WorldWideScience

Sample records for nastran thermal analyzer

  1. NASTRAN thermal analyzer: Theory and application including a guide to modeling engineering problems, volume 2. [sample problem library guide

    Science.gov (United States)

    Jackson, C. E., Jr.

    1977-01-01

    A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.

  2. Nastran's Application in Agricultural Engineering

    Science.gov (United States)

    Vanwicklen, G. L.

    1985-01-01

    Finite element analysis has been recognized as a valuable solution method by agricultural engineers. NASTRAN has been obtained by the Agricultural Engineering Department at the University of Georgia. The NASTRAN Thermal Analyzer has been used in the teaching program for an undergraduate course in heat transfer and will be used for a new graduate course in finite element analysis. The NASTRAN Thermal Analyzer has also been applied to several research problems in the Agricultural Engineering Department.

  3. Using NASTRAN To Analyze Vibrations Of Rotor Blades

    Science.gov (United States)

    Lawrence, Charles; Aiello, Robert A.; Ernst, Michael A.; Mcgee, Oliver G.

    1989-01-01

    Report gives information on use of NASTRAN computer program in finite-element analysis of rotating flexible blades like in compressors and on turboprop engines. Predicts steady-state components of deflections and stresses under centrifugal forces, generates data for plots of natural frequency versus rotational speed, and provides vibration-mode data for calculations of flutter. Describes use of NASTRAN solution sequence 64 for geometrical nonlinear analysis and solution sequence 63 for determination of frequencies and vibrational-mode shapes. Includes sample problem with NASTRAN input data. Emphasizes key factors in analysis of rotating blades, such as setting angle and centrifugal softening effects. Combined analyses of solution sequences 64 and 63 reduces computer time and number of output listings, in comparison with separate analyses. In central-processing-unit time cut in half.

  4. NASTRAN: User's Experiences. [conference

    Science.gov (United States)

    1975-01-01

    Papers given at the colloquium are presented. Topics discussed include NASTRAN status and plans, computer operations, thermal analysis, NASTRAN applications, vibrations, dynamics, and finite element analysis.

  5. A new method for analyzing fluid-structure interaction using MSC/NASTRAN

    International Nuclear Information System (INIS)

    MacNeal, R.H.; Citerley, R.; Chargin, M.

    1979-01-01

    A popular method for analyzing compressible fluids in flexible containers is to represent the fluid by a three-dimensional finite element model in which the pressure is the unknown nodal point variable, and to represent the structure by another finite element model in which displacement components are the unknown nodal point variables. This method has the computational drawback that the matrix terms coupling the fluid to the structure are unsymmetric. This paper shows that symmetric fluid-structure coupling can be achieved if either the fluid or the structure is represented by its uncoupled vibrational modes, and if additional auxiliary variables are defined. The resulting system equations can be solved efficiently for the coupled vibration modes and for the coupled dynamic response by a general purpose finite element program, such as MSC/NASTRAN. (orig.)

  6. Transient Analysis of Thermal Protection System for X-33 Aircraft using MSC/NASTRAN

    Science.gov (United States)

    Miura, Hirokazu; Chargin, M. K.; Bowles, J.; Tam, T.; Chu, D.; Chainyk, M.; Green, Michael J. (Technical Monitor)

    1997-01-01

    X-33 is an advanced technology demonstrator vehicle for the Reusable Launch Vehicle (RLV) program. The thermal protection system (TPS) for the X-33 is composed of complex layers of materials to protect internal components, while withstanding severe external temperatures induced by aerodynamic heating during high speed flight. It also serves as the vehicle aeroshell in some regions using a stand-off design. MSC/NASTRAN thermal analysis capability was used to predict transient temperature distribution (within the TPS) throughout a mission, from launch through the cool-off period after landing. In this paper, a typical analysis model, representing a point on the vehicle where the liquid oxygen tank is closest to the outer mold line, is described. The maximum temperature difference between the outer mold line and the internal surface of the liquid oxygen tank can exceed 1500 F. One dimensional thermal models are used to select the materials and determine the thickness of each layer for minimum weight while insuring that all materials remain within the allowable temperature range. The purpose of working with three dimensional (3D) comprehensive models using MSC/NASTRAN is to assess the 3D radiation effects and the thermal conduction heat shorts of the support fixtures.

  7. FEM/SINDA: Combining the strengths of NASTRAN, SINDA, I-DEAS, and PATRAN for thermal and structural analysis

    Science.gov (United States)

    Zarda, P. Richard; Anderson, Ted; Baum, Fred

    1993-01-01

    This paper describes the interface/integration between FEM/SINDA, a general purpose geometry driven thermal analysis code, and the FEM software: I-DEAS, PATRAN, and NASTRAN. FEM/SINDA brings together the advantages of the finite element method to model arbitrary geometry and anisotropic materials and SINDA's finite difference capability to model thermal properties, loads, and boundary conditions that vary with time or temperature. I-DEAS and PATRAN thermal entities are directly supported since FEM/SINDA uses the nodes of the FEM model as the point at which the temperature is determined. Output from FEM/SINDA (as well as the FEM/SINDA input deck) can be used directly by NASTRAN for structural analysis.

  8. NESSUS/NASTRAN Interface

    Science.gov (United States)

    Millwater, Harry; Riha, David

    1996-01-01

    The NESSUS and NASTRAN computer codes were successfully integrated. The enhanced NESSUS code will use NASTRAN for the structural Analysis and NESSUS for the probabilistic analysis. Any quantities in the NASTRAN bulk data input can be random variables. Any NASTRAN result that is written to the output2 file can be returned to NESSUS as the finite element result. The interfacing between NESSUS and NASTRAN is handled automatically by NESSUS. NESSUS and NASTRAN can be run on different machines using the remote host option.

  9. Thermal and Evolved-Gas Analyzer Illustration

    Science.gov (United States)

    2008-01-01

    This is a computer-aided drawing of the Thermal and Evolved-Gas Analyzer, or TEGA, on NASA's Phoenix Mars Lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. SNIP - SINDA-NASTRAN INTERFACING PROGRAM

    Science.gov (United States)

    Winegar, S. R.

    1994-01-01

    The SNIP program is a FORTRAN computer code that generates NASTRAN structural model thermal loads when given SINDA (or similar thermal model) temperature results. SNIP correlates thermal nodes to structural elements to interface SINDA finite difference thermal models with NASTRAN finite element structural models. Node-to-element correlation includes determining which SINDA nodes should be related to each NASTRAN element and calculating a weighing factor for temperatures associated with each element-related thermal node. SNIP provides structural model thermal loads that accurately reflect thermal model results while reducing the time required to interface thermal and structural models as compared to other methods. SNIP uses thermal model geometry to search the three-dimensional space around each structural element for the nearest thermal nodes. Thermal model geometry is the combination of standard thermal model temperature results from SINDA and structural model geometry from NASTRAN. Thermal and structural models must both be defined in the same, single Cartesian coordinate system. The thermal nodes located nearest each element are used to determine element temperature for thermal distortion and stress analysis. The program shapes the three-dimensional search region while the user controls the size. With these region specifications, the numerical coding of thermal nodes, and the structural element numbers; the code can provide for the separation of substructures during correlation. The input to SNIP contains a file of thermal model temperature results and a physical location of each thermal node in three-dimensional space, combined in a SNIP-unique format. The input also contains a standard NASTRAN input deck for a model made up of plate, shell, beam, and bar elements. SNIP supports the CTRIA, CQUAD, CBAR, and CBEAM elements of NASTRAN. The user adjusts the input parameters in the source code which control the node-to-element correlation. The program outputs

  11. NASTRAN analysis for the Airmass Sunburst model 'C' Ultralight Aircraft

    Science.gov (United States)

    Verbestel, John; Smith, Howard W.

    1993-01-01

    The purpose of this project was to create a three dimensional NASTRAN model of the Airmass Sunburst Ultralight comparable to one made for finite element analysis. A two dimensional sample problem will be calculated by hand and by NASTRAN to make sure that NASTRAN finds similar results. A three dimensional model, similar to the one analyzed by the finite element program, will be run on NASTRAN. A comparison will be done between the NASTRAN results and the finite element program results. This study will deal mainly with the aerodynamic loads on the wing and surrounding support structure at an attack angle of 10 degrees.

  12. NASTRAN: April 1982 Release

    Science.gov (United States)

    Brugh, R. L.

    1982-01-01

    Latest public release of NASTRAN, April 1982 most efficient and versatile to date. Intended range of applications of NASTRAN includes almost every kind of structure and construction. Users may develop their own analysis capabilities by using Direct Matrix Abstraction Programming (DMAP) language to direct NASTRAN in solution of general matrix problems.

  13. NASTRAN migration to UNIX

    Science.gov (United States)

    Chan, Gordon C.; Turner, Horace Q.

    1990-01-01

    COSMIC/NASTRAN, as it is supported and maintained by COSMIC, runs on four main-frame computers - CDC, VAX, IBM and UNIVAC. COSMIC/NASTRAN on other computers, such as CRAY, AMDAHL, PRIME, CONVEX, etc., is available commercially from a number of third party organizations. All these computers, with their own one-of-a-kind operating systems, make NASTRAN machine dependent. The job control language (JCL), the file management, and the program execution procedure of these computers are vastly different, although 95 percent of NASTRAN source code was written in standard ANSI FORTRAN 77. The advantage of the UNIX operating system is that it has no machine boundary. UNIX is becoming widely used in many workstations, mini's, super-PC's, and even some main-frame computers. NASTRAN for the UNIX operating system is definitely the way to go in the future, and makes NASTRAN available to a host of computers, big and small. Since 1985, many NASTRAN improvements and enhancements were made to conform to the ANSI FORTRAN 77 standards. A major UNIX migration effort was incorporated into COSMIC NASTRAN 1990 release. As a pioneer work for the UNIX environment, a version of COSMIC 89 NASTRAN was officially released in October 1989 for DEC ULTRIX VAXstation 3100 (with VMS extensions). A COSMIC 90 NASTRAN version for DEC ULTRIX DECstation 3100 (with RISC) is planned for April 1990 release. Both workstations are UNIX based computers. The COSMIC 90 NASTRAN will be made available on a TK50 tape for the DEC ULTRIX workstations. Previously in 1988, an 88 NASTRAN version was tested successfully on a SiliconGraphics workstation.

  14. Program Trains NASTRAN Users

    Science.gov (United States)

    Grooms, H. R.; Hinz, P. J.; Collier, M. A.; Cox, Kim D.; Merriman, Warren J.; Commerford, Gerry

    1994-01-01

    Rockwell Environment and NASTRAN Trainer (RENT) computer program developed to assist new and current users of NASTRAN finite-element computer code. Provides organized, systematic collection of IBM(R) features consisting of panels, clists, skeletons, and messages, along with FORTRAN and Pascal programs and example NASTRAN data files. Enables each user to learn at his or her own pace. Written in VS/FORTRAN, VS/ Pascal, and IBM(R) job-control language for an IBM(R) computer system.

  15. NASTRAN users' experience of Avco Aerostructures Division

    Science.gov (United States)

    Blackburn, C. L.; Wilhelm, C. A.

    1973-01-01

    The NASTRAN experiences of a major structural design and fabrication subcontractor that has less engineering personnel and computer facilities than those available to large prime contractors are discussed. Efforts to obtain sufficient computer capacity and the development and implementation of auxiliary programs to reduce manpower requirements are described. Applications of the NASTRAN program for training users, checking out auxiliary programs, performing in-house research and development, and structurally analyzing an Avco designed and manufactured missile case are presented.

  16. Online NASTRAN documentation

    Science.gov (United States)

    Turner, Horace Q.; Harper, David F.

    1991-01-01

    The distribution of NASTRAN User Manual information has been difficult because of the delay in printing and difficulty in identification of all the users. This has caused many users not to have the current information for the release of NASTRAN that could be available to them. The User Manual updates have been supplied with the NASTRAN Releases, but distribution within organizations was not coordinated with access to releases. The Executive Control, Case Control, and Bulk Data sections are supplied in machine readable format with the 91 Release of NASTRAN. This information is supplied on the release tapes in ASCII format, and a FORTRAN program to access this information is supplied on the release tapes. This will allow each user to have immediate access to User Manual level documentation with the release. The sections on utilities, plotting, and substructures are expected to be prepared for the 92 Release.

  17. On restarts in NASTRAN

    Science.gov (United States)

    Pamidi, P. R.; Lin, M. M.

    1982-01-01

    The checkpoint/restart capability available in NASTRAN is very sophisticated. Improvements and enhancements to this capability made with a view to increasing its efficiency and usefulness are considered. Some important features resulting from these changes are discussed. In particular, the different types of restarts available in NASTRAN are described and how they are handled both in the rigid format and DMAP environments explained. The output to restart runs are also illustrated.

  18. NASTRAN: User's Experiences

    Science.gov (United States)

    1976-01-01

    The application of NASTRAN to a wide variety of static and dynamic structural problems is discussed. The following topics are focused upon: (1) methods of analysis; (2) hydroelastic methods; (3) complete analysis of structures; (4) elements and material studies; (5) critical comparisons with other programs; and (6) pre- and post-processor operations.

  19. Tenth NASTRAN User's Colloquium

    Science.gov (United States)

    1982-01-01

    The development of the NASTRAN computer program, a general purpose finite element computer code for structural analysis, was discussed. The application and development of NASTRAN is presented in the following topics: improvements and enhancements; developments of pre and postprocessors; interactive review system; the use of harmonic expansions in magnetic field problems; improving a dynamic model with test data using Linwood; solution of axisymmetric fluid structure interaction problems; large displacements and stability analysis of nonlinear propeller structures; prediction of bead area contact load at the tire wheel interface; elastic plastic analysis of an overloaded breech ring; finite element solution of torsion and other 2-D Poisson equations; new capability for elastic aircraft airloads; usage of substructuring analysis in the get away special program; solving symmetric structures with nonsymmetric loads; evaluation and reduction of errors induced by Guyan transformation.

  20. Proceedings of the NASTRAN (Tradename) Users’ Colloquium (14th) Held in San Diego, California on 5-9 May 1986

    Science.gov (United States)

    1986-05-01

    background theory for the DMAP programs and DMAP alters used to instruct NASTRAN to pass statics, dynamics, and thermal data to the outside world...cards for the DMAP program NASDS. The IAC command RUN CNASTRAN(F=TAPROD,RFA=NASDS) is used to run the COSMIC/ NASTRAN job. The output of the NASTRAN job...CLASS = ARRAY CONTENTS: g-set double precision output forces of single point constraint data NASTRAN /SAMSAN/DISCOS DMAP PROGRAM NASDS AND INTERFACING

  1. Nineteenth NASTRAN (R) Users' Colloquium

    Science.gov (United States)

    1991-01-01

    The proceedings of the the Nineteenth NASTRAN Users' Colloquium held April 22 to 26, 1991 are presented. Topics covered include the application of finite elements in engineering, comparisons with other approaches, unique applications, pre- and postprocessing or auxiliary programs, and new methods of analysis with NASTRAN.

  2. Sixteenth NASTRAN (R) Users' Colloquium

    Science.gov (United States)

    1988-01-01

    These are the proceedings of the Sixteenth NASTRAN Users' Colloquium held in Arlington, Virginia from 25 to 29 April, 1988. Technical papers contributed by participants review general application of finite element methodology and the specific application of the NASA Structural Analysis System (NASTRAN) to a variety of static and dynamic structural problems.

  3. Eighteenth NASTRAN (R) Users' Colloquium

    Science.gov (United States)

    1990-01-01

    This publication is the proceedings of the Eighteenth NASTRAN Users' Colloquium held in Portland, Oregon, April 23-27, 1990. It provides some comprehensive general papers on the application of finite elements in engineering, comparisons with other approaches, unique applications, pre- and post-processing or auxiliary programs, and new methods of analysis with NASTRAN.

  4. ACTON - AUTOCAD TO NASTRAN TRANSLATOR

    Science.gov (United States)

    Jones, A.

    1994-01-01

    The AutoCAD to NASTRAN translator, ACTON, was developed to facilitate quick generation of small finite element models for use with the NASTRAN finite element modeling program. (NASTRAN is available from COSMIC.) ACTON reads the geometric data of a drawing from the Data Exchange File (DXF) used in AutoCAD and other PC based drafting programs. The geometric entities recognized by ACTON include POINTs, LINEs, SOLIDs, 3DLINEs and 3DFACEs. From this information ACTON creates a NASTRAN bulk data deck which can be used to create a finite element model. The NASTRAN elements created include CBARs, CTRIAs, CQUAD4s, CPENTAs, and CHEXAs. The bulk data deck can be used to create a full NASTRAN deck. It is assumed that the user has at least a working knowledge of AutoCAD and NASTRAN. ACTON was written in Microsoft QuickBasic (Version 2.0). The program was developed for the IBM PC and has been implemented on an IBM PC compatible under DOS 3.21. ACTON was developed in 1988.

  5. Algorithm for Analyzing Thermal Images of Laser Irradiated Human Skin.

    Science.gov (United States)

    Toumi, Johnny; Saiof, Fawaz; Bachir, Wesam

    2016-01-01

    Introduction: Tracking temporal changes of temperature during laser skin treatment plays an important role in improving the process of laser skin treatment itself. There are a number of methods to analyze temperature's temporal dependency during laser skin treatment; some of those methods depend on imaging the skin with thermal cameras. However, the use of thermal cameras exhibits specific problems, including the ability to track laser-skin interaction spot. This paper is dedicated to solve that problem using digital image processing program coded with Matlab. Methods: The measurements were taken for 15 native Syrian subjects of different sex, age and skin tones, the treated ailment was port wine stain. The clinical work (laser exposure) was performed in Damascus University, hospital of dermatology. The treatment was observed by thermal camera and analyzed using the proposed Matlab coded tracking system. Results: For all the subjects, the treatment laser spot was tracked and the curves of skin temperature change with time where calculated by the use of the proposed algorithm, then the active time was calculated for each subject. The algorithm proved practical and robust. Conclusion: The proposed algorithm proved to be efficient and can be used to support future researchers with capability to measure the temperature with high frame rate.

  6. A NASTRAN trainer for dynamics

    Science.gov (United States)

    Grooms, H. R.; Hinz, P. J.; Commerford, G. L.

    1990-01-01

    Presented here is an automated training tool that engineers can use to master the application of NASTRAN to dynamic problems. Example problems were selected to make classical solutions available for comparison. These comparisons can be used to evaluate the solution.

  7. NASA Structural Analysis System (NASTRAN)

    Science.gov (United States)

    Purves, L.

    1991-01-01

    Program aids in structural design of wide range of objects, from high-impact printer parts to turbine engine blades, and fully validated. Since source code included, NASTRAN modified or enhanced for new applications.

  8. Structural Analysis Using NX Nastran 9.0

    Science.gov (United States)

    Rolewicz, Benjamin M.

    2014-01-01

    NX Nastran is a powerful Finite Element Analysis (FEA) software package used to solve linear and non-linear models for structural and thermal systems. The software, which consists of both a solver and user interface, breaks down analysis into four files, each of which are important to the end results of the analysis. The software offers capabilities for a variety of types of analysis, and also contains a respectable modeling program. Over the course of ten weeks, I was trained to effectively implement NX Nastran into structural analysis and refinement for parts of two missions at NASA's Kennedy Space Center, the Restore mission and the Orion mission.

  9. Improved NASTRAN plotting

    Science.gov (United States)

    Chan, Gordon C.

    1991-01-01

    The new 1991 COSMIC/NASTRAN version, compatible with the older versions, tries to remove some old constraints and make it easier to extract information from the plot file. It also includes some useful improvements and new enhancements. New features available in the 1991 version are described. They include a new PLT1 tape with simplified ASCII plot commands and short records, combined hidden and shrunk plot, an x-y-z coordinate system on all structural plots, element offset plot, improved character size control, improved FIND and NOFIND logic, a new NASPLOT post-prosessor to perform screen plotting or generate PostScript files, and a BASIC/NASTPLOT program for PC.

  10. NPLOT - NASTRAN PLOT

    Science.gov (United States)

    Mcentire, K.

    1994-01-01

    NPLOT is an interactive computer graphics program for plotting undeformed and deformed NASTRAN finite element models (FEMs). Although there are many commercial codes already available for plotting FEMs, these have limited use due to their cost, speed, and lack of features to view BAR elements. NPLOT was specifically developed to overcome these limitations. On a vector type graphics device the two best ways to show depth are by hidden line plotting or haloed line plotting. A hidden line algorithm generates views of models with all hidden lines removed, and a haloed line algorithm displays views with aft lines broken in order to show depth while keeping the entire model visible. A haloed line algorithm is especially useful for plotting models composed of many line elements and few surface elements. The most important feature of NPLOT is its ability to create both hidden line and haloed line views accurately and much more quickly than with any other existing hidden or haloed line algorithms. NPLOT is also capable of plotting a normal wire frame view to display all lines of a model. NPLOT is able to aid in viewing all elements, but it has special features not generally available for plotting BAR elements. These features include plotting of TRUE LENGTH and NORMALIZED offset vectors and orientation vectors. Standard display operations such as rotation and perspective are possible, but different view planes such as X-Y, Y-Z, and X-Z may also be selected. Another display option is the Z-axis cut which allows a portion of the fore part of the model to be cut away to reveal details of the inside of the model. A zoom function is available to terminals with a locator (graphics cursor, joystick, etc.). The user interface of NPLOT is designed to make the program quick and easy to use. A combination of menus and commands with help menus for detailed information about each command allows experienced users greater speed and efficiency. Once a plot is on the screen the interface

  11. Advanced Stirling Radioisotope Generator Thermal Power Model in Thermal Desktop SINDA/FLUINT Analyzer

    Science.gov (United States)

    Wang, Xiao-Yen; Fabanich, William A.; Schmitz, Paul C.

    2012-01-01

    This paper presents a three-dimensional Advanced Stirling Radioisotope Generator (ASRG) thermal power model that was built using the Thermal Desktop SINDA/FLUINT thermal analyzer. The model was correlated with ASRG engineering unit (EU) test data and ASRG flight unit predictions from Lockheed Martin's Ideas TMG thermal model. ASRG performance under (1) ASC hot-end temperatures, (2) ambient temperatures, and (3) years of mission for the general purpose heat source fuel decay was predicted using this model for the flight unit. The results were compared with those reported by Lockheed Martin and showed good agreement. In addition, the model was used to study the performance of the ASRG flight unit for operations on the ground and on the surface of Titan, and the concept of using gold film to reduce thermal loss through insulation was investigated.

  12. TRASYS - THERMAL RADIATION ANALYZER SYSTEM (DEC VAX VERSION WITHOUT NASADIG)

    Science.gov (United States)

    Vogt, R. A.

    1994-01-01

    The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data

  13. TRASYS - THERMAL RADIATION ANALYZER SYSTEM (CRAY VERSION WITH NASADIG)

    Science.gov (United States)

    Anderson, G. E.

    1994-01-01

    The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data

  14. TRASYS - THERMAL RADIATION ANALYZER SYSTEM (DEC VAX VERSION WITH NASADIG)

    Science.gov (United States)

    Anderson, G. E.

    1994-01-01

    The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data

  15. Twentieth NASTRAN (R) Users' Colloquium

    Science.gov (United States)

    1992-01-01

    The proceedings of the conference are presented. Some comprehensive general papers are presented on applications of finite elements in engineering, comparisons with other approaches, unique applications, pre and post processing with other auxiliary programs, and new methods of analysis with NASTRAN.

  16. An improved DMAP capability. [NASTRAN

    Science.gov (United States)

    Herendeen, D. L.

    1975-01-01

    A set of improvements designed and implemented into a test version of the NASTRAN DMAP (Direct Matrix Abstraction Program) compiler is presented. These modifications simplify the use of the DMAP control language while enhancing its power and versatility. The implemented changes are described and examples are presented to illustrate their use.

  17. NASTRAN: User experience with four example problems

    Science.gov (United States)

    Rivello, R. M.

    1972-01-01

    Four different structural problems are solved to gain familiarity with the NASTRAN computer program. The problems are: (1) a simply-supported beam subjected to lateral loads, (2) a rotating filamentary composite bar under the action of centrifugal forces, (3) a missile body with aerodynamic, gravitational, and inertial forces, and (4) a square simply-supported plate with in-plane temperature changes capable of buckling the plate. Input and output data are given for each problem. The results are compared with those obtained by other methods. However, except for the examples employing beam elements in which the agreement is excellent, the element breakup chosen for convenience in obtaining program familiarity is too coarse to draw conclusions regarding the program accuracy. The example problems disclosed errors in the plotting and thermal-buckling routines of the program.

  18. NASTRAN internal improvements for 1992 release

    Science.gov (United States)

    Chan, Gordon C.

    1992-01-01

    The 1992 NASTRAN release incorporates a number of improvements transparent to users. The NASTRAN executable was made smaller by 70 pct. for the RISC base Unix machines by linking NASTRAN into a single program, freeing some 33 megabytes of system disc space that can be used by NASTRAN for solving larger problems. Some basic matrix operations, such as forward-backward substitution (FBS), multiply-add (MPYAD), matrix transpose, and fast eigensolution extraction routine (FEER), have been made more efficient by including new methods, new logic, new I/O techniques, and, in some cases, new subroutines. Some of the improvements provide ground work ready for system vectorization. These are finite element basic operations, and are used repeatedly in a finite element program such as NASTRAN. Any improvements on these basic operations can be translated into substantial cost and cpu time savings. NASTRAN is also discussed in various computer platforms.

  19. VAX to CRAY NASTRAN User Interface

    Science.gov (United States)

    1988-10-01

    GRAPHICS 11 STEP 7: (SG) TRANSLATE RESULTS 12 STEP 8: (SG) RUN PATRAN 12 3. EXAMPLES AND EXTRA FEATURES 14 NASTRAN DMAP INSTRUCTIONS 14 USING THE CRAY...of the existing NASTRAN DMAP alter library, and Section 4 is an example computer session implementing VAX/CRAY/VAX processing as described in Section...Y. it ’,iii hc translated to lower case. Section 3 has some special notes on NASTRAN DMAP sequences. STEP 1: (SG) TRANSFER MODEL TO VAX: Using a file

  20. Analyzing Control Challenges for Thermal Energy Storage in Foodstuffs

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Skovrup, Morten Juel

    2012-01-01

    of refrigerated goods in a supermarket to shift the load of the system in time without deteriorating the quality of the foodstuffs. The analyses in this paper go before closing any control loops. In the first part, we introduce and validate a new model with which we can estimate the actual temperatures...... of refrigerated goods from available air temperature measurements. This is based on data obtained from a dedicated experiment. Since limits are specified for food temperatures, the estimate is essential for full exploitation of the thermal potential. Secondly, the thermal properties, shapes and sizes of different...... and for estimating maximum energy storage time. The results are shown for a large range of parameters, and with specific calculations for selected foodstuff items....

  1. Improved performance in NASTRAN (R)

    Science.gov (United States)

    Chan, Gordon C.

    1989-01-01

    Three areas of improvement in COSMIC/NASTRAN, 1989 release, were incorporated recently that make the analysis program run faster on large problems. Actual log files and actual timings on a few test samples that were run on IBM, CDC, VAX, and CRAY computers were compiled. The speed improvement is proportional to the problem size and number of continuation cards. Vectorizing certain operations in BANDIT, makes BANDIT run twice as fast in some large problems using structural elements with many node points. BANDIT is a built-in NASTRAN processor that optimizes the structural matrix bandwidth. The VAX matrix packing routine BLDPK was modified so that it is now packing a column of a matrix 3 to 9 times faster. The denser and bigger the matrix, the greater is the speed improvement. This improvement makes a host of routines and modules that involve matrix operation run significantly faster, and saves disc space for dense matrices. A UNIX version, converted from 1988 COSMIC/NASTRAN, was tested successfully on a Silicon Graphics computer using the UNIX V Operating System, with Berkeley 4.3 Extensions. The Utility Modules INPUTT5 and OUTPUT5 were expanded to handle table data, as well as matrices. Both INPUTT5 and OUTPUT5 are general input/output modules that read and write FORTRAN files with or without format. More user informative messages are echoed from PARAMR, PARAMD, and SCALAR modules to ensure proper data values and data types being handled. Two new Utility Modules, GINOFILE and DATABASE, were written for the 1989 release. Seven rigid elements are added to COSMIC/NASTRAN. They are: CRROD, CRBAR, CRTRPLT, CRBE1, CRBE2, CRBE3, and CRSPLINE.

  2. PHX MARS THERMAL EVOLVED GAS ANALYZER 4 SCRDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Calibrated or converted engineering, housekeeping and scientific data collected from the Thermal Evolved Gas Analyzer (TEGA) aboard the 2007 Mars Phoenix Lander.

  3. PHX MARS THERMAL EVOLVED GAS ANALYZER 3 ENGRDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Calibrated or converted engineering, housekeeping and scientific data collected from the Thermal Evolved Gas Analyzer (TEGA) aboard the 2007 Mars Phoenix Lander.

  4. PHX MARS THERMAL EVOLVED GAS ANALYZER 2 SCEDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Raw, uncalibrated engineering, housekeeping and scientific data collected from the Thermal Evolved Gas Analyzer (TEGA) aboard the 2007 Mars Phoenix Lander.

  5. PHX MARS THERMAL EVOLVED GAS ANALYZER 4 EGHRDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Calibrated or converted engineering, housekeeping and scientific data collected from the Thermal Evolved Gas Analyzer (TEGA) aboard the 2007 Mars Phoenix Lander.

  6. PHX MARS THERMAL EVOLVED GAS ANALYZER 2 ENGEDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Raw, uncalibrated engineering, housekeeping and scientific data collected from the Thermal Evolved Gas Analyzer (TEGA) aboard the 2007 Mars Phoenix Lander.

  7. PHX MARS THERMAL EVOLVED GAS ANALYZER 4 EGSRDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Calibrated or converted engineering, housekeeping and scientific data collected from the Thermal Evolved Gas Analyzer (TEGA) aboard the 2007 Mars Phoenix Lander.

  8. PHX MARS THERMAL EVOLVED GAS ANALYZER 2 EGAEDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Raw, uncalibrated engineering, housekeeping and scientific data collected from the Thermal Evolved Gas Analyzer (TEGA) aboard the 2007 Mars Phoenix Lander.

  9. PHX MARS THERMAL EVOLVED GAS ANALYZER 2 MSGEDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Raw, uncalibrated engineering, housekeeping and scientific data collected from the Thermal Evolved Gas Analyzer (TEGA) aboard the 2007 Mars Phoenix Lander.

  10. PHX MARS THERMAL EVOLVED GAS ANALYZER 2 LEDEDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Raw, uncalibrated engineering, housekeeping and scientific data collected from the Thermal Evolved Gas Analyzer (TEGA) aboard the 2007 Mars Phoenix Lander.

  11. PHX MARS THERMAL EVOLVED GAS ANALYZER 2 EGHEDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Raw, uncalibrated engineering, housekeeping and scientific data collected from the Thermal Evolved Gas Analyzer (TEGA) aboard the 2007 Mars Phoenix Lander.

  12. Evolution of a NASTRAN trainer

    Science.gov (United States)

    Grooms, H. R.; Hinz, P. J.; Collier, M. A.

    1992-01-01

    The development is traced of a NASTRAN training system. The design and organization of the program is examined, including the static and dynamic modules. A discussion of how user feedback, in the form of questionnaire responses, was used to evaluate and improve the trainer is included. The trainer was used by a number of engineers, who found it to be a versatile low cost tool. It is particularly helpful in bridging the gap from theory to practical application of the finite element method for structural analysis. The program, along with documentation, is available through COSMIC.

  13. Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer

    Science.gov (United States)

    Fink, Samuel D [Aiken, SC; Fondeur, Fernando F [North Augusta, SC

    2011-10-18

    An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.

  14. A New NASTRAN Capability for Data Reduction

    Science.gov (United States)

    Gallo, M.; Mittal, S.

    1985-01-01

    A new module, MODB, for the data reduction of NASTRAN results is described. NASTRAN analysis results can be filtered and sorted for minimum/maximum values and the printed output resulting from large NASTRAN runs can be limited based on a number of available user options. The sorting is done on stresses, forces and vector quantities like displacements, velocity, and acceleration. The module can be accessed via DMAP alters to existing rigid formats, and has been used on a large number of statics and dynamics problems resulting in considerable savings in cost, time, and the amount of printing.

  15. AutoCAD-To-NASTRAN Translator Program

    Science.gov (United States)

    Jones, A.

    1989-01-01

    Program facilitates creation of finite-element mathematical models from geometric entities. AutoCAD to NASTRAN translator (ACTON) computer program developed to facilitate quick generation of small finite-element mathematical models for use with NASTRAN finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Written in Microsoft Quick-Basic (Version 2.0).

  16. NASTRAN GPWG tables for combined substructures

    Science.gov (United States)

    Allen, Tom

    1991-01-01

    A method for computing the mass and center of gravity for basic and combined substructures stored in the NASTRAN Substructure Operating File (SOF) is described. The three step method recovers SOF data blocks for the relevant substructure, processes these data blocks using a specially developed FORTRAN routine, and generates the NASTRAN gridpoint weight generator (GPWG) table for the substructure in a PHASE2 SOF execution using a Direct Matrix Abstraction Program (DMAP) sequence. Verification data for the process is also provided.

  17. Visual and intelligent transients and accidents analyzer based on thermal-hydraulic system code

    International Nuclear Information System (INIS)

    Meng Lin; Rui Hu; Yun Su; Ronghua Zhang; Yanhua Yang

    2005-01-01

    Full text of publication follows: Many thermal-hydraulic system codes were developed in the past twenty years, such as RELAP5, RETRAN, ATHLET, etc. Because of their general and advanced features in thermal-hydraulic computation, they are widely used in the world to analyze transients and accidents. But there are following disadvantages for most of these original thermal-hydraulic system codes. Firstly, because models are built through input decks, so the input files are complex and non-figurative, and the style of input decks is various for different users and models. Secondly, results are shown in off-line data file form. It is not convenient for analysts who may pay more attention to dynamic parameters trend and changing. Thirdly, there are few interfaces with other program in these original thermal-hydraulic system codes. This restricts the codes expanding. The subject of this paper is to develop a powerful analyzer based on these thermal-hydraulic system codes to analyze transients and accidents more simply, accurately and fleetly. Firstly, modeling is visual and intelligent. Users build the thermalhydraulic system model using component objects according to their needs, and it is not necessary for them to face bald input decks. The style of input decks created automatically by the analyzer is unified and can be accepted easily by other people. Secondly, parameters concerned by analyst can be dynamically communicated to show or even change. Thirdly, the analyzer provide interface with other programs for the thermal-hydraulic system code. Thus parallel computation between thermal-hydraulic system code and other programs become possible. In conclusion, through visual and intelligent method, the analyzer based on general and advanced thermal-hydraulic system codes can be used to analysis transients and accidents more effectively. The main purpose of this paper is to present developmental activities, assessment and application results of the visual and intelligent

  18. Kinetic Parameters of Thermal Decomposition Process Analyzed using a Mathematical Model

    Science.gov (United States)

    Nandiyanto, A. B. D.; Ekawati, R.; Wibawa, S. C.

    2018-01-01

    The purpose of this study was to show a mathematical analysis model for understanding kinetic parameters of thermal decomposition process. The mathematical model was derived based on phenomena happen during the thermal-related reaction. To get the kinetic parameters (i.e. reaction order, activation energy, and Arrhenius constant), the model was combined with the thermal characteristics of material gained from the thermal gravity (TG) and differential thermal analysis (DTA) curves. As an example, the model was used for analyzing the kinetic properties of trinitrotoluene. Interestingly, identical results gained from the present model with current literatures were obtained; in which these were because the present model was derived directly from the analysis of stoichiometrical and thermal analysis of the ideal chemical reaction. Since the present model confirmed to have a good agreement with current theories, further derivation from the present mathematical model can be useful for further development.

  19. The NASTRAN User's Manual Level 16.0 and Supplement

    Science.gov (United States)

    1976-01-01

    The user's manual is restricted to those items related to the use of NASTRAN that are independent of the computing system being used. The features of NASTRAN described include: (1) procedures for defining and loading a structural model and a functional reference for every card that is used for structural modeling; (2) the NASTRAN data deck, including the details for each of the data cards; (3) the NASTRAN control cards that are associated with the use of the program; (4) rigid format procedures, along with specific instructions for the use of each rigid format: (5) procedures for using instructions for the use of each rigid format; (5) procedures for using the NASTRAN plotting capability; (6) procedures governing the creation of DMAP programs; and (7) the NASTRAN diagnostic messages. The NASTRAN dictionary of mnemonics, acronyms, phrases, and other commonly used NASTRAN terms is included along with a limited number of sample problems.

  20. Thermal Analysis of Pure Uranium Metal, UMo and UMoSi Alloys Using a Differential Thermal Analyzer

    International Nuclear Information System (INIS)

    Yanlinastuti; Sutri Indaryati; Rahmiati

    2010-01-01

    Thermal analysis of pure uranium metal, U-7%Mo and U-7%Mo-1%Si alloys have been done using a Differential Thermal Analyzer (DTA). The experiments are conducted in order to measure the thermal stability, thermochemical properties of elevated temperature and enthalpy of the specimens. From the analysis results it is showed that uranium metal will transform from α to β phases at temperature of 667.16°C and enthalpy of 2.3034 cal/g and from β to γ phases at temperature of 773.05 °C and enthalpy of 2.8725 cal/g and start melting at temperature of 1125.26 °C and enthalpy of 2.1316 cal/g. The U-7%Mo shows its thermal stability up to temperature of 650 °C and its thermal changes at temperature of 673.75 °C indicated by the formation of an endothermic peak and enthalpy of 0.0257 cal/g. The U-7%Mo-1%Si alloys shows its thermal stability up to temperature of 550 °C and its thermal changes at temperature of 574.18 °C indicated by the formation of an endothermic peak and enthalpy of 0.613 cal/g. From the three specimens it is showed that they have a good thermal stability at temperature up to 550 °C. (author)

  1. Calculation of Airloads for a Flexible Wing via NASTRAN.

    Science.gov (United States)

    1980-12-01

    IV. C oiiutiuULtiozial 1rcdu’.......... . .. .. . ..... interfaced NASTRAN -USSAERO Sequence .... 9 The DMAP Sequence.................11...not considered. A new instruction sequence known as a Direct Matrix Abstraction Program ( DMAP ) was developed for use within NASTRAN to ualculate...since the inclusion of aerodynamic theories in the NASTRAN program. The calculation of flexible wing airloads by this DMAP sequence is an iterative

  2. Design Spectrum Analysis in NASTRAN

    Science.gov (United States)

    Butler, T. G.

    1984-01-01

    The utility of Design Spectrum Analysis is to give a mode by mode characterization of the behavior of a design under a given loading. The theory of design spectrum is discussed after operations are explained. User instructions are taken up here in three parts: Transient Preface, Maximum Envelope Spectrum, and RMS Average Spectrum followed by a Summary Table. A single DMAP ALTER packet will provide for all parts of the design spectrum operations. The starting point for getting a modal break-down of the response to acceleration loading is the Modal Transient rigid format. After eigenvalue extraction, modal vectors need to be isolated in the full set of physical coordinates (P-sized as opposed to the D-sized vectors in RF 12). After integration for transient response the results are scanned over the solution time interval for the peak values and for the times that they occur. A module called SCAN was written to do this job, that organizes these maxima into a diagonal output matrix. The maximum amplifier in each mode is applied to the eigenvector of each mode which then reveals the maximum displacements, stresses, forces and boundary reactions that the structure will experience for a load history, mode by mode. The standard NASTRAN output processors have been modified for this task. It is required that modes be normalized to mass.

  3. Analyzing the thermal regime of power supply units in portable betatrons by using infrared thermography

    Directory of Open Access Journals (Sweden)

    Simonova O.S.

    2017-01-01

    Full Text Available Potentials of infrared thermography in analyzing a thermal regime of the 7.5 MeV betatron power supply are discussed. Both the heating rate and thermal inertia of particular electronic components have been evaluated by processing pixel-based temperature histories. The data treatment has been performed by using the original ThermoFit Pro software to illustrate that some advanced processing algorithms, such as the Fourier transform and principle component analysis, are valuable in identifying thermal dynamics of particular power supply parts.

  4. Analyzing Thermal Characteristics of Urban Streets Using a Thermal Imaging Camera: A Case Study on Commercial Streets in Seoul, Korea

    Directory of Open Access Journals (Sweden)

    Sugie Lee

    2018-02-01

    Full Text Available Due to continuing city growth and global warming over the past decades, urban heat island (UHI effects, referring to the phenomena wherein the ambient air temperatures in cities are higher than those in rural areas, have become a serious threat to urban populations. Impervious surfaces, buildings with low-albedo materials, and a lack of vegetated areas are the major causes of poor urban thermal environments, particularly during the summer. Previous research has focused primarily on the thermal characteristics of individual building units. Few studies consider the impact of the street-scale thermal environments on the surface temperature, which affects pedestrian thermal comfort. The purpose of this study is to analyze the thermal characteristics of various physical elements on urban streets using thermal imaging cameras, and present policy implications for improving pedestrian thermal comfort. This study examines street-scale thermal environments of three major commercial streets: Garosu road, Serosu road, and Narosu road, in Seoul, Korea. This study conducted field measurements both during the day and the night in June 2017 in order to investigate changes in the urban surface temperatures across time. The results show that street trees are the most effective mitigation element for reducing surface temperatures. With regard to building use types, the highest surface temperatures are typically measured near restaurant buildings. Building façades that are dark-colored or partially covered with a metal contribute to high surface temperatures. Similarly, the temperatures of artificial turf or wooden decks on urban streets are also significantly high during the daytime. The thermal characteristics of various urban street elements should be considered to reduce the surface temperature and mitigate the urban heat island effect.

  5. Thermal Response of Cooled Silicon Nitride Plate Due to Thermal Conductivity Effects Analyzed

    Science.gov (United States)

    Baaklini, George Y.; Abdul-Aziz, Ali; Bhatt, Ramakrishna

    2003-01-01

    Lightweight, strong, tough high-temperature materials are required to complement efficiency improvements for next-generation gas turbine engines that can operate with minimum cooling. Because of their low density, high-temperature strength, and high thermal conductivity, ceramics are being investigated as materials to replace the nickelbase superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass (ref. 1). To complement the effectiveness of the ceramics and their applicability for turbine engine applications, a parametric study using the finite element method is being carried out. The NASA Glenn Research Center remains very active in conducting and supporting a variety of research activities related to ceramic matrix composites through both experimental and analytical efforts (ref. 1). The objectives of this work are to develop manufacturing technology, develop a thermal and environmental barrier coating (TBC/EBC), develop an analytical modeling capability to predict thermomechanical stresses, and perform a minimal burner rig test on silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Moreover, we intend to generate a detailed database of the material s property characteristics and their effects on structural response. We expect to offer a wide range of data since the modeling will account for other variables, such as cooling channel geometry and spacing. Comprehensive analyses have begun on a plate specimen with Si3N4 cooling holes.

  6. Recent improvements and enhancements to NASTRAN

    Science.gov (United States)

    Pamidi, P. R.

    1982-01-01

    Several improvements and enhancements recently made to NASTRAN are described. Some of the more important features are: streamlined rigid formats; improved rigid formats; changes related to plotting; checking of required PARAM bulk data cards; checkpoint/restart capability; unsorted and sorted bulk data deck echo; automatic output of the DMAP source listing; elimination of link switching caused by use of utility modules; paging the NASTRAN output; processing of mixed record data blocks by INPUT2/OUTPUT2 modules; module execute flag included in the OSCAR listing; and use of the multiple XDMAP cards in the DMAP. It is concluded that these changes increase the usefulness of the program.

  7. Operating in the age of NASTRAN

    Science.gov (United States)

    Butler, T. G.

    1982-01-01

    The history of the development of the NASTRAN computer program, a general purpose finite element code for structural analysis, is described. The need for research programs to improve analysis of structures, and the writing of a computer program to give numerical solutions for shell behavior, were the impetus for the program design. The use of finite elements to obtain engineering solutions was introduced. The architecture, solution structure, DMAP language, decomposition technique for banded matrices with active columns, general purpose plotter, engineering data inputs, elastic element routines, programmer manuals, of NASTRAN's system design are described.

  8. Obtaining eigensolutions for multiple frequency ranges in a single NASTRAN execution

    Science.gov (United States)

    Pamidi, P. R.; Brown, W. K.

    1990-01-01

    A novel and general procedure for obtaining eigenvalues and eigenvectors for multiple frequency ranges in a single NASTRAN execution is presented. The scheme is applicable to normal modes analyzes employing the FEER and Inverse Power methods of eigenvalue extraction. The procedure is illustrated by examples.

  9. Modal strain energies in COSMIC NASTRAN

    Science.gov (United States)

    Snyder, B. D.; Venkayya, V. B.

    1989-01-01

    A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures.

  10. Structural design and analysis of forces for the thermal shield of the EAST tokamak

    International Nuclear Information System (INIS)

    Xie Han; Liao Ziying

    2005-01-01

    The EAST is a tokamak with superconducting toroidal and poloidal magnets operating at 4 K. In order to reduce the thermal load applied to surfaces of all cryogenically cooled components and keep the heat load of the cryogenic system minimal, a continuous radiation shield system located between the magnet system and the warm components is adopted. The EAST thermal shield system consists of vacuum vessel thermal shield and cryostat thermal shield. The NASTRAN finite element software was employed to calculate different load conditions of the thermal shield after analyzing the thermal stress in operation and electromagnetic forces under plasma disruptions for optimization design of the structure. (authors)

  11. Development of general-purpose software to analyze the static thermal characteristic of nuclear power plant

    International Nuclear Information System (INIS)

    Nakao, Yoshinobu; Koda, Eiichi; Takahashi, Toru

    2009-01-01

    We have developed the general-purpose software by which static thermal characteristic of the power generation system is analyzed easily. This software has the notable features as follows. It has the new algorithm to solve non-linear simultaneous equations to analyze the static thermal characteristics such as heat and mass balance, efficiencies, etc. of various power generation systems. It has the flexibility for setting calculation conditions. It is able to be executed on the personal computer easily and quickly. We ensured that it is able to construct heat and mass balance diagrams of main steam system of nuclear power plant and calculate the power output and efficiencies of the system. Furthermore, we evaluated various heat recovery measures of steam generator blowdown water and found that this software could be a useful operation aid for planning effective changes in support of power stretch. (author)

  12. Nonlinear random response prediction using MSC/NASTRAN

    Science.gov (United States)

    Robinson, J. H.; Chiang, C. K.; Rizzi, S. A.

    1993-01-01

    An equivalent linearization technique was incorporated into MSC/NASTRAN to predict the nonlinear random response of structures by means of Direct Matrix Abstract Programming (DMAP) modifications and inclusion of the nonlinear differential stiffness module inside the iteration loop. An iterative process was used to determine the rms displacements. Numerical results obtained for validation on simple plates and beams are in good agreement with existing solutions in both the linear and linearized regions. The versatility of the implementation will enable the analyst to determine the nonlinear random responses for complex structures under combined loads. The thermo-acoustic response of a hexagonal thermal protection system panel is used to highlight some of the features of the program.

  13. Nonlinear random response prediction using MSC/NASTRAN

    Science.gov (United States)

    Robinson, J. H.; Chiang, C. K.; Rizzi, S. A.

    1993-10-01

    An equivalent linearization technique was incorporated into MSC/NASTRAN to predict the nonlinear random response of structures by means of Direct Matrix Abstract Programming (DMAP) modifications and inclusion of the nonlinear differential stiffness module inside the iteration loop. An iterative process was used to determine the rms displacements. Numerical results obtained for validation on simple plates and beams are in good agreement with existing solutions in both the linear and linearized regions. The versatility of the implementation will enable the analyst to determine the nonlinear random responses for complex structures under combined loads. The thermo-acoustic response of a hexagonal thermal protection system panel is used to highlight some of the features of the program.

  14. A NASTRAN DMAP alter for linear buckling analysis under dynamic loading

    Science.gov (United States)

    Aiello, Robert A.; Grady, Joseph E.

    1989-01-01

    A modification to the NASTRAN solution sequence for transient analysis with direct time integration (COSMIC NASTRAN rigid format 9) was developed and incorporated into a DMAP alter. This DMAP alter calculates the buckling stability of a dynamically loaded structure, and is used to predict the onset of structural buckling under stress-wave loading conditions. The modified solution sequence incorporates the linear buckling analysis capability (rigid format 5) of NASTRAN into the existing Transient solution rigid format in such a way as to provide a time dependent eigensolution which is used to assess the buckling stability of the structure as it responds to the impulsive load. As a demonstration of the validity of this modified solution procedure, the dynamic buckling of a prismatic bar subjected to an impulsive longitudinal compression is analyzed and compared to the known theoretical solution. In addition, a dynamic buckling analysis is performed for the analytically less tractable problem of the localized dynamic buckling of an initially flawed composite laminate under transverse impact loading. The addition of this DMAP alter to the transient solution sequence in NASTRAN facilitates the computational prediction of both the time at which the onset of dynamic buckling occurs in an impulsively loaded structure, and the dynamic buckling mode shapes of that structure.

  15. Maintaining NASTRAN :the politics and technics of aerospace computing

    OpenAIRE

    Hu, Minghui

    1995-01-01

    This thesis describes a process of how NASA maintained the NASTRAN (NASA Structural Analysis) computer program. Chapter one addresses my theoretical concern and suggests to learn from both critical theorists and social constructivists. Chapters Two and Three tell the story of NASA and NASTRAN, a computer program developed by NASA for solving problems of airframes and space structures. The story of NASA and NASTRAN demonstrates a structural imbalance between social groups of NAS...

  16. Static Aeroelastic Analysis of Flexible Wings via NASTRAN, Part I.

    Science.gov (United States)

    1982-12-01

    recommended steps in designing and testing a NASTRAN module are: 1. Recognition of the Need. In designing a new DMAP sequence or running an extensive DMAP ...operate without the module then that course of action is recommended. In con- sidering a DMAP to solve his problem the user might compare MSC NASTRAN to...COSMIC NASTRAN . The MSC version contains many more modules and might have the proper DMAP modules where the COSMIC version did not. 2. Development of

  17. Implementation of NASTRAN on the IBM/370 CMS operating system

    Science.gov (United States)

    Britten, S. S.; Schumacker, B.

    1980-01-01

    The NASA Structural Analysis (NASTRAN) computer program is operational on the IBM 360/370 series computers. While execution of NASTRAN has been described and implemented under the virtual storage operating systems of the IBM 370 models, the IBM 370/168 computer can also operate in a time-sharing mode under the virtual machine operating system using the Conversational Monitor System (CMS) subset. The changes required to make NASTRAN operational under the CMS operating system are described.

  18. Evaluation of the NASTRAN General Purpose Computer Program.

    Science.gov (United States)

    1980-08-01

    Abstraction Program ( DMAP ). He has used NASTRAN in a variety of problems for probably close to ten years, and is recognized in his organization as the NASTRAN ...how to plot models to his liking with minimum effort. He has used several of the NASTRAN rigid formats and DMAP , and knows the input/output well. This...different designs of one product. This person finds the Iconcept of DMAP very difficult. 4. Novice The new NASTRAN user has zero to two years experience. He

  19. Design optimization studies using COSMIC NASTRAN

    Science.gov (United States)

    Pitrof, Stephen M.; Bharatram, G.; Venkayya, Vipperla B.

    1993-01-01

    The purpose of this study is to create, test and document a procedure to integrate mathematical optimization algorithms with COSMIC NASTRAN. This procedure is very important to structural design engineers who wish to capitalize on optimization methods to ensure that their design is optimized for its intended application. The OPTNAST computer program was created to link NASTRAN and design optimization codes into one package. This implementation was tested using two truss structure models and optimizing their designs for minimum weight, subject to multiple loading conditions and displacement and stress constraints. However, the process is generalized so that an engineer could design other types of elements by adding to or modifying some parts of the code.

  20. Addition of the AUTOSPC feature to NASTRAN

    Science.gov (United States)

    Pamidi, P. R.; Turner, Horace Q.

    1987-01-01

    A new capability called the AUTOSPC feature has been incorporated into the April 1987 release of NASTRAN. It gives the user the option of automatically applying single-point constraints for the purpose of removing potential grid and scalar point singularities that have not been otherwise already constrained out. Details of this implementation are given. Its usage is described and it is illustrated with an example problem.

  1. PCI: A PATRAN-NASTRAN model translator

    Science.gov (United States)

    Sheerer, T. J.

    1990-01-01

    The amount of programming required to develop a PATRAN-NASTRAN translator was surprisingly small. The approach taken produced a highly flexible translator comparable with the PATNAS translator and superior to the PATCOS translator. The coding required varied from around ten lines for a shell element to around thirty for a bar element, and the time required to add a feature to the program is typically less than an hour. The use of a lookup table for element names makes the translator also applicable to other versions of NASTRAN. The saving in time as a result of using PDA's Gateway utilities was considerable. During the writing of the program it became apparent that, with a somewhat more complex structure, it would be possible to extend the element data file to contain all data required to define the translation from PATRAN to NASTRAN by mapping of data between formats. Similar data files on property, material and grid formats would produce a completely universal translator from PATRAN to any FEA program, or indeed any CAE system.

  2. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method.

    Science.gov (United States)

    Cao, X M; Tian, Y; Wang, Z Y; Liu, Y W; Wang, C X

    2016-07-03

    Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method.

  3. A field test study of our non-invasive thermal image analyzer for deceptive detection

    Science.gov (United States)

    Sumriddetchkajorn, Sarun; Somboonkaew, Armote; Sodsong, Tawee; Promduang, Itthipol; Sumriddetchkajorn, Niti

    2007-07-01

    We have developed a non-invasive thermal image analyzer for deceptive detection (TAD2) where the far-infrared data around the periorbital and nostril areas are simultaneously analyzed. Measured change in maximum skin temperature around two periorbital regions is converted to a relative blood flow velocity. A respiration pattern is also simultaneously determined via the ratio of the measured maximum and minimum temperatures in the nostril area. In addition, our TAD2 employs a simple normalized cross correlation scheme to independently track locations of the two periorbital and nostril areas. Our field case study from 7 subjects in two real crime scenes and with the use of our baseline classification criteria shows two-fold improvement in classification rate compared to our analysis using either the periorbital or nostril area alone.

  4. Experiences in porting NASTRAN (R) to non-traditional platforms

    Science.gov (United States)

    Davis, Gregory L.; Norton, Robert L.

    1991-01-01

    The 1990 UNIX version of NASTRAN was ported to two new platforms that are not supported by COSMIC: the Sun SPARC workstation and the Apple Macintosh using the A/UX version of UNIX. The experiences of the authers in porting NASTRAN is summarized here. Suggestions for users who might attempt similar ports are given.

  5. The Twenty-First NASTRAN (R) Users' Colloquium

    Science.gov (United States)

    1993-01-01

    This publication contains the proceedings of the Twenty-First NASTRAN Users' Colloquium held in Tampa, FL, April 26 through April 30, 1993. It provides some comprehensive general papers on the application of finite elements in engineering, comparisons with other approaches, unique applications, pre-and postprocessing with other auxiliary programs and new methods of analysis with NASTRAN.

  6. Analysis of rotating flexible blades using MSC/NASTRAN

    Science.gov (United States)

    Ernst, Michael A.

    1988-01-01

    An overview is given of the use of MSC/NASTRAN in the analysis of rotating flexible blades. The geometrically nonlinear analysis using NASTRAN Solution Sequence 64 is discussed along with the determination of frequencies and mode shapes using Solution Sequence 63. Items unique to rotating blade analysis, such as setting angle, centrifugal softening effects, and hub flexibility, are emphasized.

  7. ATHENA [Advanced Thermal-Hydraulic Energy Network Analyzer] transient analysis of a fusion engineering test reactor

    International Nuclear Information System (INIS)

    Wareing, T.A.

    1988-02-01

    Two potential undercooling transients are of concern in the design of TIBER-II (Tokamak Ignition/Burn Experimental Reactor), namely loss of coolant and loss of flow accidents. The major area of concern for TIBER-II is the inboard shield, where, due to tungsten material, the decay heat is extremely high. The purpose of this study was to analyze these transients using the thermal-hydraulic code ATHENA (Advanced Thermal-Hydraulic Energy Network Analyzer). The most comprehensive portion of this project involved creating a simple, yet complete, ATHENA model representative of TIBER-II. The completed model represents the case when the plasma is off and contains the inboard shield, the outboard shield, the divertor shields, and the primary loop. The primary loop contains the piping, pump, pressurizer, and heat exchanger. The heat exchanger is at the same elevation as the reactor, the least favorable to establishing natural circulation. The only transient analyzed so far, however, is a loss of flow accident. Results from the loss of flow analysis show that there is sufficient natural circulation in the inboard, outboard, and lower divertor shield to remove the decay heat, assuming that the secondary side flow is at full capacity. Although the upper divertor shield does not have sufficient natural circulation, cooling is provided due to vaporization and re-flood oscillations. However, one must recognize that there may be some local hot sport where the flow geometry inhibits cooling in a LOFA; the ATHENA model would not detect any localized problem. 9 refs., 18 figs., 4 tabs

  8. Design and Analysis of the Thermal Shield of EAST Tokamak

    International Nuclear Information System (INIS)

    Xie Han; Liao Ziying

    2008-01-01

    EAST (Experimental Advanced Superconducting Tokamak) is a tokamak with superconducting toroidal and poloidal magnets operated at 4.5 K. In order to reduce the thermal load applied on the surfaces of all cryogenically cooled components and keep the heat load of the cryogenic system at a minimum, a continuous radiation shield system located between the magnet system and warm components is adopted. The main loads to which the thermal shield system is subjected are gravity, seismic, electromagnetic and thermal gradients. This study employed NASTRAN and ANSYS finite element codes to analyze the stress under a spectrum of loading conditions and combinations, providing a theoretical basis for an optimization design of the structure.

  9. Design and analysis of the thermal shield of EAST tokamak

    International Nuclear Information System (INIS)

    Xie Han; Liao Ziying

    2007-01-01

    The EAST (Experimental Advanced Superconducting Tokamak) is a Tokamak with superconducting toroidal and poloidal magnets operating at 4.5 K. In order to reduce the thermal load applied to surfaces of all cryogenically cooled components and keep the heat load of the cryogenic system in minimal, a continuous radiation shield system located between the magnet system and warm components is adopted. The main loads to which the thermal shield system is subjected are gravity, seismic, electromagnetic and thermal gradients. This paper employed NASTRAN and ANSYS finite element software to analyze the stress under a spectrum of loading conditions and combinations, providing a basis in theory for optimization design of the structure. (authors)

  10. A hydro-thermo-mechanics analyze of the thermal fatigue in the mixing tee junction

    Energy Technology Data Exchange (ETDEWEB)

    Gourdin, C.; Chapuliot, S. [CEA Saclay, Dir. de l' Energie Nucleaire, (DEN/DM2S/SEMT/LISN), 91 - Gif sur Yvette (France); Magnaud, J.P. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN/DM2S/SFME/LTMF), 91 - Gif sur Yvette (France); Payen, T. [Institut de Radioprotection et de Surete Nucleaire (IRSN/DES/SAMS), 92 - 92 - Fontenay aux Roses (France)

    2003-07-01

    Work presented here, has been achieved at Cea, and is related to the comprehension of the mechanisms leading to cracking under thermal loading in the zones of mixing. The main objective of this work is to analyze, by computation, the thermal loading induced by the turbulent mixing following a tee junction and to explain how it can create cracking, from the internal skin of the component to a leakage, as it was observed in Civaux Power Plant in 1998. The phenomenon is still today not completely understood. One of the principal reasons to this partial incomprehension undoubtedly resides in the multi-field aspect of the loading and of the associated damage, utilizing three different and complementary scientific disciplines: thermohydraulics, thermomechanics and material science. The presentation proposed here, consists in connecting the analyses resulting from these various fields. The first part concentrates on thermohydraulics simulations. The choice of an adequate modeling is discussed on the basis of observed cracking in order to highlight phenomena of large scale beats, which are supposed one of the major causes leading to the failure of the structures. The second part deals with the use of the temperature fields obtained in the first part in order to carry out thermomechanical simulations. All these simulations are 3-dimensional and represent the complex geometry of Civaux RRA piping line, including a tee junction and elbows, water flow velocity. Mean and temperatures variations, mean and stresses variations are also presented. As final results make it possible to determine a map of the damage associated with these complex thermal loading. (authors)

  11. Kinetic—a system code for analyzing nuclear thermal propulsion rocket engine transients

    Science.gov (United States)

    Schmidt, Eldon; Lazareth, Otto; Ludewig, Hans

    1993-01-01

    A system code suitable for analyzing Nuclear Thermal Propulsion (NTP) rocket engines is described in this paper. The code consists of a point reactor model and nodes to describe the fluid dynamics and heat transfer mechanism. Feedback from the fuel, coolant, moderator and reflector are allowed for, and the control of the reactor is by motion of controls element (drums or rods). The worth of the control element and feedback coefficients are predetermined. Separate models for the turbo-pump assembly (TPA) and nozzle are also included. The model to be described in this paper is specific for the Particle Bed Reactor (PBR). An illustrative problem is solved. This problem consists of a PBR operating in a blowdown mode.

  12. KINETIC: A system code for analyzing Nuclear thermal propulsion rocket engine transients

    Science.gov (United States)

    Schmidt, E.; Lazareth, O.; Ludewig, H.

    1993-07-01

    A system code suitable for analyzing Nuclear Thermal Propulsion (NTP) rocket engines is described in this paper. The code consists of a point reactor model and nodes to describe the fluid dynamics and heat transfer mechanism. Feedback from the fuel coolant, moderator and reflector are allowed for, and the control of the reactor is by motion of control elements (drums or rods). The worth of the control clement and feedback coefficients are predetermined. Separate models for the turbo-pump assembly (TPA) and nozzle are also included. The model to be described in this paper is specific for the Particle Bed Reactor (PBR). An illustrative problem is solved. This problem consists of a PBR operating in a blowdown mode.

  13. Extreme thermal episodes analyzed with MODIS products during the boreal winter (2000-2016

    Directory of Open Access Journals (Sweden)

    J. Gomis-Cebolla

    2016-06-01

    Full Text Available The beginning of the XXI century is characterized by the intensification of the existing global warming situation and for a series of drastic global meteorological events. Particularly, during the winter season a series of extreme temperature episodes affecting large areas of the northern hemisphere have been produced. In this paper, these episodes are studied by analyzing the thermal anomalies spatial distribution and temporal evolution in the period 2001-2016 from Land Surface Temperature (LST products obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor. The study regions considered in this investigation are eight of the northern hemisphere. The results obtained for the heating and cooling episodes do not reveal an important discrepancy, however, an increase in the area affected by heating versus cooling is observed.

  14. Sensitivity analysis and optimization issues in NASTRAN

    Science.gov (United States)

    Tischler, V. A.; Venkayya, V. B.

    1991-01-01

    The purpose is to develop procedures to extract sensitivity analysis information from COSMIC/NASTRAN and to couple it with a mathematical optimization package. At present, the analysis will be limited to stress, displacement, and frequency constraints with structures modeled with membrane elements, rods, and bar elements. Two types of sensitivity analysis are discussed: an adjoint variable approach which is most effective when the number of active constraints is significantly less than the number of physical variables, and an approach based on a first order approximation of a Taylor series. The latter approach is more effective when the number of independent design variables is significantly less than the number of active constraints.

  15. Low velocity impact analysis with NASTRAN

    Science.gov (United States)

    Trowbridge, D. A.; Grady, J. E.; Aiello, R. A.

    1991-01-01

    A nonlinear elastic force-displacement relationship is used to calculate the transient impact force and local deformation at the point of contact between impactor and target. The nonlinear analysis and transfer function capabilities of NASTRAN are used to define a finite element model that behaves globally linearly elastic, and locally nonlinear elastic to model the local contact behavior. Results are presented for two different structures: a uniform cylindrical rod impacted longitudinally; and an orthotropic plate impacted transversely. Calculated impact force and transient structural response of the targets are shown to compare well with results measured in experimental tests.

  16. Nastran nonlinear dynamic transient accident analysis for FFTF reactor component

    International Nuclear Information System (INIS)

    Lujan, R.A.; Chenault, D.M.; Go, J.C.

    1976-01-01

    A nonlinear dynamic transient analysis merging hand calculations and the NASTRAN structural analysis computer code was conducted for a Fast Flux Test Facility in-reactor test assembly during an extremely unlikely design basis accidental event which is considered a Hypothetical Core Disruptive Accident (HCDA). The finite element modeling of the problem took advantage of NASTRAN's versatility to create loads and nonlinear elements not previously found in NASTRAN's library. The structural criteria for the test assembly to withstand an HCDA stipulates that the test assembly and its spoolpiece shall remain integral with the reactor head such that missiles are not generated

  17. Implementation of mixed formulation elements in PC/NASTRAN

    Science.gov (United States)

    Schaeffer, Harry G.

    1993-01-01

    The purpose of this paper is to describe the implementation and use of a consistent family of two and three dimensional elements in NASTRAN. The elements which are based on a mixed formulation include a replacement of the original NASTRAN shear element and the addition of triangular quadrilateral shell elements and tetrahedral, pentahedral and hexahedral solid elements. These elements support all static loads including temperature gradient and pressure load. The mass matrix is also generated to support all dynamic rigid formats.

  18. NASTRAN multipartitioning and one-shot substructuring

    Science.gov (United States)

    Levy, A.

    1973-01-01

    For intermediate size problems where all the data is accessible, the present method of substructuring in three separate phases (for static analysis) is unneccessarily cumbersome. The versatility of NASTRAN's DMAP and internal logic lends itself to finding a practical alternative to these procedures whereby self-contained special-purpose ALTER packages can be written to be run in one pass. Two examples are presented here under the titles of multipartitioning and one-shot substructuring. The flow of multipartitioning resembles that of the present three-phase substructuring. The basic effect is to partition the structure into substructures and operate on each substructure separately. This can be used to reduce the bandwidth of a given problem as well as to store information which will allow a change to be made in one of the substructures in a later run. This latter procedure is carried out in a second program titled one-shot substructuring.

  19. Original data preprocessor for Femap/Nastran

    Science.gov (United States)

    Oanta, Emil M.; Panait, Cornel; Raicu, Alexandra

    2016-12-01

    Automatic data processing and visualization in the finite elements analysis of the structural problems is a long run concern in mechanical engineering. The paper presents the `common database' concept according to which the same information may be accessed from an analytical model, as well as from a numerical one. In this way, input data expressed as comma-separated-value (CSV) files are loaded into the Femap/Nastran environment using original API codes, being automatically generated: the geometry of the model, the loads and the constraints. The original API computer codes are general, being possible to generate the input data of any model. In the next stages, the user may create the discretization of the model, set the boundary conditions and perform a given analysis. If additional accuracy is needed, the analyst may delete the previous discretizations and using the same information automatically loaded, other discretizations and analyses may be done. Moreover, if new more accurate information regarding the loads or constraints is acquired, they may be modelled and then implemented in the data generating program which creates the `common database'. This means that new more accurate models may be easily generated. Other facility consists of the opportunity to control the CSV input files, several loading scenarios being possible to be generated in Femap/Nastran. In this way, using original intelligent API instruments the analyst is focused to accurately model the phenomena and on creative aspects, the repetitive and time-consuming activities being performed by the original computer-based instruments. Using this data processing technique we apply to the best Asimov's principle `minimum change required / maximum desired response'.

  20. The cosmic dust analyzer: Experimental evaluation of an impact ionization model. [considering thermal equilibrium plasma

    Science.gov (United States)

    Friichtenicht, J. F.; Roy, N. L.; Becker, D. G.

    1973-01-01

    A thermal equilibrium plasma model is used to process data from an impact ionization time-of-flight mass spectrometer in order to convert the raw ion data to relative abundances of the elemental constituents of cosmic dust particles.

  1. Using airborne thermal inertia mapping to analyze the soil spatial variability at regional scale

    OpenAIRE

    Cousin , I.; Pasquier , C.; Séger , M.; TABBAGH , A.

    2013-01-01

    International audience; This study aims at demonstrating the ability of thermal airborne remote sensing to help in delin-eating soil types over large areas. Measurements of the surface temperature variations were compared with electrical resistivity measurements recorded for three depths of investigation. The study area was located in the Beauce region with Calcisols and Cambisols, 0.3 to 1.2 m thick. Airborne thermal measurements were recorded by the ARIES radiometer in the 10.5-12.5 μm ther...

  2. The influence of temperature calibration on the OC–EC results from a dual-optics thermal carbon analyzer

    Science.gov (United States)

    The Sunset Laboratory Dual-Optical Carbonaceous Analyzer that simultaneously measures transmission and reflectance signals is widely used in thermal-optical analysis of particulate matter samples. Most often this instrument is used to measure total carbon (TC), organic carbon (O...

  3. A two-compartment thermal-hydraulic experiment (LACE-LA4) analyzed by ESCADRE code

    International Nuclear Information System (INIS)

    Passalacqua, R.

    1994-01-01

    Large scale experiments show that whenever a Loss of Coolant Accident (LOCA) occurs, water pools are generated. Stratifications of steam saturated gas develop above water pools causing a two-compartment thermal-hydraulics. The LACE (LWR Advanced Containment Experiment) LA4 experiment, performed at the Hanford Engineering Development Laboratory (HEDL), exhibited a strong stratification, at all times, above a growing water pool. JERICHO and AEROSOLS-B2 are part of the ESCADRE code system (Ensemble de Systemes de Codes d'Analyse d'accident Des Reacteurs A Eau), a tool for evaluating the response of a nuclear plant to severe accidents. These two codes are here used to simulate respectively the thermal-hydraulics and the associated aerosol behavior. Code results have shown that modelling large containment thermal-hydraulics without taking account of the stratification phenomenon leads to large overpredictions of containment pressure and temperature. If the stratification is modelled as a zone with a higher steam condensation rate and a higher thermal resistance, ESCADRE predictions match quite well experimental data. The stratification thermal-hydraulics is controlled by power (heat fluxes) repartition in the lower compartment between the water pool and the nearby walls. Therefore the total, direct heat exchange between the two compartment is reduced. Stratification modelling is believed to be important for its influence on aerosol behavior: aerosol deposition through the inter-face of the two subcompartments is improved by diffusiophoresis and thermophoresis. In addition the aerosol concentration gradient, through the stratification, will cause a driving force for motion of smaller particles towards the pool. (author)

  4. NASDS- NASTRAN/DISCOS/SAMSAN DMAP BRIDGING PROGRAM

    Science.gov (United States)

    Frisch, H. P.

    1994-01-01

    The design of a controller for a flexible structure requires an ability to obtain flexible body data in a format compatible with design and performance evaluation methods. The control designer may have to work with several different programs to obtain all the data and capabilities he needs. The NASTRAN/DISCOS/SAMSAN bridging program and its associated data file processor provide the flexible structure control designer with a means of tying together the following programs: 1) the NASA Structural Analysis (NASTRAN) system which provides general finite element and matrix manipulation capabilities for the analysis of structures, 2) the Dynamic Interaction Simulation of Controls and Structure (DISCOS) program which provides for the time and frequency domain analysis of any dynamic system that can be modeled as a system of interconnected rigid and flexible bodies, and 3) the SAMSAN library which provides a self-consistent set of algorithms for the support of large-order controls system design and evaluation studies with an emphasis on sampled system analysis. The NASTRAN/DISCOS/SAMSAN bridging program allows the engineer to integrate these three programs into a complete package for the design and analysis of flexible structure controllers. The NASTRAN/DISCOS/SAMSAN bridging program and its associated data file processor may be used to obtain all of the data necessary for defining a flexible body to DISCOS or to any program developed using the SAMSAN library. The bridging program consists of a NASTRAN DMAP sequence which may be used to obtain a variety of different types of modal data including standard, Craig-Bampton, augmented body, and boundary compliance. The user may also request the generation of the following: mass, stiffness, damping, and constraint matrices; data for fine to coarse mesh mass distribution interpolation programs; modal damping, modal observability/ controllability matrices; coarse or fine mesh modal data; and an assortment of matrices useful for

  5. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    International Nuclear Information System (INIS)

    Kreider, M.A.; White, G.A.; Varrin, R.D.

    1998-01-01

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator performance. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. Uncertainty analyses were performed to determine whether the calculated fouling factor for each plant represented significant fouling or whether uncertainty in key variables (e.g., steam pressure or feedwater flow rate) could be responsible for calculated fouling. The methodology was validated using two methods: by predicting the SG pressure following chemical cleaning at San Onofre 2 and also by performing a sensitivity study with the industry-standard thermal-hydraulics code ATHOS to investigate the effects of spatially varying tube scale distributions. This study indicated that the average scale thickness has a greater impact on fouling than the spatial distribution, showing that the assumption of uniform resistance inherent to the global fouling factor is reasonable. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure loss evaluations demonstrated two key points: 1) that the available thermal margin against fouling, which can

  6. Parallel Aeroelastic Analysis Using ENSAERO and NASTRAN

    Science.gov (United States)

    Eldred, Lloyd B.; Byun, Chansup; Guruswamy, Guru P.

    1999-01-01

    A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaced ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multi-zonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRAN/COSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft mode. It is used to create the stiffness matrices for each sub-structure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the sub-structure boundary nodes. Results are presented for a wing-body configuration.

  7. A generic interface between COSMIC/NASTRAN and PATRAN (R)

    Science.gov (United States)

    Roschke, Paul N.; Premthamkorn, Prakit; Maxwell, James C.

    1990-01-01

    Despite its powerful analytical capabilities, COSMIC/NASTRAN lacks adequate post-processing adroitness. PATRAN, on the other hand is widely accepted for its graphical capabilities. A nonproprietary, public domain code mnemonically titled CPI (for COSMIC/NASTRAN-PATRAN Interface) is designed to manipulate a large number of files rapidly and efficiently between the two parent codes. In addition to PATRAN's results file preparation, CPI also prepares PATRAN's P/PLOT data files for xy plotting. The user is prompted for necessary information during an interactive session. Current implementation supports NASTRAN's displacement approach including the following rigid formats: (1) static analysis, (2) normal modal analysis, (3) direct transient response, and (4) modal transient response. A wide variety of data blocks are also supported. Error trapping is given special consideration. A sample session with CPI illustrates its simplicity and ease of use.

  8. New type of thermal analyzer with a micro-air-bridge heater

    Science.gov (United States)

    Kimura, Mitsuteru; Hayasaka, Junichi

    1997-11-01

    Miniaturized sensor for thermal analysis is fabricated using micromachining technique and its fundament al characteristics are obtained. This device fabricated in a Si substrate consists of monolithically integrated components of an air-bridge type microheater, a thin film thermocouple and a sample-holder. Boiling points of liquid samples, water and methanol, are observed in the heating curve and the heating-rate curve, and sudden decrease of the temperature at the dropping time of the liquid samples at room temperature due to the effect of evaporation heat is also observed. Loss of the sample due to the evaporation during heating was theoretically discussed.

  9. Fully-Coupled Fluid/Structure Vibration Analysis Using MSC/NASTRAN

    Science.gov (United States)

    Fernholz, Christian M.; Robinson, Jay H.

    1996-01-01

    MSC/NASTRAN's performance in the solution of fully-coupled fluid/structure problems is evaluated. NASTRAN is used to perform normal modes (SOL 103) and forced-response analyses (SOL 108, 111) on cylindrical and cubic fluid/structure models. Bulk data file cards unique to the specification of a fluid element are discussed and analytic partially-coupled solutions are derived for each type of problem. These solutions are used to evaluate NASTRAN's solutions for accuracy. Appendices to this work include NASTRAN data presented in fringe plot form, FORTRAN source code listings written in support of this work, and NASTRAN data file usage requirements for each analysis.

  10. NASTRAN buckling study of a linear induction motor reaction rail

    Science.gov (United States)

    Williams, J. G.

    1973-01-01

    NASTRAN was used to study problems associated with the installation of a linear induction motor reaction rail test track. Specific problems studied include determination of the critical axial compressive buckling stress and establishment of the lateral stiffness of the reaction rail under combined loads. NASTRAN results were compared with experimentally obtained values and satisfactory agreement was obtained. The reaction rail was found to buckle at an axial compressive stress of 11,400 pounds per square inch. The results of this investigation were used to select procedures for installation of the reaction rail.

  11. The role of NASTRAN in the preliminary design cycle

    Science.gov (United States)

    Grooms, H. R.; Baipsys, V. J.

    1993-01-01

    This paper explains how NASTRAN can be utilized advantageously in the preliminary design cycle. The initial portion of the preliminary design process lends itself to programs that can produce multiple configurations or variations on a particular design with minimal cost or effort. The latter portion of the process encompasses refining the design and adding more detailed analyses (particularly for other disciplines). A method for quickly generating balanced spacecraft loading conditions for use in preliminary design and analysis also is explained. The following additional sections are included: Background, Symbols, Analytical Process, Aerodynamic Load Distributions, NASTRAN Applications, Conclusion and References.

  12. Methods for Analyzing the Economic Value of Concentrating Solar Power with Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Miller, Mackay [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Caixia [State Grid Energy Research Inst., Beijing (China)

    2015-07-20

    Concentrating solar power with thermal energy storage (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value, and capacity value. This report describes modeling approaches to quantifying these benefits that have emerged through state-level policymaking in the United States as well as the potential applicability of these methods in China. The technical potential for CSP-TES in China is significant, but deployment has not yet achieved the targets established by the Chinese government. According to the 12th Five Year Plan for Renewable Energy (2011-2015), CSP was expected to reach 1 GW by 2015 and 3 GW by 2020 in China, yet as of December 2014, deployment totaled only 13.8 MW. One barrier to more rapid deployment is the lack of an incentive specific to CSP, such as a feed-in tariff. The 13th Five Year Plan for Solar Generation (2016-2020), which is under development, presents an opportunity to establish a feed-in tariff specific to CSP. This report, produced under the auspices of the U.S.-China Renewable Energy Partnership, aims to support the development of Chinese incentives that advance CSP deployment goals.

  13. Possible Calcite and Magnesium Perchlorate Interaction in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA)

    Science.gov (United States)

    Cannon, K. M.; Sutter, B.; Ming, D. W.; Boynton, W. V.; Quinn, R. C.

    2012-01-01

    The Mars Phoenix Lander's TEGA instrument detected a calcium carbonate phase decomposing at high temperatures (approx.700 C) from the Wicked Witch soil sample [1]. TEGA also detected a lower temperature CO2 release between 400 C and 680 C [1]. Possible explanations given for this lower temperature CO2 release include thermal decomposition of Mg or Fe carbonates, a zeolitictype desorption reaction, or combustion of organic compounds in the soil [2]. The detection of 0.6 wt % soluble perchlorate by the Wet Chemistry Laboratory (WCL) on Phoenix [3] has implications for the possibility of organic molecules in the soil. Ming et al. [4] demonstrated that perchlorates could have oxidized organic compounds to CO2 in TEGA, preventing detection of their characteristic mass fragments. Here, we propose that a perchlorate salt and calcium carbonate present in martian soil reacted to produce the 400 C - 680 C TEGA CO2 release. The parent salts of the perchlorate on Mars are unknown, but geochemical models using WCL data support the possible dominance of Mg-perchlorate salts [5]. Mg(ClO4)2 6H2O is the stable phase at ambient martian conditions [6], and breaks down at lower temperatures than carbonates giving off Cl2 and HCl gas [7,8]. Devlin and Herley [7] report two exotherms at 410-478 C and 473-533 C which correspond to the decomposition of Mg(ClO4)2.

  14. WINDOW 4. 0: Program description. A PC program for analyzing the thermal performance of fenestration products

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for calculating total window thermal performance indices (e.g. U-values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 4.0 provides a versatile heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). The program can be used to design and develop new products, to rate and compare performance characteristics of all types of window products, to assist educators in teaching heat transfer through windows, and to help public officials in developing building energy codes. WINDOW 4.0 is a major revision to WINDOW 3.1 and we strongly urge all users to read this manual before using the program. Users who need professional assistance with the WINDOW 4.0 program or other window performance simulation issues are encouraged to contact one or more of the NFRC-accredited Simulation Laboratories. A list of these accredited simulation professionals is available from the NFRC.

  15. MSC/NASTRAN ''expert'' techniques developed and applied to the TFTR poloidal field coils

    International Nuclear Information System (INIS)

    O'Toole, J.A.

    1986-01-01

    The TFTR poloidal field (PF) coils are being analyzed by PPPL and Grumman using MSC/NASTRAN as a part of an overall effort to establish the absolute limiting conditions of operation for TFTR. Each of the PF coils will be analyzed in depth, using a detailed set of finite element models. Several of the models developed are quite large because each copper turn, as well as its surrounding insulation, was modeled using solid elements. Several of the finite element models proved large enough to tax the capabilities of the National Magnetic Fusion Energy Computer Center (NMFECC), specifically disk storage space. To allow the use of substructuring techniques with their associated data bases for the larger models, it became necessary to employ certain infrequently used MSC/NASTRAN ''expert'' techniques. The techniques developed used multiple data bases and data base sets to divide each problem into a series of computer runs. For each run, only the data required was kept on active disk space, the remainder being placed in inactive ''FILEM'' storage, thus, minimizing active disk space required at any time and permitting problem solution using the NMFECC. A representative problem using the TFTR OH-1 coil global model provides an example of the techniques developed. The special considerations necessary to obtain proper results are discussed

  16. NASTRAN application for the prediction of aircraft interior noise

    Science.gov (United States)

    Marulo, Francesco; Beyer, Todd B.

    1987-01-01

    The application of a structural-acoustic analogy within the NASTRAN finite element program for the prediction of aircraft interior noise is presented. Some refinements of the method, which reduce the amount of computation required for large, complex structures, are discussed. Also, further improvements are proposed and preliminary comparisons with structural and acoustic modal data obtained for a large, composite cylinder are presented.

  17. Enhancements to the IBM version of COSMIC/NASTRAN

    Science.gov (United States)

    Brown, W. Keith

    1989-01-01

    Major improvements were made to the IBM version of COSMIC/NASTRAN by RPK Corporation under contract to IBM Corporation. These improvements will become part of COSMIC's IBM version and will be available in the second quarter of 1989. The first improvement is the inclusion of code to take advantage of IBM's new Vector Facility (VF) on its 3090 machines. The remaining improvements are modifications that will benefit all users as a result of the extended addressing capability provided by the MVS/XA operating system. These improvements include the availability of an in-memory data base that potentially eliminates the need for I/O to the PRIxx disk files. Another improvement is the elimination of multiple load modules that have to be loaded for every link switch within NASTRAN. The last improvement allows for NASTRAN to execute above the 16 mega-byte line. This improvement allows for NASTRAN to have access to 2 giga-bytes of memory for open core and the in-memory data base.

  18. Aeroelastic Analysis of Modern Complex Wings Using ENSAERO and NASTRAN

    Science.gov (United States)

    Bhardwaj, Manoj

    1995-01-01

    A process is presented by which static aeroelastic analysis is performed using Euler flow equations in conjunction with an advanced structural analysis tool, NASTRAN. The process deals with the interfacing of two separate codes in the fields of computational fluid dynamics (CFD) and computational structural dynamics (CSD). The process is demonstrated successfully on an F/A-18 Stabilator (horizontal tail).

  19. Analyzing the Impact of Solar Power on Multi-Hourly Thermal Generator Ramping

    Energy Technology Data Exchange (ETDEWEB)

    Rosenkranz, Joshua-Benedict; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias

    2016-04-08

    Solar power generation, unlike conventional forms of electricity generation, has higher variability and uncertainty in its output because solar plant output is strongly impacted by weather. As the penetration rate of solar capacity increases, grid operators are increasingly concerned about accommodating the increased variability and uncertainty that solar power provides. This paper illustrates the impacts of increasing solar power penetration on the ramping of conventional electricity generators by simulating the operation of the Independent System Operator -- New England power system. A production cost model was used to simulate the power system under five different scenarios, one without solar power and four with increasing solar power penetrations up to 18%, in terms of annual energy. The impact of solar power is analyzed on six different temporal intervals, including hourly and multi-hourly (2- to 6-hour) ramping. The results show how the integration of solar power increases the 1- to 6-hour ramping events of the net load (electric load minus solar power). The study also analyzes the impact of solar power on the distribution of multi-hourly ramping events of fossil-fueled generators and shows increasing 1- to 6-hour ramping events for all different generators. Generators with higher ramp rates such as gas and oil turbine and internal combustion engine generators increased their ramping events by 200% to 280%. For other generator types--including gas combined-cycle generators, coal steam turbine generators, and gas and oil steam turbine generators--more and higher ramping events occurred as well for higher solar power penetration levels.

  20. Analyzing and modeling the dynamic thermal behaviors of direct contact condensers packed with PCM spheres

    Science.gov (United States)

    Wang, Kai; Hu, Tao; Hassabou, Abdel H.; Spinnler, Markus; Polifke, Wolfgang

    2013-01-01

    Condensers serve as important components for humidification-dehumidification (HDH) desalination plants. Based on the interpenetration continua approach with volume averaging technique, a mathematical dynamic model for analyzing the heat and mass transfer within direct contact condensers with co-current or countercurrent flow arrangement was developed. It was validated against the experimental data from a small scale HDH desalination system. Comparisons including the productivities and the temperature profiles of gas, liquid, and solid phases show good agreement with the measurements. Phase change material (PCM) melting processes have little effect on water production rate for co-current flow arrangement, but the condenser packed with PCM capsules have higher water production rates than that packed with air capsules packed under given conditions. The relative humidity profile of the bulk gas shows contrary trend with the gas temperature profile. The direct contact condenser with countercurrent flow arrangement can provide much better heat and mass transfer between gas and water and produce about 16.3% more fresh water than the same condenser with co-current flow arrangement in 4 h under given conditions.

  1. Robotic Arm Camera Image of the South Side of the Thermal and Evolved-Gas Analyzer (Door TA4

    Science.gov (United States)

    2008-01-01

    The Thermal and Evolved-Gas Analyzer (TEGA) instrument aboard NASA's Phoenix Mars Lander is shown with one set of oven doors open and dirt from a sample delivery. After the 'seventh shake' of TEGA, a portion of the dirt sample entered the oven via a screen for analysis. This image was taken by the Robotic Arm Camera on Sol 18 (June 13, 2008), or 18th Martian day of the mission. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Experiences with the use of axisymmetric elements in cosmic NASTRAN for static analysis

    Science.gov (United States)

    Cooper, Michael J.; Walton, William C.

    1991-01-01

    Discussed here are some recent finite element modeling experiences using the axisymmetric elements CONEAX, TRAPAX, and TRIAAX, from the COSMIC NASTRAN element library. These experiences were gained in the practical application of these elements to the static analysis of helicopter rotor force measuring systems for two design projects for the NASA Ames Research Center. These design projects were the Rotor Test Apparatus and the Large Rotor Test Apparatus, which are dedicated to basic helicopter research. Here, a genetic axisymmetric model is generated for illustrative purposes. Modeling considerations are discussed, and the advantages and disadvantages of using axisymmetric elements are presented. Asymmetric mechanical and thermal loads are applied to the structure, and single and multi-point constraints are addressed. An example that couples the axisymmetric model to a non-axisymmtric model is demonstrated, complete with DMAP alters. Recommendations for improving the elements and making them easier to use are offered.

  3. A Revision of the Dynamic Design-Analysis Method (DDAM) in NASTRAN

    Science.gov (United States)

    1982-12-01

    NASTRAN is performed in one normal modes analysis run with a set of DMAP ALTERs. This section describes the input details for such a run. EXECUTIVE...DYNAMIC DESIGN-ANALYSIS Final METHOD (DDAM) IN NASTRAN 6. PERFORMING ORG. REPORT NUMBER 7. AUTIOR(e) 6. CONTRACT OR GRANT NUMBER(@) Myles M. Hurwitz 9...from Report) IS. SUPPLEMENTARY NOTES 19., KEY WORDS (Continue on reverse side If necessary end Identify by block number) NASTRAN IPMP DDAM Shock Design

  4. DEFINIT - A New Element Definition Capability for NASTRAN: User’s Manual

    Science.gov (United States)

    1973-12-01

    DMAP alter statements in the NASTRAN Level 12.0 or Level 15.0 Executive Control deck: ALTER 128, 130 CHKPNT OPPI, OQPl, OUPV1, OES1, OEFl$ OFP OPPl, OQPl...OEF2 $ ENDALTER These DMAP changes will cause NASTRAN to print results (stresses and forces) in SORTI format, but will make the changes required to... NASTRAN : USER’S MANUAL u] z Michael E. Golden and Myles M. Hurwitz 0 E-) SAFCCOMPUTATION AND MATHEMATICS DEPARTMENT Z RESEARCH AND DEVELOPMENT REPORT

  5. On Elastic-Plastic Analysis of an Overloaded Breech Ring Using NASTRAN

    Science.gov (United States)

    1981-09-01

    NASTRAN Code is used in both cases. However, for problems under prescribed displacements, the DMAP sequence should be slightly modified. The maximum...ACrAV^SASk* AD TECHNICAL REPORT ARLCB-TR-81040 ON ELASTIC-PLASTIC ANALYSIS OF AN OVERLOADED BREECH RING USING NASTRAN P. C. T. Chen September...TITLE fand SubHMe; ON ELASTIC-PLASTIC ANALYSIS OF AN OVERLOADED BREECH RING USING NASTRAN 5. TYPE OF REPORT & PERIOD COVERED Final 6

  6. Computer Programs for Generation of NASTRAN and VIBRA-6 Aircraft Models.

    Science.gov (United States)

    1988-04-01

    NASTRAN as a combination of DMAP alters for Solutions 3 and 10, and a user module, MODB. The user module, MODB, performs such operations as...GENERATION _ OF NASTRAN AND VIBRA-6 AIRCRAFT MODELS Steven G. Harris Anamet Laboratories, Inc.I 3400 Investment Boulevard Haywood, CA 94545-3811 April...ACCESSION NO 62601F 8809 03 26 11 TITLE (Include Security Classification) COMPUTER PROGRAMS FOR GENERATION OF NASTRAN AND VIBRA-6 AIRCRAFT MODELS 12

  7. Implementation experiences of NASTRAN on CDC CYBER 74 SCOPE 3.4 operating system

    Science.gov (United States)

    Go, J. C.; Hill, R. G.

    1973-01-01

    The implementation of the NASTRAN system on the CDC CYBER 74 SCOPE 3.4 Operating System is described. The flexibility of the NASTRAN system made it possible to accomplish the change with no major problems. Various sizes of benchmark and test problems, ranging from two hours to less than one minute CP time were run on the CDC CYBER SCOPE 3.3, Univac EXEC-8, and CDC CYBER SCOPE 3.4. The NASTRAN installation deck is provided.

  8. Adaptation of NASTRAN to an integrated system of structural design analysis

    Science.gov (United States)

    Haggenmacher, G. W.

    1972-01-01

    Efforts to integrate NASTRAN into a complete structural analysis system for use by large airframe design projects are discussed. NASTRAN was implemented as a major finite element structural analysis program to determine the static and dynamic behavior of complete airframes, as well as structural components. This requires modifications and additions to NASTRAN, to communicate with an existing system, and to provide facilities needed to work within the integrated structural analysis. For this purpose, several special DMAP modules were developed and introduced into the CALAC version of the NASTRAN system.

  9. Finite element modeling of electromagnetic fields and waves using NASTRAN

    Science.gov (United States)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  10. A general low frequency acoustic radiation capability for NASTRAN

    Science.gov (United States)

    Everstine, G. C.; Henderson, F. M.; Schroeder, E. A.; Lipman, R. R.

    A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads.

  11. Experiences running NASTRAN on the Microvax 2 computer

    Science.gov (United States)

    Butler, Thomas G.; Mitchell, Reginald S.

    1987-01-01

    The MicroVAX operates NASTRAN so well that the only detectable difference in its operation compared to an 11/780 VAX is in the execution time. On the modest installation described here, the engineer has all of the tools he needs to do an excellent job of analysis. System configuration decisions, system sizing, preparation of the system disk, definition of user quotas, installation, monitoring of system errors, and operation policies are discussed.

  12. An Unusual Application of NASTRAN Contour Plotting Capability

    Science.gov (United States)

    Mittal, S.; Gallo, M.; Wang, T.

    1985-01-01

    A procedure is presented for obtaining contour plots of any physical quantity defined on a number of points of the surface of a structure. Rigid Format 1 of HEAT approach in Cosmic NASTRAN is ALTERED to enable use of contour plotting capability for scalar quantities. The ALTERED DMAP sequence is given. Examples include temperature distribution on the face of a cooled laser mirror and the angle of incidence or a radome surface.

  13. Convenient method of simultaneously analyzing aluminum and magnesium in pharmaceutical dosage forms using californium-252 thermal neutron activation

    International Nuclear Information System (INIS)

    Landolt, R.R.; Hem, S.L.

    1983-01-01

    A commercial antacid suspension containing aluminum hydroxide and magnesium hydroxide products was used as a model sample to study the use of a californium-252 thermal neutron activation as a method for quantifying aluminum content as well as for the simultaneous assay of aluminum and magnesium. A 3.5-micrograms californium-252 source was used for the activation, and the induced aluminum-28 and magnesium-27 activity was simultaneously measured by sodium iodide crystal gamma-ray spectrometry using dual single-channel analyzers and scalers. The antacid suspension was contained in a chamber designed with the unique capability of serving as the container for counting the induced radioactivity in addition to being the irradiation chamber itself. This pilot study demonstrated that use of more intense californium-252 sources, which are commonly available, would provide a method that is competitive with the ethylenediaminetetraacetic acid titration method in precision and in other aspects as well

  14. Using PAFEC as a preprocessor for MSC/NASTRAN

    International Nuclear Information System (INIS)

    Gray, W.H.; Baudry, T.V.

    1983-01-01

    Programs for Automatic Finite Element Calculations (PAFEC) is a general-purpose, three-dimensional, linear and nonlinear finite element program. PAFEC's features include free-format input using engineering keywords, powerful mesh-generating facilities, sophisticated database management procedures, and extensive data validation checks. Presented here is a description of a software interface that permits PAFEC to be used as a preprocessor for MSC/NASTRAN. This user-friendly software, called PAFMSC, frees the stress analyst from the laborious and error-prone procedure of creating and debugging a rigid-format MSC/NASTRAN bulk data deck. By interactively creating and debugging a finite element model with PAFEC, thus taking full advantage of the free-format, engineering-keyword-oriented data structure of PAFEC, the stress analyst can drastically reduce the amount of time spent during model generation. The PAFMSC software will automatically convert a PAFEC data structure into an MSC/NASTRAN bulk data deck. The capabilities and limitations of the PAFMSC software are fully discussed

  15. Using PAFEC as a preprocessor for MSC/NASTRAN

    International Nuclear Information System (INIS)

    Gray, W.H.; Baudry, T.V.

    1983-01-01

    Programs for Automatic Finite Element Calculations (PAFEC) is a general-purpose, three-dimensional, linear and nonlinear finite element program. PAFEC's features include free-format input using engineering keywords, powerful mesh-generating facilities, sophisticated database management procedures, and extensive data validation checks. Presented here is a description of a software interface that permits PAFEC to be used as a preprocessor for MSC/NASTRAN. This user-friendly software, called PAFMSC, frees the stress analyst from the laborious and error-prone procedure of creating and debugging a rigid-format MSC/NASTRAN bulk data deck. By interactively creating and debugging a finite element model with PAFEC, thus taking full advantage of the free-format, engineering-keyword-oriented data structure of PAFEC, the stress analyst can drastically reduce the amount of time spent during model generation. The PAFMSC software will automatically convert a PAFEC data structure into an MSC/NASTRAN bulk data deck. The capabilities and limitations of the PAFMSC software are fully discussed in the following report

  16. Proceedings of the NASTRAN (Tradename) Users’ Colloquium (13th) Held in Boston, Massachusetts on 6-10 May 1985

    Science.gov (United States)

    1985-05-01

    NASTRAN run with DMAP alters, presented in Appendix A as part of a sample executive deck, is required to be submitted. Normal input data processing for...excitation. 228 IMPLEMENTATION INTO NASTRAN AND NUMERICAL RESULTS The Ritz procedure was implemented into NASTRAN using the DMAP capa- bi3lties. A flow...dependent, it is convenient to let NASTRAN compute ke and ko for each mode and to use a postprocessor to compute n for each mode. The DMAP ALTER which

  17. NASTRAN User’s Colloquium (6th) Held in Cleveland, Ohio on 4-6 October 1977

    Science.gov (United States)

    1977-10-01

    PHASE I SUBSTRUCTURING ANALYSIS David T. Zemer 105 A NASTRAN DMAP ALTER FOR THE COUPLING OF MODAL AND PHYSICAL COORDINATE SUBSTRUCTURES Thomas L...Improved DMAP Capability", NASTRAN ; Users’ Experiences, NASA TM X-3278, September, 1975, pp. 595-602. 10. The NASTRAN User’s Manual, NASA SP-222(03), July...unfortunately did not provide the necessary NASTRAN tables for further substructure analysis. This report presents a DMAP Alter to the . 105 MacNeal

  18. An application of MSC/NASTRAN in the interdisciplinary analysis of large space-based structures

    Science.gov (United States)

    Stockwell, Alan E.; Chambers, Mareta W.; Cooper, Paul A.

    1988-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT), a computer software system developed at NASA Langley to analyze and simulate the dynamics of space-structure/control-system interactions, is described, and its application to the MAST problem (a 60-m truss with fundamental frequency less than 200 mHz and equipped with linear proof-mass actuators, to be deployed from the Space Shuttle as part of COFS-I flight experiment) is demonstrated. Particular attention is given to the IMAT procedures which facilitate the use of the MCS/NASTRAN code to recover physical results from time-domain state-space solutions obtained with an FEM control-design code. Diagrams, drawings, and graphs are provided.

  19. Finnigan ion trap mass spectrometer detection limits and thermal energy analyzer interface status report and present capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, A.; Andresen, B.; Martin, W.

    1990-10-18

    A new Finnigan ion trap mass spectrometer was purchased and installed at LLNL. Over a period of several months the instrument was tested under a variety of conditions utilizing a capillary gas chromatography interface which allowed separated organic compounds to be carried directly into the ion source of the mass spectrometer. This direct interface allowed maximum analytical sensitivity. A variety of critical tests were performed in order to optimize the sensitivity of the system under a variety of analysis conditions. These tests altered the critical time cycles of the ionization, ion trapping, and detection. Various carrier gas pressures were also employed in order to ascertain the overall sensitivity of the instrument. In addition we have also interfaced a thermal energy analyzer (TEA) to the gas chromatograph in order to simultaneously detect volatile nitrogen containing compounds while mass spectral data is being acquired. This is the first application at this laboratory of simultaneous ultra-trace detections while utilizing two orthogonal analytical techniques. In particular, explosive-related compound and/or residues are of interest to the general community in water, soil and gas sampler. In this paper are highlighted a few examples of the analytical power of this new GC-TEA-ITMS technology.

  20. Convenient method of simultaneously analyzing aluminum and magnesium in pharmaceutical dosage forms using californium-252 thermal neutron activation.

    Science.gov (United States)

    Landolt, R R; Hem, S L

    1983-05-01

    A commercial antacid suspension containing aluminum hydroxide and magnesium hydroxide products was used as a model sample to study the use of a californium-252 thermal neutron activation as a method for quantifying aluminum content as well as for the simultaneous assay of aluminum and magnesium. A 3.5-micrograms californium-252 source was used for the activation, and the induced aluminum-28 and magnesium-27 activity was simultaneously measured by sodium iodide crystal gamma-ray spectrometry using dual single-channel analyzers and scalers. The antacid suspension was contained in a chamber designed with the unique capability of serving as the container for counting the induced radioactivity in addition to being the irradiation chamber itself. Ten replicate irradiations were performed, and the precision was compared with 10 replicate analyses of the antacid suspension using the official ethylenediaminetetraacetic acid titration method. For aluminum the precision was 1.4 versus 0.62% for the titration method. For the magnesium the precision was 5.3 versus 0.79% for the titration method. This pilot study demonstrated that use of more intense californium-252 sources, which are commonly available, would provide a method that is competitive with the ethylenediaminetetraacetic acid titration method in precision and in other aspects as well.

  1. Coupled NASTRAN/boundary element formulation for acoustic scattering

    Science.gov (United States)

    Everstine, Gordon C.; Henderson, Francis M.; Schuetz, Luise S.

    1987-01-01

    A coupled finite element/boundary element capability is described for calculating the sound pressure field scattered by an arbitrary submerged 3-D elastic structure. Structural and fluid impedances are calculated with no approximation other than discretization. The surface fluid pressures and normal velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior field. Far field pressures are then evaluated from the surface solution using the Helmholtz exterior integral equation. The overall approach is illustrated and validated using a known analytic solution for scattering from submerged spherical shells.

  2. Fuzzy Structures Analysis of Aircraft Panels in NASTRAN

    Science.gov (United States)

    Sparrow, Victor W.; Buehrle, Ralph D.

    2001-01-01

    This paper concerns an application of the fuzzy structures analysis (FSA) procedures of Soize to prototypical aerospace panels in MSC/NASTRAN, a large commercial finite element program. A brief introduction to the FSA procedures is first provided. The implementation of the FSA methods is then disclosed, and the method is validated by comparison to published results for the forced vibrations of a fuzzy beam. The results of the new implementation show excellent agreement to the benchmark results. The ongoing effort at NASA Langley and Penn State to apply these fuzzy structures analysis procedures to real aircraft panels is then described.

  3. Thermal tissue damage model analyzed for different whole-body SAR and scan durations for standard MR body coils.

    Science.gov (United States)

    Murbach, Manuel; Neufeld, Esra; Capstick, Myles; Kainz, Wolfgang; Brunner, David O; Samaras, Theodoros; Pruessmann, Klaas P; Kuster, Niels

    2014-01-01

    This article investigates the safety of radiofrequency induced local thermal hotspots within a 1.5T body coil by assessing the transient local peak temperatures as a function of exposure level and local thermoregulation in four anatomical human models in different Z-positions. To quantize the effective thermal stress of the tissues, the thermal dose model cumulative equivalent minutes at 43°C was employed, allowing the prediction of thermal tissue damage risk and the identification of potentially hazardous MR scan-scenarios. The numerical results were validated by B1 (+) - and skin temperature measurements. At continuous 4 W/kg whole-body exposure, peak tissue temperatures of up to 42.8°C were computed for the thermoregulated model (60°C in nonregulated case). When applying cumulative equivalent minutes at 43°C damage thresholds of 15 min (muscle, skin, fat, and bone) and 2 min (other), possible tissue damage cannot be excluded after 25 min for the thermoregulated model (4 min in nonregulated). The results are found to be consistent with the history of safe use in MR scanning, but not with current safety guidelines. For future safety concepts, we suggest to use thermal dose models instead of temperatures or SAR. Special safety concerns for patients with impaired thermoregulation (e.g., the elderly, diabetics) should be addressed. Copyright © 2013 Wiley Periodicals, Inc.

  4. Composite hubs for low cost turbine engines. [stress analysis using NASTRAN

    Science.gov (United States)

    Chamis, C. C.

    1977-01-01

    A detailed stress analysis is performed using NASTRAN to demonstrate theoretically the adequacy of composite hubs for low cost turbine engine applications. The results show that composite hubs are adequate for this application from the steady state stress viewpoint.

  5. NESSUS/NASTRAN Interface (Modification of NESSUS to FORTRAN 90 Standard)

    Science.gov (United States)

    1997-01-01

    The objective of this work has been to develop a FORTRAN 90 (F90) version of the NESSUS probabilistic analysis software, Version 6.2 with NASTRAN interface. The target platform for the modified NESSUS code is the SGI workstation.

  6. The Design and Usage of the New Data Management Features in NASTRAN

    Science.gov (United States)

    Pamidi, P. R.; Brown, W. K.

    1984-01-01

    Two new data management features are installed in the April 1984 release of NASTRAN. These two features are the Rigid Format Data Base and the READFILE capability. The Rigid Format Data Base is stored on external files in card image format and can be easily maintained and expanded by the use of standard text editors. This data base provides the user and the NASTRAN maintenance contractor with an easy means for making changes to a Rigid Format or for generating new Rigid Formats without unnecessary compilations and link editing of NASTRAN. Each Rigid Format entry in the data base contains the Direct Matrix Abstraction Program (DMAP), along with the associated restart, DMAP sequence subset and substructure control flags. The READFILE capability allows an user to reference an external secondary file from the NASTRAN primary input file and to read data from this secondary file. There is no limit to the number of external secondary files that may be referenced and read.

  7. Optimum structural design using MSC/NASTRAN and sequential quadratic programming

    Science.gov (United States)

    Mahmoud, K. G.; Engl, H. W.; Holzleitner, L.

    1994-08-01

    A methodology is described for structural optimization using the commercial finite element package MSC/NASTRAN for structural analysis, a quasi-analytical method for design sensitivity analysis, and sequential quadratic programming with an active set strategy for optimization. The optimization and sensitivity analysis modules are efficiently coupled with MSC/NASTRAN using DMAP (direct matrix abstraction program) statements. To demonstrate the feasibility of the proposed methodology, the design optimization of a unit injector rocker arm is presented as an example.

  8. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.

    Science.gov (United States)

    Ganguly, Mohit; Miller, Stephanie; Mitra, Kunal

    2015-11-01

    Short pulse lasers with pulse durations in the range of nanoseconds and shorter are effective in the targeted delivery of heat energy for precise tissue heating and ablation. This photothermal therapy is useful where the removal of cancerous tissue sections is required. The objective of this paper is to use finite element modeling to demonstrate the differences in the thermal response of skin tissue to short-pulse and continuous wave laser irradiation in the initial stages of the irradiation. Models have been developed to validate the temperature distribution and heat affected zone during laser irradiation of excised rat skin samples and live anesthetized mouse tissue. Excised rat skin samples and live anesthetized mice were subjected to Nd:YAG pulsed laser (1,064 nm, 500 ns) irradiation of varying powers. A thermal camera was used to measure the rise in surface temperature as a result of the laser irradiation. Histological analyses of the heat affected zone created in the tissue samples due to the temperature rise were performed. The thermal interaction of the laser with the tissue was quantified by measuring the thermal dose delivered by the laser. Finite element geometries of three-dimensional tissue sections for continuum and vascular models were developed using COMSOL Multiphysics. Blood flow was incorporated into the vascular model to mimic the presence of discrete blood vessels and contrasted with the continuum model without blood perfusion. The temperature rises predicted by the continuum and the vascular models agreed with the temperature rises observed at the surface of the excised rat tissue samples and live anesthetized mice due to laser irradiation respectively. The vascular model developed was able to predict the cooling produced by the blood vessels in the region where the vessels were present. The temperature rise in the continuum model due to pulsed laser irradiation was higher than that due to continuous wave (CW) laser irradiation in the

  9. NASTRAN DMAP Fuzzy Structures Analysis: Summary of Research

    Science.gov (United States)

    Sparrow, Victor W.

    2001-01-01

    The main proposed tasks of Cooperative Agreement NCC1-382 were: (1) developing MSC/NASTRAN DMAP language scripts to implement the Soize fuzzy structures approach for modeling the dynamics of complex structures; (2) benchmarking the results of the new code to those for a cantilevered beam in the literature; and (3) testing and validating the new code by comparing the fuzzy structures results to NASA Langley experimental and conventional finite element results for two model test structures representative of aircraft fuselage sidewall construction: (A) a small aluminum test panel (SLP, single longeron panel) with a single longitudinal stringer attached with bolts; and (B) a 47 by 72 inch flat aluminum fuselage panel (AFP, aluminum fuselage panel) including six longitudinal stringers and four frame stiffeners attached with rivets.

  10. Seismic analysis of plutonium glovebox by MSC/NASTRAN

    International Nuclear Information System (INIS)

    Hirata, Masaru; Ishikawa, Kazuya; Korosawa, Makoto; Fukushima, Susumu; Hoshina, Hirofumi.

    1993-01-01

    Seismic analysis of the structural strength of gloveboxes is important for plutonium confinement evaluation. However, the analytical methods must be developed for evaluating the mutual displacement between the window frame and acrylic resin window panel with regard to plutonium confinement during an earthquake. Therefore, seismic analysis for a standard glovebox in Plutonium Fuel Research Facility at Oarai Research Establishment of JAERI has been conducted by FEM (Finite Element Method) computer code MSC/NASTRAN (MacNeal-Schwendler Corporation NASA Structural Analysis). Modelling of glovebox window frame has been investigated from the results of natural frequency analysis and static analysis. After the acquisition of a suitable model, displacement around the window frame and glovebox structural strength have been evaluated in detail by use of floor response spectrum analysis and time-history (transient response) analysis. (author)

  11. A new method for generating and maintaining rigid formats in NASTRAN

    Science.gov (United States)

    Pamidi, P. R.; Brown, W. K.

    1983-01-01

    A new method for generating and updating Rigid Formats in NASTRAN is discussed. The heart of this method is a Rigid Format data base that is in card-image format and that can therefore be easily maintained by the use of standard text editors. Each Rigid Format entry in this data base will contain the Direct Matrix Abstraction Program (DMAP) for that Rigid Format along with the related restart, subset and substructure control tables. NASTRAN will read this data base directly in every NASTRAN run and perform the necessary transformations to allow the DMAP to be processed and compiled by the NASTRAN executive. This approach will permit Rigid Formats to be changed without unnecessary compilations and relinking of NASTRAN. Furthermore, this approach will also make it very easy for users to make permanent changes to existing Rigid Formats as well as to generate their own Rigid Formats. This new method will be incorporated in a future release of the public version of NASTRAN.

  12. VAX to CRAY NASTRAN user interface. Final report, July 1986-July 1987

    Energy Technology Data Exchange (ETDEWEB)

    James, M.R.

    1988-10-01

    The Air Force Weapons Laboratory has access to both the NASTRAN and PATRAN software systems for structural analysis investigations; however, these two codes are resident on separate computer systems at AFWL. NASTRAN is used to perform the bulk of large structural analysis research and is resident on the CRAY1S. PATRAN is installed on Silicon Graphics and allows depictions and animation of modal analysis results. The two software packages are complementary in function, and communication between them can be achieved through the GATEWAY facility. The GATEWAY links the AFWLO4 VAX, the silicon Graphics IRIS, and the CRAY through a common network protocol. This document describes software residential on the VAX and CRAY computer systems which allows PATRAN animation of NASTRAN calculated modal shapes. This section contains general information which should be reviewed by all potential users. Section 2 outlines the step by step implementation of NASTRAN calculation and PATRAN animation. This approach is designated VAX/CRAY/VAX processing. The VAX/CRAY/VAX approach is appropriate regardless of whether the NASTRAN model was created on the Silicon Graphics using PATRAN or created on the VAX using an editor. Section 3 provides important notes on the use of the existing NASTRAN DMAP alter library, and Section 4 is an example computer session implementing VAX/CRAY/VAX processing as described in Section 2.

  13. Proceedings of the NASTRAN (Tradename) Users’ Colloquium (18th) Held in Portland, Oregon on 23-27 April 1990

    Science.gov (United States)

    1990-04-01

    a single NASTRAN execution. 78 The DMAP ALTER package required for the above procedure is given in Appendix A. The details of the input data...Reprinted September 1983. 81 APPENDIX A DMAP ALTERs for Obtaining Eigensolutions for Multiple Frequency Ranges in a Single NASTRAN Execution $ THE FOLLOWING...formulation (and the associated NASTRAN DMAP ) for evacuated structures can be used with suitable interpretation of the matrix definitions. After

  14. Proceedings of the NASTRAN (Tradename) Users’ Colloquium (8th) Held in Greenbelt, Maryland on 30-31 October 1979

    Science.gov (United States)

    1980-05-01

    method has been applied to substructure transient solutions according to the approach as outlined at the 7th NASTRAN Colloquium. Only DMAP statements and...corresponding set of DMAP instructions which permits the NASTRAN user to automatically alter the rigid format-8 sequence to solve the intended class of...operations. RIGID FORMAT-8 DMAP MODIFICATION FOR NASTRAN The periodic structure capability described in the previous section can be implemented in a

  15. NASTRAN User’s Colloquium (12th), Held in Orlando, FLorida on May 7-11, 1984

    Science.gov (United States)

    1984-08-01

    contains the Direct Matrix Abstraction Program ( DMAP ), along with the associated restart, DMAP sequence subset and substructure control flags. NASTRAN ...reads a specific entry in the data base directly in every NASTRAN run and performs the necessary transformations to allow the DMAP to be processed...with NASTRAN , a comment card with a trailing string of "*" is used for this purpose to serve as a cosmetic delineation between successive DMAP entries

  16. Proceedings of the NASTRAN (Tradename) Users’ Colloquium (16th) Held in Arlington, Virginia on 25-29 April 1988

    Science.gov (United States)

    1988-03-01

    strains, and nodal stresses. In order to generate an OUTPUT2 file from a NASTRAN analysis, DMAP Alter sequences must be included in the bulk data deck prior...can be computed by a separate program called SURF. K includes the differential stiffness effects of the hydrostatic preload, if any. Then, NASTRAN DMAP ...of the David Taylor Research Center especially for this problem. Next, NASTRAN DMAP is used to recover the surface normal velocities vn and the

  17. The Interagency Software Evaluation Group: A Critical Evaluation of the ADINA, NASTRAN, and STAGS Structural Mechanics Computer Programs.

    Science.gov (United States)

    1981-12-01

    the report goes on to describe the macro programming language of NASTRAN , called DMAP (Direct Matrix Abstraction Program), which enables the skilled...S. TYPE Of REPORT a PERIOD COVERED The Interagency Software Evaluation Group: A Critical Evaluation of the ADINA, Technc Report No. 2 NASTRAN , and...consisting of the evaluation of the codes ADINA, NASTRAN , and STAGS. The evaluation criteria are discussed in some detail. DD FORM 17 IT|N O -I4NOV

  18. CFD Simulation of a Concrete Cubicle to Analyze the Thermal Effect of Phase Change Materials in Buildings

    Directory of Open Access Journals (Sweden)

    José L. Míguez

    2012-06-01

    Full Text Available In this work, a CFD-based model is proposed to analyse the effect of phase change materials (PCMs on the thermal behaviour of the walls of a cubicle exposed to the environment and on the resistance of the walls to climate changes. The effect of several days of exposure to the environment was simulated using the proposed method. The results of the simulation are compared with experimental data to contrast the models. The effects of exposure on the same days were simulated for several walls of a cubicle made of a mixture of concrete and PCM. The results show that the PCM stabilizes temperatures within the cubicle and decreases energy consumption of refrigeration systems.

  19. Optimum interior area thermal resistance model to analyze the heat transfer characteristics of an insulated pipe with arbitrary shape

    International Nuclear Information System (INIS)

    Chou, H.-M.

    2003-01-01

    The heat transfer characteristics for an insulated regular polygonal (or circular) pipe are investigated by using a wedge thermal resistance model as well as the interior area thermal resistance model R th =t/K s /[(1-α)A 2 +αA 3 ] with a surface area weighting factor α. The errors of the results generated by an interior area model can be obtained by comparing with the exact results generated by a wedge model. Accurate heat transfer rates can be obtained without error at the optimum α opt with the related t/R 2 . The relation between α opt and t/R 2 is α opt =1/ln(1+t/R 2 )-1/(t/R 2 ). The value of α opt is greater than zero and less than 0.5 and is independent of pipe size R 2 /R cr but strongly dependent on the insulation thickness t/R 2 . The interior area model using the optimum value α opt with the related t/R 2 should also be applied to an insulated pipe with arbitrary shape within a very small amount of error for the results of heat transfer rates. The parameter R 2 conservatively corresponds to the outside radius of the maximum inside tangent circular pipe within the arbitrary shaped pipes. The approximate dimensionless critical thickness t cr /R 2 and neutral thickness t e /R 2 of an insulated pipe with arbitrary shape are also obtained. The accuracies of the value of t cr /R 2 as well as t e /R 2 are strongly dependent on the shape of the insulated small pipe. The closer the shape of an insulated pipe is to a regular polygonal or circular pipe, the more reliable will the values of t cr /R 2 as well as t e /R 2 be

  20. WINDOW 4.0: Program description. A PC program for analyzing the thermal performance of fenestration products

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for calculating total window thermal performance indices (e.g. U-values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 4.0 provides a versatile heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). The program can be used to design and develop new products, to rate and compare performance characteristics of all types of window products, to assist educators in teaching heat transfer through windows, and to help public officials in developing building energy codes. WINDOW 4.0 is a major revision to WINDOW 3.1 and we strongly urge all users to read this manual before using the program. Users who need professional assistance with the WINDOW 4.0 program or other window performance simulation issues are encouraged to contact one or more of the NFRC-accredited Simulation Laboratories. A list of these accredited simulation professionals is available from the NFRC.

  1. Random vibration analysis of space flight hardware using NASTRAN

    Science.gov (United States)

    Thampi, S. K.; Vidyasagar, S. N.

    1990-01-01

    During liftoff and ascent flight phases, the Space Transportation System (STS) and payloads are exposed to the random acoustic environment produced by engine exhaust plumes and aerodynamic disturbances. The analysis of payloads for randomly fluctuating loads is usually carried out using the Miles' relationship. This approximation technique computes an equivalent load factor as a function of the natural frequency of the structure, the power spectral density of the excitation, and the magnification factor at resonance. Due to the assumptions inherent in Miles' equation, random load factors are often over-estimated by this approach. In such cases, the estimates can be refined using alternate techniques such as time domain simulations or frequency domain spectral analysis. Described here is the use of NASTRAN to compute more realistic random load factors through spectral analysis. The procedure is illustrated using Spacelab Life Sciences (SLS-1) payloads and certain unique features of this problem are described. The solutions are compared with Miles' results in order to establish trends at over or under prediction.

  2. The design and use of an error correction information system for NASTRAN

    Science.gov (United States)

    Rosser, D. C., Jr.

    1974-01-01

    Error Correction Information System (ECIS) is a system for a two-way transmittal of NASTRAN maintenance information via a data base stored on a nationwide accessible computer. ECIS consists of two data bases. The first data base is used for comments, reporting NASTRAN Software Problem Reports (SPR's) and bookkeeping information which can be updated by the user or the NASTRAN Office. The second data base is used by the NSMO to store all SPR information and updates. The hardware needed by an accessing user is any desktop computer terminal and a telephone to communicate with the central computer. The instruction format is an engineering oriented language and requires less than an hour to obtain a working knowledge of its functions.

  3. Eigenvalue routines in NASTRAN: A comparison with the Block Lanczos method

    Science.gov (United States)

    Tischler, V. A.; Venkayya, Vipperla B.

    1993-01-01

    The NASA STRuctural ANalysis (NASTRAN) program is one of the most extensively used engineering applications software in the world. It contains a wealth of matrix operations and numerical solution techniques, and they were used to construct efficient eigenvalue routines. The purpose of this paper is to examine the current eigenvalue routines in NASTRAN and to make efficiency comparisons with a more recent implementation of the Block Lanczos algorithm by Boeing Computer Services (BCS). This eigenvalue routine is now available in the BCS mathematics library as well as in several commercial versions of NASTRAN. In addition, CRAY maintains a modified version of this routine on their network. Several example problems, with a varying number of degrees of freedom, were selected primarily for efficiency bench-marking. Accuracy is not an issue, because they all gave comparable results. The Block Lanczos algorithm was found to be extremely efficient, in particular, for very large size problems.

  4. Some applications of NASTRAN to the buckling of thin cylindrical shells with cutouts

    Science.gov (United States)

    Williams, J. G.; Starnes, J. H., Jr.

    1972-01-01

    The buckling of isotropic and waffle-stiffened circular cylinders with and without cutouts was studied using NASTRAN's Rigid Format 5 for the case of axial compressive loading. The results obtained for the cylinders without cutouts are compared with available reference solutions. The results for the isotropic cylinders containing a single circular cutout with selected radii are compared with available experimental data. For the waffle-stiffened cyclinder, the effect of two diametrically opposed rectangular cutouts was studied. A DMAP alter sequence was used to permit the necessary application of different prebuckling and buckling boundary conditions. Advantage was taken of available symmetry planes to formulate equivalent NASTRAN model segments which reduced the associated computational cost of performing the analyses. Limitations of the applicability of NASTRAN for the solution of problems with nonlinear characteristics are discussed.

  5. Applying Petroleum the Pressure Buildup Well Test Procedure on Thermal Response Test—A Novel Method for Analyzing Temperature Recovery Period

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2018-02-01

    Full Text Available The theory of Thermal Response Testing (TRT is a well-known part of the sizing process of the geothermal exchange system. Multiple parameters influence the accuracy of effective ground thermal conductivity measurement; like testing time, variable power, climate interferences, groundwater effect, etc. To improve the accuracy of the TRT, we introduced a procedure to additionally analyze falloff temperature decline after the power test. The method is based on a premise of analogy between TRT and petroleum well testing, since the origin of both procedures lies in the diffusivity equation with solutions for heat conduction or pressure analysis during radial flow. Applying pressure build-up test interpretation techniques to borehole heat exchanger testing, greater accuracy could be achieved since ground conductivity could be obtained from this period. Analysis was conducted on a coaxial exchanger with five different power steps, and with both direct and reverse flow regimes. Each test was set with 96 h of classical TRT, followed by 96 h of temperature decline, making for almost 2000 h of cumulative borehole testing. Results showed that the ground conductivity value could vary by as much as 25%, depending on test time, seasonal period and power fluctuations, while the thermal conductivity obtained from the falloff period provided more stable values, with only a 10% value variation.

  6. Using Patran and Supertab as pre- and postprocessors to COSMIC/NASTRAN

    Science.gov (United States)

    Lipman, Robert R.

    1989-01-01

    Patran and Supertab are interactive computer graphics pre- and postprocessors that can be used to generate NASTRAN bulk data decks and to visualize results from a NASTRAN analysis. Both of the programs are in use at the Numerical Structural Mechanics Branch of the David Taylor Research Center (DTRC). Various aspects of Patran and Supertab are discussed including: geometry modeling, finite element mesh generation, bulk data deck creation, results translation and visualization, and the user interface. Some advantages and disadvantages of both programs will be pointed out.

  7. The application of NASCAD as a NASTRAN pre- and post-processor

    Science.gov (United States)

    Peltzman, Alan N.

    1987-01-01

    The NASA Computer Aided Design (NASCAD) graphics package provides an effective way to interactively create, view, and refine analytic data models. NASCAD's macro language, combined with its powerful 3-D geometric data base allows the user important flexibility and speed in constructing his model. This flexibility has the added benefit of enabling the user to keep pace with any new NASTRAN developments. NASCAD allows models to be conveniently viewed and plotted to best advantage in both pre- and post-process phases of development, providing useful visual feedback to the analysis process. NASCAD, used as a graphics compliment to NASTRAN, can play a valuable role in the process of finite element modeling.

  8. Further Developments on Optimum Structural Design Using MSC/Nastran and Sequential Quadratic Programming

    DEFF Research Database (Denmark)

    Holzleitner, Ludwig

    1996-01-01

    , here the shape of two dimensional parts with different thickness areas will be optimized. As in the previos paper, a methodology for structural optimization using the commercial finite element package MSC/NASTRAN for structural analysis is described. Three different methods for design sensitivity......This work is closely connected to the paper: K.G. MAHMOUD, H.W. ENGL and HOLZLEITNER: "OPTIMUM STRUCTURAL DESIGN USING MSC/NASTRAN AND SEQUENTIAL QUADRATIC PROGRAMMING", Computers & Structures, Vol. 52, No. 3, pp. 437-447, (1994). In contrast to that paper, where thickness optimization is described...

  9. The use of the plane wave fluid-structure interaction loading approximation in NASTRAN

    Science.gov (United States)

    Dawson, R. L.

    1991-01-01

    The Plane Wave Approximation (PWA) is widely used in finite element analysis to implement the loading generated by an underwater shock wave. The method required to implement the PWA in NASTRAN is presented along with example problems. A theoretical background is provided and the limitations of the PWA are discussed.

  10. Aircraft interior noise prediction using a structural-acoustic analogy in NASTRAN modal synthesis

    Science.gov (United States)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Marulo, Francesco

    1988-01-01

    The noise induced inside a cylindrical fuselage model by shaker excitation is investigated theoretically and experimentally. The NASTRAN modal-synthesis program is used in the theoretical analysis, and the predictions are compared with experimental measurements in extensive graphs. Good general agreement is obtained, but the need for further refinements to account for acoustic-cavity damping and structural-acoustic interaction is indicated.

  11. An enhancement of NASTRAN for the seismic analysis of structures. [nuclear power plants

    Science.gov (United States)

    Burroughs, J. W.

    1980-01-01

    New modules, bulk data cards and DMAP sequence were added to NASTRAN to aid in the seismic analysis of nuclear power plant structures. These allow input consisting of acceleration time histories and result in the generation of acceleration floor response spectra. The resulting system contains numerous user convenience features, as well as being reasonably efficient.

  12. TRBUCKL - A NASTRAN DMAP ALTER FOR LINEAR BUCKLING ANALYSIS UNDER DYNAMIC LOADING

    Science.gov (United States)

    Aiello, R. A.

    1994-01-01

    Delaminations near the outer surface of a laminate are susceptible to local buckling and buckling-induced delamination propagation when the laminate is subjected to transverse impact loading. This results in a loss of stiffness and strength. TRBUCKL is an unique dynamic delamination buckling and delamination propagation analysis capability that can be incorporated into the structural analysis program, NASTRAN. This capability will aid engineers in the design of structures incorporating composite laminates. The capability consists of: (1) a modification of the direct time integration solution sequence which provides a new analysis algorithm that can be used to predict delamination buckling in a laminate subjected to dynamic loading; and (2) a new method of modeling the composite laminate using plate bending elements and multipoint constraints. The capability now exists to predict the time at which the onset of dynamic delamination buckling occurs, the dynamic buckling mode shape, and the dynamic delamination strain energy release rate. A procedure file for NASTRAN, TRBUCKL predicts both impact induced buckling in composite laminates with initial delaminations and the strain energy release rate due to extension of the delamination. In addition, the file is useful in calculating the dynamic delamination strain energy release rate for a composite laminate under impact loading. This procedure simplifies the simulation of progressive crack extension. TRBUCKL has been incorporated into COSMIC NASTRAN. TRBUCKL is a DMAP Alter for NASTRAN. It is intended for use only with the COSMIC NASTRAN Direct Transient Analysis (RF 9) solution sequence. The program is available as a listing only. TRBUCKL was developed in 1987.

  13. Proceedings of the NASTRAN (Tradename) Users’ Colloquium (15th) Held in Kansas City, Missouri on 4-8 May 1987

    Science.gov (United States)

    1987-08-01

    will postprocess. To write out that file, DMAP ALTER state- ments must be included in the NASTRAN executive control deck. Figure 4 shows an example of... DMAP utility modules to provide an incre- mentally expanding partitioning vector. However, no single mod- ule available in NASTRAN will continually...program (SURF). Then, given all matrices on the right-hand sides of Equations (12) and (13), NASTRAN DMAP is used to compute H and Q. Equation (11

  14. Proceedings of the NASTRAN (Tradename) Users’ Colloquium (17th) Held in San Antonio, Texas on 24-28 April 1989

    Science.gov (United States)

    1989-03-01

    7.1 A POWERFUL ENHANCEMENT TO THE DMAP ALTER CAPABILITY ... ....... 169 by P. R. Pamidi (RPK Corporation) 8. A NASTRAN DMAP ALTER FOR LINEAR BUCKLING...each NASTRAN DMAP operation - input files, output files, and scratch files. Each DMAP module specifies its input files and output files explicitly...scratch files by the regular GINO and DMAP rules. After consulting the NASTRAN Theoretical manual and Programmer manual, and possibly studying the

  15. Proceedings of the NASTRAN (Tradename) Users’ Colloquium (10th) Held in New Orleans, Louisiana on 13-14 May 1982

    Science.gov (United States)

    1982-11-01

    problems. Ken Yale wrote the DMAP language that put such a singular stamp on NASTRAN . Dave Herting is an unsung hero who was busily engaged in...output of only selected portions of a DMAP . SUMMARY Several improvements and enhancements have bcen made to NASTRAN recently. Some o: the more... NASTRAN modal analysis are made available to RESPAN by Lhe use of the OUTPUT2 module inserted into the rigid format by a DMAP alter. This alter is shown in

  16. A cost-effective eigensolution method for large systems with Rockwell NASTRAN

    International Nuclear Information System (INIS)

    Gupta, V.K.; Cole, J.G.; Mock, W.D.

    1984-01-01

    The Lanczos method with reorthogonalization based on Householder transformations has been implemented in Rockwell's version of the COSMIC-released NASTRAN program for partial solution of a large-scale symmetric eigenvalue problem. A special technique has been included for restarting Lanczositeration with a new random vector, partly to avoid premature termination associated with a null or linearly dependent Lanczos feed vector and partly to discover multiple eigenvalues. The developed Lanczos-Householder algorithm with built-in random restart capability shows appreciable cost-savings over the conventional subspace iteration technique as well as the COSMIC NASTRAN method, FEER, which utilizes the modified Gram-Schmidt process to reorthogonalize the Lanczos feed vector with respect to those previously converged. (orig.)

  17. Plan, formulate, and discuss a NASTRAN finite element model of the AH-64A helicopter airframe

    Science.gov (United States)

    Christ, Richard A.; Ferg, Douglas A.; Kilroy, Kevin A.; Toossi, Mostafa; Weisenburger, Richard K.

    1990-01-01

    A discussion of modeling plan objectives, followed by a description of the AH-64A aircraft including all general features, major components, and primary and structure definitions are presented. Following the aircraft description, a discussion of the modeling guidelines and model checkout procedure are provided. The NASTRAN finite element analysis is set up to be suitable to predict both static internal loads and vibrations. Finally, the results, schedule, and planned versus actual manhours for this work are presented.

  18. A design study for the addition of higher order parametric discrete elements to NASTRAN

    Science.gov (United States)

    Stanton, E. L.

    1972-01-01

    The addition of discrete elements to NASTRAN poses significant interface problems with the level 15.1 assembly modules and geometry modules. Potential problems in designing new modules for higher-order parametric discrete elements are reviewed in both areas. An assembly procedure is suggested that separates grid point degrees of freedom on the basis of admissibility. New geometric input data are described that facilitate the definition of surfaces in parametric space.

  19. Combining Acceleration and Displacement Dependent Modal Frequency Responses Using an MSC/NASTRAN DMAP Alter

    Science.gov (United States)

    Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.

    1996-01-01

    Solving for dynamic responses of free-free launch vehicle/spacecraft systems acted upon by buffeting winds is commonly performed throughout the aerospace industry. Due to the unpredictable nature of this wind loading event, these problems are typically solved using frequency response random analysis techniques. To generate dynamic responses for spacecraft with statically-indeterminate interfaces, spacecraft contractors prefer to develop models which have response transformation matrices developed for mode acceleration data recovery. This method transforms spacecraft boundary accelerations and displacements into internal responses. Unfortunately, standard MSC/NASTRAN modal frequency response solution sequences cannot be used to combine acceleration- and displacement-dependent responses required for spacecraft mode acceleration data recovery. External user-written computer codes can be used with MSC/NASTRAN output to perform such combinations, but these methods can be labor and computer resource intensive. Taking advantage of the analytical and computer resource efficiencies inherent within MS C/NASTRAN, a DMAP Alter has been developed to combine acceleration- and displacement-dependent modal frequency responses for performing spacecraft mode acceleration data recovery. The Alter has been used successfully to efficiently solve a common aerospace buffeting wind analysis.

  20. A NASTRAN-based computer program for structural dynamic analysis of Horizontal Axis Wind Turbines

    Science.gov (United States)

    Lobitz, Don W.

    1995-05-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWT's). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower end rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWT's driven by turbulent winds.

  1. Optimization of Blended Wing Body Composite Panels Using Both NASTRAN and Genetic Algorithm

    Science.gov (United States)

    Lovejoy, Andrew E.

    2006-01-01

    The blended wing body (BWB) is a concept that has been investigated for improving the performance of transport aircraft. A trade study was conducted by evaluating four regions from a BWB design characterized by three fuselage bays and a 400,000 lb. gross take-off weight (GTW). This report describes the structural optimization of these regions via computational analysis and compares them to the baseline designs of the same construction. The identified regions were simplified for use in the optimization. The regions were represented by flat panels having appropriate classical boundary conditions and uniform force resultants along the panel edges. Panel-edge tractions and internal pressure values applied during the study were those determined by nonlinear NASTRAN analyses. Only one load case was considered in the optimization analysis for each panel region. Optimization was accomplished using both NASTRAN solution 200 and Genetic Algorithm (GA), with constraints imposed on stress, buckling, and minimum thicknesses. The NASTRAN optimization analyses often resulted in infeasible solutions due to violation of the constraints, whereas the GA enforced satisfaction of the constraints and, therefore, always ensured a feasible solution. However, both optimization methods encountered difficulties when the number of design variables was increased. In general, the optimized panels weighed less than the comparable baseline panels.

  2. A DMAP Program for the Selection of Accelerometer Locations in MSC/NASTRAN

    Science.gov (United States)

    Peck, Jeff; Torres, Isaias

    2004-01-01

    A new program for selecting sensor locations has been written in the DMAP (Direct Matrix Abstraction Program) language of MSC/NASTRAN. The program implements the method of Effective Independence for selecting sensor locations, and is executed within a single NASTRAN analysis as a "rigid format alter" to the normal modes solution sequence (SOL 103). The user of the program is able to choose among various analysis options using Case Control and Bulk Data entries. Algorithms tailored for the placement of both uni-axial and tri- axial accelerometers are available, as well as several options for including the model s mass distribution into the calculations. Target modes for the Effective Independence analysis are selected from the MSC/NASTRAN ASET modes calculated by the "SOL 103" solution sequence. The initial candidate sensor set is also under user control, and is selected from the ASET degrees of freedom. Analysis results are printed to the MSCINASTRAN output file (*.f06), and may include the current candidate sensors set, and their associated Effective Independence distribution, at user specified iteration intervals. At the conclusion of the analysis, the model is reduced to the final sensor set, and frequencies and orthogonality checks are printed. Example results are given for a pre-test analysis of NASA s five-segment solid rocket booster modal test.

  3. Nastran-based software for the structural dynamic analysis of vertical and horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Lobitz, D.W.

    1984-01-01

    Throughout the vertical axis wind turbine program at Sandia a significant effort has gone into developing finite element tools for predicting structural dynamic rotor response. Instead of creating new finite element packages, appropriate modifications to the NASTRAN code were made for the development of these tools. With this approach duplication of such things as input and output coding, finite element processors and solution algorithms is avoided. Although some DMAP programming is required, most of the changes are effected through the use of NASTRAN's direct matrix input option. These matrix alterations are necessary to model a structure moving in a rotating frame. To date, tools which predict natural frequencies and mode shapes, and the forced vibration frequency response of the rotating turbine have been developed. More recently, for horizontal axis rotors, a capability has been created for computing transient behavior as the roto turns in the wind. In this case, a solution procedure external to NASTRAN had to be employed in order to correctly attach the rotor hub which moves in the rotating frame to the tower which is modeled in a fixed frame. In all cases these tools have been compared with experimental data collected from various wind turbines and, for each, very satisfactory agreement has been achieved.

  4. Computer animation of NASTRAN displacements on IRIS 4D-series workstations: CANDI/ANIMATE postprocessing of NASHUA results

    Science.gov (United States)

    Fales, Janine L.

    1991-01-01

    The capabilities of the postprocessing program CANDI (Color Animation of Nastran DIsplacements) were expanded to accept results from axisymmetric analysis. An auxiliary program, ANIMATE, was developed to allow color display of CANDI output on the IRIS 4D-series workstations. The user can interactively manipulate the graphics display by three-dimensional rotations, translations, and scaling through the use of the keyboard and/or dials box. The user can also specify what portion of the model is displayed. These developments are limited to the display of complex displacements calculated with the NASHUA/NASTRAN procedure for structural acoustics analysis.

  5. Transient analyzer

    International Nuclear Information System (INIS)

    Muir, M.D.

    1975-01-01

    The design and design philosophy of a high performance, extremely versatile transient analyzer is described. This sub-system was designed to be controlled through the data acquisition computer system which allows hands off operation. Thus it may be placed on the experiment side of the high voltage safety break between the experimental device and the control room. This analyzer provides control features which are extremely useful for data acquisition from PPPL diagnostics. These include dynamic sample rate changing, which may be intermixed with multiple post trigger operations with variable length blocks using normal, peak to peak or integrate modes. Included in the discussion are general remarks on the advantages of adding intelligence to transient analyzers, a detailed description of the characteristics of the PPPL transient analyzer, a description of the hardware, firmware, control language and operation of the PPPL transient analyzer, and general remarks on future trends in this type of instrumentation both at PPPL and in general

  6. Piezoelectric Actuator Modeling Using MSC/NASTRAN and MATLAB

    Science.gov (United States)

    Reaves, Mercedes C.; Horta, Lucas G.

    2003-01-01

    This paper presents a procedure for modeling structures containing piezoelectric actuators using MSCMASTRAN and MATLAB. The paper describes the utility and functionality of one set of validated modeling tools. The tools described herein use MSCMASTRAN to model the structure with piezoelectric actuators and a thermally induced strain to model straining of the actuators due to an applied voltage field. MATLAB scripts are used to assemble the dynamic equations and to generate frequency response functions. The application of these tools is discussed using a cantilever aluminum beam with a surface mounted piezoelectric actuator as a sample problem. Software in the form of MSCINASTRAN DMAP input commands, MATLAB scripts, and a step-by-step procedure to solve the example problem are provided. Analysis results are generated in terms of frequency response functions from deflection and strain data as a function of input voltage to the actuator.

  7. [Stress analysis of artificial bionic knee joint based on UG6.0 NX NASTRAN].

    Science.gov (United States)

    Shi, Gengqiang

    2014-02-01

    This article introduces the basic principles of finite element analysis in biomechanics, focusing on the basic principles of a variety of finite element analysis software, and their respective characteristics. In addition, it also de scribes the basic stress analysis of UGNX6.0 NASTRAN analysis for artificial knee process, i. e. the choice of the type, material definition, the set of constants, finite element mesh division and the finite element results of the analysis. Finite element analysis and evaluation of the design of personalized artificial knee were carried out, so that the rationality of the geometric design of the structure of the experimental design of artificial knee has been verified.

  8. APPLICATION OF MSC ADAMS – NX NASTRAN/FEMAP INTERFACE IN STRENGTH CALCULATIONS OF TRUCK FRAMES

    Directory of Open Access Journals (Sweden)

    Adam PRZEMYK

    2016-06-01

    Full Text Available In this paper, the finite element method (FEM is used to calculate the strength of truck frames by integrating the MSC Adams software, for dynamics analysis of mechanical systems, and the NX Nastran/Femap software. At the same time, a method for reducing degrees of freedom is been developed based on the Craig–Bampton method. The interface is applied in order to calculate the strength of the frame in the selected truck, which runs on the test track. The selected model of truck can be treated as the virtual prototype that is useful in the design process.

  9. Increasing marketability and profitability of product line thru PATRAN and NASTRAN

    Science.gov (United States)

    Hyatt, Art

    1989-01-01

    Starting with the design objective the operational cycle life of the Swaging Tool was increased. To accomplish this increase in cycle life without increasing the size or weight of the tool would be engineering achievement. However, not only was the operational cycle life increased between 2 to 10 times but simultaneously the size and weight of the Swage Tool was decreased by about 50 percent. This accomplishment now becomes an outstanding engineering achievement. This achievement was only possible because of the computerized Patran, Nastran and Medusa programs.

  10. A numerically efficient finite element hydroelastic analysis. Volume 2: Implementation in NASTRAN, part 1

    Science.gov (United States)

    Coppolino, R. N.

    1974-01-01

    Details are presented of the implementation of the new formulation into NASTRAN including descriptions of the DMAP statements required for conversion of the program and details pertaining to problem definition and bulk data considerations. Details of the current 1/8-scale space shuttle external tank mathematical model, numerical results and analysis/test comparisons are also presented. The appendices include a description and listing of a FORTRAN program used to develop harmonic transformation bulk data (multipoint constraint statements) and sample bulk data information for a number of hydroelastic problems.

  11. A NASTRAN DMAP procedure for calculation of base excitation modal participation factors

    Science.gov (United States)

    Case, W. R.

    1983-01-01

    This paper presents a technique for calculating the modal participation factors for base excitation problems using a DMAP alter to the NASTRAN real eigenvalue analysis Rigid Format. The DMAP program automates the generation of the seismic mass to add to the degrees of freedom representing the shaker input directions and calculates the modal participation factors. These are shown in the paper to be a good measure of the maximum acceleration expected at any point on the structure when the subsequent frequency response analysis is run.

  12. A Modal Analysis of the Violin Using MSC/NASTRAN and PATRAN

    OpenAIRE

    Knott, George Anthony

    1987-01-01

    The MSC/NASTRAN finite element computer program and a Cray XMP computer were used to study the modal characteristics of a violin with the Stradivari shape . The violin geometry was modeled using an arcs of circles scheme with PATRAN, a finite element graphics pre/postprocessor program. The violin was modeled in-vacu and with free boundry conditions. Belly, back, sound post, bassbar, neck, bridge, tail-piece, strings, rib linings, end and corner blocks are the components of the model. Mode sha...

  13. An investigation of the beam-column and the finite-element formulations for analyzing geometrically nonlinear thermal response of plane frames

    Science.gov (United States)

    Silwal, Baikuntha

    The objective of this study is to investigate the accuracy and computational efficiency of two commonly used formulations for performing the geometrically nonlinear thermal analysis of plane framed structures. The formulations considered are the followings: the Beam-Column formulation and the updated Lagrangian version of the finite element formulation that has been adopted in the commercially well-known software SAP2000. These two formulations are used to generate extensive numerical data for three plane frame configurations, which are then compared to evaluate the performance of the two formulations. The Beam-Column method is based on an Eulerian formulation that incorporates the effects of large joint displacements. In addition, local member force-deformation relationships are based on the Beam-Column approach that includes the axial strain, flexural bowing, and thermal strain. The other formulation, the SAP2000, is based on the updated Lagrangian finite element formulation. The results for nonlinear thermal responses were generated for three plane structures by these formulations. Then, the data were compared for accuracy of deflection responses and for computational efficiency of the Newton-Raphson iteration cycles required for the thermal analysis. The results of this study indicate that the Beam-Column method is quite efficient and powerful for the thermal analysis of plane frames since the method is based on the exact solution of the differential equations. In comparison to the SAP2000 software, the Beam-Column method requires fewer iteration cycles and fewer elements per natural member, even when the structures are subjected to significant curvature effects and to restrained support conditions. The accuracy of the SAP2000 generally depends on the number of steps and/or the number of elements per natural member (especially four or more elements per member may be needed when structure member encounters a significant curvature effect). Succinctly, the Beam

  14. NASTRAN Modeling of Flight Test Components for UH-60A Airloads Program Test Configuration

    Science.gov (United States)

    Idosor, Florentino R.; Seible, Frieder

    1993-01-01

    Based upon the recommendations of the UH-60A Airloads Program Review Committee, work towards a NASTRAN remodeling effort has been conducted. This effort modeled and added the necessary structural/mass components to the existing UH-60A baseline NASTRAN model to reflect the addition of flight test components currently in place on the UH-60A Airloads Program Test Configuration used in NASA-Ames Research Center's Modern Technology Rotor Airloads Program. These components include necessary flight hardware such as instrument booms, movable ballast cart, equipment mounting racks, etc. Recent modeling revisions have also been included in the analyses to reflect the inclusion of new and updated primary and secondary structural components (i.e., tail rotor shaft service cover, tail rotor pylon) and improvements to the existing finite element mesh (i.e., revisions of material property estimates). Mode frequency and shape results have shown that components such as the Trimmable Ballast System baseplate and its respective payload ballast have caused a significant frequency change in a limited number of modes while only small percent changes in mode frequency are brought about with the addition of the other MTRAP flight components. With the addition of the MTRAP flight components, update of the primary and secondary structural model, and imposition of the final MTRAP weight distribution, modal results are computed representative of the 'best' model presently available.

  15. MSC/NASTRAN Stress Analysis of Complete Models Subjected to Random and Quasi-Static Loads

    Science.gov (United States)

    Hampton, Roy W.

    2000-01-01

    Space payloads, such as those which fly on the Space Shuttle in Spacelab, are designed to withstand dynamic loads which consist of combined acoustic random loads and quasi-static acceleration loads. Methods for computing the payload stresses due to these loads are well known and appear in texts and NASA documents, but typically involve approximations such as the Miles' equation, as well as possible adjustments based on "modal participation factors." Alternatively, an existing capability in MSC/NASTRAN may be used to output exact root mean square [rms] stresses due to the random loads for any specified elements in the Finite Element Model. However, it is time consuming to use this methodology to obtain the rms stresses for the complete structural model and then combine them with the quasi-static loading induced stresses. Special processing was developed as described here to perform the stress analysis of all elements in the model using existing MSC/NASTRAN and MSC/PATRAN and UNIX utilities. Fail-safe and buckling analyses applications are also described.

  16. TACT: A Set of MSC/PATRAN- and MSC/NASTRAN- based Modal Correlation Tools

    Science.gov (United States)

    Marlowe, Jill M.; Dixon, Genevieve D.

    1998-01-01

    This paper describes the functionality and demonstrates the utility of the Test Analysis Correlation Tools (TACT), a suite of MSC/PATRAN Command Language (PCL) tools which automate the process of correlating finite element models to modal survey test data. The initial release of TACT provides a basic yet complete set of tools for performing correlation totally inside the PATRAN/NASTRAN environment. Features include a step-by-step menu structure, pre-test accelerometer set evaluation and selection, analysis and test result export/import in Universal File Format, calculation of frequency percent difference and cross-orthogonality correlation results using NASTRAN, creation and manipulation of mode pairs, and five different ways of viewing synchronized animations of analysis and test modal results. For the PATRAN-based analyst, TACT eliminates the repetitive, time-consuming and error-prone steps associated with transferring finite element data to a third-party modal correlation package, which allows the analyst to spend more time on the more challenging task of model updating. The usefulness of this software is presented using a case history, the correlation for a NASA Langley Research Center (LaRC) low aspect ratio research wind tunnel model. To demonstrate the improvements that TACT offers the MSC/PATRAN- and MSC/DIASTRAN- based structural analysis community, a comparison of the modal correlation process using TACT within PATRAN versus external third-party modal correlation packages is presented.

  17. A Finite Element Procedure for Calculating Fluid-Structure Interaction Using MSC/NASTRAN

    Science.gov (United States)

    Chargin, Mladen; Gartmeier, Otto

    1990-01-01

    This report is intended to serve two purposes. The first is to present a survey of the theoretical background of the dynamic interaction between a non-viscid, compressible fluid and an elastic structure is presented. Section one presents a short survey of the application of the finite element method (FEM) to the area of fluid-structure-interaction (FSI). Section two describes the mathematical foundation of the structure and fluid with special emphasis on the fluid. The main steps in establishing the finite element (FE) equations for the fluid structure coupling are discussed in section three. The second purpose is to demonstrate the application of MSC/NASTRAN to the solution of FSI problems. Some specific topics, such as fluid structure analogy, acoustic absorption, and acoustic contribution analysis are described in section four. Section five deals with the organization of the acoustic procedure flowchart. Section six includes the most important information that a user needs for applying the acoustic procedure to practical FSI problems. Beginning with some rules concerning the FE modeling of the coupled system, the NASTRAN USER DECKs for the different steps are described. The goal of section seven is to demonstrate the use of the acoustic procedure with some examples. This demonstration includes an analytic verification of selected FE results. The analytical description considers only some aspects of FSI and is not intended to be mathematically complete. Finally, section 8 presents an application of the acoustic procedure to vehicle interior acoustic analysis with selected results.

  18. Proceedings of the NASTRAN (Tradename) Users’ Colloquium (11th) Held in San Francisco, California on 2-6 May 1983

    Science.gov (United States)

    1982-11-01

    Michael Gallo and G. C. C. Smith (Bell Aerospace Textron) A NASTRAN DMAP PROCEDURE FOR CALCULATION OF BASE EXCITATION MODAL PARTICIPATION FACTORS...Entry Point - OUTPT4; SUBROUTINE: WRTAPE B. NASTRAN Link: LINK14 C. DMAP Calling Sequence: OUTPUT4 Il,12,13,14,15//V,N,Pl/V,N,P2 $ D. Input Data...ON O .S. 5 4 ~ .. O 3. DUMOD3 A. Entry Point: DUMOD3 B. NASTRAN Link: LINK7 C. DMAP Calling Sequence: DUMMOD3 TDB,,,,,,,/MDB,,,,,,,/C,N,Pl/C,N,O $ D

  19. A three-dimensional steady-state thermal analysis of the reactor closure

    International Nuclear Information System (INIS)

    Honda, Mitsugu; Sosa, Yutaka; Otsubo, Toru.

    1991-01-01

    This report summarizes the thermal shield design and the three-dimensional thermal analysis on the upper reactor structures of FBR Monju. The analysis was performed by using NASTRAN taking account of both convective and radiative heat flow. Especially, local heat flow by circumferential natural convection in the annulus gaps was calculated by VANAC (Vertical Annulus Natural Convection Analysis Program) which was confirmed by the scale model experiments. (author)

  20. Thermal Investigation in the Cappadocia Region, Central Anatolia-Turkey, Analyzing Curie Point Depth, Geothermal Gradient, and Heat-Flow Maps from the Aeromagnetic Data

    Science.gov (United States)

    Bilim, Funda; Kosaroglu, Sinan; Aydemir, Attila; Buyuksarac, Aydin

    2017-12-01

    In this study, curie point depth (CPD), heat flow, geothermal gradient, and radiogenic heat production maps of the Cappadocian region in central Anatolia are presented to reveal the thermal structure from the aeromagnetic data. The large, circular pattern in these maps matches with previously determined shallow (2 km in average) depression. Estimated CPDs in this depression filled with loose volcano-clastics and ignimbrite sheets of continental Neogene units vary from 7 to 12 km, while the geothermal gradient increases from 50 to 68 °C/km. Heat flows were calculated using two different conductivity coefficients of 2.3 and 2.7 Wm-1 K-1. The radiogenic heat production was also obtained between 0.45 and 0.70 μW m-3 in this area. Heat-flow maps were compared with the previous, regional heat-flow map of Turkey and significant differences were observed. In contrast to linear heat-flow increment through the northeast in the previous map in the literature, produced maps in this study include a large, caldera-like circular depression between Nevsehir, Aksaray, Nigde, and Yesilhisar cities indicating high geothermal gradient and higher heat-flow values. In addition, active deformation is evident with young magmatism in the Neogene and Quaternary times and a large volcanic cover on the surface. Boundaries of volcanic eruption centers and buried large intrusions are surrounded with the maxspots of the horizontal gradients of magnetic anomalies. Analytic signal (AS) map pointing-out exact locations of causative bodies is also presented in this study. Circular region in the combined map of AS and maxspots apparently indicates a possible caldera.

  1. A NASTRAN Vibration Model of the AH-1G Helicopter Airframe. Volume 2

    Science.gov (United States)

    1974-06-01

    finite ele - ment model is explained. The NASTRAN input data deck serves as a major portion of the documentation. **y ii UNCLASSIFIED SECjBlTV...xttX’S.ujet&etrt.LiixtxiXrt *u el nt % ft JJ t t -L r r. T z ’,’TZ;~zzzz.v.zrz.zzxrz**. z z z z z z. ? * z t 9 * T...rtOi\\tA7 ^«>i/,*-»^’***(7>O^**e0’^OrtO^ #3’ — 0*’N*’"— — «O^O-^ÄOOO« Ö K m >g ■»»n — #(*■«■# — ^fg^ oiDO -«*-»- « CO (B ’ *#^ ^i O

  2. A semi-quantitative risk assessment method for analyzing the level of risk associated with parameters in design of thermal heavy oil Steam Assisted Gravity Drainage (SAGD) pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhzad, M.A. [IMV Projects Inc., Alberta (Canada)

    2009-07-01

    During the design stage of a thermal heavy oil pipeline, the design engineer should include the consideration of more factors than what is normally used for the design of a conventional pipeline. In the Steam Assisted Gravity Drainage (SAGD) production, for the extraction of bitumen from oily soil, it is required that a stream of hot and pressurized steam (over 300 deg C) to be injected into the oil reservoir. The steam reaches the oily soil reservoir from a steam sour such as boilers by traveling through above-ground pipeline arrangements. As a result of the steam injection into the well site, bitumen oil is released from the oily soil. The produced bitumen also consists of high pressure and temperature (over 200 deg C) and requires a gathering pipeline arrangement for traveling to the processing plant. During the layout design, both steam injection and hot production lines are usually designed parallel with each other by using a series of anchor-loop-anchor supported by steel structures and pilings. The coexistence of two extremely hot pipelines (Injecting Steam and Production pipelines) on the aboveground pipe rack should be designed with extreme care. The higher than normal design temperature of these lines creates considerable lateral and longitudinal movements and heavy loads on the supporting structure and piling. In addition, since both lines contain high pressure mediums, the design engineer shall include a few more parameters than what is normally considered for conventional pipelines. These parameters include; sustain loads, slug forces, natural frequency, mechanical interactions, frictional forces on anchors and guides, and mechanical engagement of supporting components, as well as the effects of these loads on the steel structure-piling and their reaction with the surrounding soil. In addition the design engineer shall be aware of any potential failures associated with these physical and mechanical parameters, the impact and probability rationales and

  3. A NASTRAN/TREETOPS solution to a flexible, multi-body dynamics and controls problem on a UNIX workstation

    Science.gov (United States)

    Benavente, Javier E.; Luce, Norris R.

    1989-01-01

    Demands for nonlinear time history simulations of large, flexible multibody dynamic systems has created a need for efficient interfaces between finite-element modeling programs and time-history simulations. One such interface, TREEFLX, an interface between NASTRAN and TREETOPS, a nonlinear dynamics and controls time history simulation for multibody structures, is presented and demonstrated via example using the proposed Space Station Mobile Remote Manipulator System (MRMS). The ability to run all three programs (NASTRAN, TREEFLX and TREETOPS), in addition to other programs used for controller design and model reduction (such as DMATLAB and TREESEL, both described), under a UNIX Workstation environment demonstrates the flexibility engineers now have in designing, developing and testing control systems for dynamically complex systems.

  4. Comparison of NASTRAN analysis with ground vibration results of UH-60A NASA/AEFA test configuration

    Science.gov (United States)

    Idosor, Florentino; Seible, Frieder

    1990-01-01

    Preceding program flight tests, a ground vibration test and modal test analysis of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to complement the UH-60A test plan and NASA/ARMY Modern Technology Rotor Airloads Program. The 'NASA/AEFA' shake test configuration was tested for modal frequencies and shapes and compared with its NASTRAN finite element model counterpart to give correlative results. Based upon previous findings, significant differences in modal data existed and were attributed to assumptions regarding the influence of secondary structure contributions in the preliminary NASTRAN modeling. An analysis of an updated finite element model including several secondary structural additions has confirmed that the inclusion of specific secondary components produces a significant effect on modal frequency and free-response shapes and improves correlations at lower frequencies with shake test data.

  5. Solving modal equations of motion with initial conditions using MSC/NASTRAN DMAP. Part 1: Implementing exact mode superposition

    Science.gov (United States)

    Abdallah, Ayman A.; Barnett, Alan R.; Ibrahim, Omar M.; Manella, Richard T.

    1993-01-01

    Within the MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) module TRD1, solving physical (coupled) or modal (uncoupled) transient equations of motion is performed using the Newmark-Beta or mode superposition algorithms, respectively. For equations of motion with initial conditions, only the Newmark-Beta integration routine has been available in MSC/NASTRAN solution sequences for solving physical systems and in custom DMAP sequences or alters for solving modal systems. In some cases, one difficulty with using the Newmark-Beta method is that the process of selecting suitable integration time steps for obtaining acceptable results is lengthy. In addition, when very small step sizes are required, a large amount of time can be spent integrating the equations of motion. For certain aerospace applications, a significant time savings can be realized when the equations of motion are solved using an exact integration routine instead of the Newmark-Beta numerical algorithm. In order to solve modal equations of motion with initial conditions and take advantage of efficiencies gained when using uncoupled solution algorithms (like that within TRD1), an exact mode superposition method using MSC/NASTRAN DMAP has been developed and successfully implemented as an enhancement to an existing coupled loads methodology at the NASA Lewis Research Center.

  6. Solving modal equations of motion with initial conditions using MSC/NASTRAN DMAP. Part 1: Implementing exact mode superposition

    Science.gov (United States)

    Abdallah, Ayman A.; Barnett, Alan R.; Ibrahim, Omar M.; Manella, Richard T.

    1993-05-01

    Within the MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) module TRD1, solving physical (coupled) or modal (uncoupled) transient equations of motion is performed using the Newmark-Beta or mode superposition algorithms, respectively. For equations of motion with initial conditions, only the Newmark-Beta integration routine has been available in MSC/NASTRAN solution sequences for solving physical systems and in custom DMAP sequences or alters for solving modal systems. In some cases, one difficulty with using the Newmark-Beta method is that the process of selecting suitable integration time steps for obtaining acceptable results is lengthy. In addition, when very small step sizes are required, a large amount of time can be spent integrating the equations of motion. For certain aerospace applications, a significant time savings can be realized when the equations of motion are solved using an exact integration routine instead of the Newmark-Beta numerical algorithm. In order to solve modal equations of motion with initial conditions and take advantage of efficiencies gained when using uncoupled solution algorithms (like that within TRD1), an exact mode superposition method using MSC/NASTRAN DMAP has been developed and successfully implemented as an enhancement to an existing coupled loads methodology at the NASA Lewis Research Center.

  7. Investigation of thermal distortion and control of spacecraft based on shape memory materials

    Science.gov (United States)

    Sun, Hongwei; Du, Xingwen; Tan, Huifeng

    2009-07-01

    Gossamer space structures are relatively large, flimsy, and lightweight. As a result, they are more easily affected or distortion by space thermal environments compared to other space structures. This study examines the structural integrity of a Five-Meter Ka-Band Inflatable/Self-Rigidizable Reflect Antenna under space thermal environments. To maintain the required accuracy of the reflector under orbital temperature changes, the Gossamer space structures will utilize an active control system, consisting of boundary control actuators and an electrostatic figure control system with a real time closed loop feedback. An experimental system is established to verify the control mechanism with photogrammetric measurement technique and Bragg fiber grating (FBG) sensor technique. The shape control experiments are finished by measuring and analyzing small amplitude distortion of Five-Meter Ka-Band Inflatable/Self-Rigidizable Reflect Antenna based on the active components made of shape memory alloy (SMA) and shape memory polymer composite (SMPC) material. Then, simulations are finished by NASTRAN finite element software with active effect which is considered to be deformation applied on the analytical model. The amplitude of distortion is obtained by the simulations. Both the experimental and numerical solution show that the amplitude of accuracy are developed which proves the feasibility of shape control using shape memory materials and this investigation explores the feasibility of utilizing an active cable based control system of shape memory materials to reduce global distortion due to thermal loading. It is found that through proper assemble of cable lengths and attachment points, significant thermal distortion reduction is achieved. Specifically, radial distortion due to on-orbit thermal loading .

  8. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    Science.gov (United States)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-01-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  9. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    Science.gov (United States)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-03-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  10. Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS

    Science.gov (United States)

    Turner, Travis L.; Patel, Hemant D.

    2005-01-01

    A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  11. STATIC AND DYNAMIC ANALYSIS UNDER MECHANICAL AND THERMAL LOADS OF THE DOUBLE SCARA ROBOT

    Directory of Open Access Journals (Sweden)

    Iosif TEMPEA

    2016-05-01

    Full Text Available The paper presents a synthesis of the Double SCARA Robot modelling, leading to an optimal solution, from workspace point of view, as well as precision and stability of the endeffector in performing the planned trajectory. For the design of the final mechanism CATIA software has been used, as well as NASTRAN/PATRAN software, for the mechanism analysis under mechanical and thermal loads.

  12. Modal correlation of test and finite element results using cross orthogonality with a reduced mass matrix obtained by modal reduction and NASTRAN's Generalized Dynamic Reduction solution

    Science.gov (United States)

    Krebs, Derek; Budynas, Richard G.

    A common procedure for performing a cross orthogonality check for the purpose of modal correlation between the test and the finite element analysis results incorporates the Guyan reduction method to obtain a reduced mass matrix. This paper describes a procedure which uses NASTRAN's Generalized Dynamic Reduction solution routine which is much more accurate than the standard Guyan reduction solution and which offers the advantage of not requiring the selection of mdof. Using NASTRAN's DMAP programming methods, a modal reduction of the full analytical mass matrix is performed based on the accelerometer locations and the analytical modal matrix results. The accuracy of the procedure is illustrated in two case studies.

  13. Ground shake test of the UH-60A helicopter airframe and comparison with NASTRAN finite element model predictions

    Science.gov (United States)

    Howland, G. R.; Durno, J. A.; Twomey, W. J.

    1990-01-01

    Sikorsky Aircraft, together with the other major helicopter airframe manufacturers, is engaged in a study to improve the use of finite element analysis to predict the dynamic behavior of helicopter airframes, under a rotorcraft structural dynamics program called DAMVIBS (Design Analysis Methods for VIBrationS), sponsored by the NASA-Langley. The test plan and test results are presented for a shake test of the UH-60A BLACK HAWK helicopter. A comparison is also presented of test results with results obtained from analysis using a NASTRAN finite element model.

  14. Investigation of Nonlinear Pressurization and Model Restart in MSC/NASTRAN for Modeling Thin Film Inflatable Structures

    Science.gov (United States)

    Smalley, Kurt B.; Tinker, Michael L.; Fischer, Richard T.

    2001-01-01

    This paper is written for the purpose of providing an introduction and set of guidelines for the use of a methodology for NASTRAN eigenvalue modeling of thin film inflatable structures. It is hoped that this paper will spare the reader from the problems and headaches the authors were confronted with during their investigation by presenting here not only an introduction and verification of the methodology, but also a discussion of the problems that this methodology can ensue. Our goal in this investigation was to verify the basic methodology through the creation and correlation of a simple model. An overview of thin film structures, their history, and their applications is given. Previous modeling work is then briefly discussed. An introduction is then given for the method of modeling. The specific mechanics of the method are then discussed in parallel with a basic discussion of NASTRAN s implementation of these mechanics. The problems encountered with the method are then given along with suggestions for their work-a-rounds. The methodology is verified through the correlation between an analytical model and modal test results of a thin film strut. Recommendations are given for the needed advancement of our understanding of this method and ability to accurately model thin film structures. Finally, conclusions are drawn regarding the usefulness of the methodology.

  15. Implementation of the Golla-Hughes-McTavish (GHM) method for viscoelastic materials using MATLAB and NASTRAN

    Science.gov (United States)

    Gibson, Warren C.; Smith, Christian A.; McTavish, Donald J.

    1995-05-01

    Representation of frequency-dependent viscoelastic material properties has long been problematical in the frequency domain and especially in the time domain. The method of Golla, Hughes, and McTavish (GHM) addresses this problem with a Laplace-domain model of the complex material modulus, in which a number of parameters are determined by curve- fitting to experimental data. The result is well suited to finite element formulations because the equations of motion retain the familiar second-order, constant-coefficient form, at the expense of some extra scalar degrees of freedom. This paper reports on an implementation of GHM in MATLAB, using FEM data imported from NASTRAN. Sample problems demonstrate the efficacy and practicality of the method.

  16. Solving modal equations of motion with initial conditions using MSC/NASTRAN DMAP. Part 2: Coupled versus uncoupled integration

    Science.gov (United States)

    Barnett, Alan R.; Ibrahim, Omar M.; Abdallah, Ayman A.; Sullivan, Timothy L.

    1993-05-01

    By utilizing MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) in an existing NASA Lewis Research Center coupled loads methodology, solving modal equations of motion with initial conditions is possible using either coupled (Newmark-Beta) or uncoupled (exact mode superposition) integration available within module TRD1. Both the coupled and newly developed exact mode superposition methods have been used to perform transient analyses of various space systems. However, experience has shown that in most cases, significant time savings are realized when the equations of motion are integrated using the uncoupled solver instead of the coupled solver. Through the results of a real-world engineering analysis, advantages of using the exact mode superposition methodology are illustrated.

  17. Solving Modal Equations of Motion with Initial Conditions Using MSC/NASTRAN DMAP. Part 2; Coupled Versus Uncoupled Integration

    Science.gov (United States)

    Barnett, Alan R.; Ibrahim, Omar M.; Abdallah, Ayman A.; Sullivan, Timothy L.

    1993-01-01

    By utilizing MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) in an existing NASA Lewis Research Center coupled loads methodology, solving modal equations of motion with initial conditions is possible using either coupled (Newmark-Beta) or uncoupled (exact mode superposition) integration available within module TRD1. Both the coupled and newly developed exact mode superposition methods have been used to perform transient analyses of various space systems. However, experience has shown that in most cases, significant time savings are realized when the equations of motion are integrated using the uncoupled solver instead of the coupled solver. Through the results of a real-world engineering analysis, advantages of using the exact mode superposition methodology are illustrated.

  18. Input Files and Procedures for Analysis of SMA Hybrid Composite Beams in MSC.Nastran and ABAQUS

    Science.gov (United States)

    Turner, Travis L.; Patel, Hemant D.

    2005-01-01

    A thermoelastic constitutive model for shape memory alloys (SMAs) and SMA hybrid composites (SMAHCs) was recently implemented in the commercial codes MSC.Nastran and ABAQUS. The model is implemented and supported within the core of the commercial codes, so no user subroutines or external calculations are necessary. The model and resulting structural analysis has been previously demonstrated and experimentally verified for thermoelastic, vibration and acoustic, and structural shape control applications. The commercial implementations are described in related documents cited in the references, where various results are also shown that validate the commercial implementations relative to a research code. This paper is a companion to those documents in that it provides additional detail on the actual input files and solution procedures and serves as a repository for ASCII text versions of the input files necessary for duplication of the available results.

  19. Plan, execute, and discuss vibration measurements and correlations to evaluate a NASTRAN finite element model of the AH-64 helicopter airframe

    Science.gov (United States)

    Ferg, D.; Foote, L.; Korkosz, G.; Straub, F.; Toossi, M.; Weisenburger, R.

    1990-01-01

    A ground vibration test was performed on the AH-64 (Apache) helicopter to determine the frequency response of the airframe. The structure was excited at both the main and tail rotor hubs, separately, and response measurements were taken at 102 locations throughout the fuselage structure. Frequency responses were compared and correlated with results from a NASTRAN finite element model of AH-64. In addition, natural frequencies and mode shapes were estimated from the frequency response data and were correlated with analytical results.

  20. Stiffness-generated rigid-body mode shapes for Lanczos eigensolution with SUPORT DOF by way of a MSC/NASTRAN DMAP alter

    Science.gov (United States)

    Abdallah, Ayman A.; Barnett, Alan R.; Widrick, Timothy W.; Manella, Richard T.; Miller, Robert P.

    1994-01-01

    When using all MSC/NASTRAN eigensolution methods except Lanczos, the analyst can replace the coupled system rigid-body modes calculated within DMAP module READ with mass orthogonalized and normalized rigid-body modes generated from the system stiffness. This option is invoked by defining MSC/NASTRAN r-set degrees of freedom via the SUPORT bulk data card. The newly calculated modes are required if the rigid-body modes calculated by the eigensolver are not 'clean' due to numerical roundoffs in the solution. When performing transient structural dynamic load analysis, the numerical roundoffs can result in inaccurate rigid-body accelerations which affect steady-state responses. Unfortunately, when using the Lanczos method and defining r-set degrees of freedom, the rigid-body modes calculated within DMAP module REIGL are retained. To overcome this limitation and to allow MSC/NASTRAN to handle SUPORT degrees of freedom identically for all eigensolvers, a DMAP Alter has been written which replaces Lanczos-calculated rigid-body modes with stiffness-generated rigid-body modes. The newly generated rigid-body modes are normalized with respect to the system mass and orthogonalized using the Gram-Schmidt technique. This algorithm has been implemented as an enhancement to an existing coupled loads methodology.

  1. Stiffness-generated rigid-body mode shapes for Lanczos eigensolution with SUPORT DOF by way of a MSC/NASTRAN DMAP alter

    Science.gov (United States)

    Abdallah, Ayman A.; Barnett, Alan R.; Widrick, Timothy W.; Manella, Richard T.; Miller, Robert P.

    1994-03-01

    When using all MSC/NASTRAN eigensolution methods except Lanczos, the analyst can replace the coupled system rigid-body modes calculated within DMAP module READ with mass orthogonalized and normalized rigid-body modes generated from the system stiffness. This option is invoked by defining MSC/NASTRAN r-set degrees of freedom via the SUPORT bulk data card. The newly calculated modes are required if the rigid-body modes calculated by the eigensolver are not 'clean' due to numerical roundoffs in the solution. When performing transient structural dynamic load analysis, the numerical roundoffs can result in inaccurate rigid-body accelerations which affect steady-state responses. Unfortunately, when using the Lanczos method and defining r-set degrees of freedom, the rigid-body modes calculated within DMAP module REIGL are retained. To overcome this limitation and to allow MSC/NASTRAN to handle SUPORT degrees of freedom identically for all eigensolvers, a DMAP Alter has been written which replaces Lanczos-calculated rigid-body modes with stiffness-generated rigid-body modes. The newly generated rigid-body modes are normalized with respect to the system mass and orthogonalized using the Gram-Schmidt technique. This algorithm has been implemented as an enhancement to an existing coupled loads methodology.

  2. Study of high gain spherical shell ICF targets containing uniform layers of liquid deuterium tritium fuel. A numericial model for analyzing thermal layering of liquid mixtures of hydrogen isotopes inside a spherical inertial confinement fusion target: Final report

    International Nuclear Information System (INIS)

    Simpson, E.M.; Kim, Kyekyoon

    1994-05-01

    A numerical model has been developed to describe the thermally induced behavior of a liquid layer of hydrogen isotopes inside a spherical Inertial Confinement Fusion (ICF) target and to calculate the far-field temperature gradient which will sustain a uniform liquid layer. This method is much faster than the trial-and-error method previously employed. The governing equations are the equations of continuity, momentum, energy, mass diffusion-convection, and conservation of the individual isotopic species. Ordinary and thermal diffusion equations for the diffusion of fluxes of the species are included. These coupled equations are solved by a finite-difference method using upwind schemes, variable mesh, and rigorous boundary conditions. The solution methodology unique to the present problem is discussed in detail. in particular, the significance of the surface tension gradient driven flows (also called Marangoni flows) in forming uniform liquid layers inside ICF targets is demonstrated. Using the theoretical model, the values of the externally applied thermal gradients that give rise to uniform liquid layers of hydrogen inside a cryogenic spherical-shell ICF target are calculated, and the results compared with the existing experimental data

  3. MSC/NASTRAN DMAP Alter Used for Closed-Form Static Analysis With Inertia Relief and Displacement-Dependent Loads

    Science.gov (United States)

    1996-01-01

    Solving for the displacements of free-free coupled systems acted upon by static loads is a common task in the aerospace industry. Often, these problems are solved by static analysis with inertia relief. This technique allows for a free-free static analysis by balancing the applied loads with the inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus the displacement-dependent loads. A launch vehicle being acted upon by an aerodynamic loading can have such applied loads. The final displacements of such systems are commonly determined with iterative solution techniques. Unfortunately, these techniques can be time consuming and labor intensive. Because the coupled system equations for free-free systems with displacement-dependent loads can be written in closed form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. An MSC/NASTRAN (MacNeal-Schwendler Corporation/NASA Structural Analysis) DMAP (Direct Matrix Abstraction Program) Alter was used to include displacement-dependent loads in static analysis with inertia relief. It efficiently solved a common aerospace problem that typically has been solved with an iterative technique.

  4. Closed-form Static Analysis with Inertia Relief and Displacement-Dependent Loads Using a MSC/NASTRAN DMAP Alter

    Science.gov (United States)

    Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.

    1995-01-01

    Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.

  5. Closed-form static analysis with inertia relief and displacement-dependent loads using a MSC/NASTRAN DMAP Alter

    Science.gov (United States)

    Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.

    1995-01-01

    Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.

  6. Thermal Remote Anemometer Device

    Science.gov (United States)

    Heyman, Joseph S.; Heath, D. Michele; Winfree, William P.; Miller, William E.; Welch, Christopher S.

    1988-01-01

    Thermal Remote Anemometer Device developed for remote, noncontacting, passive measurement of thermal properties of sample. Model heated locally by scanning laser beam and cooled by wind in tunnel. Thermal image of model analyzed to deduce pattern of airflow around model. For materials applications, system used for evaluation of thin films and determination of thermal diffusivity and adhesive-layer contact. For medical applications, measures perfusion through skin to characterize blood flow and used to determine viabilities of grafts and to characterize tissues.

  7. Analyzing Peace Pedagogies

    Science.gov (United States)

    Haavelsrud, Magnus; Stenberg, Oddbjorn

    2012-01-01

    Eleven articles on peace education published in the first volume of the Journal of Peace Education are analyzed. This selection comprises peace education programs that have been planned or carried out in different contexts. In analyzing peace pedagogies as proposed in the 11 contributions, we have chosen network analysis as our method--enabling…

  8. Miniature mass analyzer

    CERN Document Server

    Cuna, C; Lupsa, N; Cuna, S; Tuzson, B

    2003-01-01

    The paper presents the concept of different mass analyzers that were specifically designed as small dimension instruments able to detect with great sensitivity and accuracy the main environmental pollutants. The mass spectrometers are very suited instrument for chemical and isotopic analysis, needed in environmental surveillance. Usually, this is done by sampling the soil, air or water followed by laboratory analysis. To avoid drawbacks caused by sample alteration during the sampling process and transport, the 'in situ' analysis is preferred. Theoretically, any type of mass analyzer can be miniaturized, but some are more appropriate than others. Quadrupole mass filter and trap, magnetic sector, time-of-flight and ion cyclotron mass analyzers can be successfully shrunk, for each of them some performances being sacrificed but we must know which parameters are necessary to be kept unchanged. To satisfy the miniaturization criteria of the analyzer, it is necessary to use asymmetrical geometries, with ion beam obl...

  9. Analog multivariate counting analyzers

    CERN Document Server

    Nikitin, A V; Armstrong, T P

    2003-01-01

    Characterizing rates of occurrence of various features of a signal is of great importance in numerous types of physical measurements. Such signal features can be defined as certain discrete coincidence events, e.g. crossings of a signal with a given threshold, or occurrence of extrema of a certain amplitude. We describe measuring rates of such events by means of analog multivariate counting analyzers. Given a continuous scalar or multicomponent (vector) input signal, an analog counting analyzer outputs a continuous signal with the instantaneous magnitude equal to the rate of occurrence of certain coincidence events. The analog nature of the proposed analyzers allows us to reformulate many problems of the traditional counting measurements, and cast them in a form which is readily addressed by methods of differential calculus rather than by algebraic or logical means of digital signal processing. Analog counting analyzers can be easily implemented in discrete or integrated electronic circuits, do not suffer fro...

  10. Nuclear plant analyzer desktop workstation

    International Nuclear Information System (INIS)

    Beelman, R.J.

    1990-01-01

    In 1983 the U.S. Nuclear Regulatory Commission (USNRC) commissioned the Idaho National Engineering Laboratory (INEL) to develop a Nuclear Plant Analyzer (NPA). The NPA was envisioned as a graphical aid to assist reactor safety analysts in comprehending the results of thermal-hydraulic code calculations. The development was to proceed in three distinct phases culminating in a desktop reactor safety workstation. The desktop NPA is now complete. The desktop NPA is a microcomputer based reactor transient simulation, visualization and analysis tool developed at INEL to assist an analyst in evaluating the transient behavior of nuclear power plants by means of graphic displays. The NPA desktop workstation integrates advanced reactor simulation codes with online computer graphics allowing reactor plant transient simulation and graphical presentation of results. The graphics software, written exclusively in ANSI standard C and FORTRAN 77 and implemented over the UNIX/X-windows operating environment, is modular and is designed to interface to the NRC's suite of advanced thermal-hydraulic codes to the extent allowed by that code. Currently, full, interactive, desktop NPA capabilities are realized only with RELAP5

  11. Analyzing Stereotypes in Media.

    Science.gov (United States)

    Baker, Jackie

    1996-01-01

    A high school film teacher studied how students recognized messages in film, examining how film education could help students identify and analyze racial and gender stereotypes. Comparison of students' attitudes before and after the film course found that the course was successful in raising students' consciousness. (SM)

  12. Centrifugal analyzer development

    International Nuclear Information System (INIS)

    Burtis, C.A.; Bauer, M.L.; Bostick, W.D.

    1976-01-01

    The development of the centrifuge fast analyzer (CFA) is reviewed. The development of a miniature CFA with computer data analysis is reported and applications for automated diagnostic chemical and hematological assays are discussed. A portable CFA system with microprocessor was adapted for field assays of air and water samples for environmental pollutants, including ammonia, nitrates, nitrites, phosphates, sulfates, and silica. 83 references

  13. Americal options analyzed differently

    NARCIS (Netherlands)

    Nieuwenhuis, J.W.

    2003-01-01

    In this note we analyze in a discrete-time context and with a finite outcome space American options starting with the idea that every tradable should be a martingale under a certain measure. We believe that in this way American options become more understandable to people with a good working

  14. Finite-element analysis of elastic sound-proof coupling thermal state

    Science.gov (United States)

    Tsyss, V. G.; Strokov, I. M.; Sergaeva, M. Yu

    2018-01-01

    The aim is in calculated determining of the elastic rubber-metal element thermal state of soundproof coupling ship shafting under variable influence during loads in time. Thermal coupling calculation is performed with finite element method using NX Simens software with Nastran solver. As a result of studies, the following results were obtained: - a volumetric picture of the temperature distribution over the array of the deformed coupling body is obtained; - time to reach steady-state thermal coupling mode has been determined; - dependences of maximum temperature and time to reach state on the established operation mode on rotation frequency and ambient temperature are determined. The findings prove the conclusion that usage of finite element analysis modern software can significantly speed up problem solving.

  15. Analyzed Using Statistical Moments

    International Nuclear Information System (INIS)

    Oltulu, O.

    2004-01-01

    Diffraction enhanced imaging (DEl) technique is a new x-ray imaging method derived from radiography. The method uses a monorheumetten x-ray beam and introduces an analyzer crystal between an object and a detector Narrow angular acceptance of the analyzer crystal generates an improved contrast over the evaluation radiography. While standart radiography can produce an 'absorption image', DEl produces 'apparent absorption' and 'apparent refraction' images with superior quality. Objects with similar absorption properties may not be distinguished with conventional techniques due to close absorption coefficients. This problem becomes more dominant when an object has scattering properties. A simple approach is introduced to utilize scattered radiation to obtain 'pure absorption' and 'pure refraction' images

  16. Charged particle analyzer PLAZMAG

    International Nuclear Information System (INIS)

    Apathy, Istvan; Endroeczy, Gabor; Szemerey, Istvan; Szendroe, Sandor

    1985-01-01

    The scientific task of the charged particle analyzer PLAZMAG, a part of the VEGA space probe, and the physical background of the measurements are described. The sensor of the device face the Sun and the comet Halley measuring the energy and mass spectrum of ion and electron components of energies lower than 25 keV. The tasks of the individual electronic parts, the design aspects and the modes of operation in different phases of the flight are dealt with. (author)

  17. Fractional channel multichannel analyzer

    Science.gov (United States)

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  18. Plutonium solution analyzer

    International Nuclear Information System (INIS)

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded)

  19. Ring Image Analyzer

    Science.gov (United States)

    Strekalov, Dmitry V.

    2012-01-01

    Ring Image Analyzer software analyzes images to recognize elliptical patterns. It determines the ellipse parameters (axes ratio, centroid coordinate, tilt angle). The program attempts to recognize elliptical fringes (e.g., Newton Rings) on a photograph and determine their centroid position, the short-to-long-axis ratio, and the angle of rotation of the long axis relative to the horizontal direction on the photograph. These capabilities are important in interferometric imaging and control of surfaces. In particular, this program has been developed and applied for determining the rim shape of precision-machined optical whispering gallery mode resonators. The program relies on a unique image recognition algorithm aimed at recognizing elliptical shapes, but can be easily adapted to other geometric shapes. It is robust against non-elliptical details of the image and against noise. Interferometric analysis of precision-machined surfaces remains an important technological instrument in hardware development and quality analysis. This software automates and increases the accuracy of this technique. The software has been developed for the needs of an R&TD-funded project and has become an important asset for the future research proposal to NASA as well as other agencies.

  20. Plutonium solution analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  1. Analyzing Water's Optical Absorption

    Science.gov (United States)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  2. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  3. Downhole Fluid Analyzer Development

    Energy Technology Data Exchange (ETDEWEB)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  4. PULSE HEIGHT ANALYZER

    Science.gov (United States)

    Johnstone, C.W.

    1958-01-21

    An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

  5. Analyzing Spacecraft Telecommunication Systems

    Science.gov (United States)

    Kordon, Mark; Hanks, David; Gladden, Roy; Wood, Eric

    2004-01-01

    Multi-Mission Telecom Analysis Tool (MMTAT) is a C-language computer program for analyzing proposed spacecraft telecommunication systems. MMTAT utilizes parameterized input and computational models that can be run on standard desktop computers to perform fast and accurate analyses of telecommunication links. MMTAT is easy to use and can easily be integrated with other software applications and run as part of almost any computational simulation. It is distributed as either a stand-alone application program with a graphical user interface or a linkable library with a well-defined set of application programming interface (API) calls. As a stand-alone program, MMTAT provides both textual and graphical output. The graphs make it possible to understand, quickly and easily, how telecommunication performance varies with variations in input parameters. A delimited text file that can be read by any spreadsheet program is generated at the end of each run. The API in the linkable-library form of MMTAT enables the user to control simulation software and to change parameters during a simulation run. Results can be retrieved either at the end of a run or by use of a function call at any time step.

  6. Soft Decision Analyzer

    Science.gov (United States)

    Steele, Glen; Lansdowne, Chatwin; Zucha, Joan; Schlensinger, Adam

    2013-01-01

    The Soft Decision Analyzer (SDA) is an instrument that combines hardware, firmware, and software to perform realtime closed-loop end-to-end statistical analysis of single- or dual- channel serial digital RF communications systems operating in very low signal-to-noise conditions. As an innovation, the unique SDA capabilities allow it to perform analysis of situations where the receiving communication system slips bits due to low signal-to-noise conditions or experiences constellation rotations resulting in channel polarity in versions or channel assignment swaps. SDA s closed-loop detection allows it to instrument a live system and correlate observations with frame, codeword, and packet losses, as well as Quality of Service (QoS) and Quality of Experience (QoE) events. The SDA s abilities are not confined to performing analysis in low signal-to-noise conditions. Its analysis provides in-depth insight of a communication system s receiver performance in a variety of operating conditions. The SDA incorporates two techniques for identifying slips. The first is an examination of content of the received data stream s relation to the transmitted data content and the second is a direct examination of the receiver s recovered clock signals relative to a reference. Both techniques provide benefits in different ways and allow the communication engineer evaluating test results increased confidence and understanding of receiver performance. Direct examination of data contents is performed by two different data techniques, power correlation or a modified Massey correlation, and can be applied to soft decision data widths 1 to 12 bits wide over a correlation depth ranging from 16 to 512 samples. The SDA detects receiver bit slips within a 4 bits window and can handle systems with up to four quadrants (QPSK, SQPSK, and BPSK systems). The SDA continuously monitors correlation results to characterize slips and quadrant change and is capable of performing analysis even when the

  7. Thermal Management and Thermal Protection Systems

    Science.gov (United States)

    Hasnain, Aqib

    2016-01-01

    During my internship in the Thermal Design Branch (ES3), I contributed to two main projects: i) novel passive thermal management system for future human exploration, ii) AVCOAT undercut thermal analysis. i) As NASA prepares to further expand human and robotic presence in space, it is well known that spacecraft architectures will be challenged with unprecedented thermal environments. Future exploration activities will have the need of thermal management systems that can provide higher reliability, mass and power reduction and increased performance. In an effort to start addressing the current technical gaps the NASA Johnson Space Center Passive Thermal Discipline has engaged in technology development activities. One of these activities was done through an in-house Passive Thermal Management System (PTMS) design for a lunar lander. The proposed PTMS, functional in both microgravity and gravity environments, consists of three main components: a heat spreader, a novel hybrid wick Variable Conductance Heat Pipe (VCHP), and a radiator. The aim of this PTMS is to keep electronics on a vehicle within their temperature limits (0 and 50 C for the current design) during all mission phases including multiple lunar day/night cycles. The VCHP was tested to verify its thermal performance. I created a thermal math model using Thermal Desktop (TD) and analyzed it to predict the PTMS performance. After testing, the test data provided a means to correlate the thermal math model. This correlation took into account conduction and convection heat transfer, representing the actual benchtop test. Since this PTMS is proposed for space missions, a vacuum test will be taking place to provide confidence that the system is functional in space environments. Therefore, the model was modified to include a vacuum chamber with a liquid nitrogen shroud while taking into account conduction and radiation heat transfer. Infrared Lamps were modelled and introduced into the model to simulate the sun

  8. Low-temperature thermal expansion

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed

  9. Simulation of Thermal Signature of Tires and Tracks

    Science.gov (United States)

    2012-08-01

    convection, and radiation, are taken into account. The geometry and meshing information are imported in the format of Nastran from Hypermesh. The...Unclassified Page 4 of 13 The three-dimensional (3D) tire geometry is created by Hypermesh, and then exported as Nastran format including

  10. Multichannel analyzer development in CAMAC

    International Nuclear Information System (INIS)

    Nagy, J.Z.; Zarandy, A.

    1988-01-01

    The data acquisition in TOKAMAK experiments some CAMAC modules have been developed. The modules are the following: 64 K analyzer memory, 32 K analyzer memory, 6-channel pulse peak analyzer memory which contains the 32 K analyzer memory and eight AD-converters

  11. Characterization of a Hall Effect Thruster Using Thermal Imaging

    National Research Council Canada - National Science Library

    Tomaszewski, James W

    2007-01-01

    .... Therefore, thermal information was gathered and analyzed in order to better understand the thermal characteristics of an operating thruster and to provide data applicable to improving the thruster...

  12. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available wider range of temperature limits, saving energy while still satisfying the majority of building occupants. It is also noted that thermal comfort varies significantly between individuals and it is generally not possible to provide a thermal environment...

  13. Development of a nuclear plant analyzer (NPA)

    International Nuclear Information System (INIS)

    De Vlaminck, M.; Mampaey, L.; Vanhoenacker, L.; Bastenaire, F.

    1990-01-01

    A Nuclear Plant Analyzer has been developed by TRACTABEL. Three distinct functional units make up the Nuclear Plant Analyser, a model builder, a run time unit and an analysis unit. The model builder is intended to build simulation models which describe on the one hand the geometric structure and initial conditions of a given plant and on the other hand command control logics and reactor protection systems. The run time unit carries out dialog between the user and the thermal-hydraulic code. The analysis unit is aimed at deep analyzing of the transient results. The model builder is being tested in the framework of the International Standard Problem ISP-26, which is the simulation of a LOCA on the Japanese ROSA facility

  14. PM 3655 PHILIPS Logic analyzer

    CERN Multimedia

    A logic analyzer is an electronic instrument that captures and displays multiple signals from a digital system or digital circuit. A logic analyzer may convert the captured data into timing diagrams, protocol decodes, state machine traces, assembly language, or may correlate assembly with source-level software. Logic Analyzers have advanced triggering capabilities, and are useful when a user needs to see the timing relationships between many signals in a digital system.

  15. Digital Multi Channel Analyzer Enhancement

    International Nuclear Information System (INIS)

    Gonen, E.; Marcus, E.; Wengrowicz, U.; Beck, A.; Nir, J.; Sheinfeld, M.; Broide, A.; Tirosh, D.

    2002-01-01

    A cement analyzing system based on radiation spectroscopy had been developed [1], using novel digital approach for real-time, high-throughput and low-cost Multi Channel Analyzer. The performance of the developed system had a severe problem: the resulted spectrum suffered from lack of smoothness, it was very noisy and full of spikes and surges, therefore it was impossible to use this spectrum for analyzing the cement substance. This paper describes the work carried out to improve the system performance

  16. Model of thermal conductivity of anisotropic nanodiamond

    International Nuclear Information System (INIS)

    Dudnik, S.F.; Kalinichenko, A.I.; Strel'nitskij, V.E.

    2014-01-01

    Dependence of thermal conductivity of nanocrystalline diamond on grain size and shape is theoretically investigated. Nanodiamond is considered as two-phase material composed of diamond grains characterizing by three main dimensions and segregated by thin graphite layers with electron, phonon or hybrid thermal conductivity. Influence of type of thermal conductance and thickness of boundary layer on thermal conductivity of nanodiamond is analyzed. Derived dependences of thermal conductivity on grain dimensions are compared with experimental data

  17. Thermal springs of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, R.M.; Hinckley, B.S.

    1978-01-01

    This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

  18. Multichannel analyzer type CMA-3

    International Nuclear Information System (INIS)

    Czermak, A.; Jablonski, J.; Ostrowicz, A.

    1978-01-01

    Multichannel analyzer CMA-3 is designed for two-parametric analysis with operator controlled logical windows. It is implemented in CAMAC standard. A single crate contains all required modules and is controlled by the PDP-11/10 minicomputer. Configuration of CMA-3 is shown. CMA-3 is the next version of the multichannel analyzer described in report No 958/E-8. (author)

  19. Comparison of fiber length analyzers

    Science.gov (United States)

    Don Guay; Nancy Ross Sutherland; Walter Rantanen; Nicole Malandri; Aimee Stephens; Kathleen Mattingly; Matt Schneider

    2005-01-01

    In recent years, several fiber new fiber length analyzers have been developed and brought to market. The new instruments provide faster measurements and the capability of both laboratory and on-line analysis. Do the various fiber analyzers provide the same length, coarseness, width, and fines measurements for a given fiber sample? This paper provides a comparison of...

  20. Thermal Stress

    Science.gov (United States)

    2011-01-01

    and Science in Sports and Exercise 37: 1328--1334. Coris EE, Ramirez AM, and Van Durme DJ (2004) Heat illness in athletes : The dangerous combination...of heat, humidity and exercise. Sports Medicine 34: 9--16. Gordon CJ and Leon LR (2005) Thermal stress and the physiological response to environmental...code) 2011 Book Chapter-Enc. of Environmental Health Thermal Stress L.R. Leon, C.J. Gordon Thermal and Mountain Medicine Division U.S. Research

  1. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  2. Nuclear fuel microsphere gamma analyzer

    International Nuclear Information System (INIS)

    Valentine, K.H.; Long, E.L. Jr.; Willey, M.G.

    1977-01-01

    A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties. 4 claims, 3 figures

  3. Thermalized axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ricardo Z.; Notari, Alessio, E-mail: rferreira@icc.ub.edu, E-mail: notari@ub.edu [Departament de Física Quàntica i Astrofísica i Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona (Spain)

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton φ to gauge fields of the form φ F F-tilde / f , as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= φ-dot /(2 fH ), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H , due to the very large occupation numbers, and create a thermal bath of particles of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξ∼>2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξ∼>3.4; however, observations require ξ∼>6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of T {sub eq} ≅ ξ H / g-bar where g-bar is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if φ is thermal and find that the tensor to scalar ratio is suppressed by H /(2 T ), if tensors do not thermalize.

  4. Market study: Whole blood analyzer

    Science.gov (United States)

    1977-01-01

    A market survey was conducted to develop findings relative to the commercialization potential and key market factors of the whole blood analyzer which is being developed in conjunction with NASA's Space Shuttle Medical System.

  5. CSTT Update: Fuel Quality Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, Eric L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Roger W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rockward, Tommy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Christopher J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Stefan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilson, Mahlon S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-06

    These are slides from a presentation. The following topics are covered: project background (scope and approach), developing the prototype (timeline), update on intellectual property, analyzer comparisons (improving humidification, stabilizing the baseline, applying clean-up strategy, impact of ionomer content and improving clean-up), proposed operating mode, considerations for testing in real-world conditions (Gen 1 analyzer electronics development, testing partner identified, field trial planning), summary, and future work.

  6. Thermal conductivity and thermal diffusivity

    International Nuclear Information System (INIS)

    Hust, J.G.

    1983-01-01

    This chapter examines the heat transfer properties of solids, with emphasis on the behavior of pure metals and alloys. Topics considered include electronic conduction, magnetic field effects, lattice conduction, measuring methods, specimen size, uncertainty, thermal anchoring, radial heat loss, thermal conductivity apparatus, thermal diffusivity apparatus, empirical correlations, the Wiedemann-Franz-Lorenz law, Matthiessen's rule, low-temperature correlation, predictive techniques, crystalline dielectrics, and disordered dielectrics. The materials examined include copper, aluminium, binary alloys, structural alloys, and structural composites

  7. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  8. Development of a transportable gas analyzer: thermal desorber / micro gas chromatograph / mass spectrometer coupling (m-TD / m-GC / MS). Application to on-line analysis of volatile organic compounds at traces level; Developpement d'un analyseur de gaz transportable: couplage thermodesorbeur / micro-chromatographe / spectrometre de masse (m-TD / m-CG / SM). Application a l'analyse en ligne des composes organiques volatils a l'etat de traces

    Energy Technology Data Exchange (ETDEWEB)

    Cozic, R.

    2004-06-01

    Volatile organic compounds (VOC) play a central part in the photochemical pollution of the atmosphere. Monitoring of these products in air became a need, because of their toxicity. Currently, traditional analytical methods of air have drawbacks. Instruments are too specific or the technique consists in trapping pollutants and then to turn over the sample to the laboratory for analysis. The subject of the thesis is the development of an on-site analytical technique, offering new prospects for air analysis. The developed transportable analyzer results from the coupling of a thermal desorber (m-TD), a micro gas chromatograph (m-GC) and a mass spectrometer (MS). The instrument makes it possible, in a few minutes, to perform qualitative and quantitative analysis of a very broad range of VOC at traces level. An example of on-site application of the analyzer relates to the monitoring of working atmospheres. (author)

  9. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  10. Compact analyzer: an interactive simulator

    International Nuclear Information System (INIS)

    Ipakchi, A.; Khadem, M.; Colley, R.W.

    1985-01-01

    Compact Analyzer is a computer system that combines dynamic simulation models with interactive and color graphics user interface functions to provide a cost-effective simulator for dynamic analysis and evaluation of power plant operation, with engineering and training applications. Most dynamic simulation packages such as RETRAN and TRAC are designed for a batch-mode operation. With advancements in computer technology and man/machine interface capabilities, it is possible to integrate such codes with interactive and graphic functions into advanced simulators. The US Nuclear Regulatory Commission has sponsored development of plant analyzers with such characteristics. The Compact Analyzer is an Electric Power Research Institute (EPRI)-sponsored project, which currently utilizes the EPRI modular modeling system (MMS) for process simulation, and uses an adaptable color graphic package for dynamic display of the simulation results

  11. On-Demand Urine Analyzer

    Science.gov (United States)

    Farquharson, Stuart; Inscore, Frank; Shende, Chetan

    2010-01-01

    A lab-on-a-chip was developed that is capable of extracting biochemical indicators from urine samples and generating their surface-enhanced Raman spectra (SERS) so that the indicators can be quantified and identified. The development was motivated by the need to monitor and assess the effects of extended weightlessness, which include space motion sickness and loss of bone and muscle mass. The results may lead to developments of effective exercise programs and drug regimes that would maintain astronaut health. The analyzer containing the lab-on-a- chip includes materials to extract 3- methylhistidine (a muscle-loss indicator) and Risedronate (a bone-loss indicator) from the urine sample and detect them at the required concentrations using a Raman analyzer. The lab-on- a-chip has both an extractive material and a SERS-active material. The analyzer could be used to monitor the onset of diseases, such as osteoporosis.

  12. Multichannel analyzer embedded in FPGA

    International Nuclear Information System (INIS)

    Garcia D, A.; Hernandez D, V. M.; Vega C, H. R.; Ordaz G, O. O.; Bravo M, I.

    2017-10-01

    Ionizing radiation has different applications, so it is a very significant and useful tool, which in turn can be dangerous for living beings if they are exposed to uncontrolled doses. However, due to its characteristics, it cannot be perceived by any of the senses of the human being, so that in order to know the presence of it, radiation detectors and additional devices are required to quantify and classify it. A multichannel analyzer is responsible for separating the different pulse heights that are generated in the detectors, in a certain number of channels; according to the number of bits of the analog to digital converter. The objective of the work was to design and implement a multichannel analyzer and its associated virtual instrument, for nuclear spectrometry. The components of the multichannel analyzer were created in VHDL hardware description language and packaged in the Xilinx Vivado design suite, making use of resources such as the ARM processing core that the System on Chip Zynq contains and the virtual instrument was developed on the LabView programming graphics platform. The first phase was to design the hardware architecture to be embedded in the FPGA and for the internal control of the multichannel analyzer the application was generated for the ARM processor in C language. For the second phase, the virtual instrument was developed for the management, control and visualization of the results. The data obtained as a result of the development of the system were observed graphically in a histogram showing the spectrum measured. The design of the multichannel analyzer embedded in FPGA was tested with two different radiation detection systems (hyper-pure germanium and scintillation) which allowed determining that the spectra obtained are similar in comparison with the commercial multichannel analyzers. (Author)

  13. Analyzing Generation Y Workforce Motivation

    Science.gov (United States)

    2011-03-01

    Analyzing Generation Y Workforce Motivation Ian N. Barford n Patrick T. Hester R Defense AT&L: Special Edition: March –April 2011 36 Report...REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Analyzing Generation Y Workforce Motivation 5a. CONTRACT NUMBER 5b...between 1965 and 1979), and Generation Y (born between 1980 and 2000). 37 Defense AT&L: Special Edition: March –April 2011 Defense AT&L: Special

  14. Thermal conductivity model for nanofiber networks

    Science.gov (United States)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  15. Thermal conductivity model for nanofiber networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-28

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  16. The security analyzer: A security analyzer program written in Prolog

    International Nuclear Information System (INIS)

    Zimmerman, B.D.; Densley, P.J.

    1986-09-01

    The Security Analyzer is a software tool capable of analyzing the effectiveness of a facility's security system. It is written in the Prolog logic programming computer language, using entity-relationship data modeling techniques. The program performs the following functions: (1) provides descriptive, locational and operational status information about intrusion detectors and assessment devices (i.e., ''sensors'' and ''cameras'') upon request; (2) provides for storage and retrieval of maintenance history information for various components of the security system (including intrusion detectors), and allows for changing that information as desired; (3) provides a ''search'' mode, wherein all paths are found from any specified physical location to another specified location which satisfy user chosen ''intruder detection'' probability and elapsed time criteria (i.e., the program finds the ''weakest paths'' from a security point of view). The first two of these functions can be provided fairly easily with a conventional database program; the third function could be provided using Fortran or some similar language, though with substantial difficulty. In the Security Analyzer program, all these functions are provided in a simple and straight-forward manner. This simplicity is possible because the program is written in the symbolic (as opposed to numeric) processing language Prolog, and because the knowledge base is structured according to entity-relationship modeling principles. Also, the use of Prolog and the entity-relationship modeling technique allows the capabilities of the Security analyzer program, both for knowledge base interrogation and for searching-type operations, to be easily expanded in ways that would be very difficult for a numeric and more algorithmically deterministic language such as Fortran to duplicate. 4 refs

  17. Historical Thinking: Analyzing Student and Teacher Ability to Analyze Sources

    OpenAIRE

    Cowgill II, Daniel Armond; Waring, Scott M.

    2017-01-01

    The purpose of this study was to partially replicate the Historical Problem Solving: A Study of the Cognitive Process Using Historical Evidence study conducted by Sam Wineburg in 1991. The Historical Problem Solving study conducted by Wineburg (1991) sought to compare the ability of historians and top level students, as they analyzed pictures and written documents centered on the Battle of Lexington Green. In this version of the study, rather than compare historians and students, we sought ...

  18. Pollution Analyzing and Monitoring Instruments.

    Science.gov (United States)

    1972

    Compiled in this book is basic, technical information useful in a systems approach to pollution control. Descriptions and specifications are given of what is available in ready made, on-the-line commercial equipment for sampling, monitoring, measuring and continuously analyzing the multitudinous types of pollutants found in the air, water, soil,…

  19. Methods of analyzing crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Jjunju, Fred Paul Mark; Li, Anyin; Rogan, Iman S.

    2017-08-15

    The invention generally relates to methods of analyzing crude oil. In certain embodiments, methods of the invention involve obtaining a crude oil sample, and subjecting the crude oil sample to mass spectrometry analysis. In certain embodiments, the method is performed without any sample pre-purification steps.

  20. Analyzing Software Piracy in Education.

    Science.gov (United States)

    Lesisko, Lee James

    This study analyzes the controversy of software piracy in education. It begins with a real world scenario that presents the setting and context of the problem. The legalities and background of software piracy are explained and true court cases are briefly examined. Discussion then focuses on explaining why individuals and organizations pirate…

  1. The Convertible Arbitrage Strategy Analyzed

    NARCIS (Netherlands)

    Loncarski, I.; Ter Horst, J.R.; Veld, C.H.

    2006-01-01

    This paper analyzes convertible bond arbitrage on the Canadian market for the period 1998 to 2004.Convertible bond arbitrage is the combination of a long position in convertible bonds and a short position in the underlying stocks. Convertible arbitrage has been one of the most successful strategies

  2. 21 CFR 868.1720 - Oxygen gas analyzer.

    Science.gov (United States)

    2010-04-01

    ... gases by techniques such as mass spectrometry, polarography, thermal conductivity, or gas chromatography... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen gas analyzer. 868.1720 Section 868.1720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  3. 21 CFR 868.1075 - Argon gas analyzer.

    Science.gov (United States)

    2010-04-01

    ... thermal conductivity. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...

  4. 21 CFR 868.1670 - Neon gas analyzer.

    Science.gov (United States)

    2010-04-01

    ... patient. The device may use techniques such as mass spectrometry or thermal conductivity. (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neon gas analyzer. 868.1670 Section 868.1670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...

  5. 21 CFR 868.1640 - Helium gas analyzer.

    Science.gov (United States)

    2010-04-01

    ... mixture during pulmonary function testing. The device may use techniques such as thermal conductivity, gas... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Helium gas analyzer. 868.1640 Section 868.1640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  6. Analyzer for gamma cameras diagnostic

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Osorio Deliz, J. F.; Diaz Garcia, A.

    2013-01-01

    This research work was carried out to develop an analyzer for gamma cameras diagnostic. It is composed of an electronic system that includes hardware and software capabilities, and operates from the acquisition of the 4 head position signals of a gamma camera detector. The result is the spectrum of the energy delivered by nuclear radiation coming from the camera detector head. This system includes analog processing of position signals from the camera, digitization and the subsequent processing of the energy signal in a multichannel analyzer, sending data to a computer via a standard USB port and processing of data in a personal computer to obtain the final histogram. The circuits are composed of an analog processing board and a universal kit with micro controller and programmable gate array. (Author)

  7. New approach to analyzing vulnerability

    International Nuclear Information System (INIS)

    O'Callaghan, P.B.; Carlson, R.L.; Riedeman, G.W.

    1986-01-01

    The Westinghouse Hanford Company (WHC) has recently completed construction of the Fuel Cycle Plant (FCP) at Richland, Washington. At start-up the facility will fabricate driver fuel for the Fast Flux Test Facility in the Secure Automated Fabrication line. After construction completion, but before facility certification, the Department of Energy (DOE) Richland Operation Office requested that a vulnerability analysis be performed which assumed multiple insiders as a threat to the security system. A unique method of analyzing facility vulnerabilities was developed at the Security Applications Center (SAC), which is managed by WHC for DOE. The method that was developed verifies a previous vulnerability assessment, as well as introducing a modeling technique which analyzes security alarms in relation to delaying factors and possible insider activities. With this information it is possible to assess the relative strength or weakness of various possible routes to and from a target within a facility

  8. Methods for Analyzing Social Media

    DEFF Research Database (Denmark)

    Jensen, Jakob Linaa

    2013-01-01

    Social media is becoming increasingly attractive for users. It is a fast way to communicate ideas and a key source of information. It is therefore one of the most influential mediums of communication of our time and an important area for audience research. The growth of social media invites many...... new questions such as: How can we analyze social media? Can we use traditional audience research methods and apply them to online content? Which new research strategies have been developed? Which ethical research issues and controversies do we have to pay attention to? This book focuses on research...... strategies and methods for analyzing social media and will be of interest to researchers and practitioners using social media, as well as those wanting to keep up to date with the subject....

  9. Portable Tandem Mass Spectrometer Analyzer

    Science.gov (United States)

    1991-07-01

    FILE : MHCI TUNE TABLE 84 (SCANNING with PARENT) SCAN RANGE 10.9 TO 700.0 TUNE MASS 355.0 (AUTO) >LENS 1-3 -13. 88 0. 2: POFF - 1. 2 9: COFF - 4. 1 3...and 500 ng of caffeine in I uL of chloroform by GC/A?:,,MS using negative ions. Also analyzed were barbiturates, extracted from urine, in the 3-5 Mg

  10. Remote Laser Diffraction PSD Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2000-06-01

    Particle size distribution (PSD) analysis of radioactive slurry samples were obtained using a modified "off-the-shelf" classical laser light scattering particle size analyzer. A Horiba Instruments Inc. Model La-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a "hot cell" (gamma radiation) environment. The general details of the modifications to this analyzer are presented in this paper. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not achievable - making this technology far superior than the traditional methods used previously. Remote deployment and utilization of this technology is in an exploratory stage. The risk of malfunction in this radiation environment is countered by gaining of this tremendously useful fundamental engineering data. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  11. Remote Laser Diffraction PSD Analyzer

    International Nuclear Information System (INIS)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2000-01-01

    Particle size distribution (PSD) analysis of radioactive slurry samples were obtained using a modified ''off-the-shelf'' classical laser light scattering particle size analyzer. A Horiba Instruments Inc. Model La-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a ''hot cell'' (gamma radiation) environment. The general details of the modifications to this analyzer are presented in this paper. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not achievable--making this technology far superior than the traditional methods used previously. Remote deployment and utilization of this technology is in an exploratory stage. The risk of malfunction in this radiation environment is countered by gaining of this tremendously useful fundamental engineering data. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives

  12. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  13. Remote Laser Diffraction PSD Analyzer

    International Nuclear Information System (INIS)

    Batcheller, T.A.; Huestis, G.M.; Bolton, S.M.

    2000-01-01

    Particle size distribution (PSD) analysis of radioactive slurry samples were obtained using a modified off-the-shelf classical laser light scattering particle size analyzer. A Horiba Instruments Inc. Model La-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a hot cell (gamma radiation) environment. The general details of the modifications to this analyzer are presented in this paper. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not achievable - making this technology far superior than the traditional methods used previously. Remote deployment and utilization of this technology is in an exploratory stage. The risk of malfunction in this radiation environment is countered by gaining of this tremendously useful fundamental engineering data. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives

  14. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach.

    Science.gov (United States)

    Cheung, Mike W-L; Jak, Suzanne

    2016-01-01

    Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists-and probably the most crucial one-is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study.

  15. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach

    Science.gov (United States)

    Cheung, Mike W.-L.; Jak, Suzanne

    2016-01-01

    Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists—and probably the most crucial one—is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study. PMID:27242639

  16. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach

    Directory of Open Access Journals (Sweden)

    Mike W.-L. Cheung

    2016-05-01

    Full Text Available Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists – and probably the most crucial one – is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study.

  17. Charged particle mobility refrigerant analyzer

    Science.gov (United States)

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  18. Fuel analyzer; Analisador de combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Cozzolino, Roberval [RS Motors, Indaiatuba, SP (Brazil)

    2008-07-01

    The current technology 'COMBUSTIMETRO' aims to examine the fuel through performance of the engine, as the role of the fuel is to produce energy for the combustion engine in the form of which is directly proportional to the quality and type of fuel. The 'COMBUSTIMETRO' has an engine that always keeps the same entry of air, fuel and fixed point of ignition. His operation is monitored by sensors (Sonda Lambda, RPM and Gases Analyzer) connected to a processor that performs calculations and records the information, generate reports and graphs. (author)

  19. Historical Thinking: Analyzing Student and Teacher Ability to Analyze Sources

    Directory of Open Access Journals (Sweden)

    Daniel Armond Cowgill II

    2017-05-01

    Full Text Available The purpose of this study was to partially replicate the Historical Problem Solving: A Study of the Cognitive Process Using Historical Evidence study conducted by Sam Wineburg in 1991. The Historical Problem Solving study conducted by Wineburg (1991 sought to compare the ability of historians and top level students, as they analyzed pictures and written documents centered on the Battle of Lexington Green. In this version of the study, rather than compare historians and students, we sought out to compare the analytical skills of teachers and students. The main findings relate to the fact that the participants lacked the ability to engage in the very complex activities associated with historical inquiry and the utilization of primary sources in learning about the past. This lack of ability should be used to improve teacher professional development programs and help them develop the skills needed to not only engage in historical evaluation themselves but to also develop skills that will allow them to instruct students to do the same.

  20. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... and operators to navigate the complex and varied world of standards in the field of thermal environment for improving indoor environmental quality and energy saving. The examples discussed in the paper will also be useful for the standardization, leading to harmonized documents more readable for all users....... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...

  1. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  2. Matrix thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-08

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  3. Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation

    International Nuclear Information System (INIS)

    Hong, Seok Min; Lee, Jang Il; Byun, Jae Ki; Choi, Young Don

    2014-01-01

    Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties

  4. Thermal Comfort On Subtropical And Mediterranean Climate Analyzing Some Physiological Data Through Fuzzy Theory [conforto Térmico De Bovinos Leiteiros Confinados Em Clima Subtropical E Mediterrâneo Pela Análise De Parâmetros Fisiológicos Utilizando A Teoria Dos Conjuntos Fuzzy

    OpenAIRE

    Perissinotto M.; Moura D.J.; Cruz V.F.; de Souza S.R.L.; de Lima K.A.O.; Mendes A.S.

    2009-01-01

    The objective of this study was to model and evaluate, through fuzzy logic, the level of thermal comfort experienced by housed animals as a function of their physiologic variables of rectal temperature (RT) and breath rate (BR), and setting their critical thresholds. The database was setup using two distinct environments: Subtropical climate (São Pedro area, Brazil) and mediterranean climate (Évora area, Portugal). Holstein cows temperature and breath rates were obtained in order to build a p...

  5. Thermal Ignition

    Science.gov (United States)

    Boettcher, Philipp Andreas

    sufficiently rapidly undergoes only a moderate amount of thermal decomposition and explodes quite violently. This behavior can also be captured and analyzed using a one-step reaction model, where the heat release is in competition with the depletion of reactants. Hot surface ignition is examined using a glow plug or heated nickel element in a series of premixed n-hexane air mixtures. High-speed schlieren photography, a thermocouple, and a fast response pressure transducer are used to record flame characteristics such as ignition temperature, flame speed, pressure rises, and combustion mode. The ignition event is captured by considering the dominant balance of diffusion and chemical reaction that occurs near a hot surface. Experiments and models show a dependence of ignition temperature on mixture composition, initial pressure, and hot surface size. The mixtures exhibit the known lower flammability limit where the maximum temperature of the hot surface was insufficient at igniting the mixture. Away from the lower flammability limit, the ignition temperature drops to an almost constant value over a wide range of equivalence ratios (0.7 to 2.8) with large variations as the upper flammability limit is approached. Variations in the initial pressure and equivalence ratio also give rise to different modes of combustion: single flame, re-ignition, and puffing flames. These results are successfully compared to computational results obtained using a flamelet model and a detailed chemical mechanism for n-heptane. These different regimes can be delineated by considering the competition between inertia, i.e., flame propagation, and buoyancy, which can be expressed in the Richardson number. In experiments of hot surface ignition and subsequent flame propagation a 10 Hz puffing flame instability is visible in mixtures that are stagnant and premixed prior to the ignition sequence. By varying the size of the hot surface, power input, and combustion vessel volume, we determined that the

  6. Radiation energy detector and analyzer

    International Nuclear Information System (INIS)

    Roberts, T.G.

    1981-01-01

    A radiation detector array and a method for measuring the spectral content of radiation. The radiation sensor or detector is an array or stack of thin solid-electrolyte batteries. The batteries, arranged in a stack, may be composed of independent battery cells or may be arranged so that adjacent cells share a common terminal surface. This common surface is possible since the polarity of the batteries with respect to an adjacent battery is unrestricted, allowing a reduction in component parts of the assembly and reducing the overall stack length. Additionally, a test jig or chamber for allowing rapid measurement of the voltage across each battery is disclosed. A multichannel recorder and display may be used to indicate the voltage gradient change across the cells, or a small computer may be used for rapidly converting these voltage readings to a graph of radiation intensity versus wavelength or energy. The behavior of the batteries when used as a radiation detector and analyzer are such that the voltage measurements can be made at leisure after the detector array has been exposed to the radiation, and it is not necessary to make rapid measurements as is now done

  7. Thomson parabola ion energy analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James A [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Letzring, Samuel A [Los Alamos National Laboratory; Lopez, Frank E [Los Alamos National Laboratory; Offermann, Dustin T [Los Alamos National Laboratory; Oertel, John A [Los Alamos National Laboratory; Mastrosimone, Dino [UNIV OF ROCHESTER

    2010-01-01

    A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed and constructed for use at the OMEGA-EP facility. Multi-MeV ions from EP targets are transmitted through a W pinhole into a (5- or 8-kG) magnetic field and subsequently through a parallel electric field of up to 30 kV/cm. The ion drift region may have a user-selected length of 10, 50, or 80 cm. With the highest fields, 500-Me V C{sup 6+} and C{sup 5+} may be resolved. TPIE is TIM-mounted at OMEGA-EP and is qualified in all existing TIMs. The instrument runs on pressure-interlocked 15-VDC power available in EP TIM carts. It may be inserted to within several inches of the target to attain sufficient flux for a measurement. For additional flux control, the user may select a square-aperture W pinhole of 0.004-inch or 0.010-inch. The detector consists of CR-39 backed by an image plate. The fully relativistic design code and design features are discussed. Ion spectral results from first use at OMEGA-EP are expected.

  8. Analyzing Design Heating Loads in Superinsulated Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-16

    The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) worked with the EcoVillage cohousing community in Ithaca, New York, on the Third Residential EcoVillage Experience neighborhood. This communityscale project consists of 40 housing units—15 apartments and 25 single-family residences. Units range in size from 450 ft2 to 1,664 ft2 and cost from $80,000 for a studio apartment to $235,000 for a three- or four-bedroom single-family home. For the research component of this project, CARB analyzed current heating system sizing methods for superinsulated homes in cold climates to determine if changes in building load calculation methodology should be recommended. Actual heating energy use was monitored and compared to results from the Air Conditioning Contractors of America’s Manual J8 (MJ8) and the Passive House Planning Package software. Results from that research indicate that MJ8 significantly oversizes heating systems for superinsulated homes and that thermal inertia and internal gains should be considered for more accurate load calculations.

  9. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)

  10. Thermal Clothing

    Science.gov (United States)

    1997-01-01

    Gateway Technologies, Inc. is marketing and developing textile insulation technology originally developed by Triangle Research and Development Corporation. The enhanced thermal insulation stems from Small Business Innovation Research contracts from NASA's Johnson Space Center and the U.S. Air Force. The effectiveness of the insulation comes from the microencapsulated phase-change materials originally made to keep astronauts gloved hands warm. The applications for the product range from outer wear, housing insulation, and blankets to protective firefighting gear and scuba diving suits. Gateway has developed and begun marketing thermal regulating products under the trademark, OUTLAST. Products made from OUTLAST are already on the market, including boot and shoe liners, winter headgear, hats and caps for hunting and other outdoor sports, and a variety of men's and women's ski gloves.

  11. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  12. Modelling chaotic vibrations using NASTRAN

    Science.gov (United States)

    Sheerer, T. J.

    1993-01-01

    Due to the unavailability and, later, prohibitive cost of the computational power required, many phenomena in nonlinear dynamic systems have in the past been addressed in terms of linear systems. Linear systems respond to periodic inputs with periodic outputs, and may be characterized in the time domain or in the frequency domain as convenient. Reduction to the frequency domain is frequently desireable to reduce the amount of computation required for solution. Nonlinear systems are only soluble in the time domain, and may exhibit a time history which is extremely sensitive to initial conditions. Such systems are termed chaotic. Dynamic buckling, aeroelasticity, fatigue analysis, control systems and electromechanical actuators are among the areas where chaotic vibrations have been observed. Direct transient analysis over a long time period presents a ready means of simulating the behavior of self-excited or externally excited nonlinear systems for a range of experimental parameters, either to characterize chaotic behavior for development of load spectra, or to define its envelope and preclude its occurrence.

  13. Thermal-mechanical deformation modelling of soft tissues for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar

    2014-01-01

    Modeling of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical deformations of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical deformations of soft tissues. The 3D governing equations of thermal-mechanical soft tissue deformation are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.

  14. Photovoltaic Thermal panels in collective thermal solar systems

    International Nuclear Information System (INIS)

    Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.; De Lange, E.T.N.; Smit, W.F.

    2003-12-01

    A feasibility study has been carried out to assess the options to apply photovoltaic/thermal panels (PVT-panels) in collective solar thermal systems in urban areas in the Netherlands. The study was focused on the technical (architecture and installations) and the economical feasibility of collective PVT-systems in comparison with conventional solar thermal systems and combinations of photovoltaic (PV) panels and solar collectors. The results of the study also give insight into cost and the market for PVT-panels. Three case studies in which collective solar collector systems were applied are analyzed again by simulating the installation of a PVT-panels system and a separate solar thermal PV system [nl

  15. 4D thermal imaging system for medical applications

    OpenAIRE

    SKALA, KAROLJ; LIPIĆ, TOMISLAV; SOVIĆ, IVAN; GJENERO, LUKO; GRUBIŠIĆ, IVAN

    2011-01-01

    The dissipation of thermal radiation can be observed using thermal infrared cameras which generate images based on the amount of input radiation belonging to a small part of the electromagnetic spectrum (with wavelengths from 7 μmto 15 μm). Since thermal imaging is a simple, contactless, non-invasive and inexpensive imaging method, it is widely applicable in industry, medicine and research. The most common type of thermal imaging involves taking and analyzing only a single thermal image, a...

  16. Thermal properties

    Science.gov (United States)

    Roger M. Rowell

    2005-01-01

    The traditional question at the start of a class on thermal properties of wood is, “Does wood burn?” The students have all been warmed in front of a wood-burning fire before, so they are sure the answer is yes—but since the professor asked the question, there must be some hidden trick to the obvious answer. Going with their experience, their answer is “yes, wood burns...

  17. Thermal insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  18. Efeito do tratamento térmico na microestrutura, turbostraticidade e superfície de carbono vítreo reticulado analisado por XPS, espalhamento Raman e voltametria cíclica Thermal treatment effect on the microstructure, turbostraticity, and surface of reticulated vitreous carbon analyzed by xps, Raman scattering, and cyclic voltammetry

    OpenAIRE

    Emerson Sarmento Gonçalves; Mirabel Cerqueira Rezende; Maurício Ribeiro Baldan; Neidenêi Gomes Ferreira

    2009-01-01

    The structural and surface properties of reticulated vitreous carbon (RVC) were discussed as a function of its heat treatment temperature (HTT), for samples produced in the range from 700 to 2000 ºC, using the furfuryl precursor resin. The samples were analyzed by x-ray photoelectron spectroscopy, first and second order Raman scattering as well as electrochemical response. Exploring the material turbostraticity concept, the interdependence between the RVC chemical surface variation and its de...

  19. Effects of thermal fluctuations on thermal inflation

    OpenAIRE

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun'ichi

    2014-01-01

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these ...

  20. Adaptation of thermal power plants

    NARCIS (Netherlands)

    Bogmans, Christian W.J.; Dijkema, Gerard P.J.; Vliet, van Michelle T.H.

    2017-01-01

    When does climate change information lead to adaptation? We analyze thermal power plant adaptation by means of investing in water-saving (cooling) technology to prevent a decrease in plant efficiency and load reduction. A comprehensive power plant investment model, forced with downscaled climate

  1. ENDF/B Thermal Data Testing

    CERN Document Server

    McCrosson, F J

    2001-01-01

    The thermal data testing group is concerned with establishing the merit of ENDF/B cross sections for the analysis of thermal systems. The integral experiments used in the testing are designed to analyze each of the phenomena identified in the familiar four-factor formula. For brevity, only the testing of the cross sections in uranium systems is described in this report.

  2. Conforto térmico de bovinos leiteiros confinados em clima subtropical e mediterrâneo pela análise de parâmetros fisiológicos utilizando a teoria dos conjuntos fuzzy Thermal comfort on Subtropical and Mediterranean climate analyzing some physiological data through fuzzy theory

    Directory of Open Access Journals (Sweden)

    Maurício Perissinotto

    2009-08-01

    Full Text Available Os objetivos deste estudo foram modelar e avaliar, pelo uso da lógica fuzzy, a sensação de conforto térmico de animais confinados em função das variáveis fisiológicas temperatura retal (TR e frequência respiratória (FR, determinando os intervalos críticos dessas variáveis. O banco de dados foi formado em dois ambientes distintos: clima subtropical (Município de São Pedro, Brasil e clima mediterrâneo (Município de Évora, Portugal. Para a formação do banco de dados fisiológicos, foram obtidos dados de TR e FR de vacas holandesas. Para a análise física do ambiente, foram utilizados dados de estações meteorológicas com leituras de temperatura e umidade relativa do ar realizadas a cada 30 min, ao longo de 24 horas. No processo inicial de análise dos dados, foi utilizada a técnica de Mineração de Dados com o objetivo de formar uma árvore de decisão para a indução de regras. Para isso, foi utilizado o programa computacional WEKA®. Os resultados obtidos foram posteriormente utilizados na aplicação da lógica fuzzy, em que foi utilizado o software Fuzzy Logic Toolbox do MATLAB® 6.1, seguindo as recomendações de AMENDOLA et al. (2005b. A utilização dessa ferramenta permitiu estabelecer alguns parâmetros ideais de conforto aos bovinos leiteiros da raça Holandesa em lactação manejados em condição de confinamento total.The objective of this study was to model and evaluate, through fuzzy logic, the level of thermal comfort experienced by housed animals as a function of their physiologic variables of rectal temperature (RT and breath rate (BR, and setting their critical thresholds. The database was setup using two distinct environments: Subtropical climate (São Pedro area, Brazil and mediterranean climate (Évora area, Portugal. Holstein cows temperature and breath rates were obtained in order to build a physiologic parameters database. meteorological data of environment temperature and air relative humidity were

  3. Efeito do tratamento térmico na microestrutura, turbostraticidade e superfície de carbono vítreo reticulado analisado por XPS, espalhamento Raman e voltametria cíclica Thermal treatment effect on the microstructure, turbostraticity, and surface of reticulated vitreous carbon analyzed by xps, Raman scattering, and cyclic voltammetry

    Directory of Open Access Journals (Sweden)

    Emerson Sarmento Gonçalves

    2009-01-01

    Full Text Available The structural and surface properties of reticulated vitreous carbon (RVC were discussed as a function of its heat treatment temperature (HTT, for samples produced in the range from 700 to 2000 ºC, using the furfuryl precursor resin. The samples were analyzed by x-ray photoelectron spectroscopy, first and second order Raman scattering as well as electrochemical response. Exploring the material turbostraticity concept, the interdependence between the RVC chemical surface variation and its defects were demonstrated. The influence of heteroatom presence was discussed in the material ordering for HTT lower than 1300 ºC while the graphitization process evolution was also pointed out for HTT higher than 1500 ºC.

  4. Thermal Analysis of Solar Panels

    Science.gov (United States)

    Barth, Nicolas; de Correia, João Pedro Magalhães; Ahzi, Saïd; Khaleel, Mohammad Ahmed

    In this work, we propose to analyze the thermal behavior of PV panels using finite element simulations (FEM). We applied this analysis to compute the temperature distribution in a PV panel BP 350 subjected to different atmospheric conditions. This analysis takes into account existing formulations in the literature and, based on NOCT conditions, meteorological data was used to validate our approach for different wind speed and solar irradiance. The electrical performance of the PV panel was also studied. The proposed 2D FEM analysis is applied to different region's climates and was also used to consider the role of thermal inertia on the optimization of the PV device efficiency.

  5. Seasonal thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  6. Portable Programmable Multifunction Body Fluids Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Liquid Logic proposes to develop a very capable analyzer based on its digital microfluidic technology. Such an analyzer would be:  Capable of both...

  7. Determination of thermal conductivities of some topsoils using block ...

    African Journals Online (AJOL)

    KD2 Thermal Properties Analyzer was used to take instantaneous measurement of thermal conductivities with and without the use of TIM for validation. The results show increase with the application of TIM which follows the same trend with KD2 results .Thermal conductivity increases from 0.68 W/ mK to 0.85W/mK , for clay, ...

  8. Thermal conductivity of zirconia thermal barrier coatings

    Science.gov (United States)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C

  9. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    International Nuclear Information System (INIS)

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David

    2017-01-01

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.

  10. Thermalizing Sterile Neutrino Dark Matter

    Science.gov (United States)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  11. Thermalizing Sterile Neutrino Dark Matter.

    Science.gov (United States)

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  12. Thermal energy storage and transport

    Science.gov (United States)

    Hausz, W.

    1980-01-01

    The extraction of thermal energy from large LWR and coal fired plants for long distance transport to industrial and residential/commercial users is analyzed. Transport of thermal energy as high temperature water is shown to be considerably cheaper than transport as steam, hot oil, or molten salt over a wide temperature range. The delivered heat is competitive with user-generated heat from oil, coal, or electrode boilers at distances well over 50 km when the pipeline operates at high capacity factor. Results indicate that thermal energy storage makes meeting of even very low capacity factor heat demands economic and feasible and gives the utility flexibility to meet coincident electricity and heat demands effectively.

  13. ABOUT THE STUDY OF THE THERMAL STRESS FOR NAVAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    ANASASE PRUIU

    2016-06-01

    Full Text Available In this paper are presented and analyzed the effects of thermal expansion on gas evacuation piping from naval power plants an d technical protection possibilities to prevent structures from deformations; also are analyzed the possibilities for the use of thermal expansion for tightening the main screws for power plant propulsion.

  14. Using expert systems to analyze ATE data

    Science.gov (United States)

    Harrington, Jim

    1994-01-01

    The proliferation of automatic test equipment (ATE) is resulting in the generation of large amounts of component data. Some of this component data is not accurate due to the presence of noise. Analyzing this data requires the use of new techniques. This paper describes the process of developing an expert system to analyze ATE data and provides an example rule in the CLIPS language for analyzing trip thresholds for high gain/high speed comparators.

  15. Electrical spectrum & network analyzers a practical approach

    CERN Document Server

    Helfrick, Albert D

    1991-01-01

    This book presents fundamentals and the latest techniques of electrical spectrum analysis. It focuses on instruments and techniques used on spectrum and network analysis, rather than theory. The book covers the use of spectrum analyzers, tracking generators, and network analyzers. Filled with practical examples, the book presents techniques that are widely used in signal processing and communications applications, yet are difficult to find in most literature.Key Features* Presents numerous practical examples, including actual spectrum analyzer circuits* Instruction on how to us

  16. ADAM: Analyzer for Dialectal Arabic Morphology

    Directory of Open Access Journals (Sweden)

    Wael Salloum

    2014-12-01

    Full Text Available While Modern Standard Arabic (MSA has many resources, Arabic Dialects, the primarily spoken local varieties of Arabic, are quite impoverished in this regard. In this article, we present ADAM (Analyzer for Dialectal Arabic Morphology. ADAM is a poor man’s solution to quickly develop morphological analyzers for dialectal Arabic. ADAM has roughly half the out-of-vocabulary rate of a state-of-the-art MSA analyzer and is comparable in its recall performance to an Egyptian dialectal morphological analyzer that took years and expensive resources to build.

  17. Thermal and structural analysis of a neutralizer plate for the TFTR pumping system

    International Nuclear Information System (INIS)

    Dinkevich, S.; Shaaban, A.

    1983-01-01

    To increase the efficiency of the surface pumping panels installed in the TFTR Vacuum Vessel, it may be possible to add a perpendicular scraper blade (Neutralizer Plate) as a reflector. The blade would extend in the space above the surface pumping panels towards the plasma. The neutralizer plate, being close to the plasma will be subjected by particle's collection to very high heat flux of impulsive and repetitive nature. To define a probable configuration of the blade, thermal and structural analysis was conducted using the finite element method. The NASTRAN code was used for both applications. Three plasma scenarios were considered in this analysis. One of these scenarios resulted in a very steep heat flux gradient that rendered the analysis conspicuously unstable and a new finite element model needed to be developed. This finding is presented and explored in the paper so such an instability could be avoided in future heat transfer analysis by the finite element method. One of the interesting topics presented is a demonstration of how it is possible to shape neutralizer plates by eliminating hot spots that otherwise would adversely affect the plates. Another unexpected finding was the possibility to eliminate the expansion slats in the plate material. The findings reported in this paper will serve to guide future efforts in the analysis and design of neutralizer plates

  18. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    Science.gov (United States)

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  19. Thermal ecology program

    International Nuclear Information System (INIS)

    Murphy, J.C.; Esch, G.W.; Gentry, J.B.

    1975-01-01

    Progress is reported in the following areas of research: effects of thermal effluents on body condition, species diversity, reproduction, growth, and parasitism of fish; fish diversity in post-thermal habitats; effects of thermal effluents on snails and aquatic insects; distribution of macrophyte communities along a shore-line temperature gradient; growth and genetic variation in cattail in thermally altered environments; and population dynamics of thermally resistant plants in a swamp receiving reactor effluent. (U.S.)

  20. Solar thermal electricity generation

    Science.gov (United States)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  1. Analyzing metabolomics-based challenge test

    NARCIS (Netherlands)

    Vis, D.J.; Westerhuis, J.A.; Jacobs, D.M.; van Duynhoven, J.P.M.; Wopereis, S.; van Ommen, B.; Hendriks, M.M.W.B.; Smilde, A.K.

    2015-01-01

    Challenge tests are used to assess the resilience of human beings to perturbations by analyzing responses to detect functional abnormalities. Well known examples are allergy tests and glucose tolerance tests. Increasingly, metabolomics analysis of blood or serum samples is used to analyze the

  2. Measurement of thermal conductivity and thermal diffusivity using a thermoelectric module

    Science.gov (United States)

    Beltrán-Pitarch, Braulio; Márquez-García, Lourdes; Min, Gao; García-Cañadas, Jorge

    2017-04-01

    A proof of concept of using a thermoelectric module to measure both thermal conductivity and thermal diffusivity of bulk disc samples at room temperature is demonstrated. The method involves the calculation of the integral area from an impedance spectrum, which empirically correlates with the thermal properties of the sample through an exponential relationship. This relationship was obtained employing different reference materials. The impedance spectroscopy measurements are performed in a very simple setup, comprising a thermoelectric module, which is soldered at its bottom side to a Cu block (heat sink) and thermally connected with the sample at its top side employing thermal grease. Random and systematic errors of the method were calculated for the thermal conductivity (18.6% and 10.9%, respectively) and thermal diffusivity (14.2% and 14.7%, respectively) employing a BCR724 standard reference material. Although errors are somewhat high, the technique could be useful for screening purposes or high-throughput measurements at its current state. This new method establishes a new application for thermoelectric modules as thermal properties sensors. It involves the use of a very simple setup in conjunction with a frequency response analyzer, which provides a low cost alternative to most of currently available apparatus in the market. In addition, impedance analyzers are reliable and widely spread equipment, which facilities the sometimes difficult access to thermal conductivity facilities.

  3. Time-delay analyzer with continuous discretization

    International Nuclear Information System (INIS)

    Bayatyan, G.L.; Darbinyan, K.T.; Mkrtchyan, K.K.; Stepanyan, S.S.

    1988-01-01

    A time-delay analyzer is described which when triggered by a start pulse of adjustable duration performs continuous discretization of the analyzed signal within nearly 22 ns time intervals, the recording in a memory unit with following slow read-out of the information to the computer and its processing. The time-delay analyzer consists of four CAMAC-VECTOR systems of unit width. With its help one can separate comparatively short, small-amplitude rare signals against the background of quasistationary noise processes. 4 refs.; 3 figs

  4. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  5. Thermal instability during an electrical wire explosion

    International Nuclear Information System (INIS)

    Oreshkin, V. I.

    2008-01-01

    The development of thermal instabilities during an electrical wire explosion is analyzed in the present work based on the methods of small perturbation theory. For two cases, with and without allowance for motion, the dispersion equations are derived that describe a relationship between the instantaneous buildup increment and the axial wave vector component. It is demonstrated that the thermal instabilities are always formed during electrical explosion, irrespective of the explosion mode. There are three destabilizing factors leading to the development of the thermal instabilities: a temperature rise, an increase in the specific resistance with increasing temperature, and an increase in the specific resistance with decreasing density. The critical value of current density below which the sausage instabilities grow faster than the thermal ones and above which, on the contrary, the thermal instabilities are dominant can be found for each metal.

  6. Thermal instability during an electrical wire explosion

    Science.gov (United States)

    Oreshkin, V. I.

    2008-09-01

    The development of thermal instabilities during an electrical wire explosion is analyzed in the present work based on the methods of small perturbation theory. For two cases, with and without allowance for motion, the dispersion equations are derived that describe a relationship between the instantaneous buildup increment and the axial wave vector component. It is demonstrated that the thermal instabilities are always formed during electrical explosion, irrespective of the explosion mode. There are three destabilizing factors leading to the development of the thermal instabilities: a temperature rise, an increase in the specific resistance with increasing temperature, and an increase in the specific resistance with decreasing density. The critical value of current density below which the sausage instabilities grow faster than the thermal ones and above which, on the contrary, the thermal instabilities are dominant can be found for each metal.

  7. Analyze and Improve Lifetime in 3L-NPC Inverter from Power Cycle and Thermal Balance

    DEFF Research Database (Denmark)

    Chen, Quan; Chen, Zhe; Wang, Qunjing

    2014-01-01

    Three-level Neutral-point-clamped (3L-NPC) topology is becoming a realistic alternative to the conventional one in high-voltage and high-power application. Studies show that the power cycling mean time to failure (MTTF) of the semiconductor bond wire in 3L-NPC inverter system may be very short...... under some common conditions. Firstly, this paper shows the impact of some key parameters on power electronic system lifetime according the analysis of semiconductor failure mechanism. Secondly, a switching frequency reduction method based on the position relationship between the flowing current...... and load voltage is applied to reduce power cycle and switching losses. And then, three-level active neutral point-clamped topology is taken into account to wake the most thermo stressed device. In order to validate the improve lifetime method in this paper, a 2MW 3L-NPC converter used in wind energy has...

  8. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species

    Science.gov (United States)

    Haney, P. J.; Badger, J. H.; Buldak, G. L.; Reich, C. I.; Woese, C. R.; Olsen, G. J.

    1999-01-01

    The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50 degrees C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83-92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.

  9. Estimating Thermal Behavior and Analyzing Evolved Species of Adhesives Through Thermogravimetric Analysis combined with Spectrometric Techniques

    OpenAIRE

    Lin, Han Chien; Ohuchi, Takeshi; Murase, Yasuhide

    2004-01-01

    Four tyoes of commercial adhensives, ureaformaldehyde resin adhensives (UF9, malamine-urea formaldehyde copolymer resin adhensives (MUF), phenol firmaldehyde resin adhensives (PF) and diphenylmethane diisocyanate adhensives (MDI) were studied, by first using thermogravimetric analysis (TGA) alone, and then by using thermogravimetric analysis with infrared spectrometry (TGA-IR). Results obtained from the TGA tests found that MDI exhibited the highest initial decomposotion at a temperature of 2...

  10. Thermal modeling of an AFPMSM: A review

    Directory of Open Access Journals (Sweden)

    J. Shazly

    2015-05-01

    Full Text Available This paper presents the axial-flux permanent-magnet synchronous motor (AFPMSM and the history of axial-flux machines. Various machine structures, features of the AFPMSM over the conventional machines and disadvantages are clarified. AFPMSMs are being developed for many applications due to their attractive features; these applications are mentioned. It also reviews the studies of thermal modeling of AFPMSM and the various techniques to analyze the thermal behavior of it.

  11. Thermal diffusivity effect in opto-thermal skin measurements

    International Nuclear Information System (INIS)

    Xiao, P; Imhof, R E; Cui, Y; Ciortea, L I; Berg, E P

    2010-01-01

    We present our latest study on the thermal diffusivity effect in opto-thermal skin measurements. We discuss how thermal diffusivity affects the shape of opto-thermal signal, and how to measure thermal diffusivity in opto-thermal measurements of arbitrary sample surfaces. We also present a mathematical model for a thermally gradient material, and its corresponding opto-thermal signal. Finally, we show some of our latest experimental results of this thermal diffusivity effect study.

  12. Low Gravity Drug Stability Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this proposed program through Phase III is to build a space-worthy Drug Stability Analyzer that can determine the extent of drug degradation. It will be...

  13. On-Demand Urine Analyzer, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this program (through Phase III) is to develop an analyzer that can be integrated into International Space Station (ISS) toilets to measure key...

  14. Low Gravity Drug Stability Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this proposed program (through Phase III) is to build a space-worthy Drug Stability Analyzer that can determine the extent of drug degradation....

  15. Analyzing the economic impacts of transportation projects.

    Science.gov (United States)

    2013-09-01

    The main goal of the study is to explore methods, approaches and : analytical software tools for analyzing economic activity that results from largescale : transportation investments in Connecticut. The primary conclusion is that the : transportation...

  16. Low Gravity Drug Stability Analyzer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this proposed program (through Phase III) is to build a space-worthy Drug Stability Analyzer that can determine the extent of drug degradation....

  17. Guide to analyzing investment options using TWIGS.

    Science.gov (United States)

    Charles R Blinn; Dietmar W. Rose; Monique L. Belli

    1988-01-01

    Describes methods for analyzing economic return of simulated stand management alternatives in TWIGS. Defines and discusses net present value, equivalent annual income, soil expectation value, and real vs. nominal analyses. Discusses risk and sensitivity analysis when comparing alternatives.

  18. Ultrasensitive Atmospheric Analyzer for Miniature UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase I effort, Los Gatos Research (LGR) proposes to develop a highly-accurate, lightweight, low-power gas analyzer for quantification of water vapor...

  19. Analyzing Protein Dynamics Using Dimensionality Reduction

    OpenAIRE

    Eryol, Atahan

    2015-01-01

    This thesis investigates dimensionality reduction for analyzing the dynamics ofprotein simulations, particularly disordered proteins which do not fold into a xedshape but are thought to perform their functions through their movements. Ratherthan analyze the movement of the proteins in 3D space, we use dimensionalityreduction to project the molecular structure of the proteins into a target space inwhich each structure is represented as a point. All that is needed to do this arethe pairwise dis...

  20. Digital dynamic amplitude-frequency spectra analyzer

    International Nuclear Information System (INIS)

    Kalinnikov, V.A.; )

    2006-01-01

    The spectra analyzer is intended for the dynamic spectral analysis of signals physical installations and noise filtering. The recurrence Fourier transformation algorithm is used in the digital dynamic analyzer. It is realized on the basis of the fast logic FPGA matrix and the special signal ADSP microprocessor. The discretization frequency is 2 kHz-10 MHz. The number of calculated spectral coefficients is not less 512. The functional fast-action is 20 ns [ru

  1. FIONA: A new mass analyzer for superheavy elements

    Science.gov (United States)

    Esker, Nicholas; Gates, Jacklyn; Pang, Gregory; Gregorich, Kenneth

    2015-10-01

    Six new superheavy elements (Z = 113 - 118) and over fifty new transactinide isotopes (Z > 104) have been synthesized in compound nuclear fusion reactions using 48Ca beams on actinide targets in the last 15 years. These superheavy elements (SHE) are short-lived and their decay chains end before reaching nuclides with unambiguously determined Z or A. At the LBNL 88'' Cyclotron, we use the Berkeley Gas-Filled Separator (BGS) to study the production and decay of SHE produced at rates of a few atoms per week. The BGS's high beam suppression comes with poor mass resolution and detection is hindered by the high background rates from the proximity to the target and beamstop. Ongoing upgrades to the BGS, including product thermalization and transport, will allow us to couple a mass analyzer to the BGS. Known as FIONA (Fast Identification Of Nuclide A), the analyzer is a mass separator designed for 100% transmission with an expected mass resolution of 2000A/ Δ A. These upgrades will greatly increase sensitivity by delivering mass-separated superheavy element nuclei to a low-background detector system on a 10-ms timescale. The current progress in commissioning the FIONA mass analyzer and the future directions of the project will be presented.

  2. Macroscopic dynamics of thermal nuclear excitations

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Deak, F.; Kiss, A.; Seres, Z.

    1989-11-01

    The concept of kinetic temperature as a local dynamical variable of thermal nuclear collective motion is formulated using long-mean-free-path approach based on the Landau-Vlasov kinetic equation. In the Fermi drop model the thermal fluid dynamics of the spherical nucleus is analyzed. It is shown that in a compressible Fermi liquid the temperature pulses propagate in the form of spherical wave in phase with the acoustic wave. The thermal and compressional excitations are caused by the isotropic harmonic oscillations of the Fermi sphere in momentum space. (author) 25 refs.; 2 figs

  3. Relativistic thermal plasmas - Effects of magnetic fields

    Science.gov (United States)

    Araki, S.; Lightman, A. P.

    1983-01-01

    Processes and equilibria in finite, relativistic, thermal plasmas are investigated, taking into account electron-positron creation and annihilation, photon production by internal processes, and photon production by a magnetic field. Inclusion of the latter extends previous work on such plasmas. The basic relations for thermal, Comptonized synchrotron emission are analyzed, including emission and absorption without Comptonization, Comptonized thermal synchrotron emission, and the Comptonized synchrotron and bremsstrahlung luminosities. Pair equilibria are calculated, including approximations and dimensionless parameters, the pair balance equation, maximum temperatures and field strengths, and individual models and cooling curves.

  4. Thermal cycling in multifilamentary superconducting composites

    International Nuclear Information System (INIS)

    Aragao, E.E.A. de.

    1984-01-01

    NbTi-Cu multifilamentary superconducting composites were embedded, polished, characterized by microscopic techniques, and analyzed in a qualitative and semiquantitative way by energy dispersion technique. The superconductors were submitted to thermal cycling between the ambient temperature and the boiling point of helium (4.2K), for different number of cycles. The aims were to study the correlation between the possible microstructural damages due to thermal stresses arising in the composite during cycling and the variation of properties of the material with the number of cycles as well as to verify the validity of an elastic model for thermal stresses for low temperature cycles. (author)

  5. Thermal stress mitigation by Active Thermal Control

    DEFF Research Database (Denmark)

    Soldati, Alessandro; Dossena, Fabrizio; Pietrini, Giorgio

    2017-01-01

    This work proposes an Active Thermal Control (ATC) of power switches. Leveraging on the fact that thermal stress has wide impact on the system reliability, controlling thermal transients is supposed to lengthen the lifetime of electronic conversion systems. Indeed in some environments......, such as transportation, reliability and lifetime are still obstacles to widespread adoption of electric and electronic actuators, despite a general trend of electrification spreading in many different areas of interest. Active thermal control is attained leaving the electric parameters of load untouched, while acting...... results of control schemes are presented, together with evaluation of the proposed loss models. Experimental proof of the ability of the proposed control to reduce thermal swing and related stress on the device is presented, too....

  6. Development of a test facility for analyzing supercritical fluid blowdown

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D.; Alvim, Antonio C.M., E-mail: thiagodbtr@gmail.com [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Silva, Mario A.B. da, E-mail: mabs500@gmail.com [Universidade Federal de Pernambuco (CTG/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The generation IV nuclear reactors under development mostly use supercritical fluids as the working fluid because higher temperatures improve the thermal efficiency. Supercritical fluids are used by modern nuclear power plants to achieve thermal efficiencies of around 45%. With water as the supercritical working fluid, these plants operate at a high temperature and pressure. However, experiments on supercritical water are limited by technical and financial difficulties. These difficulties can be overcome by using model fluids, which have more feasible supercritical conditions and exhibit a lower critical pressure and temperature. Experimental research is normally used to determine the conditions under which model fluids represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine model fluids that can represent supercritical fluids in a transient state. This paper presents an application of fractional scale analysis to determine the simulation parameters for a depressurization test facility. Carbon dioxide (CO{sub 2}) and R134a gas were considered as the model fluids because their critical point conditions are more feasible than those of water. The similarities of water (prototype), CO{sub 2} (model) and R134a (model) for depressurization in a pressure vessel were analyzed. (author)

  7. Development of a test facility for analyzing supercritical fluid blowdown

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Alvim, Antonio C.M.

    2015-01-01

    The generation IV nuclear reactors under development mostly use supercritical fluids as the working fluid because higher temperatures improve the thermal efficiency. Supercritical fluids are used by modern nuclear power plants to achieve thermal efficiencies of around 45%. With water as the supercritical working fluid, these plants operate at a high temperature and pressure. However, experiments on supercritical water are limited by technical and financial difficulties. These difficulties can be overcome by using model fluids, which have more feasible supercritical conditions and exhibit a lower critical pressure and temperature. Experimental research is normally used to determine the conditions under which model fluids represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine model fluids that can represent supercritical fluids in a transient state. This paper presents an application of fractional scale analysis to determine the simulation parameters for a depressurization test facility. Carbon dioxide (CO 2 ) and R134a gas were considered as the model fluids because their critical point conditions are more feasible than those of water. The similarities of water (prototype), CO 2 (model) and R134a (model) for depressurization in a pressure vessel were analyzed. (author)

  8. Analyzing Design Heating Loads in Superinsulated Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-01

    Super-insulated homes offer many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for super insulated homes.

  9. Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity

    International Nuclear Information System (INIS)

    Cheng Wenlong; Liu Na; Wu Wanfan

    2012-01-01

    In order to overcome the difficulty of conventional phase change materials (PCMs) in packaging, the shape-stabilized PCMs are proposed to be used in the electronic device thermal control. However, the conventional shape-stabilized PCMs have the drawback of lower thermal conductivity, so a new shape-stabilized PCM with high thermal conductivity, which is suitable for thermal control of electronic devices, is prepared. The thermal properties of n-octadecane-based shape-stabilized PCM are tested and analyzed. The heat storage/release performance is studied by numerical simulation. Its thermal control effect for electronic devices is also discussed. The results show that the expanded graphite (EG) can greatly improve the thermal conductivity of the material with little effect on latent heat and phase change temperature. When the mass fraction of EG is 5%, thermal conductivity has reached 1.76 W/(m K), which is over 4 times than that of the original one. Moreover, the material has larger latent heat and good thermal stability. The simulation results show that the material can have good heat storage/release performance. The analysis of the effect of thermal parameters on thermal control effect for electronic devices provides references to the design of phase change thermal control unit. - Highlights: ► A new shape-stabilized PCM with higher thermal conductivity is prepared. ► The material overcomes the packaging difficulty of traditional PCMs used in thermal control unit. ► The EG greatly improves thermal conductivity with little effect on latent heat. ► The material has high thermal stability and good heat storage/release performance. ► The effectiveness of the material for electronic device thermal control is proved.

  10. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  11. Solar Thermal Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Pitsenbarger, J. [eds.

    1996-02-01

    Solar Thermal Energy Technology (PST) announces on a bimonthly basis the current worldwide research and development information that would expand the technology base required for the advancement of solar thermal systems as a significant energy resource.

  12. AND THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Alduhov Oleg Aleksandrovich

    2012-10-01

    Full Text Available Investigation of the atmospheric dispersion as part of the process of selection of sites to accommodate nuclear and thermal power plants is performed to identify concentration fields of emissions and to assess the anthropogenic impact produced on the landscape components and human beings. Scattering properties of the atmospheric boundary layer are mainly determined by the turbulence intensity and the wind field. In its turn, the turbulence intensity is associated with the thermal stratification of the boundary layer. Therefore, research of the atmospheric dispersion is reduced to the study of temperature and wind patterns of the boundary layer. Statistical processing and analysis of the upper-air data involves the input of the data collected by upper-air stations. Until recently, the upper-air data covering the standard period between 1961 and 1970 were applied for these purposes, although these data cannot assure sufficient reliability of assessments in terms of the properties of the atmospheric dispersion. However, recent scientific and technological developments make it possible to substantially increase the data coverage by adding the upper-air data collected within the period between 1964 and 2010. The article has a brief overview of BL_PROGS, a specialized software package designated for the processing of the above data. The software package analyzes the principal properties of the atmospheric dispersion. The use of the proposed software package requires preliminary development of a database that has the information collected by an upper-air station. The software package is noteworthy for the absence of any substantial limitations imposed onto the amount of the input data that may go up in proportion to the amount of the upper-air data collected by upper-air stations.

  13. Structural-Thermal-Optical-Performance (STOP) Model Development and Analysis of a Field-widened Michelson Interferometer

    Science.gov (United States)

    Scola, Salvatore J.; Osmundsen, James F.; Murchison, Luke S.; Davis, Warren T.; Fody, Joshua M.; Boyer, Charles M.; Cook, Anthony L.; Hostetler, Chris A.; Seaman, Shane T.; Miller, Ian J.; hide

    2014-01-01

    An integrated Structural-Thermal-Optical-Performance (STOP) model was developed for a field-widened Michelson interferometer which is being built and tested for the High Spectral Resolution Lidar (HSRL) project at NASA Langley Research Center (LaRC). The performance of the interferometer is highly sensitive to thermal expansion, changes in refractive index with temperature, temperature gradients, and deformation due to mounting stresses. Hand calculations can only predict system performance for uniform temperature changes, under the assumption that coefficient of thermal expansion (CTE) mismatch effects are negligible. An integrated STOP model was developed to investigate the effects of design modifications on the performance of the interferometer in detail, including CTE mismatch, and other three- dimensional effects. The model will be used to improve the design for a future spaceflight version of the interferometer. The STOP model was developed using the Comet SimApp'TM' Authoring Workspace which performs automated integration between Pro-Engineer®, Thermal Desktop®, MSC Nastran'TM', SigFit'TM', Code V'TM', and MATLAB®. This is the first flight project for which LaRC has utilized Comet, and it allows a larger trade space to be studied in a shorter time than would be possible in a traditional STOP analysis. This paper describes the development of the STOP model, presents a comparison of STOP results for simple cases with hand calculations, and presents results of the correlation effort to bench-top testing of the interferometer. A trade study conducted with the STOP model which demonstrates a few simple design changes that can improve the performance seen in the lab is also presented.

  14. Thermal dimension of quantum spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Amelino-Camelia, Giovanni, E-mail: amelino@roma1.infn.it [Dipartimento di Fisica, Università “La Sapienza” and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy); Brighenti, Francesco [Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Dipartimento di Fisica e Astronomia dell' Università di Bologna and Sez. Bologna INFN, Via Irnerio 46, 40126 Bologna (Italy); Gubitosi, Giulia [Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Santos, Grasiele [Dipartimento di Fisica, Università “La Sapienza” and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy)

    2017-04-10

    Recent results suggest that a crucial crossroad for quantum gravity is the characterization of the effective dimension of spacetime at short distances, where quantum properties of spacetime become significant. This is relevant in particular for various scenarios of “dynamical dimensional reduction” which have been discussed in the literature. We are here concerned with the fact that the related research effort has been based mostly on analyses of the “spectral dimension”, which involves an unphysical Euclideanization of spacetime and is highly sensitive to the off-shell properties of a theory. As here shown, different formulations of the same physical theory can have wildly different spectral dimension. We propose that dynamical dimensional reduction should be described in terms of the “thermal dimension” which we here introduce, a notion that only depends on the physical content of the theory. We analyze a few models with dynamical reduction both of the spectral dimension and of our thermal dimension, finding in particular some cases where thermal and spectral dimension agree, but also some cases where the spectral dimension has puzzling properties while the thermal dimension gives a different and meaningful picture.

  15. Temperature-dependent thermal properties of spark plasma sintered alumina

    Directory of Open Access Journals (Sweden)

    Saheb Nouari

    2017-01-01

    Full Text Available In this work, we report temperature-dependent thermal properties of alumina powder and bulk alumina consolidated by spark plasma sintering method. The properties were measured between room temperature and 250ºC using a thermal constants analyzer. Alumina powder had very low thermal properties due to the presence of large pores and absence of bonding between its particles. Fully dense alumina with a relative density of 99.6 % was obtained at a sintering temperature of 1400°C and a holding time of 10 min. Thermal properties were found to mainly dependent on density. Thermal conductivity, thermal diffusivity, and specific heat of the fully dense alumina were 34.44 W/mK, 7.62 mm2s-1, and 1.22 J/gK, respectively, at room temperature. Thermal conductivity and thermal diffusivity decreased while specific heat increased with the increase in temperature from room temperature to 250ºC.

  16. Hysteric behaviour of thermal properties on porous media

    International Nuclear Information System (INIS)

    Rubio, C. M.; Josa, R.; Cobos, D.; Campbell, C.; Ferrer, F.

    2009-01-01

    In order to partly fill the thermal soil properties studies, we focused this work in the relation between thermal and hydrodynamic soil properties for several soil textural classes. This study was divided in two different objective; (i) to determine and to analyze soil thermal and hydrodynamic properties, and (ii) to explore the impacts of hysteresis on soil thermal properties under experimental controlled conditions. Samples were obtained from Llobregat delta plain (Spain). To measure soil thermal properties, simple needle sensors were used. The samples were repacked in a soil column device. Volumetric water content and thermal conductivity were monitored continuously. The results allowed a rather complete understanding of the relation between thermal and hydrodynamic properties at laboratory scale for silt loam soils. Differences in thermal properties at a given water content were interpreted as a results of different hysteretic paths observed, arising in turn from different wetting and drying processes. (Author) 14 refs.

  17. Thermal fluctuations in a hyperscaling-violation background

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, Behnam [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Upadhyay, Sudhaker [Indian Institute of Technology Kharagpur, Centre for Theoretical Studies, Kharagpur (India); Al Asfar, Lina [Universite Blaise Pascal, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France)

    2017-08-15

    In this paper, we study the effect of thermal fluctuations on the thermodynamics of a black geometry with hyperscaling violation. These thermal fluctuations in the thermodynamics of this system are produced from quantum corrections of geometry describing this system. We discuss the stability of this system using specific heat and the entire Hessian matrix of the free energy. We will analyze the effects of thermal fluctuations on the stability of this system. We also analyze the effects of thermal fluctuations on the criticality of the hyperscaling-violation background. (orig.)

  18. Electric Motor Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  19. Thermal conductivity probe

    Science.gov (United States)

    Navickas, J.

    1969-01-01

    Low-mass probe accurately measures the thermal conductivity of polyurethane foam /and other thermal insulating materials/ while exposed to either hydrogen of helium permeation in temperature ranges from ambient to cryogenic. The thermal conductivity of a specimen is determined from an experimentally determined increase in temperature.

  20. Analyzing Log Files using Data-Mining

    Directory of Open Access Journals (Sweden)

    Marius Mihut

    2008-01-01

    Full Text Available Information systems (i.e. servers, applications and communication devices create a large amount of monitoring data that are saved as log files. For analyzing them, a data-mining approach is helpful. This article presents the steps which are necessary for creating an ‘analyzing instrument’, based on an open source software called Waikato Environment for Knowledge Analysis (Weka [1]. For exemplification, a system log file created by a Windows-based operating system, is used as input file.

  1. A Novel Architecture For Multichannel Analyzer

    International Nuclear Information System (INIS)

    Marcus, E.; Elhanani, I.; Nir, J.; Ellenbogen, M.; Kadmon, Y.; Tirosh, D.

    1999-01-01

    A novel digital approach to real-time, high-throughput, low-cost Multichannel Analyzer (MCA) for radiation spectroscopy is being presented. The MCA input is a shaped nuclear pulse sampled at a high rate, using an Analog-to-Digital Converter (ADC) chip. The digital samples are analyzed by a state-of-the-art Field Programmable Gate Away (FPGA). A customized algorithm is utilized to estimate the peak of the pulse, to reject pile-up and to eliminate processing dead time. The valid pulses estimated peaks are transferred to a micro controller system that creates the histogram and controls the Human Machine Interface (HMI)

  2. Advances on CT analyzing urolithiasis constituents

    International Nuclear Information System (INIS)

    Feng Qiang; Ma Zhijun

    2009-01-01

    Urolithiasis is common and frequently-occurring diseases of urology. The treatment of lithiasis is not only relevant with the size, location, brittle and infection of calculi, but also affected by urolithiasis constituents. Knowing the urolithiasis constituents in advance is no doubt to guide treatment. But so far an reliable inspection method was not found to analyze accurately urolithiasis constituents in vivo. CT judge precisely the size, location of calculi and analyze roughly the urolithiasis constituents in vivo, especially the appear of dual soure CT, which provide a new method for studying urolithiasis constituents. It may be helpful to find the cause, prevention and therapy of calculi. (authors)

  3. Empirical mode decomposition for analyzing acoustical signals

    Science.gov (United States)

    Huang, Norden E. (Inventor)

    2005-01-01

    The present invention discloses a computer implemented signal analysis method through the Hilbert-Huang Transformation (HHT) for analyzing acoustical signals, which are assumed to be nonlinear and nonstationary. The Empirical Decomposition Method (EMD) and the Hilbert Spectral Analysis (HSA) are used to obtain the HHT. Essentially, the acoustical signal will be decomposed into the Intrinsic Mode Function Components (IMFs). Once the invention decomposes the acoustic signal into its constituting components, all operations such as analyzing, identifying, and removing unwanted signals can be performed on these components. Upon transforming the IMFs into Hilbert spectrum, the acoustical signal may be compared with other acoustical signals.

  4. Electrical aerosol analyzer: calibration and performance

    Energy Technology Data Exchange (ETDEWEB)

    Pui, D.Y.H.; Liu, B.Y.H.

    1976-01-01

    The Electrical Aerosol Analyzer (EAA) was calibrated by means of monodisperse aerosols generated by two independent techniques. In the 0.02 to 1 ..mu..m diameter range, the aerosol was generated by electrostatic classification. In the range between 0.007 and 0.03 ..mu..m, the aerosols were generated by the photo-oxidation of SO/sub 2/ in a smog chamber. Calibration data are presented showing the performance of the EAA as an aerosol detector and as a size distribution analyzer.

  5. BWR plant analyzer development at BNL

    International Nuclear Information System (INIS)

    Cheng, H.S.; Wulff, W.; Mallen, A.N.; Lekach, S.V.; Stritar, A.; Cerbone, R.J.

    1985-01-01

    Advanced technology for high-speed interactive nuclear power plant simulations is of great value for timely resolution of safety issues, for plant monitoring, and for computer-aided emergency responses to an accident. Presented is the methodology employed at BNL to develop a BWR plant analyzer capable of simulating severe plant transients at much faster than real-time process speeds. Five modeling principles are established and a criterion is given for selecting numerical procedures and efficient computers to achieve the very high simulation speeds. Typical results are shown to demonstrate the modeling fidelity of the BWR plant analyzer

  6. Graphic Three-Axes Presentation of Residual Gas Analyzer Data

    Science.gov (United States)

    Johnson, Kenneth R.; Levi, Alejandro G.

    1997-01-01

    Residual gas analyzers (RGA) are commonly used to measure the composition of residual gases in thermal-vacuum test chambers. Measurements from RGA's are often used to identify and quantify outgassing contaminants from a test article during thermal-vacuum testing. RGA data is typically displayed as snapshots in time, showing instantaneous concentrations of ions from ionized residual gas molecules at different atomic masses. This ion concentration information can be interpreted to be representative of the composition of the residual gas in the chamber at the instant of analysis. Typically, test personnel are most interested in tracking the time history of changes in the composition of chamber residual gas to determine the relative cleanliness and the clean-up rate of the test article under vacuum. However, displays of instantaneous RGA data cannot provide test personnel with the preferred time history information. In order to gain an understanding of gas composition trends, a series of plots of individual data snapshots must be analyzed. This analysis is cumbersome and still does not provide a very satisfactory view of residual gas composition trends. A method was devised by the authors to present RCA data in a three-axis format, plotting Atomic Mass Unit (AMU), the Ionization Signal Response (ISR) as amps/torr as a function of AMU, and Time, to provide a clear graphic visualization of trends of changes in ISR with respect to time and AMU (representative of residual gas composition). This graphic visualization method provides a valuable analytical tool to interpret test article outgassing rates during thermal vacuum tests. Raw RGA data was extracted from a series of delimited ASCII files and then converted to a data array in a spreadsheet. Consequently, using the 3-D plotting functionality provided by the spreadsheet program, 3-D plots were produced. After devising the data format conversion process, the authors began developing a program to provide real-time 3-D

  7. Elasto-plastic damage analysis of functionally graded material disks subjected to thermal shock and thermal cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Myung; Toi, Yutaka [Tokyo Univ. (Japan). Inst. of Industrial Science

    2001-03-01

    The elasto-plastic damage behaviors of functionally graded materials (FGM) subjected to thermal loading are analyzed by the finite element method using continuum damage mechanics. The Lemaitre's damage model is employed to analyze the damage behavior of a FGM disk subjected to thermal shock and a FGM coating subjected to thermal cycle. The effect of FGM on the thermal damage is discussed through some numerical examples for industrial materials. Numerical results show the validity of the present method for the evaluation and the development of new FGM. (author)

  8. Environmental applications of the centrifugal fast analyzer

    International Nuclear Information System (INIS)

    Goldstein, G.; Strain, J.E.; Bowling, J.L.

    1975-12-01

    The centrifugal fast analyzer (GeMSAEC Fast Analyzer) was applied to the analysis of pollutants in air and water. Since data acquisition and processing are computer controlled, considerable effort went into devising appropriate software. A modified version of the standard FOCAL interpreter was developed which includes special machine language functions for data timing, acquisition, and storage, and also permits chaining together of programs stored on a disk. Programs were written and experimental procedures developed to implement spectrophotometric, turbidimetric, kinetic (including initial-rate, fixed-time, and variable-time techniques), and chemiluminescence methods of analysis. Analytical methods were developed for the following elements and compounds: SO 2 , O 3 , Ca, Cr, Cu, Fe, Mg, Se(IV), Zn, Cl - , I - , NO 2 - , PO 4 -3 , S -2 , and SO 4 -2 . In many cases, standard methods could be adapted to the centrifugal analyzer, in others new methods were employed. In general, analyses performed with the centrifugal fast analyzer were faster, more precise, and more accurate than with conventional instrumentation

  9. Fluidization quality analyzer for fluidized beds

    Science.gov (United States)

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  10. How to Analyze Company Using Social Network?

    Science.gov (United States)

    Palus, Sebastian; Bródka, Piotr; Kazienko, Przemysław

    Every single company or institution wants to utilize its resources in the most efficient way. In order to do so they have to be have good structure. The new way to analyze company structure by utilizing existing within company natural social network and example of its usage on Enron company are presented in this paper.

  11. Analyzing Vessel Behavior Using Process Mining

    NARCIS (Netherlands)

    Maggi, F.M.; Mooij, A.J.; Aalst, W.M.P. van der

    2013-01-01

    In the maritime domain, electronic sensors such as AIS receivers and radars collect large amounts of data about the vessels in a certain geographical area. We investigate the use of process mining techniques for analyzing the behavior of the vessels based on these data. In the context of maritime

  12. Images & Issues: How to Analyze Election Rhetoric.

    Science.gov (United States)

    Rank, Hugh

    Although it is impossible to know in advance the credibility of political messages, such persuasive discourse can be analyzed in a non-partisan, common sense way using predictable patterns in content and form. The content of a candidate's message can be summarized as "I am competent and trustworthy; from me, you'll get 'more good' and 'less…

  13. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs...... has much to offer in analyzing the policy process....

  14. Consideration Regarding Diagnosis Analyze of Corporate Management

    Directory of Open Access Journals (Sweden)

    Mihaela Ciopi OPREA

    2009-01-01

    Full Text Available Diagnosis management aims to identify critical situations and positive aspectsof corporate management. An effective diagnosis made by a team with thestatus of independence from the organization’s management is for managers auseful feedback necessary to improve performance. The work presented focuseson the methodology to achieve effective diagnosis, considering multitudecriteria and variables to be analyzed.

  15. Analyzing and Interpreting Research in Health Education ...

    African Journals Online (AJOL)

    While qualitative research is used when little or nothing is known about the subject, quantitative research is required when there are quantifiable variables to be measured. By implication, health education research is based on phenomenological, ethnographical and/or grounded theoretical approaches that are analyzable ...

  16. Analyzing Languages for Specific Purposes Discourse

    Science.gov (United States)

    Bowles, Hugo

    2012-01-01

    In the last 20 years, technological advancement and increased multidisciplinarity has expanded the range of data regarded as within the scope of languages for specific purposes (LSP) research and the means by which they can be analyzed. As a result, the analytical work of LSP researchers has developed from a narrow focus on specialist terminology…

  17. Automatic radioxenon analyzer for CTBT monitoring

    International Nuclear Information System (INIS)

    Bowyer, T.W.; Abel, K.H.; Hensley, W.K.

    1996-12-01

    Over the past 3 years, with support from US DOE's NN-20 Comprehensive Test Ban Treaty (CTBT) R ampersand D program, PNNL has developed and demonstrated a fully automatic analyzer for collecting and measuring the four Xe radionuclides, 131m Xe(11.9 d), 133m Xe(2.19 d), 133 Xe (5.24 d), and 135 Xe(9.10 h), in the atmosphere. These radionuclides are important signatures in monitoring for compliance to a CTBT. Activity ratios permit discriminating radioxenon from nuclear detonation and that from nuclear reactor operations, nuclear fuel reprocessing, or medical isotope production and usage. In the analyzer, Xe is continuously and automatically separated from the atmosphere at flow rates of about 7 m 3 /h on sorption bed. Aliquots collected for 6-12 h are automatically analyzed by electron-photon coincidence spectrometry to produce sensitivities in the range of 20-100 μBq/m 3 of air, about 100-fold better than with reported laboratory-based procedures for short time collection intervals. Spectral data are automatically analyzed and the calculated radioxenon concentrations and raw gamma- ray spectra automatically transmitted to data centers

  18. Performance optimization of spectroscopic process analyzers

    NARCIS (Netherlands)

    Boelens, Hans F. M.; Kok, Wim Th; de Noord, Onno E.; Smilde, Age K.

    2004-01-01

    To increase the power and the robustness of spectroscopic process analyzers, methods are needed that suppress the spectral variation that is not related to the property of interest in the process stream. An approach for the selection of a suitable method is presented. The approach uses the net

  19. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    After the bad year of 2002, the european solar thermal market returned to double-digit growth rate in 2003: 22%. Nevertheless, the sector still has not recovered the growth rate it had in the early 2000 and European Commission targets are still far from being reached. This paper presents the thermal solar industry barometer. Data on the evolution of annually installed surfaces in the european union since 1993, the cumulated capacity of thermal collectors installed in the European Union, the estimation of the annual energy production associated to european solar thermal capacities and the main companies of the European Union thermal solar sector are presented and discussed. (A.L.B.)

  20. ITK and ANALYZE: a synergistic integration

    Science.gov (United States)

    Augustine, Kurt E.; Holmes, David R., III; Robb, Richard A.

    2004-05-01

    The Insight Toolkit (ITK) is a C++ open-source software toolkit developed under sponsorship of the National Library of Medicine. It provides advanced algorithms for performing image registration and segmentation, but does not provide support for visualization and analysis, nor does it offer any graphical user interface (GUI). The purpose of this integration project is to make ITK readily accessible to end-users with little or no programming skills, and provide interactive processing, visualization and measurement capabilities. This is achieved through the integration of ITK with ANALYZE, a multi-dimension image visualization/analysis application installed in over 300 institutions around the world, with a user-base in excess of 4000. This integration is carried out at both the software foundation and GUI levels. The foundation technology upon which ANALYZE is built is a comprehensive C-function library called AVW. A new set of AVW-ITK functions have been developed and integrated into the AVW library, and four new ITK modules have been added to the ANALYZE interface. Since ITK is a software developer"s toolkit, the only way to access its intrinsic power is to write programs that incorporate it. Integrating ITK with ANALYZE opens the ITK algorithms to end-users who otherwise might never be able to take advantage of the toolkit"s advanced functionality. In addition, this integration provides end-to-end interactive problem solving capabilities which allow all users, including programmers, an integrated system to readily display and quantitatively evaluate the results from the segmentation and registration routines in ITK, regardless of the type or format of input images, which are comprehensively supported in ANALYZE.

  1. Thermal neutron moderating device

    International Nuclear Information System (INIS)

    Takigami, Hiroyuki.

    1995-01-01

    In a thermal neutron moderating device, superconductive coils for generating magnetic fields capable of applying magnetic fields vertical to the longitudinal direction of a thermal neutron passing tube, and superconductive coils for magnetic field gradient for causing magnetic field gradient in the longitudinal direction of the thermal neutron passing tube are disposed being stacked at the outside of the thermal neutron passing tube. When magnetic field gradient is present vertically to the direction of a magnetic moment, thermal neutrons undergo forces in the direction of the magnetic field gradient in proportion to the magnetic moment. Then, the magnetic moment of the thermal neutrons is aligned with the direction vertical to the passing direction of the thermal neutrons, to cause the magnetic field gradient in the passing direction of the thermal neutrons. The speed of the thermal neutrons can be optionally selected and the wavelength can freely be changed by applying forces to the thermal neutrons and changing the extent and direction of the magnetic field gradient. Superconductive coils are used as the coils for generating magnetic fields and the magnetic field gradient in order to change extremely high energy of the thermal neutrons. (N.H.)

  2. Quantum Thermal Transistor.

    Science.gov (United States)

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-20

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

  3. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir [School of Physics, Damghan University, Damghan (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada)

    2016-04-10

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  4. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Directory of Open Access Journals (Sweden)

    Behnam Pourhassan

    2016-04-01

    Full Text Available In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  5. Methodology for analyzing risk at nuclear facilities

    International Nuclear Information System (INIS)

    Yoo, Hosik; Lee, Nayoung; Ham, Taekyu; Seo, Janghoon

    2015-01-01

    Highlights: • A new methodology for evaluating the risk at nuclear facilities was developed. • Five measures reflecting all factors that should be concerned to assess risk were developed. • The attributes on NMAC and nuclear security culture are included as attributes for analyzing. • The newly developed methodology can be used to evaluate risk of both existing facility and future nuclear system. - Abstract: A methodology for evaluating risks at nuclear facilities is developed in this work. A series of measures is drawn from the analysis of factors that determine risks. Five measures are created to evaluate risks at nuclear facilities. These include the legal and institutional framework, material control, physical protection system effectiveness, human resources, and consequences. Evaluation attributes are developed for each measure and specific values are given in order to calculate the risk value quantitatively. Questionnaires are drawn up on whether or not a state has properly established a legal and regulatory framework (based on international standards). These questionnaires can be a useful measure for comparing the status of the physical protection regime between two countries. Analyzing an insider threat is not an easy task and no methodology has been developed for this purpose. In this study, attributes that could quantitatively evaluate an insider threat, in the case of an unauthorized removal of nuclear materials, are developed by adopting the Nuclear Material Accounting & Control (NMAC) system. The effectiveness of a physical protection system, P(E), could be analyzed by calculating the probability of interruption, P(I), and the probability of neutralization, P(N). In this study, the Tool for Evaluating Security System (TESS) code developed by KINAC is used to calculate P(I) and P(N). Consequence is an important measure used to analyze risks at nuclear facilities. This measure comprises radiological, economic, and social damage. Social and

  6. The PLT and PDX charge-exchange analyzers

    International Nuclear Information System (INIS)

    Mueller, D.; Hammett, G.; McCune, D.C.

    1986-01-01

    The perpendicularly-viewing mass-resolving charge-exchange analyzers for PLT and PDX were built to measure the plasma ion temperature, central neutral density and hydrogen to deuterium ratio. This paper discusses the measurements as they are affected by instrumental effects. In PDX with perpendicular neutral deuterium beam injection into hydrogen plasmas, a small (∼ 1%) hydrogen impurity in the beam gives rise to an energetic tail on the observed hydrogen neutral spectrum. A simple model indicates that this contamination of the thermal spectrum causes the apparent ion temperature to be 5-20% too high. This effect is included in the analysis. The neutral density measurement relies on knowledge of absolute detection efficiency. While this can in principle be measured in-situ with a diagnostic neutral beam, a large uncertainty remains. Measurement of the H/D ratio in the plasma is limited by the mass rejection (1:1000) of the analyzer. It is primarily the deuterium flux at 1/2 the hydrogen energy that places a lower limit on the measurable flux to H/D ratios above ∼ 0.5%

  7. Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

    Directory of Open Access Journals (Sweden)

    Jia Chengchang

    2010-01-01

    Full Text Available Abstract Carbon nanotube–copper (CNT/Cu composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

  8. Modeling extreme ultraviolet suppression of electrostatic analyzers

    International Nuclear Information System (INIS)

    Gershman, Daniel J.; Zurbuchen, Thomas H.

    2010-01-01

    In addition to analyzing energy-per-charge ratios of incident ions, electrostatic analyzers (ESAs) for spaceborne time-of-flight mass spectrometers must also protect detectors from extreme ultraviolet (EUV) photons from the Sun. The required suppression rate often exceeds 1:10 7 and is generally established in tests upon instrument design and integration. This paper describes a novel technique to model the EUV suppression of ESAs using photon ray tracing integrated into SIMION, the most commonly used ion optics design software for such instruments. The paper compares simulation results with measurements taken from the ESA of the Mass instrument flying onboard the Wind spacecraft. This novel technique enables an active inclusion of EUV suppression requirements in the ESA design process. Furthermore, the simulation results also motivate design rules for such instruments.

  9. Real-time airborne particle analyzer

    Science.gov (United States)

    Reilly, Peter T.A.

    2012-10-16

    An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.

  10. Analyzing Technique of Power Systems Under Deregulation

    Science.gov (United States)

    Miyauchi, Hajime; Kita, Hiroyuki; Ishigame, Atsushi

    Deregulation of the electric utilities has been progressing. Even under the deregulation, the reliability should be the most important problem of power systems. However, according to the deregulation, operation and scheduling of power systems are changing and new techniques to analyze power systems are introducing. To evaluate reliability of power systems, adequacy and security are well employed recently. This paper presents the new analyzing technique which will be realized in near future from the viewpoint of adequacy and security. First, simulation tool to evaluate adequacy is described. As an example of this tool, MARS and other methods are mentioned. Next, to evaluate the security, security constrained unit commitment (SCUC) and security constrained optimal power flow (SCOPF) are mentioned. Finally, some topics concerning ancillary service are described.

  11. Computer-based radionuclide analyzer system

    International Nuclear Information System (INIS)

    Ohba, Kengo; Ishizuka, Akira; Kobayashi, Akira; Ohhashi, Hideaki; Tsuruoka, Kimitoshi.

    1978-01-01

    The radionuclide analysis in nuclear power plants, practiced for the purpose of monitoring the quality of the primary loop water, the confirmation of the performance of reactor cleanup system and monitoring the radioactive waste effluent, is an important job. Important as it is, it requires considerable labor of experts, because the samples to be analyzed are multifarious and very large in number, and in addition, this job depends much on manual work. With a view of saving the labor, simplifying and standardizing the work, reducing radiation exposure, and automatizing the work of analysis, the computerized analyzer system has been worked out. The results of its performance test at the operating power plant have proved that the development has fairly accomplished the objects and that the system is well useful. The developmental work was carried out by the cooperation between The Tokyo Electric Power Co. and Toshiba in about 4 years from 1974 to this year. (auth.)

  12. Analyzing the Existing Undergraduate Engineering Leadership Skills

    OpenAIRE

    Hamed M. Almalki; Luis Rabelo; Charles Davis; Hammad Usmani; Debra Hollister; Alfonso Sarmiento

    2016-01-01

    Purpose: Studying and analyzing the undergraduate engineering students' leadership skills to discover their potential leadership strengths and weaknesses. This study will unveil potential ways to enhance the ways we teach engineering leadership. The research has great insights that might assist engineering programs to improve curricula for the purpose of better engineering preparation to meet industry's demands. Methodology and Findings: 441 undergraduate engineering students have been s...

  13. Analyzing negative ties in social networks

    Directory of Open Access Journals (Sweden)

    Mankirat Kaur

    2016-03-01

    Full Text Available Online social networks are a source of sharing information and maintaining personal contacts with other people through social interactions and thus forming virtual communities online. Social networks are crowded with positive and negative relations. Positive relations are formed by support, endorsement and friendship and thus, create a network of well-connected users whereas negative relations are a result of opposition, distrust and avoidance creating disconnected networks. Due to increase in illegal activities such as masquerading, conspiring and creating fake profiles on online social networks, exploring and analyzing these negative activities becomes the need of hour. Usually negative ties are treated in same way as positive ties in many theories such as balance theory and blockmodeling analysis. But the standard concepts of social network analysis do not yield same results in respect of each tie. This paper presents a survey on analyzing negative ties in social networks through various types of network analysis techniques that are used for examining ties such as status, centrality and power measures. Due to the difference in characteristics of flow in positive and negative tie networks some of these measures are not applicable on negative ties. This paper also discusses new methods that have been developed specifically for analyzing negative ties such as negative degree, and h∗ measure along with the measures based on mixture of positive and negative ties. The different types of social network analysis approaches have been reviewed and compared to determine the best approach that can appropriately identify the negative ties in online networks. It has been analyzed that only few measures such as Degree and PN centrality are applicable for identifying outsiders in network. For applicability in online networks, the performance of PN measure needs to be verified and further, new measures should be developed based upon negative clique concept.

  14. Analyzing Architecture of Mithraism Rock Temples

    OpenAIRE

    Zohre AliJabbari

    2017-01-01

    This analyzes the architecture of rock temples of West and Northwest of Iran, as well as factors influencing their formation. The creation of rock architecture in this area of Iran is influenced by the religious, geographical and political atmosphere of their time. Most of these structures are formed by dominated empires in the first millennium BC. And in some works we are observing their continuity in later periods and change in their functions. One of the reasons that have attracted man to ...

  15. General methods for analyzing bounded proportion data

    OpenAIRE

    Hossain, Abu

    2017-01-01

    This thesis introduces two general classes of models for analyzing proportion response variable when the response variable Y can take values between zero and one, inclusive of zero and/or one. The models are inflated GAMLSS model and generalized Tobit GAMLSS model. The inflated GAMLSS model extends the flexibility of beta inflated models by allowing the distribution on (0,1) of the continuous component of the dependent variable to come from any explicit or transformed (i.e. logit or truncated...

  16. Development of a Portable Water Quality Analyzer

    OpenAIRE

    Germán COMINA; Martin NISSFOLK; José Luís SOLÍS

    2010-01-01

    A portable water analyzer based on a voltammetric electronic tongue has been developed. The system uses an electrochemical cell with two working electrodes as sensors, a computer controlled potentiostat, and software based on multivariate data analysis for pattern recognition. The system is suitable to differentiate laboratory made and real in-situ river water samples contaminated with different amounts of Escherichia coli. This bacteria is not only one of the main indicators for water qualit...

  17. Moving Block Bootstrap for Analyzing Longitudinal Data.

    Science.gov (United States)

    Ju, Hyunsu

    In a longitudinal study subjects are followed over time. I focus on a case where the number of replications over time is large relative to the number of subjects in the study. I investigate the use of moving block bootstrap methods for analyzing such data. Asymptotic properties of the bootstrap methods in this setting are derived. The effectiveness of these resampling methods is also demonstrated through a simulation study.

  18. A chemical analyzer for charged ultrafine particles

    OpenAIRE

    S. G. Gonser; A. Held

    2013-01-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable...

  19. A chemical analyzer for charged ultrafine particles

    OpenAIRE

    S. G. Gonser; A. Held

    2013-01-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the Earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable of ana...

  20. A seal analyzer for testing container integrity

    International Nuclear Information System (INIS)

    McDaniel, P.; Jenkins, C.

    1988-01-01

    This paper reports on the development of laboratory and production seal analyzer that offers a rapid, nondestructive method of assuring the seal integrity of virtually any type of single or double sealed container. The system can test a broad range of metal cans, drums and trays, membrane-lidded vessels, flexible pouches, aerosol containers, and glass or metal containers with twist-top lids that are used in the chemical/pesticide (hazardous materials/waste), beverage, food, medical and pharmaceutical industries

  1. Information decomposition method to analyze symbolical sequences

    International Nuclear Information System (INIS)

    Korotkov, E.V.; Korotkova, M.A.; Kudryashov, N.A.

    2003-01-01

    The information decomposition (ID) method to analyze symbolical sequences is presented. This method allows us to reveal a latent periodicity of any symbolical sequence. The ID method is shown to have advantages in comparison with application of the Fourier transformation, the wavelet transform and the dynamic programming method to look for latent periodicity. Examples of the latent periods for poetic texts, DNA sequences and amino acids are presented. Possible origin of a latent periodicity for different symbolical sequences is discussed

  2. Neutral Particle Analyzer Diagnostic on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley; A.L. Roquemore

    2004-03-16

    The Neutral Particle Analyzer (NPA) diagnostic on the National Spherical Torus Experiment (NSTX) utilizes a PPPL-designed E||B spectrometer that measures the energy spectra of minority hydrogen and bulk deuterium species simultaneously with 39 energy channels per mass specie and a time resolution of 1 ms. The calibrated energy range is E = 0.5-150 keV and the energy resolution varies from AE/E = 3-7% over the surface of the microchannel plate detector.

  3. Neutral Particle Analyzer Diagnostic on NSTX

    International Nuclear Information System (INIS)

    Medley, S.S.; Roquemore, A.L.

    2004-01-01

    The Neutral Particle Analyzer (NPA) diagnostic on the National Spherical Torus Experiment (NSTX) utilizes a PPPL-designed E||B spectrometer that measures the energy spectra of minority hydrogen and bulk deuterium species simultaneously with 39 energy channels per mass specie and a time resolution of 1 ms. The calibrated energy range is E = 0.5-150 keV and the energy resolution varies from AE/E = 3-7% over the surface of the microchannel plate detector

  4. Thermal mapping of Hawaiian volcanoes with ASTER satellite data

    Science.gov (United States)

    Patrick, Matthew R.; Witzke, Coral-Nadine

    2011-01-01

    Thermal mapping of volcanoes is important to determine baseline thermal behavior in order to judge future thermal activity that may precede an eruption. We used cloud-free kinetic temperature images from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor obtained between 2000 and 2010 to produce thermal maps for all five subaerial volcanoes in Hawai‘i that have had eruptions in the Holocene (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, and Haleakalā). We stacked the images to provide time-averaged thermal maps, as well as to analyze temperature trends through time. Thermal areas are conspicuous at the summits and rift zones of Kīlauea and Mauna Loa, and the summit calderas of these volcanoes contain obvious arcuate, concentric linear thermal areas that probably result from channeling of rising gas along buried, historical intracaldera scarps. The only significant change in thermal activity noted in the study period is the opening of the Halema‘uma‘u vent at Kīlauea's summit in 2008. Several small thermal anomalies are coincident with pit craters on Hualālai. We suspect that these simply result from the sheltered nature of the depression, but closer inspection is warranted to determine if genuine thermal activity exists in the craters. Thermal areas were not detected on Haleakalā or Mauna Kea. The main limitation of the study is the large pixel size (90 m) of the ASTER images, which reduces our ability to detect subtle changes or to identify small, low-temperature thermal activity. This study, therefore, is meant to characterize the broad, large-scale thermal features on these volcanoes. Future work should study these thermal areas with thermal cameras and thermocouples, which have a greater ability to detect small, low-temperature thermal features.

  5. A Raman-Based Portable Fuel Analyzer

    Science.gov (United States)

    Farquharson, Stuart

    2010-08-01

    Fuel is the single most import supply during war. Consider that the US Military is employing over 25,000 vehicles in Iraq and Afghanistan. Most fuel is obtained locally, and must be characterized to ensure proper operation of these vehicles. Fuel properties are currently determined using a deployed chemical laboratory. Unfortunately, each sample requires in excess of 6 hours to characterize. To overcome this limitation, we have developed a portable fuel analyzer capable of determine 7 fuel properties that allow determining fuel usage. The analyzer uses Raman spectroscopy to measure the fuel samples without preparation in 2 minutes. The challenge, however, is that as distilled fractions of crude oil, all fuels are composed of hundreds of hydrocarbon components that boil at similar temperatures, and performance properties can not be simply correlated to a single component, and certainly not to specific Raman peaks. To meet this challenge, we measured over 800 diesel and jet fuels from around the world and used chemometrics to correlate the Raman spectra to fuel properties. Critical to the success of this approach is laser excitation at 1064 nm to avoid fluorescence interference (many fuels fluoresce) and a rugged interferometer that provides 0.1 cm-1 wavenumber (x-axis) accuracy to guarantee accurate correlations. Here we describe the portable fuel analyzer, the chemometric models, and the successful determination of these 7 fuel properties for over 100 unknown samples provided by the US Marine Corps, US Navy, and US Army.

  6. Thermo Scientific Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, S. R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. BNL has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  7. Visual analyzer as anticipatory system (functional organization)

    Science.gov (United States)

    Kirvelis, Dobilas

    2000-05-01

    Hypothetical functional organization of the visual analyzer is presented. The interpretation of visual perception, anatomic and morphological structure of visual systems of animals, neuro-physiological, psychological and psycho-physiological data in the light of a number of the theoretical solutions of image recognition and visual processes simulation enable active information processing. The activities in special areas of cortex are as follows: focused attention, prediction with analysis of visual scenes and synthesis, predictive mental images. In the projection zone of visual cortex Area Streata or V1 a "sensory" screen (SS) and "reconstruction" screen (RS) are supposed to exist. The functional structure of visual analyzer consist of: analysis of visual scenes projected onto SS; "tracing" of images; preliminary recognition; reversive image reconstruction onto RS; comparison of images projected onto SS with images reconstructed onto RS; and "correction" of preliminary recognition. Special attention is paid to the quasiholographical principles of the neuronal organization within the brain, of the image "tracing," and of reverse image reconstruction. Tachistoscopic experiments revealed that the duration of one such hypothesis-testing cycle of the human visual analyzers is about 8-10 milliseconds.

  8. Analysis on fuel thermal conductivity model of the computer code for performance prediction of fuel rods

    International Nuclear Information System (INIS)

    Li Hai; Huang Chen; Du Aibing; Xu Baoyu

    2014-01-01

    The thermal conductivity is one of the most important parameters in the computer code for performance prediction for fuel rods. Several fuel thermal conductivity models used in foreign computer code, including thermal conductivity models for MOX fuel and UO 2 fuel were introduced in this paper. Thermal conductivities were calculated by using these models, and the results were compared and analyzed. Finally, the thermal conductivity model for the native computer code for performance prediction for fuel rods in fast reactor was recommended. (authors)

  9. Thermal Conductivity in Nanocrystalline Ceria Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Marat Khafizov; In-Wook Park; Aleksandr Chernatynskiy; Lingfeng He; Jianliang Lin; John J. Moore; David Swank; Thomas Lillo; Simon R. Phillpot; Anter El-Azab; David H. Hurley

    2014-02-01

    The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.

  10. Thermal convection driven by acoustic field under microgravity

    OpenAIRE

    Tanabe, Mitsuaki; 田辺 光昭

    2007-01-01

    Natural convection is suppressed in space environment due to the weightlessness. Only centrifugal force is utilized currently to drive gas-phase thermal convection in space. This paper presents an alternative way to drive thermal convection. From the investigation of combustion oscillation in rocket motors, a new thermal convection had been found in stationary acoustic fields. Analyzing the phenomena, acoustic radiation force is found to be the candidate driving force. With a simplified syste...

  11. BOA, Beam Optics Analyzer A Particle-In-Cell Code

    International Nuclear Information System (INIS)

    Bui, Thuc

    2007-01-01

    The program was tasked with implementing time dependent analysis of charges particles into an existing finite element code with adaptive meshing, called Beam Optics Analyzer (BOA). BOA was initially funded by a DOE Phase II program to use the finite element method with adaptive meshing to track particles in unstructured meshes. It uses modern programming techniques, state-of-the-art data structures, so that new methods, features and capabilities are easily added and maintained. This Phase II program was funded to implement plasma simulations in BOA and extend its capabilities to model thermal electrons, secondary emissions, self magnetic field and implement a more comprehensive post-processing and feature-rich GUI. The program was successful in implementing thermal electrons, secondary emissions, and self magnetic field calculations. The BOA GUI was also upgraded significantly, and CCR is receiving interest from the microwave tube and semiconductor equipment industry for the code. Implementation of PIC analysis was partially successful. Computational resource requirements for modeling more than 2000 particles begin to exceed the capability of most readily available computers. Modern plasma analysis typically requires modeling of approximately 2 million particles or more. The problem is that tracking many particles in an unstructured mesh that is adapting becomes inefficient. In particular memory requirements become excessive. This probably makes particle tracking in unstructured meshes currently unfeasible with commonly available computer resources. Consequently, Calabazas Creek Research, Inc. is exploring hybrid codes where the electromagnetic fields are solved on the unstructured, adaptive mesh while particles are tracked on a fixed mesh. Efficient interpolation routines should be able to transfer information between nodes of the two meshes. If successfully developed, this could provide high accuracy and reasonable computational efficiency.

  12. Sunscreen effects in skin analyzed by photoacoustic spectroscopy

    Science.gov (United States)

    dos Anjos, Fernanda H.; Rompe, Paula C. B.; Batista, Roberta R.; Martin, Airton A.; Mansanares, Antonio M.; da Silva, Edson C.; Acosta-Avalos, Daniel; Barja, Paulo R.

    2004-06-01

    In the photoacoustic technique, the signal is proportional to the heat produced in a sample as a consequence of modulated light absorption. This technique allows the spectroscopic characterization of multilayer systems: as the thermal diffusion length varies with the light modulation frequency, one can obtain the depth profile of the sample by analyzing the frequency-dependence of the signal. As the photoacoustic signal depends on thermal and optical properties of the sample, structural changes in the system under analysis account for signal variations in time. In this work, photoacoustic spectroscopy was used to characterize samples of sunscreen and the system formed by sunscreen plus skin. We used photoacoustic spectroscopy to monitor the absorption kinetics of sunscreen applied to samples of human skin, characterizing alterations in the human skin after application of sunscreen. Measurements used 250W Xe arc lamp as light source, for wavelengths between 240nm and 400nm. This range corresponds to most of the UV radiation that reaches Earth. Skin samples were about 0,5cm diameter. The absorption spectra of sunscreen was obtained. Finally, photoacoustics was employed to monitor the absorption kinetics of the sunscreen applied to skin samples. This was done by applying sunscreen in a skin sample and recording the photoacoustic spectra in regular time intervals, up to 90 minutes after application. According to measurements, light absorption by the system sunscreen plus skin stabilizes between 25 and 45 minutes after sunscreen application. Results show that this technique can be utilized to monitor drug delivery and farmacokinetics in skin samples.

  13. IRISpy: Analyzing IRIS Data in Python

    Science.gov (United States)

    Ryan, Daniel; Christe, Steven; Mumford, Stuart; Baruah, Ankit; Timothy, Shelbe; Pereira, Tiago; De Pontieu, Bart

    2017-08-01

    IRISpy is a new community-developed open-source software library for analysing IRIS level 2 data. It is written in Python, a free, cross-platform, general-purpose, high-level programming language. A wide array of scientific computing software packages have already been developed in Python, from numerical computation (NumPy, SciPy, etc.), to visualization and plotting (matplotlib), to solar-physics-specific data analysis (SunPy). IRISpy is currently under development as a SunPy-affiliated package which means it depends on the SunPy library, follows similar standards and conventions, and is developed with the support of of the SunPy development team. IRISpy’s has two primary data objects, one for analyzing slit-jaw imager data and another for analyzing spectrograph data. Both objects contain basic slicing, indexing, plotting, and animating functionality to allow users to easily inspect, reduce and analyze the data. As part of this functionality the objects can output SunPy Maps, TimeSeries, Spectra, etc. of relevant data slices for easier inspection and analysis. Work is also ongoing to provide additional data analysis functionality including derivation of systematic measurement errors (e.g. readout noise), exposure time correction, residual wavelength calibration, radiometric calibration, and fine scale pointing corrections. IRISpy’s code base is publicly available through github.com and can be contributed to by anyone. In this poster we demonstrate IRISpy’s functionality and future goals of the project. We also encourage interested users to become involved in further developing IRISpy.

  14. Air sampling unit for breath analyzers

    Science.gov (United States)

    Szabra, Dariusz; Prokopiuk, Artur; Mikołajczyk, Janusz; Ligor, Tomasz; Buszewski, Bogusław; Bielecki, Zbigniew

    2017-11-01

    The paper presents a portable breath sampling unit (BSU) for human breath analyzers. The developed unit can be used to probe air from the upper airway and alveolar for clinical and science studies. The BSU is able to operate as a patient interface device for most types of breath analyzers. Its main task is to separate and to collect the selected phases of the exhaled air. To monitor the so-called I, II, or III phase and to identify the airflow from the upper and lower parts of the human respiratory system, the unit performs measurements of the exhaled CO2 (ECO2) in the concentration range of 0%-20% (0-150 mm Hg). It can work in both on-line and off-line modes according to American Thoracic Society/European Respiratory Society standards. A Tedlar bag with a volume of 5 dm3 is mounted as a BSU sample container. This volume allows us to collect ca. 1-25 selected breath phases. At the user panel, each step of the unit operation is visualized by LED indicators. This helps us to regulate the natural breathing cycle of the patient. There is also an operator's panel to ensure monitoring and configuration setup of the unit parameters. The operation of the breath sampling unit was preliminarily verified using the gas chromatography/mass spectrometry (GC/MS) laboratory setup. At this setup, volatile organic compounds were extracted by solid phase microextraction. The tests were performed by the comparison of GC/MS signals from both exhaled nitric oxide and isoprene analyses for three breath phases. The functionality of the unit was proven because there was an observed increase in the signal level in the case of the III phase (approximately 40%). The described work made it possible to construct a prototype of a very efficient breath sampling unit dedicated to breath sample analyzers.

  15. A chemical analyzer for charged ultrafine particles

    Science.gov (United States)

    Gonser, S. G.; Held, A.

    2013-09-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the Earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable of analyzing particles with diameters below 30 nm. A bulk of size-separated particles is collected electrostatically on a metal filament, resistively desorbed and subsequently analyzed for its molecular composition in a time of flight mass spectrometer. We report on technical details as well as characterization experiments performed with the CAChUP. Our instrument was tested in the laboratory for its detection performance as well as for its collection and desorption capabilities. The manual application of defined masses of camphene (C10H16) to the desorption filament resulted in a detection limit between 0.5 and 5 ng, and showed a linear response of the mass spectrometer. Flow tube experiments of 25 nm diameter secondary organic aerosol from ozonolysis of alpha-pinene also showed a linear relation between collection time and the mass spectrometer's signal intensity. The resulting mass spectra from the collection experiments are in good agreement with published work on particles generated by the ozonolysis of alpha-pinene. A sensitivity study shows that the current setup of CAChUP is ready for laboratory measurements and for the observation of new particle formation events in the field.

  16. A computer program for analyzing channel geometry

    Science.gov (United States)

    Regan, R.S.; Schaffranek, R.W.

    1985-01-01

    The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)

  17. Remote Laser Diffraction Particle Size Distribution Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2001-03-01

    In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  18. Analyzing Argumentation In Rich, Natural Contexts

    Directory of Open Access Journals (Sweden)

    Anita Reznitskaya

    2008-02-01

    Full Text Available The paper presents the theoretical and methodological aspects of research on the development of argument- ation in elementary school children. It presents a theoretical framework detailing psychological mechanisms responsible for the acquisition and transfer of argumentative discourse and demonstrates several applications of the framework, described in sufficient detail to guide future empirical investigations of oral, written, individual, or group argumentation performance. Software programs capable of facilitating data analysis are identified and their uses illustrated. The analytic schemes can be used to analyze large amounts of verbal data with reasonable precision and efficiency. The conclusion addresses more generally the challenges for and possibilities of empirical study of the development of argumentation.

  19. Thermo Scientific Ozone Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, S. R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The primary measurement output from the Thermo Scientific Ozone Analyzer is the concentration of the analyte (O3) reported at 1-s resolution in units of ppbv in ambient air. Note that because of internal pneumatic switching limitations the instrument only makes an independent measurement every 4 seconds. Thus, the same concentration number is repeated roughly 4 times at the uniform, monotonic 1-s time base used in the AOS systems. Accompanying instrument outputs include sample temperatures, flows, chamber pressure, lamp intensities and a multiplicity of housekeeping information. There is also a field for operator comments made at any time while data is being collected.

  20. Grid and Data Analyzing and Security

    Directory of Open Access Journals (Sweden)

    Fatemeh SHOKRI

    2012-12-01

    Full Text Available This paper examines the importance of secure structures in the process of analyzing and distributing information with aid of Grid-based technologies. The advent of distributed network has provided many practical opportunities for detecting and recording the time of events, and made efforts to identify the events and solve problems of storing information such as being up-to-date and documented. In this regard, the data distribution systems in a network environment should be accurate. As a consequence, a series of continuous and updated data must be at hand. In this case, Grid is the best answer to use data and resource of organizations by common processing.

  1. Development of a Portable Water Quality Analyzer

    Directory of Open Access Journals (Sweden)

    Germán COMINA

    2010-08-01

    Full Text Available A portable water analyzer based on a voltammetric electronic tongue has been developed. The system uses an electrochemical cell with two working electrodes as sensors, a computer controlled potentiostat, and software based on multivariate data analysis for pattern recognition. The system is suitable to differentiate laboratory made and real in-situ river water samples contaminated with different amounts of Escherichia coli. This bacteria is not only one of the main indicators for water quality, but also a main concern for public health, affecting especially people living in high-burden, resource-limiting settings.

  2. Light-weight analyzer for odor recognition

    Energy Technology Data Exchange (ETDEWEB)

    Vass, Arpad A; Wise, Marcus B

    2014-05-20

    The invention provides a light weight analyzer, e.g., detector, capable of locating clandestine graves. The detector utilizes the very specific and unique chemicals identified in the database of human decompositional odor. This detector, based on specific chemical compounds found relevant to human decomposition, is the next step forward in clandestine grave detection and will take the guess-work out of current methods using canines and ground-penetrating radar, which have historically been unreliable. The detector is self contained, portable and built for field use. Both visual and auditory cues are provided to the operator.

  3. Nonlinear single-spin spectrum analyzer.

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-15

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.

  4. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  5. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  6. Josephson Thermal Memory

    Science.gov (United States)

    Guarcello, Claudio; Solinas, Paolo; Braggio, Alessandro; Di Ventra, Massimiliano; Giazotto, Francesco

    2018-01-01

    We propose a superconducting thermal memory device that exploits the thermal hysteresis in a flux-controlled temperature-biased superconducting quantum-interference device (SQUID). This system reveals a flux-controllable temperature bistability, which can be used to define two well-distinguishable thermal logic states. We discuss a suitable writing-reading procedure for these memory states. The time of the memory writing operation is expected to be on the order of approximately 0.2 ns for a Nb-based SQUID in thermal contact with a phonon bath at 4.2 K. We suggest a noninvasive readout scheme for the memory states based on the measurement of the effective resonance frequency of a tank circuit inductively coupled to the SQUID. The proposed device paves the way for a practical implementation of thermal logic and computation. The advantage of this proposal is that it represents also an example of harvesting thermal energy in superconducting circuits.

  7. Thermal Bridge Effects in Window Grooves

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    In this report thermal bridge effects in window grooves are analyzed. The analysis is performed using different thicknesses of the window groove insulation, to evaluate what the optimal solution is.All analysis in the report is performed using both 2- and 3-dimensional numerical analysis....

  8. Global characterization of the Holocene Thermal Maximum

    NARCIS (Netherlands)

    Renssen, H.; Seppä, H.; Crosta, X.; Goosse, H.; Roche, D.M.V.A.P.

    2012-01-01

    We analyze the global variations in the timing and magnitude of the Holocene Thermal Maximum (HTM) and their dependence on various forcings in transient simulations covering the last 9000 years (9 ka), performed with a global atmosphere-ocean-vegetation model. In these experiments, we consider the

  9. COMMIX analysis of four constant flow thermal upramp experiments performed in a thermal hydraulic model of an advanced LMR

    International Nuclear Information System (INIS)

    Yarlagadda, B.S.

    1989-04-01

    The three-dimensional thermal hydraulics computer code COMMIX-1AR was used to analyze four constant flow thermal upramp experiments performed in the thermal hydraulic model of an advanced LMR. An objective of these analyses was the validation of COMMIX-1AR for buoyancy affected flows. The COMMIX calculated temperature histories of some thermocouples in the model were compared with the corresponding measured data. The conclusions of this work are presented. 3 refs., 5 figs

  10. On the collaborative design and simulation of space camera: stop structural/thermal/optical) analysis

    Science.gov (United States)

    Duan, Pengfei; Lei, Wenping

    2017-11-01

    deformations of the camera are then evaluated in Nastran, an industry standard code for structural design and analysis. 4. Thermal and structural results are next imported into SigFit, another COTS tool that computes deformation and best fit rigid body displacements for the optical surfaces. 5. SigFit creates a modified optical prescription that is imported into CODE V for evaluation of optical performance impacts. The integrated STOP analysis was validated using TVAC test data. For the four different TVAC tests, the relative errors between simulation and test data of measuring points temperatures were almost around 5%, while in some test conditions, they were even much lower to 1%. As to image quality MTF, relative error between simulation and test was 8.3% in the worst condition, others were all below 5%. Through the validation, it has been approved that the collaborative design and simulation environment can achieved the integrated STOP analysis of Space Camera efficiently. And further, the collaborative environment allows an interdisciplinary analysis that formerly might take several months to perform to be completed in two or three weeks, which is very adaptive to scheme demonstration of projects in earlier stages.

  11. Analyzing delay causes in Egyptian construction projects.

    Science.gov (United States)

    Marzouk, Mohamed M; El-Rasas, Tarek I

    2014-01-01

    Construction delays are common problems in civil engineering projects in Egypt. These problems occur frequently during project life-time leading to disputes and litigation. Therefore, it is essential to study and analyze causes of construction delays. This research presents a list of construction delay causes retrieved from literature. The feedback of construction experts was obtained through interviews. Subsequently, a questionnaire survey was prepared. The questionnaire survey was distributed to thirty-three construction experts who represent owners, consultants, and contractor's organizations. Frequency Index, Severity Index, and Importance Index are calculated and according to the highest values of them the top ten delay causes of construction projects in Egypt are determined. A case study is analyzed and compared to the most important delay causes in the research. Statistical analysis is carried out using analysis of variance ANOVA method to test delay causes, obtained from the survey. The test results reveal good correlation between groups while there is significant difference between them for some delay causes and finally roadmap for prioritizing delay causes groups is presented.

  12. Plutonium solution analyzer. Revised February 1995

    International Nuclear Information System (INIS)

    Burns, D.A.

    1995-02-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%--0.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40--240 g/l: and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4--4.0 g/y. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 ml of each sample and standard, and generates waste at the rate of about 1.5 ml per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded)

  13. Mango: combining and analyzing heterogeneous biological networks.

    Science.gov (United States)

    Chang, Jennifer; Cho, Hyejin; Chou, Hui-Hsien

    2016-01-01

    Heterogeneous biological data such as sequence matches, gene expression correlations, protein-protein interactions, and biochemical pathways can be merged and analyzed via graphs, or networks. Existing software for network analysis has limited scalability to large data sets or is only accessible to software developers as libraries. In addition, the polymorphic nature of the data sets requires a more standardized method for integration and exploration. Mango facilitates large network analyses with its Graph Exploration Language, automatic graph attribute handling, and real-time 3-dimensional visualization. On a personal computer Mango can load, merge, and analyze networks with millions of links and can connect to online databases to fetch and merge biological pathways. Mango is written in C++ and runs on Mac OS, Windows, and Linux. The stand-alone distributions, including the Graph Exploration Language integrated development environment, are freely available for download from http://www.complex.iastate.edu/download/Mango. The Mango User Guide listing all features can be found at http://www.gitbook.com/book/j23414/mango-user-guide.

  14. Analyzing block placement errors in SADP patterning

    Science.gov (United States)

    Kobayashi, Shinji; Okada, Soichiro; Shimura, Satoru; Nafus, Kathleen; Fonseca, Carlos; Demand, Marc; Biesemans, Serge; Versluijs, Janko; Ercken, Monique; Foubert, Philippe; Miyazaki, Shinobu

    2016-03-01

    We discuss edge placement errors (EPE) for multi-patterning of Mx critical layers using ArF lithography. Specific focus is placed on the block formation part of the process. While plenty of literature characterization data exist on spacer formation, only limited published data is available on block processes. We analyze the accuracy of placing blocks relative to narrow spacers. Many publications calculate EPE assuming Gaussian distributions for key process variations contributing to EPE. For practical reasons, each contributor is measured on dedicated test structures. In this work, we complement such analysis and directly measure the EPE in product. We perform high density sampling of blocks using CDSEM images and analyze all feature edges of interest. We find that block placement errors can be very different depending on their local design context. Specifically we report on 2 block populations (further called block A and B) which have a 4x different standard deviation. We attribute this to differences in local topography (spacer shape) and interaction with the plasma-etch process design. Block A (on top of the `core space' S1) has excellent EPE uniformity of ~1 nm while block B (on top of `gap space' S2) has degraded EPE control of ~4 nm. Finally, we suggest that the SOC etch process is at the origin on positioning blocks accurately on slim spacers, helping the manufacturability of spacer-based patterning techniques, and helping its extension toward the 5nm node.

  15. Analyzing endocrine system conservation and evolution.

    Science.gov (United States)

    Bonett, Ronald M

    2016-08-01

    Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Analyzing rare diseases terms in biomedical terminologies

    Directory of Open Access Journals (Sweden)

    Erika Pasceri

    2012-03-01

    Full Text Available Rare disease patients too often face common problems, including the lack of access to correct diagnosis, lack of quality information on the disease, lack of scientific knowledge of the disease, inequities and difficulties in access to treatment and care. These things could be changed by implementing a comprehensive approach to rare diseases, increasing international cooperation in scientific research, by gaining and sharing scientific knowledge about and by developing tools for extracting and sharing knowledge. A significant aspect to analyze is the organization of knowledge in the biomedical field for the proper management and recovery of health information. For these purposes, the sources needed have been acquired from the Office of Rare Diseases Research, the National Organization of Rare Disorders and Orphanet, organizations that provide information to patients and physicians and facilitate the exchange of information among different actors involved in this field. The present paper shows the representation of rare diseases terms in biomedical terminologies such as MeSH, ICD-10, SNOMED CT and OMIM, leveraging the fact that these terminologies are integrated in the UMLS. At the first level, it was analyzed the overlap among sources and at a second level, the presence of rare diseases terms in target sources included in UMLS, working at the term and concept level. We found that MeSH has the best representation of rare diseases terms.

  17. CALIBRATION OF ONLINE ANALYZERS USING NEURAL NETWORKS

    Energy Technology Data Exchange (ETDEWEB)

    Rajive Ganguli; Daniel E. Walsh; Shaohai Yu

    2003-12-05

    Neural networks were used to calibrate an online ash analyzer at the Usibelli Coal Mine, Healy, Alaska, by relating the Americium and Cesium counts to the ash content. A total of 104 samples were collected from the mine, with 47 being from screened coal, and the rest being from unscreened coal. Each sample corresponded to 20 seconds of coal on the running conveyor belt. Neural network modeling used the quick stop training procedure. Therefore, the samples were split into training, calibration and prediction subsets. Special techniques, using genetic algorithms, were developed to representatively split the sample into the three subsets. Two separate approaches were tried. In one approach, the screened and unscreened coal was modeled separately. In another, a single model was developed for the entire dataset. No advantage was seen from modeling the two subsets separately. The neural network method performed very well on average but not individually, i.e. though each prediction was unreliable, the average of a few predictions was close to the true average. Thus, the method demonstrated that the analyzers were accurate at 2-3 minutes intervals (average of 6-9 samples), but not at 20 seconds (each prediction).

  18. Analyzing Virtual Physics Simulations with Tracker

    Science.gov (United States)

    Claessens, Tom

    2017-12-01

    In the physics teaching community, Tracker is well known as a user-friendly open source video analysis software, authored by Douglas Brown. With this tool, the user can trace markers indicated on a video or on stroboscopic photos and perform kinematic analyses. Tracker also includes a data modeling tool that allows one to fit some theoretical equations of motion onto experimentally obtained data. In the field of particle mechanics, Tracker has been effectively used for learning and teaching about projectile motion, "toss up" and free-fall vertical motion, and to explain the principle of mechanical energy conservation. Also, Tracker has been successfully used in rigid body mechanics to interpret the results of experiments with rolling/slipping cylinders and moving rods. In this work, I propose an original method in which Tracker is used to analyze virtual computer simulations created with a physics-based motion solver, instead of analyzing video recording or stroboscopic photos. This could be an interesting approach to study kinematics and dynamics problems in physics education, in particular when there is no or limited access to physical labs. I demonstrate the working method with a typical (but quite challenging) problem in classical mechanics: a slipping/rolling cylinder on a rough surface.

  19. Calibration of the portable wear metal analyzer

    Science.gov (United States)

    Quinn, Michael J.

    1987-12-01

    The Portable Wear Metal Analyzer (PWMA), a graphite furnace atomic absorption (AA) spectrometer, developed under a contract for this laboratory, was evaluated using powdered metal particles suspended in oil. The PWMA is a microprocessor controlled automatic sequential multielement AA spectrometer designed to support the deployed aircraft requirement for spectrometric oil analysis. The PWMA will analyze for nine elements (Ni, Fe, Cu, Cr, Ag, Mg, Si, Ti, Al) at a rate of 4 min per sample. The graphite tube and modified sample introduction system increase the detection of particles in oil when compared to the currently used techniques of flame AA or spark atomic emission (AE) spectroscopy. The PWMA shows good-to-excellent response for particles in sizes of 0 to 5 and 5 to 10 micrometers and fair response to particles of 10 to 20 and 20 to 30 micrometers. All trends in statistical variations are easily explained by system considerations. Correction factors to the calibration curves are necessary to correlate the analytical capability of the PWMA to the performance of existing spectrometric oil analysis (SOA) instruments.

  20. Solar Probe ANalyzer for Ions - Laboratory Performance

    Science.gov (United States)

    Livi, R.; Larson, D. E.; Kasper, J. C.; Korreck, K. E.; Whittlesey, P. L.

    2017-12-01

    The Parker Solar Probe (PSP) mission is a heliospheric satellite that will orbit the Sun closer than any prior mission to date with a perihelion of 35 solar radii (RS) and an aphelion of 10 RS. PSP includes the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite, which in turn consists of four instruments: the Solar Probe Cup (SPC) and three Solar Probe ANalyzers (SPAN) for ions and electrons. Together, this suite will take local measurements of particles and electromagnetic fields within the Sun's corona. SPAN-Ai has completed flight calibration and spacecraft integration and is set to be launched in July of 2018. The main mode of operation consists of an electrostatic analyzer (ESA) at its aperture followed by a Time-of-Flight section to measure the energy and mass per charge (m/q) of the ambient ions. SPAN-Ai's main objective is to measure solar wind ions within an energy range of 5 eV - 20 keV, a mass/q between 1-60 [amu/q] and a field of view of 2400x1200. Here we will show flight calibration results and performance.

  1. Optoacoustic 13C-breath test analyzer

    Science.gov (United States)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  2. Numerical analysis of thermal hydraulics in secondary side steam generator

    International Nuclear Information System (INIS)

    Yang Zhilin

    1997-01-01

    The author presents the analysis on the possibility for COBRA-TF to model thermal-hydraulics of SG (Steam Generator) secondary side, numerically analyzes the thermal-hydraulic processes of heater section of SG secondary side of Qinshan Nuclear Power Plant, the results are compared with those from ALBERTINE-2

  3. Thermal modeling of a mini rotor-stator system

    NARCIS (Netherlands)

    Dikmen, E.; van der Hoogt, Peter; de Boer, Andries; Aarts, Ronald G.K.M.; Jonker, Jan B.

    2009-01-01

    In this study the temperature increase and heat dissipation in the air gap of a cylindrical mini rotor stator system has been analyzed. A simple thermal model based on lumped parameter thermal networks has been developed. With this model the temperature dependent air properties for the fluid-rotor

  4. Molecular shape and thermophysical properties of liquids. II. Thermal properties

    International Nuclear Information System (INIS)

    Adamenko, Yi.Yi.; Grigor'jev, A.M.; Kuzovkov, Yu.G.; Mironenko, O.K.

    2009-01-01

    Isobaric and isochoric heat capacities, thermal expansion coefficient and enthalpy of soft dumb-bell fluids were determined in Monte Carlo simulations in a wide range of reduced densities and pressures. Molecular nonsphericity influence on pressure dependencies of elastic thermal properties was analyzed.

  5. THERMAL INSULATION EFFECTS ON ENERGY EFFICIENCY OF BUILDING STRUCTURES

    Directory of Open Access Journals (Sweden)

    M. Cvetkovska

    2012-05-01

    Full Text Available This paper presents the use of Finite Element Method for heat transfer analysis. Connections wall-beam-floor structures with different positions of the thermal insulation have been analyzed and conclusions about energy efficiency and energy loss are made. Keywords: heat transfer, numerical analysis, finite elements, thermal insulation, energy efficiency.

  6. Theory of thermal stresses

    CERN Document Server

    Boley, Bruno A

    1997-01-01

    Highly regarded text presents detailed discussion of fundamental aspects of theory, background, problems with detailed solutions. Basics of thermoelasticity, heat transfer theory, thermal stress analysis, more. 1985 edition.

  7. Mars Thermal Inertia

    Science.gov (United States)

    2001-01-01

    This image shows the global thermal inertia of the Martian surface as measured by the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor. The data were acquired during the first 5000 orbits of the MGS mapping mission. The pattern of inertia variations observed by TES agrees well with the thermal inertia maps made by the Viking Infrared Thermal Mapper experiment, but the TES data shown here are at significantly higher spatial resolution (15 km versus 60 km).The TES instrument was built by Santa Barbara Remote Sensing and is operated by Philip R. Christensen, of Arizona State University, Tempe, AZ.

  8. Building Thermal Models

    Science.gov (United States)

    Peabody, Hume L.

    2017-01-01

    This presentation is meant to be an overview of the model building process It is based on typical techniques (Monte Carlo Ray Tracing for radiation exchange, Lumped Parameter, Finite Difference for thermal solution) used by the aerospace industry This is not intended to be a "How to Use ThermalDesktop" course. It is intended to be a "How to Build Thermal Models" course and the techniques will be demonstrated using the capabilities of ThermalDesktop (TD). Other codes may or may not have similar capabilities. The General Model Building Process can be broken into four top level steps: 1. Build Model; 2. Check Model; 3. Execute Model; 4. Verify Results.

  9. Space thermal control development

    Science.gov (United States)

    Hoover, M. J.; Grodzka, P. G.; Oneill, M. J.

    1971-01-01

    The results of experimental investigations on a number of various phase change materials (PCMs) and PCMs in combination with metals and other materials are reported. The evaluations include the following PCM system performance characteristics: PCM and PCM/filler thermal diffusivities, the effects of long-term thermal cycling, PCM-container compatibility, and catalyst effectiveness and stability. Three PCMs demonstrated performance acceptable enough to be considered for use in prototype aluminum thermal control devices. These three PCMs are lithium nitrate trihydrate with zinc hydroxy nitrate catalyst, acetamide, and myristic acid. Of the fillers tested, aluminum honeycomb filler was found to offer the most increase in system thermal diffusivity.

  10. Thermal decomposition of pyrite

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1992-01-01

    Thermal decomposition of natural pyrite (cubic, FeS 2 ) has been investigated using X-ray diffraction and 57 Fe Moessbauer spectroscopy. X-ray diffraction analysis of pyrite ore from different sources showed the presence of associated minerals, such as quartz, szomolnokite, stilbite or stellerite, micas and hematite. Hematite, maghemite and pyrrhotite were detected as thermal decomposition products of natural pyrite. The phase composition of the thermal decomposition products depends on the terature, time of heating and starting size of pyrite chrystals. Hematite is the end product of the thermal decomposition of natural pyrite. (author) 24 refs.; 6 figs.; 2 tabs

  11. Nuclear plant analyzer: An efficient tool for training and operational analyses

    International Nuclear Information System (INIS)

    Bartsoen, L.; Mandy, C.; Stubbe, E.

    1999-01-01

    The advanced computer technology available now at low cost, combined with the maturity of the best-estimate engineering codes are the fundamentals of the Nuclear Plant Analyzer (NPA). At Tractebel Energy Engineering (TEE), the RELAP5 advanced thermal-hydraulics code is used as basis for the NPA that is mainly used for the training of simulator instructors and plant personnel. Using the special graphical features of the NPA, a set of six course modules has been prepared to provide an in-depth physical understanding of the main thermal-hydraulic phenomena that dominate nuclear power plant behavior in normal and accidental plant conditions. (author)

  12. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    Science.gov (United States)

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Analyzing surface coatings in situ: High-temperature surface film analyzer developed

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Scientists at Argonne National Laboratory (ANL) have devised a new instrument that can analyze surface coatings under operating conditions. The High-Temperature Surface Film Analyzer is the first such instrument to analyze the molecular composition and structure of surface coatings on metals and solids under conditions of high temperature and pressure in liquid environments. Corrosion layers, oxide coatings, polymers or paint films, or adsorbed molecules are examples of conditions that can be analyzed using this instrument. Film thicknesses may vary from a few molecular layers to several microns or thicker. The instrument was originally developed to study metal corrosion in aqueous solutions similar to the cooling water systems of light-water nuclear reactors. The instrument may have use for the nuclear power industry where coolant pipes degrade due to stress corrosion cracking, which often leads to plant shutdown. Key determinants in the occurrence of stress corrosion cracking are the properties and composition of corrosion scales that form inside pipes. The High-Temperature Surface Analyzer can analyze these coatings under laboratory conditions that simulate the same hostile environment of high temperature, pressure, and solution that exist during plant operations. The ability to analyze these scales in hostile liquid environments is unique to the instrument. Other applications include analyzing paint composition, corrosion of materials in geothermal power systems, integrity of canisters for radioactive waste storage, corrosion inhibitor films on piping and drilling systems, and surface scales on condenser tubes in industrial hot water heat exchangers. The device is not patented

  14. Joint Removal Implications : Thermal Analysis and Life-Cycle Cost

    Science.gov (United States)

    2018-04-01

    Deck joints are causing significant bridge deterioration and maintenance problems for Departments of Transportation (DOTs). Colorado State University researchers partnered with the Colorado DOT to analyze the effects of temperature change and thermal...

  15. Thermal food processing: new technologies and quality issues

    National Research Council Canada - National Science Library

    Sun, Da-Wen

    2012-01-01

    .... The editor of Thermal Food Processing: New Technologies and Quality Issues presents a comprehensive reference through authors that assist in meeting this challenge by explaining the latest developments and analyzing the latest trends...

  16. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  17. The Fuel Performance Analysis of LWR Fuel containing High Thermal Conductivity Reinforcements

    International Nuclear Information System (INIS)

    Kim, Seung Su; Ryu, Ho Jin

    2015-01-01

    The thermal conductivity of fuel affects many performance parameters including the fuel centerline temperature, fission gas release and internal pressure. In addition, enhanced safety margin of fuel might be expected when the thermal conductivity of fuel is improved by the addition of high thermal conductivity reinforcements. Therefore, the effects of thermal conductivity enhancement on the fuel performance of reinforced UO2 fuel with high thermal conductivity compounds should be analyzed. In this study, we analyzed the fuel performance of modified UO2 fuel with high thermal conductivity reinforcements by using the FRAPCON-3.5 code. The fissile density and mechanical properties of the modified fuel are considered the same with the standard UO2 fuel. The fuel performance of modified UO2 with high thermal conductivity reinforcements were analyzed by using the FRAPCON-3.5 code. The thermal conductivity enhancement factors of the modified fuels were obtained from the Maxwell model considering the volume fraction of reinforcements

  18. Analyzing and forecasting the European social climate

    Directory of Open Access Journals (Sweden)

    Liliana DUGULEANĂ

    2015-06-01

    Full Text Available The paper uses the results of the sample survey Eurobarometer, which has been requested by the European Commission. The social climate index is used to measure the level of perceptions of population by taking into account their personal situation and their perspective at national level. The paper makes an analysis of the evolution of social climate indices for the countries of European Union and offers information about the expectations of population of analyzed countries. The obtained results can be compared with the forecasting of Eurobarometer, on short term of one year and medium term of five years. Modelling the social climate index and its influence factors offers useful information about the efficiency of social protection and inclusion policies.

  19. Analyzer of neutron flux in real time

    International Nuclear Information System (INIS)

    Rojas S, A.S.; Carrillo M, R.A.; Balderas, E.G.

    1999-01-01

    With base in the study of the real signals of neutron flux of instability events occurred in the Laguna Verde nuclear power plant where the nucleus oscillation phenomena of the reactor are in the 0 to 2.5 Hz range, it has been seen the possibility about the development a surveillance and diagnostic equipment capable to analyze in real time the behavior of nucleus in this frequencies range. An important method for surveillance the stability of the reactor nucleus is the use of the Power spectral density which allows to determine the frequencies and amplitudes contained in the signals. It is used an instrument carried out by LabVIEW graphic programming with a data acquisition card of 16 channels which works at Windows 95/98 environment. (Author)

  20. Analyzing the Control Structure of PEPA

    DEFF Research Database (Denmark)

    Yang, Fan; Nielson, Hanne Riis

    expressed in PEPA. The analysis technique we adopted is Data Flow Analysis. We begin the analysis by defining an appropriate transfer function, then with the classical worklist algorithm we construct a finite automaton that captures all possible interactions among processes. By annotating labels and layers...... to PEPA programs, the approximating result is very precise. Based on the analysis, we also develop algorithms for validating the deadlock property of PEPA programs. The techniques have been implemented in a tool which is able to analyze processes with a control structure that more than one thousand states.......The Performance Evaluation Process Algebra, PEPA, is introduced by Jane Hillston as a stochastic process algebra for modelling distributed systems and especially suitable for performance evaluation. We present a static analysis that very precisely approximates the control structure of processes...

  1. Buccal microbiology analyzed by infrared spectroscopy

    Science.gov (United States)

    de Abreu, Geraldo Magno Alves; da Silva, Gislene Rodrigues; Khouri, Sônia; Favero, Priscila Pereira; Raniero, Leandro; Martin, Airton Abrahão

    2012-01-01

    Rapid microbiological identification and characterization are very important in dentistry and medicine. In addition to dental diseases, pathogens are directly linked to cases of endocarditis, premature delivery, low birth weight, and loss of organ transplants. Fourier Transform Infrared Spectroscopy (FTIR) was used to analyze oral pathogens Aggregatibacter actinomycetemcomitans ATCC 29523, Aggregatibacter actinomycetemcomitans-JP2, and Aggregatibacter actinomycetemcomitans which was clinically isolated from the human blood-CI. Significant spectra differences were found among each organism allowing the identification and characterization of each bacterial species. Vibrational modes in the regions of 3500-2800 cm-1, the 1484-1420 cm-1, and 1000-750 cm-1 were used in this differentiation. The identification and classification of each strain were performed by cluster analysis achieving 100% separation of strains. This study demonstrated that FTIR can be used to decrease the identification time, compared to the traditional methods, of fastidious buccal microorganisms associated with the etiology of the manifestation of periodontitis.

  2. Nuclear Plant Analyzer: Installation manual. Volume 1

    International Nuclear Information System (INIS)

    Snider, D.M.; Wagner, K.L.; Grush, W.H.; Jones, K.R.

    1995-01-01

    This report contains the installation instructions for the Nuclear Plant Analyzer (NPA) System. The NPA System consists of the Computer Visual System (CVS) program, the NPA libraries, the associated utility programs. The NPA was developed at the Idaho National Engineering Laboratory under the sponsorship of the US Nuclear Regulatory Commission to provide a highly flexible graphical user interface for displaying the results of these analysis codes. The NPA also provides the user with a convenient means of interactively controlling the host program through user-defined pop-up menus. The NPA was designed to serve primarily as an analysis tool. After a brief introduction to the Computer Visual System and the NPA, an analyst can quickly create a simple picture or set of pictures to aide in the study of a particular phenomenon. These pictures can range from simple collections of square boxes and straight lines to complex representations of emergency response information displays

  3. Using wavelet features for analyzing gamma lines

    International Nuclear Information System (INIS)

    Medhat, M.E.; Abdel-hafiez, A.; Hassan, M.F.; Ali, M.A.; Uzhinskii, V.V.

    2004-01-01

    Data processing methods for analyzing gamma ray spectra with symmetric bell-shaped peaks form are considered. In many cases the peak form is symmetrical bell shaped in particular a Gaussian case is the most often used due to many physical reasons. The problem is how to evaluate parameters of such peaks, i.e. their positions, amplitudes and also their half-widths, that is for a single peak and overlapped peaks. Through wavelet features by using Marr wavelet (Mexican Hat) as a correlation method, it could be to estimate the optimal wavelet parameters and to locate peaks in the spectrum. The performance of the proposed method and others shows a better quality of wavelet transform method

  4. Coke from small-diameter tubes analyzed

    International Nuclear Information System (INIS)

    Albright, L.F.

    1988-01-01

    The mechanism for coke deposit formation and the nature of the coke itself can vary with the design of the ethylene furnace tube bank. In this article, coke deposits from furnaces with small-diameter pyrolysis tubes are examined. The samples were taken from four furnaces of identical design (Plant B). As in both the first and second installments of the series, the coke deposits were examined using a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX). The deposits from the small-diameter tubes are compared with the coke deposits from the furnace discussed in earlier articles. Analysis of the coke in both sets of samples are then used to offer recommendations for improved decoking procedures, operating procedures, better feed selection, and better selection of the metallurgy used in furnace tubes, to extend the operating time of the furnace tubes by reducing the amount and type of coke build up

  5. Analyzing Options for Airborne Emergency Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  6. Sensors and Automated Analyzers for Radionuclides

    International Nuclear Information System (INIS)

    Grate, Jay W.; Egorov, Oleg B.

    2003-01-01

    The production of nuclear weapons materials has generated large quantities of nuclear waste and significant environmental contamination. We have developed new, rapid, automated methods for determination of radionuclides using sequential injection methodologies to automate extraction chromatographic separations, with on-line flow-through scintillation counting for real time detection. This work has progressed in two main areas: radionuclide sensors for water monitoring and automated radiochemical analyzers for monitoring nuclear waste processing operations. Radionuclide sensors have been developed that collect and concentrate radionuclides in preconcentrating minicolumns with dual functionality: chemical selectivity for radionuclide capture and scintillation for signal output. These sensors can detect pertechnetate to below regulatory levels and have been engineered into a prototype for field testing. A fully automated process monitor has been developed for total technetium in nuclear waste streams. This instrument performs sample acidification, speciation adjustment, separation and detection in fifteen minutes or less

  7. Analyzing, Modelling, and Designing Software Ecosystems

    DEFF Research Database (Denmark)

    Manikas, Konstantinos

    the development, implementation, and use of telemedicine services. We initially expand the theory of software ecosystems by contributing to the definition and understanding of software ecosystems, providing means of analyzing existing and designing new ecosystems, and defining and measuring the qualities...... of software ecosystems. We use these contributions to design a software ecosystem in the telemedicine services of Denmark with (i) a common platform that supports and promotes development from different actors, (ii) high software interaction, (iii) strong social network of actors, (iv) robust business....... This thesis documents the groundwork towards addressing the challenges faced by telemedical technologies today and establishing telemedicine as a means of patient diagnosis and treatment. Furthermore, it serves as an empirical example of designing a software ecosystem....

  8. Analyzing Strategic Business Rules through Simulation Modeling

    Science.gov (United States)

    Orta, Elena; Ruiz, Mercedes; Toro, Miguel

    Service Oriented Architecture (SOA) holds promise for business agility since it allows business process to change to meet new customer demands or market needs without causing a cascade effect of changes in the underlying IT systems. Business rules are the instrument chosen to help business and IT to collaborate. In this paper, we propose the utilization of simulation models to model and simulate strategic business rules that are then disaggregated at different levels of an SOA architecture. Our proposal is aimed to help find a good configuration for strategic business objectives and IT parameters. The paper includes a case study where a simulation model is built to help business decision-making in a context where finding a good configuration for different business parameters and performance is too complex to analyze by trial and error.

  9. Method and apparatus for analyzing ionizable materials

    International Nuclear Information System (INIS)

    Ehrlich, B.J.; Hall, R.C.; Thiede, P.W.

    1979-01-01

    An apparatus and method are described for analyzing a solution of ionizable compounds in a liquid. The solution is irradiated with electromagnetic radiation to ionize the compounds and the electrical conductivity of the solution is measured. The radiation may be X-rays, ultra-violet, infra-red or microwaves. The solution may be split into two streams, only one of which is irradiated, the other being used as a reference by comparing conductivities of the two streams. The liquid must be nonionizable and is preferably a polar solvent. The invention provides an analysis technique useful in liquid chromatography and in gas chromatography after dissolving the eluted gases in a suitable solvent. Electrical conductivity measurements performed on the irradiated eluent provide a quantitative indication of the ionizable materials existing within the eluent stream and a qualitative indication of the purity of the eluent stream. (author)

  10. Analyzing, Modelling, and Designing Software Ecosystems

    DEFF Research Database (Denmark)

    Manikas, Konstantinos

    as the software development and distribution by a set of actors dependent on each other and the ecosystem. We commence on the hypothesis that the establishment of a software ecosystem on the telemedicine services of Denmark would address these issues and investigate how a software ecosystem can foster...... the development, implementation, and use of telemedicine services. We initially expand the theory of software ecosystems by contributing to the definition and understanding of software ecosystems, providing means of analyzing existing and designing new ecosystems, and defining and measuring the qualities...... of software ecosystems. We use these contributions to design a software ecosystem in the telemedicine services of Denmark with (i) a common platform that supports and promotes development from different actors, (ii) high software interaction, (iii) strong social network of actors, (iv) robust business...

  11. Stackable differential mobility analyzer for aerosol measurement

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Meng-Dawn [Oak Ridge, TN; Chen, Da-Ren [Creve Coeur, MO

    2007-05-08

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  12. Analyzing use cases for knowledge acquisition

    Science.gov (United States)

    Kelsey, Robert L.; Webster, Robert B.

    2000-03-01

    The analysis of use cases describing construction of simulation configuration files in a data/information management system can lead to the acquisition of new information and knowledge. In this application, a user creates a use case with an eXtensible Markup Language (XML) description representing a configuration file for simulation of a physical system. INtelligent agents analyze separate versions of the XML descriptions of a user and additionally, make comparisons of the descriptions with examples form a library of use cases. The agents can then make recommendations to a user on how to proceed or if tutoring is necessary. In a proof-of-concept test, new information is acquired and a user learns from the agent-facilitated tutoring.

  13. Spectroscopic methods to analyze drug metabolites.

    Science.gov (United States)

    Yi, Jong-Jae; Park, Kyeongsoon; Kim, Won-Je; Rhee, Jin-Kyu; Son, Woo Sung

    2018-03-09

    Drug metabolites have been monitored with various types of newly developed techniques and/or combination of common analytical methods, which could provide a great deal of information on metabolite profiling. Because it is not easy to analyze whole drug metabolites qualitatively and quantitatively, a single solution of analytical techniques is combined in a multilateral manner to cover the widest range of drug metabolites. Mass-based spectroscopic analysis of drug metabolites has been expanded with the help of other parameter-based methods. The current development of metabolism studies through contemporary pharmaceutical research are reviewed with an overview on conventionally used spectroscopic methods. Several technical approaches for conducting drug metabolic profiling through spectroscopic methods are discussed in depth.

  14. Analyzing petabytes of data with Hadoop

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Abstract The open source Apache Hadoop project provides a powerful suite of tools for storing and analyzing petabytes of data using commodity hardware. After several years of production use inside of web companies like Yahoo! and Facebook and nearly a year of commercial support and development by Cloudera, the technology is spreading rapidly through other disciplines, from financial services and government to life sciences and high energy physics. The talk will motivate the design of Hadoop and discuss some key implementation details in depth. It will also cover the major subprojects in the Hadoop ecosystem, go over some example applications, highlight best practices for deploying Hadoop in your environment, discuss plans for the future of the technology, and provide pointers to the many resources available for learning more. In addition to providing more information about the Hadoop platform, a major goal of this talk is to begin a dialogue with the ATLAS research team on how the tools commonly used in t...

  15. Orthopedic surgical analyzer for percutaneous vertebroplasty

    Science.gov (United States)

    Tack, Gye Rae; Choi, Hyung Guen; Lim, Do H.; Lee, Sung J.

    2001-05-01

    Since the spine is one of the most complex joint structures in the human body, its surgical treatment requires careful planning and high degree of precision to avoid any unwanted neurological compromises. In addition, comprehensive biomechanical analysis can be very helpful because the spine is subject to a variety of load. In case for the osteoporotic spine in which the structural integrity has been compromised, it brings out the double challenges for a surgeon both clinically and biomechanically. Thus, we have been developing an integrated medical image system that is capable of doing the both. This system is called orthopedic surgical analyzer and it combines the clinical results from image-guided examination and the biomechanical data from finite element analysis. In order to demonstrate its feasibility, this system was applied to percutaneous vertebroplasty. Percutaneous vertebroplasty is a surgical procedure that has been recently introduced for the treatment of compression fracture of the osteoporotic vertebrae. It involves puncturing vertebrae and filling with polymethylmethacrylate (PMMA). Recent studies have shown that the procedure could provide structural reinforcement for the osteoporotic vertebrae while being minimally invasive and safe with immediate pain relief. However, treatment failures due to excessive PMMA volume injection have been reported as one of complications. It is believed that control of PMMA volume is one of the most critical factors that can reduce the incidence of complications. Since the degree of the osteoporosis can influence the porosity of the cancellous bone in the vertebral body, the injection volume can be different from patient to patient. In this study, the optimal volume of PMMA injection for vertebroplasty was predicted based on the image analysis of a given patient. In addition, biomechanical effects due to the changes in PMMA volume and bone mineral density (BMD) level were investigated by constructing clinically

  16. Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods

    Directory of Open Access Journals (Sweden)

    Insun Jo

    2015-05-01

    Full Text Available Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD, and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.

  17. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  18. Thermal Transport in Phosphorene.

    Science.gov (United States)

    Qin, Guangzhao; Hu, Ming

    2018-02-02

    Phosphorene, a novel elemental 2D semiconductor, possesses fascinating chemical and physical properties which are distinctively different from other 2D materials. The rapidly growing applications of phosphorene in nano/optoelectronics and thermoelectrics call for comprehensive studies of thermal transport properties. In this Review, based on the theoretical and experimental progresses, the thermal transport properties of single-layer phosphorene, multilayer phosphorene (nanofilms), and bulk black phosphorus are summarized to give a general view of the overall thermal conductivity trend from single-layer to bulk form. The mechanism underlying the discrepancy in the reported thermal conductivity of phosphorene is discussed by reviewing the effect of different functionals and cutoff distances on the thermal transport evaluations. This Review then provides fundamental insight into the thermal transport in phosphorene by reviewing the role of resonant bonding in driving giant phonon anharmonicity and long-range interactions. In addition, the extrinsic thermal conductivity of phosphorene is reviewed by discussing the effects of strain and substrate, together with phosphorene based heterostructures and nanoribbons. This Review summarizes the progress of thermal transport in phosphorene from both theoretical calculations and experimental measurements, which would be of significance to the design and development of efficient phosphorene based nanoelectronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thermal diffusion (1963)

    International Nuclear Information System (INIS)

    Lemarechal, A.

    1963-01-01

    This report brings together the essential principles of thermal diffusion in the liquid and gaseous phases. The macroscopic and molecular aspects of the thermal diffusion constant are reviewed, as well as the various measurement method; the most important developments however concern the operation of the CLUSIUS and DICKEL thermo-gravitational column and its applications. (author) [fr

  20. Conceptual thermal design

    NARCIS (Netherlands)

    Strijk, R.

    2008-01-01

    Present thermal design tools and methods insufficiently support the development of structural concepts engaged by typical practicing designers. Research described in this thesis identifies the main thermal design problems in practice. In addition, models and methods are developed that support an