WorldWideScience

Sample records for national hydrogen energy

  1. National hydrogen energy roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  2. Hydrogen: Its Future Role in the Nation's Energy Economy.

    Science.gov (United States)

    Winsche, W E; Hoffman, K C; Salzano, F J

    1973-06-29

    technological feasibility of a hydrogen energy system be considered now. It is of vital importance to the nation to develop some general-purpose fuel that can be Produced from a variety of domestic energy sources and reduce our dependence on imported oil.

  3. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Carl-Jochen Winter

    2006-01-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  4. National Hydrogen Roadmap Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    This document summarizes the presentations and suggestions put forth by officials, industry experts and policymakers in their efforts to come together to develop a roadmap for America''s clean energy future and outline the key barriers and needs to achieve the hydrogen vision. The National Hydrogen Roadmap Workshop was held April 2-3, 2002. These proceedings were compiled into a formal report, The National Hydrogen Energy Roadmap, which is also available online.

  5. Abstracts of the 1. National congress of hydrogen and sustainable energy sources

    International Nuclear Information System (INIS)

    2005-01-01

    The First Argentine National Congress of Hydrogen and Sustainable Energy Sources was organized by the Instituto of Sustainable Energy and Development CNEA, in San Carlos de Bariloche, between the 8th and 10th of June of 2005. In this event 88 papers were presented in the following sessions, on these subjects: 1.-Hydrogen-Materials Interaction. 2.-Materials Damage. 3.-Production and Purification. 4.-Storage and Transportation. 5.-Fuel Cells. 6.-Prototypes and Demonstration Plants. 7.-Eolic Energy. 8.-Solar Energy. 9.-Biomass. 10.-Small Hydroelectric Plants. 11.-Other Activities. 12.-Hybrid Fuels. 13.- Reforming, Materials, Catalysis, Processes. 14.-Projections and Energy Prospective

  6. The U.S. National Hydrogen Storage Project

    International Nuclear Information System (INIS)

    Sunita Satyapal; Carole Read; Grace Ordaz; John Petrovic; George Thomas

    2006-01-01

    Hydrogen is being considered by many countries as a potential energy carrier for vehicular applications. In the United States, hydrogen-powered vehicles must possess a driving range of greater than 300 miles in order to meet customer requirements and compete effectively with other technologies. For the overall vehicular fleet, this requires that a range of 5-13 kg of hydrogen be stored on-board. The storage of such quantities of hydrogen within vehicular weight, volume, and system cost constraints is a major scientific and technological challenge. The targets for on-board hydrogen storage were established in the U.S. through the FreedomCAR and Fuel partnership, a partnership among the U.S. Department of Energy, the U.S. Council for Automotive Research (USCAR) and major energy companies. In order to achieve these long-term targets, the Department of Energy established a National Hydrogen Storage Project to develop the areas of metal hydrides, chemical hydrogen storage, carbon-based and high-surface-area sorbent materials, and new hydrogen storage materials and concepts. The current status of vehicular hydrogen storage is reviewed and hydrogen storage research associated with the National Hydrogen Storage Project is discussed. (authors)

  7. Fiscal 1974-1975 Sunshine Project research report. Hydrogen energy research results (National laboratories and institutes); 1974, 1975 nendo suiso energy kenkyu seika hokokushu. Kokuritsu shiken kenkyusho kankei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-10-01

    This report summarizes the 21 research results on hydrogen energy promoted by 3 national laboratories and 2 national institutes. (1) Tokyo National Industrial Research Institute (TNIRI): Ca-I system, Mn system, S system and hybrid cycles, and water decomposition reaction by CO as thermochemical hydrogen production technique. (2) Osaka National Industrial Research Institute (ONIRI): Fe system, Cu system and ammonia system cycles, and high-temperature high-pressure water electrolysis. (3) Electrotechnical Laboratory: high- temperature direct thermolysis hydrogen production technique. (4) TNIRI: Mg-base and transition metal-base hydrogen solidification technique. (5) ONIRI: Ti-base and rare metal- base hydrogen solidification technique. (6) Mechanical Engineering Laboratory: hydrogen-fuel engines. (7) Electrotechnical Laboratory and ONIRI: fuel cell. (8) TNIRI: disaster preventive technology for gaseous and liquid hydrogen. (9) Chugoku National Industrial Research Institute: preventing materials from embrittlement due to hydrogen. (10) Electrotechnical Laboratory: hydrogen energy system. (NEDO)

  8. Hydrogen, energy of the future?

    International Nuclear Information System (INIS)

    Alleau, Th.

    2007-01-01

    A cheap, non-polluting energy with no greenhouse gas emissions and unlimited resources? This is towards this fantastic future that this book brings us, analyzing the complex but promising question of hydrogen. The scientific and technical aspects of production, transport, storage and distribution raised by hydrogen are thoroughly reviewed. Content: I) Energy, which solutions?: 1 - hydrogen, a future; 2 - hydrogen, a foreseeable solution?; II) Hydrogen, an energy vector: 3 - characteristics of hydrogen (physical data, quality and drawbacks); 4 - hydrogen production (from fossil fuels, from water, from biomass, bio-hydrogen generation); 5 - transport, storage and distribution of hydrogen; 6 - hydrogen cost (production, storage, transport and distribution costs); III) Fuel cells and ITER, utopias?: 7 - molecular hydrogen uses (thermal engines and fuel cells); 8 - hydrogen and fusion (hydrogen isotopes, thermonuclear reaction, ITER project, fusion and wastes); IV) Hydrogen acceptability: 9 - risk acceptability; 10 - standards and regulations; 11 - national, European and international policies about hydrogen; 12 - big demonstration projects in France and in the rest of the world; conclusion. (J.S.)

  9. National Hydrogen Vision Meeting Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-11-01

    This document provides presentations and summaries of the notes from the National Hydrogen Vision Meeting''s facilitated breakout sessions. The Vision Meeting, which took place November 15-16, 2001, kicked off the public-private partnership that will pave the way to a more secure and cleaner energy future for America. These proceedings were compiled into a formal report, A National Vision of America''s Transition to a Hydrogen Economy - To 2030 and Beyond, which is also available online.

  10. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  11. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  12. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  13. A global survey of hydrogen energy research, development and policy

    International Nuclear Information System (INIS)

    Solomon, Barry D.; Banerjee, Abhijit

    2006-01-01

    Several factors have led to growing interest in a hydrogen energy economy, especially for transportation. A successful transition to a major role for hydrogen will require much greater cost-effectiveness, fueling infrastructure, consumer acceptance, and a strategy for its basis in renewable energy feedstocks. Despite modest attention to the need for a sustainable hydrogen energy system in several countries, in most cases in the short to mid term hydrogen will be produced from fossil fuels. This paper surveys the global status of hydrogen energy research and development (R and D) and public policy, along with the likely energy mix for making it. The current state of hydrogen energy R and D among auto, energy and fuel-cell companies is also briefly reviewed. Just two major auto companies and two nations have specific targets and timetables for hydrogen fuel cells or vehicle production, although the EU also has an aggressive, less specific strategy. Iceland and Brazil are the only nations where renewable energy feedstocks are envisioned as the major or sole future source of hydrogen. None of these plans, however, are very certain. Thus, serious questions about the sustainability of a hydrogen economy can be raised

  14. Integrating hydrogen into Canada's energy future

    International Nuclear Information System (INIS)

    Rivard, P.

    2006-01-01

    This presentation outlines the steps in integrating of hydrogen into Canada's energy future. Canada's hydrogen and fuel cell investment is primarily driven by two government commitments - climate change commitments and innovation leadership commitments. Canada's leading hydrogen and fuel cell industry is viewed as a long-term player in meeting the above commitments. A hydrogen and fuel cell national strategy is being jointly developed to create 'Win-Wins' with industry

  15. The U.S. department of energy program on hydrogen production

    International Nuclear Information System (INIS)

    Henderson, David; Paster, Mark

    2003-01-01

    Clean forms of energy are needed to support sustainable global economics growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision roadmap for moving toward a hydrogen economy-a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. DOE has examined and organized its hydrogen activities in pursuit of this national vision. This includes the development of fossil and renewable sources, as well as nuclear technologies capable of economically producing large quantities of hydrogen. (author)

  16. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  17. National hydrogen technology competitiveness analysis with an integrated fuzzy AHP and TOPSIS approaches: In case of hydrogen production and storage technologies

    Science.gov (United States)

    Lee, Seongkon; Mogi, Gento

    2017-02-01

    The demand of fossil fuels, including oil, gas, and coal has been increasing with the rapid development of developing countries such as China and India. U.S., Japan, EU, and Korea have been making efforts to transfer to low carbon and green growth economics for sustainable development. And they also have been measuring to cope with climate change and the depletion of conventional fuels. Advanced nations implemented strategic energy technology development plans to lead the future energy market. Strategic energy technology development is crucial alternative to address the energy issues. This paper analyze the relative competitiveness of hydrogen energy technologies in case of hydrogen production and storage technologies from 2006 to 2010. Hydrogen energy technology is environmentally clean technology comparing with the previous conventional energy technologies and will play a key role to solve the greenhouse gas effect. Leading nations have increasingly focused on hydrogen technology R&D. This research is carried out the relative competitiveness of hydrogen energy technologies employed by an integrated fuzzy analytic hierarchy process (Fuzzy AHP) and The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approaches. We make four criteria, accounting for technological status, R&D budget, R&D human resource, and hydrogen infra. This research can be used as fundamental data for implementing national hydrogen energy R&D planning for energy policy-makers.

  18. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  19. National FCEV and Hydrogen Fueling Station Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Brian; Melaina, Marc

    2016-06-09

    This presentation provides a summary of the FY16 activities and accomplishments for NREL's national fuel cell electric vehicle (FCEV) and hydrogen fueling station scenarios project. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Meeting on June 9, 2016, in Washington, D.C.

  20. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  1. Industrial view of Hydrogen Energy

    International Nuclear Information System (INIS)

    Francois Jackow

    2006-01-01

    Industrial Gases Companies have been mastering Hydrogen production, distribution, safe handling and applications for several decades for a wide range of gas applications. This unique industrial background positioned these companies to play a key role in the emerging Hydrogen Energy market, which can rely, at early stage of development, on already existing infrastructure, logistics and technical know-how. Nevertheless, it is important to acknowledge that Hydrogen Energy raised specific challenges which are not totally addressed by industrial gas activities. The main difference is obviously in the final customer profile, which differs significantly from the qualified professional our industry is used to serve. A non professional end-user, operating with Hydrogen at home or on board of his family car, has to be served with intrinsically safe and user-friendly solutions that exceed by far the industrial specifications already in place. Another significant challenge is that we will need breakthroughs both in terms of products and infrastructure, with development time frame that may require several decades. The aim of this presentation is to review how a company like Air Liquide, worldwide leader already operating more than 200 large hydrogen production sites, is approaching this new Hydrogen Energy market, all along the complete supply chain from production to end-users. Our contributions to the analysis, understanding and deployment of this new Energy market, will be illustrated by the presentation of Air Liquide internal development's as well as our participation in several national and European projects. (author)

  2. The National Center For Hydrogen And Fuel Cells. Jump-starting the hydrogen economy through research

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Varlam, Mihai; Carcadea, Elena

    2010-01-01

    Full text: The research, design and implementation of hydrogen-based economy must consider each of the segments of the hydrogen energy system - production, supply, storage, conversion. The National Center for Hydrogen and Fuel Cells has the experience, expertise, facilities and instrumentation necessary to have a key role in developing any aspect of hydrogen-based economy, aiming to integrate technologies for producing and using hydrogen as an 'energy vector'. This paper presents a simulation of the applied 'learning curve' concept, NCHFC being the key element of R and D in the field in comparing the costs involved. It also presents the short and medium term research program of NCHFC, the main research and development directions being specified. (authors)

  3. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  4. Hydrogen energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salzano, F J; Braun, C [eds.

    1977-09-01

    The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

  5. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  6. Hydrogen and the materials of a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  7. Risoe energy report 3. Hydrogen and its competitors

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H; Feidenhans' l, R; Soenderberg Petersen, L [eds.

    2004-10-01

    Interest in the hydrogen economy has grown rapidly in recent years. Countries with long traditions of activity in hydrogen research and development have now been joined by a large number of newcomers. The main reason for this surge of interest is that the hydrogen economy may be an answer to the two main challenges facing the world in the years to come: climate change and the need for security of energy supplies. Both these challenges require the development of new, highly-efficient energy technologies that are either carbon-neutral or low emitting technologies. Another reason for the growing interest in hydrogen is the strong need for alternative fuels, especially in the transport sector. Alternative fuels could serve as links between the power system and the transport sector, to facilitate the uptake of emerging technologies and increase the flexibility and robustness of the energy system as a whole. This Risoe Energy Report provides a perspective on energy issues at global, regional and national levels. The following pages provide a critical examination of the hydrogen economy and its alternatives. The report explains the current R and D situation addresses the challenges facing the large-scale use of hydrogen, and makes some predictions for the future. The current and future role of hydrogen in energy systems is explored at Danish, European and global levels. The report discusses the technologies for producing, storing and converting hydrogen, the role of hydrogen in the transport sector and in portable electronics, hydrogen infrastructure and distribution systems, and environmental and safety aspects of the hydrogen economy. (BA)

  8. Some aspects of hydrogen as a long-term energy carrier

    International Nuclear Information System (INIS)

    Quakernaat, J.; De Jong, K.P.; Van Wechem, H.M.H.; Okken, P.A.; Lako, P.; Ybema, J.R.

    1994-11-01

    Hydrogen as a secondary energy carrier received extensive and worldwide attention some ten to fifteen years ago. The developments in the energy market since then have reduced the interest in hydrogen. However, the increased concern for the environment and new technical options have brought hydrogen to the centre of attention once again. These considerations led to the organization of the National Hydrogen Seminar, held on 19 November 1993 at ECN, Petten, Netherlands. Eight experts in the field of hydrogen illustrated the possibilities and prospects of the production, storage and use of hydrogen as an energy carrier. In this report three of these contributions are presented, for which separate abstracts have been prepared. The first paper is on hydrogen in a global long-term perspective, in the second paper carbon is considered as a hydrogen carrier or as a disappearing skeleton, and in the third paper attention is paid to the cost effective integration of hydrogen in energy systems with CO 2 constraints

  9. Viability of Hydrogen Pathways that Enhance Energy Security: A Comparison of China and Denmark

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Andreasen, Kristian Peter; Sovacool, Benjamin

    2014-01-01

    When designed and built properly, hydrogen energy systems can enhance energy security through technological diversification and minimizing dependence on foreign imports of energy fuels. However, hydrogen can be produced from different feedstocks according to separate pathways, and these different...... pathways create particular consequences on a nation's overall energy security. The objective of this study is to investigate the superiorities and inferiorities of hydrogen pathways from the perspective of China and Denmark, and to determine which pathways best contribute to national energy security...

  10. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. Nuclear generated hydrogen has important potential advantages over other sources that will be considered for a growing hydrogen share in a future world energy economy. Still, there are technical uncertainties in nuclear hydrogen processes that need to be addressed through a vigorous research and development effort. Safety issues as well as hydrogen storage and distribution are important areas of research to be undertaken to support a successful hydrogen economy in the future. The hydrogen economy is gaining higher visibility and stronger political support in several parts of the

  11. Proceedings of the DOE chemical/hydrogen energy systems contractor review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    This volume contains 45 papers as well as overviews of the two main project areas: the NASA Hydrogen Energy Storage Technology Project and Brookhaven National Laboratory's program on Electrolysis-Based Hydrogen Storage Systems. Forty-six project summaries are included. Individual papers were processed for inclusion in the Energy Data Base.

  12. Development of a National Center for Hydrogen Technology. A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Michael [Univ. of North Dakota, Grand Forks, ND (United States)

    2012-08-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology (NCHT) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program's nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  13. A national vision of America's transition to a hydrogen economy. To 2030 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-02-01

    This document outlines a vision for America’s energy future -- a more secure nation powered by clean, abundant hydrogen. This vision can be realized if the Nation works together to fully understand hydrogen’s potential, to develop and deploy hydrogen technologies, and to produce and deliver hydrogen energy in an affordable, safe, and convenient manner.

  14. A renewable energy based hydrogen demonstration park in Turkey. HYDEPARK

    Energy Technology Data Exchange (ETDEWEB)

    Ilhan, Niluefer; Ersoez, Atilla [TUEBITAK Marmara Research Center Energy Institute, Gebze Kocaeli (Turkey); Cubukcu, Mete [Ege Univ., Bornova, Izmir (Turkey). Solar Energy Inst.

    2010-07-01

    The main goal of this national project is to research hydrogen technologies and renewable energy applications. Solar and wind energy are utilized to obtain hydrogen via electrolysis, which can either be used in the fuel cell or stored in cylinders for further use. The management of all project work packages was carried by TUeBITAK Marmara Research Center (MRC) Energy Institute (EI) with the support of the collaborators. The aim of this paper is to present the units of the renewable energy based hydrogen demonstration park, which is in the demonstration phase now and share the experimental results. (orig.)

  15. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  16. Development of a national center for hydrogen technology. A summary report of activities completed at the national center hydrogen technology from 2005 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Michael J. [Univ. of North Dakota, Grand Forks, ND (United States)

    2011-06-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology® (NCHT®) since 2005 under a Cooperative Agreement with the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research of hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding of hydrogen-related projects ($20 million for the NCHT project which includes federal and corporate development partner funds) involving more than 85 partners (27 with the NCHT). The NCHT project's 19 activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan. A number of projects have been completed which range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified to transportation-grade quality in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in the first 5 years of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  17. Technology selection for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Siti Alimah; Erlan Dewita

    2008-01-01

    The NPP can either be used to produce electricity, or as heat source for non-electric applications (cogeneration). High Temperature Reactor (HTR) with high outlet coolant temperature around 900~1000 o C, is a reactor type potential for cogeneration purposes such as hydrogen production and other chemical industry processes that need high heat. Considering the national energy policy that a balanced arrangement of renewable and unrenewable natural resources has to be made to keep environmental conservation for the sake of society prosperity in the future, hydrogen gas production using nuclear heat is an appropriate choice. Hydrogen gas is a new energy which is environmentally friendly that it is a prospecting alternative energy source in the future. Within the study, a comparison of three processes of hydrogen gas production covering electrolysis, steam reforming and sulfur-iodine cycle, have been conducted. The parameters that considered are the production cost, capital cost and energy cost, technological status, the independence of fossil fuel, the environmental friendly aspect, as well as the efficiency and the independence of corrosion-resistance material. The study result showed that hydrogen gas production by steam reforming is a better process compared to electrolysis and sulfur-iodine process. Therefore, steam reforming process can be a good choice for hydrogen gas production using nuclear energy in Indonesia. (author)

  18. The US Department of Energy hydrogen baseline survey: assessing knowledge and opinions about hydrogen technology

    International Nuclear Information System (INIS)

    Christy Cooper; Tykey Truett; R L Schmoyer

    2006-01-01

    To design and maintain its education program, the United States Department of Energy (DOE) Hydrogen Program conducted a statistically-valid national survey to measure knowledge and opinions of hydrogen among key target audiences. The Hydrogen Baseline Knowledge Survey provides a reference for designing the DOE hydrogen education strategy and will be used in comparisons with future surveys to measure changes in knowledge and opinions over time. The survey sampled four U.S. populations: (1) public; (2) students; (3) state and local government officials; and (4) potential large-scale hydrogen end-users in three business categories. Questions measured technical understanding of hydrogen and opinions about hydrogen safety. Other questions assessed visions of the likelihood of future hydrogen applications and sources of energy information. Several important findings were discovered, including a striking lack of technical understanding across all survey groups, as well as a strong correlation between technical knowledge and opinions about safety: those who demonstrated an understanding of hydrogen technologies expressed the least fear of its safe use. (authors)

  19. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  20. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  1. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  2. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  3. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  4. A fuzzy analytic hierarchy/data envelopment analysis approach for measuring the relative efficiency of hydrogen R and D programs in the sector of developing hydrogen energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongkon; Kim, Jongwook [Korea Institute of Energy Research (Korea, Republic of). Energy Policy Research Center; Mogi, Gento [Tokyo Univ. (Japan). Graduate School of Engineering; Hui, K.S. [Hong Kong City Univ. (China). Manufacturing Engineering and Engineering Management

    2010-07-01

    Korea takes 10th place of largest energy consuming nations in the world since it spends 222 million ton of oil equivalent per year and depends on the most amount of consumed energy resources, which account for 96% import in 2008 with the 5.6% selfsufficiency ratio of energy resources. The interest of energy technology development has increased due to its poor energy environments. Specifically, the fluctuation of oil prices has been easily affecting Korean energy environments and economy. Considering its energy environments, energy technology development can be one of the optimal solution and breakthrough to solve Korea's energy circumstances, energy security, and the low carbon green growth with Korea's sustainable development. Moreover, energy and environment issues are the key factors for leading the future sustainable competitive advantage and green growth of one nation over the others nations. Lots of advanced nations have been trying to develop the energy technologies with the establishment of the strategic energy technology R and D programs for creating and maintain a competitive advantage and leading the global energy market. In 2005, we established strategic hydrogen energy technology roadmap in the sector of developing hydrogen energy technologies for coping with next 10 years from 2006 to 2015 as an aspect of hydrogen energy technology development. Hydrogen energy technologies are environmentally sound and friendly comparing with conventional energy technologies. Hydrogen energy technologies can play a key role and is the one of the best alternatives getting much attentions coping with UNFCCC and the hydrogen economy. Hydrogen energy technology roadmap shows meaningful guidelines for implementing the low carbon green growth society. We analyzed the world energy outlook to make hydrogen ETRM and provide energy policy directions in 2005. It focuses on developing hydrogen energy technology considering Korea's energy circumstance. We make a

  5. 18th world hydrogen energy conference 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Methods. (L). Policy Perspectives, Initiatives and Cooperations: 1a National Strategies and Programmes; 1b IEA Hydrogen Implementing Agreement; 2. Renewable Primary Energy Potential for Hydrogen Production; 3. Environmental Impact of Hydrogen Technologies. 124 papers are separately analyzed for the ENERGY database.

  6. 18th world hydrogen energy conference 2010. Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    Methods. (L). Policy Perspectives, Initiatives and Cooperations: 1a National Strategies and Programmes; 1b IEA Hydrogen Implementing Agreement; 2. Renewable Primary Energy Potential for Hydrogen Production; 3. Environmental Impact of Hydrogen Technologies. 124 papers are separately analyzed for the ENERGY database.

  7. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  8. Generation IV nuclear energy systems and hydrogen economy. New progress in the energy field in the 21st century

    International Nuclear Information System (INIS)

    Zang Mingchang

    2004-01-01

    The concept of hydrogen economy was initiated by the United States and other developed countries in the turn of the century to mitigate anxiety of national security due to growing dependence on foreign sources of energy and impacts on air quality and the potential effects of greenhouse gas emissions. Hydrogen economy integrates the primary energy used to produce hydrogen as a future energy carrier, hydrogen technologies including production, delivery and storage, and various fuel cells for transportation and stationary applications. A new hydrogen-based energy system would created as an important solution in the 21st century, flexible, affordable, safe, domestically produced, used in all sectors of the economy and in all regions of the country, if all the R and D plans and the demonstration come to be successful in 20-30 years. Among options of primary energy. Generation IV nuclear energy under development is particularly well suited to hydrogen production, offering the competitive position of large-scale hydrogen production with near-zero emissions. (author)

  9. Collection of outlines of achievement reports for fiscal 1976 on Sunshine Program. Hydrogen energy; 1976 nendo sunshine keikakaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-04-01

    Twenty studies are outlined, which are: Hydrogen production technology using electrolysis (Osaka National Research Institute); Hydrogen production technology using high-temperature/high-pressure electrolysis (Showa Denko K.K., and 1 other); Hydrogen production technologies using thermochemical method (4 articles - Osaka National Research Institute; Tokyo National Research Institute; Hitachi, Ltd.; Mitsubishi Heavy Industries, Ltd.); Water decomposition by thermochemical and photochemical hybrid cycle (Yokohama National University); Hydrogen production technology using direct thermolysis (Electrotechnical Laboratory); Hydrogen solidification technology (2 articles - Osaka National Research Institute; Tokyo National Research Institute); Combustion technology (Osaka National Research Institute); Materials for fuel cells (Osaka National Research Institute); Manufacture of fuel cells (Electrotechnical Laboratory); Systematization of fuel cells (Electrotechnical Laboratory); Hydrogen-fueled engine (Mechanical Engineering Laboratory); Disaster prevention technologies for gaseous and liquid hydrogen, etc. (Tokyo National Research Institute); Prevention of embrittlement of materials used with hydrogen (Chugoku National Research Institute); Refining, transportation, and storage systems, and safety techniques for hydrogen (Industrial Research Institute); Hydrogen energy total system (Electrotechnical Laboratory); Comprehensive examination of hydrogen-using subsystems and peripheral technologies (Electrochemical Society of Japan, and 6 others). (NEDO)

  10. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  11. H2@Scale: Technical and Economic Potential of Hydrogen as an Energy Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jadun, Paige [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pivovar, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-09

    The H2@Scale concept is focused on developing hydrogen as an energy carrier and using hydrogen's properties to improve the national energy system. Specifically hydrogen has the abilities to (1) supply a clean energy source for industry and transportation and (2) increase the profitability of variable renewable electricity generators such as wind turbines and solar photovoltaic (PV) farms by providing value for otherwise potentially-curtailed electricity. Thus the concept also has the potential to reduce oil dependency by providing a low-carbon fuel for fuel cell electric vehicles (FCEVs), reduce emissions of carbon dioxide and pollutants such as NOx, and support domestic energy production, manufacturing, and U.S. economic competitiveness. The analysis reported here focuses on the potential market size and value proposition for the H2@Scale concept. It involves three analysis phases: 1. Initial phase estimating the technical potential for hydrogen markets and the resources required to meet them; 2. National-scale analysis of the economic potential for hydrogen and the interactions between willingness to pay by hydrogen users and the cost to produce hydrogen from various sources; and 3. In-depth analysis of spatial and economic issues impacting hydrogen production and utilization and the markets. Preliminary analysis of the technical potential indicates that the technical potential for hydrogen use is approximately 60 million metric tons (MMT) annually for light duty FCEVs, heavy duty vehicles, ammonia production, oil refining, biofuel hydrotreating, metals refining, and injection into the natural gas system. The technical potential of utility-scale PV and wind generation independently are much greater than that necessary to produce 60 MMT / year hydrogen. Uranium, natural gas, and coal reserves are each sufficient to produce 60 MMT / year hydrogen in addition to their current uses for decades to centuries. National estimates of the economic potential of

  12. Risø energy report 3. Hydrogen and its competitors

    DEFF Research Database (Denmark)

    Larsen, Hans Hvidtfeldt; Sønderberg Petersen, Leif

    2004-01-01

    Interest in the hydrogen economy has grown rapidly in recent years. Those countries with long traditions of activity in hydrogen research and development have now been joined by a large number of newcomers. The main reason for this surge of interest isthat the hydrogen economy may be an answer to...... and international organisations including the European Union, the International Energy Agency and the United Nations...... to the two main challenges facing the world in the years to come: climate change and the need for security of energy supplies. Both these challenges require the development of new, highly-efficient energytechnologies that are either carbon-neutral or low emitting technologies. Alternative fuels could serve...

  13. France [National and regional programmes on the production of hydrogen using nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    Consumption of primary energy in France amounted to 278 Mtoe in 2005, with an average increase of 1.3%/a between 1990 and 2005. The breakdown of primary energy is 42% nuclear energy, 33% oil, 15% natural gas, 6% renewables and 4% coal. France is comparatively poor in domestic energy resources. French coal production, which was still around 40 million t/a at the end of the 1970s, was terminated in 2004. Also, domestic natural gas contributes not more than 2% of France's primary energy production. With the general objectives being to control energy demand, diversify sources of energy, increase research into energy, and provide methods of transporting and storing energy, the French energy policy has given priority to the development of a national energy supply with a strong focus on nuclear energy and renewable energies. These energies are seen to provide a reliable long term supply without GHG emissions and to ensure stable electricity prices. The first nuclear power plants built in France were gas cooled reactors and the country also participated in the OECD Dragon project. Today France is the world's second largest producer of nuclear energy (after the USA) with an electricity share of 78%. France operates 58 nuclear power stations with a total capacity of 63.2 GW. One Gen- III reactor (EPR) is currently under construction. Since nuclear energy is not always fully used, interest is growing in using excess nuclear electricity, apart from export, for hydrogen production to regulate the electricity production.

  14. Hydrogen in energy transition

    International Nuclear Information System (INIS)

    2016-02-01

    This publication proposes a rather brief overview of challenges related to the use of hydrogen as an energy vector in the fields of transports and of energy storage to valorise renewable energies. Processes (steam reforming of natural gas or bio-gas, alkaline or membrane electrolysis, biological production), installation types (centralised or decentralised), raw materials and/or energy (natural gas, water, bio-gas, electricity, light), and their respective industrial maturity are indicated. The role of hydrogen to de-carbonate different types of transports is described (complementary energy for internal combustion as well as electrical vehicles) as well as its role in the valorisation and integration of renewable energies. The main challenges faced by the hydrogen sector are identified and discussed, and actions undertaken by the ADEME are indicated

  15. Assessment of the potential future market in Sweden for hydrogen as an energy carrier

    Science.gov (United States)

    Carleson, G.

    Future hydrogen markets for the period 1980-2025 are projected, the probable range of hydrogen production costs for various manufacturing methods is estimated, and expected market shares in competition with alternative energy carriers are evaluated. A general scenario for economic and industrial development in Sweden for the given period was evaluated, showing the average increase in gross national product to become 1.6% per year. Three different energy scenarios were then developed: alternatives were based on nuclear energy, renewable indigenous energy sources, and the present energy situation with free access to imported natural or synthetic fuels. An analysis was made within each scenario of the competitiveness of hydrogen on both the demand and the supply of the following sectors: chemical industry, steel industry, peak power production, residential and commercial heating, and transportation. Costs were calculated for the production, storage and transmission of hydrogen according to technically feasible methods and were compared to those of alternative energy carriers. Health, environmental and societal implications were also considered. The market penetration of hydrogen in each sector was estimated, and the required investment capital was shown to be less than 4% of the national gross investment sum.

  16. Stuart Energy's experiences in developing 'Hydrogen Energy Station' infrastructure

    International Nuclear Information System (INIS)

    Crilly, B.

    2004-01-01

    'Full text:' With over 50 years experience, Stuart Energy is the global leader in the development, manufacture and integration of multi-use hydrogen infrastructure products that use the Company's proprietary IMET hydrogen generation water electrolysis technology. Stuart Energy offers its customers the power of hydrogen through its integrated Hydrogen Energy Station (HES) that provides clean, secure and distributed hydrogen. The HES can be comprised of five modules: hydrogen generation, compression, storage, fuel dispensing and / or power generation. This paper discusses Stuart Energy's involvement with over 10 stations installed in recent years throughout North America, Asia and Europe while examining the economic and environmental benefits of these systems. (author)

  17. Hydrogen - A new green energy

    International Nuclear Information System (INIS)

    Barnu, Franck

    2013-01-01

    A set of articles proposes an overview of the role hydrogen might have as energy in the energy transition policy, a review of different areas of research related to the hydrogen sector, and presentations of some remarkable innovations in different specific fields. Hydrogen might be an asset in energy transition because production modes (like electrolysis) result in an almost carbon-free or at least low-carbon hydrogen production. Challenges and perspectives are evoked: energy storage for intermittent energies (the MYRTE platform), the use of a hydrogen-natural mix (GRHYD program), the development of fuel cells for transport applications, and co-generation (Japan is the leader). Different French research organisations are working on different aspects and areas: the H2E program by Air Liquide, fuel cell technologies by GDF Suez, power electrolyzers and cells by Areva. Some aspects and research areas are more specifically detailed: high temperature electrolysis (higher efficiencies, synthesis of methane from hydrogen), fuel cells (using less platinum, and using ceramics for high temperatures), the perspective of solid storage solutions (hydrogen bottles in composite materials, development of 'hydrogen sponges', search for new hydrides). Innovations concern a project car, storage and production (Greenergy Box), the McPhy Energy storage system, an electric bicycle with fuel cell, easy to transport storage means by Air Liquide and Composites Aquitaine, development of energy autonomy, fuel cells for cars, electrolyzers using the Proton Exchange Membrane or PEM technology

  18. 21st century's energy: hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. N.

    2007-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the Hydrogen Energy System. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st Century

  19. 21st Century's energy: Hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. Nejat; Sahin, Suemer

    2008-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century

  20. Storing Renewable Energy in the Hydrogen Cycle.

    Science.gov (United States)

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  1. The hydrogen: a clean and durable energy; L'hydrogene: une energie propre et durable

    Energy Technology Data Exchange (ETDEWEB)

    Alleau, Th. [Association Francaise de l' Hydrogene (France); Nejat Veziroglu, T. [Clean Energy Research Institute, University of Miami (United States); Lequeux, G. [Commission europeenne, DG de la Recherche, Bruxelles (Belgium)

    2000-07-01

    All the scientific experts agree, the hydrogen will be the energy vector of the future. During this conference day on the hydrogen, the authors recalled the actual economic context of the energy policy with the importance of the environmental policy and the decrease of the fossil fuels. The research programs and the attitudes of the France and the other countries facing the hydrogen are also discussed, showing the great interest for this clean and durable energy. They underline the importance of an appropriate government policy, necessary to develop the technology of the hydrogen production, storage and use. (A.L.B.)

  2. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  3. Hydrogen Technology and Energy Curriculum (HyTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Barbara

    2013-02-28

    The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three days of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.

  4. Hydrogen: a clean energy for tomorrow?

    International Nuclear Information System (INIS)

    Artero, V.; Guillet, N.; Fruchart, D.; Fontecave, M.

    2011-01-01

    Hydrogen has a strong energetic potential. In order to exploit this potential and transform this energy into electricity, two chemical reactions could be used which do not release any greenhouse effect gas: hydrogen can be produced by water electrolysis, and then hydrogen and oxygen can be combined to produce water and release heat and electricity. Hydrogen can therefore be used to store energy. In Norway, the exceeding electricity produced by wind turbines in thus stored in fuel cells, and the energy of which is used when the wind weakens. About ten dwellings are thus supplied with only renewable energy. Similar projects are being tested in Corsica and in the Reunion Island. The main challenges for this technology are its cost, its compactness and its durability. The article gives an overview of the various concepts, apparatus and systems involved in hydrogen and energy production. Some researches are inspired by bacteria which produce hydrogen with enzymes. The objective is to elaborate better catalysts. Another explored perspective is the storage of solid hydrogen

  5. Clean energy and the hydrogen economy.

    Science.gov (United States)

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  6. Energy system aspects of hydrogen as an alternative fuel in transport

    International Nuclear Information System (INIS)

    Ramesohl, Stephan; Merten, Frank

    2006-01-01

    Considering the enormous ecological and economic importance of the transport sector the introduction of alternative fuels-together with drastic energy efficiency gains-will be a key to sustainable mobility, nationally as well as globally. However, the future role of alternative fuels cannot be examined from the isolated perspective of the transport sector. Interactions with the energy system as a whole have to be taken into account. This holds both for the issue of availability of energy sources as well as for allocation effects, resulting from the shift of renewable energy from the stationary sector to mobile applications. With emphasis on hydrogen as a transport fuel for private passenger cars, this paper discusses the energy systems impacts of various scenarios introducing hydrogen fueled vehicles in Germany. It identifies clear restrictions to an enhanced growth of clean hydrogen production from renewable energy sources (RES). Furthermore, it points at systems interdependencies that call for a priority use of RES electricity in stationary applications. Whereas hydrogen can play an increasing role in transport after 2030 the most important challenge is to exploit short-mid-term potentials of boosting car efficiency

  7. Energy Management and Simulation of Photovoltaic/Hydrogen /Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Tariq Kamal

    2016-06-01

    Full Text Available This manuscript focuses on a hybrid power system combining a solar photovoltaic array and energy storage system based on hydrogen technology (fuel cell, hydrogen tank and electrolyzer and battery. The complete architecture is connected to the national grid through power converters to increase the continuity of power. The proposed a hybrid power system is designed to work under classical-based energy management algorithm. According to the proposed algorithm, the PV has the priority in meeting the load demands. The hydrogen technology is utilized to ensure long-term energy balance. The battery is used as a backup and/or high power device to take care of the load following problems of hydrogen technology during transient. The dynamic performance of a hybrid power system is tested under different solar radiation, temperature and load conditions for the simulation of 24 Hrs. The effectiveness of the proposed system in terms of power sharing, grid stability, power quality and voltage regulation is verified by Matlab simulation results.

  8. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  9. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  10. Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ramsden, T.; Ruth, M.; Diakov, V.; Laffen, M.; Timbario, T. A.

    2013-03-01

    This report describes a life-cycle assessment conducted by the National Renewable Energy Laboratory (NREL) of 10 hydrogen production, delivery, dispensing, and use pathways that were evaluated for cost, energy use, and greenhouse gas (GHG) emissions. This evaluation updates and expands on a previous assessment of seven pathways conducted in 2009. This study summarizes key results, parameters, and sensitivities to those parameters for the 10 hydrogen pathways, reporting on the levelized cost of hydrogen in 2007 U.S. dollars as well as life-cycle well-to-wheels energy use and GHG emissions associated with the pathways.

  11. The Energy Efficiency of Onboard Hydrogen Storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vestbø, Andreas Peter; Li, Qingfeng

    2007-01-01

    A number of the most common ways of storing hydrogen are reviewed in terms of energy efficiency. Distinction is made between energy losses during regeneration and during hydrogen liberation. In the latter case, the energy might have to be provided by part of the released hydrogen, and the true...

  12. Fiscal 1995 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development was performed for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. Under subtask 1, besides investigation of a pilot plant of phase 2, the WE-NET image as a whole was studied. Under subtask 2, technical information was exchanged at an international symposium and a long-term vision of the international network was discussed. Under subtask 3, for the evaluation of the effect of hydrogen energy introduction on the global level, national level, and city level, simulation models were discussed and improved. Under subtask 4, tests and studies were made concerning electrode bonding methods. Under subtask 5, the Neon Brayton cycle process was surveyed and studied as a hydrogen liquefaction cycle. Under subtasks 6-9, furthermore, surveys and studies were made about techniques relating to low-temperature substances, hydrogen energy, hydrogen combustion turbines, and so forth. (NEDO)

  13. Prospects for hydrogen in the German energy system

    International Nuclear Information System (INIS)

    Hake, J.-F.; Linssen, J.; Walbeck, M.

    2006-01-01

    The focus of the paper concerns the current discussion on the contribution of the hydrogen economy to a 'sustainable energy system'. It considers whether advantages for the environmental situation and energy carrier supply can be expected from the already visible future characteristics of hydrogen as a new secondary energy carrier. Possible production paths for hydrogen from hydrocarbon-based, renewable or carbon-reduced/-free primary energy carriers are evaluated with respect to primary energy use and CO 2 emissions from the fuel cycle. Hydrogen has to be packaged by compression or liquefaction, transported by surface vehicles or pipelines, stored and transferred to the end user. Whether generated by electrolysis or by reforming, and even if produced locally at filling stations, the gaseous or liquid hydrogen has to undergo these market processes before it can be used by the customer. In order to provide an idea of possible markets with special emphasis on the German energy sector, a technical systems analysis of possible hydrogen applications is performed for the stationary, mobile and portable sector. Furthermore, different 'business as usual' scenarios are analysed for Germany, Europe and the World concerning end energy use in different sectors. The very small assumed penetration of hydrogen in the analysed scenarios up to the year 2050 indicates that the hydrogen economy is a long-term option. With reference to the assumed supply paths and analysed application possibilities, hydrogen can be an option for clean energy use if hydrogen can be produced with carbon-reduced or -free primary energy carriers like renewable energy or biomass. However, the energetic use of hydrogen competes with the direct use of clean primary energy and/or with the use of electric energy based on renewable primary energy. As a substitution product for other secondary energy carriers hydrogen is therefore under pressure of costs and/or must have advantages in comparison to the use of

  14. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  15. Hydrogen energy for the transportation sector in China

    International Nuclear Information System (INIS)

    Zong Qiangmao

    2006-01-01

    Hydrogen is a promising energy carrier for providing a clean, reliable and affordable energy supply. This paper provides a blueprint for the hydrogen energy in the transportation sector in the future of China. This paper is divided into three parts. The first part answers this question: why is China interested in hydrogen energy? The second part describes the possibility of a hydrogen fuel cell engine and a hydrogen internal-combustion engine in the transportation in China in the near future. The final part describes the production of hydrogen in China. (author)

  16. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  17. Nuclear energy in the hydrogen economy

    International Nuclear Information System (INIS)

    Bertel, E.; Lee, K.S.; Nordborg, C.

    2004-01-01

    In the framework of a sustainable development, the hydrogen economy is envisaged as an alternative scenario in substitution to the fossil fuels. After a presentation of the hydrogen economy advantages, the author analyzes the nuclear energy a a possible energy source for hydrogen production since nuclear reactors can produce both the heat and electricity required for it. (A.L.B.)

  18. Conference on hydrogen-energy in France and Germany

    International Nuclear Information System (INIS)

    Bodineau, Luc; Menzen, Georg; Arnold, Peter Erich; Mauberger, Pascal; Roentzsch, Lars; Poggi, Philippe; Gervais, Thierry; Schneider, Guenther; Colomar, David; Buenger, Ulrich; Nieder, Babette; Zimmer, Rene; Jeanne, Fabrice; Le Grand, Jean-Francois

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on hydrogen-energy in France and Germany. In the framework of this French-German exchange of experience, about 200 participants exchanged views on the different perspectives for use of hydrogen, in particular in transportation and energy storage applications. The technical production, transport and storage means were addressed too, as well as the technological models and the conditions for a large-scale industrial deployment. The economic prospects of hydrogen-energy in tomorrow's energy mix were also considered during the conference. This document brings together the available presentations (slides) made during this event: 1 - Hydrogen energy and Fuel Cells in France Today, and prospective (Luc Bodineau); 2 - The situation of energy Policy in Germany and the challenges for the Hydrogen Technology (Georg Menzen); 3 - Unlocking the Hydrogen Potential for Transport and Industry (Peter Erich Arnold); 4 - Hydrogen, a new energy for our planet - Hydrogen storage possibilities: example of solid storage (Pascal Mauberger); 5 - Innovative Materials and Manufacturing Technologies for H 2 Production and H 2 Storage (Lars Roentzsch); 6 - Scientific development and industrial strategy: experience feedback from the Myrte platform and energy transition-related perspectives (Philippe Poggi, Thierry Gervais); 7 - 'Power to Gas' - Important partner for renewables with big impact potential (Guenther Schneider) 8 - Developing a Hydrogen Infrastructure for Transport in France and Germany - A Comparison (David Colomar, Ulrich Buenger); 9 - H 2 and Fuel-Cells as Key Technologies for the Transition to Renewable energies - The example of Herten (Babette Nieder); 10 - Social acceptance of hydrogen mobility in Germany (Rene Zimmer); 11 - Hydrogen - A development opportunity for regions? (Fabrice Jeanne)

  19. Hydrogen energy economy: More than utopia

    International Nuclear Information System (INIS)

    Weber, R.

    1992-01-01

    Under the pressure of increasing climate changes in the last years the attitude towards hydrogen technology has changed. Germany has taken a leading position in hydrogen research. Above all there is not only government-sponsored research but also industrial research. It is even assumed that an energy economy on the basis of solar energy as well as of hydrogen is technically possible. If the fact that the total power of all cars in the FRG amounts to 200.000 MW - twice as much as all power stations - is taken into consideration it should be possible to produce in large-scale production decentralized solar or hydrogen energy converters at similar kilowatt rates. (BWI) [de

  20. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  1. Hydrogen energy technology

    International Nuclear Information System (INIS)

    Morovic, T.; Pilhar, R.; Witt, B.

    1988-01-01

    A comprehensive assessment of different energy systems from the economic point of view has to be based on data showing all relevant costs incurred and benefits drawn by the society from the use of such energy systems, i.e. internal costs and benefits visible to the energy consumer as prices paid for power supplied, as well as external costs and benefits. External costs or benefits of energy systems cover among other items employment or wage standard effects, energy-induced environmental impacts, public expenditure for pollution abatement and mitigation of risks and effects of accidents, and the user costs connected with the exploitation of reserves, which are not rated high enough to really reflect and demonstrate the factor of depletion of non-renewable energy sources, as e.g. fossil reserves. Damage to the natural and social environment induced by anthropogenous air pollutants up to about 90% counts among external costs of energy conversion and utilisation. Such damage is considered to be the main factor of external energy costs, while the external benefits of energy systems currently are rated to be relatively unsignificant. This means that an internalisation of external costs would drive up current prices of non-renewable energy sources, which in turn would boost up the economics of renewable energy sources, and the hydrogen produced with their energy. Other advantages attributed to most of the renewable energy sources and to hydrogen energy systems are better environmental compatibility, and no user costs. (orig.) [de

  2. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water. The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.

  3. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  4. Hydrogen, energy vector of the future?

    International Nuclear Information System (INIS)

    Perrin, J.; Deschamps, J.F.

    2004-01-01

    In the framework of a sustainable development with a reduction of the greenhouse gases emissions, the hydrogen seems a good solution because its combustion produces only water. From the today hydrogen industrial market, the authors examine the technological challenges and stakes of the hydrogen-energy. They detail the hydrogen production, distribution and storage and compare with the petrol and the natural gas. Then they explain the fuel cells specificity and realize a classification of the energy efficiency of many associations production-storage-distribution-use. a scenario of transition is proposed. (A.L.B.)

  5. Hydrogen: energy transition under way

    International Nuclear Information System (INIS)

    Franc, Pierre-Etienne; Mateo, Pascal

    2015-01-01

    Written by a representative of Air Liquide with the help of a free lance journalist, this book proposes an overview of the technological developments for the use of hydrogen as a clean energy with its ability to store primary energy (notably that produced by renewable sources), and its capacity of energy restitution in combination with a fuel cell with many different applications (notably mobility-related applications). The authors outline that these developments are very important in a context of energy transition. They also outline what is left to be done, notably economically and financially, for hydrogen to play its role in the energy revolution which is now under way

  6. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  7. Energy conversion using hydrogen PEM fuel cells

    International Nuclear Information System (INIS)

    Stoenescu, D.; Patularu, L.; Culcer, M.; Lazar, R.; Mirica, D.; Varlam, M.; Carcadea, E.; Stefanescu, I.

    2004-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (naphthalene, natural gas, methanol, coal, biomass), solar cells power, etc. It can be burned or chemically reacted having a high yield of energy conversion and is a non-polluted fuel. This paper presents the results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system consisting in a catalytic methane reforming plant for hydrogen production and three synthesis gas purification units in order to get pure hydrogen with a CO level lower than 10 ppm that finally feeds a hydrogen fuel stock. (authors)

  8. Hydrogen-based electrochemical energy storage

    Science.gov (United States)

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  9. Public understanding of hydrogen energy: A theoretical approach

    International Nuclear Information System (INIS)

    Sherry-Brennan, Fionnguala; Devine-Wright, Hannah; Devine-Wright, Patrick

    2010-01-01

    The aim of this paper was to investigate public understanding of hydrogen energy using a particular social-psychological theory, namely, the theory of social representations to explore how processes of understanding generated lay knowledge of hydrogen energy. Using a free association method for data collection and multidimensional scaling for analysis, the results enabled the identification of themes in the data such as energy, environment, community, science, and technology, and people and place, around which understanding was based. Processes of representation, such as anchoring to pre-existing knowledge, were seen as essential in guiding understanding. The results indicated that there were diverse influences involved in understanding and, although risk perception of hydrogen was acknowledged, community concerns were seen to override any negative effect of focussing on risk. The role of emotion in decision-making was highlighted as positive emotional responses to the Promoting Unst's Renewable Energy (PURE), a local hydrogen storage project, resulted in hydrogen energy generally being positively evaluated despite acknowledged risks posed by hydrogen such as its explosiveness and flammability. Recommendations for policy include recognising that the combination of expert and lay knowledge plays an important role in public acceptance or rejection of hydrogen energy.

  10. Public understanding of hydrogen energy. A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Sherry-Brennan, Fionnguala; Devine-Wright, Hannah; Devine-Wright, Patrick [Manchester Architecture Research Centre (MARC), University of Manchester, Humanities Bridgeford Street, Oxford Road, Manchester M13 9PL (United Kingdom)

    2010-10-15

    The aim of this paper was to investigate public understanding of hydrogen energy using a particular social-psychological theory, namely, the theory of social representations to explore how processes of understanding generated lay knowledge of hydrogen energy. Using a free association method for data collection and multidimensional scaling for analysis, the results enabled the identification of themes in the data such as energy, environment, community, science, and technology, and people and place, around which understanding was based. Processes of representation, such as anchoring to pre-existing knowledge, were seen as essential in guiding understanding. The results indicated that there were diverse influences involved in understanding and, although risk perception of hydrogen was acknowledged, community concerns were seen to override any negative effect of focussing on risk. The role of emotion in decision-making was highlighted as positive emotional responses to the Promoting Unst's Renewable Energy (PURE), a local hydrogen storage project, resulted in hydrogen energy generally being positively evaluated despite acknowledged risks posed by hydrogen such as its explosiveness and flammability. Recommendations for policy include recognising that the combination of expert and lay knowledge plays an important role in public acceptance or rejection of hydrogen energy. (author)

  11. Public understanding of hydrogen energy: A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Sherry-Brennan, Fionnguala, E-mail: fionnguala@manchester.ac.u [Manchester Architecture Research Centre (MARC), University of Manchester, Humanities Bridgeford Street, Oxford Road, Manchester M13 9PL (United Kingdom); Devine-Wright, Hannah; Devine-Wright, Patrick [Manchester Architecture Research Centre (MARC), University of Manchester, Humanities Bridgeford Street, Oxford Road, Manchester M13 9PL (United Kingdom)

    2010-10-15

    The aim of this paper was to investigate public understanding of hydrogen energy using a particular social-psychological theory, namely, the theory of social representations to explore how processes of understanding generated lay knowledge of hydrogen energy. Using a free association method for data collection and multidimensional scaling for analysis, the results enabled the identification of themes in the data such as energy, environment, community, science, and technology, and people and place, around which understanding was based. Processes of representation, such as anchoring to pre-existing knowledge, were seen as essential in guiding understanding. The results indicated that there were diverse influences involved in understanding and, although risk perception of hydrogen was acknowledged, community concerns were seen to override any negative effect of focussing on risk. The role of emotion in decision-making was highlighted as positive emotional responses to the Promoting Unst's Renewable Energy (PURE), a local hydrogen storage project, resulted in hydrogen energy generally being positively evaluated despite acknowledged risks posed by hydrogen such as its explosiveness and flammability. Recommendations for policy include recognising that the combination of expert and lay knowledge plays an important role in public acceptance or rejection of hydrogen energy.

  12. A comparison of hydrogen with alternate energy forms from coal and nuclear energy

    International Nuclear Information System (INIS)

    Cox, K.E.

    1976-01-01

    Alternate energy forms that can be produced from coal and nuclear energy have been analyzed on efficiency, economic and end-use grounds. These forms include hydrogen, methane, electricity, and EVA-ADAM, a 'chemical heat pipe' approach to energy transmission. The EVA-ADAM system for nuclear heat appears to be economically competitive with the other energy carriers except over very large distances. The cost of hydrogen derived from coal is approximately equal to that of methane derived from the same source when compared on an equal BTU basis. Thermochemically derived hydrogen from nuclear energy shows a break-even range with hydrogen derived from coal at coal costs of from Pound33 to 80/ton depending on the cost of nuclear heat. Electricity and electrolytically derived hydrogen are the most expensive energy carriers and electricity's use should be limited to applications involving work rather than heat. Continued work in thermochemical hydrogen production schemes should be supported as an energy option for the future. (author)

  13. Hydrogen energy - Abundant, efficient, clean: A debate over the energy-system-of-change

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Carl-Jochen [International Association for Hydrogen Energy (IAHE), c/o ENERGON Carl-Jochen Winter e.K., Obere St.-Leonhardstr. 9, 88662 Ueberlingen (Germany)

    2009-07-15

    Both secondary energies, electricity and hydrogen, have much in common: they are technology driven; both are produced from any available primary energy; once produced both are environmentally and climatically clean over the entire length of their respective conversion chains, from production to utilization; they are electrochemically interchangeable via electrolyses and fuel cells; both rely on each other, e.g., when electrolyzers and liquefiers need electricity or when electricity-providing low temperature fuel cells need hydrogen; in cases of secondary energy transport over longer distances they compete with each other; in combined fossil fuel cycles both hydrogen and electricity are produced in parallel exergetically highly efficiently; hydrogen in addition to electricity helps exergizing the energy system and, thus, maximizing the available technical work. There are dissimilarities, too: electricity transports information, hydrogen does not; hydrogen stores and transports energy, electricity does not (in macroeconomic terms). The most obvious dissimilarity is their market presence, both in capacities and in availability: Electricity is globally ubiquitous (almost), whilst hydrogen energy is still used in only selected industrial areas and in much smaller capacities. The article describes in 15 chapters, 33 figures, 3 tables, and 2 Annexes the up-and-coming hydrogen energy economy, its environmental and climatic relevance, its exergizing influence on the energy system, its effect on decarbonizing fossil fueled power plants, the introduction of the novel non-heat-engine-related electrochemical energy converter fuel cell in portable electronics, in stationary and mobile applications. Hydrogen guarantees environmentally and climatically clean transportation on land, in air and space, and at sea. Hydrogen facilitates the electrification of vehicles with practically no range limits. (author)

  14. Hydrogen energy stations: along the roadside to the hydrogen economy

    International Nuclear Information System (INIS)

    Clark, W.W.; Rifkin, J.; O'Connor, T.; Swisher, J.; Lipman, T.; Rambach, G.

    2005-01-01

    Hydrogen has become more than an international topic of discussion within government and among industry. With the public announcements from the European Union and American governments and an Executive Order from the Governor of California, hydrogen has become a ''paradigm change'' targeted toward changing decades of economic and societal behaviours. The public demand for clean and green energy as well as being ''independent'' or not located in political or societal conflict areas, has become paramount. The key issues are the commitment of governments through public policies along with corporations. Above all, secondly, the advancement of hydrogen is regional as it depends upon infrastructure and fuel resources. Hence, the hydrogen economy, to which the hydrogen highway is the main component, will be regional and creative. New jobs, businesses and opportunities are already emerging. And finally, the costs for the hydrogen economy are critical. The debate as to hydrogen being 5 years away from being commercial and available in the marketplace versus needing more research and development contradicts the historical development and deployment of any new technology be it bio-science, flat panel displays, computers or mobile phones. The market drivers are government regulations and standards soon thereafter matched by market forces and mass production. Hydrogen is no different. What this paper does is describes is how the hydrogen highway is the backbone to the hydrogen economy by becoming, with the next five years, both regional and commercial through supplying stationary power to communities. Soon thereafter, within five to ten years, these same hydrogen stations will be serving hundreds and then thousands of hydrogen fuel powered vehicles. Hydrogen is the fuel for distributed energy generation and hence positively impacts the future of public and private power generators. The paradigm has already changed. (author)

  15. Survey report on the status of new energy in the U.S. On-site research centering on fuel cell, hydrogen energy, and wind energy (4th World Energy Engineering Congress); Beikoku shin energy jijo chosa hokokusho. Nenryo denchi, suiso furyoku energy wo chushin to suru jicchi chosa (dai 4 kai World Energy Engineering Congress)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-02-01

    A survey group dispatched by the New Energy Industrial Forum technical development committee conduct researches into the status of technologies in the U.S. relative to fuel cells, hydrogen energy, and wind energy. The group also attend the 4th World Energy Engineering Congress. As for the research and development of the phosphoric acid fuel cell, it is undertaken by the United Technology Corporation, Westinghouse Electric Corporation, and the Engelhard Corporation, each having its own peculiar technologies and thereby avoiding competition with others in one and the same domain. As for the molten carbonate fuel cell, the Argonne National Laboratory is entrusted with the control of technology development, and the Laboratory in turn requests the United Technology Corporation and Westinghouse Electric Corporation to develop technologies and systems. As for the solid oxide fuel cell, the Westinghouse Electric Corporation is entrusted with its development through the intermediary of the Argonne National Laboratory. As for hydrogen energy, the General Electric Company and Westinghouse Electric Corporation develop hydrogen production systems and the Brookhaven National Laboratory develops hydrogen storage systems using metallic hydrides. As for wind power generation, a Bendix-made 3,000kW wind power plant is visited and discussion is held on it. (NEDO)

  16. A new type of hydrogen generator-HHEG (high-compressed hydrogen energy generator)

    International Nuclear Information System (INIS)

    Harada, H.; Tojima, K.; Takeda, M.; Nakazawa, T.

    2004-01-01

    'Full text:' We have developed a new type of hydrogen generator named HHEG (High-compressed Hydrogen Energy Generator). HHEG can produce 35 MPa high-compressed hydrogen for fuel cell vehicle without any mechanical compressor. HHEG is a kind of PEM(proton exchange membrane)electrolysis. It was well known that compressed hydrogen could be generated by water electrolysis. However, the conventional electrolysis could not generate 35 MPa or higher pressure that is required for fuel cell vehicle, because electrolysis cell stack is destroyed in such high pressure. In HHEG, the cell stack is put in high-pressure vessel and the pressure difference of oxygen and hydrogen that is generated by the cell stack is always kept at nearly zero by an automatic compensator invented by Mitsubishi Corporation. The cell stack of HHEG is not so special one, but it is not broken under such high pressure, because the automatic compensator always offsets the force acting on the cell stack. Hydrogen for fuel cell vehicle must be produce by no emission energy such as solar and atomic power. These energies are available as electricity. So, water electrolysis is the only way of producing hydrogen fuel. Hydrogen fuel is also 35 MPa high-compressed hydrogen and will become 70 MPa in near future. But conventional mechanical compressor is not useful for such high pressure hydrogen fuel, because of the short lifetime and high power consumption. Construction of hydrogen station network is indispensable in order to come into wide use of fuel cell vehicles. For such network contraction, an on-site type hydrogen generator is required. HHEG can satisfy above these requirements. So we can conclude that HHEG is the only way of realizing the hydrogen economy. (author)

  17. New perspectives on renewable energy systems based on hydrogen

    International Nuclear Information System (INIS)

    Bose, T. K.; Agbossou, K.; Benard, P.; St-Arnaud, J-M.

    1999-01-01

    Current hydrocarbon-based energy systems, current energy consumption and the push towards the utilization of renewable energy sources, fuelled by global warming and the need to reduce atmospheric pollution are discussed. The consequences of climatic change and the obligation of Annex B countries to reduce their greenhouse gas emissions in terms of the Kyoto Protocols are reviewed. The role that renewable energy sources such as hydrogen, solar and wind energy could play in avoiding the most catastrophic consequences of rapidly growing energy consumption and atmospheric pollution in the face of diminishing conventional fossil fuel resources are examined. The focus is on hydrogen energy as a means of storing and transporting primary energy. Some favorable characteristics of hydrogen is its abundance, the fact that it can be produced utilizing renewable or non-renewable sources, and the further fact that its combustion produces three times more energy per unit of mass than oil, and six times more than coal. The technology of converting hydrogen into energy, storing energy in the form of hydrogen, and its utilization, for example in the stabilization of wind energy by way of electrolytic conversion to hydrogen, are described. Development at Hydro-Quebec's Institute of Research of a hydrogen-based autonomous wind energy system to produce electricity is also discussed. 2 tabs., 11 refs

  18. Hydrogen energy and sustainability: overview and the role for nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2008-01-01

    This paper discusses the role of nuclear power in hydrogen energy and sustainability. Hydrogen economy is based on hydrogen production, packaging (compression, liquefaction, hydrides), distribution (pipelines, road, rail, ship), storage (pressure and cryogenic containers), transfer and finally hydrogen use

  19. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tafticht, T.; Agbossou, K. [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  20. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    T Tafticht; K Agbossou

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  1. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    Tafticht, T.; Agbossou, K.

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  2. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    T Tafticht; K Agbossou [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  3. Is there room for hydrogen in energy transition?

    International Nuclear Information System (INIS)

    Beeker, Etienne

    2014-08-01

    As Germany decided to use hydrogen to store huge quantities of renewable energies, this report aims at assessing the opportunities associated with hydrogen in the context of energy transition. The author addresses the various techniques and technologies of hydrogen production, and proposes a prospective economic analysis of these processes: steam reforming, alkaline electrolysis, polymer electrolyte membrane (PEM) electrolysis, and other processes still at R and D level. He gives an overview of existing and potential uses of hydrogen in industry, in energy storage (power-to-gas, power-to-power, methanation) and in mobility (hydrogen-mobility could be a response to hydrocarbon shortage, but the cost is still very high, and issues like hydrogen distribution must be addressed), and also evokes their emergence potential

  4. Solar Hydrogen Energy Systems Science and Technology for the Hydrogen Economy

    CERN Document Server

    Zini, Gabriele

    2012-01-01

    It is just a matter of time when fossil fuels will become unavailable or uneconomical to retrieve. On top of that, their environmental impact is already too severe. Renewable energy sources can be considered as the most important substitute to fossil energy, since they are inexhaustible and have a very low, if none, impact on the environment. Still, their unevenness and unpredictability are drawbacks that must be dealt with in order to guarantee a reliable and steady energy supply to the final user. Hydrogen can be the answer to these problems. This book presents the readers with the modeling, functioning and implementation of solar hydrogen energy systems, which efficiently combine different technologies to convert, store and use renewable energy. Sources like solar photovoltaic or wind, technologies like electrolysis, fuel cells, traditional and advanced hydrogen storage are discussed and evaluated together with system management and output performance. Examples are also given to show how these systems are ...

  5. Hydrogen energy strategies and global stability and unrest

    International Nuclear Information System (INIS)

    Midilli, A.; Dincer, I.; Rosen, M.A.

    2004-01-01

    This paper focuses on hydrogen energy strategies and global stability and unrest. In order to investigate the strategic relationship between these concepts, two empirical relations that describe the effects of fossil fuels on global stability and global unrest are developed. These relations incorporate predicted utilization ratios for hydrogen energy from non-fossil fuels, and are used to investigate whether hydrogen utilization can reduce the negative global effects related to fossil fuel use, eliminate or reduce the possibilities of global energy conflicts, and contribute to achieving world stability. It is determined that, if utilization of hydrogen from non-fossil fuels increases, for a fixed usage of petroleum, coal and natural gas, the level of global unrest decreases. However, if the utilization ratio of hydrogen energy from non-fossil fuels is lower than 100%, the level of global stability decreases as the symptoms of global unrest increase. It is suggested that, to reduce the causes of global unrest and increase the likelihood of global stability in the future, hydrogen energy should be widely and efficiently used, as one component of plans for sustainable development. (author)

  6. Performance of Existing Hydrogen Stations

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Christopher D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peters, Michael C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    In this presentation, the National Renewable Energy Laboratory presented aggregated analysis results on the performance of existing hydrogen stations, including performance, operation, utilization, maintenance, safety, hydrogen quality, and cost. The U.S. Department of Energy funds technology validation work at NREL through its National Fuel Cell Technology Evaluation Center (NFCTEC).

  7. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy - Technology Summary

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; McKellar, M.G.; Harvego, E.A.; Sohal, M.S.; Condie, K.G.

    2010-01-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  8. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  9. Very High Energy Neutron Scattering from Hydrogen

    International Nuclear Information System (INIS)

    Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I

    2010-01-01

    The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.

  10. Energy Systems With Renewable Hydrogen Compared to Direct Use of Renewable Energy in Austria

    International Nuclear Information System (INIS)

    Gerfried Jungmeier; Kurt Konighofer; Josef Spitzer; R Haas; A Ajanovic

    2006-01-01

    The current Austrian energy system has a renewable energy share of 20% - 11% hydropower and 9 % biomass - of total primary energy consumption. Whereas a possible future introduction of renewable hydrogen must be seen in the context of current energy policies in Austria e.g. increase of energy efficiency and use of renewable energy, reduction of greenhouse gas emissions. The aim of the research project is a life cycle based comparison of energy systems with renewable hydrogen from hydropower, wind, photovoltaic and biomass compared to the direct use of renewable energy for combined heat and power applications and transportation services. In particular this paper focuses on the main question, if renewable energy should be used directly or indirectly via renewable hydrogen. The assessment is based on a life cycle approach to analyse the energy efficiency, the material demand, the greenhouse gas emissions and economic aspects e.g. energy costs and some qualitative aspects e.g. energy service. The overall comparison of the considered energy systems for transportation service and combined heat and electricity application shows, that renewable hydrogen might be beneficial mainly for transportation services, if the electric vehicle will not be further developed to a feasibly wide-spread application for transportation service in future. For combined heat and electricity production there is no advantage of renewable hydrogen versus the direct use of renewable energy. Conclusions for Austria are therefore: 1) renewable hydrogen is an interesting energy carrier and might play an important role in a future sustainable Austrian energy system; 2) renewable hydrogen applications look most promising in the transportation sector; 3) renewable hydrogen applications will be of low importance for combined heat and electricity applications, as existing technologies for direct use of renewable energy for heat and electricity are well developed and very efficient; 4) In a future '100

  11. Hydrogen role in a carbon-free energy mix

    International Nuclear Information System (INIS)

    2014-02-01

    Among the energy storage technologies under development today, there is today an increasing interest towards the hydrogen-based ones. Hydrogen generation allows to store electricity, while its combustion can supply electrical, mechanical or heat energy. The French Atomic Energy Commission (CEA) started to work on hydrogen technologies at the end of the 1990's in order to reinforce its economical interest. The development of these technologies is one of the 34 French industrial programs presented in September 2013 by the French Minister of productive recovery. This paper aims at identifying the hydrogen stakes in a carbon-free energy mix and at highlighting the remaining technological challenges to be met before reaching an industrial development level

  12. Economic Dispatch of Hydrogen Systems in Energy Spot Markets

    DEFF Research Database (Denmark)

    You, Shi; Nørgård, Per Bromand

    2015-01-01

    of energy spot markets. The generic hydrogen system is comprised of an electrolysis for hydrogen production, a hydrogen storage tank and a fuel cell system for cogeneration of electricity and heat. A case study is presented with information from practical hydrogen systems and the Nordic energy markets...

  13. Wind-To-Hydrogen Energy Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the

  14. Energy Levels of Hydrogen and Deuterium

    Science.gov (United States)

    SRD 142 NIST Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  15. Energy conversion, storage and balancing. Great potential of hydrogen and fuel cells; Energikonvertering, lagring og balancering. Stort potentiale i brint og braendselsceller

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    This document is the Danish strategy for hydrogen technology research, development and demonstration. Work on a new strategy was launched in early 2012 by the Partnership for hydrogen and fuel cells. The new national strategy complements the Partnership's former national strategy ''Hydrogen Technologies - strategy for research, development and demonstration in Denmark'' from June 2005. The former strategy describes the challenges and costs by the technological development of hydrogen and fuel cells until 2016 - and is valid until 2016. The Partnership's strategy anno 2012 describes the energy technology challenges for hydrogen technology development until 2016 - and in some years thereafter. The strategy provides an updated status of hydrogen and fuel cells, describes the area's future potential, and specifies future needs for technological development. The strategy's main focus is to define how electrolysis, hydrogen and fuel cells can help to meet Denmark's future energy policy objectives. In the strategy the term ''hydrogen technologies'' overall means: Electrolysis and fuel cells as conversion technologies, and hydrogen and hydrogen-containing fuels, such as methanol, as energy carriers. (LN)

  16. Development of a solar-hydrogen hybrid energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Gamboa, S.A.; Vejar, Set; Campos, J.

    2009-01-01

    Full text: The details of the development of a PV-hydrogen hybrid energy system is presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operate as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations has been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  17. Hydrogen-Based Energy Conservation System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA and many others often rely on delivery of cryogenic hydrogen to meet their facility needs. NASA's Stennis Space Center is one of the largest users of hydrogen,...

  18. Energy: the solar hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    Bocheris, J O.M.

    1977-01-01

    The author argues that nuclear and solar energy should begin replacing conventional fossil sources as soon as possible because oil, gas and even coal supplies will be depleted within decades. A hydrogen economy would introduce major technical problems but its chief benefits are that it permits energy storage in a post fossil fuel era when electricity is expected to play a major role. It can be converted to electricity, cleanly and efficiently with fuel cells and in liquid form can be burnt as jet fuel. Hydrogen can also be burnt in internal combustion engines although less efficiently in fuel cells. However, although hydrogen is clean and efficient, technical development is still needed to reduce its cost and to cope with safety problems. The book contains a wealth of technical information and is a valuable reference on a topic of growing importance.

  19. Preface: photosynthesis and hydrogen energy research for sustainability.

    Science.gov (United States)

    Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2017-09-01

    Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO 2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.

  20. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  1. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  2. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hydrogen energy network start-up scenario

    International Nuclear Information System (INIS)

    Weingartner, S.; Ellerbrock, H.

    1994-01-01

    Hydrogen is widely discussed as future fuel and energy storage medium either to replace conventional fuels for automobiles, aircrafts and ships or to avoid the necessity of bulky battery systems for electricity storage, especially in connection with solar power systems. These discussions however started more than 25 years ago and up to now hydrogen has failed to achieve a major break-through towards wider application as energy storage medium in civil markets. The main reason is that other fuels are cheaper and very well implemented in our daily life. A study has been performed at Deutsche Aerospace in order to evaluate the boundary conditions, either political or economical, which would give hydrogen the necessary push, i.e. advantage over conventional fuels. The main goal of this study was to identify critical influence factors and specific start-up scenarios which would allow an economical and practically realistic use of hydrogen as fuel and energy medium in certain niche markets outside the space industry. Method and major results of this study are presented in detail in the paper. Certain niche markets could be identified, where with little initial governmental support, either by funding, tax laws or legislation, hydrogen can compete with conventional fuels. This however requires a scenario where a lot of small actions have to be taken by a high variety of institutions and industries which today are not interconnected with each other, i.e. it requires a new cooperative and proactive network between e.g. energy utilities, car industries, those who have a sound experience with hydrogen (space industry, chemical industry) and last, but certainly not the least, the government. Based on the developed scenario precise recommendations are drawn as conclusions

  4. Green energy and hydrogen research at University of Waterloo

    International Nuclear Information System (INIS)

    Fowler, M.

    2006-01-01

    This paper summarises Green Energy and Hydrogen Research at the University of Waterloo in Canada. Green energy includes solar, wind, bio fuels, hydrogen economy and conventional energy sources with carbon dioxide sequestration

  5. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  6. Hourly energy management for grid-connected wind-hydrogen systems

    International Nuclear Information System (INIS)

    Bernal-Agustin, Jose L.; Dufo-Lopez, Rodolfo

    2008-01-01

    This paper is a complete technical-economic analysis of the hourly energy management of the energy generated in wind-hydrogen systems. Wind power generation depends on the unpredictable nature of the wind. If the wind-power penetration becomes high in the Spanish electrical grid, energy management will be necessary for some wind farms. A method is proposed in this paper to adjust the generation curve to the demand curve, consisting of the generation of hydrogen and storing it in a hydrogen tank during off-peak (low demand) hours, while during the rest of the hours (peak hours, high demand) the stored hydrogen can be used to generate electricity. After revising the results obtained in this paper, for the current values of efficiency of the electricity-hydrogen-electricity conversion (approximately 30%) and due to the high cost of the hydrogen components, for a wind-hydrogen system to be economically viable the price of the sale of the energy generated by the fuel cell would be very high (approximately 171 cEUR/kWh). (author)

  7. Energy Accumulation by Hydrogen Technologies

    Directory of Open Access Journals (Sweden)

    Jiřina Čermáková

    2012-01-01

    Full Text Available Photovoltaic power plants as a renewable energy source have been receiving rapidly growing attention in the Czech Republic and in the other EU countries. This rapid development of photovoltaic sources is having a negative effect on the electricity power system control, because they depend on the weather conditions and provide a variable and unreliable supply of electric power. One way to reduce this effect is by accumulating electricity in hydrogen. The aim of this paper is to introduce hydrogen as a tool for regulating photovoltaic energy in island mode. A configuration has been designed for connecting households with the photovoltaic hybrid system, and a simulation model has been made in order to check the validity of this system. The simulation results provide energy flows and have been used for optimal sizing of real devices. An appropriate system can deliver energy in a stand-alone installation.

  8. Hydrogen energy - the end of the beginning

    International Nuclear Information System (INIS)

    Stuart, A. K.

    1997-01-01

    Financial barriers to the widespread use of hydrogen energy were the principal messages contained in this banquet address. These barriers include the cost for the hydrogen, cost for the supply infrastructure and the cost of developing and building the special vehicles and appliances to use hydrogen. Some hopeful signs that hydrogen energy is emerging include Ballard's buses, early fuel cell private vehicle refueling station and remote energy systems which will be commercialized within the next ten years. The optimism is based on the effects of deregulation of the electric utility industry in the US now spreading to Canada and other countries, the appearance of effective direct hydrogen fuel cell vehicles under strong industrial sponsorship, and the near-term availability of electrolysis for hydrogen production at a fraction of present capital cost. Each of these reasons for optimism were elaborated in some detail. However, the main force behind the hydrogen solution for transportation is the environmental benefit, i.e. the potential of some one billion automobiles around the world running on an environmentally benign fuel, and the potential effect of that fact on global warming. The likely effects of continuing as before is no longer considered a viable option even by the greatest of skeptics of greenhouse gas emissions, a fact that will make the demand for 'clean' vehicles progressively more pressing with the passage of time. By increasing the hydrogen-to-carbon ratio in upgrading heavy hydrocarbons, the petroleum industry itself is showing the way to factor global warming issues into process choices. By going one step further and obtaining the hydrogen from non-fossil sources, the environmental benefits will be multiplied several fold

  9. Antiproton-hydrogen scattering at low-eV energies

    International Nuclear Information System (INIS)

    Morgan Jr., D.L.

    1993-01-01

    In the scattering of negative particles other than the electron by atoms at lab-frame energies around 10 eV, an elastic process termed 'brickwall scattering' might lead to a high probability for scattering angles around 180deg. For an antiproton slowing in hydrogen, this backward scattering would result in the loss of nearly all of its energy in a single collision, since it and a hydrogen atom have nearly the same mass. Such energy loss would have a significant effect on the energy distribution of antiprotons at energies where capture by the protons of hydrogen is possible and might, thereby, affect the capture rate and the distribution of capture states. In the semiclassical treatment of the problem with an adiabatic potential energy, brickwall scattering is indeed present, and with a substantial cross section. However, this model appears to underestimate inelastic processes. Based on calculations for negative muons on hydrogen atoms, these processes appear to occur for about the same impact parameters as brickwall scattering and thus substantially reduce its effect. (orig.)

  10. Application of hydrogen isotopes and metal hydrides in future energy source

    Energy Technology Data Exchange (ETDEWEB)

    Guoqiang, Jiang [Sichuan Inst. of Materials and Technology, Chengdu, SC (China)

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China`s energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed.

  11. Application of hydrogen isotopes and metal hydrides in future energy source

    International Nuclear Information System (INIS)

    Jiang Guoqiang

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China's energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed

  12. Republic of Korea [National and regional programmes on the production of hydrogen using nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    The total primary energy consumption of the Republic of Korea in 2006 was 233 Mtoe (ranking ninth in the world), with 43% petroleum, 24% coal, 16% nuclear, 14% LNG, 2% renewables and 1% hydro. Energy consumption is expected to grow significantly in the future. The country lacks domestic energy resources and currently has to import 97% of its primary energy demand. The Republic of Korea is the sixth largest and fastest growing CO{sub 2} emitter of the OECD countries. The total installed electrical generation capacity is 61.4 GW(e), of which 17.5 GW(e) is from nuclear. As of 2006, 36% of the electricity was generated by nuclear, 38% by coal, 20% by LNG, 5% by petroleum and 1% by hydropower. The Republic of Korea is a small country with a high population density where the use of low-density renewable energies is limited and not a practicable solution. Commercial scale nuclear power generation started at the Kori-1 plant in 1978, and another 19 reactor units have since been built using a mixture of CANDU (4 reactors) and PWR (16 reactors) technologies. The total nuclear capacity amounts to 17.7 GW. Eight more plants are planned to come on-line in the period from 2010 to 2016, adding another 9.4 GW. According to the 'National Energy Basic Plan' of 2008, the share of nuclear in the primary energy should grow to 33% provided by 32 units. Nuclear power research in the Republic of Korea is very active with investigation into a variety of advanced reactors, including the Korea Atomic Energy Research Institute (KAERI) small system-integrated modular advanced reactor (SMART), a 330 MW(th) pressurized water reactor with integral steam generators and advanced safety features, and designed for generating electricity (up to 100 MW(e)) and/or for thermal applications such as seawater desalination. Other advanced reactor concepts under development are a liquid metal fast/transmutation reactor and a high temperature hydrogen generation design.

  13. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  14. OTEC to hydrogen fuel cells - A solar energy breakthrough

    Science.gov (United States)

    Roney, J. R.

    Recent advances in fuel cell technology and development are discussed, which will enhance the Ocean Thermal Energy Conversion (OTEC)-hydrogen-fuel cell mode of energy utilization. Hydrogen obtained from the ocean solar thermal resources can either be liquified or converted to ammonia, thus providing a convenient mode of transport, similar to that of liquid petroleum. The hydrogen fuel cell can convert hydrogen to electric power at a wide range of scale, feeding either centralized or distributed systems. Although this system of hydrogen energy production and delivery has been examined with respect to the U.S.A., the international market, and especially developing countries, may represent the greatest opportunity for these future generating units.

  15. Fiscal 1976 Sunshine Project research report. Interim report (hydrogen energy); 1976 nendo chukan hokokushoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-11-01

    This report summarizes the Sunshine Project research interim reports on hydrogen energy of every organizations. The report includes research items, laboratories, institutes and enterprises concerned, research targets, research plans, and progress conditions. The research items are as follows. (1) Hydrogen production technology (electrolysis, high- temperature high-pressure water electrolysis, 4 kinds of thermochemical techniques, direct thermolysis). (2) Hydrogen transport and storage technology (2 kinds of solidification techniques). (3) Hydrogen use technology (combustion technology, fuel cell, solid electrolyte fuel cell, fuel cell power system, hydrogen fuel engine). (4) Hydrogen safety measures technology (disaster preventive technology for gaseous and liquid hydrogen, preventing materials from embrittlement due to hydrogen, hydrogen refining, transport and storage systems, their safety technology). (5) Hydrogen energy system (hydrogen energy system, hydrogen use subsystems, peripheral technologies). (NEDO)

  16. The potential role of hydrogen energy in India and Western Europe

    International Nuclear Information System (INIS)

    Ruijven, Bas van; Hari, Lakshmikanth; Vuuren, Detlef P. van; Vries, Bert de

    2008-01-01

    We used the TIMER energy model to explore the potential role of hydrogen in the energy systems of India and Western Europe, looking at the impacts on its main incentives: climate policy, energy security and urban air pollution. We found that hydrogen will not play a major role in both regions without considerable cost reductions, mainly in fuel cell technology. Also, energy taxation policy is essential for hydrogen penetration and India's lower energy taxes limit India's capacity to favour hydrogen. Once available to the (European) energy system, hydrogen can decrease the cost of CO 2 emission reduction by increasing the potential for carbon capture technology. However, climate policy alone is insufficient to speed up the transition. Hydrogen diversifies energy imports; especially for Europe it decreases oil imports, while increasing imports of coal and natural gas. For India, it provides an opportunity to decrease oil imports and use indigenous coal resources in the transport sector. Hydrogen improves urban air quality by shifting emissions from urban transport to hydrogen production facilities. However, for total net emissions we found a sensitive trade-off between lower emissions at end-use (in transport) and higher emissions from hydrogen production, depending on local policy for hydrogen production facilities

  17. Development and characterization of a solar-hydrogen energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Vejar, S.; Gonzalez, E.; Perez, M.; Gamboa, S.A.

    2009-01-01

    'Full text': The details of the development of a PV-hydrogen hybrid energy system are presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operates as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW of power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1 kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet, and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations have been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  18. European Hydrogen Energy Road-map (HyWays) - First Results from Simulation, Stakeholder Discussion and Evaluation

    International Nuclear Information System (INIS)

    Reinhold Wurster; Ulrich Bunger; Jean-Marc Agator; Martin Wietschel; Harm Jeeninga

    2006-01-01

    HyWays is an integrated project, co-funded by research institutes, industry, national agencies and by the European Commission under the 6. Framework Programme. HyWays aims to develop a validated and well accepted Road-map for the introduction of hydrogen in the European energy system. The main characteristic of this Road-map is that it reflects real life conditions by taking into account not only technological but also country specific institutional, geographic and socio/economic barriers and opportunities. Both stationary and mobile applications are addressed, including possible synergies ('spill over effects') between these applications. HyWays will systematically describe the future steps to be taken for large-scale introduction of hydrogen as an energy carrier in the power market and transport sector and as a storage medium for renewable energy. An Action Plan for the support of the introduction of hydrogen technologies will be derived from this Road-map. (authors)

  19. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.-M.

    1993-01-01

    The cost of hydrogen from water electrolysis is estimated, assuming that the electricity was produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the sectors of power generation, heat and transportation are calculated, based on a state-of-the-art technology and a more advanced technology expected to represent the state by the year 2010. The cost of hydrogen utilization (without energy taxes) is higher than the current price of fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen will not gain a significant market share in either of the cases discussed. (Author)

  20. Perspectives of a hydrogen-based energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Czakainski, M.

    1989-06-01

    In view of the depletion of fossil fuel resources, and of their environmental effects, research is going on worldwide to find alternative energy sources. Hydrogen has been raising high hopes in recent years and has made a career as a candidate substitute for fossil fuels. There is hydropower or solar energy for electrolytic production of hydrogen which by a catalytic, environmentally friendly process is re-convertable into water. Experimental facilities exist for testing the hydrogen technology, but it is too early now to give any prognosis on the data of technical maturity and commercial feasibility of the technology. The et team invited some experts for a discussion on the pros and cons of hydrogen technology, and on questions such as siting of installations, infrastructure, and economics. (orig./UA).

  1. Hydrogen, an energy carrier with a future

    International Nuclear Information System (INIS)

    Zimmer, K.H.

    1975-01-01

    The inefficient use, associated with pollutants, of the fossil energy carriers coal, crude oil and natural gas, will deplete resources, if the energy demand increases exponentially, in the not-too-distant future. That is the reason why the hydrogen-energy concept gains in importance. This requires drastic changes in structure in a lot of technological fields. This task is only to be mastered if there is cooperation between all special fields, in order to facilitate the economical production, distribution and utilization of hydrogen. (orig.) [de

  2. Towards sustainable energy systems: The related role of hydrogen

    International Nuclear Information System (INIS)

    Hennicke, Peter; Fischedick, Manfred

    2006-01-01

    The role of hydrogen in long run sustainable energy scenarios for the world and for the case of Germany is analysed, based on key criteria for sustainable energy systems. The possible range of hydrogen within long-term energy scenarios is broad and uncertain depending on assumptions on used primary energy, technology mix, rate of energy efficiency increase and costs degression ('learning effects'). In any case, sustainable energy strategies must give energy efficiency highest priority combined with an accelerated market introduction of renewables ('integrated strategy'). Under these conditions hydrogen will play a major role not before 2030 using natural gas as a bridge to renewable hydrogen. Against the background of an ambitious CO 2 -reduction goal which is under discussion in Germany the potentials for efficiency increase, the necessary structural change of the power plant system (corresponding to the decision to phase out nuclear energy, the transformation of the transportation sector and the market implementation order of renewable energies ('following efficiency guidelines first for electricity generation purposes, than for heat generation and than for the transportation sector')) are analysed based on latest sustainable energy scenarios

  3. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  4. [Hydrogen systems analysis, education, and outreach

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    This paper illustrates a search of web sites on the keyword, Hydrogen, and a second search combining keywords, Hydrogen and Renewable Energy. Names, addresses, and E-mail addresses or web site URLs are given for a number of companies and government or commercial organizations dealing with hydrogen fuel cells. Finally, brief summaries are given on hydrogen research projects at the National Renewable Energy Laboratory.

  5. About connection between atomic and hydrogen energy power

    International Nuclear Information System (INIS)

    Avdeeva, M.Zh.; Vecher, A.A.; Pan'kov, V.V.

    2008-01-01

    Possible interaction between atomic and hydrogen energy power has been discussed. The analysis of the result held shows that the electrical energy produced by the atomic reactor during the of-load hours can be involved into the process of obtaining hydrogen by electrolysis. In order to optimize the transportation and storage of hydrogen it is proposed to convert it into ammonia. The direct uses of ammonia as a fuel into the internal combustion engine and fuel cells are examined. (authors)

  6. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  7. Hydrogen economy and nuclear energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2004-01-01

    Global energy outlooks based on present trends, such as WETO study, give little optimism about fulfilling Kyoto commitments in controlling CO2 emissions and avoiding unwanted climate consequences. Whilst the problem of radioactive waste has a prominence in public, in spite of already adequate technical solutions of safe storage for future hundreds and thousands of years, there s generally much less concern with influence of fossil fuels on global climate. In addition to electricity production, process heat and transportation are approximately equal contributors to CO2 emission. Fossil fuels in transportation present also a local pollution problem in congested regions. Backed by extensive R and D, hydrogen economy is seen as the solution, however, often without much thought where from the hydrogen in required very large quantities may come. With welcome contributions from alternative sources, nuclear energy is the only source of energy capable of producing hydrogen in very large amounts, without parallel production of CO2. Future high temperature reactors could do this most efficiently. In view of the fact that nuclear weapon proliferation is not under control, extrapolation from the present level of nuclear power to the future level required by serious attempts to reduce global CO2 emission is a matter of justified concern. Finding the sites for many hundreds of new reactors would, alone, be a formidable problem in developed regions with high population density. What is generally less well understood and not validated is that the production of nuclear hydrogen allows the required large increases of nuclear power without the accompanied increase of proliferation risks. Unlike electricity, hydrogen can be economically shipped or transported by pipelines to places very far from the place of production. Thus, nuclear production of hydrogen can be located and concentrated at few remote, controllable sites, far from the population centers and consumption regions. At such

  8. Optical and thermal energy discharge from tritiated solid hydrogen

    International Nuclear Information System (INIS)

    Magnotta, F.; Mapoles, E.R.; Collins, G.W.; Souers, P.C.

    1991-01-01

    The authors are investigating mechanisms of energy storage and release in tritiated solid hydrogens, by a variety of techniques including ESR, NMR and thermal and optical emission. The nuclear decay of a triton in solid hydrogen initiates the conversion of nuclear energy into stored chemical energy by producing unpaired hydrogen atoms which are trapped within the molecular lattice. The ability to store large quantities of atoms in this manner has been demonstrated and can serve as a basis for new forms of high energy density materials. This paper presents preliminary results of a study of the optical emission from solid hydrogen containing tritium over the visible and near infrared (NIR) spectral regions. Specifically, they have studied optical emission from DT and T 2 using CCD, silicon diode and germanium diode arrays. 8 refs., 6 figs

  9. A local energy market for electricity and hydrogen

    DEFF Research Database (Denmark)

    Xiao, Yunpeng; Wang, Xifan; Pinson, Pierre

    2017-01-01

    The proliferation of distributed energy resources entails efficient market mechanisms in distribution-level networks. This paper establishes a local energy market (LEM) framework in which electricity and hydrogen are traded. Players in the LEM consist of renewable distributed generators (DGs......), loads, hydrogen vehicles (HVs), and a hydrogen storage system (HSS) operated by a HSS agent (HSSA). An iterative LEM clearing method is proposed based on the merit order principle. Players submit offers/bids with consideration of their own preferences and profiles according to the utility functions...

  10. Position Of Hydrogen Energy In Latvian Economics

    International Nuclear Information System (INIS)

    Vanags, M.; Kleperis, J.

    2007-01-01

    Full text: World energy resources are based on fossil fuels mostly (coal, oil, gas) which don't regenerate and will be run low after 30-80 years. Therefore it is necessary to elaborate alternative energy sources today. Also Latvia's energy balance is based mostly on the burning of fossil fuels and importing it from neighbor countries. One from much outstanding alternative energy sources is hydrogen. Hydrogen itself is a very important and most common element in the universe. Only hydrogen obtained from water and burnt in fuel cell back to water will be the renewed and sustainable fuel. There are hundred years old history of hydrogen related researches in Latvia, and there are researchers nowadays here trying to incorporate Latvia in the Hydrogen Society. The power supply in Latvia is based on local resources - water, wind, biogas (partly from waste), wood, peat, and on imported resources (natural gas, natural liquid gas, oil products (including heavy black oil) and coal. Total demand for electricity in Latvia only partly (63% in 2002) is covered with that produced on the site. If energy for heating in Latvia is produced from fossil fuels mostly (natural gas and heavy oil), than more than half of electricity produced in Latvia are based on local renewable resources. The water resources for the production of electricity in Latvia are almost exhausted - there are 3 large HEPS on Daugava River and more than 100 small HEPS on different rivers all over the Latvia. The building of small power stations in Latvia was accelerated very much after introduction of 'double tariff' for electricity from renewable, but from 2003 this time is over. Unfortunately directly power stations on small rivers made very big ecological distress on country side and no more expansion is welcome. The landfill gas in Latvia is a new resource and would result in additional capacity of 50 MW energy. Nowadays two projects started to realize for gas extraction from Getlini (Riga) and Grobina (Liepaja

  11. Strategy for a sustainable development in the UAE through hydrogen energy

    Energy Technology Data Exchange (ETDEWEB)

    Kazim, Ayoub [Dubai Knowledge Village, P.O. Box 73000 Dubai (United Arab Emirates)

    2010-10-15

    Recently, it has been reported that United Arab Emirates is considered one of the highest energy consumers per capita in the world. Consequently, environmental pollution and carbon emission has been a major challenge facing the country over the past several years due to unprecedented high economic growth rate and abnormal population increase. Utilization of hydrogen energy to fulfill UAE's energy needs would be one of the key measures that the country could undertake to achieve a sustainable development and without any major environmental consequences. Hydrogen energy, which is an energy carrier, is consider by many scientists and researchers a major player in fulfilling the global energy demand due to its attractive features such as being environmentally clean, storable, transportable and inexhaustible. It can be used as a fuel in the proton exchange membrane (PEM) fuel cell, which is an electrochemical device that generates electric power and it can be utilized in various applications. Production of hydrogen energy can be carried out either through utilizing conventional resources or by renewable resources. Conventional resources such as crude oil and natural gas can produce hydrogen by steam-reformation while hydrogen can be produced from coal through gasification. On the other hand, hydrogen production through renewable resources can be achieved through biomass gasification, solar-hydrogen, wind-hydrogen and hydropower electrolysis process. Other renewable resources such as geothermal, wave, tidal and ocean thermal energy conversion (OTEC) can also contribute into hydrogen production but at a marginal level. In this report, a roadmap to achieve a sustainable development in the UAE through utilization of hydrogen energy is presented. The report highlights the potentials of energy resources that the country possesses with respect to both conventional and non-conventional energy and determines major resources that could significantly contribute to production

  12. First high energy hydrogen cluster beams

    International Nuclear Information System (INIS)

    Gaillard, M.J.; Genre, R.; Hadinger, G.; Martin, J.

    1993-03-01

    The hydrogen cluster accelerator of the Institut de Physique Nucleaire de Lyon (IPN Lyon) has been upgraded by adding a Variable Energy Post-accelerator of RFQ type (VERFQ). This operation has been performed in the frame of a collaboration between KfK Karlsruhe, IAP Frankfurt and IPN Lyon. The facility has been designed to deliver beams of mass selected Hn + clusters, n chosen between 3 and 49, in the energy range 65-100 keV/u. For the first time, hydrogen clusters have been accelerated at energies as high as 2 MeV. This facility opens new fields for experiments which will greatly benefit from a velocity range never available until now for such exotic projectiles. (author) 13 refs.; 1 fig

  13. Hydrogen and nuclear energy

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Hancox, W.T.; Pendergast, D.R.

    1999-01-01

    The current world-wide emphasis on reducing greenhouse gas (GHG) emissions provides an opportunity to revisit how energy is produced and used, consistent with the need for human and economic growth. Both the scale of the problem and the efforts needed for its resolution are extremely large. We argue that GHG reduction strategies must include a greater penetration of electricity into areas, such as transportation, that have been the almost exclusive domain of fossil fuels. An opportunity for electricity to displace fossil fuel use is through electrolytic production of hydrogen. Nuclear power is the only large-scale commercially proven non-carbon electricity generation source, and it must play a key role. As a non-carbon power source, it can also provide the high-capacity base needed to stabilize electricity grids so that they can accommodate other non-carbon sources, namely low-capacity factor renewables such as wind and solar. Electricity can be used directly to power standalone hydrogen production facilities. In the special case of CANDU reactors, the hydrogen streams can be preprocessed to recover the trace concentrations of deuterium that can be re-oxidized to heavy water. World-wide experience shows that nuclear power can achieve high standards of public safety, environmental protection and commercially competitive economics, and must . be an integral part of future energy systems. (author)

  14. Energy conversion, storage and transportation by means of hydrogen

    International Nuclear Information System (INIS)

    Friedlmeier, G; Mateos, P; Bolcich, J.C.

    1988-01-01

    Data concerning the present consumption of energy indicate that the industrialized countries (representing 25% of the world's population) consume almost 75% of the world's energy production, while the need for energy aimed at maintaining the growth of non-industrialized countries increases day after day. Since estimations indicate that the fossil reverses will exhaust within frightening terms, the production of hydrogen from fossil fuels and, fundamentally, from renewable sources constitute a response to future energy demand. The production of hydrogen from water is performed by four different methods: direct thermal, thermochemical, electrolysis and photolysis. Finally, different ways of storaging and using hydrogen are proposed. (Author)

  15. The potential impact of hydrogen energy use on the atmosphere

    Science.gov (United States)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  16. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  17. A renewable energy and hydrogen scenario for northern Europe

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2008-01-01

    renewable energy supply system is demonstrated with the use of the seasonal reservoir-based hydrocomponents in the northern parts of the region. The outcome of the competition between biofuels and hydrogen in the transportation sector is dependent on the development of viable fuel cells and on efficient......A scenario based entirely on renewable energy with possible use of hydrogen as an energy carrier is constructed for a group of North European countries. Temporal simulation of the demand-supply matching is carried out for various system configurations. The role of hydrogen technologies for energy...... of energy trade between the countries, due to the different endowments of different countries with particular renewable energy sources, and to the particular benefit that intermittent energy sources, such as wind and solar, can derive from exchange of power. The establishment of a smoothly functioning...

  18. The Italian hydrogen programme

    International Nuclear Information System (INIS)

    Raffaele Vellone

    2001-01-01

    Hydrogen could become an important option in the new millennium. It provides the potential for a sustainable energy system as it can be used to meet most energy needs without harming the environment. In fact, hydrogen has the potential for contributing to the reduction of climate-changing emissions and other air pollutants as it exhibits clean combustion with no carbon or sulphur oxide emissions and very low nitrogen oxide emissions. Furthermore, it is capable of direct conversion to electricity in systems such as fuel cells without generating pollution. However, widespread use of hydrogen is not feasible today because of economic and technological barriers. In Italy, there is an ongoing national programme to facilitate the introduction of hydrogen as an energy carrier. This programme aims to promote, in an organic frame, a series of actions regarding the whole hydrogen cycle. It foresees the development of technologies in the areas of production, storage, transport and utilisation. Research addresses the development of technologies for separation and sequestration of CO 2 , The programme is shared by public organisations (research institutions and universities) and national industry (oil companies, electric and gas utilities and research institutions). Hydrogen can be used as a fuel, with significant advantages, both for electric energy generation/ co-generation (thermo-dynamic cycles and fuel cells) and transportation (internal combustion engine and fuel cells). One focus of research will be the development of fuel cell technologies. Fuel cells possess all necessary characteristics to be a key technology in a future economy based on hydrogen. During the initial phase of the project, hydrogen will be derived from fossil sources (natural gas), and in the second phase it will be generated from renewable electricity or nuclear energy. The presentation will provide a review of the hydrogen programme and highlight future goals. (author)

  19. Meeting report - Which role for hydrogen in the energy system?

    International Nuclear Information System (INIS)

    Dupre La Tour, Stephane; Raimondo, E.

    2015-01-01

    Before giving some general information about the activities of the SFEN, about some events regarding the energy sector, and about meetings to come, a contribution is proposed on the role of hydrogen in the energy system. The author recalls the industrial methods used to produce hydrogen (water electrolysis, reforming of fossil fuels), indicates the main applications (fuel cells, power-to-gas, industrial applications, fuel for transport). He discusses the potential of hydrogen as a good energy vector for the future. Required technical advances are identified, as well as potential industrial applications. The competitiveness of the different hydrogen production technologies is discussed, and the different uses are more precisely described and discussed (principle of fuel cell, French researches on hybrid vehicle, application to heavy vehicles, perspectives for air transport). Other technological issues are briefly addressed: direct injection of hydrogen in gas distribution network or production of synthetic methane, combined hydrolysis of CO 2 and H 2 O, hydrogen storage. After having outlined some remaining questions about the exploitation of hydrogen as energy vector, the author proposes some guidelines for the future: development of tools to analyse the competitiveness of hydrogen uses, improvement of existing technologies in terms of performance and costs, development of breakthrough technologies

  20. Hydrogen Energy Storage: Grid and Transportation Services (Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    Proceedings of an expert workshop convened by the U.S. Department of Energy and Industry Canada, and hosted by the National Renewable Energy Laboratory and the California Air Resources Board, May 14-15, 2014, in Sacramento, California, to address the topic of hydrogen energy storage (HES). HES systems provide multiple opportunities to increase the resilience and improve the economics of energy sup supply systems underlying the electric grid, gas pipeline systems, and transportation fuels. This is especially the case when considering particular social goals and market drivers, such as reducing carbon emissions, increasing reliability of supply, and reducing consumption of conventional petroleum fuels. This report compiles feedback collected during the workshop, which focused on policy and regulatory issues related to HES systems. Report sections include an introduction to HES pathways, market demand, and the "smart gas" concept; an overview of the workshop structure; and summary results from panel presentations and breakout groups.

  1. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Science.gov (United States)

    2013-07-22

    ... DEPARTMENT OF ENERGY Notice of Availability Hydrogen Energy California's Integrated Gasification... Energy (DOE) announces the availability of the Hydrogen Energy California's Integrated Gasification... potential environmental impacts associated with the Hydrogen Energy California's (HECA) Integrated...

  2. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    International Nuclear Information System (INIS)

    Sulaiman, A; Inambao, F; Bright, G

    2014-01-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future

  3. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    Science.gov (United States)

    Sulaiman, A.; Inambao, F.; Bright, G.

    2014-07-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future.

  4. The US department of energy's research and development plans for the use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Henderson, A.D.; Pickard, P.S.; Park, C.V.; Kotek, J.F.

    2004-01-01

    The potential of hydrogen as a transportation fuel and for stationary power applications has generated significant interest in the United States. President George W. Bush has set the transition to a 'hydrogen economy' as one of the Administration's highest priorities. A key element of an environmentally-conscious transition to hydrogen is the development of hydrogen production technologies that do not emit greenhouse gases or other air pollutants. The Administration is investing in the development of several technologies, including hydrogen production through the use of renewable fuels, fossil fuels with carbon sequestration, and nuclear energy. The US Department of Energy's Office of Nuclear Energy, Science and Technology initiated the Nuclear Hydrogen Initiative to develop hydrogen production cycles that use nuclear energy. The Nuclear Hydrogen Initiative has completed a Nuclear Hydrogen R and D Plan to identify candidate technologies, assess their viability, and define the R and D required to enable the demonstration of nuclear hydrogen production by 2016. This paper gives a brief overview of the Nuclear Hydrogen Initiative, describes the purposes of the Nuclear Hydrogen R and D Plan, explains the methodology followed to prepared the plan, presents the results, and discusses the path forward for the US programme to develop technologies which use nuclear energy to produce hydrogen. (author)

  5. Low-energy charge transfer for collisions of Si3+ with atomic hydrogen

    Science.gov (United States)

    Bruhns, H.; Kreckel, H.; Savin, D. W.; Seely, D. G.; Havener, C. C.

    2008-06-01

    Cross sections of charge transfer for Si3+ ions with atomic hydrogen at collision energies of ≈40-2500eV/u were carried out using a merged-beam technique at the Multicharged Ion Research Facility at Oak Ridge National Laboratory. The data span an energy range in which both molecular orbital close coupling (MOCC) and classical trajectory Monte Carlo (CTMC) calculations are available. The influence of quantum mechanical effects of the ionic core as predicted by MOCC is clearly seen in our results. However, discrepancies between our experiment and MOCC results toward higher collision energies are observed. At energies above 1000 eV/u good agreement is found with CTMC results.

  6. WE-NET Hydrogen Energy Symposium proceedings; WE-NET suiso energy symposium koen yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-24

    The research and development of WE-NET (World Energy Network) was started in 1993 as a NEDO (New Energy and Industrial Technology Development Organization) project in the New Sunshine Program of Agency of Industrial Science and Technology, Ministry of International Trade and Industry, and aims to contribute to the improvement of global environment and to ease the difficult energy supply/demand situation. The ultimate goal of WE-NET is the construction of a global-scale clean energy network in which hydrogen will be produced from renewable energies such as water and sunshine for distribution to energy consuming locations. Experts are invited to the Symposium from the United States, Germany, and Canada. Information is collected from the participants on hydrogen energy technology development in the three countries, the result of the Phase I program of WE-NET is presented to hydrogen energy scientists in Japan, and views and opinions on the project are collected from them. Accommodated in the above-named publication are 30 essays and three special lectures delivered at the Symposium. (NEDO)

  7. Renewable based hydrogen energy projects in remote and island communities

    International Nuclear Information System (INIS)

    Miles, S.; Gillie, M.

    2009-01-01

    Task 18 working group of the International Energy Agency's Hydrogen Implementing Agreement has been evaluating and documenting experiences with renewable based hydrogen energy projects in remote and island communities in the United Kingdom, Canada, Norway, Iceland, Gran Canaria, Spain and New Zealand. The objective was to examine the lessons learned from existing projects and provide recommendations regarding the effective development of hydrogen systems. In order to accomplish this task, some of the drivers behind the niche markets where hydrogen systems have already been developed, or are in the development stages, were studied in order to determine how these could be expanded and modified to reach new markets. Renewable based hydrogen energy projects for remote and island communities are currently a key niche market. This paper compared various aspects of these projects and discussed the benefits, objectives and barriers facing the development of a hydrogen-based economy

  8. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  9. Demonstration of Hydrogen Energy Network and Fuel Cells in Residential Homes

    International Nuclear Information System (INIS)

    Hirohisa Aki; Tetsuhiko Maeda; Itaru Tamura; Akeshi Kegasa; Yoshiro Ishikawa; Ichiro Sugimoto; Itaru Ishii

    2006-01-01

    The authors proposed the setting up of an energy interchange system by establishing energy networks of electricity, hot water, and hydrogen in residential homes. In such networks, some homes are equipped with fuel cell stacks, fuel processors, hydrogen storage devices, and large storage tanks for hot water. The energy network enables the flexible operation of the fuel cell stacks and fuel processors. A demonstration project has been planned in existing residential homes to evaluate the proposal. The demonstration will be presented in a small apartment building. The building will be renovated and will be equipped with a hydrogen production facility, a hydrogen interchange pipe, and fuel cell stacks with a heat recovery device. The energy flow process from hydrogen production to consumption in the homes will be demonstrated. This paper presents the proposed energy interchange system and demonstration project. (authors)

  10. Hybrid Hydrogen and Mechanical Distributed Energy Storage

    Directory of Open Access Journals (Sweden)

    Stefano Ubertini

    2017-12-01

    Full Text Available Effective energy storage technologies represent one of the key elements to solving the growing challenges of electrical energy supply of the 21st century. Several energy storage systems are available, from ones that are technologically mature to others still at a research stage. Each technology has its inherent limitations that make its use economically or practically feasible only for specific applications. The present paper aims at integrating hydrogen generation into compressed air energy storage systems to avoid natural gas combustion or thermal energy storage. A proper design of such a hybrid storage system could provide high roundtrip efficiencies together with enhanced flexibility thanks to the possibility of providing additional energy outputs (heat, cooling, and hydrogen as a fuel, in a distributed energy storage framework. Such a system could be directly connected to the power grid at the distribution level to reduce power and energy intermittence problems related to renewable energy generation. Similarly, it could be located close to the user (e.g., office buildings, commercial centers, industrial plants, hospitals, etc.. Finally, it could be integrated in decentralized energy generation systems to reduce the peak electricity demand charges and energy costs, to increase power generation efficiency, to enhance the security of electrical energy supply, and to facilitate the market penetration of small renewable energy systems. Different configurations have been investigated (simple hybrid storage system, regenerate system, multistage system demonstrating the compressed air and hydrogen storage systems effectiveness in improving energy source flexibility and efficiency, and possibly in reducing the costs of energy supply. Round-trip efficiency up to 65% can be easily reached. The analysis is conducted through a mixed theoretical-numerical approach, which allows the definition of the most relevant physical parameters affecting the system

  11. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  12. Hydrogen based global renewable energy network

    Energy Technology Data Exchange (ETDEWEB)

    Akai, Makoto [Mechanical Engineering Laboratory, AIST, MITI, Namiki, Tsukuba (Japan)

    1993-12-31

    In the last quarter of this century, global environmental problem has emerged as a major scientific, political and social issue. Specific Problems include: depletion of ozone layer by chlorofluorocarbons (CFCs), acid rain, destruction of tropical forests and desertification, pollution of the sea and global wanning due to the greenhouse effect by carbon dioxide and others. Among these problems, particular attention of the world has been focused on the global warming because it has direct linkage to energy consumption which our economic development depends on so far. On the other hand, the future program of The Sunshine Project for alternative energy technology R&D, The Moonlight Project for energy conservation technology R&D, and The Global Environmental Technology Program for environmental problem mitigating technology R&D which are Japan`s national projects being promoted by their Agency of Industrial Science and Technology (AIST) in the Ministry of International Trade and Industry have been reexamined in view of recent changes in the situations surrounding new energy technology. In this regard, The New Sunshine Program will be established by integrating these three activities to accelerate R&D in the field of energy and environmental technologies. In the reexamination, additional stress has been laid on the contribution to solving global environmental problem through development of clean renewable energies which constitute a major part of the {open_quotes}New Earth 21{close_quotes}, a comprehensive, long-term and international cooperative program proposed by MITI. The present paper discusses the results of feasibility study on hydrogen energy system leading to the concept of WE-NET following a brief summary on R&D status on solar and wind energy in Japan.

  13. Hydrogen, fuel of the future?

    International Nuclear Information System (INIS)

    Bello, B.

    2008-01-01

    The European project HyWays has drawn out the road map of hydrogen energy development in Europe. The impact of this new energy vector on the security of energy supplies, on the abatement of greenhouse gases and on the economy should be important in the future. This article summarizes the main conclusions of the HyWays study: CO 2 emissions, hydrogen production mix, oil saving abatement, economic analysis, contribution of hydrogen to the development of renewable energies, hydrogen uses, development of regional demand and of users' centers, transport and distribution. The proposals of the HyWays consortium are as follows: implementing a strong public/private European partnership to reach the goals, favoring market penetration, developing training, tax exemption on hydrogen in the initial phase for a partial compensation of the cost difference, inciting public fleets to purchase hydrogen-fueled vehicles, using synergies with other technologies (vehicles with internal combustion engines, hybrid vehicles, biofuels of second generation..), harmonizing hydrogen national regulations at the European scale. (J.S.)

  14. Smooth feeding-in of wind energy via hydrogen

    International Nuclear Information System (INIS)

    Lehmann, J.; Sponholz, C.; Luschtinetz, O.U.T.; Miege, A.; Sandlass, H.

    2006-01-01

    For the northern part of Germany the harvest of wind energy became characteristic. 1,018 GW have been installed by 2004. A higher electricity production with re-powered wind parks on shore and new off shore parks is planned. The estimated production could reach 50 GW by 2020. On the other hand, more than 20 30 % discontinuous electricity related to the demand could bring instabilities of the net. Unfortunately the demand in North-Germany is a relatively small one and the net is weak. There are three possibilities to protect the net: 1. Reconstruction of the net, especially net extension 2. Improvement of the prognosis of wind and electricity consumption as well 3. A net management, which shuts up wind parks during less demand periods Point 2 and 3 are related with the stand by of back-up power, power delivered by conventional power stations or storage power stations (for example storage by water pumping). The proposal is as follows: Wind parks should be connected with a loop from electrolysis, gas storage and reconversion of hydrogen into electricity. In this way a park will be able to feed electricity into the net according to the actual demand and controlled by the demand. Going into detail a wind farm can run according to four scenarios. The first one is the conventional wind park, which causes the problems mentioned above. The electrical energy output follows the natural wind yield and the grid has to be adapted to the wind power feed-in. One solution for a temporal decoupling of wind yield and electricity output is a combination of windmills with a storage loop as shown in scenario II and IV. The system of scenario II de-couples the fluctuating input (wind) and the constant output (electricity). The advantage of this system is that the electrical output is constant and independent of the actual wind speed. For this reason this wind park acts as a constant power plant within the grid. Scenario Ill, the grid adapted feed-in, extends the former scenario with a

  15. Potential of hydrogen production from wind energy in Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M. A.; Harijan, K.; Memon, M.

    2007-01-01

    The transport sector consumes about 34% of the total commercial energy consumption in Pakistan. About 97% of fuel used in this sector is oil and the remaining 3% is CNG and electricity. The indigenous reserves of oil and gas are limited and the country is heavily dependent on the import of oil. The oil import bill is serious strain on the country's economy. The production, transportation and consumption of fossil fuels also degrade the environment. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply in the transport sector. Sindh, the second largest province of Pakistan, has about 250 km long coastline. The estimated average annual wind speed at 50 m height at almost all sites is about 6-7 m/s, indicating that Sindh has the potential to effectively utilize wind energy source for power generation and hydrogen production. A system consisting of wind turbines coupled with electrolyzers is a promising design to produce hydrogen. This paper presents an assessment of the potential of hydrogen production from wind energy in the coastal area of Sindh, Pakistan. The estimated technical potential of wind power is 386 TWh per year. If the wind electricity is used to power electrolyzers, 347.4 TWh hydrogen can be produced annually, which is about 1.2 times the total energy consumption in the transport sector of Pakistan in 2005. The substitution of oil with renewable hydrogen is essential to increase energy independence, improve domestic economies, and reduce greenhouse gas and other harmful emissions

  16. A manual of recommended practices for hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, W.; Leach, S. [W. Hoagland and Associates, Boulder, CO (United States)

    1997-12-31

    Technologies for the production, distribution, and use of hydrogen are rapidly maturing and the number and size of demonstration programs designed to showcase emerging hydrogen energy systems is expanding. The success of these programs is key to hydrogen commercialization. Currently there is no comprehensive set of widely-accepted codes or standards covering the installation and operation of hydrogen energy systems. This lack of codes or standards is a major obstacle to future hydrogen demonstrations in obtaining the requisite licenses, permits, insurance, and public acceptance. In a project begun in late 1996 to address this problem, W. Hoagland and Associates has been developing a Manual of Recommended Practices for Hydrogen Systems intended to serve as an interim document for the design and operation of hydrogen demonstration projects. It will also serve as a starting point for some of the needed standard-setting processes. The Manual will include design guidelines for hydrogen procedures, case studies of experience at existing hydrogen demonstration projects, a bibliography of information sources, and a compilation of suppliers of hydrogen equipment and hardware. Following extensive professional review, final publication will occur later in 1997. The primary goal is to develop a draft document in the shortest possible time frame. To accomplish this, the input and guidance of technology developers, industrial organizations, government R and D and regulatory organizations and others will be sought to define the organization and content of the draft Manual, gather and evaluate available information, develop a draft document, coordinate reviews and revisions, and develop recommendations for publication, distribution, and update of the final document. The workshop, Development of a Manual of Recommended Practices for Hydrogen Energy Systems, conducted on March 11, 1997 in Alexandria, Virginia, was a first step.

  17. Hydrogen research and development in Hawaii: Hawaii natural energy institute's hydrogen from renewable resources research program

    International Nuclear Information System (INIS)

    McKinley, K.R.; Rocheleau, R.E.; Takahashi, P.K.; Jensen, C.M.

    1993-01-01

    Hawaii, an energy-vulnerable state, has launched a Renewable Resources Research Program, focusing on hydrogen production and storage; the main tasks of this effort are: photoelectrochemical production of hydrogen through the use of coated silicon electrodes; solar conversion and the production of hydrogen with cyanobacteria; improved hydrogen storage through the use of nonclassical poly-hydride metal complexes. 10 refs

  18. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2010-06-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  19. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2009-08-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  20. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    International Nuclear Information System (INIS)

    Pedersen, Birgit; Bindslev, H.

    2009-08-01

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  1. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H [eds.

    2010-06-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  2. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    International Nuclear Information System (INIS)

    Pedersen, Birgit; Bindslev, H.

    2010-06-01

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  3. Role of nuclear produced hydrogen for global environment and energy

    International Nuclear Information System (INIS)

    Tashimo, M.; Kurosawa, A.; Ikeda, K.

    2004-01-01

    Sustainability on economical growth, energy supply and environment are major issues for the 21. century. Within this context, one of the promising concepts is the possibility of nuclear-produced hydrogen. In this study, the effect of nuclear-produced hydrogen on the environment is discussed, based on the output of the computer code 'Grape', which simulates the effects of the energy, environment and economy in 21. century. Five cases are assumed in this study. The first case is 'Business as usual by Internal Combustion Engine (ICE)', the second 'CO 2 limited to 550 ppm by ICE', the third 'CO 2 limited to 550 ppm by Hybrid Car', the fourth 'CO 2 limited to 550 ppm by Fuel Cell Vehicle (FCV) with Hydrogen produced by conventional Steam Methane Reforming (SMR)' and the fifth 'CO 2 limited to 550 ppm by FCV with Nuclear Produced-Hydrogen'. The energy used for transportation is at present about 25% of the total energy consumption in the world and is expected to be the same in the future, if there is no improvement of energy efficiency for transportation. On this point, the hybrid car shows the much better efficiency, about 2 times better than traditional internal combustion engines. Fuel Cell powered Vehicles are expected to be a key to resolving the combined issue of the environment and energy in this century. The nuclear-produced hydrogen is a better solution than conventional hydrogen production method using steam methane reforming. (author)

  4. A hydrogen economy - an answer to future energy problems

    International Nuclear Information System (INIS)

    Seifritz, W.

    1975-01-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems. (Auth.)

  5. A hydrogen economy: opportunities and challenges

    International Nuclear Information System (INIS)

    Tseng, P.; Lee, J.; Friley, P.

    2005-01-01

    A hydrogen economy, the long-term goal of many nations, can potentially confer energy security, along with environmental and economic benefits. However, the transition from a conventional petroleum-based energy system to a hydrogen economy involves many uncertainties, such as the development of efficient fuel-cell technologies, problems in hydrogen production and its distribution infrastructure, and the response of petroleum markets. This study uses the US MARKAL model to simulate the impacts of hydrogen technologies on the US energy system and to identify potential impediments to a successful transition. Preliminary findings highlight possible market barriers facing the hydrogen economy, as well as opportunities in new R and D and product markets for bioproducts. Quantitative analysis also offers insights on policy options for promoting hydrogen technologies. (author)

  6. Hydrogen energy and fuel cells. A vision of our future

    International Nuclear Information System (INIS)

    2003-01-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  7. Hydrogen energy and fuel cells. A vision of our future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  8. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  9. Transportable Hydrogen Research Plant Based on Renewable Energy

    International Nuclear Information System (INIS)

    Mikel Fernandez; Carlos Madina; Asier Gil de Muro; Jose Angel Alzolab; Iker Marino; Javier Garcia-Tejedor; Juan Carlos Mugica; Inaki Azkkrate; Jose Angel Alzola

    2006-01-01

    Efficiency and cost are nowadays the most important barriers for the penetration of systems based on hydrogen and renewable energies. According to this background, TECNALIA Corporation has started in 2004 the HIDROTEC project: 'Hydrogen Technologies for Renewable Energy Applications'. The ultimate aim of this project is the implementation of a multipurpose demonstration and research plant in order to explore diverse options for sustainable energetic solutions based on hydrogen. The plant is conceived as an independent system that can be easily transported and assembled. Research and demonstration activities can thus be carried out at very different locations, including commercial renewable facilities. Modularity and scalability have also been taken into account for an optimised exploitation. (authors)

  10. Hydrogen from nuclear energy and the impact on climate change

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Poehnell, T.G.

    2001-01-01

    The two major candidates for hydrogen production include nuclear power and other renewable energy sources. However, hydrogen produced by steam reforming of natural gas offers little advantage in total cycle greenhouse gas (GHG) emissions over hybrid internal combustion engine (ICE) technology. Only nuclear power offers the possibility of cutting GHG emissions significantly and to economically provide electricity for traditional applications and by producing hydrogen for its widespread use in the transportation sector. Using nuclear energy to produce hydrogen for transportation fuel, doubles or triples nuclear's capacity to reduce GHG emissions. An analysis at the Atomic Energy of Canada shows that a combination of hydrogen fuel and nuclear energy can stabilize GHG emissions and climate change for a wide range of the latest scenarios presented by the Intergovernmental Panel on Climate Change. The technology for replacing hydrocarbon fuels with non-polluting hydrogen exists with nuclear power, electrolysis and fuel cells, using electric power grids for distribution. It was emphasized that a move toward total emissions-free transportation will be a move towards solving the negative effects of climate change. This paper illustrated the trends between global economic and atmospheric carbon dioxide concentrations. Low carbon dioxide emission energy alternatives were discussed along with the sources of hydrogen and the full cycle assessment results in reduced emissions. It was shown that deploying 20 CANDU NPPs (of 690 MW (e) net each) would fuel 13 million vehicles with the effect of levelling of carbon dioxide emissions from transportation between 2020 to 2030. 13 refs., 2 tabs., 3 figs

  11. Development of a Hydrogen Energy System as a Grid Frequency Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Ewan, Mitch [Univ. of Hawaii, Honolulu, HI (United States); Rocheleau, Richard [Univ. of Hawaii, Honolulu, HI (United States); Swider-Lyons, Karen [U.S. Naval Research Lab., Washington, DC (United States); Virji, Meheboob [GRandalytics, Honolulu, HI (United States); Randolph, Guenter [Hydrogen Renewable Energy System Analysis, Pickering, ON (Canada)

    2016-07-15

    The Hawai‘i Natural Energy Institute (HNEI) is conducting research to assess the technical potential of using an electrolyzer-based hydrogen (H2) production and storage system as a grid demand response tool using battery data from a 200 MW grid to show the kind of response required. The hydrogen produced by the electrolyzer is used for transportation. A 65 kg/day hydrogen energy system (HES) consisting of a PEM electrolyzer, 35 bar buffer tank, 450 bar compressor, and associated chiller systems was purchased and installed at the Hawaii Natural Energy Laboratory Hawaii Authority (NELHA) to demonstrate long-term durability of the electrolyzer under cyclic operation required for frequency regulation on an island grid system. The excess hydrogen was stored for use by three fuel-cell buses to be operated at Hawai‘i Volcanoes National Park (HAVO) and by the County of Hawai‘i Mass Transit Agency (MTA). This paper describes the site selection and equipment commissioning, plus a comprehensive test plan that was developed to characterize the performance and durability of the electrolyzer under dynamic load conditions. The controls were modified for the operating envelope and dynamic limits of the electrolyzer. While the data showed these modifications significantly improved the system response time, it is not fast enough to match a BESS response time for grid frequency management. The electrolyzer can only be used for slower acting changes (1 to 0.5 Hz). A potential solution is to design an electrolyzer/BESS hybrid system and develop a modeling program to find the optimum mix of battery and electrolyzer to provide the maximum grid regulation services at minimum cost.

  12. Proceedings of the 14. world hydrogen energy conference 2002 : The hydrogen planet. CD-ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    Venter, R.D.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene; Veziroglu, N. [International Association for Hydrogen Energy, Coral Gables, FL (United States)] (eds.)

    2002-07-01

    Hydrogen has often been named as the ultimate fuel because it can be generated from a variety of renewable and non-renewable fuels and its direct conversion to electricity in fuel cells is efficient and results in no emissions other than water vapour. The opportunities and issues associated with the use of hydrogen as the energy carrier of the future were presented at this conference which addressed all aspects of hydrogen and fuel cell development including hydrogen production, storage, hydrogen-fuelled internal combustion engines, hydrogen infrastructure, economics, and the environment. Hydrogen is currently used as a chemical feedstock and a space fuel, but it is receiving considerable attention for bring renewable energy into the transportation and power generation sectors with little or no environmental impact at the point of end use. Canada leads the way in innovative ideas for a hydrogen infrastructure, one of the most challenging tasks for the transportation sector along with hydrogen storage. Major vehicle manufacturers have announced that they will have hydrogen-fueled cars and buses on the market beginning in 2003 and 2004. Solid oxide fuel cells will be used for generating electricity with efficiencies of 70 per cent, and proton exchange membrane (PEM) and other fuel cells are being tested for residential power supply with efficiencies of 85 per cent. The conference included an industrial exposition which demonstrated the latest developments in hydrogen and fuel cell research. More than 300 papers were presented at various oral and poster sessions, of which 172 papers have been indexed separately for inclusion in the database.

  13. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    TIAX, LLC

    2005-05-04

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational

  14. Hydrogen: an energy vector for the future?

    International Nuclear Information System (INIS)

    His, St.

    2004-01-01

    Used today in various industrial sectors including refining and chemicals, hydrogen is often presented as a promising energy vector for the transport sector. However, its balance sheet presents disadvantages as well as advantages. For instance, some of its physical characteristics are not very well adapted to transport use and hydrogen does not exist in pure form. Hydrogen technologies can offer satisfactory environmental performance in certain respects, but remain handicapped by costs too high for large-scale development. A great deal of research will be required to develop mass transport application. (author)

  15. Hydrogen: an energy vector for the future?

    Energy Technology Data Exchange (ETDEWEB)

    His, St

    2004-07-01

    Used today in various industrial sectors including refining and chemicals, hydrogen is often presented as a promising energy vector for the transport sector. However, its balance sheet presents disadvantages as well as advantages. For instance, some of its physical characteristics are not very well adapted to transport use and hydrogen does not exist in pure form. Hydrogen technologies can offer satisfactory environmental performance in certain respects, but remain handicapped by costs too high for large-scale development. A great deal of research will be required to develop mass transport application. (author)

  16. Hydrogen is an energy source for hydrothermal vent symbioses.

    Science.gov (United States)

    Petersen, Jillian M; Zielinski, Frank U; Pape, Thomas; Seifert, Richard; Moraru, Cristina; Amann, Rudolf; Hourdez, Stephane; Girguis, Peter R; Wankel, Scott D; Barbe, Valerie; Pelletier, Eric; Fink, Dennis; Borowski, Christian; Bach, Wolfgang; Dubilier, Nicole

    2011-08-10

    The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.

  17. Hydrogen and Fuel Cell Transit Bus Evaluations : Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration

    Science.gov (United States)

    2008-05-01

    This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportations Federal Transit Administration (...

  18. Hydrogen energy in changing environmental scenario: Indian context

    International Nuclear Information System (INIS)

    Leo Hudson, M. Sterlin; Dubey, P.K.; Pukazhselvan, D.; Pandey, Sunil Kumar; Singh, Rajesh Kumar; Raghubanshi, Himanshu; Shahi, Rohit R.; Srivastava, O.N.

    2009-01-01

    This paper deals with how the Hydrogen Energy may play a crucial role in taking care of the environmental scenario/climate change. The R and D efforts, at the Hydrogen Energy Center, Banaras Hindu University have been described and discussed to elucidate that hydrogen is the best option for taking care of the environmental/climate changes. All three important ingredients for hydrogen economy, i.e., production, storage and application of hydrogen have been dealt with. As regards hydrogen production, solar routes consisting of photoelectrochemical electrolysis of water have been described and discussed. Nanostructured TiO 2 films used as photoanodes have been synthesized through hydrolysis of Ti[OCH(CH 3 ) 2 ] 4 . Modular designs of TiO 2 photoelectrode-based PEC cells have been fabricated to get high hydrogen production rate (∝10.35 lh -1 m -2 ). However, hydrogen storage is a key issue in the success and realization of hydrogen technology and economy. Metal hydrides are the promising candidates due to their safety advantage with high volume efficient storage capacity for on-board applications. As regards storage, we have discussed the storage of hydrogen in intermetallics as well as lightweight complex hydride systems. For intermetallic systems, we have dealt with material tailoring of LaNi 5 through Fe substitution. The La(Ni l-x Fe x ) 5 (x = 0.16) has been found to yield a high storage capacity of ∝2.40 wt%. We have also discussed how CNT admixing helps to improve the hydrogen desorption rate of NaAlH 4 . CNT (8 mol%) admixed NaAlH 4 is found to be optimum for faster desorption (∝3.3 wt% H 2 within 2 h). From an applications point of view, we have focused on the use of hydrogen (stored in intermetallic La-Ni-Fe system) as fuel for Internal Combustion (IC) engine-based vehicular transport, particularly two and three-wheelers. It is shown that hydrogen used as a fuel is the most effective alternative fuel for circumventing climate change. (author)

  19. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  20. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  1. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    Science.gov (United States)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  2. Measurements of energy distribution and thrust for microwave plasma coupling of electrical energy to hydrogen for propulsion

    Science.gov (United States)

    Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.

    1982-01-01

    A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.

  3. HYDROGEN ENERGY: TERCEIRA ISLAND DEMONSTRATION FACILITY

    Directory of Open Access Journals (Sweden)

    MARIO ALVES

    2008-07-01

    Full Text Available The present paper gives a general perspective of the efforts going on at Terceira Island in Azores, Portugal, concerning the implementation of an Hydrogen Economy demonstration campus. The major motivation for such a geographical location choice was the abundance of renewable resources like wind, sea waves and geothermal enthalpy, which are of fundamental importance for the demonstration of renewable hydrogen economy sustainability. Three main campus will be implemented: one at Cume Hill, where the majority of renewable hydrogen production will take place using the wind as the primary energy source, a second one at Angra do Heroismo Industrial park, where a cogen electrical – heat power station will be installed, mainly to feed a Municipal Solid Waste processing plant and a third one, the Praia da Vitoria Hydrogenopolis, where several final consumer demonstrators will be installed both for public awareness and intensive study of economic sustainability and optimization. Some of these units are already under construction, particularly the renewable hydrogen generation facilities.

  4. Hydrogen production through nuclear energy, a sustainable scenario in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J.L.

    2007-01-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  5. Hydrogen and fuel cell research: Institute for Integrated Energy Systems (IESVic)

    International Nuclear Information System (INIS)

    Pitt, L.

    2006-01-01

    Vision: IESVic's mission is to chart feasible paths to sustainable energy. Current research areas of investigation: 1. Energy system analysis 2. Computational fuel cell engineering; Fuel cell parameter measurement; Microscale fuel cells 3. Hydrogen dispersion studies for safety codes 4. Active magnetic refrigeration for hydrogen liquifaction and heat transfer in metal hydrides 5. Hydrogen and fuel cell system integration (author)

  6. Kicking the habit[Hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jones, N.; Lawton, G.; Pearce, F.

    2000-11-25

    This article focuses on the use of clean non-polluting hydrogen fuel as opposed to the use of fossil fuels which ties western nations to the Middle East. Details are given of Iceland's plans to use hydrogen fuelled buses, cars, trucks and trawlers, car manufacturers' options of using internal combustion engines burning hydrogen and hydrogen fuel cells, and the production of hydrogen using electrolysis of water and steam reforming of hydrocarbons. The 'Green Dream' of pollution-free hydrogen production, the use of solar energy for renewable hydrogen production in California, and problems associated with hydrogen storage are discussed.

  7. Hydrogen in the making: how an energy company organises under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Koefoed, Anne Louise

    2011-07-01

    This thesis combines an analytical interest in innovation process studies with an empirical interest in clean energy development. My work concentrates on innovation processes from initiation to realisation in a company setting focusing on hydrogen as an energy carrier. A Norwegian energy company, Norsk Hydro, is used as a case to explore the intraorganisational processes involved in business building. This is relevant to the research question - how hydrogen energy takes on reality and relevance for business activity? Further, a concrete hydrogen demonstration project involving research and development of a new technology combination, in collaboration with partners, has also been studied.(Author)

  8. A nuclear based hydrogen economy

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Tamm, G.; Kunze, J.

    2005-01-01

    Exhausting demands are being imposed upon the world's ability to extract and deliver oil to the nations demanding fluid fossil fuels. This paper analyzes these issues and concludes that there must be no delay in beginning the development of the 'hydrogen economy' using nuclear energy as the primary energy source to provide both the fluid fuel and electrical power required in the 21st century. Nuclear energy is the only proven technology that is abundant and available worldwide to provide the primary energy needed to produce adequate hydrogen fluid fuel supplies to replace oil. Most importantly, this energy transition can be accomplished in an economical and technically proven manner while lowering greenhouse gas emissions. Furthermore, a similar application of using wind and solar to produce hydrogen instead of electricity for the grid can pave the way for the much larger production scales of nuclear plants producing both electricity and hydrogen. (authors)

  9. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schucan, T. [Paul Scherrer Inst., Villigen PSI (Switzerland)

    1999-12-31

    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich

  10. Hydrogen as the solar energy translator. [in photochemical and photovoltaic processes

    Science.gov (United States)

    Kelley, J. H.

    1979-01-01

    Many concepts are being investigated to convert sunlight to workable energy forms with emphasis on electricity and thermal energy. The electrical alternatives include direct conversion of photons to electricity via photovoltaic solar cells and solar/thermal production of electricity via heat-energy cycles. Solar cells, when commercialized, are expected to have efficiencies of about 12 to 14 percent. The cells would be active about eight hours per day. However, solar-operated water-splitting process research, initiated through JPL, shows promise for direct production of hydrogen from sunlight with efficiencies of up to 35 to 40 percent. The hydrogen, a valuable commodity in itself, can also serve as a storable energy form, easily and efficiently converted to electricity by fuel cells and other advanced-technology devices on a 24-hour basis or on demand with an overall efficiency of 25 to 30 percent. Thus, hydrogen serves as the fundamental translator of energy from its solar form to electrical form more effectively, and possibly more efficiently, than direct conversion. Hydrogen also can produce other chemical energy forms using solar energy.

  11. The potential role of hydrogen energy in India and Western Europe

    NARCIS (Netherlands)

    van Ruijven, B.J.; Lakshmikanth, H.D.; van Vuuren, D.P.; de Vries, B.

    2008-01-01

    We used the TIMER energy model to explore the potential role of hydrogen in the energy systems of India and Western Europe, looking at the impacts on its main incentives: climate policy, energy security and urban air pollution. We found that hydrogen will not play a major role in both regions

  12. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  13. Hydrogen Codes and Standards: An Overview of U.S. DOE Activities

    International Nuclear Information System (INIS)

    James M Ohi

    2006-01-01

    The Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of leading standards and model code development organizations, other national laboratories, and key stakeholders, are developing a coordinated and collaborative government-industry effort to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The focus of this effort is to put in place a coordinated and comprehensive hydrogen codes and standards program at the national and international levels. This paper updates an overview of the U.S. program to facilitate and coordinate the development of hydrogen codes and standards that was presented by the author at WHEC 15. (authors)

  14. Renewable energy for hydrogen production and sustainable urban mobility

    International Nuclear Information System (INIS)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V.; Matteucci, F.; Breedveld, L.

    2010-01-01

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO 2 -free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  15. Renewable energy for hydrogen production and sustainable urban mobility

    Energy Technology Data Exchange (ETDEWEB)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V. [Istituto di Tecnologie avanzate per l' Energia ' ' Nicola Giordano' ' Salita S, Lucia sopra Contesse, 5, 98126 Messina (Italy); Matteucci, F. [TRE SpA Tozzi Renewable Energy, Via Zuccherificio, 10, 48100 Mezzano (RA) (Italy); Breedveld, L. [2B Via della Chiesa Campocroce, 4, 31021 Mogliano Veneto (TV) (Italy)

    2010-09-15

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO{sub 2}-free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  16. Development of hydrogen storage technologies

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2015-10-01

    Full Text Available The use of hydrogen to deliver energy for cars, portable devices and buildings is seen as one of the key steps to reduce greenhouse gas emissions. South Africa’s national hydrogen strategy, HySA, aims to develop and guide innovation along the value...

  17. Hydrogen, fuel cells and renewable energy integration in islands

    International Nuclear Information System (INIS)

    Bauen, A.; Hart, D.; Foradini, F.; Hart, D.

    2002-01-01

    Remote areas such as islands rely on costly and highly polluting diesel and heavy fuel oil for their electricity supply. This paper explored the opportunities for exploiting economically and environmentally viable renewable energy sources, in particular hydrogen storage, on such islands. In particular, this study focused on addressing the challenge of matching energy supply with demand and with technical issues regarding weak grids that are hindered with high steady state voltage levels and voltage fluctuations. The main technical characteristics of integrated renewable energy and hydrogen systems were determined by modelling a case study for the island of El Hierro (Canary Islands). The paper referred to the challenges regarding the technical and economic viability of such systems and their contribution to the economic development of remote communities. It was noted that energy storage plays an important role in addressing supply and demand issues by offering a way to control voltage and using surplus electricity at times of low load. Electrical energy can be stored in the form of potential or chemical energy. New decentralized generation technologies have also played a role in improving the energy efficiency of renewable energy sources. The feasibility of using hydrogen for energy storage was examined with particular reference to fuel-cell based energy supply in isolated island communities. 4 refs., 5 figs

  18. Comparative study of hydrogen and methanol as energy carriers

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Anna

    1998-06-01

    This report has been written with the purpose to compare hydrogen and methanol, with gasoline, as energy carriers for new energy systems in the future. This energy system must satisfy the demands for sustainable development. The report focuses on motor vehicle applications. A few different criteria has been developed to help form the characterisation method. The criteria proposed in this thesis are developed for an environmental comparison mainly based on emissions from combustion. The criteria concerns the following areas: Renewable resources, The ozone layer, The greenhouse effect, The acidification, and Toxic substances. In many ways, hydrogen may seem as a very good alternative compared with gasoline and diesel oil. Combustion of hydrogen in air results in water and small amounts of oxides of nitrogen. In this report, hydrogen produced from renewable resources is investigated. This is necessary to fulfill the demands for sustainable development. Today, however, steam reforming of fossil fuels represent 99% of the hydrogen production market. Problem areas connected with hydrogen use are for instance storage and distribution. Methanol has many advantages, while comparing methanol and gasoline, like lower emissions of nitrogen oxides and hydrocarbons, limited emissions of carbon dioxide and no sulphur content. Methanol can be produced from many different resources, for example natural gas, naphtha, oil, coal or peat, and biomass. To meet demands for sustainable production, methanol has to be produced from biomass Examination paper. 32 refs, 20 figs, 13 tabs

  19. Some practical progress of hydrogen energy in China

    International Nuclear Information System (INIS)

    Deyou, B.

    1995-01-01

    Research and development of hydrogen energy in China was described. Recent progress included hydrogen production with a two reactor method that consumes less than 3.0/KWh/Nm 3 . Development of a Hydrogen Hydride Rechargeable Battery (HHRB) was summarized. More than 1,000,000 AA type HHRB batteries were produced in 1994. A 150-200 AH battery for use in electric vehicles has also been manufactured, and research into proton exchange membrane fuel cells (PEMFCs) was continuing. 6 refs., 2 figs

  20. Demonstration technology development of new hydrogen energy; Shinsuiso energy jissho gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    A phenomenon of excess heat generation through the electrolysis of heavy water using palladium metals as electrode can be recognized as new hydrogen energy. Its mechanism has been investigated for four years since FY 1993. In FY 1993, the New Hydrogen Energy Demonstration Research Center and the New Hydrogen Energy Demonstration Laboratory were organized, and the research was initiated. For the excess heat generation demonstration model tests, two types of electrolysis experimental units were constructed, and the Pd/D-based electrolysis experiments were initiated. For the measurements of excess heat using an open type electrolysis cell, there were rather large errors ranging from -13% to +7%. It is necessary to improve the accuracy. For the measurements using a fuel cell type electrolysis cell, generation of the excess heat ranging from 0% to 6% was observed. For the validity of this, it is required to confirm the long-term stability of calibration and cell components. For the correlation between the increase in absorbing rate and the generation of excess heat, results of 2 to 3% lower were obtained. 28 refs., 89 figs., 26 tabs.

  1. Low Energy Charge Transfer for Collisions of Si3+ with Atomic Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bruhns, H. [Columbia University; Kreckel, H. [Columbia University; Savin, D. W. [Columbia University; Seely, D. G. [Albion College; Havener, Charles C [ORNL

    2008-01-01

    Cross sections of charge transfer for Si{sup 3+} ions with atomic hydrogen at collision energies of {approx} 40-2500 eV/u were carried out using a merged-beam technique at the Multicharged Ion Research Facility at Oak Ridge National Laboratory. The data span an energy range in which both molecular orbital close coupling (MOCC) and classical trajectory Monte Carlo (CTMC) calculations are available. The influence of quantum mechanical effects of the ionic core as predicted by MOCC is clearly seen in our results. However, discrepancies between our experiment and MOCC results toward higher collision energies are observed. At energies above 1000 eV/u good agreement is found with CTMC results.

  2. Formic Acid as a Hydrogen Energy Carrier

    KAUST Repository

    Eppinger, Jö rg; Huang, Kuo-Wei

    2016-01-01

    The high volumetric capacity (S3 g H-2/L) and its low toxicity and flammability under ambient conditions make formic acid a promising hydrogen energy carrier. Particularly, in the past decade, significant advancements have been achieved in catalyst development for selective hydrogen generation from formic acid. This Perspective highlights the advantages of this approach with discussions focused on potential applications in the transportation sector together with analysis of technical requirements, limitations, and costs.

  3. Formic Acid as a Hydrogen Energy Carrier

    KAUST Repository

    Eppinger, Jorg

    2016-12-15

    The high volumetric capacity (S3 g H-2/L) and its low toxicity and flammability under ambient conditions make formic acid a promising hydrogen energy carrier. Particularly, in the past decade, significant advancements have been achieved in catalyst development for selective hydrogen generation from formic acid. This Perspective highlights the advantages of this approach with discussions focused on potential applications in the transportation sector together with analysis of technical requirements, limitations, and costs.

  4. Experimental-demonstrative system for energy conversion using hydrogen fuel cell - preliminary results

    International Nuclear Information System (INIS)

    Stoenescu, D.; Stefanescu, I.; Patularu, I.; Culcer, M.; Lazar, R.E.; Carcadea, E.; Mirica, D. . E-mail address of corresponding author: daniela@icsi.ro; Stoenescu, D.)

    2005-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (natural gas, methane, biomass, etc.), it can be burned or chemically react having a high yield of energy conversion, being a non-polluted fuel. This paper presents the preliminary results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system made by a sequence of hydrogen purification units and a CO removing reactors until a CO level lower than 10ppm, that finally feeds a hydrogen fuel stack. (author)

  5. Final Technical Report: Hydrogen Energy in Engineering Education (H2E3)

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Peter A.; Cashman, Eileen; Lipman, Timothy; Engel, Richard A.

    2011-09-15

    Schatz Energy Research Center's Hydrogen Energy in Engineering Education curriculum development project delivered hydrogen energy and fuel cell learning experiences to over 1,000 undergraduate engineering students at five California universities, provided follow-on internships for students at a fuel cell company; and developed commercializable hydrogen teaching tools including a fuel cell test station and a fuel cell/electrolyzer experiment kit. Monitoring and evaluation tracked student learning and faculty and student opinions of the curriculum, showing that use of the curriculum did advance student comprehension of hydrogen fundamentals. The project web site (hydrogencurriculum.org) provides more information.

  6. Hydrogen and Fuel Cells for IT Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer

    2016-03-09

    With the increased push for carbon-free and sustainable data centers, data center operators are increasingly looking to renewable energy as a means to approach carbon-free status and be more sustainable. The National Renewable Energy Laboratory (NREL) is a world leader in hydrogen research and already has an elaborate hydrogen infrastructure in place at the Golden, Colorado, state-of-the-art data center and facility. This presentation will discuss hydrogen generation, storage considerations, and safety issues as they relate to hydrogen delivery to fuel cells powering IT equipment.

  7. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    Science.gov (United States)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  8. Energy policy conference on the technical-economical stakes of hydrogen as future energy vector; Conference de politique energetique sur les enjeux technico-economiques de l'hydrogene comme vecteur energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    This document is the report of the conference meeting jointly organized by the French general plan commission and the general direction of energy and raw materials on the technical-economical stakes of hydrogen as future energy source, and in particular of hydrogen fuel-cells for cogeneration and vehicle applications: 1 - presentation of the general context: status of the hydrogen industry, French R and D and industrial actors, international status; 2 - competition or association with fossil fuels: which opportunities for hydrogen, recall of the 2020 and 2050 energy prospects, impact of hydrogen on climate change, energy efficiency reference of vehicles, CO{sub 2} emissions 'from the well to the wheel' for the different energy sources, perspectives of hydrogen fuels; 3 - main results of the study carried out by the CEREN on the prospects of stationary fuel cells in France: description of the study, concrete case of a 500 beds hospital, economic and environmental conclusions. The transparencies corresponding to the 3 points above are attached to the report. (J.S.)

  9. Life cycle assessment of hydrogen energy pattern

    International Nuclear Information System (INIS)

    Aissani, Lynda; Bourgois, Jacques; Rousseaux, Patrick; Jabouille, Florent; Loget, Sebastien; Perier Camby, Laurent; Sessiecq, Philippe

    2007-01-01

    In the last decades transportation sector is a priority for environmental research. Indeed, it is the most impacting sector because it involves greenhouse emissions and fossil resources exhaustion. The Group of 'Ecole des Mines' (GEM), in France, carries out studies concerning clean and renewable energies for this sector with the 'H2-PAC' project. The GEM with four teams performs studies concerning energy systems for transportation sector and more particularly the hydrogen system. The four teams of the GEM work each one on a process of this system. More precisely, the team of Albi studies biomass gasification in order to produce synthesis gas. The team of Nantes studies purification of this gas to obtain pure hydrogen and hydrogen storage on activated carbon. The team of Paris studies fuel cell use and especially Polymer Exchange Membrane Fuel Cell. Finally, the team of St Etienne evaluates this system along its life cycle from an environmental point of view. This paper presents this environmental evaluation witch is realized according to Life Cycle Assessment (LCA) methodology. (authors)

  10. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.

    Science.gov (United States)

    Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei

    2015-01-01

    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with

  11. Energy distribution and transfer in flowing hydrogen microwave plasmas

    International Nuclear Information System (INIS)

    Chapman, R.A.

    1987-01-01

    This thesis is an experimental investigation of the physical and chemical properties of a hydrogen discharge in a flowing microwave plasma system. The plasma system is the mechanisms utilized in an electrothermal propulsion concept to convert electromagnetic energy into the kinetic energy of flowing hydrogen gas. The plasmas are generated inside a 20-cm ID resonant cavity at a driving frequency of 2.45 GHz. The flowing gas is contained in a coaxially positioned 22-mm ID quartz discharge tube. The physical and chemical properties are examined for absorbed powers of 20-100 W, pressures of 0.5-10 torr, and flow rates of 0-10,000 μ-moles/sec. A calorimetry system enclosing the plasma system to accurately measure the energy inputs and outputs has been developed. The rate of energy that is transferred to the hydrogen gas as it flows through the plasma system is determined as a function of absorbed power, pressure, and flow rate to +/-1.8 W from an energy balance around the system. The percentage of power that is transferred to the gas is found to increase with increasing flow rate, decrease with increasing pressure, and to be independent of absorbed power

  12. Status of photoelectrochemical production of hydrogen and electrical energy

    Science.gov (United States)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.

  13. Heat of solution and site energies of hydrogen in disordered transition-metal alloys

    International Nuclear Information System (INIS)

    Brouwer, R.C.; Griessen, R.

    1989-01-01

    Site energies, long-range effective hydrogen-hydrogen interactions, and the enthalpy of solution in transition-metal alloys are calculated by means of an embedded-cluster model. The energy of a hydrogen atom is assumed to be predominantly determined by the first shell of neighboring metal atoms. The semiempirical local band-structure model is used to calculate the energy of the hydrogen atoms in the cluster, taking into account local deviations from the average lattice constant. The increase in the solubility limit and the weak dependence of the enthalpy of solution on hydrogen concentration in disordered alloys are discussed. Calculated site energies and enthalpies of solution in the alloys are compared with experimental data, and good agreement is found. Due to the strong interactions with the nearest-neighbor metal atoms, hydrogen atoms can be used to determine local lattice separations and the extent of short-range order in ''disordered'' alloys

  14. Energy scenarios for hydrogen production in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J. L.

    2009-10-01

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO 2 . The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO 2 , the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  15. Hydrogen: the great debate. 'Power to Gas - how to cope with the challenge of electricity storage?; Hydrogen in energy transition: which challenges to be faced?; Hydrogen, essential today, indispensable tomorrow; Electrolytic hydrogen, a solution for energy transition?; Development of high power electrolysis systems: need and approach; Hydrogen as energy vector, Potential and stakes: a perspective; The Toyota Fuel Cell System: a new era for the automotive industry; Three key factors: production, applications to mobility, and public acceptance; Hydrogen, benevolent fairy or tempting demon

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre; Boucly, Philippe; Beeker, Etienne; Mauberger, Pascal; Quint, Aliette; Pierre, Helene; Lucchese, Paul; Bouillon-Delporte, Valerie; Chauvet, Bertrand; Brisse, Annabelle; Gautier, Ludmila; Hercberg, Sylvain; De Volder, Marc; Gruson, Jean-Francois; Marion, Pierre; Grellier, Sebastien; Devezeaux, Jean-Guy; Mansilla, Christine; Le Net, Elisabeth; Le Duigou, Alain; Maire, Jacques

    2015-01-01

    This publication proposes a set of contributions which address various issues related to the development of the use of hydrogen as an energy source. More precisely, these contributions discuss how to face the challenge of electricity storage by using the Power-to-Gas technology, the challenges to be faced regarding the role of hydrogen in energy transition, the essential current role of hydrogen and its indispensable role for tomorrow, the possible role of electrolytic hydrogen as a solution for energy transition, the need of and the approach to a development of high power electrolysis systems, the potential and stakes of hydrogen as an energy vector, the Toyota fuel cell system as a sign for new era for automotive industry, the three main factors (production, applications to mobility, and public acceptance) for the use of hydrogen in energy transition, and the role of hydrogen perceived either as a benevolent fairy or a tempting demon

  16. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  17. Hydrogen like energy and materials for fuel cells

    International Nuclear Information System (INIS)

    Fernandez V, S. M.

    2010-01-01

    The researches on the production, storage and the use of hydrogen like fuel or energy carrying are carried out in several laboratories around the world. In the Instituto Nacional de Investigaciones Nucleares (ININ), from the year of 1993 they are carried out researches about the synthesis of electro-catalysts materials than can serve in the hydrogen production starting from the electrolysis of the water, or in fuel cells, as well as of semiconductor materials for the photo-electrolysis of the water. Recently, in collaboration with other Departments of the ININ, the hydrogen production has been approached starting from fruit and vegetable wastes, with the purpose of evaluating the possibility that this residuals can be utilized for the energy obtaining and that they are not only garbage that causes problems of environmental pollution, generate toxic gases and pollute the soil with the organic acids that take place during their fermentation. (Author)

  18. Hydrogen Storage Experiments for an Undergraduate Laboratory Course--Clean Energy: Hydrogen/Fuel Cells

    Science.gov (United States)

    Bailey, Alla; Andrews, Lisa; Khot, Ameya; Rubin, Lea; Young, Jun; Allston, Thomas D.; Takacs, Gerald A.

    2015-01-01

    Global interest in both renewable energies and reduction in emission levels has placed increasing attention on hydrogen-based fuel cells that avoid harm to the environment by releasing only water as a byproduct. Therefore, there is a critical need for education and workforce development in clean energy technologies. A new undergraduate laboratory…

  19. System-level energy efficiency is the greatest barrier to development of the hydrogen economy

    International Nuclear Information System (INIS)

    Page, Shannon; Krumdieck, Susan

    2009-01-01

    Current energy research investment policy in New Zealand is based on assumed benefits of transitioning to hydrogen as a transport fuel and as storage for electricity from renewable resources. The hydrogen economy concept, as set out in recent commissioned research investment policy advice documents, includes a range of hydrogen energy supply and consumption chains for transport and residential energy services. The benefits of research and development investments in these advice documents were not fully analyzed by cost or improvements in energy efficiency or green house gas emissions reduction. This paper sets out a straightforward method to quantify the system-level efficiency of these energy chains. The method was applied to transportation and stationary heat and power, with hydrogen generated from wind energy, natural gas and coal. The system-level efficiencies for the hydrogen chains were compared to direct use of conventionally generated electricity, and with internal combustion engines operating on gas- or coal-derived fuel. The hydrogen energy chains were shown to provide little or no system-level efficiency improvement over conventional technology. The current research investment policy is aimed at enabling a hydrogen economy without considering the dramatic loss of efficiency that would result from using this energy carrier.

  20. 12. symposium for the use of regenerative energy sources and hydrogen technology. Proceedings

    International Nuclear Information System (INIS)

    Lehmann, J.

    2005-01-01

    Topics of the conference were: renewable energy sources, wind energy, wood fueled space and water heating systems, SOFC fuel cell, storage of wind energy in the form of hydrogen, geothermal energy, usage of waste heat in low-temperature Rankine cycle engines, emissions trading, energy policy, solar hydrogen economy. (uke)

  1. Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jay C. Almlie; Bruce Wood; Rich Schlupp

    2007-03-01

    In November 2005, the Energy & Environmental Research Center (EERC), ePowerSynergies, Inc. (ePSI), and Resurfice Corporation teamed to develop, produce, and demonstrate the world's first and only fuel cell-powered ice resurfacer. The goals of this project were: {sm_bullet} To educate the public on the readiness, practicality, and safety of fuel cells powered by hydrogen fuel and {sm_bullet} To establish a commercialization pathway in an early-adopter, niche market. The vehicle was developed and produced in a short 3-month span. The vehicle made its world debut at U.S. Senator Byron Dorgan's (D-ND) 2005 Hydrogen Energy Action Summit. Subsequently, the vehicle toured North America appearing at numerous public events and conferences, receiving much attention from international media outlets.

  2. Energy Systems | Argonne National Laboratory

    Science.gov (United States)

    Nissan spins up new plant to give second life to EV batteries Yemen News National Lab Licensing Hydrogen Computing Center Centers, Institutes, and Programs RISCRisk and Infrastructure Science Center Other

  3. IHCE '95. International Hydrogen and Clean Energy Symposium '95. (February 6-8, 1995)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-06

    This is a collection of speeches and lectures delivered at the above-named symposium that took place in Tokyo. Three speakers from Japan, Germany, and the U.S. made remarks about the future energy systems and the role of hydrogen; the hydrogen energy development status and plans in Europe; and the role of hydrogen in meeting southern California's air quality goals, respectively. Technical lectures numbering 22 in total included the photocatalytic reactions - water splitting and environmental applications; realization and operation of SWB's (Solar-Wasserstof-Bayern GmBH) development assembling major industrial-scale components of solar hydrogen technology; hydrogen production by UT-3 (University of Tokyo-3) thermochemical water decomposition cycle; energy and environmental technology in Japan - the New Sunshine Program; and research and development plans for WE-NET (World Energy Network). In the poster session, there were 45 exhibitions, which included development on solid polymer electrolyte water electrolysis in Mitsubishi Heavy Industries, Ltd.; development of environmentally friendly technology for the production of hydrogen; and recent progress of hydrogen storage and transportation technologies in North America. (NEDO)

  4. Applications of Nuclear Energy to Oil Sands and Hydrogen Production

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.; Kuran, S.

    2011-01-01

    natural gas prices, an unlikely circumstance but one that would undermine the very development of oilsands as surely as high cost and limited availability of natural gas. We examine the applications of nuclear energy to oil sands production, and the concomitant hydrogen production, utilizing realistic reactor designs, modern power and energy market considerations, and environmental constraints on waste and emissions. We cover all aspects of feasibility, specifically technical issues, comparative economics, schedule, regulatory requirements, and other implementation factors. We compare and contrast the claims versus the realities, and also provide the synergistive utilization of co-generation of hydrogen using coupled nuclear and windpower. Among the many non-technological issues expressed by the oil industry are their lack of experience with nuclear technology or nuclear power generation, and with the regulatory framework. The application of any nuclear technology must also consider Government and public support, local and First Nations acceptance, site selection, access to water, oil sands, and transmission, oil industry buy-in on the basis of hard nosed economics, the impacts of oil and gas prices, labour costs and the need for long-term contracts for steam and electricity, together with an experienced nuclear plant owner/operator. (author)

  5. Hydrogen evolution from water using solid carbon and light energy

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T; Sakata, T

    1979-11-15

    Hydrogen is produced from water vapour and solid carbon when mixed powders of TiO2, RuO2 and active carbon exposed to water vapor at room temperature, or up to 80 C, are illuminated. At 80 C, the rate of CO and COat2 formation increased. Therefore solar energy would be useful here as a combination of light energy and heat energy. Oxygen produced on the surface of the photocatalyst has a strong oxidising effect on the carbon. It is suggested that this process could be used for coal gasification and hydrogen production from water, accompanied by storage of solar energy.

  6. Photoproduction of hydrogen - A potential system of solar energy bioconversion

    Energy Technology Data Exchange (ETDEWEB)

    Das, V S.R.

    1979-10-01

    The photoproduction of hydrogen from water utilizing the photosynthetic capacity of green plants is discussed as a possible means of solar energy conversion. Advantages of the biological production of H/sub 2/ over various physical and chemical processes are pointed out, and the system used for the production of hydrogen by biological agents, which comprises the photosynthetic electron transport chain, ferredoxin and hydrogenase, is examined in detail. The various types of biological hydrogen production systems in bacteria, algae, symbiotic systems and isolated chloroplast-ferredoxin-hydrogenase systems are reviewed. The limitations and the scope for further improvement of the promising symbiotic Azolli-Anabena azollae and chloroplast-ferredoxin-hydrogenase are discussed, and it is concluded that future research should concern itself with the identification of the environmental conditions that would maximize solar energy conversion efficiency, the elimination of the oxygen inhibition of biological hydrogen production, and the definition of the metabolic state for the maximal production of hydrogen.

  7. Assessment of MHR-based hydrogen energy systems

    International Nuclear Information System (INIS)

    Richards, Matthew; Shenoy, Arkal; Schultz, Kenneth; Brown, Lloyd; Besenbruch, Gottfried; Handa, Norihiko; Das, Jadu

    2004-01-01

    Process heat from a high-temperature nuclear reactor can be used to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850degC to 950degC can drive the sulfur-iodine (SI) thermochemical process to produce hydrogen with high efficiency. The SI process produces highly pure hydrogen and oxygen, with formation, decomposition, regeneration, and recycle of the intermediate chemical reagents and low-temperature heat as the only waste product. Electricity can also be used directly to split water, using conventional, low-temperature electrolysis (LTE). Hydrogen can also be produced with hybrid processes that use both process heat and electricity to generate hydrogen. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. This process is of interest because the efficiency of electrolysis increases with temperature. Because of its high-temperature capability, advanced of development relative to other high-temperature reactor concepts, and passive-safety features, the Modular Helium Reactor (MHR) is well suited for producing hydrogen using nuclear energy. In this paper we investigate concepts for coupling the MHR to the SI process, LTE, and HTE. These concepts are referred to as the H2-MHR. (author)

  8. BIG hydrogen: hydrogen technology in the oil and gas sector

    International Nuclear Information System (INIS)

    2006-01-01

    The BIG Hydrogen workshop was held in Calgary, Alberta, Canada on February 13, 2006. About 60 representatives of industry, academia and government attended this one-day technical meeting on hydrogen production for the oil and gas industry. The following themes were identified from the presentations and discussion: the need to find a BIG hydrogen replacement for Steam Methane Reformer (SMR) because of uncertainty regarding cost and availability of natural gas, although given the maturity of SMR process (reliability, known capital cost) how high will H2 prices have to rise?; need for a national strategy to link the near-term and the longer-term hydrogen production requirements, which can take hydrogen from chemical feedstock to energy carrier; and in the near-term Canada should get involved in demonstrations and build expertise in large hydrogen systems including production and carbon capture and sequestration

  9. Early forest fire detection using low-energy hydrogen sensors

    Directory of Open Access Journals (Sweden)

    K. Nörthemann

    2013-11-01

    Full Text Available Most huge forest fires start in partial combustion. In the beginning of a smouldering fire, emission of hydrogen in low concentration occurs. Therefore, hydrogen can be used to detect forest fires before open flames are visible and high temperatures are generated. We have developed a hydrogen sensor comprising of a metal/solid electrolyte/insulator/semiconductor (MEIS structure which allows an economical production. Due to the low energy consumption, an autarkic working unit in the forest was established. In this contribution, first experiments are shown demonstrating the possibility to detect forest fires at a very early stage using the hydrogen sensor.

  10. FY 2000 Project of international clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the research and development project aimed at construction of the international clean energy network using hydrogen conversion (WE-NET). The projects include 12 tasks; system evaluation for, e.g., optimum scenario for introduction of hydrogen energy; experiments for hydrogen safety; study on the international cooperation for WE-NET; development of power generation technology using a 100kW cogeneration system including hydrogen-firing diesel engine; developmental research on vehicles driven by a hydrogen fuel cell system; developmental research on the basic technologies for PEFC utilizing pure hydrogen; developmental research on a 30Nm{sup 3}/hour hydrogen refueling station for vehicles; developmental research on hydrogen production technology; developmental research on hydrogen transportation and storage technology, e.g., liquid hydrogen pump; research and development of the databases of and processing technology for cryogenic materials exposed to liquid hydrogen; developmental research on hydrogen absorbing alloys for small-scale hydrogen transportation and storage systems; and study on innovative and leading technologies. (NEDO)

  11. Hydrogen as an energy carrier. 2. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Winter, C.J.; Nitsch, J.

    1991-01-01

    This book deals with the possibilities of an energetic utilisation of hydrogen. This energy carrier can be produced from the unlimited energy sources - solar energy, wind energy and hydropower - and from nuclear energy. It is also capable of one day supplementing or superseding the fossil energy carriers oil, coal and gas. What is special about the book is that it goes beyond a mere physical/technical description to discuss the economic and political aspects and ecological effects and requirements that are an essential part of sound energy planning today. Thus, the authors and editors outline the step-by-step development of a hydrogen economy, mainly based on solar energy, providing a solution to both the pollution problems caused by the use of fossil energy carriers and the energy requirements of the third world. (orig.) With 197 figs., 71 tabs

  12. The Hydrogen Economy Making the Transition to the Third Industrial Revolution and a New Energy Era

    International Nuclear Information System (INIS)

    Jeremy Rifkin

    2006-01-01

    Jeremy Rifkin is the author of the international best seller, The Hydrogen Economy, which has been translated into fourteen languages. It is the most widely read book in the world on the future of renewable energy and the hydrogen economy. In his presentation on 'The Hydrogen Economy', Mr. Rifkin takes us on an eye-opening journey into the next great commercial era in history. He envisions the dawn of a new economy powered by hydrogen that will fundamentally change the nature of our market, political and social institutions, just as coal and steam power did at the beginning of the industrial age. Rifkin observes that we are fast approaching a critical watershed for the fossil-fuel era, with potentially dire consequences for industrial civilization. Experts had been saying that we had another forty or so years of cheap available crude oil left. Now, however, some of the world's leading petroleum geologists are suggesting that global oil production could peak and begin a steep decline much sooner, as early as the second decade of the 21. century. Non-OPEC oil producing countries are already nearing their peak production, leaving most of the remaining reserves in the politically unstable Middle East. Increasing tensions between Islam and the West are likely to further threaten our access to affordable oil. In desperation, the U.S. and other nations could turn to dirtier fossil-fuels, coal, tar sand, and heavy oil, which will only worsen global warming and imperil the earth's already beleaguered ecosystems. Looming oil shortages make industrial life vulnerable to massive disruptions and possibly even collapse. While the fossil-fuel era is entering its sunset century, a new energy regime is being born that has the potential to remake civilization along radical new lines, according to Rifkin. Hydrogen is the most basic and ubiquitous element in the universe. It is the stuff of the stars and of our sun and, when properly harnessed, it is the 'forever fuel'. It never runs

  13. Research opportunities in photochemical sciences for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Padro, C.E.G. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    For several decades, interest in hydrogen has ebbed and flowed. With the OPEC oil embargo of the 1970`s and the promise of inexpensive nuclear power, hydrogen research focused on fuel applications. The economics and the realities of nuclear power shifted the emphasis to hydrogen as an energy carrier. Environmental benefits took center stage as scientists and politicians agreed on the potential threat of carbon dioxide emissions to global climate change. The U.S. Department of Energy (DOE) Office of Utility Technologies manages the National Hydrogen Program. In this role, the DOE provides national leadership and acts as a catalyst through partnerships with industry. These partnerships are needed to assist in the transition of sustainable hydrogen systems from a government-supported research and development phase to commercial successes in the marketplace. The outcome of the Program is expected to be the orderly phase-out of fossil fuels as a result of market-driven technology advances, with a least-cost, environmentally benign energy delivery system. The program seeks to maintain its balance of high-risk, long-term research in renewable based technologies that address the environmental benefits, with nearer-term, fossil based technologies that address infrastructure and market issues. National laboratories, universities, and industry are encouraged to participate, cooperate, and collaborate in the program. The U.S. Hydrogen Program is poised to overcome the technical and economic challenges that currently limit the impact of hydrogen on our energy picture, through cooperative research, development, and demonstrations.

  14. Hydrogen infrastructure within HySA national program in South Africa: road map and specific needs

    CSIR Research Space (South Africa)

    Bessarabov, D

    2012-01-01

    Full Text Available The Department of Science and Technology of South Africa developed the National Hydrogen and Fuel Cells Technologies (HFCT) Research, Development and Innovation Strategy. The National Strategy was branded Hydrogen South Africa (HySA). HySA has been...

  15. Metrology for hydrogen energy applications: a project to address normative requirements

    Science.gov (United States)

    Haloua, Frédérique; Bacquart, Thomas; Arrhenius, Karine; Delobelle, Benoît; Ent, Hugo

    2018-03-01

    Hydrogen represents a clean and storable energy solution that could meet worldwide energy demands and reduce greenhouse gases emission. The joint research project (JRP) ‘Metrology for sustainable hydrogen energy applications’ addresses standardisation needs through pre- and co-normative metrology research in the fast emerging sector of hydrogen fuel that meet the requirements of the European Directive 2014/94/EU by supplementing the revision of two ISO standards that are currently too generic to enable a sustainable implementation of hydrogen. The hydrogen purity dispensed at refueling points should comply with the technical specifications of ISO 14687-2 for fuel cell electric vehicles. The rapid progress of fuel cell technology now requires revising this standard towards less constraining limits for the 13 gaseous impurities. In parallel, optimized validated analytical methods are proposed to reduce the number of analyses. The study aims also at developing and validating traceable methods to assess accurately the hydrogen mass absorbed and stored in metal hydride tanks; this is a research axis for the revision of the ISO 16111 standard to develop this safe storage technique for hydrogen. The probability of hydrogen impurity presence affecting fuel cells and analytical techniques for traceable measurements of hydrogen impurities will be assessed and new data of maximum concentrations of impurities based on degradation studies will be proposed. Novel validated methods for measuring the hydrogen mass absorbed in hydrides tanks AB, AB2 and AB5 types referenced to ISO 16111 will be determined, as the methods currently available do not provide accurate results. The outputs here will have a direct impact on the standardisation works for ISO 16111 and ISO 14687-2 revisions in the relevant working groups of ISO/TC 197 ‘Hydrogen technologies’.

  16. Hydrogen from Biomass for Urban Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Boone, William

    2008-02-18

    The objective of this project was to develop a method, at the pilot scale, for the economical production of hydrogen from peanut shells. During the project period a pilot scale process, based on the bench scale process developed at NREL (National Renewable Energy Lab), was developed and successfully operated to produce hydrogen from peanut shells. The technoeconomic analysis of the process suggests that the production of hydrogen via this method is cost-competitive with conventional means of hydrogen production.

  17. The Future of Nuclear Energy As a Primary Source for Clean Hydrogen Energy System in Developing Countries

    International Nuclear Information System (INIS)

    Ahmed, K.; Shaaban, H.

    2007-01-01

    The limited availability of fossil fuels compared to the increasing demand and the connected environmental questions have become topics of growing importance and international attention. Many other clean alternative sources of energy are available, but most of them are either relatively undeveloped technologically or are not yet fully utilized. Also, there is a need for a medium which can carry the produced energy to the consumer in a convenient and environmentally acceptable way. In this study, a fission reactor as a primary energy source with hydrogen as an energy carrier is suggested. An assessment of hydrogen production from nuclear energy is presented. A complete nuclear-electro-hydrogen energy system is proposed for a medium size city (population of 500,000). The whole energy requirement is assessed including residential, industrial and transportation energies. A preliminary economical and environmental impact study is performed on the proposed system. The presented work could be used as a nucleus for a feasibility study for applying this system in any newly established city

  18. Hydrogen and Biofuels - A Modeling Analysis of Competing Energy Carriers for Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Guel, Timur; Kypreos, Socrates; Barreto, Leonardo

    2007-07-01

    This paper deals with the prospects of hydrogen and biofuels as energy carriers in the Western European transportation sector. The assessment is done by combining the US hydrogen analysis H2A models for the design of hydrogen production and delivery chains, and the Western European Hydrogen Markal Model EHM with a detailed representation of biofuels, and the European electricity and transportation sector. The paper derives policy recommendations to support the market penetration of hydrogen and biofuels, and investigates learning interactions between the different energy carriers. (auth)

  19. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins.

    Science.gov (United States)

    Mondal, Abhisek; Datta, Saumen

    2017-06-01

    Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Progress of Nuclear Hydrogen Program in Korea

    International Nuclear Information System (INIS)

    Lee, Won Jae

    2009-01-01

    To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels is required. Hydrogen is considered a promising future energy solution because it is clean, abundant and storable and has a high energy density. As other advanced countries, the Korean government had established a long-term vision for transition to the hydrogen economy in 2005. One of the major challenges in establishing a hydrogen economy is how to produce massive quantities of hydrogen in a clean, safe and economical way. Among various hydrogen production methods, the massive, safe and economic production of hydrogen by water splitting using a very high temperature gas-cooled reactor (VHTR) can provide a success path to the hydrogen economy. Particularly in Korea, where usable land is limited, the nuclear production of hydrogen is deemed a practical solution due to its high energy density. To meet the expected demand for hydrogen, the Korea Atomic Energy Institute (KAERI) launched a nuclear hydrogen program in 2004 together with Korea Institute of Energy Research (KIER) and Korea Institute of Science and Technology (KIST). Then, the nuclear hydrogen key technologies development program was launched in 2006, which aims at the development and validation of key and challenging technologies required for the realization of the nuclear hydrogen production demonstration system. In 2008, Korean Atomic Energy Commission officially approved a long-term development plan of the nuclear hydrogen system technologies as in the figure below and now the nuclear hydrogen program became the national agenda. This presentation introduces the current status of nuclear hydrogen projects in Korea and the progress of the nuclear hydrogen key technologies development. Perspectives of nuclear process heat applications are also addressed

  1. Calculations for very low energy scattering of positrons by molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.N. [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)], E-mail: james.cooper@maths.nottingham.ac.uk; Armour, E.A.G. [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2008-02-15

    We give a progress report on ongoing calculations of phase shifts for very low energy elastic scattering of positrons by molecular hydrogen, using the generalised Kohn variational method. Further, provisional calculations of Z{sub eff} for molecular hydrogen at low energies are presented and discussed. The preliminary nature of the work is emphasised throughout.

  2. National Energy Plan II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This volume contains the Administration's second National Energy Plan, as required by section 801 of the Department of Energy Organization Act (Public Law 95-91). A second volume will contain an assessment of the environmental trends associated with the energy futures reported here. Detailed appendices to the Plan will be published separately. The eight chapters and their subtitles are: Crisis and Uncertainty in the World Energy Future (The Immediate Crisis and the Continuing Problem, The Emergence of the Energy Problem, The Uncertainties of the World Energy Future, World Oil Prices, Consequences for the U.S.); The U.S. Energy Future: The Implications for Policy (The Near-, Mid-, and Long-Term, The Strategy in Perspective); Conservation (Historical Changes in Energy Use, Post-Embargo Changes - In Detail, Conservation Policies and Programs, The Role of Conservation); Oil and Gas (Oil, Natural Gas); Coal and Nuclear (Coal, Nuclear, Policy for Coal and Nuclear Power); Solar and Other Inexhaustible Energy Sources (Solar Energy, Geothermal, Fusion, A Strategy for Inexhaustible Resources); Making Decisions Promptly and Fairly (Managing Future Energy Crises: Emergency Planning, Managing the Current Shortfall: The Iranian Response Plan, Managing the Long-Term Energy Problem: The Institutional Framework, Fairness in Energy Policy, Public Participation in the Development of Energy Policy); and NEP-II and the Future (The Second National Energy Plan and the Nation's Energy Future, The Second National Energy Plan and the Economy, Employment and Energy Policy, The Second National Energy Plan and Individuals, The Second National Energy Plan and Capital Markets, and The Second National Energy Plan and the Environment). (ERA citation 04:041097)

  3. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  4. Meeting Cathala-Letort named: the challenges of the processes engineering facing the hydrogen-energy; Journee Cathala-Letort intitulee: les defis du genie des procedes face a l'hydrogene-energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This document provides the presentations proposed during the day Cathala-Letort on the challenges of the processes engineering facing the hydrogen-energy. In the context of the greenhouse effect increase and the fossil energies resources decrease, it brings information on researches on hydrogen technologies, carbon dioxide sequestration, hydrogen supply, production, storage and distribution and the thermo-chemical cycles. (A.L.B.)

  5. Integrated energy systems for hydrogen and electricity supply

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Univ. of Central Florida, Cocoa, FL (United States). Florida Solar Energy Center; Manikowski, A.; Noland, G. [Procyon Power Systems Inc., Alameda, CA (United States)

    2002-07-01

    The United States will soon need an increase in electric generating capacity along with an increase in the distribution capacity of the electricity grid. The cost and time required to build additional electrical distribution and transmission systems can be avoided by using distributed power generation. This paper examines the development of an integrated stand-alone energy system that can produce hydrogen, electricity and heat. The concept is based on integrated operation of a thermocatalytic pyrolysis (TCP) reactor and a solid oxide fuel cell (SOFC). The benefits include high overall energy efficiency, the production of high quality hydrogen (90 to 95 per cent free of carbon oxides), low emissions, and fuel flexibility. Experimental data is presented regarding the thermocatalytic pyrolysis of methane compared with an iron-based catalyst (which is sulfur resistant) and gasification of the resulting carbon with steam and carbon dioxide. With distributed generation, additional electrical generating capacity can be added in small increments distributed over the grid. An integrated energy system will be applicable to any type of hydrocarbon fuel, such as natural gas, liquid propane gas, gasoline, kerosene, jet fuel, diesel fuel and sulfurous residual oils. The suitable range of operating parameters needed to decoke a catalyst bed using steam and carbon dioxide as a degasifying agent was also determined. The Fe-catalyst was efficient in both methane pyrolysis and steam/CO{sub 2} gasification of carbon. It was shown that the TCP and SOFC complement each other in may ways. With the IES, high quality hydrogen is delivered to the end user. IES can also operate as either a hydrogen production unit or as an electrical power generator. The energy efficiency of the IES is estimated at 45-55 per cent. 6 refs., 8 figs.

  6. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schwartz

    2004-12-01

    This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion

  7. Energy | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries and Energy Storage Energy Systems Modeling Materials for Energy Nuclear Energy Renewable Energy Smart Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National

  8. Hydrogen Economy Model for Nearly Net-Zero Cities with Exergy Rationale and Energy-Water Nexus

    Directory of Open Access Journals (Sweden)

    Birol Kılkış

    2018-05-01

    Full Text Available The energy base of urban settlements requires greater integration of renewable energy sources. This study presents a “hydrogen city” model with two cycles at the district and building levels. The main cycle comprises of hydrogen gas production, hydrogen storage, and a hydrogen distribution network. The electrolysis of water is based on surplus power from wind turbines and third-generation solar photovoltaic thermal panels. Hydrogen is then used in central fuel cells to meet the power demand of urban infrastructure. Hydrogen-enriched biogas that is generated from city wastes supplements this approach. The second cycle is the hydrogen flow in each low-exergy building that is connected to the hydrogen distribution network to supply domestic fuel cells. Make-up water for fuel cells includes treated wastewater to complete an energy-water nexus. The analyses are supported by exergy-based evaluation metrics. The Rational Exergy Management Efficiency of the hydrogen city model can reach 0.80, which is above the value of conventional district energy systems, and represents related advantages for CO2 emission reductions. The option of incorporating low-enthalpy geothermal energy resources at about 80 °C to support the model is evaluated. The hydrogen city model is applied to a new settlement area with an expected 200,000 inhabitants to find that the proposed model can enable a nearly net-zero exergy district status. The results have implications for settlements using hydrogen energy towards meeting net-zero targets.

  9. Research at the service of energy transition - Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    Bodineau, Luc; Antoine, Loic; Tonnet, Nicolas; Theobald, Olivier; Tappero, Denis

    2018-03-01

    This brochure brings together 22 hydrogen-energy and fuel cell projects selected and supported by the French agency of environment and energy management (Ademe) since 2012 through its call for research projects TITEC (industrial tests and transfers in real conditions) and Sustainable Energy: 1 - BHYKE: electric-hydrogen bike experiment; 2 - CHYMENE: innovative hydrogen compressor for mobile applications; 3 - COMBIPOL 3: bipolar plates assembly technology and gasketing process for PEMFC; 4 - CRONOS: high temperature SOFC for domestic micro-cogeneration; 5 - EPILOG: natural gas fuel cell on the way to commercialization; 6 - EXALAME: polyfunctional catalytic complexes for membranes-electrodes assembly without Nafion for PEMFC; 7 - HYCABIOME: H 2 and CO 2 conversion by biological methanation; 8 - HYLOAD: hydrogen-fueled airport vehicle experiment with on-site supply chain; 9 - HYSPSC: Pressurized hydrogen without Compressor; 10 - HYWAY: hydrogen mobility cluster demonstrator (electric-powered Kangoo cars fleet with range extender) at Lyon and Grenoble; 11 - MHYEL: Pre-industrialization of composite hybrid Membranes for PEM electrolyzer; 12 - NAVHYBUS: Design and experimentation of an electric-hydrogen river shuttle for passengers transportation at Nantes; 13 - PACMONT: fuel cells integration and adaptation for high mountain and polar applications; 14 - PREMHYOME: fabrication process of hybrid membranes for PEMFC; 15 - PRODIG: lifetime prediction and warranty for fuel cell systems; 16 - REHYDRO: fuel cell integration in the circular economy principle; 17 - SPHYNX and Co: optimizing renewable energy integration and self-consumption in buildings; 18 - THEMIS: design and experimentation of an autonomous on-site power supply system; 19 - VABHYOGAZ: biogas valorization through renewable hydrogen generation, design and experimentation of a 5 Nm 3 /h demonstrator at a waste disposal site; 20 - VALORPAC: Integration and experimentation of a high-temperature SOFC system that use

  10. Fiscal 1998 research report on International Clean Energy Network using Hydrogen Conversion (WE-NET). Subtask 3. Prediction evaluation on a national scale; 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) sub task. 3. Ikkoku kibo deno yosoku hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Japanese long-term energy demand and various energy use styles were simulated from the viewpoint of a profitability and environmental preservation, and hydrogen consumption was studied. In the research in fiscal 1998, the data on available primary energy was modified based on the upper limit of CO{sub 2} emission by COP3, and the long-term energy supply and demand outlook of Advisory Committee for Energy in June, 1998. The result of scenario analysis is as follows: (1) The reference scenario showed that reduction of a hydrogen price is indispensable to use imported hydrogen, (2) The carbon externality scenario showed that market penetration of hydrogen can be large if the carbon externality amounts to $300/t-C, (3) The high fossil fuel price scenario showed that a fossil fuel price (in particular, price of hydrocarbon) highly affects market penetration of hydrogen, and (4) The low nuclear capacity scenario suggested that a competitiveness of hydrogen is considerably improved as an energy supply-demand-balance is tight. (NEDO)

  11. The solar-hydrogen economy: an analysis

    Science.gov (United States)

    Reynolds, Warren D.

    2007-09-01

    The 20th Century was the age of the Petroleum Economy while the 21st Century is certainly the age of the Solar-Hydrogen Economy. The global Solar-Hydrogen Economy that is now emerging follows a different logic. Under this new economic paradigm, new machines and methods are once again being developed while companies are restructuring. The Petroleum Economy will be briefly explored in relation to oil consumption, Hubbert's curve, and oil reserves with emphasis on the "oil crash". Concerns and criticisms about the Hydrogen Economy will be addressed by debunking some of the "hydrogen myths". There are three major driving factors for the establishment of the Solar-Hydrogen Economy, i.e. the environment, the economy with the coming "oil crash", and national security. The New Energy decentralization pathway has developed many progressive features, e.g., reducing the dependence on oil, reducing the air pollution and CO II. The technical and economic aspects of the various Solar-Hydrogen energy options and combinations will be analyzed. A proposed 24-hour/day 200 MWe solar-hydrogen power plant for the U.S. with selected energy options will be discussed. There are fast emerging Solar Hydrogen energy infrastructures in the U.S., Europe, Japan and China. Some of the major infrastructure projects in the transportation and energy sectors will be discussed. The current and projected growth in the Solar-Hydrogen Economy through 2045 will be given.

  12. Alternative Energetics DC Microgrid With Hydrogen Energy Storage System

    Directory of Open Access Journals (Sweden)

    Zaļeskis Genadijs

    2016-12-01

    Full Text Available This paper is related to an alternative energetics microgrid with a wind generator and a hydrogen energy storage system. The main aim of this research is the development of solutions for effective use of the wind generators in alternative energetics devices, at the same time providing uninterrupted power supply of the critical loads. In this research, it was accepted that the alternative energetics microgrid operates in an autonomous mode and the connection to the conventional power grid is not used. In the case when wind speed is low, the necessary power is provided by the energy storage system, which includes a fuel cell and a tank with stored hydrogen. The theoretical analysis of the storage system operation is made. The possible usage time of the stored hydrogen depends on the available amount of hydrogen and the consumption of the hydrogen by the fuel cell. The consumption, in turn, depends on used fuel cell power. The experimental results suggest that if the wind generator can provide only a part of the needed power, the abiding power can be provided by the fuel cell. In this case, a load filter is necessary to decrease the fuel cell current pulsations.

  13. Survey report on energy transportation systems which use hydrogen-occluding alloys; Suiso kyuzo gokin wo riyoshita energy yuso system chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-18

    Surveyed are systems which use hydrogen-occluding alloys for, e.g., storing and transporting hydrogen. This project is aimed at development of, and extraction of technical problems involved in, the concept of hydrogen energy transportation cycles for producing hydrogen in overseas countries by electrolysis using clean energy of hydraulic energy which are relatively cheap there; transporting hydrogen stored in a hydrogen-occluding alloy by sea to Japan; and converting it into electrical power to be delivered and used there. The surveyed items include current state of development/utilization of hydraulic power resources in overseas countries; pigeonholing the technical issues involved in the hydrogen transportation cycles, detailed studies thereon, and selection of the transportation cycles; current state of research, development and application of hydrogen-occluding alloys for various purposes; extraction of the elementary techniques for the techniques and systems for the hydrogen transportation systems which use hydrogen-occluding alloys; research themes of the future hydrogen-occluding alloys and the application techniques therefor, and research and development thereof; and legislative measures and safety. (NEDO)

  14. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    Science.gov (United States)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  15. Summary of the FY 1988 Sunshine Project results. Hydrogen energy; 1988 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Outlined herein are the results of researches on hydrogen energy as part of the FY 1988 Sunshine Project results. Researches on the techniques for producing hydrogen by electrolysis of water using a polymer electrolyte include development of power-supplying materials for electrolysis at high current density, and basic studies on the electrolysis using an OH ion conducting type polymer electrolyte. Researches on the techniques for producing hydrogen by electrolysis with hot steam include development of the materials, techniques for processing these materials, and electrolysis performance tests. Researches on the techniques for transporting hydrogen by metal hydrides include development of hydrogen-occluding alloys of high bulk density, and techniques for evaluating characteristics of metal hydrides. Researches on the techniques for storing hydrogen include those on alloy molding/processing techniques, hydrogen-storing metallic materials, and new hydrogen-storing materials. Researches on the techniques for utilizing hydrogen include those on energy conversion techniques using hydrogen-occluding alloys, and hydrogen-fueled motors. Researches on the techniques for safety-related measures include those on prevention of embrittlement of the system materials by hydrogen. (NEDO)

  16. Summary of the FY 1989 Sunshine Project results. Hydrogen energy; 1989 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-04-01

    Outlined herein are the results of researches on hydrogen energy as part of the FY 1989 Sunshine Project results. Researches on the techniques for producing hydrogen by electrolysis of water using a polymer electrolyte include those on the SPE electrolysis at high temperature and current density, and basic studies on the electrolysis using an OH ion conducting type polymer electrolyte. Researches on the techniques for producing hydrogen by electrolysis with hot steam include development of the materials, techniques for processing these materials, and electrolysis performance tests. Researches on the techniques for transporting hydrogen by metal hydrides include development of hydrogen-occluding alloys of high bulk density, and techniques for evaluating characteristics of metal hydrides. Researches on the techniques for storing hydrogen include those on hydrogen-storing metallic materials, alloy molding/processing techniques, and new hydrogen-storing materials. Researches on the techniques for utilizing hydrogen include those on energy conversion techniques using hydrogen-occluding alloys, and hydrogen-fueled motors. Researches on the techniques for safety-related measures include those on prevention of embrittlement of the system materials by hydrogen. (NEDO)

  17. Analysis of economic and infrastructure issues associated with hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Summers, W.A.; Gorensek, M.B.; Danko, E.; Schultz, K.R.; Richards, M.B.; Brown, L.C.

    2004-01-01

    Consideration is being given to the large-scale transition of the world's energy system from one based on carbon fuels to one based on the use of hydrogen as the carrier. This transition is necessitated by the declining resource base of conventional oil and gas, air quality concerns, and the threat of global climate change linked to greenhouse gas emissions. Since hydrogen can be produced from water using non-carbon primary energy sources, it is the ideal sustainable fuel. The options for producing the hydrogen include renewables (e.g. solar and wind), fossil fuels with carbon sequestration, and nuclear energy. A comprehensive study has been initiated to define economically feasible concepts and to determine estimates of efficiency and cost for hydrogen production using next generation nuclear reactors. A unique aspect of the study is the assessment of the integration of a nuclear plant, a hydrogen production process and the broader infrastructure requirements. Hydrogen infrastructure issues directly related to nuclear hydrogen production are being addressed, and the projected cost, value and end-use market for hydrogen will be determined. The infrastructure issues are critical, since the combined cost of storing, transporting, distributing, and retailing the hydrogen product could well exceed the cost of hydrogen production measured at the plant gate. The results are expected to be useful in establishing the potential role that nuclear hydrogen can play in the future hydrogen economy. Approximately half of the three-year study has been completed. Results to date indicate that nuclear produced hydrogen can be competitive with hydrogen produced from natural gas for use at oil refineries or ammonia plants, indicating a potential early market opportunity for large-scale centralized hydrogen production. Extension of the hydrogen infrastructure from these large industrial users to distributed hydrogen users such as refueling stations and fuel cell generators could

  18. Report on the behalf of the Parliamentary Office for the Assessment of Scientific and Technological Choices on hydrogen: a vector for energy transition? - National Assembly Nr 1672, Senate Nr 253

    International Nuclear Information System (INIS)

    Kalinowski, Laurent; Pastor, Jean-Marc

    2013-01-01

    In its first part, this report describes the role and use hydrogen may have as a possible sustainable energy vector: description of its remarkable properties, description of various production modalities and processes, issues related to storage, transport and distribution. The second part proposes an overview of applications: fuel cells, hydrogen in transports, power-to-gas, co-generation, energy autonomy, mobile devices. The third part describes and discusses the role hydrogen may have in energy transition, notably for the integration of renewable energies, and in the substitution to fossil energies. The last chapter discusses the governance for a hydrogen energy sector in France: a sector with a high potential, a needed intervention by the State, the unavoidable role of territories, the issue of regulation. A description of the situation in foreign countries is provided in appendix

  19. Hydrogen delivery technology rRoadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-11-01

    Hydrogen holds the long-term potential to solve two critical problems related to the energy infrastructure: U.S. dependence on foreign oil and U.S. emissions of greenhouse gases and pollutants. The U.S. transportation sector is almost completely reliant on petroleum, over half of which is currently imported, and tailpipe emissions remain one of the country’s key air quality concerns. Fuel cell vehicles operating on hydrogen produced from domestically available resources – including renewable resources, coal with carbon sequestration, or nuclear energy – would dramatically decrease greenhouse gases and other emissions, and would reduce dependence on oil from politically volatile regions of the world. Clean, domestically-produced hydrogen could also be used to generate electricity in stationary fuel cells at power plants, further extending national energy and environmental benefits.

  20. Comparative requirements for electric energy for production of hydrogen fuel and/or recharging of battery electric automobile fleets in New Zealand and the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Paul [Stanford University, Stanford, CA 94305 (United States); Leaver, Jonathan D. [Department of Civil Engineering, Unitec NZ, Auckland 1142 (New Zealand)

    2010-10-15

    Within the current outlook for sustainable electric energy supply with concomitant reduction in emission of greenhouse gases, accelerated attention is focusing on the long-term development of hydrogen fuel cell and all-electric battery vehicles to provide alternative fuels to replace petroleum-derived fuels for automotive national fleets. The potential varies significantly between large industrially developed nations and smaller industrially developing nations. The requirement for additional electric energy supply from low-specific energy renewable resources and high-specific energy nuclear resources depends strongly on individual national economic, environmental, and political factors. Analysis of the additional electric energy supply required for the two potential large-scale technologies for fueling future national transportation sectors is compared for a large Organization for Economic Co-operation and Development (OECD) nation (USA) with a small OECD nation (New Zealand), normalized on a per-capita basis. (author)

  1. A feasibility study of conceptual design for international clean energy network using hydrogen conversion technology

    International Nuclear Information System (INIS)

    Sato, Takashi; Hamada, Akiyoshi; Kitamura, Kazuhiro

    1998-01-01

    Clean energy is more and more required worldwide in proportion to actualization of global environmental issues including global warming. Therefore, it is an urgent task to realize promotion of worldwide introduction of clean energy which exists abundantly and is widely distributed in the world, such as hydropower and solar energy, while reducing the dependence on fossil fuel. However, since the renewable energy, differing from so called fossil fuel, is impossible to transport for long distance and store as it is, its utilization is subject to be limited. As one possible resolution of this kind of issues, 'International clean energy network using hydrogen conversion technology' which enables conversion of renewable energy from low cost hydropower into hydrogen energy and also into the transportable and storable form, is a meaningful concept. This system technology enables dealing of this hydrogen energy in international market as in the same manner as fossil fuel. It is considered to enable promotion of international and large scale introduction of such clean energy, along with the contribution to diversified and stabilized international energy supply. In this study, based upon the above-mentioned point of view and assumption of two sites, one on supply side and another on demand side of hydrogen energy, three systems are presumed. One of the systems consists of liquid hydrogen as transportation and storage medium of hydrogen, and the others intermediately convert hydrogen into methanol or ammonia as an energy carrier. A overall conceptual design of each system spanning from hydrogen production to its utilization, is conducted in practical way in order to review the general technical aspects and economical aspects through cost analysis. This study is administrated through the New Energy and Industrial Technology Development Organization (NEDO) as a part of the International Clean Energy Network Using Hydrogen Conversion (so-called WE-NET) Program with funding from

  2. Nuclear energy - basis for hydrogen economy

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    The development of human civilization in general as well as that of every country in particular is in direct relation to the assurance of a cost effective energy balance encompassing all industrial spheres and everyday activities. Unfortunately, the uncontrolled utilization of Earth's energy resources is already causing irreversible damage to various components of the eco-system of the Earth. Nuclear energy used for electricity and hydrogen production has the biggest technological potential for solving of the main energy outstanding issues of the new century: increasing of energy dependence; global warming. Because of good market position the political basis is assured for fast development of new generation nuclear reactors and fuel cycles which can satisfy vigorously increasing needs of affordable and clean energy. Political conditions are created for adequate participation of nuclear energy in the future global energy mix. They must give chance to the nuclear industry to take adequate part in the new energy generation capacity.(author)

  3. Special document: which energies for tomorrow? Fossil, renewable, nuclear, hydrogen energies; the CEA of Saclay at the heart of the research; energy, greenhouse effect, climate; Dossier special: quelles energies pour demain? Energies fossiles, renouvelables, nucleaires, hydrogene; le Centre CEA de Saclay au coeur de la recherche; energie, effet de serre, climat

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2003-04-01

    The Cea devotes many research programs in the energy domain and especially in the development of new energetic solutions: hydrogen program, photovoltaic program, energy conservation domain and improvement of energy production systems. In this framework, this document presents synthetical information on the France situation in the world energy space and on the Cea Saclay researches. The energy policy and the electric power in France, the fossil energies, the nuclear energy, the renewable energies, the hydrogen and the fuel cell, the greenhouse effect and the climatology are detailed. (A.L.B.)

  4. Hydrogen production as a promising nuclear energy application

    International Nuclear Information System (INIS)

    Vanek, V.

    2003-01-01

    Hydrogen production from nuclear is a field of application which eventually can outweigh power production by nuclear power plants. There are two feasible routes of hydrogen production. The one uses heat to obtain hydrogen from natural gas through steam reforming of methane. This is an highly energy-consuming process requiring temperatures up to 900 deg C and producing carbon dioxide as a by-product. The other method includes direct thermochemical processes to obtain hydrogen, using sulfuric acid for instance. Sulfuric acid is decomposed thermally by the reaction: H 2 SO 4 -> H 2 O = SO 2 + (1/2) O 2 , followed by the processes I 2 + SO 2 + 2H O -> 2HI + H 2 SO 4 and 2HI -> H 2 + I 2 . The use of nuclear for this purpose is currently examined in Japan and in the US. (P.A.)

  5. Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems

    Science.gov (United States)

    Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.

    2015-02-01

    The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.

  6. Development of hydrogen market: the outlook for demand, wing energy production, mass storage and distribution to vehicles in the regions; Developpement des marches de l'hydrogene demande prospective dans l'industrie, production par energie eolienne, stockage massif et distribution aux vehicules en region

    Energy Technology Data Exchange (ETDEWEB)

    Le Duigou, A. [CEA Saclay, DEN/DANS/I-Tese, 91 - Gif-sur-Yvette (France); Quemere, M.M. [EDF R and D, 77 - Moret-Sur- Loing (France); Marion, P.; Decarre, S. [IFP Energies nouvelles, 92 - Rueil-Malmaison (France); Sinegre, L.; Nadau, L.; Pierre, H. [GDF SUEZ, DRI, 93 - La Plaine Saint Denis (France); Menanteau, Ph. [LEPII, Universite de Grenoble - CNRS, 38 (France); Rastetter, A. [ALPHEA, EURODEV Center, 57 - Forbach (France); Cuni, A.; Barbier, F. [Air Liquide, 75 - Paris (France); Mulard, Ph. [Total, La Defense, Raffige Marketing, 92 - Courbevoie (France); Alleau, Th. [AFH2, 75 - Paris (France); Antoine, L. [ADEME, Agence de l' Environnement et de la Maitrise de l' Energie, 75 - Paris (France)

    2011-03-15

    The HyFrance3 project has provided a national framework for reflection, debate and strategic exchange between major public and industrial research players, namely for their hydrogen technology arms in France (Air Liquide, Total Refining and Marketing, EDF R and D, GDF SUEZ, CNRS-LEPII Energies Nouvelles, AFH2, ALPHEA, ADEME (co-financing and partner) and the CEA (coordinator)). This project focuses on studying the landscape, trends and economic competitiveness of some links in the hydrogen chain, for industrial and energy applications, over a period referred to as 'short term' (2020-2030). Four study subjects were tackled: the prospective demand for hydrogen in industry (analysis of the current situation and outlook for 2030, in particular for refining based on two scenarios on mobility), production of hydrogen for transport uses from wind-produced electricity, mass storage that would have to be set up in the Rhone Alpes and PACA regions, to balance supply that is subject to deliberate (maintenance) or involuntary interruptions, and the distribution of hydrogen in the region, for automobile use (gas station network in the Rhone Alpes and PACA regions) by 2050 (with end period all-in costs between 0.4 eur/kg and 0.6 eur/kg, as a function of the price of energy and the distance from the storage site). (authors)

  7. Control, monitoring and data acquisition architecture design for clean production of hydrogen from mini-wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Villarroya, Sebastian; Cotos, Jose M. [Santiago de Compostela Univ. (Spain). Lab. of Systems; Gomez, Guillermo; Plaza, Borja [National Institute for Aerospace Technology (INTA), Torrejon de Ardoz, Madrid (Spain); Fontan, Manuel; Magdaleno, Alexander [OBEKI Innobe, Ibarra, Gipuzkoa (Spain); Vallve, Xavier; Palou, Jaume [Trama TecnoAmbiental, Barcelona (Spain)

    2010-07-01

    One of the pillars that holds up the stability and economic development of our society is the need to ensure a reliable and affordable supply of energy that meets our current energy needs. The high dependence on fossil fuels, our main source of primary energy, has many drawbacks mainly caused by greenhouse gases. It is urgent to address this unsustainable energy future through innovation, adoption of new energy alternatives and better use of existing technologies. In this context, hydrogen associated to renewable energy is probably an important part of that future. This paper presents a real demonstrator of energy generation and storage through the clean production of hydrogen from small wind energy. Thus, this demonstrator will allow the study of the technical and econonmic feasibility of hydrogen production. Wind energy will be stored as hydrogen for a later use. In this way hydrogen represents a form of no-loss energy battery. The use of small wind energy allows a more modular and scattered production even in developing countries. In this way, we avoid the transport of hydrogen and the electricity to produce it, improving system efficiency. Moreover, small wind systems require a lower initial investment in infrastructure which will facilitate the development of a separate market for hydrogen production. (orig.)

  8. Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands

    International Nuclear Information System (INIS)

    Olateju, Babatunde; Kumar, Amit

    2011-01-01

    Hydrogen is produced via steam methane reforming (SMR) for bitumen upgrading which results in significant greenhouse gas (GHG) emissions. Wind energy based hydrogen can reduce the GHG footprint of the bitumen upgrading industry. This paper is aimed at developing a detailed data-intensive techno-economic model for assessment of hydrogen production from wind energy via the electrolysis of water. The proposed wind/hydrogen plant is based on an expansion of an existing wind farm with unit wind turbine size of 1.8 MW and with a dual functionality of hydrogen production and electricity generation. An electrolyser size of 240 kW (50 Nm 3 H 2 /h) and 360 kW (90 Nm 3 H 2 /h) proved to be the optimal sizes for constant and variable flow rate electrolysers, respectively. The electrolyser sizes aforementioned yielded a minimum hydrogen production price at base case conditions of $10.15/kg H 2 and $7.55/kg H 2 . The inclusion of a Feed-in-Tariff (FIT) of $0.13/kWh renders the production price of hydrogen equal to SMR i.e. $0.96/kg H 2, with an internal rate of return (IRR) of 24%. The minimum hydrogen delivery cost was $4.96/kg H 2 at base case conditions. The life cycle CO 2 emissions is 6.35 kg CO 2 /kg H 2 including hydrogen delivery to the upgrader via compressed gas trucks. -- Highlights: ► This study involves development of a data intensive techno-economic model for estimation cost of hydrogen production from wind energy. ► Wind energy based electricity is used for electrolysis to produce hydrogen in Western Canada for bitumen upgrading for oil sands. ► Several scenarios were developed to study the electricity generation and hydrogen production from wind energy. ► The cost of production of hydrogen is significantly higher than natural based hydrogen in Western Canada.

  9. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    The study of low energy ionization of atomic hydrogen has undergone a rapid ... Three distinct theories for describing low energy ionization can now .... clear evidence that the backward peak for ΘЅѕ = 180° is due to positron-nucleus scat-.

  10. The Hydrogen Economy Making the Transition to the Third Industrial Revolution and a New Energy Era

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Rifkin

    2006-07-01

    Jeremy Rifkin is the author of the international best seller, The Hydrogen Economy, which has been translated into fourteen languages. It is the most widely read book in the world on the future of renewable energy and the hydrogen economy. In his presentation on 'The Hydrogen Economy', Mr. Rifkin takes us on an eye-opening journey into the next great commercial era in history. He envisions the dawn of a new economy powered by hydrogen that will fundamentally change the nature of our market, political and social institutions, just as coal and steam power did at the beginning of the industrial age. Rifkin observes that we are fast approaching a critical watershed for the fossil-fuel era, with potentially dire consequences for industrial civilization. Experts had been saying that we had another forty or so years of cheap available crude oil left. Now, however, some of the world's leading petroleum geologists are suggesting that global oil production could peak and begin a steep decline much sooner, as early as the second decade of the 21. century. Non-OPEC oil producing countries are already nearing their peak production, leaving most of the remaining reserves in the politically unstable Middle East. Increasing tensions between Islam and the West are likely to further threaten our access to affordable oil. In desperation, the U.S. and other nations could turn to dirtier fossil-fuels, coal, tar sand, and heavy oil, which will only worsen global warming and imperil the earth's already beleaguered ecosystems. Looming oil shortages make industrial life vulnerable to massive disruptions and possibly even collapse. While the fossil-fuel era is entering its sunset century, a new energy regime is being born that has the potential to remake civilization along radical new lines, according to Rifkin. Hydrogen is the most basic and ubiquitous element in the universe. It is the stuff of the stars and of our sun and, when properly harnessed, it is the &apos

  11. Thermodynamic Stability of Ice II and Its Hydrogen-Disordered Counterpart: Role of Zero-Point Energy.

    Science.gov (United States)

    Nakamura, Tatsuya; Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2016-03-03

    We investigate why no hydrogen-disordered form of ice II has been found in nature despite the fact that most of hydrogen-ordered ices have hydrogen-disordered counterparts. The thermodynamic stability of a set of hydrogen-ordered ice II variants relative to ice II is evaluated theoretically. It is found that ice II is more stable than the disordered variants so generated as to satisfy the simple ice rule due to the lower zero-point energy as well as the pair interaction energy. The residual entropy of the disordered ice II phase gradually compensates the unfavorable free energy with increasing temperature. The crossover, however, occurs at a high temperature well above the melting point of ice III. Consequently, the hydrogen-disordered phase does not exist in nature. The thermodynamic stability of partially hydrogen-disordered ices is also scrutinized by examining the free-energy components of several variants obtained by systematic inversion of OH directions in ice II. The potential energy of one variant is lower than that of the ice II structure, but its Gibbs free energy is slightly higher than that of ice II due to the zero-point energy. The slight difference in the thermodynamic stability leaves the possibility of the partial hydrogen-disorder in real ice II.

  12. A rationale plan for conversion of Malaysia for solar hydrogen energy system and its benefits

    International Nuclear Information System (INIS)

    Ludin, N.A.; Kamaruddin, W.N.; Kamaruzzaman Sopian; Verizoglu, T.N.

    2006-01-01

    It expected that early in the next century, Malaysia production of petroleum and natural gas will peak, and thereafter production will decline. In parallel with this production decline, Malaysia income from fossil fuels will start to decline, which would hurt the economy. One possible solution for Malaysia is the of Malaysia is the conversion to a hydrogen energy system. In order to move towards a sustainable hydrogen energy system, a future strategy must be outlined, followed, and continually revised. This paper will underline the available hydrogen technologies for production, storage, delivery, conversion, transportation and end use energy applications for the implementation of hydrogen energy system. Therefore, this paper will also emphasis the key success factors to drive the rationale plan for conversion to hydrogen energy system for Malaysia

  13. 76 FR 4338 - Research and Development Strategies for Compressed & Cryo-Compressed Hydrogen Storage Workshops

    Science.gov (United States)

    2011-01-25

    ... Hydrogen Storage Workshops AGENCY: Fuel Cell Technologies Program, Office of Energy Efficiency and... the National Renewable Energy Laboratory, in conjunction with the Hydrogen Storage team of the EERE... hydrogen storage in the Washington, DC metro area. DATES: The workshops will be held on Monday, February 14...

  14. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  15. The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Mao, Ho-kwang

    2011-01-01

    'The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales ' was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Washington and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO 2 , water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO 2 (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.

  16. Development of hydrogen market: the outlook for demand, wing energy production, mass storage and distribution to vehicles in the regions

    International Nuclear Information System (INIS)

    Le Duigou, A.; Quemere, M.M.; Marion, P.; Decarre, S.; Sinegre, L.; Nadau, L.; Pierre, H.; Menanteau, Ph.; Rastetter, A.; Cuni, A.; Barbier, F.; Mulard, Ph.; Alleau, Th.; Antoine, L.

    2011-01-01

    The HyFrance3 project has provided a national framework for reflection, debate and strategic exchange between major public and industrial research players, namely for their hydrogen technology arms in France (Air Liquide, Total Refining and Marketing, EDF R and D, GDF SUEZ, CNRS-LEPII Energies Nouvelles, AFH2, ALPHEA, ADEME (co-financing and partner) and the CEA (coordinator). This project focuses on studying the landscape, trends and economic competitiveness of some links in the hydrogen chain, for industrial and energy applications, over a period referred to as 'short term' (2020-2030). Four study subjects were tackled: the prospective demand for hydrogen in industry (analysis of the current situation and outlook for 2030, in particular for refining based on two scenarios on mobility), production of hydrogen for transport uses from wind-produced electricity, mass storage that would have to be set up in the Rhone Alpes and PACA regions, to balance supply that is subject to deliberate (maintenance) or involuntary interruptions, and the distribution of hydrogen in the region, for automobile use (gas station network in the Rhone Alpes and PACA regions) by 2050 (with end period all-in costs between 0.4 eur/kg and 0.6 eur/kg, as a function of the price of energy and the distance from the storage site). (authors)

  17. From water to water, hydrogen as a renewable energy vector for the future

    International Nuclear Information System (INIS)

    Gillet, A.C.

    2000-01-01

    The most important property of hydrogen is that it is the cleanest fuel. Its combustion produces only water and a small amount of NO x . No acid rain, no greenhouse effect, no ozone layer depletion, no particulates aerosols. It seems then ideally suited for the conversion to renewable energy. Hydrogen has now established it self as a clean choice for an environmentally compatible energy system. It can provide a sustainable future for building, industrial and transport sectors of human activities. On average, it has about 20-30% higher combustion efficiency than fossil fuels and can produce electricity directly in fuel cells. In combination with solar PV- and hydro-electrolysis, it is compatible with land area requirements on a worldwide basis. If fossil fuels combustion environmental damage is taken into account, the hydrogen energy system is already cost effective. The question is thus no longer , but, and soon, will hydrogen energy become a practical solution to sustainable energy development. (Author)

  18. Modelling energy demand for a fleet of hydrogen-electric vehicles interacting with a clean energy hub

    International Nuclear Information System (INIS)

    Syed, F.; Fowler, M.; Wan, D.; Maniyali, Y.

    2009-01-01

    This paper details the development of an energy demand model for a hydrogen-electric vehicle fleet and the modelling of the fleet interactions with a clean energy hub. The approach taken is to model the architecture and daily operation of every individual vehicle in the fleet. A generic architecture was developed based on understanding gained from existing detailed models used in vehicle powertrain design, with daily operation divided into two periods: charging and travelling. During the charging period, the vehicle charges its Electricity Storage System (ESS) and refills its Hydrogen Storage System (HSS), and during the travelling period, the vehicle depletes the ESS and HSS based on distance travelled. Daily travel distance is generated by a stochastic model and is considered an input to the fleet model. The modelling of a clean energy hub is also presented. The clean energy hub functions as an interface between electricity supply and the energy demand (i.e. hydrogen and electricity) of the vehicle fleet. Finally, a sample case is presented to demonstrate the use of the fleet model and its implications on clean energy hub sizing. (author)

  19. Thermal energy distribution analysis for hydrogen production in RGTT200K conceptual design

    International Nuclear Information System (INIS)

    Tumpal Pandiangan; Ign Djoko Irianto

    2011-01-01

    RGTT200K is a high temperature gas-cooled reactor (HTGR) which conceptually designed for power generation, hydrogen production and desalination. Hydrogen production process in this design uses thermochemical method of Iodine-Sulphur. To increase the thermal conversion efficiency in hydrogen production installations, it needs to design a thermal energy distribution and temperature associated with the process of thermo-chemical processes in the method of Iodine-Sulphur. In this method there are 7 kinds of processes: (i) H 2 SO4 decomposition reaction (ii) treatment of vaporization (iii) treatment of pre vaporizer (iv) treatment of flash 4 (v) treatment of decomposition of HI (vi) treatment of the flash 1-3 and (vii) Bunsen reaction. To regulate the distribution of energy and temperature appropriate to the needs of each process used 3 pieces of heat exchanger (HE). Calculation of energy distribution through the distribution of helium gas flow has been done with Scilab application programs, so that can know the distribution of thermal energy for production of 1 mole of hydrogen. From this model, it can calculate the thermal energy requirement for production of hydrogen at the desired capacity. In the conceptual design of RGTT200K, helium discharge has been designed by 20 kg/s, so that an efficient hydrogen production capacity needed to produce 15347.8 for 21.74 mole of H 2 . (author)

  20. Hydrogen as an energy carrier and its production by nuclear power

    International Nuclear Information System (INIS)

    1999-05-01

    The impact of power generation on environment is becoming an ever increasing concern in decision making when considering the energy options and power systems required by a country in order to sustain its economic growth and development. Hydrogen is a strong emerging candidate with a significant role as a clean, environmentally benign and safe to handle major energy carrier in the future. Its enhanced utilization in distributed power generation as well as in propulsion systems for mobile applications will help to significantly mitigate the strong negative effects on the environment. It ia also the nuclear power that will be of utmost importance in the energy supply of many countries over the next decades. The development of new, innovative reactor concepts utilizing passive safety features for process heat and electricity generation are considered by many to play a substantial role in the world's energy future in helping to reduce greenhouse gas emissions. This report produced by IAEA documents past and current activities in Member States in the development of hydrogen production as an energy carrier and its corresponding production through the use of nuclear power. It provides an introduction to nuclear technology as a means of producing hydrogen or other upgraded fuels and to the energy carries hydrogen and its main fields of application. Emphasis is placed on high-temperature reactor technology which can achieve the simultaneous generation of electricity and the production of high-temperature process heat

  1. Hydrogen as an energy carrier and its production by nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The impact of power generation on environment is becoming an ever increasing concern in decision making when considering the energy options and power systems required by a country in order to sustain its economic growth and development. Hydrogen is a strong emerging candidate with a significant role as a clean, environmentally benign and safe to handle major energy carrier in the future. Its enhanced utilization in distributed power generation as well as in propulsion systems for mobile applications will help to significantly mitigate the strong negative effects on the environment. It ia also the nuclear power that will be of utmost importance in the energy supply of many countries over the next decades. The development of new, innovative reactor concepts utilizing passive safety features for process heat and electricity generation are considered by many to play a substantial role in the world`s energy future in helping to reduce greenhouse gas emissions. This report produced by IAEA documents past and current activities in Member States in the development of hydrogen production as an energy carrier and its corresponding production through the use of nuclear power. It provides an introduction to nuclear technology as a means of producing hydrogen or other upgraded fuels and to the energy carries hydrogen and its main fields of application. Emphasis is placed on high-temperature reactor technology which can achieve the simultaneous generation of electricity and the production of high-temperature process heat Refs, figs, tabs

  2. Hydrogen generator characteristics for storage of renewably-generated energy

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Bartela, Łukasz; Węcel, Daniel; Dubiel, Klaudia

    2017-01-01

    The paper presents a methodology for determining the efficiency of a hydrogen generator taking the power requirements of its auxiliary systems into account. Authors present results of laboratory experiments conducted on a hydrogen generator containing a PEM water electrolyzer for a wide range of device loads. On the basis of measurements, the efficiency characteristics of electrolyzers were determined, including that of an entire hydrogen generator using a monitored power supply for its auxiliary devices. Based on the results of the experimental tests, the authors have proposed generalized characteristics of hydrogen generator efficiency. These characteristics were used for analyses of a Power-to-Gas system cooperating with a 40 MW wind farm with a known yearly power distribution. It was assumed that nightly-produced hydrogen is injected into the natural gas transmission system. An algorithm for determining the thermodynamic and economic characteristics of a Power-to-Gas installation is proposed. These characteristics were determined as a function of the degree of storage of the energy produced in a Renewable Energy Sources (RES) installation, defined as the ratio of the amount of electricity directed to storage to the annual amount of electricity generated in the RES installation. Depending on the degree of storage, several quantities were determined. - Highlights: • The efficiency characteristics of PEM electrolyzer are determined. • Generalized characteristics of hydrogen generator efficiency are proposed. • Method of choice of electrolyser nominal power for Power-to-Gas system was proposed. • Development of Power-to-Gas systems requires implementation of support mechanisms.

  3. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  4. Perturbation approach to the self-energy of non-S hydrogenic states

    International Nuclear Information System (INIS)

    Le Bigot, Eric-Olivier; Jentschura, Ulrich D.; Mohr, Peter J.; Indelicato, Paul; Soff, Gerhard

    2003-01-01

    We present results on the self-energy correction to the energy levels of hydrogen and hydrogenlike ions. The self-energy represents the largest QED correction to the relativistic (Dirac-Coulomb) energy of a bound electron. We focus on the perturbation expansion of the self-energy of non-S states, and provide estimates of the so-called A 60 perturbation coefficient, which can be viewed as a relativistic Bethe logarithm. Precise values of A 60 are given for many P, D, F, and G states, while estimates are given for other states. These results can be used in high-precision spectroscopy experiments in hydrogen and hydrogenlike ions. They yield the best available estimate of the self-energy correction of many atomic states

  5. Design of a photovoltaic-hydrogen-fuel cell energy system

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, P A; Chamberlin, C E [Humboldt State Univ., Arcata, CA (US). Dept. of Environmental Resources Engineering

    1991-01-01

    The design of a stand-alone renewable energy system using hydrogen (H{sub 2}) as the energy storage medium and a fuel cell as the regeneration technology is reported. The system being installed at the Humboldt State University Telonicher Marine Laboratory consists of a 9.2 kW photovoltaic (PV) array coupled to a high pressure, bipolar alkaline electrolyser. The array powers the Laboratory's air compressor system whenever possible; excess power is shunted to the electrolyser for hydrogen and oxygen (O{sub 2}) production. When the array cannot provide sufficient power, stored hydrogen and oxygen are furnished to a proton exchange membrane fuel cell which, smoothly and without interruption, supplies the load. In reporting the design, details of component selection, sizing, and integration, control system logic and implementation, and safety considerations are discussed. Plans for a monitoring network to chronicle system performance are presented, questions that will be addressed through the monitoring program are included, and the present status of the project is reported. (Author).

  6. Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage.

    Science.gov (United States)

    Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Mi, Zetian; Li, Chao-Jun

    2015-06-24

    Solar energy harvesting and hydrogen economy are the two most important green energy endeavors for the future. However, a critical hurdle to the latter is how to safely and densely store and transfer hydrogen. Herein, we developed a reversible hydrogen storage system based on low-cost liquid organic cyclic hydrocarbons at room temperature and atmospheric pressure. A facile switch of hydrogen addition (>97% conversion) and release (>99% conversion) with superior capacity of 7.1 H2 wt % can be quickly achieved over a rationally optimized platinum catalyst with high electron density, simply regulated by dark/light conditions. Furthermore, the photodriven dehydrogenation of cyclic alkanes gave an excellent apparent quantum efficiency of 6.0% under visible light illumination (420-600 nm) without any other energy input, which provides an alternative route to artificial photosynthesis for directly harvesting and storing solar energy in the form of chemical fuel.

  7. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  8. Overview of the U.S. DOE Hydrogen Safety, Codes and Standards Program. Part 4: Hydrogen Sensors; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J.; Rivkin, Carl; Burgess, Robert; Brosha, Eric; Mukundan, Rangachary; James, C. Will; Keller, Jay

    2016-12-01

    Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cell Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.

  9. Hydrogen storage - are we making progress?

    International Nuclear Information System (INIS)

    Blair, L.; Milliken, J.; Satyapal, S.

    2004-01-01

    'Full text:' The efficient storage of hydrogen in compact, lightweight systems that allow greater than 300-mile range has been identified as one of the major technical challenges facing the practical commercialization of fuel cell power systems for light-duty vehicles. Following the hydrogen vision announced by President Bush in his 2003 State of the Union address, the U.S. Department of Energy issued a Grand Challenge, soliciting ideas from universities, national laboratories, and industry. DOE's National Hydrogen Storage Project, an aggressive and innovative research program focused on materials R and D, will be launched in Fiscal Year 2005. An intensive effort is also underway in the private sector, both in the U.S. and abroad, to meet the challenging on-board hydrogen storage requirements. A historical perspective of hydrogen storage research and development will be provided and the current DOE technical targets for hydrogen storage systems will be discussed. The state-of-the-art in hydrogen storage will be summarized and recent progress assessed. Finally future research directions and areas of technical emphasis will be described. (author)

  10. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    Science.gov (United States)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    Sustainable development requires us to find new energy sources instead of fossil fuels. One possibility is the hydrogen fuel cell, which uses significantly more efficient than the current combustion engines. The task of the hydrogen is clean, carbon-free renewable energy sources to choose in the future by growing degree. Hungary can play a role in the renewable energy sources of biomass as a renewable biomass annually mass of about 350 to 360 million tons. The biomass is only a very small proportion of fossil turn carbonaceous materials substitution, while we may utilize alternative energy sources as well. To the hydrogen production from biomass, the first step of the chemical transformations of chemical bonds are broken, which is always activation energy investment needs. The methanol and ethanol by fermentation from different agricultural products is relatively easy to produce, so these can be regarded as renewable energy carriers of. The ethanol can be used directly, and used in several places in the world are mixed with the petrol additive. This method is the disadvantage that the anhydrous alcohol is to be used in the combustion process in the engine more undesired by-products may be formed, and the fuel efficiency of the engine is significantly lower than the efficiency of the fuel cells. More useful to produce hydrogen from the alcohol and is used in a fuel cell electric power generation. Particularly attractive option for the so-called on-board reforming of alcohols, that happens immediately when the vehicle hydrogen production. It does not need a large tank of hydrogen, because the hydrogen produced would be directly to the fuel cell. The H2 tank limit use of its high cost, the significant loss evaporation, the rare-station network, production capacity and service background and lack of opportunity to refuel problems. These can be overcome, if the hydrogen in the vehicle is prepared. As volume even 700 bar only about half the H2 pressure gas can be stored

  11. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  12. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell

    International Nuclear Information System (INIS)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal–oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  13. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  14. Energy, The Storage Challenge. Better Batteries Included. Running Hot and Cold. A Tank-full of Hydrogen

    International Nuclear Information System (INIS)

    Bourdet, Julien; Hait, Jean-Francois; Demarthon, Fabrice; Brault, Pascal; Dollet, Alain; Py, Olivier; Tarascon, Jean-Marie; Gonbeau, Danielle; Simon, Patrice; Pourcelly, Gerald; Latroche, Michel; Rango, Patricia de; Miraglia, Salvatore

    2013-01-01

    To secure its future and that of the planet, humanity must find alternatives to oil. But this vital transition toward renewable energy (currently the subject of a national debate in France), is highly dependent on the development of efficient storage solutions. Today's technologies make it relatively easy to produce electricity, heat, and even hydrogen, but their long-term storage remains a daunting scientific and technical challenge-a high priority for CNRS researchers

  15. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

    Science.gov (United States)

    Malerød-Fjeld, Harald; Clark, Daniel; Yuste-Tirados, Irene; Zanón, Raquel; Catalán-Martinez, David; Beeaff, Dustin; Morejudo, Selene H.; Vestre, Per K.; Norby, Truls; Haugsrud, Reidar; Serra, José M.; Kjølseth, Christian

    2017-11-01

    Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 °C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H2 day-1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture.

  16. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 2. Research study on promotion of international cooperation (standardization of hydrogen energy technology); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 2. Kokusai kyoryoku suishin no tame no chosa kento (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the basic study on standardization of hydrogen energy technology, and the research study on ISO/TC197 in fiscal 1996. As a part of the WE-NET project, the subtask 2 aims at preparation of standards necessary for practical use and promotion. Developmental states in every field of hydrogen energy technologies, current states of domestic/overseas related standards and laws, and needs and issues of standardization were surveyed. In particular, the needs and issues were clarified in relation to existing standards and laws from the viewpoint of specific hydrogen property. ISO/TC197 was established in 1989 for standardization of the systems and equipment for production, storage, transport, measurement and utilization of hydrogen energy. Four working groups are in action for the supply system and tank of liquid hydrogen fuel for automobiles, the container and ship for complex transport of liquid hydrogen, the specifications of hydrogen products for energy, and the hydrogen supply facility for airports. The draft international standards were proposed to the international conference in 1996. 16 refs., 21 figs., 41 tabs.

  17. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  18. IHCE '95. International Hydrogen and Clean Energy Symposium '95. (February 6-8, 1995)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-06

    This is a collection of speeches and lectures delivered at the above-named symposium that took place in Tokyo. Three speakers from Japan, Germany, and the U.S. made remarks about the future energy systems and the role of hydrogen; the hydrogen energy development status and plans in Europe; and the role of hydrogen in meeting southern California's air quality goals, respectively. Technical lectures numbering 22 in total included the photocatalytic reactions - water splitting and environmental applications; realization and operation of SWB's (Solar-Wasserstof-Bayern GmBH) development assembling major industrial-scale components of solar hydrogen technology; hydrogen production by UT-3 (University of Tokyo-3) thermochemical water decomposition cycle; energy and environmental technology in Japan - the New Sunshine Program; and research and development plans for WE-NET (World Energy Network). In the poster session, there were 45 exhibitions, which included development on solid polymer electrolyte water electrolysis in Mitsubishi Heavy Industries, Ltd.; development of environmentally friendly technology for the production of hydrogen; and recent progress of hydrogen storage and transportation technologies in North America. (NEDO)

  19. Long-term transition to power/hydrogen energy system based on regenerative energy sources. Langfristiger Uebergang zum Strom/Wasserstoff-Energiesystem auf der Basis erneuerbarer Energiequellen

    Energy Technology Data Exchange (ETDEWEB)

    Wurster, R

    1989-01-01

    If we mean to secure the future of this planet in its present state we shall have to reduce drastically the emissions of trace gases influencing our climate like CO/sub 2/, CH/sub 4/, FCHC, ozone, N/sub 2/O and stratospheric H/sub 2/O. CO/sub -/neutral energy sources in clude nuclear energy and regenerative energies (solar, wind, water, biomass, tidal energy). These energy sources provide energy carriers in terms of electricity, heat, biofuels, synthesis gas and hydrogen. The author discusses the power/hydrogen energy system, electrolytic generation of hydrogen and its capacity for storage and transport from sunny solar-energy utilization areas (Central Africa). Hydrogen can then be used in drive systems, power generation (power stations) and for space heating and process heat. The author discusses its profitability and underlines the fact that hydrogen will figure in the energy economy of the future. (HWJ).

  20. Building sustainable energy systems: the role of nuclear-derived hydrogen

    International Nuclear Information System (INIS)

    Hans-Holger Rogner; Sanborn Scott, D.

    2001-01-01

    Global climate change is the most critical environmental threat of the 21. century. As evidenced in the preliminary draft of the Intergovernmental Panel on Climate Change (IPCC) new Third Assessment Report (TAR), the scientific support for this conclusion is both extensive and growing. In this paper we first review features of the 21. century energy system - how that system evolved and where it seems to be taking us, unless there are clear and aggressive multinational initiatives to mitigate and then reverse the contribution that today's energy system makes to the risks of global climate change. The paper then turns to the extensive deployment of the two non-carbon based energy currencies electricity and hydrogen, which we will call hydricity, that we believe are essential for future reductions in anthropogenic carbon dioxide (CO 2 ) emissions. Of these two, hydrogen will be the newcomer to energy systems. Popular thinking often identifies renewable as the category of energy sources that can provide electricity and hydrogen in sufficient quantities, although much of the public does not realize there will still be a need for a chemical currency to allow renewable to power the market where carbon is most difficult to mitigate, transportation. Renewable, however, while able to make important contributions to future energy supplies, cannot realistically provide the magnitude of energy that will be required. The paper outlines the quantitative limits to the overall renewable contribution and argues that the large-scale deployment of nuclear fission will be essential for meeting future energy needs while limiting greenhouse gas (GHG) emissions. (authors)

  1. Application of solar concentrators for combined production of hydrogen and electrical energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2008-01-01

    New specific concept is application of solar dish concentrators in a process which allows solar energy to be used for splitting water in hydrogen and oxygen, with electrical energy as a byproduct. This is performed in two stages: The first stage uses highly concentrated solar energy to split CO 2 Into CO and O 2 . The second stage uses water-gas shifts reaction to cause the CO to react with water and produced hydrogen and CO 2 , Carbon dioxide is then recycled back into the system, and the waste heat is used to produce electricity in a steam turbine, Efficiency of the process is 45% , totaling 20% in chemical energy (H 2 ), and 25% electricity. This solar system is 80% more efficient than other solar technologies which make energy much cheaper. The environmentally friendly and low cost hydrogen can become a prime mover of fuel cell development especially in automotive application. (Author)

  2. An investment-led approach to analysing the hydrogen energy economy in the UK

    International Nuclear Information System (INIS)

    Houghton, T.; Cruden, A.

    2009-01-01

    The authors propose an alternative, investment-led approach to analysing the potential for the development of hydrogen energy in the UK. The UK economy is relatively sensitive to movements in world fossil fuels markets since the energy sector contributes at least 5% of UK GDP and represents an asset pool of at least pound 230 billion. Much of the ongoing research to assess possible scenarios for the development of alternatives to existing energy systems, including hydrogen energy, in the UK is built around the cost-optimising MARKAL model. The authors believe that this approach offers an incomplete picture of hydrogen energy deployment since it ignores the mechanisms dictating the flow of commercial capital to the sector and they suggest an alternative model based on the risk-adjusted value proposition. Initial analysis shows that valuation differentials already exist between companies in the fossil fuel, utilities and fuel cell sectors and that this might be exploited to the advantage of investors thus affecting the speed of development in hydrogen energy. It should be noted that the following represents work in progress and the authors intend to publish an extended analysis in due course. (author)

  3. Fiscal 1996 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development was performed for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. Under subtask 1, the whole WE-NET project was subjected to evaluation, which included coordination between the respective tasks. Under subtask 2, information exchange and research cooperation were carried out with research institutes overseas. Under subtask 3, a conceptual design was prepared of a total system using ammonia as the medium for hydrogen transportation, accident data were collected and screened, and safety measures and evaluation techniques were developed and improved. Under subtask 4, the hot press method and the electroless plating method were selected as better electrode bonding methods. Under subtask 5, hydrogen liquefaction cycle processes, liquid hydrogen tankers, storage facilities, etc., were studied. Under subtasks 6-9, furthermore, investigations were conducted about low-temperature substance technology, hydrogen energy, hydrogen combustion turbine, etc. (NEDO)

  4. Economic analysis of a combined production of hydrogen-energy from empty fruit bunches

    International Nuclear Information System (INIS)

    Langè, Stefano; Pellegrini, Laura A.

    2013-01-01

    This work relates to an economic analysis and a comparison between different process solutions for the production of hydrogen and the co-production of hydrogen and energy by means of a zero emission biomass integrated supercritical water gasification (SCWG) and combined cycle power plant. The case study will be located in Malaysia. Energy will be produced in agreement with the Small Renewable Energy Power Plant (SREP) Program, promoted by the Government of Malaysia. Hydrogen is obtained by supercritical water gasification (SCWG) of empty fruit bunches (EFB), a technology of interest for the processing of biomass with high moisture content. The economic analysis has been carried out to demonstrate the feasibility of the process solutions and to compare their convenience. The feedstock is 35 Mg h −1 of empty fruit bunches (EFB), a biomass obtained in the Palm Oil Industry. The location of the site is Teluk Intak District in the State of Perak (Malaysia). The study is performed with Aspen Plus ® V7.2. The aim of this work is to investigate the economic convenience of supercritical water gasification technology applied to a potential industrial case study in order to state the possibilities and the trade-off for the production of hydrogen and the co-production of hydrogen and energy from biomass, using an innovative technology (SCWG) instead of a typical unit for syngas and energy production. The processes have been developed to reach zero emissions and zero wastes. CO 2 and solid residuals are recycled inside palm oil lifecycle. -- Highlights: • Supercritical water gasification of empty fruit bunches has been used for hydrogen production. • Malaysia Small Renewable Energy Power Plant Program is aiming to reduce by 40% its greenhouse gases emissions by 2020. • An economic analysis has been performed to assess the sustainability of hydrogen and energy production from palm oil biomass. • Carbon dioxide and solid residuals are recycled back into biomass

  5. Constraining Born-Infeld-like nonlinear electrodynamics using hydrogen's ionization energy

    Energy Technology Data Exchange (ETDEWEB)

    Akmansoy, P.N. [Universidade Federal do Rio Grande do Norte, Departamento de Fisica Teorica e Experimental, Natal (Brazil); Medeiros, L.G. [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil); Universidade Federal do Rio Grande do Norte, Escola de Ciencia e Tecnologia, Natal, RN (Brazil)

    2018-02-15

    In this work, the hydrogen's ionization energy was used to constrain the free parameter b of three Born-Infeld-like electrodynamics namely Born-Infeld itself, Logarithmic electrodynamics and Exponential electrodynamics. An analytical methodology capable of calculating the hydrogen ground state energy level correction for a generic nonlinear electrodynamics was developed. Using the experimental uncertainty in the ground state energy of the hydrogen atom, the bound b > 5.37 x 10{sup 20}K(V)/(m), where K = 2, 4√(2)/3 and √(π) for the Born-Infeld, Logarithmic and Exponential electrodynamics respectively, was established. In the particular case of Born-Infeld electrodynamics, the constraint found for b was compared with other constraints present in the literature. (orig.)

  6. Energy analysis of hydrogen and electricity production from aluminum-based processes

    International Nuclear Information System (INIS)

    Wang, Huizhi; Leung, Dennis Y.C.; Leung, Michael K.H.

    2012-01-01

    The aluminum energy conversion processes have been characterized to be carbon-free and sustainable. However, their applications are restrained by aluminum production capacity as aluminum is never found as a free metal on the earth. This study gives an assessment of typical aluminum-based energy processes in terms of overall energy efficiency and cost. Moreover, characteristics associated with different processes are identified. Results in this study indicate the route from which aluminum is produced can be a key factor in determining the efficiency and costs. Besides, the aluminum–air battery provides a more energy-efficient manner for the conversion of energy stored in primary aluminum and recovered aluminum from products compared to aluminum-based hydrogen production, whereas the aluminum-based hydrogen production gives a more energy-efficient way of utilizing energy stored in secondary aluminum or even scrap aluminum.

  7. Risk Perception of an Emergent Technology: The Case of Hydrogen Energy

    Directory of Open Access Journals (Sweden)

    Rob Flynn

    2006-01-01

    Full Text Available Although hydrogen has been used in industry for many years as a chemical commodity, its use as a fuel or energy carrier is relatively new and expert knowledge about its associated risks is neither complete nor consensual. Public awareness of hydrogen energy and attitudes towards a future hydrogen economy are yet to be systematically investigated. This paper opens by discussing alternative conceptualisations of risk, then focuses on issues surrounding the use of emerging technologies based on hydrogen energy. It summarises expert assessments of risks associated with hydrogen. It goes on to review debates about public perceptions of risk, and in doing so makes comparisons with public perceptions of other emergent technologies—Carbon Capture and Storage (CCS, Genetically Modified Organisms and Food (GM and Nanotechnology (NT—for which there is considerable scientific uncertainty and relatively little public awareness. The paper finally examines arguments about public engagement and "upstream" consultation in the development of new technologies. It is argued that scientific and technological uncertainties are perceived in varying ways and different stakeholders and different publics focus on different aspects or types of risk. Attempting to move public consultation further "upstream" may not avoid this, because the framing of risks and benefits is necessarily embedded in a cultural and ideological context, and is subject to change as experience of the emergent technology unfolds. URN: urn:nbn:de:0114-fqs0601194

  8. The Effect of Converting to a U.S. Hydrogen Fuel Cell Vehicle Fleet on Emissions and Energy Use

    Science.gov (United States)

    Colella, W. G.; Jacobson, M. Z.; Golden, D. M.

    2004-12-01

    This study analyzes the potential change in emissions and energy use from replacing fossil-fuel based vehicles with hydrogen fuel cell vehicles. This study examines three different hydrogen production scenarios to determine their resultant emissions and energy usage: hydrogen produced via 1) steam reforming of methane, 2) coal gasification, or 3) wind electrolysis. The atmospheric model simulations require two primary sets of data: the actual emissions associated with hydrogen fuel production and use, and the corresponding reduction in emissions associated with reducing fossil fuel use. The net change in emissions is derived using 1) the U.S. EPA's National Emission Inventory (NEI) that incorporates several hundred categories of on-road vehicles and 2) a Process Chain Analysis (PCA) for the different hydrogen production scenarios. NEI: The quantity of hydrogen-related emission is ultimately a function of the projected hydrogen consumption in on-road vehicles. Data for hydrogen consumption from on-road vehicles was derived from the number of miles driven in each U.S. county based on 1999 NEI data, the average fleet mileage of all on-road vehicles, the average gasoline vehicle efficiency, and the efficiency of advanced 2004 fuel cell vehicles. PCA: PCA involves energy and mass balance calculations around the fuel extraction, production, transport, storage, and delivery processes. PCA was used to examine three different hydrogen production scenarios: In the first scenario, hydrogen is derived from natural gas, which is extracted from gas fields, stored, chemically processed, and transmitted through pipelines to distributed fuel processing units. The fuel processing units, situated in similar locations as gasoline refueling stations, convert natural gas to hydrogen via a combination of steam reforming and fuel oxidation. Purified hydrogen is compressed for use onboard fuel cell vehicles. In the second scenario, hydrogen is derived from coal, which is extracted from

  9. Solar hydrogen energy: The European-Maghreb connection. A new way of excellence for a sustainable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Cherigui, Abdel-Nasser [Universite Joseph Fourier Grenoble I, BP 87, 38400 Saint-Martin-D' Heres (France); Mahmah, Bouziane; Harouadi, Farid; Belhamel, Maiouf; Chader, Samira; M' Raoui, Abdelhamid [Renewable Energy Development Centre, CDER, PO Box 62, Route de L' Observatoire, Celeste Valley, Bouzareah, 16340, Algiers (Algeria); Etievant, Claude [Compagnie Europeenne des Technologies de l' Hydrogene - CETH - Innov' Valley Entreprises, 91460 Marcoussis (France)

    2009-06-15

    The global sustainability is a key word of the future energy system for human beings. It should be friendly to our earth. Hydrogen energy is a critical resource to sustainable energy development. Over the coming decades, rapid economic growth will necessitate expanded and diversified energy supplies. This study is proposed to illustrate the attention to the opportunities and possibilities of connecting the energy consumer in North Mediterranean countries, to the reservoir of the Great Sahara of North Africa using hydrogen as a solar energy carrier. It also discusses cooperation between North Africa and north sides of the Mediterranean that has been going on for a long time, in oil and natural gas industry, and why cannot be done in solar hydrogen energy industry, which will reduce pollution and will last forever. Clearly, North Africa is a major bilateral partner with the Europe and the people of the two shares of the Mediterranean will be work together and to built strategic relationships for many decades. In the future, North Africa countries are well-positioned to play a greater role in the Europe clean energy equation. Demographically, interregional migration due to economic concerns will decline. Now, there are good chances to start such cooperation for the benefits of all partners. (author)

  10. Proceedings of the French-German symposium on Hydrogen-energy, an industrial model for the energy transition in France and in Germany: myth or reality?

    International Nuclear Information System (INIS)

    Bodineau, Luc; Menzen, Georg; Hotellier, Gaelle; Arnold, Peter Erich; Mauberger, Pascal; Roentzsch, Lars; Poggi, Philippe; Gervais, Thierry; Schneider, Guenther; Colomar, David; Buenger, Ulrich; Nieder, Babette; Zimmer, Rene; Le Grand, Jean-Francois

    2014-06-01

    This French-German conference on hydrogen energy was jointly organised by the French embassy in Berlin and the French-German office for renewable energies. The conference brought together about 200 scientific experts, industrialists and politicians from both countries. The conference approached first the regulatory aspects of hydrogen energy in both countries. Then, several R and D presentations were given by representatives of industrial groups, small companies and research organisations about some technological aspects of PEM fuel cells, solid storage, and materials for H 2 production. Next, some applications of hydrogen energy were discussed in particular in transportation systems. Finally, the last part of the conference was devoted to the challenges and perspectives of hydrogen energy, together with its social acceptability. This document brings together the different presentations (slides) given by the participants: 1 - Hydrogen Energy and Fuel Cells in France Today, and prospective (Luc Bodineau); 2 - The situation of Energy Policy in Germany and the challenges for the Hydrogen Technology (Georg Menzen); 3 - PEM-Electrolysis - a technological bridge for a more flexible energy system (Gaelle Hotellie); 4 - Unlocking the Hydrogen Potential for Transport and Industry (Peter Erich Arnold); 5 - Hydrogen storage possibilities - the solid storage example (Pascal Mauberger); 6 - Innovative Materials and Manufacturing Technologies for H2 Production and H 2 Storage (Lars Roentzsch); 7 - Scientific development and industrial strategy, experience feedback from the Myrte platform and perspectives in the framework of the energy transition (Philippe Poggi, Thierry Gervais); 8 - 'Power to Gas' - Important partner for renewables with big impact potential (Guenther Schneider); 9 - Developing a Hydrogen Infrastructure for Transport in France and Germany. A Comparison (David Colomar, Ulrich Buenger; 10 - H2 and Fuel-Cells as Key Technologies for the Transition to Renewable

  11. Relative efficiency of hydrogen technologies for the hydrogen economy : a fuzzy AHP/DEA hybrid model approach

    International Nuclear Information System (INIS)

    Lee, S.

    2009-01-01

    As a provider of national energy security, the Korean Institute of Energy Research is seeking to establish a long term strategic technology roadmap for a hydrogen-based economy. This paper addressed 5 criteria regarding the strategy, notably economic impact, commercial potential, inner capacity, technical spinoff, and development cost. The fuzzy AHP and DEA hybrid model were used in a two-stage multi-criteria decision making approach to evaluate the relative efficiency of hydrogen technologies for the hydrogen economy. The fuzzy analytic hierarchy process reflects the uncertainty of human thoughts with interval values instead of clear-cut numbers. It therefore allocates the relative importance of 4 criteria, notably economic impact, commercial potential, inner capacity and technical spin-off. The relative efficiency of hydrogen technologies for the hydrogen economy can be measured via data envelopment analysis. It was concluded that the scientific decision making approach can be used effectively to allocate research and development resources and activities

  12. Relative efficiency of hydrogen technologies for the hydrogen economy : a fuzzy AHP/DEA hybrid model approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of). Energy Policy Research Division; Mogi, G. [Tokyo Univ., (Japan). Dept. of Technology Management for Innovation, Graduate School of Engineering; Kim, J. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of)

    2009-07-01

    As a provider of national energy security, the Korean Institute of Energy Research is seeking to establish a long term strategic technology roadmap for a hydrogen-based economy. This paper addressed 5 criteria regarding the strategy, notably economic impact, commercial potential, inner capacity, technical spinoff, and development cost. The fuzzy AHP and DEA hybrid model were used in a two-stage multi-criteria decision making approach to evaluate the relative efficiency of hydrogen technologies for the hydrogen economy. The fuzzy analytic hierarchy process reflects the uncertainty of human thoughts with interval values instead of clear-cut numbers. It therefore allocates the relative importance of 4 criteria, notably economic impact, commercial potential, inner capacity and technical spin-off. The relative efficiency of hydrogen technologies for the hydrogen economy can be measured via data envelopment analysis. It was concluded that the scientific decision making approach can be used effectively to allocate research and development resources and activities.

  13. Performance requirements of an inertial-fusion-energy source for hydrogen production

    International Nuclear Information System (INIS)

    Hovingh, J.

    1983-01-01

    Performance of an inertial fusion system for the production of hydrogen is compared to a tandem-mirror-system hydrogen producer. Both systems use the General Atomic sulfur-iodine hydrogen-production cycle and produce no net electric power to the grid. An ICF-driven hydrogen producer will have higher system gains and lower electrical-consumption ratios than the design point for the tandem-mirror system if the inertial-fusion-energy gain eta Q > 8.8. For the ICF system to have a higher hydrogen production rate per unit fusion power than the tandem-mirror system requires that eta Q > 17. These can be achieved utilizing realistic laser and pellet performances

  14. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  15. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs

    Energy Technology Data Exchange (ETDEWEB)

    Committee on Alternatives and Strategies for Future Hydrogen Production and Use

    2004-08-31

    The announcement of a hydrogen fuel initiative in the President’s 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation’s long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation’s future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.

  16. A manganese-hydrogen battery with potential for grid-scale energy storage

    Science.gov (United States)

    Chen, Wei; Li, Guodong; Pei, Allen; Li, Yuzhang; Liao, Lei; Wang, Hongxia; Wan, Jiayu; Liang, Zheng; Chen, Guangxu; Zhang, Hao; Wang, Jiangyan; Cui, Yi

    2018-05-01

    Batteries including lithium-ion, lead-acid, redox-flow and liquid-metal batteries show promise for grid-scale storage, but they are still far from meeting the grid's storage needs such as low cost, long cycle life, reliable safety and reasonable energy density for cost and footprint reduction. Here, we report a rechargeable manganese-hydrogen battery, where the cathode is cycled between soluble Mn2+ and solid MnO2 with a two-electron reaction, and the anode is cycled between H2 gas and H2O through well-known catalytic reactions of hydrogen evolution and oxidation. This battery chemistry exhibits a discharge voltage of 1.3 V, a rate capability of 100 mA cm-2 (36 s of discharge) and a lifetime of more than 10,000 cycles without decay. We achieve a gravimetric energy density of 139 Wh kg-1 (volumetric energy density of 210 Wh l-1), with the theoretical gravimetric energy density of 174 Wh kg-1 (volumetric energy density of 263 Wh l-1) in a 4 M MnSO4 electrolyte. The manganese-hydrogen battery involves low-cost abundant materials and has the potential to be scaled up for large-scale energy storage.

  17. Stand alone solution for generation and storage of hydrogen and electric energy

    International Nuclear Information System (INIS)

    Gany, Alon; Elitzur, Shani; Valery

    2015-01-01

    A novel method enabling safe, simple, and controllable production, storage, and use of hydrogen as well as compact electric energy storage and generation via hydrogen- oxygen fuel cells has been developed. The technology indicates, in our opinion, a significant milestone in the search for practical utilization of hydrogen as an alternative energy source. It consists of an original thermal-chemical treatment / activation of aluminum powders to react spontaneously with water to produce hydrogen at regular conditions according to the reaction Al+3H 2 O=Al (OH) 3 +3/2H 2 . Only about 1-2% of lithium, based activator is applied, and any type of water including tap water, sea water and waste water may be used, making the method attractive for variety of applications. 11% of hydrogen compared to the aluminum mass can be obtained, and our experiments reveal 90% reaction yield and more. The technology has a clear advantage over batteries, providing specific electric energy of over 2 kW h/kg Al, 5-10 times greater than that of commonly used lithium-ion batteries. Combined with a fuel cell it may be particularly beneficial for stand-alone electric power generators, where there is no access to the grid. Such applications include emergency generators (e.g., in hospitals), electricity backup systems, and power generation in remote communication posts. Automotive applications may be considered as well. The technology provides green electric energy and quiet operation as well as additional heat energy resulting mainly from the exothermic aluminum-water reaction. (full text)

  18. Economic impacts of hydrogen as an energy carrier in European countries

    International Nuclear Information System (INIS)

    Wietschel, Martin; Seydel, Philipp

    2007-01-01

    The two objectives of this paper are to identify possible sectoral shifts and employment effects due to the application of hydrogen in the energy system for selected European countries till 2030. This is based on assumptions about the market penetration of hydrogen as an energy carrier, an analysis of the competitiveness of EU countries in this technology field and input-output model calculations. The analysis showed that the introduction of hydrogen leads to significant shifts between economic sectors and, as a policy recommendation, it is concluded that the required workforce skills in hydrogen technologies should be available in time in order to be properly prepared for this. Some employment gains are possible for the EU Member States analysed if the introduction of hydrogen does not result in significant changes in export/import flows. However, the lead market analysis also showed that the competitiveness of EU countries varies significantly and that, viewed as a whole, Europe is in danger of falling behind its main competitors. This may lead to job losses because the industry branches affected - automotive and plant manufacturers - represent key sectors for the EU. One policy goal, therefore, especially for countries with a large share of automobile and plant manufacturing, is to aim to be a lead market for hydrogen and fuel cells. (author)

  19. Japan's New Sunshine Project. 1998 Annual summary of hydrogen energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  20. Use of regenerative energy sources and hydrogen technology 2006. Proceedings

    International Nuclear Information System (INIS)

    Lehmann, J.; Luschtinetz, T.

    2006-01-01

    This volume contains 25 contributions, which were held on the 13th symposium ''Use of regenerative energy sources and hydrogen technology'' in Stralsund (Germany). Separate documentation items analysing 16 of the contributions have been prepared for the ENERGY database

  1. A study of wind hydrogen production of systems for Malaysia

    International Nuclear Information System (INIS)

    Ibrahim, M.Z.; Kamaruzzaman Sopian; Wan Ramli Wan Daud; Othman, M.Y.; Baharuddin Yatim; Veziroglu, T.N.

    2006-01-01

    Recently, Malaysia is looking into the potential of using hydrogen as future fuel. By recognizing the potential of hydrogen fuel, the government had channeled a big amount of money in funds to related organizations to embark on hydrogen research and development programmed. The availability of indigenous renewable resources, high trade opportunities, excellent research capabilities and current progress in hydrogen research at the university are some major advantages for the country to attract government and industry investment in hydrogen. It is envisaged that overall energy demand in Malaysia as stated in the Eighth Malaysia Plan (EMP) report will increase by about 7.8 percent per annum in this decade at the present economic growth. Considering the vast potential inherent in renewable energy (RE), it could be a significant contributor to the national energy supply. Malaysia had been blessed with abundant and varied resources of energy, nevertheless, concerted efforts should be undertaken to ensure that the development of energy resources would continue to contribute to the nation's economic expansion. In this regard, an initial study has been carried out to see the available potential of wind energy towards the hydrogen production, that could be utilized in various applications particularly in Malaysian climate condition via a computer simulation (HYDROGEMS), which built for TRNSYS (a transient system simulation program) version 15. The system simulated in this study consist of one unit (1 kW) wind turbine, an electrolyze (1 kW), a hydrogen (H 2 ) storage tank, and a power conditioning system. A month hourly data of highest wind speed is obtained from the local weather station that is at Kuala Terengganu Air Port located at 5''o 23'' latitude (N) and 103''o 06'' Longitude (E). The results show, wind energy in Malaysian Climate has a potential to generate hydrogen with the minimum rate approximately 9 m 3 /hr and storage capacity of 60 Nm 3 , State of Charge (SOC

  2. The Vision of the Role of Hydrogen in Energy Supply in the Future

    International Nuclear Information System (INIS)

    Barbir, F.

    2008-01-01

    Europe is in a very difficult situation regarding the future of energy supply because it is highly dependent on import of oil and natural gas. In addition, because of environmental pollution, global climate changes, ?nite World reserves of fossil fuels and geo-political implications of distribution of those reserves, such an energy system is not sustainable. The need for inevitable changes in energy supply is becoming more and more obvious. This includes not only a change of the energy sources, but also in energy carriers and technologies for their conversion into useful forms of energy, as well as a change in the ways energy is used today. Based on present knowledge, the only energy sources that satisfy the sustainability requirements are the renewable energy sources - direct solar insolation and its consequences (wind, hydro, biomass). As the renewable energy sources cannot be utilized directly in most of applications there is a need for such energy carriers which can be produced from renewable energy sources and which can satisfy all the energy needs at the end use, again satisfying the sustainability requirements. Electricity is one of such energy carrier which may be used in most but not in all applications. There is a need for other energy carriers in the form of fuels which can be stored and used, for example, in the transportation sector. This is a role that hydrogen can fulfill in a future energy system - hydrogen satisfies the conditions of sustainability, can be produced from renewable energy sources and together with electricity can satisfy all energy needs. Although the role of hydrogen in a future energy system can be envisioned with some certainty, the problem is the transition, i.e. switching from the present energy system based on fossil fuels to the future energy system based on renewable energy sources. Of course, such transition cannot happen overnight, but the question is where and how to start and at which pace to proceed. Insistence on short

  3. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  4. Japan's Sunshine Project. 1991 Annual Summary of Hydrogen Energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    In the study of hydrogen production, tests and experiments were conducted concerning electrolysis of water in solid polymer electrolytes and electrolysis of high-temperature steam. In the study of hydrogen storage and transportation, use of metal hydrides for these purposes was tested with attention paid to CaNi{sub 5} degradation and metal element substitution in ZrMn{sub 2}. In the study of hydrogen application, electrodes in hydrogen storage alloy-aided energy conversion were investigated and hydrogen-oxygen combustion systems were experimented. In the study of hydrogen safety, a fracture in a heat affected weld and fatigue crack propagation therein were simulated, and the effect of hydrogen on the episode was investigated. Investigated in the study of a hydrogen-fired turbine were hydrogen combustion, hydrogen-fired power generation thermal efficiency, fuel cost, power generation cost, etc. (NEDO)

  5. A singular facility scientific technological to promote the hydrogen economy

    International Nuclear Information System (INIS)

    Montes, M.

    2010-01-01

    Declining fossil fuel reserves raises concerns about new energy resources that will lead to energy systems based on distributed generation and active distribution systems that require new energy storage systems. Hydrogen is a good candidate to operate as storage and as energy carrier that still needs scientific and technological breakthroughs to facilitate their integration into this new energy culture. Spain has supported numerous public-private cooperative efforts that have culminated in the creation of the National Center for Hydrogen Technology Experiment and Fuel Cells. (Author)

  6. Final Scientifc Report - Hydrogen Education State Partnership Project

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Warren

    2012-02-03

    Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.

  7. Positron scattering by atomic hydrogen at intermediate energies

    International Nuclear Information System (INIS)

    Higgins, K.; Burke, P.G.; Walters, H.R.J.

    1990-01-01

    Results of an accurate calculation based upon the intermediate energy R-matrix theory are reported for elastic scattering of positrons by atomic hydrogen. T-matrix elements for both low and intermediate energy scattering are evaluated for the S e , P o , D e and F o partial wave symmetries. The low-energy elastic phaseshifts are found to be in good agreement with previous accurate variational calculations. Using an optical potential approach to include the effect of the higher partial waves, elastic and total cross sections are presented for energies ranging from near threshold to 3.7 Rydbergs. (author)

  8. Stabilization of Wind Energy Conversion System with Hydrogen Generator by Using EDLC Energy Storage System

    Science.gov (United States)

    Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.

  9. Multi-unit Inertial Fusion Energy (IFE) plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    A quantitative energy pathway comparison is made between a modern oil refinery and genetic fusion hydrogen plant supporting hybrid-electric cars powered by gasoline and hydrogen-optimized internal combustion engines, respectively, both meeting President Clinton's goal for advanced car goal of 80 mpg gasoline equivalent. The comparison shows that a fusion electric plant producing hydrogen by water electrolysis at 80% efficiency must have an electric capacity of 10 GWe to support as many hydrogen-powered hybrid cars as one modern 200,000 bbl/day-capacity oil refinery could support in gasoline-powered hybrid cars. A 10 GWe fusion electric plant capital cost is limited to 12.5 B$ to produce electricity at 2.3 cents/kWehr, and hydrogen production by electrolysis at 8 $/GJ, for equal consumer fuel cost per passenger mile as in the oil-gasoline-hybrid pathway

  10. Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene.

    Science.gov (United States)

    Shu, Huabing; Li, Yunhai; Wang, Shudong; Wang, Jinlan

    2015-02-14

    Using density functional theory, the G0W0 method and Bethe-Salpeter equation calculations, we systematically explore the structural, electronic and optical properties of hydrogenated and fluorinated germanene. The hydrogenated/fluorinated germanene tends to form chair and zigzag-line configurations and its electronic and optical properties show close geometry dependence. The chair hydrogenated/fluorinated and zigzag-line fluorinated germanene are direct band-gap semiconductors, while the zigzag-line hydrogenated germanene owns an indirect band-gap. Moreover, the quasi-particle corrections are significant and strong excitonic effects with large exciton binding energies are observed. Moreover, the zigzag-line hydrogenated/fluorinated germanene shows highly anisotropic optical responses, which may be used as a good optical linear polarizer.

  11. Thermal neutron diffusion parameters dependent on the flux energy distribution in finite hydrogenous media

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1999-01-01

    Macroscopic parameters for a description of the thermal neutron transport in finite volumes are considered. A very good correspondence between the theoretical and experimental parameters of hydrogenous media is attained. Thermal neutrons in the medium possess an energy distribution, which is dependent on the size (characterized by the geometric buckling) and on the neutron transport properties of the medium. In a hydrogenous material the thermal neutron transport is dominated by the scattering cross section which is strongly dependent on energy. A monoenergetic treatment of the thermal neutron group (admissible for other materials) leads in this case to a discrepancy between theoretical and experimental results. In the present paper the theoretical definitions of the pulsed thermal neutron parameters (the absorption rate, the diffusion coefficient, and the diffusion cooling coefficient) are based on Nelkin's analysis of the decay of a neutron pulse. Problems of the experimental determination of these parameters for a hydrogenous medium are discussed. A theoretical calculation of the pulsed parameters requires knowledge of the scattering kernel. For thermal neutrons it is individual for each hydrogenous material because neutron scattering on hydrogen nuclei bound in a molecule is affected by the molecular dynamics (characterized with internal energy modes which are comparable to the incident neutron energy). Granada's synthetic model for slow-neutron scattering is used. The complete up-dated formalism of calculation of the energy transfer scattering kernel after this model is presented in the paper. An influence of some minor variants within the model on the calculated differential and integral neutron parameters is shown. The theoretical energy-dependent scattering cross section (of Plexiglas) is compared to experimental results. A particular attention is paid to the calculation of the diffusion cooling coefficient. A solution of an equation, which determines the

  12. The hydrogen-energy sector. Report to Mrs the Minister of Ecology, Sustainable Development and Energy, Mr the Minister of Economy, Industry and Digital

    International Nuclear Information System (INIS)

    Durville, Jean-Louis; Gazeau, Jean-Claude; Nataf, Jean-Michel; Cueugniet, Jean; Legait, Benoit

    2015-09-01

    After a synthesis and 20 recommendations, this report discusses what the energy landscape could be by 2030. Then, it more specifically deals with the case of hydrogen as an energy vector. Several aspects are addressed: the main characteristics of hydrogen, the various modes of hydrogen production, hydrogen storage and distribution, uses of hydrogen in various sectors (notably energy and mobility), safety and regulation. It also proposes an international overview in terms on context and strategy, regulation, intellectual property, stationary installations, storage, and mobility. Issues related to the economic approach are discussed, notably by outlining the existence of divergent studies, different hypotheses on key parameters, and different models. The last part discusses strategic directions and states some recommendations related to assessment, to hydrogen production, to the contribution of hydrogen to the energy system regulation, to the emergence of a variety of uses, to objectives in terms of R and D, and to the evolution of the legal and regulatory context to promote and support the development of this sector

  13. Fiscal 1994 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Research and development was made for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. In this fiscal year, surveys were conducted of the status of research and development in each of the fields, and research was started on element technologies in some of the fields. Under subtask 1, surveys and studies were started for pilot plant phase 2. Under subtask 2, an international symposium was held for the enhancement of technical information exchange. Under subtask 3, a liquid hydrogen system conceptual design was prepared for the estimation of facility cost, etc. Under subtask 4, small experimental cells were fabricated for evaluating electrode bonding methods. Under subtask 5, studies were made about the processes of the helium Brayton cycle and hydrogen Claude cycle for the development of a large-scale hydrogen liquefaction plant. Under subtasks 6-9, furthermore, surveys and studies were conducted about low-temperature substance technology, hydrogen energy, hydrogen combustion turbines, and so forth. (NEDO)

  14. Hydrogen, a bridge between mobility and distributed generation. Some consideration towards the hydrogen economy

    International Nuclear Information System (INIS)

    Valentino Romeri

    2006-01-01

    In this paper were analysed the most recent energy initiatives started by some national and international institution, with particular focus on hydrogen and fuel cell. It were also overviewed the national road-maps towards the hydrogen economy. In 2004, based on the most authoritative available data regarding future FCVs penetration it was observed that, if vehicle power-generation system fuel cell based becomes more sophisticated, the role of the vehicles within the power grid might change. Fuel Cell Vehicle (FVC) could become a new power-generation source, supplying electricity to home and to the grid. Also, it was defined the dimension of this new kind of power generation source in different areas and it was compared with the related power grid installed generation capacity and it was found that this new source could be a multiple of the foreseeable installed capacity in year 2030. In the present work it was revised the analysis with the most recent scenarios and it was found that the results do not change significantly. Unfortunately this kind of analysis is still not considered in the energy debate or in the road-maps towards the hydrogen economy. (author)

  15. Yeager Airport Hydrogen Vehicle Test Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Williams [West Virginia University Research Corporation, Morgantown, WV (United States)

    2015-10-01

    The scope of this project was changed during the course of the project. Phase I of the project was designed to have the National Alternative Fuels Training Consortium (NAFTC), together with its partners, manage the Hydrogen Vehicle Test Project at the Yeager Airport in conjunction with the Central West Virginia Regional Airport Authority (CWVRAA) in coordination with the United States Department of Energy National Energy Technology Laboratory (U.S. DOE NETL). This program would allow testing and evaluation of the use of hydrogen vehicles in the state of West Virginia utilizing the hydrogen fueling station at Yeager Airport. The NAFTC and CWVRAA to raise awareness and foster a greater understanding of hydrogen fuel and hydrogen-powered vehicles through a targeted utilization and outreach and education effort. After initial implementation of the project, the project added, determine the source(s) of supply for hydrogen powered vehicles that could be used for the testing. After completion of this, testing was begun at Yeager Airport. During the course of the project, the station at Yeager Airport was closed and moved to Morgantown and the West Virginia University Research Corporation. The vehicles were then moved to Morgantown and a vehicle owned by the CWVRAA was purchased to complete the project at the new location. Because of a number of issues detailed in the report for DE-FE0002994 and in this report, this project did not get to evaluate the effectiveness of the vehicles as planned.

  16. Switching to a U.S. hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy use, and greenhouse gases

    Science.gov (United States)

    Colella, W. G.; Jacobson, M. Z.; Golden, D. M.

    This study examines the potential change in primary emissions and energy use from replacing the current U.S. fleet of fossil-fuel on-road vehicles (FFOV) with hybrid electric fossil fuel vehicles or hydrogen fuel cell vehicles (HFCV). Emissions and energy usage are analyzed for three different HFCV scenarios, with hydrogen produced from: (1) steam reforming of natural gas, (2) electrolysis powered by wind energy, and (3) coal gasification. With the U.S. EPA's National Emission Inventory as the baseline, other emission inventories are created using a life cycle assessment (LCA) of alternative fuel supply chains. For a range of reasonable HFCV efficiencies and methods of producing hydrogen, we find that the replacement of FFOV with HFCV significantly reduces emission associated with air pollution, compared even with a switch to hybrids. All HFCV scenarios decrease net air pollution emission, including nitrogen oxides, volatile organic compounds, particulate matter, ammonia, and carbon monoxide. These reductions are achieved with hydrogen production from either a fossil fuel source such as natural gas or a renewable source such as wind. Furthermore, replacing FFOV with hybrids or HFCV with hydrogen derived from natural gas, wind or coal may reduce the global warming impact of greenhouse gases and particles (measured in carbon dioxide equivalent emission) by 6, 14, 23, and 1%, respectively. Finally, even if HFCV are fueled by a fossil fuel such as natural gas, if no carbon is sequestered during hydrogen production, and 1% of methane in the feedstock gas is leaked to the environment, natural gas HFCV still may achieve a significant reduction in greenhouse gas and air pollution emission over FFOV.

  17. The NEED (National Energy Education Development) Project

    Science.gov (United States)

    Hogan, D.; Spruill, M.

    2012-04-01

    The NEED (National Energy Education Development) Project is a non-profit organization which provides a wide range of K-12 curriculum on energy education topics. The curriculum is specific for primary, elementary, intermediate and secondary levels with age appropriate activities and reading levels. The NEED Project covers a wide range of topics from wind energy, nuclear energy, solar energy, hydropower, hydrogen, fossil fuels, energy conservation, energy efficiency and much more. One of the major strengths of this organization is its Teacher Advisory Board. The curriculum is routinely revised and updated by master classroom teachers who use the lessons and serve on the advisory board. This ensures it is of the highest quality and a useful resource. The NEED Project through a variety of sponsors including businesses, utility companies and government agencies conducts hundreds of teacher professional development workshops each year throughout the United States and have even done some workshops internationally. These workshops are run by trained NEED facilitators. At the workshops, teachers gain background understanding of the energy topics and have time to complete the hands on activities which make up the curriculum. The teachers are then sent a kit of equipment after successfully completing the workshop. This allows them to teach the curriculum and have their students perform the hands on labs and activities in the classroom. The NEED Project is the largest provider of energy education related curriculum in the United States. Their efforts are educating teachers about energy topics and in turn educating students in the hope of developing citizens who are energy literate. Many of the hands on activities used to teach about various energy sources will be described and demonstrated.

  18. What is required to make hydrogen a real energy carrier option?

    Energy Technology Data Exchange (ETDEWEB)

    Braeuninger, S.; Schindler, G.; Schwab, E.; Weck, A. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    The driver for the introduction of hydrogen as mobile energy-carrier is regulatory measures to avoid the CO{sub 2} emissions which are related to the current fossil carbon based situation. H{sub 2} is a large volume chemical product with an annual production of about 45 million tons, most of which currently is also derived from fossil sources. The German transport sector consumes 2,6.10{sup 12} MJ/a which in terms of energy is equivalent to nearly 50% of the current world hydrogen production. There is the proposal to start the ''hydrogen economy'' with ''excess H{sub 2}'' which is believed to be available as inadvertently occurring byproduct of chemical processes. A potential {proportional_to}2 million tons is estimated for this ''excess H{sub 2}'' in Europe; the proposal however does not take into account, that current uses of this H{sub 2} would have to be substituted. Therefore, an overall gain for the environment cannot be expected. Therefore, a sustainable hydrogen based energy scenario has to rely on new sources. Besides Biomass gasification which in terms of technology would resemble the conventional fossil based hydrogen production, the only other viable carbon-free hydrogen source is water, which has to be split into its constituting elements. The current paper is restricted to the latter path, the feasibility of the biomass approach needs to be discussed elsewhere. If hypothetically the above mentioned energy for the German transport sector would be provided by H{sub 2} from water electrolysis an electricity input of 4.10{sup 12} MJ would be needed. This number exceeds the currently installed German wind turbine capacity by a factor of 6 and even by a factor of 36, if the weather-based {proportional_to}16% year-round on-stream factor for onshore plants is taken into account. (orig.)

  19. Quantum yield and translational energy of hydrogen atoms

    Indian Academy of Sciences (India)

    TECS

    erage kinetic energy of H atoms calculated from Doppler profiles was found to be ET(lab) = (50 ± 3) kJ/mol. The ... in this wavelength range H atoms are produced by ... tral hydrogen. 1,9 ... a spectral window of molecular oxygen, solar radia-.

  20. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  1. 1999 annual summary report on results. International clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The R and D were conducted on the international clean network (WE-NET) which aims at producing hydrogen by using renewable energy, converting it in a form suitable for transportation and supplying the hydrogen to places of quantity consumption of energy. The FY 1999 results were summed up. In the system evaluation, study was made on sodium carbonate electrolysis by-producing hydrogen, the supply amount by coke oven by-producing hydrogen and the economical efficiency, etc. As to the safety, study was made on the design of hydrogen supply stand model. Concerning the power generation technology, study was conducted on element technologies of injection valve, exhaust gas condenser, gas/liquid separator, etc. Relating to the hydrogen fueled vehicle system, the shock destructive testing, etc. were conducted on the hydrogen tank and hydrogen storage alloys. Besides, a lot of R and D were carried out of pure water use solid polymer fuel cells, hydrogen stand, hydrogen production technology, hydrogen transportation/storage technology, low temperature materials, transportation/storage using hydrogen storage alloys, innovative advanced technology, etc. (NEDO)

  2. Compressor-less Hydrogen Transmission Pipelines Deliver Large-scale Stranded Renewable Energy at Competitive Cost

    International Nuclear Information System (INIS)

    W Leighty; J Holloway; R Merer; B Somerday; C San Marchi; G Keith; D White

    2006-01-01

    We assume a transmission-constrained world, where large new wind plants and other renewable energies must pay all transmission costs for delivering their energy to distant markets. We modeled a 1,000 MW (1 GW) (name plate) wind plant in the large wind resource of the North America Great Plains, delivering exclusively hydrogen fuel, via a new gaseous hydrogen (GH2) pipeline, to an urban market at least 300 km distant. All renewable electric energy output would be converted, at the source, to hydrogen, via 100 bar output electrolyzers, directly feeding the GH2 transmission pipeline without costly compressor stations at inlet or at midline. The new GH2 pipeline is an alternative to new electric transmission lines. We investigate whether the pipeline would provide valuable energy storage. We present a simple model by which we estimate the cost of wind-source hydrogen fuel delivered to the distant city gate in year 2010, at GW scale. Ammonia, synthetic hydrocarbons, and other substances may also be attractive renewable-source energy carriers, storage media, and fuels; they are not considered in this paper. (authors)

  3. Study of a molten carbonate fuel cell combined heat, hydrogen and power system: Energy analysis

    International Nuclear Information System (INIS)

    Agll, Abdulhakim Amer A.; Hamad, Yousif M.; Hamad, Tarek A.; Thomas, Mathew; Bapat, Sushrut; Martin, Kevin B.; Sheffield, John W.

    2013-01-01

    Countries around the world are trying to use alternative fuels and renewable energy to reduce the energy consumption and greenhouse gas emissions. Biogas contains methane is considered a potential source of clean renewable energy. This paper discusses the design of a combined heat, hydrogen and power system, which generated by methane with use of Fuelcell, for the campus of Missouri University of Science and Technology located in Rolla, Missouri, USA. An energy flow and resource availability study was performed to identify sustainable type and source of feedstock needed to run the Fuelcell at its maximum capacity. FuelCell Energy's DFC1500 unit (a molten carbonate Fuelcell) was selected as the Fuelcell for the tri-generation (heat, hydrogen and electric power) system. This tri-generation system provides electric power to the campus, thermal energy for heating the anaerobic digester, and hydrogen for transportation, backup power and other applications on the campus. In conclusion, the combined heat, hydrogen and power system reduces fossil fuel usage, and greenhouse gas emissions at the university campus. -- Highlights: • Combined heat, hydrogen and power (CHHP) using a molten carbonate fuel cell. • Energy saving and alternative fuel of the products are determined. • Energy saving is increased when CHHP technology is implemented. • CHHP system reduces the greenhouse gas emissions and fuel consumption

  4. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  5. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    International Nuclear Information System (INIS)

    Tolley, George S.; Jones, Donald W.; Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-01-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, 'Overall Employment in a Hydrogen Economy', requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment (types) in the United States. As required by Section 1820, the present report considers: (1) Replacement effects of new goods and services; (2) International competition; (3) Workforce training requirements; (4) Multiple possible fuel cycles, including usage of raw materials; (5) Rates of market penetration of technologies; (6) Regional variations based on geography; and (7) Specific recommendations of the study Both the Administration's National Energy Policy and the Department's Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America's future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  6. Collection of summaries of Sunshine Program achievement reports for fiscal 1982. Hydrogen energy; 1982 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-04-01

    The collection includes achievements of research relating to hydrogen energy. In the research on hydrogen production by electrolysis, electrolysis of water using an acid-type solid polymer electrolyte and electrolysis of water using an alkali-type solid polymer electrolyte are taken up. In the research on hydrogen production by thermochemical methods, studies are conducted on the iodine-based cycle, the bromine-based cycle, materials for devices for the iodine-based cycle, and the mixed cycle. Hydrogen production using high-temperature direct thermolysis and solar radiation is also studied. In the research on hydrogen transportation and storage, use of metallic hydrides in these processes are taken up. In the research on the application of hydrogen, techniques of hydrogen combustion and hydrogen-fueled engines are discussed. In the research on hydrogen safety measures, technologies for the prevention of hydrogen explosions and of hydrogen embrittlement of materials in use with hydrogen are studied. In addition, a study is conducted of a hydrogen energy total system, and research and development is carried out for a plant that produces hydrogen by high-temperature high-pressure electrolysis of water. (NEDO)

  7. H2 at Scale: Benefitting our Future Energy System - Update for the Hydrogen Technical Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2016-12-06

    Hydrogen is a flexible, clean energy carrying intermediate that enables aggressive market penetration of renewables while deeply decarbonizing our energy system. H2 at Scale is a concept that supports the electricity grid by utilizing energy without other demands at any given time and also supports transportation and industry by providing low-priced hydrogen to them. This presentation is an update to the Hydrogen Technical Advisory Committee (HTAC).

  8. Hydrogen energy and fuel cells. A vision of our future

    International Nuclear Information System (INIS)

    2003-01-01

    This document presents the possibilities of energy systems based on the hydrogen, in the world and more specially in Europe in the context of an environmental and energy strategy. It proposes then the necessary structures and actions to implement at a commercial feasibility. (A.L.B.)

  9. Hydrogen energy and fuel cells. A vision of our future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document presents the possibilities of energy systems based on the hydrogen, in the world and more specially in Europe in the context of an environmental and energy strategy. It proposes then the necessary structures and actions to implement at a commercial feasibility. (A.L.B.)

  10. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    Science.gov (United States)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  11. Economical assessment of a wind-hydrogen energy system using WindHyGen registered software

    International Nuclear Information System (INIS)

    Aguado, Monica; Ayerbe, Elixabete; Garde, Raquel; Rivas, David M.; Azcarate, Cristina; Blanco, Rosa; Mallor, Fermin

    2009-01-01

    This paper considers the problem of analyzing the economical feasibility of a wind-hydrogen energy storage and transformation system. Energy systems based on certain renewable sources as wind power, have the drawback of random input making them a non-reliable supplier of energy. Regulation of output energy requires the introduction of new equipment with the capacity to store it. We have chosen the hydrogen as an energy storage system due to its versatility. The advantage of these energy storage systems is that the energy can be used (sold) when the demand for energy rises, and needs (prices) therefore are higher. There are two disadvantages: (a) the cost of the new equipment and (b) energy loss due to inefficiencies in the transformation processes. In this research we develop a simulation model to aid in the economic assessment of this type of energy systems, which also integrates an optimization phase to simulate optimal management policies. Finally we analyze a wind-hydrogen farm in order to determine its economical viability compared to current wind farms. (author)

  12. The role of hydrogen in high wind energy penetration electricity systems: the Irish case

    International Nuclear Information System (INIS)

    Gonzalez, A.; McKeogh, E.; Gallachoir, B.O.

    2004-01-01

    The deployment of wind energy is constrained by wind uncontrollability, which poses operational problems on the electricity supply system at high penetration levels, lessening the value of wind-generated electricity to a significant extent. This paper studies the viability of hydrogen production via electrolysis using wind power that cannot be easily accommodated on the system. The potential benefits of hydrogen and its role in enabling a large penetration of wind energy are assessed, within the context of the enormous wind energy resource in Ireland. The exploitation of this wind resource may in the future give rise to significant amounts of surplus wind electricity, which could be used to produce hydrogen, the zero-emissions fuel that many experts believe will eventually replace fossil fuels in the transport sector. In this paper the operation of a wind powered hydrogen production system is simulated and optimised. The results reveal that, even allowing for significant cost-reductions in electrolyser and associated balance-of-plant equipment, low average surplus wind electricity cost and a high hydrogen market price are also necessary to achieve the economic viability of the technology. These conditions would facilitate the installation of electrolysis units of sufficient capacity to allow an appreciable increase in installed wind power in Ireland. The simulation model was also used to determine the CO 2 abatement potential associated with the wind energy/hydrogen production. (author)

  13. Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

    2012-04-30

    The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominally 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

  14. Comprehensive national energy strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This Comprehensive National Energy Strategy sets forth a set of five common sense goals for national energy policy: (1) improve the efficiency of the energy system, (2) ensure against energy disruptions, (3) promote energy production and use in ways that respect health and environmental values, (4) expand future energy choices, and (5) cooperate internationally on global issues. These goals are further elaborated by a series of objectives and strategies to illustrate how the goals will be achieved. Taken together, the goals, objectives, and strategies form a blueprint for the specific programs, projects, initiatives, investments, and other actions that will be developed and undertaken by the Federal Government, with significant emphasis on the importance of the scientific and technological advancements that will allow implementation of this Comprehensive National Energy Strategy. Moreover, the statutory requirement of regular submissions of national energy policy plans ensures that this framework can be modified to reflect evolving conditions, such as better knowledge of our surroundings, changes in energy markets, and advances in technology. This Strategy, then, should be thought of as a living document. Finally, this plan benefited from the comments and suggestions of numerous individuals and organizations, both inside and outside of government. The Summary of Public Comments, located at the end of this document, describes the public participation process and summarizes the comments that were received. 8 figs.

  15. South Africa [National and regional programmes on the production of hydrogen using nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    South Africa has only small deposits of oil and natural gas and relies on coal production for most of its energy needs. South Africa's economy is structured around large scale, energy-intensive mining and primary minerals industries having a high commercial primary energy intensity. The supply of primary energy in 2007 was 128 Mtoe at a growth rate of 4.4 %/a. The main shares were given by coal (68%), crude oil (19%), renewables (8%), nuclear (3%) and natural gas (2%). South Africa accounts for a major fraction of the CO{sub 2} emissions of the whole continent. Due to its large coal deposits, South Africa is one of the cheapest electricity suppliers in the world. The main reason is its coal based power generating capacity, whose share is 79% (of {approx}40 GW(e)), followed by crude oil (10%), renewables (6%), nuclear (3%) and natural gas (2%). Eskom Holdings Ltd, the State owned power utility that supplies 95% of South Africa's electricity, is planning to increase the current generation capacity of 40 GW by 4%/a to 80 GW by 2025. The power supply crisis in January 2008, which forced shutdowns at mines, has accelerated recognition of the need to diversify the energy mix, such as with nuclear power and natural gas, as well as various forms of renewable energy. Starting in 1984, the national utility ESKOM has been successfully operating the Koeberg nuclear power station consisting of two 900 MW(e) PWR units which generated {approx}6.5% of the electricity needs. In addition, ESKOM has been pursuing the project of modular HTGRs for electricity production to meet the demand of its growing economy. In 2007-2008, the demand for electricity in South Africa started to exceed supply when the economy was growing and, at the same time, existing plants went out for maintenance. As a result, ESKOM and the South African Government decided to request proposals for new nuclear capacity and to expand the nuclear component in the energy supply mix of the country. In the strategic plan

  16. Hydrogen Gas from Serpentinite, Ophiolites and the Modern Ocean Floor as a Source of Green Energy

    Science.gov (United States)

    Coveney, R. M.

    2008-12-01

    Hydrogen gas is emitted by springs associated with serpentinites and extensive carbonate deposits in Oman, The Philippines, the USA and other continental locations. The hydrogen springs contain unusually alkaline fluids with pH values between 11 and 12.5. Other workers have described off-ridge submarine springs with comparably alkaline fluid compositions, serpentinite, abundant free hydrogen gas, and associated carbonate edifices such as Lost City on the Atlantis Massif 15 km west of the Mid-Atlantic Ridge (D.S. Kelley and associates, Science 2005). The association of hydrogen gas with ultramafites is a consistent one that has been attributed to a redox couple involving oxidation of divalent iron to the trivalent state during serpentinization, although other possibilities exist. Some of the hydrogen springs on land are widespread. For example in Oman dozens of alkaline springs (Neal and Stanger, EPSL 1983) can be found over thousands of sq km of outcropping ophiolite. While the deposits in Oman and the Philippines are well-known to much of the geochemical community, little interest seems to have been displayed toward either the ophiolitic occurrences or the submarine deposits for energy production. This may be a mistake as the showings because they could lead to an important source of green energy. Widespread skepticism currently exists about hydrogen as a primary energy source. It is commonly said that free hydrogen does not occur on earth and that it is therefore necessary to use other sources of energy to produce hydrogen, obviating the general environmental benefit. However the existence of numerous occurrences of hydrogen gas associated with ophiolites and submarine occurrences of hydrogen suggests the likelihood that natural hydrogen gas may be an important source of clean energy for modern society remaining to be tapped. Calculations in progress should establish whether or not this is likely to be the case.

  17. Introduction of hydrogen in the Norwegian energy system. NorWays - Regional model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Fidje, Audun; Espegren, Kari Aamodt

    2008-12-15

    The overall aim of the NorWays project has been to provide decision support for the introduction of hydrogen as an energy carrier in the Norwegian energy system. The NorWays project is a research project funded by the Research Council of Norway. An important task has been to develop alternative scenarios and identifying market segments and regions of the Norwegian energy system where hydrogen may play a significant role. The main scenarios in the project have been: Reference: Based on the assumptions of World Energy Outlook with no new transport technologies; HyWays: Basic assumptions with technology costs (H{sub 2}) based on results from the HyWays project; No tax: No taxes on transport energy ('revenue neutral'); CO{sub 2} reduction: Reduced CO{sub 2} emissions by 75% in 2050. Three regional models have been developed and used to analyse the introduction of hydrogen as energy carrier in competition with other alternatives such as natural gas, electricity, district heating and bio fuels.The focus of the analysis has been on the transportation sector. (Author)

  18. Hydrogen-induced delayed cracking: 1. Strain energy effects on hydrogen solubility

    International Nuclear Information System (INIS)

    Puls, M.P.

    1978-08-01

    Based on Li, Oriani and Darken's derivation of the chemical potential of a solute in a stressed solid and Eshelby's method for obtaining the strain energy of solids containing coherent inhomogeneous inclusions, we have carried out a detailed theoretical analysis of the factors governing hydrogen solubility in stressed and unstressed zirconium and its alloys. Specifically, the analysis demonstrates the strong influence hydride self-stresses may have on the terminal solid solubility of hydrogen in zirconium. The self-energy arises due to the misfit strains between matrix and precipitate. We have calculated the total molal self-strain energy of some commonly observed δ and γ-hydride shapes and orientations. The magnitude of this energy is substantial. Thus for γ-hydride plates lying on basal planes, it is 4912 J/mol, while for γ-hydride needles with the needle axis parallel to the directions of the α-zirconium matrix, it is 2662 J/mol. This self-strain energy causes a shift in the terminal solid solubility. For example, at 77 o C, assuming fully constrained basal plane δ-hydride plates, the terminal solid solubility is increased 5.4 times over the stress-free case. We have also calculated the effect of external stress on the terminal solid solubility. This is governed by the interaction energy arising from the interaction of the applied stresses with the precipitate's misfit strain components. The interaction energy has been calculated for δ and γ-hydride plates and needles, taking full account of the anisotropy of the misfit. The interaction energy is negative for tensile applied stresses and, as a result of the anisotropic misfit, is texture-dependent. Its magnitude is small for most applied stresses but can achieve values of the order of the self-strain energy in the plastic zone of a plane-strain crack. We have also carried out a careful analysis of the solubility data of Kearns and Erickson and Hardie. This analysis is based partly on the theoretical

  19. Elastic interactions between hydrogen atoms in metals. II. Elastic interaction energies

    International Nuclear Information System (INIS)

    Shirley, A.I.; Hall, C.K.

    1986-01-01

    The fully harmonic lattice approximation derived in a previous paper is used to calculate the elastic interaction energies in the niobium-hydrogen system. The permanent-direct, permanent-indirect, induced-direct, and induced-indirect forces calculated previously each give rise to a corresponding elastic interaction between hydrogen atoms. The latter three interactions have three- and four-body terms in addition to the usual two-body terms. These quantities are calculated and compared with the corresponding two-body permanent elastic interactions obtained in the harmonic-approximation treatment of Horner and Wagner. The results show that the total induced elastic energy is approximately (1/3) the size of the total permanent elastic energy and opposite to it in sign. The total elastic energy due to three-body interactions is approximately (1/4) the size of the total two-body elastic energy, while the total four-body elastic energy is approximately 5% of the total two-body energy. These additional elastic energies are expected to have a profound effect on the thermodynamic and phase-change behavior of a metal hydride

  20. Kinetics with deactivation of methylcyclohexane dehydrogenation for hydrogen energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Maria, G; Marin, A; Wyss, C; Mueller, S; Newson, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The methylcyclohexane dehydrogenation step to recycle toluene and release hydrogen is being studied as part of a hydrogen energy storage project. The reaction is performed catalytically in a fixed bed reactor, and the efficiency of this step significantly determines overall system economics. The fresh catalyst kinetics and the deactivation of the catalyst by coke play an important role in the process analysis. The main reaction kinetics were determined from isothermal experiments using a parameter sensitivity analysis for model discrimination. An activation energy for the main reaction of 220{+-}11 kJ/mol was obtained from a two-parameter model. From non-isothermal deactivation in PC-controlled integral reactors, an activation energy for deactivation of 160 kJ/mol was estimated. A model for catalyst coke content of 3-17 weight% was compared with experimental data. (author) 3 figs., 6 refs.

  1. An appealing photo-powered multi-functional energy system for the poly-generation of hydrogen and electricity

    Science.gov (United States)

    Tang, Tiantian; Li, Kan; Shen, Zhemin; Sun, Tonghua; Wang, Yalin; Jia, Jinping

    2015-10-01

    This paper focuses on a photo-powered poly-generation system (PPS) that is powered by the photocatalytic oxidation of organic substrate to produce hydrogen energy and electrical energy synchronously. This particular device runs entirely on light energy and chemical energy of substrate without external voltage. The performance measurements and optimization experiments are all investigated by using the low concentration of pure ethanol (EtOH) solution. Compared with the conventional submerged reactor for the photogeneration of hydrogen, the hydrogen and the electric current obtained in the constructed PPS are all relatively stable in experimental period and the numerical values detected are many times higher than that of the former by using various simulated ethanol waste liquid. When using Chinese rice wine as substrate at the same ethanol content level (i.e., 0.1 mol L-1), the production of hydrogen is close to that of the pure ethanol solution in the constructed PPS, but no hydrogen is detected in the conventional submerged reactor. These results demonstrate that the constructed PPS could effectively utilize light energy and perform good capability in poly-generation of hydrogen and electricity.

  2. In vitro hydrogen production--using energy from the sun.

    Science.gov (United States)

    Krassen, Henning; Ott, Sascha; Heberle, Joachim

    2011-01-07

    Using solar energy to produce molecular hydrogen is a promising way to supply the civilization with clean energy. Nature provides the key components to collect solar energy as well as to reduce protons, scientists have developed mimics of these enzymatic centers and also found new ways to catalyze the same reactions. This perspective article surveys the different components and in particular the various coupling possibilities of a light sensitizer and catalyst. Pros and cons are discussed.

  3. Potential and costs of electrolytical hydrogen production by secondary energy in Brazil

    International Nuclear Information System (INIS)

    Souza, S. N. M. de; Silva, E. P. da

    1998-01-01

    This paper makes a description of the availability supply secondary hydroelectric power (secondary energy) in the Brazilian interconnected hydroelectric systems, then with the data attained it is made an estimation of electrolytical hydrogen that can be produced by means of Brazilian secondary hydroelectric power. Also are determined the costs of electrolytical hydrogen production, by way of utilisation of the secondary hydroelectric power availability in the hydroelectric system of the South and Southeastern regions, with the variation of hydrogen plant capacity that allow identify the cases where hydrogen can be produced at a lower costs. (author)

  4. Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping

    Energy Technology Data Exchange (ETDEWEB)

    Jie Liu

    2011-02-01

    average diameter size at less than 1 nm. However, initial tests performed at our collaborator’s lab at the National Renewable Energy Laboratory (NREL) did not indicate improved hydrogen sorption properties for the smaller-diameter nanotubes (compared with other types of nanotubes). As work continued, the difficulties in purification, large-scale synthesis, and stability of small diameter SWNTs became a major concern. In 2008, the Department of Energy (DOE) made a no-go decision on future applied R&D investment in pure, undoped, single-walled carbon nanotubes for vehicular hydrogen storage.2 The second phase of the project involved developing a low-cost and scalable approach for the synthesis of microporous carbon materials with well-controlled pore sizes that would be suitable for hydrogen storage. The team studied several approaches, including the use of different zeolites as a template, the use of organic micelle structures as a template, and the slow oxidation of polymer precursors. Among them, the slow activation of Polyether ether ketone (PEEK) under either CO2 environment or H2O vapor produced microporous carbon with an average pore size of less than 2 nm. Initial testing at 77K at both NREL and the California Institute of Technology (CalTech) showed that these materials can store ~5.1 wt% hydrogen (excess) at 40 bar and 77K. The main feature to note with this material is that while the excess gravimetric capacities (>5 wt% at 77K) and specific surface areas (>3100 m2/g) are similar to AX-21 and other “super activated” commercial carbon sorbents at the same temperatures and pressures, due to the smaller pore sizes, bulk densities greater than 0.7 g/ml can be achieved, enabling excess volumetric capacities greater than 35 g/L; more than double that of AX-21.

  5. Fiscal 1974 research report. General research on hydrogen energy subsystems; 1974 nendo suiso riyo subsystem sogoteki kento hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    Based on the contract research 'General research on hydrogen energy subsystems and their peripheral technologies' with Agency of Industrial Science and Technology, each of 7 organizations including Denki Kagaku Kyokai (Electrochemical Association) promoted the research on hydrogen energy subsystem, combustion, fuel cell, car engine, aircraft engine, gas turbine and chemical energy, respectively. This report summarizes the research result on the former of 2 committees on hydrogen energy and peripheral technologies promoted by Denki Kagaku Kyokai. The first part describes the merit, demerit, domestic and overseas R and D states, technical problems, and future research issue for every use form of hydrogen. This part also outlines the short-, medium- and long-term prospects for use of hydrogen and oxygen energy, and describes the whole future research issue. The second part summarizes the content of each committee report. Although on details the original reports of each committee should be lead, this report is useful for obtaining the outline of utilization of hydrogen energy. (NEDO)

  6. A high-flux low-energy hydrogen ion beam using an end-Hall ion source

    NARCIS (Netherlands)

    Veldhoven, J. van; Sligte, E. te; Janssen, J.P.B.

    2016-01-01

    Most ion sources that produce high-flux hydrogen ion beams perform best in the high energy range (keV). Alternatively, some plasma sources produce very-lowenergy ions (<< 10 eV). However, in an intermediate energy range of 10-200 eV, no hydrogen ion sources were found that produce high-flux beams.

  7. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  8. The Assessment of Hydrogen Energy Systems for Fuel Cell Vehicles Using Principal Componenet Analysis and Cluster Analysis

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun

    2012-01-01

    and analysis of the hydrogen systems is meaningful for decision makers to select the best scenario. principal component analysis (PCA) has been used to evaluate the integrated performance of different hydrogen energy systems and select the best scenario, and hierarchical cluster analysis (CA) has been used...... for transportation of hydrogen, hydrogen gas tank for the storage of hydrogen at refueling stations, and gaseous hydrogen as power energy for fuel cell vehicles has been recognized as the best scenario. Also, the clustering results calculated by CA are consistent with those determined by PCA, denoting...

  9. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  10. Hydrogen Technical Analysis -- Dissemination of Information

    Energy Technology Data Exchange (ETDEWEB)

    George Kervitsky, Jr.

    2006-03-20

    of hydrogen energy technologies to non-traditional audiences. These activities were also designed to raise the visibility of the DOE Hydrogen Program to new audiences and to help the program continue to advance its mission and vision. We believe that the work conducted under this cooperative agreement was successful at meeting the objectives presented and funded over the period of performance. During Phase 1, SENTECHs activities resulted in the development and distribution of two glossy brochures that target the on-site distributed generation and public transit markets for hydrogen energy technologies; face-to-face industry outreach meetings with various firms with an interest in hydrogen energy, but who may not have made a commitment to be involved; and implementation of two educational forums on hydrogen for students - the future engineers, technicians, and energy consumers. The educational forums were conducted with in-kind cost-shared contributions from NHA and Dr. Robert Reeves, Professor Emeritus, Rensealler During Phase 2, SENTECH activities initially were focused on the development of additional brochures and the development of a series of training modules. This set of information dissemination activities built on the experience demonstrated in our phase one activities, and focused the effort within two critical issue areas facing the development of hydrogen as an energy carrier--effective communications and information dissemination on codes and standards. SENTECH joined with the National Fire Protection Association (NFPA) to scope out the training modules and identified a series of 12 that could be used to train a variety of audiences. The NFPA is an international nonprofit corporation, which has developed a reputation as a worldwide leader in providing fire, electrical, and life safety to the public since 1896. Its membership totals more than 75,000 individuals from around the world and in more than 80 national trade and professional organizations.

  11. Evaluating the perspectives for hydrogen energy uptake in communities: Success criteria and their application

    International Nuclear Information System (INIS)

    Shaw, Suzanne; Mazzucchelli, Paola

    2010-01-01

    In recent years, a number of initiatives have been supported in Europe in the hydrogen energy sector. Communities can play an important role in the adoption process of these emerging technologies: supporting pre-commercial deployment, building public acceptance, and promoting innovation clusters, all of which lay the foundations for more widespread and sustained technology deployment. Participation by communities is hinged on the perceived contribution of technology adoption to community socio-economic and energy related goals, such as, climate change mitigation, air quality improvement, creation of new industries and businesses, exploitation of abundant renewable resources, and meeting growing energy needs. Hydrogen uptake in communities therefore stands to benefit development of the hydrogen energy sector and the communities themselves. This paper presents a methodology for evaluating the potential for successful large-scale hydrogen and fuel cell technology adoption-beyond demonstration projects-within defined community frameworks. This methodology can be a valuable tool, for community decision-makers and industry stakeholders alike, to evaluate and identify opportunities for large-scale hydrogen technology adoption. Results of applying the methodology are presented for three community types: islands, cities and regions. The work in this paper reflects work done within the frame of the European Commission-funded 'Roads2HyCom' project, Work Package 3.

  12. A hydrogen economy: an answer to future energy problems. [Overview of 1974 THEME Conference

    Energy Technology Data Exchange (ETDEWEB)

    Seifritz, W [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1975-06-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems.

  13. Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen

    Science.gov (United States)

    Heaps, M. G.; Furman, D. R.; Green, A. E. S.

    1975-01-01

    A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.

  14. Achievement report on research and development in the Sunshine Project in fiscal 1977. Studies on hydrogen energy total systems and the safety assuring technologies thereon (Studies on hydrogen energy total systems); 1977 nendo suiso energy total system to sono hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso energy total system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    A numerical model was prepared to express fields and size of hydrogen energy introduction in Japan's energy systems in the future. Dividing Japan into 13 weather sections, one to two energy bases (import and secondary production bases in coastal areas) were assumed on each section. Secondary energies produced in these energy bases are transported to intermediate bases, from which the energies are distributed into cities and consumed. For the purpose of simplification, final consumption departments are hypothesized to exist in these intermediate bases. Parameters that characterize the flows on networks in the processes of supply, distribution, production, storage, transportation and utilization are divided largely into energy efficiency and cost of the processes. The amount of energy demand in each final consumption department was defined as an amount to maximize the expected effects as a result of having satisfied the demand. The result of trial calculations revealed that, as long as the hydrogen to be introduced is limited to hydrogen produced via electrolysis using thermally generated power, the hydrogen introduction into the future energy systems is difficult in terms of economic performance. (NEDO)

  15. The hydrogen energy economy: its long-term role in greenhouse gas reduction

    Energy Technology Data Exchange (ETDEWEB)

    Geoff Dutton; Abigail Bristow; Matthew Page; Charlotte Kelly; Jim Watson; Alison Tetteh [CCLRC Rutherford Appleton Laboratory, Didcot (United Kingdom). Energy Research Unit (ERU)

    2005-01-15

    The potential contribution and viability of the hydrogen energy economy towards reducing UK carbon dioxide emissions in the time horizon to 2050 has been assessed using a quantitative model of the UK energy system in the context of a set of diverse socio-economic scenarios. It is argued that different sets of prevailing circumstances are likely to result in very different opportunities for hydrogen and hence very different transition pathways and ultimate penetration levels. The decision on whether to strategically encourage a transition to the hydrogen economy and the ultimate environmental benefits of such a transformation will depend on the outcome of a number of important political and social decisions. These include the acceptability of large scale carbon dioxide sequestration (hydrogen derived from fossil fuels), decisions about land-use (hydrogen from biomass), a possible doubling (or more) of the current electricity production capacity with a high penetration of renewable electricity (hydrogen from electrolysis of water), and/or the public acceptability of a large scale nuclear renaissance (hydrogen from electrolysis of water or from thermo-chemical cycles). Any rapid transition to a fully developed hydrogen economy would require a contribution from at least some and possibly all of these sources. Such a transition could result in a marked decrease in carbon dioxide emissions over the long term, but might even result in increased emissions within the shorter term (due to the initial use of hydrogen derived from fossil fuels without carbon dioxide sequestration or from the bulk grid electricity supply resulting in increased load factors and lifetimes of old fossil-fired power plant to meet the increased overall demand). 47 refs., 45 figs., 19 tabs., 3 apps.

  16. NASA Hydrogen Research at Florida Universities

    International Nuclear Information System (INIS)

    David L Block; Ali T-Raissi

    2006-01-01

    This paper presents a summary of the activities and results from 36 hydrogen research projects being conducted over a four-year period by Florida universities for the U. S. National Aeronautics and Space Administration (NASA). The program entitled 'NASA Hydrogen Research at Florida Universities' is managed by the Florida Solar Energy Center (FSEC). FSEC has 22 years of experience in conducting research in areas related to hydrogen technologies and fuel cells. The R and D activities under this program cover technology areas related to production, cryogenics, sensors, storage, separation processes, fuel cells, resource assessments and education. (authors)

  17. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  18. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)

  19. Can aqueous hydrogen peroxide be used as a stand-alone energy source?

    International Nuclear Information System (INIS)

    Disselkamp, Robert S.

    2010-01-01

    A novel electrochemical scheme to convert a stand-alone supply of aqueous hydrogen peroxide into a fuel cell-ready stream of hydrogen gas plus aqueous hydrogen peroxide is described. The electrochemical cell, consisting of a solid base and solid acid electrocatalyst, together with a proton exchange membrane, comprise the system that converts aqueous hydrogen peroxide into separate gas streams of oxygen and hydrogen. Aqueous hydrogen peroxide is contained in the anode compartment only and exists in the region where oxygen gas is formed, whereas the cathode compartment is where hydrogen gas is generated and therefore exists in a reduced state. A near zero theoretical over-potential can be achieved by the choice of basicity and acidity of the electrode materials. The primary cost of the electrochemical cell is electrode construction and the aqueous hydrogen peroxide energy storage compound. Additional research effort is required to experimentally validate the concept and explore the full economic impact should initial studies, based on the design presented here, prove promising. (author)

  20. Photosynthesis of hydrogen and methane as key components for clean energy system

    Directory of Open Access Journals (Sweden)

    Seng Sing Tan et al

    2007-01-01

    Full Text Available While researchers are trying to solve the world's energy woes, hydrogen is becoming the key component in sustainable energy systems. Hydrogen could be produced through photocatalytic water-splitting technology. It has also been found that hydrogen and methane could be produced through photocatalytic reduction of carbon dioxide with water. In this exploratory study, instead of coating catalysts on a substrate, pellet form of catalyst, which has better adsorption capacity, was used in the photo-reduction of carbon dioxide with water. In the experiment, some water was first absorbed into titanium dioxide pellets. Highly purified carbon dioxide gas was then discharged into a reactor containing these wet pellets, which were then illuminated continuously using UVC lamps. Gaseous samples accumulated in the reactor were extracted at different intervals to analyze the product yields. The results confirmed that methane and hydrogen were photosynthesized using pellet form of TiO2 catalysts. Hydrogen was formed at a rate as high as 0.16 micromoles per hour (μmol h−1. The maximum formation rate of CH4 was achieved at 0.25 μmol h−1 after 24 h of irradiation. CO was also detected.

  1. Achievement report for fiscal 1981 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1981 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    In this research, studies are conducted relative to the time point, form, and magnitude of the introduction of hydrogen into Japan's total energy system. The research aims to construct a hydrogen energy total system consisting of hydrogen energy subsystems to be available in the future and to clearly define the stage at which transfer to the target system will be carried out. In the research for fiscal 1981, studies continue about the feasibility of hydrogen as automobile and aviation fuels and as a material for use in chemical engineering, about conversion into each other of hydrogen and various synthetic fuels and electric power with which hydrogen will have to compete in the domain into which it will be supplied, and about technologies of their utilization for comparison between such energies in the search for their interchangeability. Surveys are conducted on technical data about local energies. The Yakushima island is chosen, for instance, and a conceptual hydrogen energy base is constructed there and the cost for the construction is estimated. At the last part, the feasibility of the introduction of hydrogen into Japan's energy system in the future is discussed for assessment. (NEDO)

  2. National energy efficiency programme

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper focusses on energy conservation and specifically on energy efficiency which includes efficiency in the production, delivery and utilisation of energy as part of the total energy system of the economy. A National Energy Efficiency Programme is being launched in the Eighth Plan that will take into account both macro level and policy and planning considerations as well as micro level responses for different category of users in the industry, agriculture, transport and domestic sectors. The need for such a National Energy Efficiency Programme after making an assessment of existing energy conservation activities in the country is discussed. The broad framework and contents of the National Energy Efficiency Programme have been outlined and the Eighth Plan targets for energy conservation and their break-up have been given. These targets, as per the Eighth Plan document are 5000 MW in electricity installed capacity and 6 million tonnes of petroleum products by the terminal year of the Eighth Plan. The issues that need to be examined for each sector for achieving the above targets for energy conservation in the Eighth Plan are discussed briefly. They are: (a) policy and planning, (b) implementation arrangements which include the institutional setup and selective legislation, (c) technological requirements, and (d) resource requirements which include human resources and financial resources. (author)

  3. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Axente, Damian

    2006-01-01

    Full text: The potentials of three hydrogen production processes under development for the industrial production of hydrogen using nuclear energy, namely the advanced electrolysis the steam reforming, the sulfur-iodine water splitting cycle, are compared and evaluated in this paper. Water electrolysis and steam reforming of methane are proven and used extensively today for the production of hydrogen. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H 2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800-900 deg. C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via a heat exchanger type reactor. The sulfur-iodine cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO 2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second solution and the electrolysis is the most expensive of the options for industrial H 2 production. The nuclear plant could power electrolysis operations right away; steam reforming with nuclear power is a little bit further off into the future, the first operation with nuclear facility is expected to have place in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale

  4. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  5. French perspectives for production of hydrogen using nuclear energy

    International Nuclear Information System (INIS)

    Vitart, Xavier; Yvon, Pascal; Carles, Philippe; Naour, Francois Le

    2009-01-01

    The demand for hydrogen, driven by classical applications such as fertilizers or oil refining a well as new applications (synthetic fuels, fuel cells ... ) is growing significantly. Presently, most of the hydrogen produced in the world uses methane or another fossil feedstock, which is not a sustainable option, given the limited fossil resources and need to reduce CO 2 emissions. This stimulates the need to develop alternative processes of production which do not suffer from these drawbacks. Water decomposition combined with nuclear energy appears to be an attractive option. Low temperature electrolysis, even if it is used currently for limited amounts is a mature technology which can be generalized in the near future. However, this technology, which requires about 4 kWh of electricity per Nm 3 of hydrogen produced, is energy intensive and presents a low efficiency. Therefore the French Atomic Energy Commission (CEA) launched an extensive research and development program in 2001 in order to investigate advanced processes which could use directly the nuclear heat and present better economic potential. In the frame of this program, high temperature steam electrolysis along with several thermochemical cycles has been extensively studied. HTSE offers the advantage of reducing the electrical energy needed by substituting thermal energy, which promises to be cheaper. The need for electricity is also greatly reduced for the leading thermochemical cycles, the iodine-sulfur and the hybrid sulfur cycles, but they require high temperatures and hence coupling to a gas cooled reactor. Therefore interest is also paid to other processes such as the copper-chlorine cycle which operates at lower temperatures and could be coupled to other generation IV nuclear systems. The technical development of these processes involved acquisition of basic thermodynamic data, optimization of flowsheets, design and test of components and lab scale experiments in the kW range. This will demonstrate

  6. Coupling renewables via hydrogen into utilities: Temporal and spatial issues, and technology opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Iannucci, J.J.; Horgan, S.A.; Eyer, J.M. [Distributed Utility Associates, San Ramon, CA (United States)] [and others

    1996-10-01

    This paper discusses the technical potential for hydrogen used as an energy storage medium to couple time-dependent renewable energy into time-dependent electric utility loads. This analysis will provide estimates of regional and national opportunities for hydrogen production, storage and conversion, based on current and near-term leading renewable energy and hydrogen production and storage technologies. Appropriate renewable technologies, wind, photovoltaics and solar thermal, are matched to their most viable regional resources. The renewables are assumed to produce electricity which will be instantaneously used by the local utility to meet its loads; any excess electricity will be used to produce hydrogen electrolytically and stored for later use. Results are derived based on a range of assumptions of renewable power plant capacity and fraction of regional electric load to be met (e.g., the amount of hydrogen storage required to meet the Northwest region`s top 10% of electric load). For each renewable technology national and regional totals will be developed for maximum hydrogen production per year and ranges of hydrogen storage capacity needed in each year (hydroelectric case excluded). The sensitivity of the answers to the fraction of peak load to be served and the land area dedicated for renewable resources are investigated. These analyses can serve as a starting point for projecting the market opportunity for hydrogen storage and distribution technologies. Sensitivities will be performed for hydrogen production, conversion. and storage efficiencies representing current and near-term hydrogen technologies.

  7. A novel kerf-free wafering process combining stress-induced spalling and low energy hydrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pingault, Timothee; Pokam-Kuisseu, Pauline Sylvia; Ntsoenzok, Esidor [CEMTHI - CNRS, Site Cyclotron, 3 A rue de la Ferollerie, 45071 Orleans (France); Blondeau, Jean-Philippe [CEMTHI - CNRS, Site Cyclotron, 3 A rue de la Ferollerie, 45071 Orleans (France); Universite d' Orleans, Chateau de la Source, 45100 Orleans (France); Ulyashin, Alexander [SINTEF, Forskningsveien 1, 0314 Oslo (Norway); Labrim, Hicham; Belhorma, Bouchra [CNESTEN, B.P. 1382 R.P., 10001 Rabat (Morocco)

    2016-12-15

    In this work, we studied the potential use of low-energy hydrogen implantation as a guide for the stress-induced cleavage. Low-energy, high fluence hydrogen implantation in silicon leads, in the right stiffening conditions, to the detachment of a thin layer, around a few hundreds nm thick, of monocrystalline silicon. We implanted monocrystalline silicon wafers with low-energy hydrogen, and then glued them on a cheap metal layer. Upon cooling down, the stress induced by the stressor layers (hardened glue and metal) leads to the detachment of a thin silicon layer, which thickness is determined by the implantation energy. We were then able to clearly demonstrate that, as expected, hydrogen oversaturation layer is very efficient to guide the stress. Using such process, thin silicon layers of around 710 nm-thick were successfully detached from low-energy implanted silicon wafers. Such layers can be used for the growth of very good quality monocrystalline silicon of around 50 μm-thick or less. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis

    International Nuclear Information System (INIS)

    Yilmaz, Ceyhun; Kanoglu, Mehmet

    2014-01-01

    Thermodynamic energy and exergy analysis of a PEM water electrolyzer driven by geothermal power for hydrogen production is performed. For this purpose, work is produced from a geothermal resource by means of the organic Rankine cycle; the resulting work is used as a work input for an electrolysis process; and electrolysis water is preheated by the waste geothermal water. The first and second-law based performance parameters are identified for the considered system and the system performance is evaluated. The effects of geothermal water and electrolysis temperatures on the amount of hydrogen production are studied and these parameters are found to be proportional to each other. We consider a geothermal resource at 160 °C available at a rate of 100 kg/s. Under realistic operating conditions, 3810 kW power can be produced in a binary geothermal power plant. The produced power is used for the electrolysis process. The electrolysis water can be preheated to 80 °C by the geothermal water leaving the power plant and hydrogen can be produced at a rate of 0.0340 kg/s. The energy and exergy efficiencies of the binary geothermal power plant are 11.4% and 45.1%, respectively. The corresponding efficiencies for the electrolysis system are 64.0% and 61.6%, respectively, and those for the overall system are 6.7% and 23.8%, respectively. - Highlights: • Thermodynamic analysis of hydrogen production by PEM electrolysis powered by geothermal energy. • Power is used for electrolyser; used geothermal water is for preheating electrolysis water. • Effect of geothermal water and electrolysis temperatures on the amount of hydrogen production. • Hydrogen can be produced at a rate of 0.0340 kg/s for a resource at 160 °C available at 100 kg/s. • Energy and exergy efficiencies of the overall system are 6.7% and 23.8%, respectively

  9. FY 1974 report on the results of the Sunshine Project. Technology assessment of hydrogen energy technology; 1974 nendo suiso energy gijutsu no technology assessment seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-04-30

    This is aimed at studying the relation between the technology development of hydrogen energy and the society. In Chapter 1, a meaning of technology assessment was examined. When applying it to the hydrogen energy technology, the paper presented what content it has. In Chapter 2, the needs for hydrogen energy in society were made clear in comparison with the energy supply/demand structure in Japan and characteristics of hydrogen energy. In Chapter 3, the paper showed what kinds of technology are being developed to meet the needs in this society and arranged viewpoints for evaluating the effectiveness of the technology. In Chapter 4, the paper studied the positioning of hydrogen energy technology in the future society, and presented as examples more than one hydrogen energy/system plans which become the base to describe the impact of the technology on the society. If taking technology assessment as a part of the communication activities between the technology development and the society as did in this study, these system plans are something like the ring for people in each field to talk with. In Chapter 5, the study made from each aspect was arranged. (NEDO)

  10. Future production of hydrogen from solar energy and water - A summary and assessment of U.S. developments

    Science.gov (United States)

    Hanson, J. A.; Escher, W. J. D.

    1979-01-01

    The paper examines technologies of hydrogen production. Its delivery, distribution, and end-use systems are reviewed, and a classification of solar energy and hydrogen production methods is suggested. The operation of photoelectric processes, biophotolysis, photocatalysis, photoelectrolysis, and of photovoltaic systems are reviewed, with comments on their possible hydrogen production potential. It is concluded that solar hydrogen derived from wind energy, photovoltaic technology, solar thermal electric technology, and hydropower could supply some of the hydrogen for air transport by the middle of the next century.

  11. FY 2005 Annual Progress Report for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-10-01

    In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.

  12. Multidisciplinary studies on hydric, energetic and environmental resources, evaluating the hydroelectric plants energy surplus as alternative for hydrogen production; Estudos multidisciplinares na area de recursos hidricos, energeticos e ambientais, avaliando-se o uso de energia excedente de hidreletricas como alternativa para producao de hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Mariotoni, Carlos Alberto; Naturesa, Jim Silva; Santos Junior, Joubert Rodrigues; Demanboro, Antonio Carlos [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Civil. Grupo de Planejamento Energetico e Sistemas Eletricos]. E-mails: cam@fec.unicamp.br; jimnaturesa@yahoo.com; joubert.dos@terra.com.br; anto1810@fec.unicamp.br

    2006-07-01

    The researchers on energy, hydraulic and environmental subjects have been discussing the perspective and both the technical and economic viability of using the exceeding energy of hydroelectric power plants to produce hydrogen, taking into consideration the resources optimizations and the maximization of the economic gains. The researches and technicians of the Brazilian energy sector have considered, the increasing possibility of using of exceeding energy from hydroelectric power plants to produce hydrogen, mainly for the special case of the bi-national hydroelectric of Itaipu. Nevertheless it is important to present a discussion about the use and the production of hydrogen in Brazilian context considering, mainly, the consolidated experience of certain research centers and national laboratories. The paper also presents a discussions about the main technical characteristics, the electro electronic devices used and a brief discussion about the possibility of electric energy expansion, through the use of FACTS devices, for the southeast region of the country having the hydrogen as an important fuel. (author)

  13. National Renewable Energy Laboratory 2003 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2004-04-01

    In-depth articles on several NREL technologies and advances, including: production of hydrogen using renewable resources and technologies; use of carbon nanotubes for storing hydrogen; enzymatic reduction of cellulose to simple sugars as a platform for making fuel, chemicals, and materials; and the potential of electricity from wind energy to offset carbon dioxide emissions. Also covered are NREL news, awards and honors received by the Laboratory, and patents granted to NREL researchers.

  14. National Renewable Energy Laboratory 2002 Research Review (Booklet)

    Energy Technology Data Exchange (ETDEWEB)

    Cook, G.; Epstein, K.; Brown, H.

    2002-07-01

    America is making a long transition to a future in which conventional, fossil fuel technologies will be displaced by new renewable energy and energy efficiency technologies. This first biannual research review describes NREL's R&D in seven technology areas--biorefineries, transportation, hydrogen, solar electricity, distributed energy, energy-efficient buildings, and low-wind-speed turbines.

  15. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor

  16. The Utilization of Solar Energy by Way of Hydrogen Production

    International Nuclear Information System (INIS)

    Broda, E.

    1977-01-01

    It is suggested to produce hydrogen gas by photolytic splitting of water, and to feed it into a hydrogen economy. One approach to obtain good yields in photolysis consist in the application of asymmetric membranes that release the different, reactive, primary products of the photochemical reaction on opposite sides of the membranes so that a back reaction is prevented. Through this solar-chemical option a very large part of the energy needs of mankind could be covered in the long run. (author)

  17. Economic and ordinal benefits of Hydrogen Energy Technology

    International Nuclear Information System (INIS)

    Giannantoni, C.; Zoli, M.

    2009-01-01

    A method for assessing economic, environmental and energy investments is particularly suited for hydrogen technologies, because it makes it possible to calculate business returns, negative externalities and, above all, the economic benefits to the citizens: the monetizable positive externalities and the ordinal benefits, i.e. those which cannot be reduced to a simple monetary value. [it

  18. Autonomous hydrogen power plants with renewable energy sources

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.; Izosimov, D.B.; Tumanov, V.L.

    2006-01-01

    One studies the principles to design independent hydrogen power plants (IHPP) operating on renewable energy sources and the approaches to design a pilot IHP plant. One worded tasks of mathematical simulation and of calculations to substantiate the optimal configuration of the mentioned plants depending on the ambient conditions of operation and on peculiar features of a consumer [ru

  19. Economics of producing hydrogen as transportation fuel using offshore wind energy systems

    International Nuclear Information System (INIS)

    Mathur, Jyotirmay; Agarwal, Nalin; Swaroop, Rakesh; Shah, Nikhar

    2008-01-01

    Over the past few years, hydrogen has been recognized as a suitable substitute for present vehicular fuels. This paper covers the economic analysis of one of the most promising hydrogen production methods-using wind energy for producing hydrogen through electrolysis of seawater-with a concentration on the Indian transport sector. The analysis provides insights about several questions such as the advantages of offshore plants over coastal installations, economics of large wind-machine clusters, and comparison of cost of producing hydrogen with competing gasoline. Robustness of results has been checked by developing several scenarios such as fast/slow learning rates for wind systems for determining future trends. Results of this analysis show that use of hydrogen for transportation is not likely to be attractive before 2012, and that too with considerable learning in wind, electrolyzer and hydrogen storage technology

  20. Hydrogen fueling stations in Japan hydrogen and fuel cell demonstration project

    International Nuclear Information System (INIS)

    Koseki, K.; Tomuro, J.; Sato, H.; Maruyama, S.

    2004-01-01

    A new national demonstration project of fuel cell vehicles, which is called Japan Hydrogen and Fuel Cell Demonstration Project (JHFC Project), has started in FY2002 on a four-year plan. In this new project, ten hydrogen fueling stations have been constructed in Tokyo and Kanagawa area in FY2002-2003. The ten stations adopt the following different types of fuel and fueling methods: LPG reforming, methanol reforming, naphtha reforming, desulfurized-gasoline reforming, kerosene reforming, natural gas reforming, water electrolysis, liquid hydrogen, by-product hydrogen, and commercially available cylinder hydrogen. Approximately fifty fuel cell passenger cars and a fuel cell bus are running on public roads using these stations. In addition, two hydrogen stations will be constructed in FY2004 in Aichi prefecture where The 2005 World Exposition (EXPO 2005) will be held. The stations will service eight fuel cell buses used as pick-up buses for visitors. We, Engineering Advancement Association of Japan (ENAA), are commissioned to construct and operate a total of twelve stations by Ministry of Economy Trade and Industry (METI). We are executing to demonstrate or identify the energy-saving effect, reduction of the environmental footprint, and issues for facilitating the acceptance of hydrogen stations on the basis of the data obtained from the operation of the stations. (author)

  1. Wave power integration with a renewable hydrogen energy system. Paper no. IGEC-1-085

    International Nuclear Information System (INIS)

    St. Germain, L.; Wild, P.; Rowe, A.

    2005-01-01

    In British Columbia, approximately 90% of the electricity generated comes from hydroelectric facilities while another abundant and renewable resource, ocean wave energy, is not being utilized at all. Technologies exist that can capture and convert wave energy but there are few studies examining systemic integration of wave energy devices. This work examines the potential to use wave energy as an input into a hydrogen-based renewable energy system. A model of an oscillating water column (OWC) was developed as a module within TRNSYS where it can be coupled to other existing hydrogen-specific components such as an electrolyser, storage device, and fuel cell. The OWC model accounts for device geometry, dynamics, and generator efficiency. For this particular study, wave profiles generated from hourly average data for a location on the west coast of Vancouver Island are used as a resource input. An analysis of the potential to utilise wave energy is carried out with an emphasis on overall system efficiency and resulting device scaling. The results of the integration of wave energy with other renewable energy inputs into a hydrogen-based system are used to make recommendations regarding technical feasibility of wave power projects on Vancouver Island. (author)

  2. Achievement report on research and development in the Sunshine Project in fiscal 1977. Hydrogen energy; 1977 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-04-01

    This paper summarizes achievements in the Sunshine Project related to hydrogen energy in fiscal 1977. In the electrolytic process in hydrogen manufacturing technologies, new composite materials are developed in relation with membranes and electrodes as the high temperature and pressure water decomposition method. A bench-scale water decomposition tank using organic polymer ion exchange membranes is fabricated on a trial basis and tested for studying solid electrolyte decomposition method. In hydrogen manufacturing technologies using thermo-chemical process, discussions are being given on cycles of iron systems, iodine systems and hybrid systems (mixture of thermo and photo chemistry and electrochemistry). For hydrogen transporting and storing technologies, metal hydrides most suitable for hydrogen storage are developed, and storage systems are studied. In hydrogen combustion, elucidation is made on fundamental conditions for mixed and single combustion technologies suitable for prevention of reverse ignition and suppression of NOx generation. Studies are also being made on fuel cells using aqueous solution and solid electrolytes. Studies on hydrogen fueled engines are also described. In hydrogen safety assuring technologies, discussions are being given on prevention of explosion disasters, prevention of embrittlement of materials due to hydrogen and criteria for safety assuring technologies. Descriptions are given also on studies on total hydrogen energy systems and hydrogen fueled automobiles. (NEDO)

  3. Optimization of stand-alone photovoltaic systems with hydrogen storage for total energy self-sufficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1991-01-01

    A new method for optimization of stand-alone photovoltaic-hydrogen energy systems is presented. The methodology gives the optimum values for the solar array and hydrogen storage size for any given system configuration and geographical site. Sensitivity analyses have been performed to study the effect of subsystem efficiencies on the total system performance and sizing, and also to identify possibilities for further improvements. Optimum system configurations have also been derived. The results indicate that a solar-hydrogen energy system is a very promising potential alternative for low power applications requiring a total electricity self-sufficiency. (Author).

  4. The hydrogen economy - an opportunity for gas

    International Nuclear Information System (INIS)

    Soederbaum, J.; Martin, G.; O'Neill, C.

    2003-01-01

    Natural gas could play a pivotal role in any transition to a hydrogen economy-that is one of the findings of the recently-released National Hydrogen Study, commissioned by the Commonwealth Department of Industry, Tourism and Resources, and undertaken by the consulting firms ACIL Tasman and Parsons Brinckerhoff. The key benefits of hydrogen include zero emissions at the point of combustion (water is the main by-product) and its abundance Hydrogen can be produced from a range of primary energy sources including gas and coal, or through the electrolysis of water. Depending on the process used to manufacture hydrogen (especially the extent to which any associated carbon can be captured and sequestered), life-cycle emissions associated with its production and use can be reduced or entirely eliminated

  5. Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy

    International Nuclear Information System (INIS)

    Matsumoto, Mitsuru; Haga, Tetsuya; Kawai, Yasuaki; Kojima, Yoshitsugu

    2007-01-01

    The dehydrogenation reactions of the mixtures of lithium amide (LiNH 2 ) and lithium hydride (LiH) were studied under an Ar atmosphere by means of temperature programmed desorption (TPD) technique. The dehydrogenation reaction of the LiNH 2 /LiH mixture was accelerated by addition of 1 mol% Ti(III) species (k = 3.1 x 10 -4 s -1 at 493 K), and prolonged ball-milling time (16 h) further enhanced reaction rate (k = 1.1 x 10 -3 s -1 at 493 K). For the hydrogen desorption reaction of Ti(III) doped samples, the activation energies estimated by Kissinger plot (95 kJ mol -1 ) and Arrhenius plot (110 kJ mol -1 ) were in reasonable agreement. The LiNH 2 /LiH mixture without Ti(III) species, exhibited slower hydrogen desorption process and the kinetic traces deviated from single exponential behavior. The results indicated the Ti(III) additives change the hydrogen desorption reaction mechanism of the LiNH 2 /LiH mixture

  6. Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials

    International Nuclear Information System (INIS)

    Conte, M.; Prosini, P.P.; Passerini, S.

    2004-01-01

    A sustainable energy economy will be demanding primary energy sources, preferably renewable and mainly domestically available, using energy carriers, such as hydrogen and electricity, able to solve environmental problems and to assure adequate energy security. Instrumental to such goals will be the research and development of storage systems with performance characteristics compatible with major application requirements. Lithium or nickel are replacing lead in batteries, in order to better meet the extremely varying technical and economical requirements in fast growing conventional and new applications. Moreover, few technologies now permit to store hydrogen by modifying its physical state in gaseous or liquid form. The variety of hydrogen needs in the energy systems and in the vehicular sector is justifying the effort on solid state (metal hydrides and carbon nanostructures) or chemical systems (chemical hydrides). In this overview, emphasis is given to the major achievements in the field of electrical energy and hydrogen storage, in relation to the technological goals, which have been proposed in the major public research and collaborative programs throughout the world

  7. Japan's New Sunshine Project. 1998 annual summary of hydrogen energy R and D; New sunshine keikaku 1998 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  8. Energy modeling and analysis for optimal grid integration of large-scale variable renewables using hydrogen storage in Japan

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Otsuki, Takashi; Fujii, Yasumasa

    2015-01-01

    Although the extensive introduction of VRs (variable renewables) will play an essential role to resolve energy and environmental issues in Japan after the Fukushima nuclear accident, its large-scale integration would pose a technical challenge in the grid management; as one of technical countermeasures, hydrogen storage receives much attention, as well as rechargeable battery, for controlling the intermittency of VR power output. For properly planning renewable energy policies, energy system modeling is important to quantify and qualitatively understand its potential benefits and impacts. This paper analyzes the optimal grid integration of large-scale VRs using hydrogen storage in Japan by developing a high time-resolution optimal power generation mix model. Simulation results suggest that the installation of hydrogen storage is promoted by both its cost reduction and CO 2 regulation policy. In addition, hydrogen storage turns out to be suitable for storing VR energy in a long period of time. Finally, through a sensitivity analysis of rechargeable battery cost, hydrogen storage is economically competitive with rechargeable battery; the cost of both technologies should be more elaborately recognized for formulating effective energy policies to integrate massive VRs into the country's power system in an economical manner. - Highlights: • Authors analyze hydrogen storage coupled with VRs (variable renewables). • Simulation analysis is done by developing an optimal power generation mix model. • Hydrogen storage installation is promoted by its cost decline and CO 2 regulation. • Hydrogen storage is suitable for storing VR energy in a long period of time. • Hydrogen storage is economically competitive with rechargeable battery

  9. Optimal production of renewable hydrogen based on an efficient energy management strategy

    International Nuclear Information System (INIS)

    Ziogou, Chrysovalantou; Ipsakis, Dimitris; Seferlis, Panos; Bezergianni, Stella; Papadopoulou, Simira; Voutetakis, Spyros

    2013-01-01

    This work presents the development of a flexible energy management strategy (EMS) for a renewable hydrogen production unit through water electrolysis with solar power. The electricity flow of the unit is controlled by a smart microgrid and the overall unattended operation is achieved by a supervisory control system. The proposed approach formalizes the knowledge regarding the system operation using a finite-state machine (FSM) which is subsequently combined with a propositional-based logic to describe the transitions among various process states. The operating rules for the integrated system are derived by taking into account both the operating constraints and the interaction effects among the individual subsystems in a systematic way. Optimal control system parameter values are obtained so that a system performance criterion incorporating efficient and economic operation is satisfied. The resulted EMS has been deployed to the industrial automation system that monitors and controls a small-scale experimental solar hydrogen production unit. The overall performance of the proposed EMS in the experimental unit has been evaluated over short-term and long-term operating periods resulting in smooth and efficient hydrogen production. - Highlights: • Development of an energy management strategy based on a finite-state machine and propositional-based reasoning. • Deployment of the energy-aware algorithm to an autonomous renewable hydrogen production unit. • Supervisory control of the electricity flow by a smart microgrid using an industrial automation system. • Unattended operation and remote monitoring incorporating subsystem interactions in a systematic way. • Optimal hydrogen production regardless of the weather conditions through water electrolysis with solar power

  10. Industry requirements for introduction of alternative energies with emphasis on hydrogen fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Delabbio, F. [Rio Tinto, Canadian Exploration Ltd., Toronto, ON (Canada); Starbuck, D. [Newmont Mining Corp., Denver, CO (United States); Akerman, A. [CVRD-Inco, Toronto, ON (Canada); Betournay, M.C. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2007-07-01

    This paper discussed issues related to the use of alternate sources of energy in underground mining applications. Hydrogen power systems were examined in relation to operational drivers, available commercial supplies, site supplies, health and safety issues, capital and operating costs, mine production, and the role of government. Hydrogen power systems are being considered for mining applications in an effort to reduce greenhouse gas (GHG) emissions and reduce cooling and ventilation requirements. This article examined a range of issues that must be addressed before alternate energy systems such as hydrogen fuel cell technology can be used in larger-scale underground mining applications. The mining industry supports the development of new technologies. However, the introduction of alternate energy technologies must proceed in steps which include proof of concept testing, the development of generic infrastructure, power systems and regulations, and whole operating system studies. 13 refs., 1 fig.

  11. Heat transfer problems for the production of hydrogen from geothermal energy

    International Nuclear Information System (INIS)

    Sigurvinsson, J.; Mansilla, C.; Arnason, B.; Bontemps, A.; Marechal, A.; Sigfusson, T.I.; Werkoff, F.

    2006-01-01

    Electrolysis at low temperature is currently used to produce Hydrogen. From a thermodynamic point of view, it is possible to improve the performance of electrolysis while functioning at high temperature (high temperature electrolysis: HTE). That makes it possible to reduce energy consumption but requires a part of the energy necessary for the dissociation of water to be in the form of thermal energy. A collaboration between France and Iceland aims at studying and then validating the possibilities of producing hydrogen with HTE coupled with a geothermal source. The influence of the exit temperature on the cost of energy consumption of the drilling well is detailed. To vaporize the water to the electrolyser, it should be possible to use the same technology currently used in the Icelandic geothermal context for producing electricity by using a steam turbine cycle. For heating the steam up to the temperature needed at the entrance of the electrolyser three kinds of heat exchangers could be used, according to specific temperature intervals

  12. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  13. Solar hydrogen infrastructure of road and maritime traffic in Croatia

    International Nuclear Information System (INIS)

    Firak, M.

    2005-01-01

    In the next 10 to 20 years the world and national economy will be faced with the need to transition from traditional sources of primary energy (e.g., fossil fuels) to renewable energy resources, mainly solar and wind power. At the same time hydrogen will appear on the energy scene, so already today we discuss the coming 'Hydrogen Economy', i.e., the economy based on hydrogen use. Given such developments, the question is how and when Croatia will begin to keep up with this global scenario? One of possible answers is discussed in this paper. It starts with the fact that Croatia is a significant tourist destination, visited by 10 millions mainly motorized tourists a year. World Tourism Organization forecast the increase in foreign tourists' arrivals by 8.4 percent a year until 2020. More than 90 percent of tourists stay in the Adriatic coast and islands; 55 percent of them arrive in the two summer months. Hence, the visits occur mainly in the region where and during the season when solar energy is abundant. The other assumption is the so called Hart Report, a study addressing the introduction of hydrogen infrastructure in the European traffic road system. It projects the number of hydrogen-fueled vehicles on the roads of the EU until 2020. Based on these two assumptions estimated is the number of hydrogen-fueled vehicles that in this period could arrive to the Croatian coast and islands for which the hydrogen infrastructure should be provided. Since during the holiday season thousands of motorized vessels sail along the Croatian coast and islands and many of them have some of 'hydrogen options' installed, it will be an additional reason for development for hydrogen infrastructure on the islands. Considering the above the paper proposed the hydrogen infrastructure based on photo-voltaic technology of solar energy use and water electrolysis as hydrogen production technology. The suggestion is to connect these installations to the Croatian electricity production and

  14. Determination of activation energy of hydrogen diffusion in Zr-2.5%Nb alloy

    International Nuclear Information System (INIS)

    Chandra, Komal; Kulkarni, A.S.; Ramanjaneyulu, P.S.; Yadav, C.S.; Saxena, M.K.; Tomar, B.S.; Ramakumar, K.L.; Sunil, Sourav; Singh, R.N.

    2013-01-01

    The present paper describes the study on the determination of diffusion coefficient of hydrogen in Zr-2.5%Nb alloy. Hydrogen was charged on Zr-2.5% Nb alloy electrolytically. After annealing at required temperature, hydrogen concentration at various depths from the charged end was determined employing hot vacuum extraction-quadrupole mass spectrometer (HVE-QMS). The depth profile was used to obtain the diffusion coefficient employing Fick's second law of diffusion. From the Arrhenius relation between diffusion coefficient and temperature, activation energy of hydrogen diffusion was calculated. (author)

  15. A study on the role of nuclear energy in the demand-supply structure in the 21st century. Towards the use of hydrogen and electricity energy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Shinichi; Kawanami, Jun [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    It is said that global warming has been caused by the massive consumption of fossil fuel such as oil and coal. As a fundamental measure to solve this problem, hydrogen is highly expected to be the next-generation energy source, the by-product after combustion of which is water. Previous studies have concentrated on the examination of hydrogen-producing systems that use such means as sunlight or wind power generation and transporting liquefied hydrogen to Japan (NEDO WE-NET Plan). In this study, a simulation using the energy demand-supply model was conducted in view of the advent of an energy system that is based on hydrogen and electrical energy while taking hydrogen production by means of nuclear power such as a high-temperature gas reactor into consideration. On the basis of the results, the conditions for dissemination of use of hydrogen and the role of nuclear power were examined. As a result, we found that widespread use of hydrogen will be promoted by environmental regulations and that hydrogen produced by means of nuclear power, which does not produce carbon dioxide at the time of production, will likely play an important role. (author)

  16. High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing

    Science.gov (United States)

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  17. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-31

    In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Based on the request of Pawnee Nation’s Energy Task Force the research team, consisting Tribal personnel and Summit Blue Consulting, focused on a review of renewable energy resource development potential, funding sources and utility organizational along with energy savings options. Elements of the energy demand forecasting and characterization and demand side options review remained in the scope of work, but were only addressed at a high level. Description of Activities Performed Renewable Energy Resource Development Potential The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Energy Efficiency Options While this was not a major focus of the project, the research team highlighted common strategies for reducing energy use in buildings. The team also discussed the benefits of adopting a building energy code and

  18. National Energy Balance - 1984

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The National Energy Balance - 1984 shows energy fluxes of several primary and secondary energy sources, since the productions to final consumption in the main economic sectors, since 1973 to 1983. (E.G.) [pt

  19. National Energy Balance-1987

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The National Energy Balance - 1987 showns energy fluxes of several primary and secondary energy sources, since the production to final consumption in the main economic sectors, since 1971 to 1986. (E.G.) [pt

  20. Hydrogen and renewable energy sources integrated system for greenhouse heating

    Directory of Open Access Journals (Sweden)

    Ileana Blanco

    2013-09-01

    Full Text Available A research is under development at the Department of Agro- Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic and hydrogen, integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules, which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.

  1. Fiscal 2000 collection of manuscripts for technology development committee on hydrogen energy and the like; 2000 nendo suiso energy nado kanren gijutsu kaihatsu iinkai yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-07

    The subjects listed in the collection are (1) the research and development of international clean energy system technology utilizing hydrogen (WE-NET - World Energy Network), including the outline of the project as a whole; research on system evaluation; research and development of safety measures; development of technologies for liquid hydrogen transportation and storage; research on low-temperature materials; development of hydrogen supply station and hydrogen-driven automobile system; development of supply station for hydrogen produced by electrolysis of water; development of hydrogen fuel system; development of hydrogen production technology; development of hydrogen absorbing alloys for dispersed hydrogen transportation and storage; development of polymer electrolyte fuel cell fed with pure hydrogen; and the development of power generation technology, (2) the development of closed type high-efficiency turbine technology capable of carbon dioxide recovery, and (3) the development of frontier technology of carburation using sensible heat in coke oven gas. (NEDO)

  2. One million ton of hydrogen is the key piece in the Danish renewable energy puzzle

    DEFF Research Database (Denmark)

    Grandal, Rune Duban; Mathiesen, Brian Vad; Connolly, David

    2013-01-01

    Designing a 100 % renewable energy system (RES) for Denmark, the availability of a sustainable biomass resource potential is found to be a limiting factor. The biomass demand derives from specific needs in the system, i.e. 1) storable fuel for energy for balancing fluctuating power production, 2...... storage, i.e. storing wind power through electrolysis and further reaction of hydrogen to hydrocarbons with carbon feedstock from biomass. This involves biomass gasification and hydrogenation of the syngas or hydrogenation of recycled CO2. The advantage of hydro storage is a superior energy efficiency......) carbon feedstock for materials and chemicals and 3) energy dense fuels for the more demanding branches of the transportation sector such as aviation, ship freight and long distance road transportation. The challenge of balancing electricity over different timeslots comprise a short term balancing...

  3. National Energy Balance - 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The National Energy Balance - 1985 shows energy fluxes of several primary and secondary energy sources, since the production to the final consumption in the main economic sectors, since 1974 to 1984 (E.G.) [pt

  4. Importance of hydrogen fuels as sustainable alternative energy for domestic and industrial applications

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Banan, N.; Davari, A.

    2009-01-01

    Energy demand is increasing continuously due to rapid growth in population and industrialization development. As a result greenhouse gases especially CO 2 produced by the combustion of fossil fuels cause depletion of fossil fuels and deterioration of environmental conditions worldwide. The goal of global energy sustainability implies the replacement of all fossil fuels by renewable energy sources . Hydrogen fuel is one of the sustainable energy sources can be available by conversion of biomass into biological hydrogen gas and ethanol. Rate of biomass generation in domestic wastes in Iranian culture is high. Therefore there is suitable potential for hydrogen generation in rural and urban areas of Iran. On the other hand energy extraction from these fossil fuels causes pollution and diseases. Globally, hydrogen is already produced in significant quantities (around 5 billion cubic metres per annum). It is mainly used to produce ammonia for fertiliser (about 50%), for oil refining (37%), methanol production (8%) and in the chemical and metallurgical industries (4%). On the other hand, increase in emissions rates of greenhouse gases, i.e., CO 2 present a threat to the world climate. Also new legislation of Iran has been approved the higher costs of conventional fuels for consuming in vehicles for reduction of greenhouse gases reduction as environmental policies. Demand is rising in all cities of Iran for cleaner fuels such as mixed fuels and natural gas, but unfortunately they are exporting to foreign countries or the required technologies are not available and economically option. Nuclear industries in Iran are also small and expanding only slowly. So importance of alternative energies as hydrogen powers are increasing daily. Presently both major consumers of domestic and industrial such as plants and manufacturers are using fossil fuels for their process that consequently contribute to the global warming and climate change. This paper reviews these options, with

  5. A green hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.W. II [Clark Communications, Beverly Hills, CA (United States). Green Hydrogen Scientific Advisory Committee; Rifkin, J. [The Foundation on Economic Trends (United States)

    2006-11-15

    This paper is the result of over a dozen scholars and practitioners who strongly felt that a hydrogen economy and hence the future is closer than some American politicians and bureaucrats state. Moreover, when seen internationally, there is strong evidence, the most recent and obvious ones are the proliferation of hybrid vehicles, that for any nation-state to be energy independent it must seek a renewable or green hydrogen future in the near term. The State of California has once again taken the lead in this effort for both an energy-independent future and one linked strongly to the hydrogen economy. Then why a hydrogen economy in the first instance? The fact is that hydrogen most likely will not be used for refueling of vehicles in the near term. The number of vehicles to make hydrogen commercially viable will not be in the mass market by almost all estimates until 2010. However, it is less than a decade away. The time frame is NOT 30-40 years as some argue. The hydrogen economy needs trained people, new ventures and public-private partnerships now. The paper points out how the concerns of today, including higher costs and technologies under development, can be turned into opportunities for both the public and private sectors. It was not too long ago that the size of a mobile phone was that of a briefcase, and then almost 10 years ago, the size of a shoe box. Today, they are not only the size of a man's wallet but also often given away free to consumers who subscribe or contract for wireless services. While hydrogen may not follow this technological commercialization exactly, it certainly will be on a parallel path. International events and local or regional security dictate that the time for a hydrogen must be close at hand. (author)

  6. A green hydrogen economy

    International Nuclear Information System (INIS)

    Clark, Woodrow W.; Rifkin, Jeremy

    2006-01-01

    This paper is the result of over a dozen scholars and practitioners who strongly felt that a hydrogen economy and hence the future is closer than some American politicians and bureaucrats state. Moreover, when seen internationally, there is strong evidence, the most recent and obvious ones are the proliferation of hybrid vehicles, that for any nation-state to be energy independent it must seek a renewable or green hydrogen future in the near term. The State of California has once again taken the lead in this effort for both an energy-independent future and one linked strongly to the hydrogen economy. Then why a hydrogen economy in the first instance? The fact is that hydrogen most likely will not be used for refueling of vehicles in the near term. The number of vehicles to make hydrogen commercially viable will not be in the mass market by almost all estimates until 2010. However, it is less than a decade away. The time frame is NOT 30-40 years as some argue. The hydrogen economy needs trained people, new ventures and public-private partnerships now. The paper points out how the concerns of today, including higher costs and technologies under development, can be turned into opportunities for both the public and private sectors. It was not too long ago that the size of a mobile phone was that of a briefcase, and then almost 10 years ago, the size of a shoe box. Today, they are not only the size of a man's wallet but also often given away free to consumers who subscribe or contract for wireless services. While hydrogen may not follow this technological commercialization exactly, it certainly will be on a parallel path. International events and local or regional security dictate that the time for a hydrogen must be close at hand

  7. A perfect match: Nuclear energy and the National Energy Strategy

    International Nuclear Information System (INIS)

    1990-11-01

    In the course of developing the National Energy Strategy, the Department of Energy held 15 public hearings, heard from more than 375 witnesses and received more than 1000 written comments. In April 1990, the Department published an Interim Report on the National Energy Strategy, which compiles those public comments. The National Energy Strategy must be based on actual experience and factual analysis of our energy, economic and environmental situation. This report by the Nuclear Power Oversight committee, which represents electric utilities and other organizations involved in supplying electricity from nuclear energy to the American people, provides such an analysis. The conclusions here are based on hard facts and actual worldwide experience. This analysis of all the available data supports -- indeed, dictates -- expanded reliance on nuclear energy in this nation's energy supply to achieve the President's goals. 33 figs

  8. Energy prospects in the USA; Les perspectives energetiques aux USA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    This article summarizes the main trends of the US national energy plan sustained by the administration of President Bush: national energy policy development (diversification of energy supplies, development of an hydrogen economy), energy legislation (energy saving, development of renewable energy sources, promoting national production, budget discussion), re-launching of the nuclear sector: situation of the nuclear operators, competitiveness of nuclear energy, impact of deregulation on fusion/acquisition operations, role and liability of the federal administration (development of the Yucca Mountain (Nevada) disposal site for spent fuels, 'Nuclear Power 2010' initiative, long-term 'Generation IV' program, advanced fuel cycle program, hydrogen initiative and project of very high temperature reactor (VHTR) at the Idaho national laboratory). (J.S.)

  9. Where does the energy for hydrogen production come from? Status and alternatives. 3. ed.

    International Nuclear Information System (INIS)

    Schindler, J.; Wurster, R.; Zerta, M.; Blandow, V.; Zittel, W.

    2011-05-01

    This brochure addresses and endeavours to find answers to the question as to the future availability of energy commodities. One point requiring clarification here is how long the production rates of crude oil, natural gas and coal will keep pace with and satisfy the rising demand. Particularly with regard to coal, it further needs to be clarified when, to what extent and for what period of time the separation and safe storage of carbon dioxide from fossil combustion will be possible, this being a prerequisite for the production of energy from coal. Then it needs to be clarified what contribution can realistically be expected from nuclear energy. The brochure also assesses the potentials of renewable energies for covering energy demand. It presents the cost reduction potentials in wind power and photovoltaics and the potential for producing motor fuels from renewable energy. Here it places a special emphasis on hydrogen. In conclusion it can be said that the downturn in oil production soon to be expected will leave a gap which can be closed neither by other fossil fuels nor by nuclear energy resources. On the other side, even though renewable energies will grow rapidly over the coming decades, their contribution will for some time yet be too small to be able to close this gap. This means that there is no way around making more efficient use of energy across all stages of production and use. It is also seen that biofuels will not keep the world moving as it is now and that hydrogen will therefore become a significant motor fuel. The use of hydrogen will only become dispensable if it proves possible to develop electromobiles with acceptable properties (storage density, service life, cold start behaviour, price). However, this appears improbable from today's perspective. One rollout strategy available at short term in Germany would be to use byproduct hydrogen from the chemical industry for the first vehicle fleets. Today, this hydrogen is mainly used thermally by co

  10. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    Science.gov (United States)

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  11. Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

    Science.gov (United States)

    Mori, K.; Lee, E. W.; Frazier, W. E.; Niji, K.; Battel, G.; Tran, A.; Iriarte, E.; Perez, O.; Ruiz, H.; Choi, T.; Stoyanov, P.; Ogren, J.; Alrashaid, J.; Es-Said, O. S.

    2015-01-01

    Tempered AISI 4340 steel was hydrogen charged and tested for impact energy. It was found that samples tempered above 468 °C (875 °F) and subjected to hydrogen charging exhibited lower impact energy values when compared to uncharged samples. No significant difference between charged and uncharged samples tempered below 468 °C (875 °F) was observed. Neither exposure nor bake time had any significant effect on impact energy within the tested ranges.

  12. Applied hydrogen storage research and development: A perspective from the U.S. Department of Energy

    International Nuclear Information System (INIS)

    O’Malley, Kathleen; Ordaz, Grace; Adams, Jesse; Randolph, Katie; Ahn, Channing C.; Stetson, Ned T.

    2015-01-01

    Highlights: • Overview of U.S. DOE-supported hydrogen storage technology development efforts. • Physical and materials-based strategy for developing hydrogen storage systems. • Materials requirements for automotive storage systems. • Key R&D developments. - Abstract: To enable the wide-spread commercialization of hydrogen fuel cell technologies, the U.S. Department of Energy, through the Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technology Office, maintains a comprehensive portfolio of R&D activities to develop advanced hydrogen storage technologies. The primary focus of the Hydrogen Storage Program is development of technologies to meet the challenging onboard storage requirements for hydrogen fuel cell electric vehicles (FCEVs) to meet vehicle performance that consumers have come to expect. Performance targets have also been established for materials handling equipment (e.g., forklifts) and low-power, portable fuel cell applications. With the imminent release of commercial FCEVs by automobile manufacturers in regional markets, a dual strategy is being pursued to (a) lower the cost and improve performance of high-pressure compressed hydrogen storage systems while (b) continuing efforts on advanced storage technologies that have potential to surpass the performance of ambient compressed hydrogen storage

  13. Applied hydrogen storage research and development: A perspective from the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    O’Malley, Kathleen [SRA International, Inc., Fairfax, VA 22033 (United States); Ordaz, Grace; Adams, Jesse; Randolph, Katie [U.S. Department of Energy, 1000 Independence Ave., SW, EE-3F, Washington, DC 20585 (United States); Ahn, Channing C. [U.S. Department of Energy, 1000 Independence Ave., SW, EE-3F, Washington, DC 20585 (United States); California Institute of Technology, Pasadena, CA 91125 (United States); Stetson, Ned T., E-mail: Ned.Stetson@ee.doe.gov [U.S. Department of Energy, 1000 Independence Ave., SW, EE-3F, Washington, DC 20585 (United States)

    2015-10-05

    Highlights: • Overview of U.S. DOE-supported hydrogen storage technology development efforts. • Physical and materials-based strategy for developing hydrogen storage systems. • Materials requirements for automotive storage systems. • Key R&D developments. - Abstract: To enable the wide-spread commercialization of hydrogen fuel cell technologies, the U.S. Department of Energy, through the Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technology Office, maintains a comprehensive portfolio of R&D activities to develop advanced hydrogen storage technologies. The primary focus of the Hydrogen Storage Program is development of technologies to meet the challenging onboard storage requirements for hydrogen fuel cell electric vehicles (FCEVs) to meet vehicle performance that consumers have come to expect. Performance targets have also been established for materials handling equipment (e.g., forklifts) and low-power, portable fuel cell applications. With the imminent release of commercial FCEVs by automobile manufacturers in regional markets, a dual strategy is being pursued to (a) lower the cost and improve performance of high-pressure compressed hydrogen storage systems while (b) continuing efforts on advanced storage technologies that have potential to surpass the performance of ambient compressed hydrogen storage.

  14. Photobiological production of hydrogen: a solar energy conversion option

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Lien, S.; Seibert, M.

    1979-01-01

    This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

  15. Hydrogen Gas Recycling for Energy Efficient Ammonia Recovery in Electrochemical Systems

    NARCIS (Netherlands)

    Kuntke, Philipp; Rodríguez Arredondo, Mariana; Widyakristi, Laksminarastri; Heijne, ter Annemiek; Sleutels, Tom H.J.A.; Hamelers, Hubertus V.M.; Buisman, Cees J.N.

    2017-01-01

    Recycling of hydrogen gas (H2) produced at the cathode to the anode in an electrochemical system allows for energy efficient TAN (Total Ammonia Nitrogen) recovery. Using a H2 recycling electrochemical system (HRES) we achieved high TAN transport rates at low energy input. At

  16. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  17. Low-energy hydrogen flux measurements at the TORTUR tokamak with negative ion conversion

    International Nuclear Information System (INIS)

    Toledo, Wiebo van.

    1990-01-01

    The interaction of a tokamak plasma with the vessel wall is one of the most important subjects in thermonuclear research. The information about this interaction is not complete without direct detection of the outward stream of low-energy, down to a few electronvolts, neutral hydrogen or deuterium atoms. The detection of these atoms is the subject of this thesis. An appropriate method to analyse the atoms which are emitted from the edge plasma is to use a time-of-flight analyser. This kind of apparatus selects particles according to their velocities with-out distinguishing between different masses. If these analysers use the Daly-method the lowest measurable energy of the hydrogen atoms is approximately 25 electronvolts. To increase the detection efficiency a new detection method was developed. This new method uses the conversion of hydrogen atoms into H- ions on a cesiated tungsten surface. By this conversion the lowest measurable energy is decreased down to 5 electron-volt. (author). 93 refs.; 44 figs.; 7 tabs

  18. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  19. Defect generation/passivation by low energy hydrogen implant for silicon solar cells

    International Nuclear Information System (INIS)

    Sopori, B.L.; Zhou, T.Q.; Rozgonyi, G.A.

    1990-01-01

    Low energy ion implant is shown to produce defects in silicon. These defects include surface damage, hydrogen agglomeration, formation of platelets with (111) habit plane and decoration of dislocations. Hydrogen also produces an inversion type of surface on boron doped silicon. These effects indicate that a preferred approach for passivation is to incorporate hydrogen from the back side of the cell. A backside H + implant technique is described. The results show that degree of passivation differs for various devices. A comparison of the defect structures of hydrogenated devices indicates that the structure and the distribution of defects in the bulk of the material plays a significant role in determining the degree of passivation

  20. Hydrogen: it's now. Hydrogen, essential today, indispensable tomorrow. Power-to-Gas or how to meet the challenge of electricity storage. To develop hydrogen mobility. Hydrogen production modes and scope of application of the IED directive - Interview. Regulatory evolutions needed for an easier deployment of hydrogen energy technologies for a clean mobility. Support of the Community's policy to hydrogen and to fuel cells

    International Nuclear Information System (INIS)

    Mauberger, Pascal; Boucly, Philippe; Quint, Aliette; Pierre, Helene; Lucchese, Paul; Bouillon-Delporte, Valerie; Chauvet, Bertrand; Ferrari, Fabio; Boivin, Jean-Pierre

    2015-01-01

    Published by the French Association for Hydrogen and Fuel Cells (AFHYPAC), this document first outlines how hydrogen can reduce our dependence on fossil energies, how it supports the development of electric mobility to reduce CO 2 emissions by transports, how it enables a massive storage of energy as a support to renewable energies deployment and integration, and how hydrogen can be a competitiveness driver. Then two contributions address technical solutions, the first one being Power-to-Gas as a solution to energy storage (integration of renewable energies, a mean for massive storage of electricity, economic conditions making the first deployments feasible, huge social and economical benefits, necessity of creation of an adapted legal and economic framework), and the second one being the development of hydrogen-powered mobility (a major societal concern for air quality, strategies of car manufacturers in the world, necessity of a favourable framework, the situation of recharging infrastructures). Two contributions address the legal framework regarding hydrogen production modes and the scope of application of the European IED directive on industrial emissions, and the needed regulatory evolutions for an easier deployment of Hydrogen-energy technologies for a clean mobility. A last article comments the evolution of the support of European policies to hydrogen and fuel cells through R and d programs, presents the main support program (FCH JU) and its results, other European financing and support policy, and discusses perspectives, notably for possible financing mechanisms

  1. The role of hydrogen in the energy transition. Development status and perspectives

    International Nuclear Information System (INIS)

    Altmann, Matthias; Buenger, Ulrich; Landinger, Hubert; Pschorr-Schoberer, Evi; Raksha, Tetyana; Wurster, Reinhold; Zerta, Martin

    2014-06-01

    Hydrogen and fuel cells have great potential and are currently at the threshold of commercialization. Baden-Wuerttemberg and German companies and research institutions have created a good starting point for participating in these growth markets internationally. With dwindling fossil resources, the phasing out of nuclear energy and international targets for reducing greenhouse gas emissions, the entire energy system is fundamentally changing and will be fully converted over the long term to renewable energy sources. While in the past chemical sources of energy dominated as the primary source of energy, in the future these will be superseded in particular by electricity as a renewable, largely fluctuating primary energy. At the same time, however, the easy storage and transportability of energy is also partially lost. An intelligent combination of electricity, gas (methane, hydrogen), heat and fuels for mobility is a prerequisite for a robust, sustainable and sustainable energy supply in Germany. The coordinated interaction between generation, transmission, distribution, storage and consumption of electrical energy enables the efficient integration of renewable energies into the energy supply system and a secure transition to the regenerative energy age. Germany needs a robust and flexible energy strategy that can provide long-term planning security for all market players. [de

  2. Achievement report for fiscal 1982 on Sunshine Program-entrusted research and development. Survey on patent and information (Hydrogen energy); 1982 nendo tokkyo joho chosa kenkyu seika hokokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    Patents related to the research under the Sunshine Program are surveyed so as to ensure that the program be promoted smoothly and efficiently. Since the scope of the hydrogen energy technology is extensive, branches supposed to be relatively important only are surveyed, which include the production of hydrogen (thermochemical process, photochemical process, and electrolysis), storage and transportation of hydrogen, safety of hydrogen, hydrogen fuel cells, hydrogen-fueled engines, and hydrogen combustion devices. The basic policy to follow in the extraction of necessary patents is that all related to the hydrogen energy technology be collected from as many fields as possible. However, it is impossible to read all the laid-open patents. Under such circumstances, out of the items in IPC (International Patent Classification) used by the Patent Agency, those deemed to be closely related to the hydrogen energy technology are designated and, when the classification item attached to the official gazette matches one of the IPC classification items, it is extracted as a desired item after deliberation of its relationship with the hydrogen energy technology. (NEDO)

  3. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  4. Sensitivity to temperature of nuclear energy generation by hydrogen burning

    International Nuclear Information System (INIS)

    Mitalas, R.

    1981-01-01

    The sensitivity to temperature of nuclear energy generation by hydrogen burning is discussed. The complexity of the sensitivity is due to the different equilibration time-scales of the constituents of the p-p chain and CN cycle and the dependence of their abundances and time-scales on temperature. The time-scale of the temperature perturbation, compared to the equilibrium time-scale of a constituent, determines whether the constituent is in equilibrium and affects the sensitivity. The temperature sensitivity of the p-p chain for different values of hydrogen abundance, when different constituents come into equilibrium is presented, as well as its variation with 3 He abundance. The temperature sensitivity is drastically different from n 11 , the temperature sensitivity of the proton-proton reaction, unless the time-scale of temperature perturbation is long enough for 3 He to remain in equilibrium. Even in this case the sensitivity of the p-p chain differs significantly from n 11 , unless the temperature is so low that PP II and PP III chains can be neglected. The variation of the sensitivity of CN energy generation is small for different time-scales of temperature variation, because the temperature sensitivities of individual reactions are so similar. The combined sensitivity to temperature of energy generation by hydrogen burning is presented and shown to have a maximum of 16.4 at T 6 = 24.5. For T 6 > 25 the temperature sensitivity is given by the sensitivity of 14 N + p reaction. (author)

  5. A rationale for large inertial fusion plants producing hydrogen for powering low emission vehicles

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-01-01

    Inertial Fusion Energy (IFE) has been identified in the 1991 National Energy Strategy, along with Magnetic Fusion Energy (MFE), as one of only three inexhaustible energy sources for long term energy supply (past 2025), the other alternatives being fission and solar energy. Fusion plants, using electrolysis, could also produce hydrogen to power low emission vehicles in a potentially huge future US market: > 500 GWe would be needed for example, to replace all foreign oil imports with equal-energy hydrogen, assuming 70%-efficient electrolysis. Any inexhaustible source of electricity, including IFE and MFE reactors, can thus provide a long term renewable source of hydrogen as well as solar, wind and biomass sources. Hydrogen production by both high temperature thermochemical cycles and by electrolysis has been studied for MFE, but avoiding trace tritium contamination of the hydrogen product would best be assured using electrolysis cells well separated from any fusion coolant loops. The motivations to consider IFE or MFE producing renewable hydrogen are: (1) reducing US dependence on foreign oil imports and the associated trade deficient; (2) a hydrogen-based transportation system could greatly mitigate future air pollution and greenhouse gases; (3) investments in hydrogen pipelines, storage, and distribution systems could be used for a variety of hydrogen sources; (4) a hydrogen pipeline system could access and buffer sufficiently large markets that temporary outages of large (>> 1 GWe size) fusion hydrogen units could be tolerated

  6. Summarized achievement report on the Sunshine Project in fiscal 1980 (Hydrogen energy); 1980 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-04-01

    This paper summarizes the achievement report on the Sunshine Project in fiscal 1980 for hydrogen energy research. In hydrogen manufacturing using the electrolytic process, improvements were made on membranes and electrodes. Solid electrolyte electrolysis is also under research. Researches are continued on reaction, separating operation, and device materials for the iodine system cycle in the thermo-chemical method. In the iron system cycle, a reaction experimenting equipment was fabricated on the trial basis, and tests and evaluation were performed on the material and heat balances. In the mixed system cycle, researches on the light irradiation electrolytic process were continued, whereas the light collecting rate was raised by using a lens to increase light intensity, having enhanced successfully the reaction rate to 60 to 80%. A heat diffusion column for HI decomposition and separation (hydrogen acquisition) was discussed in terms of chemical engineering. Development works are continued on metal hydrides for hydrogen transportation, and durability tests are also being performed. Same applies to hydrogen storage. A model burner was fabricated on the trial basis, and catalytic combustion was studied as development of a combustion technology that matches the requirements for safe hydrogen combustion and suppression of NOx emission. Searches were continued on catalysts and solid electrolyte materials for fuel cells. Thin film sold electrolyte fuel cells constructed by using the evaporation process are also being studied. The paper also describes measures for hydrogen safety assurance and researches on energy systems. (NEDO)

  7. Meeting the near-term demand for hydrogen using nuclear energy in competitive power markets

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2004-01-01

    Hydrogen is becoming the reference fuel for future transportation and the timetable for its adoption is shortening. However, to deploy its full potential, hydrogen production either directly or indirectly needs to satisfy three criteria: no associated emissions, including CO 2 ; wide availability; and affordability. This creates a window of great opportunity within the next 15 years for nuclear energy to provide the backbone of hydrogen-based energy systems. But nuclear must establish its hydrogen generating role long before the widespread deployment of Gen IV high-temperature reactors, with their possibility of producing hydrogen directly by heat rather than electricity. For Gen IV the major factors will be efficiency and economic cost, particularly if centralized storage is needed and/or credits for avoided emissions and/or oxygen sales. In the interim, despite its apparently lower overall efficiency, water electrolysis is the only available technology today able to meet the first and second criteria. The third criterion includes costs of electrolysis and electricity. The primary requirements for affordable electrolysis are low capital cost and high utilisation. Consequently, the electricity supply must enable high utilisation as well as being itself low-cost and emissions-free. Evolved Gen III+ nuclear technologies can produce electricity on large scales and at rates competitive with today's CO 2 -emitting, fossil-fuelled technologies. As an example of electrolytic hydrogen's potential, we show competitive deployment in a typical competitive power market. Among the attractions of this approach are reactors supplying a base-loaded market - though permitting occasional, opportunistic diversion of electricity during price spikes on the power grid - and easy delivery of hydrogen to widely distributed users. Gen IV systems with multiple product streams and higher efficiency (e.g., the SCWR) can also be envisaged which can use competitive energy markets to advantage

  8. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production: A thermodynamic energy balance of a model system to demonstrate net energy feasibility

    International Nuclear Information System (INIS)

    Babson, David M.; Bellman, Karen; Prakash, Shaurya; Fennell, Donna E.

    2013-01-01

    During anaerobic digestion, organic matter is converted to carbon dioxide and methane, and organic nitrogen is converted to ammonia. Generally, ammonia is recycled as a fertilizer or removed via nitrification–denitrification in treatment systems; alternatively it could be recovered and catalytically converted to hydrogen, thus supplying additional fuel. To provide a basis for further investigation, a theoretical energy balance for a model system that incorporates anaerobic digestion, ammonia separation and recovery, and conversion of the ammonia to hydrogen is reported. The model Anaerobic Digestion-Bioammonia to Hydrogen (ADBH) system energy demands including heating, pumping, mixing, and ammonia reforming were subtracted from the total energy output from methane and hydrogen to create an overall energy balance. The energy balance was examined for the ADBH system operating with a fixed feedstock loading rate with C:N ratios (gC/gN) ranging from 136 to 3 which imposed corresponding total ammonia nitrogen (TAN) concentrations of 20–10,000 mg/L. Normalizing total energy potential to the methane potential alone indicated that at a C:N ratio of 17, the energy output was greater for the ADBH system than from anaerobic digestion generating only methane. Decreasing the C:N ratio increased the methane content of the biogas comprising primarily methane to >80% and increased the ammonia stripping energy demand. The system required 23–34% of the total energy generated as parasitic losses with no energy integration, but when internally produced heat and pressure differentials were recovered, parasitic losses were reduced to between 8 and 17%. -- Highlights: •Modeled an integrated Anaerobic Digestion-Bioammonia to Hydrogen (ADBH) system. •Demonstrated positive net energy produced over a range of conditions by ADBH. •Demonstrated significant advantages of dual fuel recovery for energy gain by >20%. •Suggested system design considerations for energy recovery with

  9. Sodium tetra-hydro-borate as energy/hydrogen carrier, its history

    International Nuclear Information System (INIS)

    Demirci, U.B.; Miele, Ph.

    2009-01-01

    Sodium tetra-hydro-borate NaBH 4 is considered as being a promising energy/hydrogen carrier. NaBH 4 is not a new compound. It has been discovered in 1940's by Prof. H.C. Brown, Nobel Laureate in Chemistry in 1979. NaBH 4 has thus a history and this history distinguishes the NaBH 4 utilisation as hydrogen carrier from that as energy carrier. In fact, the history of NaBH 4 (for both utilizations) can be divided into three periods, each period being characterised by specific societal challenges. Whereas during the first period the challenges were military and political, the challenges in the third period (i.e. at present) are energetic, environmental, civilian, social and political. The second period was rather calm for NaBH 4 even if it was intensively used as a reducing agent in organic chemistry. (authors)

  10. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  11. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  12. An energy self-sufficient public building using integrated renewable sources and hydrogen storage

    International Nuclear Information System (INIS)

    Marino, C.; Nucara, A.; Pietrafesa, M.; Pudano, A.

    2013-01-01

    The control of the use of fossil fuels, major cause of greenhouse gas emissions and climate changes, in present days represents one of Governments' main challenges; particularly, a significant energy consumption is observed in buildings and might be significantly reduced through sustainable design, increased energy efficiency and use of renewable sources. At the moment, the widespread use of renewable energy in buildings is limited by its intrinsic discontinuity: consequently integration of plants with energy storage systems could represent an efficient solution to the problem. Within this frame, hydrogen has shown to be particularly fit in order to be used as an energetic carrier. In this aim, in the paper an energetic, economic and environmental analysis of two different configurations of a self-sufficient system for energy production from renewable sources in buildings is presented. In particular, in the first configuration energy production is carried out by means of photovoltaic systems, whereas in the second one a combination of photovoltaic panels and wind generators is used. In both configurations, hydrogen is used as an energy carrier, in order to store energy, and fuel cells guarantee its energetic reconversion. The analysis carried out shows that, although dimensioned as a stand-alone configuration, the system can today be realized only taking advantage from the incentivizing fares applied to grid-connected systems, that are likely to be suspended in the next future. In such case, it represents an interesting investment, with capital returns in about 15 years. As concerns economic sustainability, in fact, the analysis shows that the cost of the energy unit stored in hydrogen volumes, due to the not very high efficiency of the process, presently results greater than that of directly used one. Moreover, also the starting fund of the system proves to be very high, showing an additional cost with respect to systems lacking of energy storage equal to about 50

  13. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    Science.gov (United States)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  14. National energy balance - 1978

    International Nuclear Information System (INIS)

    1978-01-01

    The national energy balance of 1978 shows some modifications in relation to the last year. New tables were included aiming to show the brazilian energy situation, such as the hydraulic potential and the non-renewable energy resources. (E.G.) [pt

  15. National Energy Balance - 1981

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The National Energy Balance - 1981, shows a new metodology and information in level of several economic sectors, as well as a separation of primary and secondary energy sources, its energy fluxes, i.e. production, imports, exports, consumption, etc...(E.G.) [pt

  16. Application of fuel cell and electrolyzer as hydrogen energy storage system in energy management of electricity energy retailer in the presence of the renewable energy sources and plug-in electric vehicles

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Zare, Kazem; Mohammadi-Ivatloo, Behnam

    2017-01-01

    Highlights: • Electricity retailer determines selling price to consumers in the smart grids. • Real-time pricing is determined in comparison with fixed and time-of-use pricing. • Hydrogen storage systems and plug-in electric vehicles are used for energy sources. • Optimal charging and discharging power of electrolyser and fuel cell is determined. • Optimal charging and discharging power of plug-in electric vehicles is determined. - Abstract: The plug-in electric vehicles and hydrogen storage systems containing electrolyzer, stored hydrogen tanks and fuel cell as energy storage systems can bring various flexibilities to the energy management problem. In this paper, selling price determination and energy management problem of an electricity retailer in the smart grid under uncertainties have been proposed. Multiple energy procurement sources containing pool market, bilateral contracts, distributed generation units, renewable energy sources (photovoltaic system and wind turbine), plug-in electric vehicles and hydrogen storage systems are considered. The scenario-based stochastic method is used for uncertainty modeling of pool market prices, consumer demand, temperature, irradiation and wind speed. In the proposed model, the selling price is determined and compared by the retailer in the smart grid in three cases containing fixed pricing, time-of-use pricing and real-time pricing. It is shown that the selling price determination based on real-time pricing and flexibilities of plug-in electric vehicles and hydrogen storage systems leads to higher expected profit. The proposed model is formulated as mixed-integer linear programming that can be solved under General Algebraic Modeling System. To validate the proposed model, three types of selling price determination under four case studies are utilized and the results are compared.

  17. Integrated analysis of transportation demand pathway options for hydrogen production, storage, and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.S. [Directed Technologies Inc., Arlington, VA (United States)

    1996-10-01

    Directed Technologies, Inc. has begun the development of a computer model with the goal of providing guidance to the Hydrogen Program Office regarding the most cost effective use of limited resources to meet national energy security and environmental goals through the use of hydrogen as a major energy carrier. The underlying assumption of this programmatic pathway model is that government and industry must work together to bring clean hydrogen energy devices into the marketplace. Industry cannot provide the long term resources necessary to overcome technological, regulatory, institutional, and perceptual barriers to the use of hydrogen as an energy carrier, and government cannot provide the substantial investments required to develop hydrogen energy products and increased hydrogen production capacity. The computer model recognizes this necessary government/industry partnership by determining the early investments required by government to bring hydrogen energy end uses within the time horizon and profitability criteria of industry, and by estimating the subsequent investments required by industry. The model then predicts the cost/benefit ratio for government, based on contributions of each hydrogen project to meeting societal goals, and it predicts the return on investment for industry. Sensitivity analyses with respect to various government investments such as hydrogen research and development and demonstration projects will then provide guidance as to the most cost effective mix of government actions. The initial model considers the hydrogen transportation market, but this programmatic pathway methodology will be extended to other market segments in the future.

  18. Hydrogen energy system in California

    International Nuclear Information System (INIS)

    Zweig, R.M.

    1995-01-01

    Results of experiences on the use of hydrogen as a clean burning fuel in California and results of the South Coast Air Quality Management district tests using hydrogen as a clean burning environmentally safe fuel are given. The results of Solar Hydrogen Projects in California and recent medical data documentation of human lung damage of patients living in air polluted urban areas are summarized

  19. Hydrogen activities in the European Union work-programme. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Bahbout, A.; Tartaglia, G.P.; Buenger, U.

    2000-07-01

    Looking at some of the national and international developments in hydrogen technology it becomes clear which important contributions the hydrogen technology oriented activities of the EU have helped to prepare and trigger: (a) Transport Energy Strategy (TES): This initiative of 7 major German automobile and mineral oilcompanies is aimed at an industrial consensus on one or two gasoline alternative fuels, which are to be presented to the German Ministry of Transport. An intermediate trend is that hydrogen may become the fuel of choice. (b) BMW: The Bayerischen Motorenwerke have already very early exposed themselves to the vehicle and component development of hydrogen as a vehicle fuel, focussing on a strategy from CNG to LNG and LH{sub 2}. (c) Opel and GM: Opel has recently announced they have chosen hydrogen as the primary long term fuel for their fuel cell vehicles to be commercialized starting in 2004. (d) CFCP: The California Fuel Cell Partnership with partners from industry and politics has announced they are preparing the installation of hydrogen fuel stations aas well as 20-25 fuel cell buses and 30 passenger cars, mainly operated with hydrogen. (e) NEDO: The New Energy and Industrial Technology Development Organization (NEDO) of Japan has announced they are going to build hydrogen pilot refueling stations 18 months ahead of the original schedule to reduce the first-to-market-time. (f) Norway: A study group of Norwegian industry and institutes has carried out a comprehensive study for the Research Ministry on further R and D areas which should be intensified in a national strategy to be prepared for an international hydrogen energy system [SINTEF, 00]. (g) German Greens: The German ecologist party ''Greens'' has announced last week a shift from an anti-car lobbying to fostering greener cars, focussing on renewable hydrogen as a clean fuel. (h) Linde: The largest European Technical Gas Company has announced recently they will strategically

  20. DGEMP/CGP energy policy lecture cycle - technical and economical stakes of hydrogen as an energy carrier

    International Nuclear Information System (INIS)

    Alleau, T.; Freund, E.; Coiffard, J.

    2002-01-01

    Hydrogen is attracting a lot a interest from energy specialists, in particular because supply safety issues are back on the agendas. One of the most promising applications seems to be the 'combustible cells', which changes hydrogen into electricity and heat in various applications: 'mobile', as an alternative to electric cells, for instance in telephones or lap-top computers, 'stationary' for producing electricity and heat, including small and medium voltage, and 'transport' with a high number of light vehicle and even bus prototypes. (authors)

  1. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad

    2017-12-27

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  2. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad; Wakil Shahzad, Muhammad; Ng, Kim Choon

    2017-01-01

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  3. Analysis of an Improved Solar-Powered Hydrogen Generation System for Sustained Renewable Energy Production

    Science.gov (United States)

    2017-12-01

    hydrogen gas by electrolysis. In LT Aviles’ design , distilled water was collected from the ambient air using Peltier dehumidifiers, manufactured by...Figure 13 shows the shelfing along with the entire system. Figure 13. Reconfigured Hydrogen Production Facility Because the system was designed for...POWERED HYDROGEN GENERATION SYSTEM FOR SUSTAINED RENEWABLE ENERGY PRODUCTION by Sen Feng Yu December 2017 Thesis Advisor: Garth V. Hobson Co

  4. Activities of UNIDO-ICHET: On a Mission to Convert the World to Hydrogen Economy

    International Nuclear Information System (INIS)

    Barbir, Frano; Veziroglu, T. Nejat; Ture, Engin; Dziedzic, Gregory

    2006-01-01

    United Nations Industrial Development Organization - International Centre for Hydrogen Energy Technologies (UNIDO-ICHET) is an autonomous technological institution within the auspices of UNIDO, located in Istanbul Turkey. UNIDO-ICHET''s mission is to act as a bridge between developed and developing countries in spanning the gap between research and development organizations, innovative enterprises and the market-place, by stimulating appropriate applications of hydrogen energy technologies and the hydrogen energy related industrial development throughout the world in general, and in the developing countries in particular. The activities of UNIDO-ICHET include initiation of demonstration and pilot projects worldwide, establishment of a database on hydrogen energy technology and R and D activities, applied research and development, testing services, and education and training. UNIDO-ICHET is also assisting developing countries in adopting their Hydrogen Road-maps, by working with local governments, universities and industries, with other international organizations having similar mission, and with the leading technology and energy companies. (authors)

  5. High temperature electrolysis for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Herring, J. Stephen; O'brien, James E.; Stoots, Carl M.; Hawkes, Grant L.; Hartvigsen, Joseph J.

    2005-01-01

    High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, which can be accomplished via high-temperature electrolysis (HTE) or thermochemical processes. In order to achieve competitive efficiencies, both processes require high-temperature operation (∼850degC). High-temperature electrolytic water splitting supported by nuclear process heat and electricity has the potential to produce hydrogen with overall system efficiencies of 45 to 55%. At the Idaho National Laboratory, we are developing solid-oxide cells to operate in the steam electrolysis mode. The research program includes both experimental and modeling activities. Experimental results were obtained from ten-cell and 22-cell planar electrolysis stacks, fabricated by Ceramatec, Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (∼200 μm thick, 64 cm 2 active area), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions, gas glow rates, and current densities. Hydrogen production rates greater than 100 normal liters per hour for 196 hours have been demonstrated. In order to evaluate the performance of large-scale HTE operations, we have developed single-cell models, based on FLUENT, and a process model, using the systems-analysis code HYSYS. (author)

  6. Hydrogen Production from Sea Wave for Alternative Energy Vehicles for Public Transport in Trapani (Italy

    Directory of Open Access Journals (Sweden)

    Vincenzo Franzitta

    2016-10-01

    Full Text Available The coupling of renewable energy and hydrogen technologies represents in the mid-term a very interesting way to match the tasks of increasing the reliable exploitation of wind and sea wave energy and introducing clean technologies in the transportation sector. This paper presents two different feasibility studies: the first proposes two plants based on wind and sea wave resource for the production, storage and distribution of hydrogen for public transportation facilities in the West Sicily; the second applies the same approach to Pantelleria (a smaller island, including also some indications about solar resource. In both cases, all buses will be equipped with fuel-cells. A first economic analysis is presented together with the assessment of the avoidable greenhouse gas emissions during the operation phase. The scenarios addressed permit to correlate the demand of urban transport to renewable resources present in the territories and to the modern technologies available for the production of hydrogen from renewable energies. The study focuses on the possibility of tapping the renewable energy potential (wind and sea wave for the hydrogen production by electrolysis. The use of hydrogen would significantly reduce emissions of particulate matter and greenhouse gases in urban districts under analysis. The procedures applied in the present article, as well as the main equations used, are the result of previous applications made in different technical fields that show a good replicability.

  7. On the connection between the hydrogen atom and the harmonic oscillator: the zero-energy case

    International Nuclear Information System (INIS)

    Kibler, M.; Negali, T.

    1983-09-01

    The connection between the three-dimensional hydrogen atom and a four-dimensional harmonic oscillator obtained in previous works, from an hybridization of the infinitesimal Pauli approach to the hydrogen system with the Schwinger approach to spherical and hyperbolical angular momenta, is worked out in the case of the zero-energy point of the hydrogen atom. This leads to the equivalence of the three-dimensional hydrogen problem with a four-dimensional free-particle problem involving a constraint condition. For completeness, the latter results is also derived by using the Kustaanheimo-Stiefel transformation introduced in celestial mechanics. Finally, it is shown how the Lie algebra of SO(4,2) quite naturally arises for the whole spectrum (discrete + continuum + zero-energy point) of the three-dimensional hydrogen atom from the introduction of the constraint condition into the Lie algebra of Sp(8,R) associated to the four-dimensional harmonic oscillator

  8. Summarized achievement report on the Sunshine Project in fiscal 1979. Hydrogen energy; 1979 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-04-01

    This paper summarizes the achievement report on the Sunshine Project in fiscal 1979 for hydrogen energy research. In hydrogen manufacturing technologies, the paper describes improvement in membrane performance and discussions on electrode materials in high temperature and pressure electrolysis. In the thermo-chemical method, hydrolysis of iron bromide (II) in the iron system cycle was compared to three kinds of reaction patterns corresponding to phase change, and evaluation was given as the hydrogen generating reaction. In the iodine system the first stage oxidation and reduction reaction of MgO-I{sub 2} was subjected to a continued experiment by using a batch autoclave. Discussions were continued on device materials for the iodine cycle. In the light irradiation electrolytic method for the mixed cycle, the light intensity was experimented at a force 12 times greater than that of the solar beam, and a reaction rate of 80% was achieved. Raising the temperature causes the reaction rate to decline, but it can be supplemented by raising the light intensity. A heat diffusion column was found effective in HI decomposition (hydrogen acquisition). For hydrogen transportation and storage, researches are continued on metal hydrides. In hydrogen utilization technologies, combustion, fuel cells (using high temperature solid and alkaline aqueous solution electrolytes), and hydrogen engines are studied. This paper also describes studies on hydrogen safety assuring measures and energy systems. (NEDO)

  9. National Energy Balance - 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The National Energy Balance - 1986 shows energy fluxes of several primary and secondary energy sources, since the production to the final consumption in the main economic sectors, since 1970 to 1985. The incorporation of a new brazilian information is done. (E.G.) [pt

  10. Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO(2) capture.

    Science.gov (United States)

    Naqvi, M; Yan, J; Dahlquist, E

    2012-04-01

    This paper estimates potential hydrogen production via dry black liquor gasification system with direct causticization integrated with a reference pulp mill. The advantage of using direct causticization is elimination of energy intensive lime kiln. Pressure swing adsorption is integrated in the carbon capture process for hydrogen upgrading. The energy conversion performance of the integrated system is compared with other bio-fuel alternatives and evaluated based on system performance indicators. The results indicated a significant hydrogen production potential (about 141MW) with an energy ratio of about 0.74 from the reference black liquor capacity (about 243.5MW) and extra biomass import (about 50MW) to compensate total energy deficit. About 867,000tonnes of CO(2) abatement per year is estimated i.e. combining CO(2) capture and CO(2) offset from hydrogen replacing motor gasoline. The hydrogen production offers a substantial motor fuel replacement especially in regions with large pulp and paper industry e.g. about 63% of domestic gasoline replacement in Sweden. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Ground state energy of an hydrogen atom confined in carbon nano-structures: a diffusion quantum Monte Carlo study

    International Nuclear Information System (INIS)

    Molayem, M.; Tayebi-Rad, Gh.; Esmaeli, L.; Namiranian, A.; Fouladvand, M. E.; Neek-Amal, M.

    2006-01-01

    Using the diffusion quantum monte Carlo method, the ground state energy of an Hydrogen atom confined in a carbon nano tube and a C60 molecule is calculated. For Hydrogen atom confined in small diameter tubes, the ground state energy shows significant deviation from a free Hydrogen atom, while with increasing the diameter this deviation tends to zero.

  12. First-Principles and Thermodynamic Simulation of Elastic Stress Effect on Energy of Hydrogen Dissolution in Alpha Iron

    Science.gov (United States)

    Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.

    2018-04-01

    Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.

  13. Energy-efficient mortgages and home energy rating systems: A report on the nation`s progress

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.C.; Eckert, J.

    1993-09-01

    This report summarizes progress throughout the nation in establishing voluntary programs linking home energy rating systems (HERS) and energy-efficient mortgages (EEMs). These programs use methods for rating the energy efficiency of new and existing homes and predicting energy cost savings so lenders can factor in energy cost savings when underwriting mortgages. The programs also encourage lenders to finance cost-effective energy-efficiency improvements to existing homes with low-interest mortgages or other instruments. The money saved on utility bills over the long term can more than offset the cost of such energy-efficiency improvements. The National Collaborative on HERS and EEMs recommended that this report be prepared.

  14. Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration

    Energy Technology Data Exchange (ETDEWEB)

    Parks, G.; Boyd, R.; Cornish, J.; Remick, R.

    2014-05-01

    At the request of the U.S. Department of Energy Fuel Cell Technologies Office (FCTO), the National Renewable Energy Laboratory commissioned an independent review of hydrogen compression, storage, and dispensing (CSD) for pipeline delivery of hydrogen and forecourt hydrogen production. The panel was asked to address the (1) cost calculation methodology, (2) current cost/technical status, (3) feasibility of achieving the FCTO's 2020 CSD levelized cost targets, and to (4) suggest research areas that will help the FCTO reach its targets. As the panel neared the completion of these tasks, it was also asked to evaluate CSD costs for the delivery of hydrogen by high-pressure tube trailer. This report details these findings.

  15. Energy security and national policy

    International Nuclear Information System (INIS)

    Martin, W.F.

    1987-01-01

    To achieve an energy secure future, energy cannot be viewed as an isolated concern. It is part and parcel of a nation's economic, social, and political context. In the past important implications for the economy and national security have been ignored. Crash programs to deal with oil shortages in the seventies, crashed. In the eighties, oil surplus has been enjoyed. The energy situation could be quite different in the nineties. Statistics on energy supply and consumption of oil, coal, natural gas and electricity from nuclear power show that much progress has been made worldwide. However, about half of the world's oil will come from the Persian Gulf by 1995. Continued low oil prices could raise US imports to 60% of consumption by 1995. Persian Gulf tensions serve as reminders of the link between energy policy and national security policy. Energy policy must be based on market forces and concerns for national security. Strategic oil reserves will expand along with the availability of domestic oil and gas resources. Increased attention to conservation, diversification of energy resources, and use of alternative fuels can help reduce imports. Continued high-risk long term research and development is needed. Improved technology can reduce environmental impacts. Global markets need global cooperation. Energy has emerged as an important aspect of East-West relations. Europeans need to diversify their sources of energy. The soviets have proposed expanded collaboration in magnetic fusion science. A series of initiatives are proposed that together will ensure that economies will not become overly dependent on a single source of energy

  16. High-energy-density hydrogen-halogen fuel cells for advanced military applications

    International Nuclear Information System (INIS)

    Balko, E.N.; McElroy, J.F.

    1981-01-01

    It is pointed out that hydrogen-halogen fuel cell systems are particularly suited for an employment as ground power sources for military applications. The large cell potential and reversible characteristics of the H 2 Cl 2 and H 2 Br 2 couples permit high energy storage density and efficient energy conversion. When used as flow batteries, the fluid nature of the reactants in the hydrogen-halogen systems has several advantages over power sources which involve solid phases. Very deep discharge is possible without degradation of subsequent performance, and energy storage capacity is limited only by the external reactant storage volume. Very rapid chemical recharging is possible through replenishment of the reactant supply. A number of H 2 Cl 2 and H 2 Br 2 fuel cell systems have been studied. These systems use the same solid polymer electrolyte (SPE) cell technology originally developed for H2/O2 fuel cells. The results of the investigation are illustrated with the aid of a number of graphs

  17. Effect of low-energy hydrogen ion implantation on dendritic web silicon solar cells

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Rai-Choudhury, P.; Fonash, S. J.; Singh, R.

    1986-01-01

    The effect of a low-energy (0.4 keV), short-time (2-min), heavy-dose (10 to the 18th/sq cm) hydrogen ion implant on dendritic web silicon solar cells and material was investigated. Such an implant was observed to improve the cell open-circuit voltage and short-circuit current appreciably for a number of cells. In spite of the low implant energy, measurements of internal quantum efficiency indicate that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. This is supported by the observation that the measured minority-carrier diffusion length in the base did not change when the emitter was removed. In some cases, a threefold increase of the base diffusion length was observed after implantation. The effects of the hydrogen implantation were not changed by a thermal stress test at 250 C for 111 h in nitrogen. It is speculated that hydrogen enters the bulk by traveling along dislocations, as proposed recently for edge-defined film-fed growth silicon ribbon.

  18. Socio-cultural barriers to the development of a sustainable energy system - the case of hydrogen

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Andersen, Anne Holst

    Any transition to a more sustainable energy system, radically reducing greenhouse gas emissions, is bound to run in to a host of different barriers - technological and economic, but also socio-cultural. This will also be the case for any large-scale application of hydrogen as energy carrier......, especially if the system is going to be based on renewable energy sources. The aim of these research notes is to review and discuss major socio-cultural barriers to new forms of energy supply in general and to hydrogen specifically. Reaching sufficient reductions in greenhouse gas emissions may require more...

  19. Ten questions on hydrogen Jean Dhers

    International Nuclear Information System (INIS)

    2005-01-01

    The author proposes explanations and comments on the use of hydrogen in energy production. He discusses whether hydrogen can be a new energy technology within the context of a sustainable development, whether hydrogen is actually an energy vector, what would be the benefits of using hydrogen in energy applications, why it took so much time to be interested in hydrogen, when the hydrogen vector will be needed, whether we can economically produce hydrogen to meet energy needs (particularly in transports), whether hydrogen is the best suited energy vector for ground transports in the future, how to retail hydrogen for ground transports, what are the difficulties to store hydrogen for ground transport applications, and how research programs on hydrogen are linked together

  20. Options for CO2-lean hydrogen export from Norway to Germany

    International Nuclear Information System (INIS)

    Stiller, Christoph; Buenger, Ulrich; Svensson, Ann Mari; Moeller-Holst, Steffen; Espegren, Kari Aamodt; Holm, Oeystein Bindesboell; Tomasgaard, Asgeir

    2008-01-01

    Norway is a nation with an abundant supply of energy, both from fossil and renewable resources. Due to limited domestic demand, Norway is today exporting large amounts of petroleum products. For the future, various options for export of CO 2 -lean energy exist, both from Northern and Southern Norway, and both from fossil sources (including carbon capture and storage), and renewable energies (particularly wind power). Transport vectors are hydrogen pipelines, liquid hydrogen ships and HVDC cables, and a plausible customer is central Europe due to its proximity, high population density and lack of domestic energy resources. Within the framework of the ''NorWays'' project, various options to deliver energy for hydrogen-based transportation from Norway to Germany were studied. Eight CO 2 -lean well-to-wheel energy export chains were evaluated with respect to efficiency, GHG emissions and other environmental impacts, costs and utilisation of Norwegian R and D experience. In the chosen scenarios, energy export via hydrogen pipelines and ships appeared energetically and economically interesting against existing approaches as NG and electricity export. Furthermore, increased utilisation of Norwegian R and D experience and higher value creation is anticipated by the export of a higher refined product. (author)