area are given. Combining these results with the allowable dose rates for workers, we show how radiological considerations affect access to the inside of the target chamber and to the diagnostic platform area located outside the chamber. Waste disposal and tritium containment issues are summarized. Other neutronics issues, such as radiation damage to the final optics and neutron heating of materials placed close to the target, are also addressed. 16 refs., 2 figs., 1 tab

  5. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    OpenAIRE

    Yeh, Kenneth B.; Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and r...

  6. Neutronics issues for a laboratory microfusion facility

    International Nuclear Information System (INIS)

    Tobin, M.T.

    1987-01-01

    Discussion concerning goals or design of the Laboratory Microfusion Facility (LMF) should include an understanding of the neutronics issues involved. We consider such aspects as first wall shielding requirements, safety standards as they will apply to such an Inertial Confinement Fusion (ICF) facility, and the interior chamber environment. The selection of materials for the first wall, neutron moderator and absorber, and gamma ray shielding is discussed. We conclude that water or carbon are the choices for bulk neutron moderation and boron placed just in front of the first wall the choice for neutron absorber. Selection of the in-chamber materials and diagnostic design will greatly affect the relative hazards after a shot. Lead is the high-Z material of choice and plastic expendables for the diagnostics. Although a poor gamma ray attenuator, carbon is the choice for this function since it also compensates for the direct neutron shine effects and does not itself activate. Electronics may need to be hardened to the prompt gamma and neutron dose

  7. Advanced Test Reactor National Scientific User Facility Partnerships

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Allen, Todd R.; Benson, Jeff B.; Cole, James I.; Thelen, Mary Catherine

    2012-01-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  8. Detailed description of an SSAC at the facility level for research laboratory facilities

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-08-01

    The purpose of this document is to provide a detailed description of a system for the accounting for and control of nuclear material in a research laboratory facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following SSAC elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  9. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  10. National High Magnetic Field Laboratory (NHMFL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Pulsed Field Program is located in Northern New Mexico at Los Alamos National Laboratory. The user program is designed to provide researchers with a balance of...

  11. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  12. Lawrence Livermore National Laboratory 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that

  13. Closure of the Oak Ridge National Laboratory Hydrofracture Facility: An opportunity to study the fate of radioactive wastes disposed of by subsurface injection

    International Nuclear Information System (INIS)

    Haase, C.S.; Von Damm, K.L.; Stow, S.H.

    1987-01-01

    At Oak Ridge National Laboratory, subsurface injection has been used to dispose of liquid low-level nuclear waste for the past two decades. The process consists of mixing the liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of approximately 300 m (1000 ft). The slurry spreads from the well along hydraulic fractures and sets to form irregularly shaped grout sheets of up to 200 m (650 ft) in radius. Closure-related site characterization provides a unique opportunity to study the fate of the injected wastes. A series of monitoring wells are in place to measure groundwater chemistries within the injection strata and within overlying and underlying confining units. Initial results indicate that contaminated groundwater surrounds the grout sheets in the injection zone, extending at least as far as 300 m (1000 ft) from the injection well; contaminated groundwater is largely and perhaps exclusively confined to the host formation; and of the 90 Sr and 137 Cs radionuclides disposed of, only 90 Sr is present in the contaminated groundwater. The illite-rich mineralogy of the injection formation strongly absorbs 137 Cs and greatly retards its migration. Movement of 90 Sr is not as greatly retarded by the injection formation. Geochemical modeling is being used to identify and to evaluate hydrogeological controls on 90 Sr behavior. Preliminary results suggest that the groundwaters within the injection formation are saturated with Sr from natural sources, and that 90 Sr mobility may be lessened by precipitation/dissolution reactions associated with such a saturated condition. 27 refs., 4 figs., 2 tabs

  14. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  15. Introduction to the National Ignition Facility

    International Nuclear Information System (INIS)

    Moses, E I

    2004-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear bum, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10 8 K and 10 11 bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules of infrared light and over 16 kJ at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance and results from recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF

  16. Science with multiply-charged ions at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Jones, K.W.; Johnson, B.M.; Meron, M.; Thieberger, P.

    1987-01-01

    The production of multiply-charged heavy ions at Brookhaven National Laboratory and their use in different types of experiments are discussed. The main facilities that are used are the Double MP Tandem Van de Graaff and the National Synchrotron Light Source. The capabilities of a versatile Atomic Physics Facility based on a combination of the two facilities and a possible new heavy-ion storage ring are summarized. It is emphasized that the production of heavy ions and the relevant science necessitates very flexible and diverse apparatus

  17. Geophysical data from boreholes DM1, DM2, DM3, and DM3a, New Hydraulic Fracturing Facility, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Haase, C.S.

    1987-03-01

    A comprehensive suite of geophysical logs was obtained from four deep monitoring boreholes at the New Hydrofracture Facility. The logging was an attempt to obtain stratigraphic, structural, and hydrologic information on the subsurface environment surrounding the hydrofracture facility. Logs obtained include caliper, gamma, neutron, density, single-point resistance, long- and short-normal resistivity, spontaneous potential, temperature, acoustic velocity, variable density, and borehole televiewer. Analysis and interpretation of the geophysical logs allowed the stratigraphic section at the facility to be determined and, by comparison with calibrated geophysical logs from borehole ORNL-Joy No. 2, allowed detailed inferences to be drawn about rock types and properties at the hydrofracture facility. Porosity values measured from the logs for Conasauga Group strata, as well as permeability values inferred from the logs, are low. Several intervals of apparently greater permeability, associated primarily with limestone-rich portions of the Maryville Limestone and sandstone-rich portions of the Rome Formation, were noted. Numerous fractures were identified by using several logs in combination. No one geophysical log was reliable for fracture identification although the acoustic-televiewer log appeared to have the greatest success. In addition to their characterization of subsurface conditions in the vicinity of the hydrofracture facility, the geophysical logs provided data on the extent of hydraulic fractures. Anomalies on single-point resistance logs that corresponded to prominent fractures identified on televiewer logs indicate intervals affected by hydraulic fractures associated with waste injection at the New Hydrofracture Facility. 14 refs

  18. National Ignition Facility system design requirements conventional facilities SDR001

    International Nuclear Information System (INIS)

    Hands, J.

    1996-01-01

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions

  19. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, G.A.; Ford, J.T.; Barber, A.D.

    2011-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  20. Critical experiments at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Ford, J.T.; Barber, A.D., E-mail: gaharms@sandia.gov [Sandia National Laboratories, Albuquerque, NM (United States)

    2011-07-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide

  1. Increase Workshop | Argonne National Laboratory

    Science.gov (United States)

    Facility ALCF's mission is to accelerate major scientific discoveries and engineering breakthroughs for interndisciplinary nanoscience and nanotechnology reserach. Academic, industry, and international researchers can with the Interdisciplinary Consortium for Research and Educational Access in Science and Engineering

  2. Pinellas Plant facts. [Products, processes, laboratory facilities

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

  3. Reactor D and D at Argonne National Laboratory - lessons learned

    International Nuclear Information System (INIS)

    Fellhauer, C. R.

    1998-01-01

    This paper focuses on the lessons learned during the decontamination and decommissioning (D and D) of two reactors at Argonne National Laboratory-East (ANL-E). The Experimental Boiling Water Reactor (EBWR) was a 100 MW(t), 5 MSV(e) proof-of-concept facility. The Janus Reactor was a 200 kW(t) reactor located at the Biological Irradiation Facility and was used to study the effects of neutron radiation on animals

  4. Molten Salt Reactor Experiment Facility (Building 7503) standards/requirements identification document adherence assessment plan at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    This is the Phase 2 (adherence) assessment plan for the Building 7503 Molten Salt Reactor Experiment (MSRE) Facility standards/requirements identification document (S/RID). This document outlines the activities to be conducted from FY 1996 through FY 1998 to ensure that the standards and requirements identified in the MSRE S/RID are being implemented properly. This plan is required in accordance with the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 90-2, November 9, 1994, Attachment 1A. This plan addresses the major aspects of the adherence assessment and will be consistent with Energy Systems procedure QA-2. 7 ''Surveillances.''

  5. Design/Installation and Structural Integrity Assessment of Bethel Valley Low-Level Waste collection and transfer system upgrade for Building 3092 (central off-gas scrubber facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-10-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lined concrete vault, replacing an existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. Ne scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation. A formal design certification statement is included herein on Page 53, a certification covering the installation shall be executed prior to placing the modified facility into service

  6. Pacific Northwest National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Erik W.

    2000-03-01

    The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

  7. Pacific Northwest National Laboratory Institutional Plan FY 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Pearson, Erik W.

    2000-12-29

    The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

  8. Risk management at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Cummings, G.E.; Strait, R.S.

    1993-10-01

    Managing risks at a large national laboratory presents a unique set of challenges. These challenges include the management of a broad diversity of activities, the need to balance research flexibility against management control, and a plethora of requirements flowing from regulatory and oversight bodies. This paper will present the experiences of Lawrence Livermore National Laboratory (LLNL) in risk management and in dealing with these challenges. While general risk management has been practiced successfully by all levels of Laboratory management, this paper will focus on the Laboratory's use of probabilistic safety assessment and prioritization techniques and the integration of these techniques into Laboratory operations

  9. Proposals for ORNL [Oak Ridge National Laboratory] support to Tiber LLNL [Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Berry, L.A.; Rosenthal, M.W.; Saltmarsh, M.J.; Shannon, T.E.; Sheffield, J.

    1987-01-01

    This document describes the interests and capabilities of Oak Ridge National Laboratory in their proposals to support the Lawrence Livermore National Laboratory (LLNL) Engineering Test Reactor (ETR) project. Five individual proposals are cataloged separately. (FI)

  10. Oak Ridge National Laboratory's isotope enrichment program

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.C.

    1997-01-01

    The Isotope Enrichment Program (IEP) at Oak Ridge National Laboratory (ORNL) is responsible for the production and distribution of ∼225 enriched stable isotopes from 50 multi-isotopic elements. In addition, ORNL distributes enriched actinide isotopes and provides extensive physical- and chemical-form processing of enriched isotopes to meet customer requirements. For more than 50 yr, ORNL has been a major provider of enriched isotopes and isotope-related services to research, medical, and industrial institutions throughout the world. Consolidation of the Isotope Distribution Office (IDO), the Isotope Research Materials Laboratory (IRML), and the stable isotope inventories in the Isotope Enrichment Facility (IEF) have improved operational efficiencies and customer services. Recent changes in the IEP have included adopting policies for long-term contracts, which offer program stability and pricing advantages for the customer, and prorated service charges, which greatly improve pricing to the small research users. The former U.S. Department of Energy (DOE) Loan Program has been converted to a lease program, which makes large-quantity or very expensive isotopes available for nondestructive research at a nominal cost. Current efforts are being pursued to improve and expand the isotope separation capabilities as well as the extensive chemical- and physical-form processing that now exists. The IEF's quality management system is ISO 9002 registered and accredited in the United States, Canada, and Europe

  11. Radioactive target and source development at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Greene, J.P.; Ahmad, I.; Thomas, G.E.

    1992-01-01

    An increased demand for low-level radioactive targets has created the need for a laboratory dedicated to the production of these foils. A description is given of the radioactive target produced as well as source development work being performed at the Physics Division target facility of Argonne National Laboratory (ANL). Highlights include equipment used and the techniques employed. In addition, some examples of recent source preparation are given as well as work currently in progress

  12. Site characteristics of Argonne National Laboratory in Illinois

    International Nuclear Information System (INIS)

    Chang, Y.W.

    1995-01-01

    This report reviews the geology and topography of the Argonne National Laboratory, near Lemont, Illinois. It describes the thickness and stratigraphy of soils, glacial till, and bedrock in and adjacent to the laboratory and support facilities. Seismic surveys were also conducted through the area to help determine the values of seismic wave velocities in the glacial till which is important in determining the seismic hazard of the area. Borehole log descriptions are summarized along with information on area topography

  13. List of selected publications 1981. Risoe National Laboratory

    International Nuclear Information System (INIS)

    1982-07-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1981. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply, Environmental and Safety Reseach, Materials Research, Biotechnology and Radiation Research,Experimental Methods and Analyses, Major Research Facilities, General. (author)

  14. Waste management study: Process development at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1984-12-01

    This report presents the results of an evaluation of the present Toxic Waste Control Operations at the Lawrence Livermore National Laboratory, evaluates the technologies most applicable to the treatment of toxic and hazardous wastes and presents conceptual designs of processes for the installation of a new decontamination and waste treatment facility (DWTF) for future treatment of these wastes

  15. Institutional Plan, FY 1993--1998, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This document presents the plans and goals of the Idaho National Engineering Laboratory for FY 1993--1998. Areas discussed in this document include: INEL strategic view; initiatives; scientific and technical programs; environmental, safety, and health management, technology transfer, science and math education, and community affairs; human resources; site and facilities; and resource projections

  16. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 5, Technical Memorandums 06-09A, 06-10A, and 06-12A

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-09-01

    This report provides a detailed summary of the activities carried out to sample groundwater at Waste Area Grouping (WAG) 6. The analytical results for samples collected during Phase 1, Activity 2 of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI) are also presented. In addition, analytical results for Phase 1, activity sampling events for which data were not previously reported are included in this TM. A summary of the groundwater sampling activities of WAG 6, to date, are given in the Introduction. The Methodology section describes the sampling procedures and analytical parameters. Six attachments are included. Attachments 1 and 2 provide analytical results for selected RFI groundwater samples and ORNL sampling event. Attachment 3 provides a summary of the contaminants detected in each well sampled for all sampling events conducted at WAG 6. Bechtel National Inc. (BNI)/IT Corporation Contract Laboratory (IT) RFI analytical methods and detection limits are given in Attachment 4. Attachment 5 provides the Oak Ridge National Laboratory (ORNL)/Analytical Chemistry Division (ACD) analytical methods and detection limits and Resource Conservation and Recovery Act (RCRA) quarterly compliance monitoring (1988--1989). Attachment 6 provides ORNL/ACD groundwater analytical methods and detection limits (for the 1990 RCRA semi-annual compliance monitoring).

  17. General data relating to the arrangements for disposal of radioactive waste required under Article 37 of the Euratom Treaty. Decommissioning of the nuclear facilities at Risoe National Laboratory, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This document submitted by the Danish Government has been produced to satisfy the requirements of Article 37 of the Euratom Treaty as recommended by the Commission of the European Communities (Annex 2 of Commission Recommendation 1999/829/Euratom of 6 December 1999). The above Recommendations include the dismantling of nuclear reactors and reprocessing plants in the list of operations to which Article 37 applies. Under paragraph 5.1 of the Recommendation, a submission of General Data in respect of such dismantling operations is only necessary when the proposed authorised limits and other requirements are less restrictive than those in force when the plant was operational. However, in the case of Risoe National Laboratory, no previous submission of general data has been made under Article 37 and no Opinion given by the Commission on a plan for the disposal of radioactive waste. For this reason, general data are submitted in respect of the proposed dismantling operations, even though no change to a less restrictive authorisation is envisaged at this time. This submission is for the decommissioning of the nuclear facilities at Risoe National Laboratory, which are owned by the Danish Government and managed by a Board of Governors for the Ministry of Science, Technology and Innovation. (BA)

  18. Replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory

    International Nuclear Information System (INIS)

    1995-05-01

    The DOE-Idaho Operations Office (DOE-ID) has prepared an environmental assessment (EA) on the replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory at the Idaho National Engineering Laboratory (INEL). The purpose of this project is to replace the existing Health Physics Instrumentation Laboratory (HPIL) with a new facility to provide a safe environment for maintaining and calibrating radiation detection instruments used at the Idaho National Engineering Laboratory. The existing HPIL facility provides portable health physics monitoring instrumentation and direct reading dosimetry procurement, maintenance and calibration of radiation detection instruments, and research and development support-services to the INEL and others. However, the existing facility was not originally designed for laboratory activities and does not provide an adequate, safe environment for calibration activities. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality (CEQ) Regulations (40 CFR Parts 1500-1508). Based on the environmental analysis in the attached EA, the proposed action will not have a significant effect on the human environment within the meaning of the National Environmental Policy Act (NEPA) and 40 CFR Parts 1508.18 and 1508.27. The selected action (the proposed alternative) is composed of the following elements, each described or evaluated in the attached EA on the pages referenced. The proposed action is expected to begin in 1997 and will be completed within three years: design and construction of a new facility at the Central Facility Area of the INEL; operation of the facility, including instrument receipt, inspections and repairs, precision testing and calibration, and storage and issuance. The selected action will result in no significant environmental impacts

  19. Idaho National Engineering Laboratory: Annual report, 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities

  20. Cost and schedule estimate to construct the tunnel and shaft remedial shielding concept, Los Alamos Meson Physics Facility, Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-30

    The report provides an estimate of the cost and associated schedule to construct the tunnel and shaft remedial shielding concept. The cost and schedule estimate is based on a preliminary concept intended to address the potential radiation effects on Line D and Line Facilities in event of a beam spill. The construction approach utilizes careful tunneling methods based on available excavation and ground support technology. The tunneling rates and overall productivity on which the cost and project schedule are estimated are based on conservative assumptions with appropriate contingencies to address the uncertainty associated with geological conditions. The report is intended to provide supplemental information which will assist in assessing the feasibility of the tunnel and shaft concept and justification for future development of this particular aspect of remedial shielding for Line D and Line D Facilities.

  1. Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, S.

    1997-04-01

    This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration of site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.

  2. ALPI project at Legnaro National Laboratory

    International Nuclear Information System (INIS)

    Fortuna, G.; Pengo, R.; Bassato, G.; Facco, A.; Favaron, P.; Palmieri, V.; Porcellato, A.M.; Rosa, M.; Tiveron, B.

    1988-01-01

    The conceptual design of a superconducting (linac) booster (named ALPI PROJECT) for the 17 MV XTU-TANDEM of Laboratori Nazionali di Legnaro has been recently accepted by the National Institute of Nuclear Physics as one of the leading projects to be funded in the next five year plan. Money for resonator and cryostat prototypes is already available and the building is going to be funded next January. The project aims at a machine capable of accelerating all the stable isotopes up to Uranium at energies above the Coulomb barrier of very possible ion-ion interaction with beam quality comparable to that of d.c. accelerators. At LNL the advantage of coupling the linac postaccelerator to the 17 MV XTU Tandem is taken which is able to produce even the very heavy beams with reliable intensity and velocities β ≥ 0.04 which can be matched by superconducting resonators feasible with the present available technology. As accelerating structures in the ALPI project straight line quarter wave resonators (QWR) have been chosen on the basis of their intrinsic mechanical stability and broad velocity acceptance (two gap resonator) particularly important for a national facility like ALPI which is expected to produce as many different beams as possible. Lead has been chosen as superconductor on the basis of the following considerations: (i) lead technology being much more applied for QWR resonators than the Nb one can be easier and faster introduced in a Nuclear Physics Laboratory without any experience in the field; (ii) the performances of SUNYLAC have demonstrated that their initial goal of reaching accelerating gradient of 3 MV/m is feasible; (iii) the difficulty in fabricating the OFHC copper base of the resonators (number of EB welds, joints) is relatively modest if compared with the solutions involving Nb as superconductor. 7 references, 3 figures

  3. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D ampersand D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D ampersand D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2

  4. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D ampersand D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA

  5. Laboratory services series: the utilization of scientific glassblowing in a national research and development laboratory

    International Nuclear Information System (INIS)

    Farnham, R.M.; Poole, R.W.

    1976-04-01

    Glassblowing services at a national research and development laboratory provide unique equipment tailored for specific research efforts, small-scale process items for flowsheet demonstrations, and solutions for unusual technical problems such as glass-ceramic unions. Facilities, equipment, and personnel necessary for such services are described

  6. Sandia National Laboratories: 100 Resilient Cities

    Science.gov (United States)

    Suppliers iSupplier Account Accounts Payable Contract Information Construction & Facilities Contract front of monitors Emergency Response Cognitive testing Psychological/ Cognitive Effects The Rockefeller , Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  7. Energy Systems | Argonne National Laboratory

    Science.gov (United States)

    Nissan spins up new plant to give second life to EV batteries Yemen News National Lab Licensing Hydrogen Computing Center Centers, Institutes, and Programs RISCRisk and Infrastructure Science Center Other

  8. Recent package testing successes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Singley, P.T.; Michelhaugh, R.D.; Hawk, M.B.; Shappert, L.B.

    2004-01-01

    Oak Ridge National Laboratory (ORNL)'s history of testing of radioactive material packages dates back to the early 1960s, and includes the testing of hundreds of different packages of all shapes and sizes. This paper provides an overview of ORNL's new Packaging Research Facility (PRF) at the National Transportation Research Center (NTRC), and describes recent package testing successes conducted at the NTRC from September 2002 to September 2003

  9. National Ignition Facility Configuration Management Plan

    International Nuclear Information System (INIS)

    Cabral, S G; Moore, T L

    2002-01-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  10. Upgrades of Hanford Engineering Development Laboratory hot cell facilities

    International Nuclear Information System (INIS)

    Daubert, R.L.; DesChane, D.J.

    1987-01-01

    The Hanford Engineering Development Laboratory operates the 327 Postirradiation Testing Laboratory (PITL) and the 324 Shielded Materials Facility (SMF). These hot cell facilities provide diverse capabilities for the postirradiation examination and testing of irradiated reactor fuels and materials. The primary function of these facilities is to determine failure mechanisms and effects of irradiation on physical and mechanical properties of reactor components. The purpose of this paper is to review major equipment and facility upgrades that enhance customer satisfaction and broaden the engineering capabilities for more diversified programs. These facility and system upgrades are providing higher quality remote nondestructive and destructive examination services with increased productivity, operator comfort, and customer satisfaction

  11. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R D). To be able to meet these R D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES H regulations. The Laboratory conducts applied R D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs.

  12. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    International Nuclear Information System (INIS)

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R ampersand D). To be able to meet these R ampersand D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES ampersand H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES ampersand H regulations. The Laboratory conducts applied R ampersand D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R ampersand D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R ampersand D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R ampersand D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs

  13. Mixed waste treatment at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Larsen, M.M.; Hunt, L.F.; Sanow, D.J.

    1988-01-01

    The Idaho Operations Office of the Department of Energy (DOE) made the decision in 1984 to prohibit the disposal of mixed waste (MW) (combustible waste-toxic metal waste) in the Idaho National Engineering Laboratory (INEL) low-level radioactive waste (LLW) disposal facility. As a result of this decision and due to there being no EPA-permitted MW treatment/storage/disposal (T/S/D) facilities, the development of waste treatment methods for MW was initiated and a storage facility was established to store these wastes while awaiting development of treatment systems. This report discusses the treatment systems developed and their status. 3 refs., 2 figs., 1 tab

  14. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress

  15. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  16. Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-01-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation

  17. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-12-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National Laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  18. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-04-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  19. Critical Infrastructure Protection- Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bofman, Ryan K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-24

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  20. Assessment of the Idaho National Laboratory Hot Fuel Examination Facility Stack Monitoring Site for Compliance with ANSI/HPS N13.1 1999

    International Nuclear Information System (INIS)

    Glissmeyer, John A.; Flaherty, Julia E.

    2010-01-01

    This document reports on a series of tests to determine whether the location of the air sampling probe in the Hot Fuels Examination Facility (HFEF) heating, ventilation and air conditioning (HVAC) exhaust duct meets the applicable regulatory criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria of the ANSI/HPS N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that is representative of the effluent stream. The tests conducted by PNNL during July 2010 on the HFEF system are described in this report. The sampling probe location is approximately 20 feet from the base of the stack. The stack base is in the second floor of the HFEF, and has a building ventilation stream (limited potential radioactive effluent) as well as a process stream (potential radioactive effluent, but HEPA-filtered) that feeds into it. The tests conducted on the duct indicate that the process stream is insufficiently mixed with the building ventilation stream. As a result, the air sampling probe location does not meet the criteria of the N13.1-1999 standard. The series of tests consists of various measurements taken over a grid of points in the duct cross section at the proposed sampling-probe location. The results of the test series on the HFEF exhaust duct as it relates to the criteria from ANSI/HPS N13.1-1999 are desribed in this report. Based on these tests, the location of the air sampling probe does not meet the requirements of the ANSI/HPS N13.1-1999 standard, and modifications must be made to either the HVAC system or the air sampling probe for compliance. The recommended approaches are discussed and vary from sampling probe modifications to modifying the junction of the two air exhaust streams.

  1. Mathematics and Computer Science | Argonne National Laboratory

    Science.gov (United States)

    Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Applications Software Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Opportunities For Employees Staff Directory Argonne National Laboratory Mathematics and Computer Science Tools

  2. NNSA Master Asset Map - Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Billie, Gepetta S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report gives information on the following topics related to Sandia National Laboratories: site leadership's vision, condition, footprint management, major gaps and risks, and proposed investment plan.

  3. Seismic evaluation of critical facilities at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Murray, R.C.; Tokarz, F.J.

    1976-01-01

    The performance of critical facilities at the Lawrence Livermore Laboratory (LLL) are being evaluated for severe earthquake loading. Facilities at Livermore, Site-300 and the Nevada Test Site are included in this study. These facilities are identified, the seismic criteria used for the analysis are indicated, the various methods used for structural analysis are discussed and a summary of the results of facilities analyzed to date are presented

  4. Project management plan for Waste Area Grouping 5 Old Hydrofracture Facility tanks contents removal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-02-01

    This revision (Rev. 1) updates the schedule and designation of responsibilities for the Old Hydrofracture Facility (OHF) tanks contents removal project. Ongoing and planned future activities include: cold testing of the sluicing and pumping system; readiness assessment; equipment relocation and assembly; isotopic dilution of fissile radionuclides; sluicing and transfer of the tanks contents; and preparation of the Removal Action Completion Report. The most significant change is that the sluicing and pumping system has been configured by and will be operated by CDM Federal Programs Corporation. In addition, a new technical lead and a new project analyst have been designated within Lockheed Martin Energy Systems, Inc. and Lockheed Martin Energy Research Corp. The schedule for tanks contents removal has been accelerated, with transfer of the final batch of tank slurry now scheduled for March 31, 1998 (instead of November 10, 1998). The OHF sluicing and pumping project is proceeding as a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act. The purpose of the project is to remove the contents from five inactive underground storage tanks, designated T-1, T-2, T-3, T-4, and T-9. The tanks contain an estimated 52,700 gal of liquid and sludge, together comprising a radioactive inventory of approximately 30,000 Ci

  5. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-03-01

    Although the Federal Facility Agreement (FFA) addresses the entire Oak Ridge Reservation, specific requirements are set forth for the liquid low-level radioactive waste (LLLW) storage tanks and their associated piping and equipment, tank systems, at ORNL. The stated objected of the FFA as it relates to these tank systems is to ensure that structural integrity, containment and detection of releases, and source control are maintained pending final remedial action at the site. The FFA requires that leaking LLLW tank systems be immediately removed from service. It also requires the LLLW tank systems that do not meet the design and performance requirements established for secondary containment and leak detection be either upgraded or replaced. The FFA establishes a procedural framework for implementing the environmental laws. For the LLLW tank systems, this framework requires the specified plans and schedules be submitted to EPA and TDEC for approval within 60 days, or in some cases, within 90 days, of the effective date of the agreement

  6. The Future of the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.

    1997-12-31

    The policy debate that has surrounded the national laboratories of the Department of Energy since the end of the Cold War has been very confusing. Initially, with the passage of the National Competitiveness Technology Transfer Act of 1989, the laboratories were encouraged to form cooperative arrangements with industry to maintain their technology base and give a boost for U.S. industrial competitiveness. But in the 104th Congress, technology transfer programs were severely constrained.

  7. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  8. Safety analysis and risk assessment of the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.; McLouth, L.; Odell, B.

    1996-01-01

    The National Ignition Facility (NIF) is a proposed U.S. Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium-tritium target located at the center of a spherical target chamber. The NIF mission is to achieve inertial confinement fusion (ICF) ignition, access physical conditions in matter of interest to nuclear weapons physics, provide an above ground simulation capability for nuclear weapons effects testing, and contribute to the development of inertial fusion for electrical power production. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996. This paper summarizes the safety issues associated with the operation of the NIF and the methodology used to study them. It provides a summary of the methodology, an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low

  9. Argonne National Laboratory 1983-1984

    International Nuclear Information System (INIS)

    1984-01-01

    This publication presents significant developments at Argonne National Laboratory during 1983-84. Argonne is a multidisciplinary research center with primary focus on nuclear energy, basic research, biomedical-environmental studies and alternate energy research. The laboratory is operated by the University of Chicago for the Department of Energy

  10. Energy efficiency in California laboratory-type facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.; Bell, G.; Sartor, D. [and others

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  11. Old hydrofracture facility tanks contents removal action operations plan at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Text

    International Nuclear Information System (INIS)

    1998-05-01

    This Operations Plan summarizes the operating activities for transferring contents of five low-level (radioactive) liquid waste storage tanks associated with the Old Hydrofracture Facility (OHF) to the Melton Valley Storage Tanks (MVST) for secure storage. The transfer will be accomplished through sluicing and pumping operations which are designed to pump the slurry in a closed circuit system using a sluicing nozzle to resuspend the sludge. Once resuspended, the slurry will be transferred to the MVST. The report documenting the material transfer will be prepared after transfer of the tank materials has been completed. The OBF tanks contain approximately 52,600 gal (199,000 L) of low-level radioactive waste consisting of both sludge and supernatant. This material is residual from the now-abandoned grout injection operations conducted from 1964 to 1980. Total curie content is approximately 30,000 Ci. A sluicing and pumping system has been specifically designed for the OHF tanks contents transfer operations. This system is remotely operated and incorporates a sluicing nozzle and arm (Borehole Miner) originally designed for use in the mining industry. The Borehole Miner is an in-tank device designed to deliver a high pressure jet spray via an extendable nozzle. In addition to removing the waste from the tanks, the use of this equipment will demonstrate applicability for additional underground storage tank cleaning throughout the U.S. Department of Energy complex. Additional components of the complete sluicing and pumping system consist of a high pressure pumping system for transfer to the MVST, a low pressure pumping system for transfer to the recycle tank, a ventilation system for providing negative pressure on tanks, and instrumentation and control systems for remote operation and monitoring

  12. Expanded recycling at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Betschart, J.F.; Malinauskas, L.; Burns, M.

    1996-01-01

    The Pollution Prevention Program Office has increased recycling activities, reuse, and options to reduce the solid waste streams through streamlining efforts that applied best management practices. The program has prioritized efforts based on volume and economic considerations and has greatly increased Los Alamos National Laboratory's (LANL's) recycle volumes. The Pollution Prevention Program established and chairs a Solid Waste Management Solutions Group to specifically address and solve problems in nonradioactive, Resource Conservation and Recovery Act (RCRA), state-regulated, and sanitary and industrial waste streams (henceforth referred to as sanitary waste in this paper). By identifying materials with recycling potential, identifying best management practices and pathways to return materials for reuse, and introducing the concept and practice of open-quotes asset management,open-quotes the Group will divert much of the current waste stream from disposal. This Group is developing procedures, agreements, and contracts to stage, collect, sort, segregate, transport and process materials, and is also garnering support for the program through the involvement of upper management, facility managers, and generators

  13. Switch evaluation test system for the National Ignition Facility

    International Nuclear Information System (INIS)

    Savage, M.E.; Simpson, W.W.; Reynolds, F.D.

    1997-01-01

    Flashlamp pumped lasers use pulsed power switches to commute energy stored in capacitor banks to the flashlamps. The particular application in which the authors are interested is the National Ignition Facility (NIF), being designed by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories (SNL). To lower the total cost of these switches, SNL has a research program to evaluate large closing switches. The target value of the energy switched by a single device is 1.6 MJ, from a 6 mF, 24kV capacitor bank. The peak current is 500 kA. The lifetime of the NIF facility is 24,000 shots. There is no switch today proven at these parameters. Several short-lived switches (100's of shots) exist that can handle the voltage and current, but would require maintenance during the facility life. Other type devices, notably ignitrons, have published lifetimes in excess of 20,000 shots, but at lower currents and shorter pulse widths. The goal of the experiments at SNL is to test switches with the full NIF wave shape, and at the correct voltage. The SNL facility can provide over 500 kA at 24 kV charge voltage. the facility has 6.4 mF total capacitance, arranged in 25 sub-modules. the modular design makes the facility more flexible (for possible testing at lower current) and safer. For pulse shaping (the NIF wave shape is critically damped) there is an inductor and resistor for each of the 25 modules. Rather than one large inductor and resistor, this lowers the current in the pulse shaping components, and raises their value to those more easily attained with lumped inductors and resistors. The authors show the design of the facility, and show results from testing conducted thus far. They also show details of the testing plan for high current switches

  14. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1980-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  15. Brookhaven highlights - Brookhaven National Laboratory 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  16. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  17. Post Irradiation Capabilities at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Schulthess, J.L.; Rosenberg, K.E.

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability, these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

  18. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  19. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    Science.gov (United States)

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  20. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  1. Biosecurity for animal facilities and associated laboratories.

    Science.gov (United States)

    Richmond, Jonathan Y; Nesby-O'Dell, Shanna

    2003-01-01

    Although working with human pathogens and zoonotic agents has always carried a certain degree of danger, current events have resulted in an increased focus on the subject, including new regulations. The authors discuss a number of risk assessment and management activities that animal research facilities should use to evaluate strengthen their current programs.

  2. Naval Research Laboratory Major Facilities 2008

    Science.gov (United States)

    2008-10-01

    consists of two equipment shelters, a chiller for cooling the transmitter, and a 175 kVA diesel generator for use at remote sites. A 40-ft-long... bioremediation , and biodeterioration. INSTRUMENTATION: • ESEM equipped with an energy-dispersive X-ray detector and an image acquisition and...a 125 kW uninterruptible power system with diesel backup. Magnetic sensitivity testing of precision Precision Clock Evaluation Facility CONTACT

  3. Oak Ridge National Laboratory institutional plan, FY 1992--FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    In operation for fifty years, the Oak Ridge National Laboratory (ORNL) is managed by Martin Marietta Energy Systems, Inc., for the US Department of Energy (DOE). ORNL is one of DOE's major multiprogram national laboratories. Activities at the Laboratory are focused on basic and applied research, on technology development, and on other technological challenges that are important to DOE and to the nation. The Laboratory also performs research and development (R D) for non-DOE sponsors when such activities complement DOE missions and address important national or international issues. The Laboratory is committed to the pursuit of excellence in all its activities, including the commitment to carry out its missions in compliance with environmental, safety, and health laws and regulations. The principal elements of the Laboratory's missions in support of DOE include activities in each of the following areas: (1) Energy production and conservation technologies; (2) physical and life sciences; (3) scientific and technical user facilities; (4) environmental protection and waste management; (5) science technology transfer; and, (6) education. This institutional plan for ORNL activities is for the next five years: FY 1992--1997.

  4. Testing activities at the National Battery Test Laboratory

    Science.gov (United States)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  5. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  6. Annotated bibliography National Environmental Policy Act (NEPA) documents for Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.M.

    1995-04-01

    The following annotated bibliography lists documents prepared by the Department of Energy (DOE), and predecessor agencies, to meet the requirements of the National Environmental Policy Act (NEPA) for activities and facilities at Sandia National Laboratories sites. For each NEPA document summary information and a brief discussion of content is provided. This information may be used to reduce the amount of time or cost associated with NEPA compliance for future Sandia National Laboratories projects. This summary may be used to identify model documents, documents to use as sources of information, or documents from which to tier additional NEPA documents.

  7. Annotated bibliography National Environmental Policy Act (NEPA) documents for Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harris, J.M.

    1995-04-01

    The following annotated bibliography lists documents prepared by the Department of Energy (DOE), and predecessor agencies, to meet the requirements of the National Environmental Policy Act (NEPA) for activities and facilities at Sandia National Laboratories sites. For each NEPA document summary information and a brief discussion of content is provided. This information may be used to reduce the amount of time or cost associated with NEPA compliance for future Sandia National Laboratories projects. This summary may be used to identify model documents, documents to use as sources of information, or documents from which to tier additional NEPA documents

  8. Tritium handling facilities at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Anderson, J.L.; Damiano, F.A.; Nasise, J.E.

    1975-01-01

    A new tritium facility, recently activated at the Los Alamos Scientific Laboratory, is described. The facility contains a large drybox, associated gas processing system, a facility for handling tritium gas at pressures to approximately 100 MPa, and an effluent treatment system which removes tritium from all effluents prior to their release to the atmosphere. The system and its various components are discussed in detail with special emphasis given to those aspects which significantly reduce personnel exposures and atmospheric releases. (auth)

  9. Design issues for a laboratory high gain fusion facility

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1987-01-01

    In an inertial fusion laboratory high gain facility, experiments will be carried out with up to 1000 MJ of thermonuclear yield. The experiment area of such a facility will include many systems and structures that will have to operate successfully in the difficult environment created by the sudden large energy release. This paper estimates many of the nuclear effects that will occur, discusses the implied design issues and suggests possible solutions so that a useful experimental facility can be built. 4 figs

  10. Sandia National Laboratories: Locations: Kauai Test Facility

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia

  11. ORNL (Oak Ridge National Laboratory) 89

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.; Merriman, J.R.; Mynatt, F.R.; Richmond, C.R.; Rosenthal, M.W.

    1989-01-01

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  12. Database activities at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Trahern, C.G.

    1995-01-01

    Brookhaven National Laboratory is a multi-disciplinary lab in the DOE system of research laboratories. Database activities are correspondingly diverse within the restrictions imposed by the dominant relational database paradigm. The authors discuss related activities and tools used in RHIC and in the other major projects at BNL. The others are the Protein Data Bank being maintained by the Chemistry department, and a Geographical Information System (GIS)--a Superfund sponsored environmental monitoring project under development in the Office of Environmental Restoration

  13. ORNL [Oak Ridge National Laboratory] 89

    International Nuclear Information System (INIS)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.; Merriman, J.R.; Mynatt, F.R.; Richmond, C.R.; Rosenthal, M.W.

    1989-01-01

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory

  14. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  15. The National Ignition Facility (NIF) as a User Facility

    Science.gov (United States)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  16. Lawrence Livermore National Laboratory Environmental Report 2015

    International Nuclear Information System (INIS)

    Rosene, C. A.; Jones, H. E.

    2016-01-01

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites-the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, ''Environment, Safety and Health Reporting,'' and DOE Order 458.1, ''Radiation Protection of the Public and Environment.''

  17. Sandia National Laboratories: The First Fifty Years

    Energy Technology Data Exchange (ETDEWEB)

    MORA,CARL J.

    1999-11-03

    On Nov. 1, 1999, Sandia National Laboratories celebrates its 50th birthday. Although Sandia has its roots in the World War II-era Manhattan Project, Sandia began operating as a separate nuclear weapons engineering laboratory under the management of AT&T on Nov. 1, 1949. Today the lab employs more than 7,000 people at its two sites in Albuquerque and Livermore, California, and has research and development missions in national security, energy and environmental technologies, and U.S. economic competitiveness. Lockheed Martin Corporation operates Sandia for the US. Department of Energy.

  18. LDRD Highlights at the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Alayat, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then, this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.

  19. Scientific Computing Strategic Plan for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Whiting, Eric Todd

    2015-01-01

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory's (INL's) challenge and charge, and is central to INL's ongoing success. Computing is an essential part of INL's future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing number of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.

  20. Systems reliability analysis for the national ignition facility

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

    1996-01-01

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level

  1. Status of Thomas Jefferson National Accelerator Facility (Jefferson Lab)

    International Nuclear Information System (INIS)

    H.A. Grunder

    1997-01-01

    When first beam was delivered on target in July 1994, the Continuous Electron Beam Accelerator Facility (CEBAF), in Newport News, Virginia realized the return on years of planning and work to create a laboratory devoted to exploration of matter that interacts through the strong force, which holds the quarks inside the proton and binds protons and neutrons into the nucleus. Dedicated this year as the Thomas Jefferson National Accelerator Facility (Jefferson Lab), the completion of construction and beginning of its experimental program has culminated a process that began more than a decade ago with the convening of the Bromley Panel to look at research possibilities for such an electron accelerator

  2. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-01-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  3. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-05-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG&G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG&G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  4. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  5. Sandia National Laboratories focus issue: introduction.

    Science.gov (United States)

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  6. Fire protection program evaluation of Argonne National Laboratory, West for the Department of Energy

    International Nuclear Information System (INIS)

    1984-01-01

    A fire protection engineering survey was conducted of the Argonne National Laboratory, West Facility, near Idaho Falls, Idaho. This facility includes EBR-II, TREAT, ZPPR, and HFEF. The facility meets the improved risk criteria as set forth in DOE Order 5480.1, Chapter VII. Some recommendations are given

  7. Site Environmental Report for 2016 Sandia National Laboratories California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-06-01

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.

  8. Buffet test in the National Transonic Facility

    Science.gov (United States)

    Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

    1992-01-01

    A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.

  9. National Ignition Facility Title II Design Plan

    International Nuclear Information System (INIS)

    Kumpan, S

    1997-01-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed

  10. Impacts assessment for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bay Area Economics

    1996-12-01

    This report documents the economic and other impacts that will be created by the National Ignition Facility (NIF) construction and ongoing operation, as well as the impacts that may be created by new technologies that may be developed as a result of NIF development and operation.

  11. Power conditioning for the National Ignition Facility

    International Nuclear Information System (INIS)

    Larson, D.W.; Anderson, R.; Boyes, J.

    1994-01-01

    A cost-effective, 320-MJ power-conditioning system has been completed for the proposed National Ignition Facility (NIF). The design features include metallized dielectric capacitors, a simple topology, and large (1.6-MJ) module size. Experimental results address the technical risks associated with the design

  12. National Ignition Facility frequency converter development

    International Nuclear Information System (INIS)

    Barker, C.E.; Auerbach, J.M.; Adams, C.H.

    1996-01-01

    A preliminary error budget for the third harmonic converter for the National Ignition Facility (NIF) laser driver has been developed using a root-sum-square-accumulation of error sources. Such a budget sets an upper bound on the allowable magnitude of the various effects that reduce conversion efficiency. Development efforts on crystal mounting technology and crystal quality studies are discussed

  13. Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory's 10 waste area groups. Contaminated sites at the laboratory's Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram

  14. National Biomedical Tracer Facility. Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  15. National Biomedical Tracer Facility. Project definition study

    International Nuclear Information System (INIS)

    Schafer, R.

    1995-01-01

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H - , H + , and D + ). The proposed NBTF facility includes an 80 MeV, 1 mA H - cyclotron that will produce proton-induced (neutron deficient) research isotopes

  16. Argonne Research Library | Argonne National Laboratory

    Science.gov (United States)

    Argonne Argonne Research Library The Argonne Research Library supports the scientific and technical research needs of Argonne National Laboratory employees. Our library catalog is available via the Research questions or concerns, please contact us at librarians@anl.gov. Contact the Library Argonne Research Library

  17. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov (United States)

    digital and analog elements. * Cadence Process-Design Kit. Structured ASIC Sandia National Laboratories demonstrate complex multilevel devices such as micro-mass-analysis systems up to 25 microns thick and novel possible to fabricate a wide very large variety of useful devices. Micro-Mass-Analysis Systems Applications

  18. National ignition facility environment, safety, and health management plan

    International Nuclear Information System (INIS)

    1995-11-01

    The ES ampersand H Management Plan describes all of the environmental, safety, and health evaluations and reviews that must be carried out in support of the implementation of the National Ignition Facility (NIF) Project. It describes the policy, organizational responsibilities and interfaces, activities, and ES ampersand H documents that will be prepared by the Laboratory Project Office for the DOE. The only activity not described is the preparation of the NIF Project Specific Assessment (PSA), which is to be incorporated into the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (PEIS). This PSA is being prepared by Argonne National Laboratory (ANL) with input from the Laboratory participants. As the independent NEPA document preparers ANL is directly contracted by the DOE, and its deliverables and schedule are agreed to separately with DOE/OAK

  19. The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois

    International Nuclear Information System (INIS)

    Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

    1986-09-01

    The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described

  20. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  1. Safety and environmental process for the design and construction of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brereton, S.J., LLNL

    1998-05-27

    The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

  2. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES ampersand H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES ampersand H/quality assurance programs was conducted

  3. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  4. Argonne National Laboratory institutional plan FY 2002 - FY 2007

    International Nuclear Information System (INIS)

    Beggs, S. D.

    2001-01-01

    The national laboratory system provides a unique resource for addressing the national needs inherent in the mission of the Department of Energy. Argonne, which grew out of Enrico Fermi's pioneering work on the development of nuclear power, was the first national laboratory and, in many ways, has set the standard for those that followed. As the Laboratory's new director, I am pleased to present the Argonne National Laboratory Institutional Plan for FY 2002 through FY 2007 on behalf of the extraordinary group of scientists, engineers, technicians, administrators, and others who re responsible for the Laboratory's distinguished record of achievement. Like our sister DOE laboratories, Argonne uses a multifaceted approach to advance U.S. R and D priorities. First, we assemble interdisciplinary teams of scientists and engineers to address complex problems. For example, our initiative in Functional Genomics will bring together biologists, computer scientists, environmental scientists, and staff of the Advanced Photon Source to develop complete maps of cellular function. Second, we cultivate specific core competencies in science and technology; this Institutional Plan discusses the many ways in which our core competencies support DOE's four mission areas. Third, we serve the scientific community by designing, building, and operating world-class user facilities, such as the Advanced Photon Source, the Intense Pulsed Neutron Source, and the Argonne Tandem-Linac Accelerator System. This Plan summarizes the visions, missions, and strategic plans for the Laboratory's existing major user facilities, and it explains our approach to the planned Rare Isotope Accelerator. Fourth, we help develop the next generation of scientists and engineers through educational programs, many of which involve bright young people in research. This Plan summarizes our vision, objectives, and strategies in the education area, and it gives statistics on student and faculty participation. Finally, we

  5. Scientific Openness and National Security at the National Laboratories

    Science.gov (United States)

    McTague, John

    2000-04-01

    The possible loss to the People's Republic of China of important U.S. nuclear-weapons-related information has aroused concern about interactions of scientists employed by the national laboratories with foreign nationals. As a result, the National Academies assembled a committee to examine the roles of the national laboratories, the contribution of foreign interactions to the fulfillment of those roles, the risks and benefits of scientific openness in this context, and the merits and liabilities of the specific policies being implemented or proposed with respect to contacts with foreign nationals. The committee concluded that there are many aspects of the work at the laboratories that benefit from or even demand the opportunity for foreign interactions. The committee recommended five principles for guiding policy: (1) Maintain balance. Policy governing international dialogue by laboratory staff should seek to encourage international engagement in some areas, while tightly controlling it in others. (2) Educate staff. Security procedures should be clear, easy to follow, and serve an understandable purpose. (3) Streamline procedures. Good science is compatible with good security if there is intelligent line management both at the labs and in Washington, which applies effective tools for security in a sensible fashion. (4) Focus efforts. DOE should focus its efforts governing tightened security for information. The greatest attention should obviously be provided to the protection of classified information by appropriate physical and cybersecurity measures, and by personnel procedures and training. (5) Beware of prejudice against foreigners. Over the past half-century foreign-born individuals have contributed broadly and profoundly to national security through their work at the national laboratories.

  6. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  7. The Role of a National Biocontainment Laboratory in Emergencies.

    Science.gov (United States)

    Le Duc, James W; Ksiazek, Thomas G

    2015-01-01

    Over a decade ago, the National Institutes of Health awarded partial support for the construction and operation of 2 National Biocontainment Laboratories, with the condition that they would be available to assist in the event of public health emergencies-although how a biocontainment facility located on an academic campus might contribute was not defined. Here we offer examples of how one of these laboratories has contributed to a coordinated response to 2 recent international public health emergencies. Essential assets for success include highly trained and experienced staff, access to reference pathogens and reagents, cutting-edge knowledge of the field, appropriate biocontainment facilities, robust biosafety and biosecurity programs, and availability of modern instrumentation. The ability to marry the strengths of academia in basic and applied research with access to appropriate biocontainment facilities while drawing on a highly skilled cadre of experienced experts has proven extremely valuable in the response to recent national emergencies and will continue to do so in the future. Areas where additional planning and preparation are needed have also been identified through these experiences.

  8. Relay testing at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1989-01-01

    Brookhaven National Laboratory (BNL) is conducting a seismic test program on relays. The purpose of the test program is to investigate the influence of various designs, electrical and vibration parameters on the seismic capacity levels. The first series of testing has been completed and performed at Wyle Laboratories. The major part of the test program consisted of single axis, single frequency sine dwell tests. Random multiaxis, multifrequency tests were also performed. Highlights of the test results as well as a description of the testing methods are presented in this paper. 10 figs

  9. Technology transfer in the national laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  10. Developing the Sandia National Laboratories transportation infrastructure for isotope products and wastes

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1997-11-01

    The US Department of Energy (DOE) plans to establish a medical isotope project that would ensure a reliable domestic supply of molybdenum-99 ( 99 Mo) and related medical isotopes (Iodine-125, Iodine-131, and Xenon-133). The Department's plan for production will modify the Annular Core Research Reactor (ACRR) and associated hot cell facility at Sandia National Laboratories (SNL)/New Mexico and the Chemistry and Metallurgy Research facility at Los Alamos National Laboratory (LANL). Transportation activities associated with such production is discussed

  11. Idaho National Laboratory Site Pollution Prevention Plan

    International Nuclear Information System (INIS)

    E. D. Sellers

    2007-01-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively

  12. Idaho National Laboratory Site Pollution Prevention Plan

    Energy Technology Data Exchange (ETDEWEB)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively

  13. Iranian Light Source Facility, A third generation light source laboratory

    Directory of Open Access Journals (Sweden)

    J Rahighi

    2015-09-01

    Full Text Available The Iranian Light Source Facility (ILSF project is the first large scale accelerator facility which is currently under planning in Iran. On the basis of the present design, circumference of the 3 GeV storage ring is 528 m. Beam current and natural beam emittance are 400 mA and 0.477 nm.rad, respectively. Some prototype accelerator components such as high power solid state radio frequency amplifiers, low level RF system, thermionic RF gun, H-type dipole and quadruple magnets, magnetic measurement laboratory and highly stable magnet power supplies have been constructed at ILSF R&D laboratory

  14. 76 FR 70456 - Decision To Evaluate a Petition To Designate a Class of Employees From Sandia National Laboratory...

    Science.gov (United States)

    2011-11-14

    ... Employees From Sandia National Laboratory, Albuquerque, NM, To Be Included in the Special Exposure Cohort... evaluate a petition to designate a class of employees from Sandia National Laboratory, Albuquerque, New... revision as warranted by the evaluation, is as follows: Facility: Sandia National Laboratory. Location...

  15. The restoration of an Argonne National Laboratory foundry

    International Nuclear Information System (INIS)

    Shearer, T.; Pancake, D.; Shelton, B.

    1997-01-01

    The Environmental Management Operations' Waste Management Department (WMD) at Argonne National Laboratory-East (ANL-E) undertook the restoration of an unused foundry with the goal of restoring the area for general use. The foundry was used in the fabrication of reactor components for ANL's research and development programs; many of the items fabricated in the facility were radioactive, thereby contaminating the foundry equipment. This paper very briefly describes the dismantling and decontamination of the facility. The major challenges associated with the safe removal of the foundry equipment included the sheer size of the equipment, a limited overhead crane capability (4.5 tonne), the minimization of radioactive and hazardous wastes, and the cost-effective completion of the project, the hazardous and radioactive wastes present, and limited process knowledge (the facility was unused for many years)

  16. High energy-density science on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Cauble, R.; Remington, B.A.

    1997-08-01

    The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  17. Minor Actinide Laboratory at JRC-ITU: Fuel fabrication facility

    International Nuclear Information System (INIS)

    Fernandez, A.; McGinley, J.; Somers, J.

    2008-01-01

    The Minor Actinide Laboratory (MA-lab) of the Institute for Transuranium Elements is a unique facility for the fabrication of fuels and targets containing minor actinides (MA). It is of key importance for research on Partitioning and Transmutation in Europe, as it is one of the only dedicated facilities for the fabrication of MA containing materials, either for property measurements or for the production of test pins for irradiation experiments. In this paper a detailed description of the MA-Lab facility and the fabrication processes developed to fabricate fuels and samples containing high content of minor actinides is given. In addition, experience gained and improvements are also outlined. (authors)

  18. Frederick National Laboratory's Contribution to ATOM | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    As a founding member organization of ATOM, the Frederick National Laboratory will contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive model

  19. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  20. Computer technology forecasting at the National Laboratories

    International Nuclear Information System (INIS)

    Peskin, A.M.

    1980-01-01

    The DOE Office of ADP Management organized a group of scientists and computer professionals, mostly from their own national laboratories, to prepare an annually updated technology forecast to accompany the Department's five-year ADP Plan. The activities of the task force were originally reported in an informal presentation made at the ACM Conference in 1978. This presentation represents an update of that report. It also deals with the process of applying the results obtained at a particular computing center, Brookhaven National Laboratory. Computer technology forecasting is a difficult and hazardous endeavor, but it can reap considerable advantage. The forecast performed on an industry-wide basis can be applied to the particular needs of a given installation, and thus give installation managers considerable guidance in planning. A beneficial side effect of this process is that it forces installation managers, who might otherwise tend to preoccupy themselves with immediate problems, to focus on longer term goals and means to their ends