WorldWideScience

Sample records for nasa virtual glovebox

  1. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    Science.gov (United States)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  2. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    Science.gov (United States)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  3. The Virtual GloveboX (VGX: a Semi-immersive Virtual Environment for Training Astronauts in Life Sciences Experiments

    Directory of Open Access Journals (Sweden)

    I. Alexander Twombly

    2004-06-01

    Full Text Available The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The "Virtual GloveboX" (VGX integrates high-fidelity graphics, force-feedback devices and real-time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  4. The Virtual Glovebox (VGX): An Immersive Simulation System for Training Astronauts to Perform Glovebox Experiments in Space

    Science.gov (United States)

    Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.

  5. Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    Science.gov (United States)

    Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.

    2013-01-01

    Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.

  6. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  7. Seismic analysis of plutonium glovebox by MSC/NASTRAN

    International Nuclear Information System (INIS)

    Hirata, Masaru; Ishikawa, Kazuya; Korosawa, Makoto; Fukushima, Susumu; Hoshina, Hirofumi.

    1993-01-01

    Seismic analysis of the structural strength of gloveboxes is important for plutonium confinement evaluation. However, the analytical methods must be developed for evaluating the mutual displacement between the window frame and acrylic resin window panel with regard to plutonium confinement during an earthquake. Therefore, seismic analysis for a standard glovebox in Plutonium Fuel Research Facility at Oarai Research Establishment of JAERI has been conducted by FEM (Finite Element Method) computer code MSC/NASTRAN (MacNeal-Schwendler Corporation NASA Structural Analysis). Modelling of glovebox window frame has been investigated from the results of natural frequency analysis and static analysis. After the acquisition of a suitable model, displacement around the window frame and glovebox structural strength have been evaluated in detail by use of floor response spectrum analysis and time-history (transient response) analysis. (author)

  8. Glovebox and Experiment Safety

    Science.gov (United States)

    Maas, Gerard

    2005-12-01

    Human spaceflight hardware and operations must comply with NSTS 1700.7. This paper discusses how a glovebox can help.A short layout is given on the process according NSTS/ISS 13830, explaining the responsibility of the payload organization, the approval authority of the PSRP and the defined review phases (0 till III).Amongst others, the following requirement has to be met:"200.1 Design to Tolerate Failures. Failure tolerance is the basic safety requirement that shall be used to control most payload hazards. The payload must tolerate a minimum number of credible failures and/or operator errors determined by the hazard level. This criterion applies when the loss of a function or the inadvertent occurrence of a function results in a hazardous event.200.1a Critical Hazards. Critical hazards shall be controlled such that no single failure or operator error can result in damage to STS/ISS equipment, a nondisabling personnel injury, or the use of unscheduled safing procedures that affect operations of the Orbiter/ISS or another payload.200.1b Catastrophic Hazards. Catastrophic hazards shall be controlled such that no combination of two failures or operator errors can result in the potential for a disabling or fatal personnel injury or loss of the Orbiter/ISS, ground facilities or STS/ISS equipment."For experiments in material science, biological science and life science that require real time operator manipulation, the above requirement may be hard or impossible to meet. Especially if the experiment contains substances that are considered hazardous when released into the habitable environment. In this case operation of the experiment in a glovebox can help to comply.A glovebox provides containment of the experiment and at the same time allows manipulation and visibility to the experiment.The containment inside the glovebox provides failure tolerance because the glovebox uses a negative pressure inside the working volume (WV). The level of failure tolerance is dependent of

  9. TRU waste characterization chamber gloveboxes

    International Nuclear Information System (INIS)

    Duncan, D. S.

    1998-01-01

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes

  10. Glovebox decontamination technology comparison

    International Nuclear Information System (INIS)

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-01-01

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented

  11. NASA Virtual Institutes: International Bridges for Space Exploration

    Science.gov (United States)

    Schmidt, Gregory K.

    2016-01-01

    NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems.

  12. Redefining design criteria for Pu-238 gloveboxes

    International Nuclear Information System (INIS)

    Acosta, S.V.

    1998-01-01

    Enclosures for confinement of special nuclear materials (SNM) have evolved into the design of gloveboxes. During the early stages of glovebox technology, established practices and process operation requirements defined design criteria. Proven boxes that performed and met or exceeded process requirements in one group or area, often could not be duplicated in other areas or processes, and till achieve the same success. Changes in materials, fabrication and installation methods often only met immediate design criteria. Standardization of design criteria took a big step during creation of ''Special-Nuclear Materials R and D Laboratory Project, Glovebox standards''. The standards defined design criteria for every type of process equipment in its most general form. Los Alamos National Laboratory (LANL) then and now has had great success with Pu-238 processing. However with ever changing Environment Safety and Health (ES and H) requirements and Ta-55 Facility Configuration Management, current design criteria are forced to explore alternative methods of glovebox design fabrication and installation. Pu-238 fuel processing operations in the Power Source Technologies Group have pushed the limitations of current design criteria. More than half of Pu-238 gloveboxes are being retrofitted or replaced to perform the specific fuel process operations. Pu-238 glovebox design criteria are headed toward process designed single use glovebox and supporting line gloveboxes. Gloveboxes that will house equipment and processes will support TA-55 Pu-238 fuel processing needs into the next century and extend glovebox expected design life

  13. Microgravity Science Glovebox Aboard the International Space Station

    Science.gov (United States)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  14. WRAP low level waste (LLW) glovebox operational test report

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  15. WRAP low level waste (LLW) glovebox operational test report

    International Nuclear Information System (INIS)

    Kersten, J.K.

    1998-01-01

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution's (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation

  16. Institutional glovebox safety committee (IGSC) annual report FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Roybal, Richard F [Los Alamos National Laboratory; Lee, Roy J [Los Alamos National Laboratory

    2011-01-04

    The Institutional Glovebox Safety Committee (IGSC) was chartered to minimize and/or prevent glovebox operational events. Highlights of the IGSC's third year are discussed. The focus of this working committee is to address glovebox operational and safety issues and to share Lessons Learned, best practices, training improvements, and glovebox glove breach and failure data. Highlights of the IGSC's third year are discussed. The results presented in this annual report are pivotal to the ultimate focus of the glovebox safety program, which is to minimize work-related injuries and illnesses. This effort contributes to the LANL Continuous Improvement Program by providing information that can be used to improve glovebox operational safety.

  17. Electrochemical decontamination system for actinide processing gloveboxes

    International Nuclear Information System (INIS)

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL's Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused

  18. Dexterity test data contribute to proper glovebox over-glove use

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Lawton, Cindy M.; Castro, Armanda M.; Costigan, Stephen A.; Apel, D.M.; Neal, G.E.; Castro, J.M.; Michelotti, R.A.

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). The glovebox gloves are the weakest part of this engineering control. The Glovebox Glove Integrity Program, which controls glovebox gloves from procurement to disposal at TA-55, manages this vulnerability. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Proper selection of over-gloves is one of these measures. Line management owning glovebox processes have the responsibility to approve the appropriate personal protective equipment/glovebox glove/over-glove combination. As low as reasonably achievable (ALARA) considerations to prevent unplanned glovebox glove openings must be balanced with glove durability and worker dexterity, both of which affect the final overall risk to the worker. In this study, the causes of unplanned glovebox glove openings, the benefits of over-glove features, the effect of over-gloves on task performance using standard dexterity tests, the pollution prevention benefits, and the recommended over-gloves for a task are presented.

  19. Compatibility of selected elastomers with plutonium glovebox environment

    International Nuclear Information System (INIS)

    Burns, R.

    1994-06-01

    This illustrative test was undertaken as a result of on-going failure of elastomer components in plutonium gloveboxes. These failures represent one of the major sources of required maintenance to keep gloveboxes operational. In particular, it was observed that the introduction of high specific activity Pu-238 into a glovebox, otherwise contaminated with Pu-239, resulted in an inordinate failure of elastomer components. Desiring to keep replacement of elastomer components to a minimum, a decision to explore a few possible alternative elastomer candidates was undertaken and reported upon herewith. Sample specimens of Neoprene, Urethane, Viton, and Hypalon elastomeric formulations were obtained from the Bacter Rubber Company. Strips of the elastomer specimens were placed in a plutonium glovebox and outside of a glovebox, and were observed for a period of three years. Of the four types of elastomers, only Hypalon remained completely viable

  20. MINIMIZING GLOVEBOX GLOVE BREACHES, PART IV: CONTROL CHARTS

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Lee, Michelle B.; Schreiber, Stephen B.

    2007-01-01

    At the Los Alamos National Laboratory (LANL) Plutonium Facility, plutonium. isotopes and other actinides are handled in a glovebox environment. The spread of radiological contamination, and excursions of contaminants into the worker's breathing zone, are minimized and/or prevented through the use of glovebox technology. Evaluating the glovebox configuration, the glovebo gloves are the most vulnerable part of this engineering control. Recognizing this vulnerability, the Glovebox Glove Integrity Program (GGIP) was developed to minimize and/or prevent unplanned openings in the glovebox environment, i.e., glove failures and breaches. In addition, LANL implement the 'Lean Six Sigma (LSS)' program that incorporates the practices of Lean Manufacturing and Six Sigma technologies and tools to effectively improve administrative and engineering controls and work processes. One tool used in LSS is the use of control charts, which is an effective way to characterize data collected from unplanned openings in the glovebox environment. The benefit management receives from using this tool is two-fold. First, control charts signal the absence or presence of systematic variations that result in process instability, in relation to glovebox glove breaches and failures. Second, these graphical representations of process variation detennine whether an improved process is under control. Further, control charts are used to identify statistically significant variations (trends) that can be used in decision making to improve processes. This paper discusses performance indicators assessed by the use control charts, provides examples of control charts, and shows how managers use the results to make decisions. This effort contributes to LANL Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations.

  1. Guidelines for gloveboxes. Section 5.14: Electrical

    International Nuclear Information System (INIS)

    Tollner, R.L.

    1995-07-01

    This is the electric portion of the design guidelines for gloveboxes developed by the American Glovebox Society. The topics include applicable codes/industry standards, penetrations/feedthroughs, wireways, junction boxes, receptacles, derating factors, conductors, conductor insulation and grounding. References for the guidelines are provided

  2. An Integrated Science Glovebox for the Gateway Habitat

    Science.gov (United States)

    Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.

    2018-01-01

    Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development.

  3. Robotic system for glovebox size reduction

    International Nuclear Information System (INIS)

    KWOK, KWAN S.; MCDONALD, MICHAEL J.

    2000-01-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction

  4. Peak pressures from hydrogen deflagrations in the PFP thermal stabilization glovebox

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1998-01-01

    This document describes the calculations of the peak pressures due to hydrogen deflagrations in the glovebox used for thermal stabilization (glovebox HC-21A) in PFP. Two calculations were performed. The first considered the burning of hydrogen released from a 7 inch Pu can in the Inert Atmosphere Confinement (IAC) section of the glovebox. The peak pressure increase was 12400 Pa (1.8 psi). The second calculation considered burning of the hydrogen from 25 g of plutonium hydride in the airlock leading to the main portion of the glovebox. Since the glovebox door exposes most of the airlock when open, the deflagration was assumed to pressurize the entire glovebox. The peak pressure increase was 3860 Pa (0.56 psi)

  5. Determining the Radiation Damage Effect on Glovebox Glove Material

    International Nuclear Information System (INIS)

    Cournoyer, M.E.; Balkey, J.J.; Andrade, R.M.

    2005-01-01

    The Nuclear Material Technology (NMT) Division has the largest inventory of glove box gloves at Los Alamos National Laboratory. The minimization of unplanned breaches in the glovebox, e.g., glove failures, is a primary concern in the daily operations in NMT Division facilities, including the Plutonium Facility (PF-4) at TA-55 and Chemical and Metallurgy Research (CMR) Facility. Glovebox gloves in these facilities are exposed to elevated temperatures and exceptionally aggressive radiation environments (particulate 239 Pu and 238 Pu). Predictive models are needed to estimate glovebox glove service lifetimes, i.e. change-out intervals. Towards this aim aging studies have been initiated that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on previously reported mechanical data of thermally aged hypalon glove samples. Specifications for 30 mil tri-layered hypalon/lead glovebox gloves (TLH) and 15 mil hypalon gloves (HYP) have already been established. The relevant mechanical properties are shown on Table 1. Tensile strength is defined as the maximum load applied in breaking a tensile test piece divided by the original cross-sectional area of the test piece (Also termed maximum stress and ultimate tensile stress). Ultimate elongation is the elongation at time of rupture (Also termed maximum strain). The specification for the tensile test and ultimate elongation are the minimum acceptable values. In addition, the ultimate elongation must not vary 20% from the original value. In order to establish a service lifetimes for glovebox gloves in a thermal environment, the mechanical properties of glovebox glove materials were studied.

  6. Determining the Radiation Damage Effect on Glovebox Glove Material.

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, M. E. (Michael E.); Balkey, J. J. (James J.); Andrade, R.M. (Rose M.)

    2005-01-01

    The Nuclear Material Technology (NMT) Division has the largest inventory of glove box gloves at Los Alamos National Laboratory. The minimization of unplanned breaches in the glovebox, e.g., glove failures, is a primary concern in the daily operations in NMT Division facilities, including the Plutonium Facility (PF-4) at TA-55 and Chemical and Metallurgy Research (CMR) Facility. Glovebox gloves in these facilities are exposed to elevated temperatures and exceptionally aggressive radiation environments (particulate {sup 239}Pu and {sup 238}Pu). Predictive models are needed to estimate glovebox glove service lifetimes, i.e. change-out intervals. Towards this aim aging studies have been initiated that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on previously reported mechanical data of thermally aged hypalon glove samples. Specifications for 30 mil tri-layered hypalon/lead glovebox gloves (TLH) and 15 mil hypalon gloves (HYP) have already been established. The relevant mechanical properties are shown on Table 1. Tensile strength is defined as the maximum load applied in breaking a tensile test piece divided by the original cross-sectional area of the test piece (Also termed maximum stress and ultimate tensile stress). Ultimate elongation is the elongation at time of rupture (Also termed maximum strain). The specification for the tensile test and ultimate elongation are the minimum acceptable values. In addition, the ultimate elongation must not vary 20% from the original value. In order to establish a service lifetimes for glovebox gloves in a thermal environment, the mechanical properties of glovebox glove materials were studied.

  7. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant

  8. Develop and Manufacture an Ergonomically Sound Glovebox Glove Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Cindy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    Ergonomic injury and radiation exposure are two safety concerns for the Plutonium Facility at Los Alamos National Laboratory (LANL). This facility employs the largest number of gloveboxes (GB) at LANL with approximately 6000 gloves installed. The current GB glove design dates back to the 1960’s and is not based on true hand anatomy, revealing several issues: short fingers, inappropriate length from the wrist to finger webbing, nonexistent joint angles and incorrect thumb placement. These design flaws are directly related to elbow (lateral epicondylitis) and thumb (DeQuervain’s tenosynovitis) injuries. The current design also contributes to increased wear on the glove, causing unplanned glove openings (failures) which places workers at risk of exposure. An improved glovebox glove design has three significant benefits: 1) it will reduce the risk of injury, 2) it will improve comfort and productivity, and 3) it will reduce the risk of a glovebox failures. The combination of these three benefits has estimated savings of several million dollars. The new glove design incorporated the varied physical attributes of workers ranging from the 5th percentile female to the 95th percentile male. Anthropometric hand dimensions along with current GB worker dimensions were used to develop the most comprehensive design specifications for the new glove. Collaboration with orthopedic hand surgeons also provided major contributtions to the design. The new glovebox glove was developed and manufactured incorporating over forty dimensions producing the most comprehensive ergonomically sound design. The new design received a LANL patent (patent attorney docket No: LANS 36USD1 “Protective Glove”, one of 20 highest patents awarded by the Richard P. Feynman Center for Innovation. The glove dimensions were inputed into a solid works model which was used to produce molds. The molds were then shipped to a glove manufacturer for production of the new glovebox gloves. The new

  9. World Wind: NASA's Virtual Globe

    Science.gov (United States)

    Hogan, P.

    2007-12-01

    infrastructure. The open-source community plays a crucial role in advancing virtual globe technology. This world community identifies, tracks and resolves technical problems, suggests new features and source code modifications, and often provides high-resolution data sets and other types of user-generated content, all while extending the functionality of virtual globe technology. NASA World Wind is one example of open source virtual globe technology that provides the world with the ability to build any desired functionality and make any desired data accessible.

  10. 2014 AFCI Glovebox Event Executive Summary

    International Nuclear Information System (INIS)

    Campbell, Joseph Lenard

    2016-01-01

    One of the primary INL missions is to support development of advanced fuels with the goal of creating reactor fuels that produce less waste and are easier to store. The Advanced Fuel Cycle Initiative (AFCI) Glovebox in the Fuel Manufacturing Facility (FMF) is used for several fuel fabrication steps that involve transuranic elements, including americium. The AFCI glove box contains equipment used for fuel fabrication, including an arc melter - a small, laboratory-scale version of an electric arc furnace used to make new metal alloys for research - and an americium distillation apparatus. This overview summarizes key findings related to the investigation into the releases of airborne radioactivity that occurred in the AFCI glovebox room in late August and early September 2014. The full report (AFCI Glovebox Radiological Release - Evaluation, Corrective Actions and Testing, INL/INL-15-36996) provides details of the identified issues, corrective actions taken as well as lessons learned

  11. Chloride-catalyzed corrosion of plutonium in glovebox atmospheres

    International Nuclear Information System (INIS)

    Burgess, M.; Haschke, J.M.; Allen, T.H.; Morales, L.A.; Jarboe, D.M.; Puglisi, C.V.

    1998-04-01

    Characterization of glovebox atmospheres and the black reaction product formed on plutonium surfaces shows that the abnormally rapid corrosion of components in the fabrication line is consistent with a complex salt-catalyzed reaction involving gaseous hydrogen chloride (HCl) and water. Analytical data verify that chlorocarbon and HCl vapors are presented in stagnant glovebox atmospheres. Hydrogen chloride concentrations approach 7 ppm at some locations in the glovebox line. The black corrosion product is identified as plutonium monoxide monohydride (PuOH), a product formed by hydrolysis of plutonium in liquid water and salt solutions at room temperature. Plutonium trichloride (PuCl 3 ) produced by reaction of HCl at the metal surface is deliquescent and apparently forms a highly concentrated salt solution by absorbing moisture from the glovebox atmosphere. Rapid corrosion is attributed to the ensuing salt-catalyzed reaction between plutonium and water. Experimental results are discussed, possible involvement of hydrogen fluoride (HF) is examined, and methods of corrective action are presented in this report

  12. Scrap of gloveboxes No. 801-W and No. 802-W

    CERN Document Server

    Ohuchi, S; Kurosawa, M; Okane, S; Usui, T

    2002-01-01

    Both gloveboxes No. 801-W for measuring samples of uranium or plutonium and No. 802-W for analyzing the quantity of uranium or plutonium are established at twenty five years ago in the analyzing room No. 108 of Plutonium Fuel Research Facility. It was planned to scrap the gloveboxes and to establish new gloveboxes. This report describes the technical view of the scrapping works.

  13. Dexterity tests data contribute to reduction in leaded glovebox gloves use

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Lawton, Cindy M [Los Alamos National Laboratory; Castro, Amanda M [Los Alamos National Laboratory

    2008-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alphaemitting materials. The spread of radiological contamination on surfaces and airborne contamination and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Through an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program (GGJP). A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management owning glovebox processes through this program make decisions on which type of glovebox gloves (the weakest component of this safety significant system) would perform in these aggressive environments. As Low As Reasonably Achievable (ALARA) considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) glovebox gloves made from Hypalon(reg.) had been the workhorse of programmatic operations at TA-55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduced the amount of mixed TRU waste. This effort contributes to Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations. In the following report, the pros and cons of wearing leaded glovebox gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and pollution prevention benefits of this dramatic change in the glovebox system are presented.

  14. Decrease the Number of Glovebox Glove Breaches and Failures

    Energy Technology Data Exchange (ETDEWEB)

    Hurtle, Jackie C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-12-24

    Los Alamos National Laboratory (LANL) is committed to the protection of the workers, public, and environment while performing work and uses gloveboxes as engineered controls to protect workers from exposure to hazardous materials while performing plutonium operations. Glovebox gloves are a weak link in the engineered controls and are a major cause of radiation contamination events which can result in potential worker exposure and localized contamination making operational areas off-limits and putting programmatic work on hold. Each day of lost opportunity at Technical Area (TA) 55, Plutonium Facility (PF) 4 is estimated at $1.36 million. Between July 2011 and June 2013, TA-55-PF-4 had 65 glovebox glove breaches and failures with an average of 2.7 per month. The glovebox work follows the five step safety process promoted at LANL with a decision diamond interjected for whether or not a glove breach or failure event occurred in the course of performing glovebox work. In the event that no glove breach or failure is detected, there is an additional decision for whether or not contamination is detected. In the event that contamination is detected, the possibility for a glove breach or failure event is revisited.

  15. Comparison of deliverable and exhaustible pressurized air flow rates in laboratory gloveboxes

    International Nuclear Information System (INIS)

    Compton, J.A.

    1994-01-01

    Calculations were performed to estimate the maximum credible flow rates of pressurized air into Plutonium Process Support Laboratories gloveboxes. Classical equations for compressible fluids were used to estimate the flow rates. The calculated maxima were compared to another's estimates of glovebox exhaust flow rates and corresponding glovebox internal pressures. No credible pressurized air flow rate will pressurize a glovebox beyond normal operating limits. Unrestricted use of the pressurized air supply is recommended

  16. WRAP low level waste (LLW) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report

  17. W-026, transuranic waste (TRU) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    On July 18, 1997, the Transuranic (TRU) glovebox was tested using glovebox acceptance test procedure 13021A-86. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, sorting table, lidder/delidder device and the TRU empty drum compactor were also conducted. As of February 25, 1998, 10 of the 102 test exceptions that affect the TRU glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test exceptions are provided as appendices to this report

  18. WRAP low level waste (LLW) glovebox acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Leist, K.J.

    1998-02-17

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report.

  19. Design/build/mockup of the Waste Isolation Pilot Plant gas generation experiment glovebox

    International Nuclear Information System (INIS)

    Rosenberg, K.E.; Benjamin, W.W.; Knight, C.J.; Michelbacher, J.A.

    1996-01-01

    A glovebox was designed, fabricated, and mocked-up for the WIPP Gas Generation Experiments (GGE) being conducted at ANL-W. GGE will determine the gas generation rates from materials in contact handled transuranic waste at likely long term repository temperature and pressure conditions. Since the customer's schedule did not permit time for performing R ampersand D of the support systems, designing the glovebox, and fabricating the glovebox in a serial fashion, a parallel approach was undertaken. As R ampersand D of the sampling system and other support systems was initiated, a specification was written concurrently for contracting a manufacturer to design and build the glovebox and support equipment. The contractor understood that the R ampersand D being performed at ANL-W would add additional functional requirements to the glovebox design. Initially, the contractor had sufficient information to design the glovebox shell. Once the shell design was approved, ANL-W built a full scale mockup of the shell out of plywood and metal framing; support systems were mocked up and resultant information was forwarded to the glovebox contractor to incorporate into the design. This approach resulted in a glovebox being delivered to ANL-W on schedule and within budget

  20. Survey of Technologies to Support Reuse of Gloveboxes at LANL TA-55

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Pinson, P.A.

    1998-01-01

    This report is a summary of ideas and technologies available to support reuse of plutonium gloveboxes at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). This work is the second of two deliverables in the task to enhance glovebox design for longevity and reusability at TA-55. The report presents several design change suggestions to be evaluated for their feasibility by LANL glovebox designers. The report also describes some techniques to be evaluated by LANL for their usefulness in reducing glovebox waste

  1. Design criteria for plutonium gloveboxes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The standard defines criteria for the design of glovebox systems to be used for the handling of plutonium in any form or isotopic composition or when mixed with other elements or compounds. The glovebox system is a series of physical barriers provided with glove ports and gloves, through which process and maintenance operations may be performed, together with an operating ventilation system. The system minimizes the potential for release of radioactive material to the environment, protects operators from contamination, and mitigates the consequences of abnormal condiations. The standard covers confinement, construction, materials, windows, glove ports, gloves, equipment insertion and removal, lighting, ventilation, fire protection, criticality prevention, services and utilities, radiation shielding, waste systems, monitoring and alarm systems, safeguards, quality assurance, and decommissioning

  2. Glovebox characterization and barrier integrity testing using fluorescent powder

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1996-01-01

    This paper presents a method for characterizing the spread of contamination and testing the barrier integrity of a new glovebox during material transfer operations and glove change-outs using fluorescent powder. Argonne National Laboratory-West has performed this test on several new gloveboxes prior to putting them into service. The test is performed after the glovebox has been leak tested and all systems have been verified to be operational. The purpose of the test is to show that bag-in/bag-out operations and glove change-outs can be accomplished without spreading the actual contaminated material to non-contaminated areas. The characterization test also provides information as to where contamination might be expected to build-up during actual operations. The fluorescent powder is used because it is easily detectable using an ultra-violet light and disperses in a similar fashion to radioactive material. The characterization and barrier integrity test of a glovebox using fluorescent powder provides a visual method of determining areas of potential contamination accumulation and helps evaluate the ability to perform clean transfer operations and glove change-outs

  3. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    International Nuclear Information System (INIS)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-01-01

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost

  4. Follow-On Vapor Containment Tests of the Rapid Response System Glovebox

    National Research Council Canada - National Science Library

    Arca, Victor

    1997-01-01

    ...) glovebox in April 1996. The tests were conducted by generating a cloud of the simulant methyl salicylate inside the glovebox and measuring the concentration of any simulant that permeated to the operator workspace...

  5. Dexterity Test Data Contribute To Reduction in Leaded Glovebox Glove Use

    International Nuclear Information System (INIS)

    Cournoyer, M.E.; Lawton, C.M.; Castro, A.M.; Costigan, S.A.; Schreiber, S.

    2009-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Using an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management who own glovebox processes through this program make decisions on which type of glovebox gloves (hereafter referred to as gloves), the weakest component of this safety-significant system, would perform best in these aggressive environments. As Low as Reasonably Achievable considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) gloves made from Hypalon R were the primary glove for programmatic operations at TA-55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduce the amount of mixed transuranic waste. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the pros and cons of wearing leaded gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and the pollution prevention benefits of this dramatic change in the glovebox system are presented. (authors)

  6. Macro and Micro Remote Viewing of Objects in Sealed Gloveboxes

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2004-01-01

    The Savannah River Site uses sophisticated glovebox facilities to process and analyze material that is radiologically contaminated or that must be protected from contamination by atmospheric gases. The analysis can be visual, non destructive measurement, or destructive measurement, and allows for the gathering of information that would otherwise not be obtainable. Macro and Micro systems that cover a range of 2X to 400X magnifications with a robust system compatible with the harsh glovebox environment were installed. Remote video inspection systems were developed and deployed in Savannah River Site glovebox facilities that provide high quality or mega-pixel quality remote views, for remote inspections. The specialized video systems that are the subject of this report exhibited specialized field application of remote video/viewing techniques by expanding remote viewing to high and very high quality viewing in gloveboxes. This technological enhancement will allow the gathering of precision information that is otherwise not available

  7. Tritium stripping in a nitrogen glovebox using SAES St 198

    International Nuclear Information System (INIS)

    Klein, J.E.; Wermer, J.R.

    1994-01-01

    SAES metal getter material St 198 was chosen for glovebox stripper tests to evaluate its effectiveness of removing tritium from a nitrogen atmosphere. The St 198 material is unique from a number of other metal hydride-based getter materials in that it is relatively inert to nitrogen and can thus be used in nitrogen glovebox atmospheres. Six tritium stripper experiments which mock-up the use of a SAES St 198 stripper bed for a full-scale (10,500 liter) nitrogen glovebox have been completed. Experiments consisted of a release of small quantity of protium/deuterium spiked with tritium which were scaled to simulate tritium releases of 0.1 g., 1.0 g., and 10 g. into the glovebox. The tritium spike allows detection using tritium ion chambers. The St 198 stripper system produced a reduction in tritium activity of approximately two orders of magnitude in 24 hours (6--8 atmosphere turn-overs) of stripper operation

  8. Unique features in the ARIES glovebox line

    International Nuclear Information System (INIS)

    Martinez, H.E.; Brown, W.G.; Flamm, B.; James, C.A.; Laskie, R.; Nelson, T.O.; Wedman, D.E.

    1998-01-01

    A series of unique features have been incorporated into the Advanced Recovery and Integrated Extraction System (ARIES) at the Los Alamos National Laboratory, TA-55 Plutonium Facility. The features enhance the material handling in the process of the dismantlement of nuclear weapon primaries in the glovebox line. Incorporated into these features are the various plutonium process module's different ventilation zone requirements that the material handling systems must meet. These features include a conveyor system that consists of a remotely controlled cart that transverses the length of the conveyor glovebox, can be operated from a remote location and can deliver process components to the entrance of any selected module glovebox. Within the modules there exists linear motion material handling systems with lifting hoist, which are controlled via an Allen Bradley control panel or local control panels. To remove the packaged products from the hot process line, the package is processed through an air lock/electrolytic decontamination process that removes the radioactive contamination from the outside of the package container and allows the package to be removed from the process line

  9. Introducing NASA's Solar System Exploration Research Virtual Institute

    Science.gov (United States)

    Pendleton, Yvonne

    The Solar System Exploration Research Virtual Institute (SSERVI) is focused on the Moon, near Earth asteroids, and the moons of Mars. Comprised of competitively selected teams across the U.S., a growing number of international partnerships around the world, and a small central office located at NASA Ames Research Center, the institute advances collaborative research to bridge science and exploration goals. As a virtual institute, SSERVI brings unique skills and collaborative technologies for enhancing collaborative research between geographically disparate teams. SSERVI is jointly funded through the NASA Science Mission Directorate and the NASA Human Exploration and Operations Mission Directorate. Current U.S. teams include: Dr. Jennifer L. Heldmann, NASA Ames Research Center, Moffett Field, CA; Dr. William Farrell, NASA Goddard Space Flight Center, Greenbelt, MD; Prof. Carlé Pieters, Brown University, Providence, RI; Prof. Daniel Britt, University of Central Florida, Orlando, FL; Prof. Timothy Glotch, Stony Brook University, Stony Brook, NY; Dr. Mihaly Horanyi, University of Colorado, Boulder, CO; Dr. Ben Bussey, Johns Hopkins Univ. Applied Physics Laboratory, Laurel, MD; Dr. David A. Kring, Lunar and Planetary Institute, Houston, TX; and Dr. William Bottke, Southwest Research Institute, Boulder, CO. Interested in becoming part of SSERVI? SSERVI Cooperative Agreement Notice (CAN) awards are staggered every 2.5-3yrs, with award periods of five-years per team. SSERVI encourages those who wish to join the institute in the future to engage current teams and international partners regarding potential collaboration, and to participate in focus groups or current team activities now. Joining hand in hand with international partners is a winning strategy for raising the tide of Solar System science around the world. Non-U.S. science organizations can propose to become either Associate or Affiliate members on a no-exchange-of-funds basis. Current international partners

  10. Rotator Cuff Strength Ratio and Injury in Glovebox Workers

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Amelia M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-30

    Rotator cuff integrity is critical to shoulder health. Due to the high workload imposed upon the shoulder while working in an industrial glovebox, this study investigated the strength ratio of the rotator cuff muscles in glovebox workers and compared this ratio to the healthy norm. Descriptive statistics were collected using a short questionnaire. Handheld dynamometry was used to quantify the ratio of forces produced in the motions of shoulder internal and external rotation. Results showed this population to have shoulder strength ratios that were significantly different from the healthy norm. The deviation from the normal ratio demonstrates the need for solutions designed to reduce the workload on the rotator cuff musculature of glovebox workers in order to improve health and safety. Assessment of strength ratios can be used to screen for risk of symptom development.

  11. Requalification of the 235-F Metallograph Facility gloveboxes for use in the 773-A plutonium immobilization demonstration

    International Nuclear Information System (INIS)

    Hinds, S.S.; Hidlay, J.

    1997-01-01

    A concern has been identified regarding the viability of redesigning and requalifying existing glovebox lines for use as glovebox lines integral to future mission activities in the 773-A laboratory building at the Savannah River Site (SRS). The Bechtel Savannah River Inc. (BSRI) design engineering team has been requested to perform an evaluation which would investigate the reuse of these existing gloveboxes versus the procurement of completely new glovebox systems. The existing glovebox lines were manufactured for the Plutonium (Pu) Metallograph Facility, Project 3253, located in building 235-F at SRS. These gloveboxes were designed as independent, fully functional Pu 'metal' and Pu 'oxide' processing glovebox systems for this facility. These gloveboxes, although fully installed, have never processed radioactive material. The proposed use for these gloveboxes are: (1) to utilize the Pu 'metal' glovebox system for the primary containment associated with the Pre-Processing/Re-Processing Laboratory for obtaining radioactive glass compound viscometer analysis and (2) to utilize the Pu 'oxide' glovebox system for primary containment associated with the Pu 'Can in Can' Demonstration for proof of principle testing specific to long term Pu immobilization and storage technology. This report presents objective evidence that supports the engineering judgment indicating the existing gloveboxes can be requalified for the proposed uses indicated above. SRS has the ability to duplicate the test parameters, with site forces, that will meet or exceed the identical acceptance criteria established to qualify the existing gloveboxes. The qualification effort will be a documented procedure using the leak test criteria characteristic of the original glovebox purchase. Two equivalent tests will be performed, one for post modification leak test acceptance and one for post installation leak test acceptance. (Abstract Truncated)

  12. Glovebox enclosed dc plasma source for the determination of metals in plutonium

    International Nuclear Information System (INIS)

    Morris, W.F.

    1986-01-01

    The direct current plasma source of a Beckman Spectraspan IIIB emission spectrometer was enclosed in a glovebox at Lawrence Livermore National Laboratory in December 1982. Since that time, the system has been used for the routine determination of alloy and impurity metals in plutonium. This paper presents the systematic steps involved in developing the glovebox and gives information regarding performance of the plasma in the glovebox and the effectiveness of containment of plutonium. 8 refs., 9 figs., 3 tabs

  13. Glovebox glove change program at Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Olivas, J.D.; Burkett, B.O.; Weier, D.R.

    1992-01-01

    A formal glovebox glove change program is planned for the the gloveboxes in technical area 55 at the Los Alamos National laboratory. The program will increase worker safety by reducing the chance of having worn out gloves in service. The Los Alamos program is based on a similar successful program at the Rocky Flats Plant in Golden, Colorado. Glove change frequencies at Rocky Flats were determined statistically, and are based on environmental factors the glovebox gloves are subjected to

  14. Issues for reuse of gloveboxes at LANL TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.; Pinson, P.A.; Miller, C.F.

    1998-08-01

    This report is a summary of issues that face plutonium glovebox designers and users at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). Characterizing the issues is a step in the task of enhancing the next generation glovebox design to minimize waste streams while providing the other design functions. This report gives an initial assessment of eight important design and operation issues that can benefit from waste minimization.

  15. Issues for reuse of gloveboxes at LANL TA-55

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Pinson, P.A.; Miller, C.F.

    1998-08-01

    This report is a summary of issues that face plutonium glovebox designers and users at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). Characterizing the issues is a step in the task of enhancing the next generation glovebox design to minimize waste streams while providing the other design functions. This report gives an initial assessment of eight important design and operation issues that can benefit from waste minimization

  16. Design improvements for gloveboxes used [in] 238PuO2 process operations

    International Nuclear Information System (INIS)

    George, T.G.

    1997-01-01

    238 PuO 2 process operations are housed in a complex of 76 gloveboxes and introductory hoods connected by means of an overhead trolley housed in a tunnel. Because a significant number of the gloveboxes used for 238 PuO 2 processing were installed before the original startup of the facility in 1978, they have been in service for nearly 20 years. During a recent heat source production campaign, numerous contamination releases in the 238 PuO 2 processing area were traced to degraded elastomer gaskets used for glovebox connections, and attachment of feed-throughs, service panels, and windows. Evaluation of the degraded gaskets revealed that a combination of radiolytic degradation related to the high specific activity of 238 Pu, and extended service at high altitude in a low (to extremely low) humidity environment had resulted in accelerated gasket aging. However, it was also apparent that gasket design was the most important factor in actual contamination release. All of the contamination releases that were traced to degraded gaskets occurred in variations of a design that used a spline to expand an elastomeric gasket into the space between a connecting flange, window, or service panel, and a glovebox opening. No contamination releases were traced to the gasket design that employed bolted clamps to compress the gasket between a connecting flange, window, or panel, and the exterior surface of a glovebox opening. As a result of these findings, the Actinide Ceramics group at LANL (NMT-9) has initiated a routine replacement and upgrade program to replace aging gloveboxes. All of the new gloveboxes will utilize the preferred gasket design, which is expected to reduce the number and frequency of contamination releases

  17. Constant depression fan system a novel glovebox ventilation system

    International Nuclear Information System (INIS)

    Milliner, W.V.

    1995-01-01

    In a conventional glovebox ventilation system the depression within the glovebox under normal operation is controlled by instrumentation. In the event of a breach the pressure within the box rises to atmospheric pressure, this pressure rise is detected by instrumentation which in turn operates a quick opening damper in a high depression extract to achieve a 1 metre/sec (200 fpm) inflow through the breach, which can take up to 2 seconds to establish. This system, although widely used, suffers from two distinct drawbacks: It takes a finite time to achieve the containment velocity of 1 metre/sec. It relies upon instrumentation to achieve its objectives. A new glovebox ventilation system has been developed by AWE to overcome these drawbacks. This is the Constant Depression Fan System (CDFS) which is based on an extract fan with a flat characteristic. This achieves all the requirements for the ventilation of gloveboxes and has the advantages that: It has only one moving part - the extract fan. It requires NO INSTRUMENTATION to achieve its objectives. It achieves the containment velocity of 1 metre/sec in the shortest possible time - approximately 0.2 seconds - and tests have shown that containment is maintained under breach conditions. Thus the CDFS is SAFER, SIMPLER and MORE RELIABLE

  18. Constant depression fan system a novel glovebox ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Milliner, W.V. [AME plc., Aldermaston (United Kingdom)

    1995-02-01

    In a conventional glovebox ventilation system the depression within the glovebox under normal operation is controlled by instrumentation. In the event of a breach the pressure within the box rises to atmospheric pressure, this pressure rise is detected by instrumentation which in turn operates a quick opening damper in a high depression extract to achieve a 1 metre/sec (200 fpm) inflow through the breach, which can take up to 2 seconds to establish. This system, although widely used, suffers from two distinct drawbacks: It takes a finite time to achieve the containment velocity of 1 metre/sec. It relies upon instrumentation to achieve its objectives. A new glovebox ventilation system has been developed by AWE to overcome these drawbacks. This is the Constant Depression Fan System (CDFS) which is based on an extract fan with a flat characteristic. This achieves all the requirements for the ventilation of gloveboxes and has the advantages that: It has only one moving part - the extract fan. It requires NO INSTRUMENTATION to achieve its objectives. It achieves the containment velocity of 1 metre/sec in the shortest possible time - approximately 0.2 seconds - and tests have shown that containment is maintained under breach conditions. Thus the CDFS is SAFER, SIMPLER and MORE RELIABLE.

  19. User Interface Technology Transfer to NASA's Virtual Wind Tunnel System

    Science.gov (United States)

    vanDam, Andries

    1998-01-01

    Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.

  20. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    Science.gov (United States)

    Pendleton, Y. J.; Schmidt, G. K.; Bailey, B. E.; Minafra, J. A.

    2016-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA's Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies. NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and

  1. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    Science.gov (United States)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  2. Standard guide for design criteria for plutonium gloveboxes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide defines criteria for the design of glovebox systems to be used for the handling of plutonium in any chemical or physical form or isotopic composition or when mixed with other elements or compounds. Not included in the criteria are systems auxiliary to the glovebox systems such as utilities, ventilation, alarm, and waste disposal. Also not addressed are hot cells or open-face hoods. The scope of this guide excludes specific license requirements relating to provisions for criticality prevention, hazards control, safeguards, packaging, and material handling. Observance of this guide does not relieve the user of the obligation to conform to all federal, state, and local regulations for design and construction of glovebox systems. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user...

  3. HB-Line Dissolution of Glovebox Floor Sweepings

    International Nuclear Information System (INIS)

    Gray, J.H.

    1998-02-01

    Two candidate flowsheets for dissolving glovebox floor sweepings in the HB-Line Phase I geometrically favorable dissolver have been developed.Dissolving conditions tested and modified during the laboratory program were based on the current processing scheme for dissolving high-fired Pu-238 oxide in HB-Line. Subsequent adjustments made to the HB-Line flowsheet reflected differences in the dissolution behavior between high-fired Pu-238 oxide and the MgO sand/PuF 4 /PuO 2 mixture in glovebox floor sweepings. Although both candidate flowsheets involved two separate dissolving steps and resulted incomplete dissolution of all solids, the one selected for use in HB-Line will require fewer processing operations and resembles the initial flowsheet proposed for dissolving sand, slag, and crucible material in F-Canyon dissolvers. Complete dissolution of glovebox floor sweepings was accomplished in the laboratory by initially dissolving between 55 and 65 degree in a 14 molar nitric acid solution. Under these conditions, partial dissolution of PuF 4 and complete dissolution of PuO 2 and MgO sand were achieved in less than one hour. The presence of free fluoride in solution,uncomplexed by aluminum, was necessary for complete dissolution of the PuO 2 .The remaining PuF 4 dissolved following addition of aluminum nitrate nonahydrate (ANN) to complex the fluoride and heating between 75 and 85 degree C for an additional hour. Precipitation of magnesium and/or aluminum nitrates could occur before, during, and after transfer of product solutions. Both dilution and/or product solution temperature controls may be necessary to prevent precipitation of these salts. Corrosion of the dissolver should not be an issue during these dissolving operations. Corrosion is minimized when dissolving at 55-65 degree C for one to three hours at a maximum uncomplexed free fluoride concentration of 0.07 molar and by dissolving at 75-85 degree C at a one to one aluminum to fluoride mole ratio for another

  4. Seismic analysis of safety class 1 incinerator glovebox in building 232-Z 200 W Area

    International Nuclear Information System (INIS)

    Ocoma, E.C.

    1994-09-01

    This report documents the seismic evaluation for the existing safety class 1 incinerator glovebox in 232Z Building. The glovebox is no longer in use and most of the internal mechanical equipment have been removed. However, the insulation firebricks are still in the glovebox for proper disposal

  5. Human Factors Virtual Analysis Techniques for NASA's Space Launch System Ground Support using MSFC's Virtual Environments Lab (VEL)

    Science.gov (United States)

    Searcy, Brittani

    2017-01-01

    Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.

  6. Ventilation of gloveboxes and containment shells

    International Nuclear Information System (INIS)

    Guetron, R.

    1984-01-01

    In this paper are defined fundamental principles for the ventilation of containment enclosures and gloveboxes, and examined criteria required to maintain containment in normal or accidental conditions. Dimensioning of ventilation network and associated equipment (adjustement and filtering devices). Some examples are given [fr

  7. Ergonomic glovebox workspace layout tool and associated method of use

    Science.gov (United States)

    Roddy, Shannon Howard

    2018-02-20

    The present invention provides an elongate tool that aides in the placement of objects and machinery within a glovebox, such that the objects and machinery can be safely handled by a user. The tool includes a plurality of visual markings (in English units, metric units, other units, grooves, ridges, varying widths, etc.) that indicate distance from the user within the glovebox, optionally broken into placement preference zones that are color coded, grayscale coded, or the like.

  8. Design considerations for heated wells in gloveboxes

    International Nuclear Information System (INIS)

    Frigo, A. A.; Preuss, D. E.

    1999-01-01

    Heated wells in gloveboxes have been used for many years by the Argonne National Laboratory Chemical Technology Division for nuclear-technology, waste-management, chemical-technology, and analytical-chemistry research. These wells allow experiments to be isolated from the main working volume of the glovebox. In addition, wells, when sealed, allow experiments to be conducted under pressurized or vacuum conditions. Until recently, typical maximum operational temperatures were about 500 C. However, more recent research is requiring operational temperatures approaching 900 C. These new requirements pose interesting design challenges that must be resolved. Some problem areas include temperature effects on material properties, maintaining a seal, cooling selected areas, and minimizing stresses. This paper discusses issues related to these design challenges and the ways in which these issues have been resolved

  9. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment

  10. Design improvements for gloveboxes used [in] {sup 238}PuO{sub 2} process operations

    Energy Technology Data Exchange (ETDEWEB)

    George, T.G. [Los Alamos National Lab., NM (United States). Nuclear Materials Technology Div.

    1997-09-01

    {sup 238}PuO{sub 2} process operations are housed in a complex of 76 gloveboxes and introductory hoods connected by means of an overhead trolley housed in a tunnel. Because a significant number of the gloveboxes used for {sup 238}PuO{sub 2} processing were installed before the original startup of the facility in 1978, they have been in service for nearly 20 years. During a recent heat source production campaign, numerous contamination releases in the {sup 238}PuO{sub 2} processing area were traced to degraded elastomer gaskets used for glovebox connections, and attachment of feed-throughs, service panels, and windows. Evaluation of the degraded gaskets revealed that a combination of radiolytic degradation related to the high specific activity of {sup 238}Pu, and extended service at high altitude in a low (to extremely low) humidity environment had resulted in accelerated gasket aging. However, it was also apparent that gasket design was the most important factor in actual contamination release. All of the contamination releases that were traced to degraded gaskets occurred in variations of a design that used a spline to expand an elastomeric gasket into the space between a connecting flange, window, or service panel, and a glovebox opening. No contamination releases were traced to the gasket design that employed bolted clamps to compress the gasket between a connecting flange, window, or panel, and the exterior surface of a glovebox opening. As a result of these findings, the Actinide Ceramics group at LANL (NMT-9) has initiated a routine replacement and upgrade program to replace aging gloveboxes. All of the new gloveboxes will utilize the preferred gasket design, which is expected to reduce the number and frequency of contamination releases.

  11. Finite Element Methods for real-time Haptic Feedback of Soft-Tissue Models in Virtual Reality Simulators

    Science.gov (United States)

    Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.

  12. Applications of LabVIEW programming in a glovebox environment

    International Nuclear Information System (INIS)

    Evans, M.E.; Peralta, G.; Gray, D.

    1995-01-01

    When dealing with neutron radiation one of the keys to reducing worker exposure is to have as much distance and shielding between the radiation and the radiation worker as possible. Using a PC to control a process from a remote location allows the distance between the radiation worker and the radiation source to be increase. Increasing the distance at which radiation worker can control a process allows more shielding to be placed around the glovebox. There are many commercial packages that allow controlling remote processes with a PC. This paper shows how flexible the LabVIEW Graphical Programming Language can be in implementing the remote control of glovebox process

  13. NASA's Solar System Exploration Research Virtual Institute: Building Collaboration Through International Partnerships

    Science.gov (United States)

    Gibbs, K. E.; Schmidt, G. K.

    2017-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on re-search at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the international partner re-search efforts and how we are engaging the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  14. CSER 98-003: criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    1999-01-01

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21 A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into Glovebox HC-21A are limited to those with a hydrogen to fissile atom ratio (H/X) ≤ 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k eff = 0.95 (including uncertainties). Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle

  15. CSER 98-003: Criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    1999-01-01

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into GloveboxHC-21 A are limited to those with a hydrogen to fissile atom ratio (H/X) ≤ 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k eff = 0.95. Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle

  16. Building 773-A, Lab F003 Glovebox Project Radiological Design Summary Report

    International Nuclear Information System (INIS)

    Gaul, W.C.

    2003-01-01

    Engineering Standards present the radiological design criteria and requirements, which must be satisfied for all SRS facility designs. The radiological design criteria and requirements specified in the standard are based on the Code of Federal Regulations, DOE Orders, Site manuals, other applicable standards, and various DOE guides and handbooks. This report contains top-level requirements for the various areas of radiological protection for workers. For the purposes of demonstrating compliance with these requirements, the designer must examine the requirement for the design and either incorporate or provide a technical justification as to why the requirement is not incorporated. This document reports a radiological design review for the STREAK lab glovebox upgrades of inlet ventilation, additional mechanical and electrical services, new glovebox instrumentation and alarms. This report demonstrates that the gloveboxes meet the radiological design requirements of Engineering Standards

  17. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    Science.gov (United States)

    Pendleton, Yvonne J.

    2016-10-01

    Established in 2013, through joint funding from the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD), NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on science at the intersection of these two enterprises. Addressing questions of value to the human exploration program that also represent important research relevant to planetary science, SSERVI creates a bridge between HEOMD and SMD. The virtual institute model reduces travel costs, but its primary virtue is the ability to join together colleagues who bring the right expertise, techniques and tools, regardless of their physical location, to address multi-faceted problems, at a deeper level than could be achieved through the typical period of smaller research grants. In addition, collaboration across team lines and international borders fosters the creation of new knowledge, especially at the intersections of disciplines that might not otherwise overlap.SSERVI teams investigate the Moon, Near-Earth Asteroids, and the moons of Mars, addressing questions fundamental to these target bodies and their near space environments. The institute is currently composed of nine U.S. teams of 30-50 members each, distributed geographically across the United States, ten international partners, and a Central Office located at NASA Ames Research Center in Silicon Valley, CA. U.S. teams are competitively selected through peer-reviewed proposals submitted to NASA every 2-3 years, in response to a Cooperative Agreement Notice (CAN). The current teams were selected under CAN-1, with funding for five years (2014-2019). A smaller, overlapping set of teams are expected to be added in 2017 in response to CAN-2, thereby providing continuity and a firm foundation for any directional changes NASA requires as the CAN-1 teams end their term. This poster describes the research areas and composition of the institute to introduce SSERVI to the broader planetary

  18. Inductively coupled plasma-atomic emission spectroscopy glovebox assembly system at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-01-01

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ''cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  19. Alternative approach for fire suppression of class A, B and C fires in gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberger, Mark S [Los Alamos National Laboratory; Tsiagkouris, James A [Los Alamos National Laboratory

    2011-02-10

    Department of Energy (DOE) Orders and National Fire Protection Association (NFPA) Codes and Standards require fire suppression in gloveboxes. Several potential solutions have been and are currently being considered at Los Alamos National Laboratory (LANL). The objective is to provide reliable, minimally invasive, and seismically robust fire suppression capable of extinguishing Class A, B, and C fires; achieve compliance with DOE and NFPA requirements; and provide value-added improvements to fire safety in gloveboxes. This report provides a brief summary of current approaches and also documents the successful fire tests conducted to prove that one approach, specifically Fire Foe{trademark} tubes, is capable of achieving the requirement to provide reliable fire protection in gloveboxes in a cost-effective manner.

  20. Modular glovebox connector and associated good practices for control of radioactive and chemically toxic materials

    International Nuclear Information System (INIS)

    Hoover, M.D.; Mewhinney, C.J.; Newton, G.J.

    1999-01-01

    Design and associated good practices are described for a modular glovebox connector to improve control of radioactive and chemically toxic materials. The connector consists of an anodized aluminum circular port with a mating spacer, gaskets, and retaining rings for joining two parallel ends of commercially available or custom-manufactured glovebox enclosures. Use of the connector allows multiple gloveboxes to be quickly assembled or reconfigured in functional units. Connector dimensions can be scaled to meet operational requirements for access between gloveboxes. Options for construction materials are discussed, along with recommendations for installation of the connector in new or retrofitted systems. Associated good practices include application of surface coatings and caulking, use of disposable glovebags, and proper selection and protection of gasket and glove materials. Use of the connector at an inhalation toxicology research facility has reduced the time and expense required to reconfigure equipment for changing operational requirements, the dispersion of contamination during reconfigurations, and the need for decommissioning and disposal of contaminated enclosures

  1. HOLDUP MEASUREMENTS FOR VISUAL EXAMINATION GLOVEBOXES AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, R

    2006-05-03

    Visual Examination (VE) gloveboxes are used at the Savannah River Site (SRS) to remediate transuranic waste (TRU) drums. Noncompliant items are removed before the drums undergo further characterization in preparation for shipment to the Waste Isolation Pilot Plant (WIPP). Maintaining the flow of drums through the remediation process is critical to the program's seven-days-per-week operation. Conservative assumptions are used to ensure that glovebox contamination from this continual operation is below acceptable limits. Holdup measurements are performed in order to confirm that these assumptions are conservative. High Cs-137 backgrounds in the VE glovebox areas preclude the use of a sodium iodide spectrometer, so a high-purity germanium (HPGe) detector, having superior resolution, is used. Plutonium-239 is usually the nuclide of interest; however, Pu-241, Np-237 (including its daughter Pa-233) and Pu-238 (if detected) are typically assayed. Cs-137 and Co-60 may also be detected but are not reported since they do not contribute to the Pu-239 Fissile Gram Equivalent or Pu-239 Equivalent Curies. HEPA filters, drums and waste boxes are also assayed by the same methodology. If--for example--the HEPA is contained in a stainless steel housing, attenuation corrections must be applied for both the filter and the housing. Dimensions, detector locations, materials and densities are provided as inputs to Ortec's ISOTOPIC software to estimate attenuation and geometry corrections for the measurement positions. This paper discusses the methodology, results and limitations of these measurements for different VE glovebox configurations.

  2. Inert atmosphere system for plutonium processing gloveboxes

    International Nuclear Information System (INIS)

    Bogard, C.F.; Calkins, K.W.; Rogers, R.F.

    1975-01-01

    Recent efforts to reduce fire hazards in plutonium processing operations are described. In such operations, the major environmental controls are developed through various kinds of glovebox systems. In evaluating the air-atmosphere glovebox systems, formerly in use at Rocky Flats and many other plants, a decision was made to convert to a recirculating ''inert'' atmosphere. The inert atmosphere consists of nitrogen, supplied from an on-site generating plant, diluting oxygen content to one to 5 percent by volume. Problems encountered during the change over included: determination of all factors influencing air leakage into the system, and reducing leakage to the practical minimum; meeting all fire and safety standards on the filter plenum and exhaust systems; provision for converting portions of the system to an air atmosphere to conduct maintenance work; inclusion of oxygen analyzers throughout the system to check gas quality and monitor for leaks; and the use of automatic controls to protect against a variety of potential malfunctions. The current objectives to reduce fire hazards have been met and additional safeguards were added. The systems are operating satisfactorily. (U.S.)

  3. Hands-on glovebox decommissioning

    International Nuclear Information System (INIS)

    Smith, D.

    1997-01-01

    Over recent years, the United Kingdom Atomic Energy Authority (UKAEA) has undertaken the decommissioning of a large number of Plutonium glove boxes at Winfrith Technology Centre. UKAEA has managed this work on behalf of the DTI, who funded most of the work. Most of the planning and practical work was contracted to AEA Technology (AEAT), which, until 1996, was the commercial arm of UKAEA, but is now a private company. More than 70 gloveboxes, together with internal plant and equipment such as ball mills, presses and furnaces, have been successfully size reduced into drums for storage, leaving the area, in which they were situated, in a clean condition. (UK)

  4. Improving Efficiency with 3-D Imaging: Technology Essential in Removing Plutonium Processing Equipment from Plutonium Finishing Plant Gloveboxes

    International Nuclear Information System (INIS)

    Crow, Stephen H.; Kyle, Richard N.; Minette, Michael J.

    2008-01-01

    The Plutonium Finishing Plant at Hanford, Washington began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in remote production lines, consisting primarily of hundreds of gloveboxes. Over the years these gloveboxes and processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked to clean out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D and D workers is the use of 3-D models to improve the efficiency of cleaning out radioactive gloveboxes at the plant. The use of 3-D models has significantly improved the work planning process by providing workers with a clear image of glovebox construction and composition, which is then used to determine cleanout methods and work sequences. The 3-D visual products enhance safety by enabling workers to more easily identify hazards and implement controls. In addition, the ability to identify and target the removal of radiological materials early in the D and D process provides substantial dose reduction for the workers

  5. A human factors approach towards the design of a new glovebox glove for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Jude M. [Los Alamos National Laboratory

    2012-08-06

    Present day glovebox gloves at Los Alamos National Laboratory (LANL) are underdeveloped and ergonomically inaccurate. This problem results in numerous sprain and strain injuries every year for employees who perform glovebox work. In addition to injuries, using the current glovebox glove design also contributes to breaches and contamination. The current glove used today at LANL has several problems: (1) The length of the fingers is incorrect, (2) the web spacing between the fingers is nonexistent, (3) the angles between each digit on the finger are incorrect, (4) the thumb is placed inaccurately, and (5) the length of the hand is incorrect. These problems present a need to correct the current glove design to decrease the risk of injuries, breaches, and contamination. Anthropometrics were researched to help find the best range of hand measurements to fix the current glove design. Anthropometrics is the measure of the human physical variation. Anthropometrics for this study were gathered from the American National Survey (ANSUR) data that was conducted by the U.S Army in 1988. The current glovebox glove uses anthropometrics from the 95th to 105th percentile range which is too large so the new gloves are going to implement data from a smaller range of percentile groups. The 105th percentile range represents measurements that exceed the human population but are needed to fit certain circumstance such as wearing several under gloves within the glovebox gloves. Anthropometrics used in this study include: 105th percentile measurements for joint circumference which was unchanged because the room for under gloves plus ease of hand insertion and extraction is needed, 80th percentile measurements for crotch length to allow workers to reach the web spacing in the glove, 20th percentile measurements for finger length to allow workers to reach the end of the glove, standard 10.5cm hand breadth to allow more room to accommodate under gloves, 45 degrees abduction angle for the

  6. W-026, transuranic waste restricted waste management (TRU RWM) glovebox operational test report

    Energy Technology Data Exchange (ETDEWEB)

    Leist, K.J.

    1998-02-18

    The TRU Waste/Restricted Waste Management (LLW/PWNP) Glovebox 401 is designed to accept and process waste from the Transuranic Process Glovebox 302. Waste is transferred to the glovebox via the Drath and Schraeder Bagless Transfer Port (DO-07401) on a transfer stand. The stand is removed with a hoist and the operator inspects the waste (with the aid of the Sampling and Treatment Director) to determine a course of action for each item. The waste is separated into compliant and non compliant. One Trip Port DO-07402A is designated as ``Compliant``and One Trip Port DO-07402B is designated as ``Non Compliant``. As the processing (inspection, bar coding, sampling and treatment) of the transferred items takes place, residue is placed in the appropriate One Trip port. The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved for sampling or storage or it`s state altered by treatment, the Operator will track an items location using a portable barcode reader and entry any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolutions (described here) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  7. W-026, transuranic waste restricted waste management (TRU RWM) glovebox operational test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    The TRU Waste/Restricted Waste Management (LLW/PWNP) Glovebox 401 is designed to accept and process waste from the Transuranic Process Glovebox 302. Waste is transferred to the glovebox via the Drath and Schraeder Bagless Transfer Port (DO-07401) on a transfer stand. The stand is removed with a hoist and the operator inspects the waste (with the aid of the Sampling and Treatment Director) to determine a course of action for each item. The waste is separated into compliant and non compliant. One Trip Port DO-07402A is designated as ''Compliant''and One Trip Port DO-07402B is designated as ''Non Compliant''. As the processing (inspection, bar coding, sampling and treatment) of the transferred items takes place, residue is placed in the appropriate One Trip port. The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved for sampling or storage or it's state altered by treatment, the Operator will track an items location using a portable barcode reader and entry any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolutions (described here) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation

  8. WRAP low level waste restricted waste management (LLW RWM) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1997-01-01

    On April 22, 1997, the Low Level Waste Restricted Waste Management (LLW RWM) glovebox was tested using acceptance test procedure 13027A-87. Mr. Robert L. Warmenhoven served as test director, Mr. Kendrick Leist acted as test operator and test witness, and Michael Lane provided miscellaneous software support. The primary focus of the glovebox acceptance test was to examine glovebox control system interlocks, operator Interface Unit (OIU) menus, alarms, and messages. Basic drum port and lift table control sequences were demonstrated. OIU menus, messages, and alarm sequences were examined, with few exceptions noted. Barcode testing was bypassed, due to the lack of installed equipment as well as the switch from basic reliance on fixed bar code readers to the enhanced use of portable bar code readers. Bar code testing was completed during performance of the LLW RWM OTP. Mechanical and control deficiencies were documented as Test Exceptions during performance of this Acceptance Test. These items are attached as Appendix A to this report

  9. Adaptation of a glow discharge mass spectrometer in a glove-box for the analysis of nuclear materials

    International Nuclear Information System (INIS)

    Betti, M.; Rasmussen, G.; Hiernaut, T.; Koch, L.

    1994-01-01

    A VG9000 glow discharge mass spectrometer has been modified for the direct analysis of solid nuclear samples within a glove-box environment. Because containment is needed for the analysis of this kind of material, the glove-box encloses all parts of the instrument that come into contact with the sample, namely the ion source chamber, sample interlock and associated pumping system. External modifications eliminate outside contamination by the fitting of absolute filters on all source supplies. Internally the design of the ion source has been altered to minimize the number of operations performed inside the glove-box thereby simplifying operation and routine maintenance. These modifications retain the ion extraction and focusing properties of the instrument. The data presented show that there is no compromise in the analytical performance of the instrument when placed in the glove-box. Data representative of nuclear materials is also shown. (Author)

  10. The Virtual Climate Data Server (vCDS): An iRODS-Based Data Management Software Appliance Supporting Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    Science.gov (United States)

    Schnase, John L.; Tamkin, Glenn S.; Ripley, W. David III; Stong, Savannah; Gill, Roger; Duffy, Daniel Q.

    2012-01-01

    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of a Virtual Climate Data Server (vCDS), repetitive provisioning, image-based deployment and distribution, and virtualization-as-a-service. The vCDS is an iRODS-based data server specialized to the needs of a particular data-centric application. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA s Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into one or more of these virtualized resource classes, vCDSs can use iRODS s federation capabilities to create an integrated ecosystem of managed collections that is scalable and adaptable to changing resource requirements. This approach enables platform- or software-asa- service deployment of vCDS and allows the NCCS to offer virtualization-as-a-service: a capacity to respond in an agile way to new customer requests for data services.

  11. The NASA Augmented/Virtual Reality Lab: The State of the Art at KSC

    Science.gov (United States)

    Little, William

    2017-01-01

    The NASA Augmented Virtual Reality (AVR) Lab at Kennedy Space Center is dedicated to the investigation of Augmented Reality (AR) and Virtual Reality (VR) technologies, with the goal of determining potential uses of these technologies as human-computer interaction (HCI) devices in an aerospace engineering context. Begun in 2012, the AVR Lab has concentrated on commercially available AR and VR devices that are gaining in popularity and use in a number of fields such as gaming, training, and telepresence. We are working with such devices as the Microsoft Kinect, the Oculus Rift, the Leap Motion, the HTC Vive, motion capture systems, and the Microsoft Hololens. The focus of our work has been on human interaction with the virtual environment, which in turn acts as a communications bridge to remote physical devices and environments which the operator cannot or should not control or experience directly. Particularly in reference to dealing with spacecraft and the oftentimes hazardous environments they inhabit, it is our hope that AR and VR technologies can be utilized to increase human safety and mission success by physically removing humans from those hazardous environments while virtually putting them right in the middle of those environments.

  12. A technique for the assessment of the masses of residual plutonium in gloveboxes using thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Day, B.; Godward, D.F.

    1979-01-01

    A means of measuring the mass of residual plutonium in gloveboxes in the size range 1 to 10 m 3 has been developed using multiple thermoluminescent detectors. By optimising the location and the number of detectors, and by using suitable filtration, the mean response from them has been made insensitive to the distribution and the composition of the plutonium. It is possible to detect 10 g of plutonium in the largest glovebox considered. The measurement and mass estimation processes have been reduced to simple operations which can be carried out by skilled industrial staff. The routine application of the technique has been arranged to minimise disturbance to be production work going on in the gloveboxes by making unattended measurements during silent hours

  13. Dismantling techniques for plutonium-contaminated gloveboxes: experience from first year of decommissioning

    International Nuclear Information System (INIS)

    Baumann, R.; Faber, P.

    2003-01-01

    At the mixed-oxide (MOX) processing facility formerly operated by ALKEM GmbH in Hanau, Germany - which was taken over to Siemens in 1988 and renamed Siemens' Hanau Fuel Fabrication Plant, MOX facility - around 8500 kg of plutonium were processed to make MOX fuel rods and fuel assemblies since production started in 1965. After shutdown of the facility by the authorities in mid-1991 for political reasons, the remaining nuclear fuel materials were processed during the subsequent ''cleanout'' phase starting in 1997 into rods and assemblies suitable for long-term storage. The last step in cleanout consisted of ''flushing'' the production equipment with depleted uranium and thoroughly cleaning the gloveboxes. During cleanout around 700 kg of plutonium were processed in the form of mixed oxides. The cleanout phase including the subsequent cleaning and flushing operations ended on schedule in September 2001 without any significant problems. Starting in mid-1999, the various glovebox dismantling techniques were tested using uncontaminated components while cleanout was still in progress and then, once these trials had been successfully completed, further qualified through use on actual components. The pilot-phase trials required four separate licenses under Section 7, Subsection (3) of the German Atomic Energy Act. Thanks to detailed advance planning and experience from the pilot trials the individual dismantling steps could be described in sufficient detail for the highly complex German licensing procedure. The first partial license for decommissioning the MOX facility under Sec. 7, Subsec. (3) of the Atomic Energy Act was issued on May 28, 2001. It mainly covers dismantling of the interior equipment inside the gloveboxes a well as the gloveboxes themselves. Actual decommissioning work inside the former production areas of the MOX facility started on a large scale in early September 2001. (orig.)

  14. Determination of an Ergonomically Sound Glovebox Glove Port Center Line

    Energy Technology Data Exchange (ETDEWEB)

    Christman, Marissa St John [Los Alamos National Laboratory

    2016-11-30

    Determine an ergonomic glovebox glove port center line location which will be used for standardization in new designs, thus allowing for predictable human work performance, reduced worker exposure to radiation and musculoskeletal injury risks, and improved worker comfort, efficiency, health, and safety.

  15. Determination of an Ergonomically Sound Glovebox Glove Port Center Line

    International Nuclear Information System (INIS)

    Christman, Marissa St; Land, Whitney Morgan

    2016-01-01

    Determine an ergonomic glovebox glove port center line location which will be used for standardization in new designs, thus allowing for predictable human work performance, reduced worker exposure to radiation and musculoskeletal injury risks, and improved worker comfort, efficiency, health, and safety.

  16. Preliminary evaluation of the electrapette for possible use in the glovebox for pipetting plutonium solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hansbury, E.; Ortiz, B.; Roybal, C.

    1990-12-01

    At the Los Alamos Laboratory Plutonium Facility, Solution Assay Instruments (SAIs) are used to provide real-time information on the plutonium (Pu) content of the process stream at various stages in the process. Much of the solution analysis must be carried and as a glovebox to protect the operator from radiation. In order to overcome some of the difficulties usually encountered when working in a glovebox, an electronic solution-volume measuring device called an Electrapette was ordered from Matrix Technologies Corporation. It is said to be highly accurate, simple to use, and can handle the 25 ml of solution required for SAI analyses. It is microprocessor-controlled and comes in two components connected by a detachable cable so that the electronic part can be installed outside the box, while the nosepiece is inside. The two pieces are connected through a plug-in on the glovebox wall. The Electrapette was tested in three sets of experiments: a cold'' lab set, a set run is a hood in a production building, and a third set run in a glovebox using a process solution whose density had been predetermined. The accuracy of the determination could not be determined because the samples had been mixed with other feed before being sent for analysis by the Electrapette. 2 refs., 5 tabs.

  17. Decontamination and decommissioning of 61 plutonium gloveboxes in D-Wing, Building 212 Argonne National Laboratory-East: Final project report

    International Nuclear Information System (INIS)

    Cheever, C.L.; Rose, R.W.

    1996-09-01

    Argonne National Laboratory-East (ANL-E) is a government-owned, contractor operated, multipurpose research facility located 25 miles southwest of downtown Chicago on 689 hectares (1,700 acres) in DuPage County, Illinois, as shown in Figure 1.1. Building 212 is located in the central area of ANL-E, as shown in Figure 1.2. The purpose of this project was to eliminate the risk of radioactive material release from the contaminated glovebox systems and to make the laboratories available for unrestricted use. The following work objectives were established: (1) Identify and remove radioactive materials for return to ANL-E Special Materials control. (2) Remove and package the radioactively contaminated materials and equipment from the gloveboxes. (3) Decontaminate the gloveboxes to nontransuranic (non-TRU) levels. (4) Size-reduce and package the gloveboxes and support systems. (5) Document and dispose of the radioactive and mixed waste. (6) Decontaminate, survey, and release the nine laboratories and corridor areas for unrestricted use

  18. Strategies for Information Retrieval and Virtual Teaming to Mitigate Risk on NASA's Missions

    Science.gov (United States)

    Topousis, Daria; Williams, Gregory; Murphy, Keri

    2007-01-01

    Following the loss of NASA's Space Shuttle Columbia in 2003, it was determined that problems in the agency's organization created an environment that led to the accident. One component of the proposed solution resulted in the formation of the NASA Engineering Network (NEN), a suite of information retrieval and knowledge sharing tools. This paper describes the implementation of this set of search, portal, content management, and semantic technologies, including a unique meta search capability for data from distributed engineering resources. NEN's communities of practice are formed along engineering disciplines where users leverage their knowledge and best practices to collaborate and take informal learning back to their personal jobs and embed it into the procedures of the agency. These results offer insight into using traditional engineering disciplines for virtual teaming and problem solving.

  19. CSER 00-003: Criticality Safety Evaluation report for PFP Magnesium Hydroxide Precipitation Process for Plutonium Stabilization Glovebox 3

    International Nuclear Information System (INIS)

    LAN, J.S.

    2000-01-01

    This Criticality Safety Evaluation Report analyzes the stabilization of plutonium/uranium solutions in Glovebox 3 using the magnesium hydroxide precipitation process at PFP. The process covered are the receipt of diluted plutonium solutions into three precipitation tanks, the precipitation of plutonium from the solution, the filtering of the plutonium precipitate from the solution, the scraping of the precipitate from the filter into boats, and the initial drying of the precipitated slurry on a hot plate. A batch (up to 2.5 kg) is brought into the glovebox as plutonium nitrate, processed, and is then removed in boats for further processing. This CSER establishes limits for the magnesium hydroxide precipitation process in Glovebox 3 to maintain criticality safety while handling fissionable material

  20. Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility

    Science.gov (United States)

    Calaway, M. J.; Allen, C. C.; Allton, J. H.

    2013-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included peracetic acid sterilization were used in the atmospheric de-contamination (R) cabinets. Later, Lunar curation gloveboxes were degreased with a pressurized Freon 113 wash. Today, UPW has replaced Freon as the standard cleaning procedure, but does not have the degreasing solvency power of Freon. Future Cleaning Studies: Cleaning experiments are cur-rently being orchestrated to study how to degrease and reduce organics in a JSC curation glovebox lower than the established baseline. Several new chemicals in the industry have replaced traditional degreasing solvents such as Freon and others that are now federally restricted. However, these new suites of chemicals remain untested for lowering organics in curation gloveboxes. 3M's HFE-7100DL and Du

  1. Low impact plutonium glovebox D&D

    Energy Technology Data Exchange (ETDEWEB)

    Rose, R.W.

    1995-12-31

    A dilemma often encountered in decontamination and decommissioning operations is the lack of choice as to the location where the work is to be performed. Facility siting, laboratory location, and adjacent support areas were often determined based on criteria, which while appropriate at the time, are not always the most conducive to a D&D project. One must learn to adapt and cope with as found conditions. High priority research activities, which cannot be interrupted, may be occurring in adjacent non-radiological facilities in the immediate vicinity where highly contaminated materials must be handled in the course of a D&D operation. The execution of a project within such an environment involves a high level of coordination, cooperation, professionalism and flexibility among the project, the work force and the surrounding occupants. Simply moving occupants from the potentially affected area is not always an option and much consideration must be given in the selection of the D&D methodology to be employed and the processes to be implemented. Determining project boundaries and the ensuring that adjacent occupants are included in the planning/scheduling of specific operations which impact their work area are important in the development of the safety envelope. Such was the case in the recent D&D of 61 gloveboxes contaminated with plutonium and other transuranic nuclides at the Argonne National Laboratory-East site. The gloveboxes, which were used in Department of Energy research and development program activities over the past 30 years, were decontaminated to below transuranic waste criteria, size reduced, packaged and removed from Building 212 by Argonne National Laboratory personnel in conjunction with Nuclear Fuel Services, Inc. with essentially no impact to adjacent occupants.

  2. iRODS-Based Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    Science.gov (United States)

    Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, D.; Gill, R.; Sinno, S. S.; Shen, Y.; Carriere, L. E.; Brieger, L.; Moore, R.; Rajasekar, A.; Schroeder, W.; Wan, M.

    2011-12-01

    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service. A virtual climate data server is an OAIS-compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have developed prototype vCDSs to manage NetCDF, HDF, and GeoTIF data products. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA's Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into these virtualized resources, multiple vCDSs can use iRODS's federation and realized object capabilities to create an integrated ecosystem of data servers that can scale and adapt to changing requirements. This approach enables platform- or software-as-a-service deployment of the vCDSs and allows the NCCS to offer virtualization-as-a-service, a capacity to respond in an agile way to new customer requests for data services, and a path for migrating existing services into the cloud. We have registered MODIS Atmosphere data products in a vCDS that contains 54 million registered files, 630TB of data, and over 300 million metadata values. We are now assembling IPCC AR5 data into a production vCDS that will provide the platform upon which NCCS's Earth System Grid (ESG) node publishes to the extended science community. In this talk, we describe our approach, experiences, lessons learned, and plans for the future.

  3. Light transmission and air used for inspection of glovebox gloves

    International Nuclear Information System (INIS)

    Castro, Julio M.; Steckle, Warren P. Jr.; Macdonald, John M.

    2002-01-01

    Various materials used for manufacturing the glovebox gloves are translucent material such as hypalon, rubbers, and neoprene. This means that visible light can be transmitted through the inside of the material. Performing this test can help to increase visualization of the integrity of the glove. Certain flaws such as pockmarks, foreign material, pinholes, and scratches could be detected with increased accuracy. An analysis was conducted of the glovebox gloves obscure polymer material using a inspection light table. The fixture is equipped with a central light supply and small air pump to inflate the glove and test for leak and stability. A glove is affixed to the fixture for 360-degree inspection. Certain inspection processes can be performed: (1) Inspection for pockmarks and thin areas within the gloves; (2) Observation of foreign material within the polymer matrix; and (3) Measurements could be taken for gloves thickness using light measurements. This process could help reduce eyestrain when examining gloves and making a judgment call on the size of material thickness in some critical areas. Critical areas are fingertips and crotch of fingers.

  4. The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope Control Center System

    Science.gov (United States)

    Lehtonen, Ken

    1999-01-01

    This is a report to the Third Annual International Virtual Company Conference, on The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope (HST) Control Center System. It begins with a HST Science "Commercial": Brief Tour of Our Universe showing various pictures taken from the Hubble Space Telescope. The presentation then reviews the project background and goals. Evolution of the Control Center System ("CCS Inc.") is then reviewed. Topics of Interest to "virtual companies" are reviewed: (1) "How To Choose A Team" (2) "Organizational Model" (3) "The Human Component" (4) "'Virtual Trust' Among Teaming Companies" (5) "Unique Challenges to Working Horizontally" (6) "The Cultural Impact" (7) "Lessons Learned".

  5. Report of working group for technical standard of cutting and melting works in Glovebox dismantling

    International Nuclear Information System (INIS)

    Asazuma, Shinichiroh; Takeda, Shinsoh; Tajima, Shoichi

    2004-11-01

    In order to prevent spread of contamination, glovebox dismantling activity is usually performed in a confined enclosure with personal radioactive protective equipment. Since large potion of these materials is made of vinyl acetate, there exist potential risks of fire, damage and injury to the environment and workers during the dismantling (cutting or melting) operation. It is therefore important to establish standard for proper use of equipment and hazard controls in such a specific environment. Working Group composed of Tokai Works and Oarai Works has examined and developed the operational standard for cutting work in glovebox dismantlement. The result is reflected to the Tokai Works Safety Operational Standard. (author)

  6. VISUALIZATION OF VGI DATA THROUGH THE NEW NASA WEB WORLD WIND VIRTUAL GLOBE

    Directory of Open Access Journals (Sweden)

    M. A. Brovelli

    2016-06-01

    Full Text Available GeoWeb 2.0, laying the foundations of Volunteered Geographic Information (VGI systems, has led to platforms where users can contribute to the geographic knowledge that is open to access. Moreover, as a result of the advancements in 3D visualization, virtual globes able to visualize geographic data even on browsers emerged. However the integration of VGI systems and virtual globes has not been fully realized. The study presented aims to visualize volunteered data in 3D, considering also the ease of use aspects for general public, using Free and Open Source Software (FOSS. The new Application Programming Interface (API of NASA, Web World Wind, written in JavaScript and based on Web Graphics Library (WebGL is cross-platform and cross-browser, so that the virtual globe created using this API can be accessible through any WebGL supported browser on different operating systems and devices, as a result not requiring any installation or configuration on the client-side, making the collected data more usable to users, which is not the case with the World Wind for Java as installation and configuration of the Java Virtual Machine (JVM is required. Furthermore, the data collected through various VGI platforms might be in different formats, stored in a traditional relational database or in a NoSQL database. The project developed aims to visualize and query data collected through Open Data Kit (ODK platform and a cross-platform application, where data is stored in a relational PostgreSQL and NoSQL CouchDB databases respectively.

  7. Visualization of Vgi Data Through the New NASA Web World Wind Virtual Globe

    Science.gov (United States)

    Brovelli, M. A.; Kilsedar, C. E.; Zamboni, G.

    2016-06-01

    GeoWeb 2.0, laying the foundations of Volunteered Geographic Information (VGI) systems, has led to platforms where users can contribute to the geographic knowledge that is open to access. Moreover, as a result of the advancements in 3D visualization, virtual globes able to visualize geographic data even on browsers emerged. However the integration of VGI systems and virtual globes has not been fully realized. The study presented aims to visualize volunteered data in 3D, considering also the ease of use aspects for general public, using Free and Open Source Software (FOSS). The new Application Programming Interface (API) of NASA, Web World Wind, written in JavaScript and based on Web Graphics Library (WebGL) is cross-platform and cross-browser, so that the virtual globe created using this API can be accessible through any WebGL supported browser on different operating systems and devices, as a result not requiring any installation or configuration on the client-side, making the collected data more usable to users, which is not the case with the World Wind for Java as installation and configuration of the Java Virtual Machine (JVM) is required. Furthermore, the data collected through various VGI platforms might be in different formats, stored in a traditional relational database or in a NoSQL database. The project developed aims to visualize and query data collected through Open Data Kit (ODK) platform and a cross-platform application, where data is stored in a relational PostgreSQL and NoSQL CouchDB databases respectively.

  8. Glovebox pressure relief and check valve

    Energy Technology Data Exchange (ETDEWEB)

    Blaedel, K.L.

    1986-03-17

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury.

  9. Glovebox pressure relief and check valve

    International Nuclear Information System (INIS)

    Blaedel, K.L.

    1986-01-01

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury

  10. The virtual environment display system

    Science.gov (United States)

    Mcgreevy, Michael W.

    1991-01-01

    Virtual environment technology is a display and control technology that can surround a person in an interactive computer generated or computer mediated virtual environment. It has evolved at NASA-Ames since 1984 to serve NASA's missions and goals. The exciting potential of this technology, sometimes called Virtual Reality, Artificial Reality, or Cyberspace, has been recognized recently by the popular media, industry, academia, and government organizations. Much research and development will be necessary to bring it to fruition.

  11. Procedure for hazards analysis of plutonium gloveboxes used in analytical chemistry operations

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-06-01

    A procedure is presented to identify and assess hazards associated with gloveboxes used for analytical chemistry operations involving plutonium. This procedure is based upon analytic tree methodology and it has been adapted from the US Energy Research and Development Administration's safety program, the Management Oversight and Risk Tree

  12. Low impact plutonium glovebox D ampersand D

    International Nuclear Information System (INIS)

    Rose, R.W.

    1995-01-01

    A dilemma often encountered in decontamination and decommissioning operations is the lack of choice as to the location where the work is to be performed. Facility siting, laboratory location, and adjacent support areas were often determined based on criteria, which while appropriate at the time, are not always the most conducive to a D ampersand D project. One must learn to adapt and cope with as found conditions. High priority research activities, which cannot be interrupted, may be occurring in adjacent non-radiological facilities in the immediate vicinity where highly contaminated materials must be handled in the course of a D ampersand D operation. The execution of a project within such an environment involves a high level of coordination, cooperation, professionalism and flexibility among the project, the work force and the surrounding occupants. Simply moving occupants from the potentially affected area is not always an option and much consideration must be given in the selection of the D ampersand D methodology to be employed and the processes to be implemented. Determining project boundaries and the ensuring that adjacent occupants are included in the planning/scheduling of specific operations which impact their work area are important in the development of the safety envelope. Such was the case in the recent D ampersand D of 61 gloveboxes contaminated with plutonium and other transuranic nuclides at the Argonne National Laboratory-East site. The gloveboxes, which were used in Department of Energy research and development program activities over the past 30 years, were decontaminated to below transuranic waste criteria, size reduced, packaged and removed from Building 212 by Argonne National Laboratory personnel in conjunction with Nuclear Fuel Services, Inc. with essentially no impact to adjacent occupants

  13. Process and device for extinguishing fires inside gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, P

    1975-01-09

    The present invention relates to a process of extinguishing all types of fire inside gloveboxes. Said process prevents the inner part of the box to communicate with the room atmosphere: the glove that is the nearest to the hearth of fire is perforated with an edged tip mounted on the outlet of the extinguisher and the product contained inside said extinguisher is released until the fire extinction is achieved. A device for operating said process consists in an edged tubular tip, the end of which is bevelled and in means of dispersion and of connection to an extinguisher at the other end.

  14. NASA WEBWORLDWIND: MULTIDIMENSIONAL VIRTUAL GLOBE FOR GEO BIG DATA VISUALIZATION

    Directory of Open Access Journals (Sweden)

    M. A. Brovelli

    2016-06-01

    Full Text Available In this paper, we presented a web application created using the NASA WebWorldWind framework. The application is capable of visualizing n-dimensional data using a Voxel model. In this case study, we handled social media data and Call Detailed Records (CDR of telecommunication networks. These were retrieved from the "BigData Challenge 2015" of Telecom Italia. We focused on the visualization process for a suitable way to show this geo-data in a 3D environment, incorporating more than three dimensions. This engenders an interactive way to browse the data in their real context and understand them quickly. Users will be able to handle several varieties of data, import their dataset using a particular data structure, and then mash them up in the WebWorldWind virtual globe. A broad range of public use this tool for diverse purposes is possible, without much experience in the field, thanks to the intuitive user-interface of this web app.

  15. NASA Webworldwind: Multidimensional Virtual Globe for Geo Big Data Visualization

    Science.gov (United States)

    Brovelli, M. A.; Hogan, P.; Prestifilippo, G.; Zamboni, G.

    2016-06-01

    In this paper, we presented a web application created using the NASA WebWorldWind framework. The application is capable of visualizing n-dimensional data using a Voxel model. In this case study, we handled social media data and Call Detailed Records (CDR) of telecommunication networks. These were retrieved from the "BigData Challenge 2015" of Telecom Italia. We focused on the visualization process for a suitable way to show this geo-data in a 3D environment, incorporating more than three dimensions. This engenders an interactive way to browse the data in their real context and understand them quickly. Users will be able to handle several varieties of data, import their dataset using a particular data structure, and then mash them up in the WebWorldWind virtual globe. A broad range of public use this tool for diverse purposes is possible, without much experience in the field, thanks to the intuitive user-interface of this web app.

  16. The power of Virtual Globes for valorising cultural heritage and enabling sustainable tourism: NASA World Wind applications

    Science.gov (United States)

    Brovelli, M.; Hogan, P.; Minghini, M.; Zamboni, G.

    2013-10-01

    Inspired by the visionary idea of Digital Earth, as well as from the tremendous improvements in geo-technologies, use of virtual globes has been changing the way people approach to geographic information on the Web. Unlike the traditional 2D-visualization typical of Geographic Information Systems (GIS), virtual globes offer multi-dimensional, fully-realistic content visualization which allows for a much richer user experience. This research investigates the potential for using virtual globes to foster tourism and enhance cultural heritage. The paper first outlines the state of the art for existing virtual globes, pointing out some possible categorizations according to license type, platform-dependence, application type, default layers, functionalities and freedom of customization. Based on this analysis, the NASA World Wind virtual globe is the preferred tool for promoting tourism and cultural heritage. This is because its open source nature allows unlimited customization (in terms of both data and functionalities), and its Java core supports platform-independence. Relevant tourism-oriented World Wind-based applications, dealing with both the Web promotion of historical cartography and the setup of a participatory Web platform exploiting crowd-sourced data, are described. Finally, the paper presents a project focusing on the promotion of the Via Regina area (crossing the border between Italy and Switzerland) through an ad hoc World Wind customization. World Wind can thus be considered an ideal virtual globe for tourism applications, as it can be shaped to increase awareness of cultural history and, in turn, enhance touristic experience.

  17. Automation of Command and Data Entry in a Glovebox Work Volume: An Evaluation of Data Entry Devices

    Science.gov (United States)

    Steele, Marianne K.; Nakamura, Gail; Havens, Cindy; LeMay, Moira

    1996-01-01

    The present study was designed to examine the human-computer interface for data entry while performing experimental procedures within a glovebox work volume in order to make a recommendation to the Space Station Biological Research Project for a data entry system to be used within the Life Sciences Glovebox. Test subjects entered data using either a manual keypad, similar to a standard computer numerical keypad located within the glovebox work volume, or a voice input system using a speech recognition program with a microphone headset. Numerical input and commands were programmed in an identical manner between the two systems. With both electronic systems, a small trackball was available within the work volume for cursor control. Data, such as sample vial identification numbers, sample tissue weights, and health check parameters of the specimen, were entered directly into procedures that were electronically displayed on a video monitor within the glovebox. A pen and paper system with a 'flip-chart' format for procedure display, similar to that currently in use on the Space Shuttle, was used as a baseline data entry condition. Procedures were performed by a single operator; eight test subjects were used in the study. The electronic systems were tested under both a 'nominal' or 'anomalous' condition. The anomalous condition was introduced into the experimental procedure to increase the probability of finding limitations or problems with human interactions with the electronic systems. Each subject performed five test runs during a test day: two procedures each with voice and keypad, one with and one without anomalies, and one pen and paper procedure. The data collected were both quantitative (times, errors) and qualitative (subjective ratings of the subjects).

  18. Virtually Out of This World!

    Science.gov (United States)

    2002-01-01

    Ames Research Center granted Reality Capture Technologies (RCT), Inc., a license to further develop NASA's Mars Map software platform. The company incorporated NASA#s innovation into software that uses the Virtual Plant Model (VPM)(TM) to structure, modify, and implement the construction sites of industrial facilities, as well as develop, validate, and train operators on procedures. The VPM orchestrates the exchange of information between engineering, production, and business transaction systems. This enables users to simulate, control, and optimize work processes while increasing the reliability of critical business decisions. Engineers can complete the construction process and test various aspects of it in virtual reality before building the actual structure. With virtual access to and simulation of the construction site, project personnel can manage, access control, and respond to changes on complex constructions more effectively. Engineers can also create operating procedures, training, and documentation. Virtual Plant Model(TM) is a trademark of Reality Capture Technologies, Inc.

  19. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  20. Virtual reality and planetary exploration

    Science.gov (United States)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  1. Operational considerations for the Space Station Life Science Glovebox

    Science.gov (United States)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  2. Spatial interpretation of NASA's Marshall Space Flight Center Payload Operations Control Center using virtual reality technology

    Science.gov (United States)

    Lindsey, Patricia F.

    1993-01-01

    In its search for higher level computer interfaces and more realistic electronic simulations for measurement and spatial analysis in human factors design, NASA at MSFC is evaluating the functionality of virtual reality (VR) technology. Virtual reality simulation generates a three dimensional environment in which the participant appears to be enveloped. It is a type of interactive simulation in which humans are not only involved, but included. Virtual reality technology is still in the experimental phase, but it appears to be the next logical step after computer aided three-dimensional animation in transferring the viewer from a passive to an active role in experiencing and evaluating an environment. There is great potential for using this new technology when designing environments for more successful interaction, both with the environment and with another participant in a remote location. At the University of North Carolina, a VR simulation of a the planned Sitterson Hall, revealed a flaw in the building's design that had not been observed during examination of the more traditional building plan simulation methods on paper and on computer aided design (CAD) work station. The virtual environment enables multiple participants in remote locations to come together and interact with one another and with the environment. Each participant is capable of seeing herself and the other participants and of interacting with them within the simulated environment.

  3. How NASA is building and sustaining a community of scientist-communicators through virtual technology, graphic facilitation and other community-building tools

    Science.gov (United States)

    DeWitt, S.; Bovaird, E.; Stewart, N.; Reaves, J.; Tenenbaum, L. F.; Betz, L.; Kuchner, M. J.; Dodson, K. E.; Miller, A.

    2013-12-01

    In 2013 NASA launched its first agency-wide effort to cultivate and support scientist-communicators. The multiple motivations behind this effort are complex and overlapping, and include a desire to connect the agency's workforce to its mission and to each other in the post-Space Shuttle era; a shift in how the agency and the world communicates about science; the current public perception of science and of NASA, and a desire to share the stories of the real people behind the agency's technical work. Leaders in the NASA science, communications and public outreach communities partnered with the agency's training and leadership development organization to: identify and fully characterize the need for training and development in science communication, experiment with various learning models, and invite early-adopter scientists to evaluate these models for future agency investment. Using virtual collaboration technology, graphic facilitation, and leadership development methods, we set out to create an environment where scientist-communicators can emerge and excel. First, we asked scientists from across the agency to identify their motivations, opportunities, barriers and areas of interest in science communication. Scientists identified a need to go beyond traditional media training, a need for continuous practice and peer feedback, and a need for agency incentives and sustained support for this kind of work. This community-driven approach also uncovered a serious need for communication support in the wake of diminishing resources for travel and conference attendance. As a first step, we offered a series of virtual learning events - highly collaborative working sessions for scientists to practice their communication technique, develop and apply new skills to real-world situations, and gain valuable feedback from external subject matter experts and fellow scientists from across the agency in a supportive environment. Scientists from ten NASA centers and a broad range of

  4. Effects of glovebox gloves on grip and key pinch strength and contact forces for simulated manual operations with three commonly used hand tools.

    Science.gov (United States)

    Sung, Peng-Cheng

    2014-01-01

    This study examined the effects of glovebox gloves for 11 females on maximum grip and key pinch strength and on contact forces generated from simulated tasks of a roller, a pair of tweezers and a crescent wrench. The independent variables were gloves fabricated of butyl, CSM/hypalon and neoprene materials; two glove thicknesses; and layers of gloves worn including single, double and triple gloving. CSM/hypalon and butyl gloves produced greater grip strength than the neoprene gloves. CSM/hypalon gloves also lowered contact forces for roller and wrench tasks. Single gloving and thin gloves improved hand strength performances. However, triple layers lowered contact forces for all tasks. Based on the evaluating results, selection and design recommendations of gloves for three hand tools were provided to minimise the effects on hand strength and optimise protection of the palmar hand in glovebox environments. To improve safety and health in the glovebox environments where gloves usage is a necessity, this study provides recommendations for selection and design of glovebox gloves for three hand tools including a roller, a pair of tweezers and a crescent wrench based on the results discovered in the experiments.

  5. White Paper for Virtual Control Room

    Science.gov (United States)

    Little, William; Tully-Hanson, Benjamin

    2015-01-01

    The Virtual Control Room (VCR) Proof of Concept (PoC) project is the result of an award given by the Fourth Annual NASA T&I Labs Challenge Project Call. This paper will outline the work done over the award period to build and enhance the capabilities of the Augmented/Virtual Reality (AVR) Lab at NASA's Kennedy Space Center (KSC) to create the VCR.

  6. Applied Virtual Reality Research and Applications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Hale, Joseph P.

    1995-01-01

    A Virtual Reality (VR) applications program has been under development at NASA/Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before this technology can be utilized with confidence in these applications, it must be validated for each particular class of application. That is, the precision and reliability with which it maps onto real settings and scenarios, representative of a class, must be calculated and assessed. The approach of the MSFC VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems. Specific validation studies for selected classes of applications have been completed or are currently underway. These include macro-ergonomic "control-room class" design analysis, Spacelab stowage reconfiguration training, a full-body micro-gravity functional reach simulator, and a gross anatomy teaching simulator. This paper describes the MSFC VR Applications Program and the validation studies.

  7. A new glove-box system for a high-pressure tritium pump

    International Nuclear Information System (INIS)

    Wilson, S.W.; Borree, R.J.; Chambers, D.I.; Chang, Y.; Merrill, J.T.; Souers, P.C.; Wiggins, R.K.

    1988-01-01

    A new glove-box system that was designed around a high-pressure tritium pump is described. The system incorporates new containment ideas such as ''burpler'' passive pressure controls, valves that can be turned from outside the box, inflatable door seals, ferro-fluidic motor-shaft seals, and rapid box-to-hood conversion during cryostaging. Currently under construction, the system will contain nine separate sections with automatic pressure-balancing and venting systems. 3 refs., 5 figs

  8. Object-oriented process dose modeling for glovebox operations

    International Nuclear Information System (INIS)

    Boerigter, S.T.; Fasel, J.H.; Kornreich, D.E.

    1999-01-01

    The Plutonium Facility at Los Alamos National Laboratory supports several defense and nondefense-related missions for the country by performing fabrication, surveillance, and research and development for materials and components that contain plutonium. Most operations occur in rooms with one or more arrays of gloveboxes connected to each other via trolley gloveboxes. Minimizing the effective dose equivalent (EDE) is a growing concern as a result of steadily declining allowable dose limits being imposed and a growing general awareness of safety in the workplace. In general, the authors discriminate three components of a worker's total EDE: the primary EDE, the secondary EDE, and background EDE. A particular background source of interest is the nuclear materials vault. The distinction between sources inside and outside of a particular room is arbitrary with the underlying assumption that building walls and floors provide significant shielding to justify including sources in other rooms in the background category. Los Alamos has developed the Process Modeling System (ProMoS) primarily for performing process analyses of nuclear operations. ProMoS is an object-oriented, discrete-event simulation package that has been used to analyze operations at Los Alamos and proposed facilities such as the new fabrication facilities for the Complex-21 effort. In the past, crude estimates of the process dose (the EDE received when a particular process occurred), room dose (the EDE received when a particular process occurred in a given room), and facility dose (the EDE received when a particular process occurred in the facility) were used to obtain an integrated EDE for a given process. Modifications to the ProMoS package were made to utilize secondary dose information to use dose modeling to enhance the process modeling efforts

  9. Research-Grade 3D Virtual Astromaterials Samples: Novel Visualization of NASA's Apollo Lunar Samples and Antarctic Meteorite Samples to Benefit Curation, Research, and Education

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K. R.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.

    2017-01-01

    NASA's vast and growing collections of astromaterials are both scientifically and culturally significant, requiring unique preservation strategies that need to be recurrently updated to contemporary technological capabilities and increasing accessibility demands. New technologies have made it possible to advance documentation and visualization practices that can enhance conservation and curation protocols for NASA's Astromaterials Collections. Our interdisciplinary team has developed a method to create 3D Virtual Astromaterials Samples (VAS) of the existing collections of Apollo Lunar Samples and Antarctic Meteorites. Research-grade 3D VAS will virtually put these samples in the hands of researchers and educators worldwide, increasing accessibility and visibility of these significant collections. With new sample return missions on the horizon, it is of primary importance to develop advanced curation standards for documentation and visualization methodologies.

  10. "NASA's Solar System Exploration Research Virtual Institute" - Expanded Goals and More Partners

    Science.gov (United States)

    Daou, D.; Schmidt, G.; Pendleton, Y.; Bailey, B.; Morrison, D.

    2015-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inceptionas the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the I nstitute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan- European lunar science consortium, which promises both new scientific approaches and mission concepts.International partner membership requires longterm commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner.International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists.This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  11. "NASA's Solar System Exploration Research Virtual Institute"; - Expanded Goals and New Teams

    Science.gov (United States)

    Daou, D.; Schmidt, G. K.; Pendleton, Y.; Bailey, B. E.

    2014-04-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  12. NASA's Solar System Exploration Research Virtual Institute: Science and Technology for Lunar Exploration

    Science.gov (United States)

    Schmidt, Greg; Bailey, Brad; Gibbs, Kristina

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and

  13. Dismantling of a furnace and gloveboxes of a U3O8 with 20% enrichment production line

    International Nuclear Information System (INIS)

    Yorio, Daniel; Cinat, Enrique; Cincotta, Daniel; Fernandez, Carlos A.; Bruno, Hernan R.; Camacho, Esteban F.; Boero, Norma

    1999-01-01

    In the Uranium Powder Manufacturing Plant at CAC, U 3 O 8 with 20% enrichment is manufactured for fuel plates to be used in test reactors. This plant is in full operation since 1986, producing uranium oxide for Peru, Algeria, Iran, Egypt and the RA-3-CAE reactors. Some of the equipment of the Plant have finished their life time and one of the furnaces of the processing line had to be replaced. This work implied the dismantling not only of the furnace, but also of the gloveboxes connected to the furnace and the dismantling of the extraction lines and air injection of the gloveboxes. The work had to be performed with the necessary care in order to minimize risks and effects on personnel, installations and environment involved. (author)

  14. Virtual Satellite Integration Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advatech Pacific proposes to develop a Virtual Satellite Integration Environment (VSIE) for the NASA Ames Mission Design Center. The VSIE introduces into NASA...

  15. Equipping a glovebox for waste form testing and characterization of plutonium bearing materials

    International Nuclear Information System (INIS)

    Noy, M.; Johnson, S.G.; Moschetti, T.L.

    1997-01-01

    The recent decision by the Department of Energy to pursue a hybrid option for the disposition of weapons plutonium has created the need for additional facilities that can examine and characterize waste forms that contain Pu. This hybrid option consists of the placement of plutonium into stable waste forms and also into mixed oxide fuel for commercial reactors. Glass and glass-ceramic waste forms have a long history of being effective hosts for containing radionuclides, including plutonium. The types of tests necessary to characterize the performance of candidate waste forms include: static leaching experiments on both monolithic and crushed waste forms, microscopic examination, and density determination. Frequently, the respective candidate waste forms must first be produced using elevated temperatures and/or high pressures. The desired operations in the glovebox include, but are not limited to the following: (1) production of vitrified/sintered samples, (2) sampling of glass from crucibles or other vessels, (3) preparing samples for microscopic inspection and monolithic and crushed static leach tests, and (4) performing and analyzing leach tests in situ. This paper will describe the essential equipment and modifications that are necessary to successfully accomplish the goal of outfitting a glovebox for these functions

  16. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    International Nuclear Information System (INIS)

    Ramsey, K.B.; Acosta, S.V.; Wernly, K.D.

    1998-01-01

    This paper presents an overview of potential technologies for stabilization of 238 Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from 238 Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented

  17. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, K.B.; Acosta, S.V. [Los Alamos National Lab., NM (United States); Wernly, K.D. [Molten Salt Oxidation Corp., Bensalem, PA (United States)

    1998-12-31

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented.

  18. Virtualization - A Key Cost Saver in NASA Multi-Mission Ground System Architecture

    Science.gov (United States)

    Swenson, Paul; Kreisler, Stephen; Sager, Jennifer A.; Smith, Dan

    2014-01-01

    downlinked data stream and injects messages into the GMSEC bus that are monitored to automatically page the on-call operator or Systems Administrator (SA) when an off-nominal condition is detected. This architecture, like the LTSP thin clients, are shared across all tenant missions.Other required IT security controls are implemented at the ground system level, including physical access controls, logical system-level authentication authorization management, auditing and reporting, network management and a NIST 800-53 FISMA-Moderate IT Security plan Risk Assessment Contingency Plan, helping multiple missions share the cost of compliance with agency-mandated directives.The SPOCC architecture provides science payload control centers and backup mission operations centers with a cost-effective, standardized approach to virtualizing and monitoring resources that were traditionally multiple racks full of physical machines. The increased agility in deploying new virtual systems and thin client workstations can provide significant savings in personnel costs for maintaining the ground system. The cost savings in procurement, power, rack footprint and cooling as well as the shared multi-mission design greatly reduces upfront cost for missions moving into the facility. Overall, the authors hope that this architecture will become a model for how future NASA operations centers are constructed!

  19. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1996-01-01

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take place inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho

  20. GIS Function Coupling for Virtual Globes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Virtual Globe (VG) systems such as Google Earth, NASA World Winds and Microsoft Virtual Earth provide captivating animated 3D visualizations and support user queries...

  1. VECTR: Virtual Environment Computational Training Resource

    Science.gov (United States)

    Little, William L.

    2018-01-01

    The Westridge Middle School Curriculum and Community Night is an annual event designed to introduce students and parents to potential employers in the Central Florida area. NASA participated in the event in 2017, and has been asked to come back for the 2018 event on January 25. We will be demonstrating our Microsoft Hololens Virtual Rovers project, and the Virtual Environment Computational Training Resource (VECTR) virtual reality tool.

  2. Dismantling techniques for plutonium-contaminated gloveboxes: experience from first year of decommissioning; Zerlegungstechniken fuer Pu-kontaminierte Handschuhkaesten: Erfahrungsbericht nach einem Jahr Rueckbau

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, R.; Faber, P. [Siemens Power Generation, Decommissioning Projects, Hanau (Germany)

    2003-07-01

    At the mixed-oxide (MOX) processing facility formerly operated by ALKEM GmbH in Hanau, Germany - which was taken over to Siemens in 1988 and renamed Siemens' Hanau Fuel Fabrication Plant, MOX facility - around 8500 kg of plutonium were processed to make MOX fuel rods and fuel assemblies since production started in 1965. After shutdown of the facility by the authorities in mid-1991 for political reasons, the remaining nuclear fuel materials were processed during the subsequent ''cleanout'' phase starting in 1997 into rods and assemblies suitable for long-term storage. The last step in cleanout consisted of ''flushing'' the production equipment with depleted uranium and thoroughly cleaning the gloveboxes. During cleanout around 700 kg of plutonium were processed in the form of mixed oxides. The cleanout phase including the subsequent cleaning and flushing operations ended on schedule in September 2001 without any significant problems. Starting in mid-1999, the various glovebox dismantling techniques were tested using uncontaminated components while cleanout was still in progress and then, once these trials had been successfully completed, further qualified through use on actual components. The pilot-phase trials required four separate licenses under Section 7, Subsection (3) of the German Atomic Energy Act. Thanks to detailed advance planning and experience from the pilot trials the individual dismantling steps could be described in sufficient detail for the highly complex German licensing procedure. The first partial license for decommissioning the MOX facility under Sec. 7, Subsec. (3) of the Atomic Energy Act was issued on May 28, 2001. It mainly covers dismantling of the interior equipment inside the gloveboxes a well as the gloveboxes themselves. Actual decommissioning work inside the former production areas of the MOX facility started on a large scale in early September 2001. (orig.)

  3. CSER 00-008 use of PFP Glovebox HC-18BS for Storage and Transport of Fissionable Material

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    2000-01-01

    This CSER addresses the feasibility of increasing the allowed number of open containers and permitting the transfer and storage of fissionable material in Glovebox HC-18BS without regard to form or density (metal, oxide having an H/X (le) 20, material having unrestricted moderation and plutonium hydroxide having a plutonium density of 0.2 g/cm 3 )

  4. Strategy for decommissioning of the glove-boxes in the Belgonucleaire Dessel MOX fuel fabrication plant

    International Nuclear Information System (INIS)

    Vandergheynst, Alain; Cuchet, Jean-Marie

    2007-01-01

    Available in abstract form only. Full text of publication follows: BELGONUCLEAIRE has been operating the Dessel plant from the mid-80's at industrial scale. In this period, over 35 metric tons of plutonium (HM) was processed into almost 100 reloads of MOX fuel for commercial West-European Light Water Reactors. In late 2005, the decision was made to stop the production because of the shortage of MOX fuel market remaining accessible to BELGONUCLEAIRE after the successive capacity increases of the MELOX plant (France) and the commissioning of the SMP plant (UK). As a significant part of the decommissioning project of this Dessel plant, about 170 medium-sized glove-boxes are planned for dismantling. In this paper, after having reviewed the different specifications of ±-contaminated waste in Belgium, the authors introduce the different options considered for cleaning, size reduction and packaging of the glove-boxes, and the main decision criteria (process, α-containment, mechanization and radiation protection, safety aspects, generation of secondary waste, etc) are analyzed. The selected strategy consists in using cold cutting techniques and manual operation in shielded disposable glove-tents, and packaging α-waste in 200-liter drums for off-site conditioning and intermediate disposal. (authors)

  5. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  6. Computer modeling for optimal placement of gloveboxes

    International Nuclear Information System (INIS)

    Hench, K.W.; Olivas, J.D.; Finch, P.R.

    1997-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components (pits) in an environment of intense regulation and shrinking budgets. Historically, the location of gloveboxes in a processing area has been determined without benefit of industrial engineering studies to ascertain the optimal arrangement. The opportunity exists for substantial cost savings and increased process efficiency through careful study and optimization of the proposed layout by constructing a computer model of the fabrication process. This paper presents an integrative two- stage approach to modeling the casting operation for pit fabrication. The first stage uses a mathematical technique for the formulation of the facility layout problem; the solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a computer simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units

  7. Computer modeling for optimal placement of gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.; Olivas, J.D. [Los Alamos National Lab., NM (United States); Finch, P.R. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components (pits) in an environment of intense regulation and shrinking budgets. Historically, the location of gloveboxes in a processing area has been determined without benefit of industrial engineering studies to ascertain the optimal arrangement. The opportunity exists for substantial cost savings and increased process efficiency through careful study and optimization of the proposed layout by constructing a computer model of the fabrication process. This paper presents an integrative two- stage approach to modeling the casting operation for pit fabrication. The first stage uses a mathematical technique for the formulation of the facility layout problem; the solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a computer simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  8. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials

    Energy Technology Data Exchange (ETDEWEB)

    Tyrpekl, V., E-mail: vaclav.tyrpekl@ec.europa.eu, E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.; Köpp, F.; Cologna, M.; Somers, J. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Wangle, T. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, Praha 1, 115 19 (Czech Republic)

    2015-02-15

    Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. The facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.

  9. Glovebox glove deterioration in the Hanford Engineering Development Laboratory fuel fabrication facility

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Smith, R.C.; Powell, D.L.

    1979-07-01

    Neoprene glovebox gloves have been found susceptible to periodic rapid deterioration under normal operating conditions in fuel fabrication facilities. Examinations of glove failure histories and measurements of the atmospheres in inert atmosphere dry-boxes indicated ozone at low concentrations of 100 to 500 ppB was probably the most important factor in rapid glove deterioration. Testing of a varity of new glove materials indicated that Hypalon and ethylene-propylene-diamine monomer (EDPM) gloves have greater than 30 times the longevity of neoprene in low-level ozone concentration atmospheres. comparative tests over a 30-month period have also confirmed that the two glove candidates have a significantly longer operative life. 14 figures

  10. Calculation note - Consequences of a fire in the sorting and repackaging glovebox in room 636 of bldg 2736-ZB - Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    JOHNSON, L.E.

    1999-01-01

    This Calculation Note provides a conservative estimate of the grams of plutonium released from Building 2736-ZB of the Plutonium Finishing Plant as a result of a fire within Glovebox 636, without consideration of mitigation

  11. In-Situ Leak Testing And Replacement Of Glovebox Isolator, Or Containment Unit Gloves

    Science.gov (United States)

    Castro, Julio M.; Macdonald, John M.; Steckle, Jr., Warren P.

    2004-11-02

    A test plug for in-situ testing a glove installed in a glovebox is provided that uses a top plate and a base plate, and a diametrically expandable sealing mechanism fitting between the two plates. The sealing mechanism engages the base plate to diametrically expand when the variable distance between the top plate and the bottom plate is reduced. An inlet valve included on the top plate is used to introducing a pressurized gas to the interior of the glove, and a pressure gauge located on the top plate is used to monitor the interior glove pressure.

  12. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  13. NASA Technologies for Product Identification

    Science.gov (United States)

    Schramm, Fred, Jr.

    2006-01-01

    Since 1975 bar codes on products at the retail counter have been accepted as the standard for entering product identity for price determination. Since the beginning of the 21st century, the Data Matrix symbol has become accepted as the bar code format that is marked directly on a part, assembly or product that is durable enough to identify that item for its lifetime. NASA began the studies for direct part marking Data Matrix symbols on parts during the Return to Flight activities after the Challenger Accident. Over the 20 year period that has elapsed since Challenger, a mountain of studies, analyses and focused problem solutions developed by and for NASA have brought about world changing results. NASA Technical Standard 6002 and NASA Handbook 6003 for Direct Part Marking Data Matrix Symbols on Aerospace Parts have formed the basis for most other standards on part marking internationally. NASA and its commercial partners have developed numerous products and methods that addressed the difficulties of collecting part identification in aerospace operations. These products enabled the marking of Data Matrix symbols in virtually every situation and the reading of symbols at great distances, severe angles, under paint and in the dark without a light. Even unmarkable delicate parts now have a process to apply a chemical mixture called NanocodesTM that can be converted to a Data Matrix. The accompanying intellectual property is protected by 10 patents, several of which are licensed. Direct marking Data Matrix on NASA parts virtually eliminates data entry errors and the number of parts that go through their life cycle unmarked, two major threats to sound configuration management and flight safety. NASA is said to only have people and stuff with information connecting them. Data Matrix is one of the most significant improvements since Challenger to the safety and reliability of that connection. This presentation highlights the accomplishments of NASA in its efforts to develop

  14. Virtual interface environment workstations

    Science.gov (United States)

    Fisher, S. S.; Wenzel, E. M.; Coler, C.; Mcgreevy, M. W.

    1988-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed at NASA's Ames Research Center for use as a multipurpose interface environment. This Virtual Interface Environment Workstation (VIEW) system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, research scenarios, and research directions are described.

  15. Integrated Data Visualization and Virtual Reality Tool

    Science.gov (United States)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  16. Providing comprehensive and consistent access to astronomical observatory archive data: the NASA archive model

    Science.gov (United States)

    McGlynn, Thomas; Fabbiano, Giuseppina; Accomazzi, Alberto; Smale, Alan; White, Richard L.; Donaldson, Thomas; Aloisi, Alessandra; Dower, Theresa; Mazzerella, Joseph M.; Ebert, Rick; Pevunova, Olga; Imel, David; Berriman, Graham B.; Teplitz, Harry I.; Groom, Steve L.; Desai, Vandana R.; Landry, Walter

    2016-07-01

    Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change.

  17. CSER 99-002: CSER for unrestricted moderation of sludge material with two-boat operations in gloveboxes HC-21A and HC-21C

    International Nuclear Information System (INIS)

    LAN, J.S.

    1999-01-01

    This Criticality Safety Evaluation Report was prepared by Fluor Daniel Northwest under contract to BWHC. This document establishes the criticality safety parameters for unrestricted moderation of Sludge material with two-boat operations in gloveboxes HC-21A and HC-21C

  18. Batteries at NASA - Today and Beyond

    Science.gov (United States)

    Reid, Concha M.

    2015-01-01

    NASA uses batteries for virtually all of its space missions. Batteries can be bulky and heavy, and some chemistries are more prone to safety issues than others. To meet NASA's needs for safe, lightweight, compact and reliable batteries, scientists and engineers at NASA develop advanced battery technologies that are suitable for space applications and that can satisfy these multiple objectives. Many times, these objectives compete with one another, as the demand for more and more energy in smaller packages dictates that we use higher energy chemistries that are also more energetic by nature. NASA partners with companies and universities, like Xavier University of Louisiana, to pool our collective knowledge and discover innovative technical solutions to these challenges. This talk will discuss a little about NASA's use of batteries and why NASA seeks more advanced chemistries. A short primer on battery chemistries and their chemical reactions is included. Finally, the talk will touch on how the work under the Solid High Energy Lithium Battery (SHELiB) grant to develop solid lithium-ion conducting electrolytes and solid-state batteries can contribute to NASA's mission.

  19. Kinematic/Dynamic Characteristics for Visual and Kinesthetic Virtual Environments

    Science.gov (United States)

    Bortolussi, Michael R. (Compiler); Adelstein, B. D.; Gold, Miriam

    1996-01-01

    Work was carried out on two topics of principal importance to current progress in virtual environment research at NASA Ames and elsewhere. The first topic was directed at maximizing the temporal dynamic response of visually presented Virtual Environments (VEs) through reorganization and optimization of system hardware and software. The final results of this portion of the work was a VE system in the Advanced Display and Spatial Perception Laboratory at NASA Ames capable of updating at 60 Hz (the maximum hardware refresh rate) with latencies approaching 30 msec. In the course of achieving this system performance, specialized hardware and software tools for measurement of VE latency and analytic models correlating update rate and latency for different system configurations were developed. The second area of activity was the preliminary development and analysis of a novel kinematic architecture for three Degree Of Freedom (DOF) haptic interfaces--devices that provide force feedback for manipulative interaction with virtual and remote environments. An invention disclosure was filed on this work and a patent application is being pursued by NASA Ames. Activities in these two areas are expanded upon below.

  20. Virtualization in the Operations Environments

    Science.gov (United States)

    Pitts, Lee; Lankford, Kim; Felton, Larry; Pruitt, Robert

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  1. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    Science.gov (United States)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  2. Glovebox-contained forty-millimeter gun system for the study of one-dimensional shock waves in toxic materials

    International Nuclear Information System (INIS)

    Honodel, C.A.

    1975-01-01

    A new gun system is being constructed at the Lawrence Livermore Laboratory for studies of the behavior of toxic materials under shock-loaded conditions. Due to the extreme toxicity of some materials, such as plutonium, the entire gun system must be enclosed in gloveboxes. Some of the experimental requirements that affected the design of the system, various diagnostic techniques that will be employed with the system, and some details of the final design that is presently under assembly are presented

  3. Virtual Environment Computer Simulations to Support Human Factors Engineering and Operations Analysis for the RLV Program

    Science.gov (United States)

    Lunsford, Myrtis Leigh

    1998-01-01

    The Army-NASA Virtual Innovations Laboratory (ANVIL) was recently created to provide virtual reality tools for performing Human Engineering and operations analysis for both NASA and the Army. The author's summer research project consisted of developing and refining these tools for NASA's Reusable Launch Vehicle (RLV) program. Several general simulations were developed for use by the ANVIL for the evaluation of the X34 Engine Changeout procedure. These simulations were developed with the software tool dVISE 4.0.0 produced by Division Inc. All software was run on an SGI Indigo2 High Impact. This paper describes the simulations, various problems encountered with the simulations, other summer activities, and possible work for the future. We first begin with a brief description of virtual reality systems.

  4. NASA Tech Briefs, February 2009

    Science.gov (United States)

    2009-01-01

    Tech Briefs are short announcements of innovations originating from research and development activities of the National Aeronautics and Space Administration. They emphasize information considered likely to be transferable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. Topics covered include: Measuring Low Concentrations of Liquid Water in Soil; The Mars Science Laboratory Touchdown Test Facility; Non-Contact Measurement of Density and Thickness Variation in Dielectric Materials; Compact Microwave Fourier Spectrum Analyzer; InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz; Combinatorial Generation of Test Suites; In-Phase Power-Combined Frequency Tripler at 300 GHz; Electronic System for Preventing Airport Runway Incursions; Smaller but Fully Functional Backshell for Cable Connector; Glove-Box or Desktop Virtual-Reality System; Composite Layer Manufacturing with Fewer Interruptions; Improved Photoresist Coating for Making CNT Field Emitters; A Simplified Diagnostic Method for Elastomer Bond Durability; Complex Multifunctional Polymer/Carbon-Nanotube Composites; Very High Output Thermoelectric Devices Based on ITO Nanocomposites; Reducing Unsteady Loads on a Piggyback Miniature Submarine; Ultrasonic/Sonic Anchor; Grooved Fuel Rings for Nuclear Thermal Rocket Engines; Pulsed Operation of an Ion Accelerator; Autonomous Instrument Placement for Mars Exploration Rovers; Mission and Assets Database; TCP/IP Interface for the Satellite Orbit Analysis Program (SOAP); Trajectory Calculator for Finite-Radius Cutter on a Lathe; Integrated System Health Management Development Toolkit.

  5. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    Science.gov (United States)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  6. Organic Contamination Baseline Study: In NASA JSC Astromaterials Curation Laboratories. Summary Report

    Science.gov (United States)

    Calaway, Michael J.

    2013-01-01

    In preparation for OSIRIS-REx and other future sample return missions concerned with analyzing organics, we conducted an Organic Contamination Baseline Study for JSC Curation Labsoratories in FY12. For FY12 testing, organic baseline study focused only on molecular organic contamination in JSC curation gloveboxes: presumably future collections (i.e. Lunar, Mars, asteroid missions) would use isolation containment systems over only cleanrooms for primary sample storage. This decision was made due to limit historical data on curation gloveboxes, limited IR&D funds and Genesis routinely monitors organics in their ISO class 4 cleanrooms.

  7. An open-walled ionization chamber appropriate to tritium monitoring for glovebox

    International Nuclear Information System (INIS)

    Chen Zhilin; Chang Ruiming; Mu Long; Song Guoyang; Wang Heyi; Wu Guanyin; Wei Xiye

    2010-01-01

    An open-walled ionization chamber is developed to monitor the tritium concentration in gloveboxes in tritium processing systems. Two open walls are used to replace the sealed wall in common ionization chambers, through which the tritium gas can diffuse into the chamber without the aid of pumps and pipelines. Some basic properties of the chamber are examined to evaluate its performance. Results turn out that an open-walled chamber of 1 l in volume shows a considerably flat plateau over 700 V for a range of tritium concentration. The chamber also gives a good linear response to gamma fields over 4 decades under a pressure condition of 1 atm. The pressure dependence characteristics show that the ionization current is only sensitive at low pressures. The pressure influence becomes weaker as the pressure increases mainly due to the decrease in the mean free path of β particles produced by tritium decay. The minimum detection limit of the chamber is 3.7x10 5 Bq/m 3 .

  8. Glenn Reconfigurable User-interface and Virtual reality Exploration (GURVE) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The GRUVE (Glenn Reconfigurable User-interface and Virtual reality Exploration) Lab is a reconfigurable, large screen display facility at Nasa Glenn Research Center....

  9. The Virtual Tablet: Virtual Reality as a Control System

    Science.gov (United States)

    Chronister, Andrew

    2016-01-01

    In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of

  10. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  11. NASA Sea Level Change Portal - It not just another portal site

    Science.gov (United States)

    Huang, T.; Quach, N.; Abercrombie, S. P.; Boening, C.; Brennan, H. P.; Gill, K. M.; Greguska, F. R., III; Jackson, R.; Larour, E. Y.; Shaftel, H.; Tenenbaum, L. F.; Zlotnicki, V.; Moore, B.; Moore, J.; Boeck, A.

    2017-12-01

    The NASA Sea Level Change Portal (https://sealevel.nasa.gov) is designed as a "one-stop" source for current sea level change information, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. With increasing global temperatures warming the ocean and melting ice sheets and glaciers, there is an immediate need both for accelerating sea level change research and for making this research accessible to scientists in disparate discipline, to the general public, to policy makers and business. The immersive and innovative NASA portal debuted at the 2015 AGU attracts thousands of daily visitors and over 30K followers on Facebook®. Behind its intuitive interface is an extensible architecture that integrates site contents, data for various sources, visualization, horizontal-scale geospatial data analytic technology (called NEXUS), and an interactive 3D simulation platform (called the Virtual Earth System Laboratory). We will present an overview of our NASA portal and some of our architectural decisions along with discussion on our open-source, cloud-based data analytic technology that enables on-the-fly analysis of heterogeneous data.

  12. CSER 01-008 Canning of Thermally Stabilized Plutonium Oxide Powder in PFP Glovebox HC-21A

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    2001-01-01

    This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-18M and HA-20MB, and is documented in HNF-2707 Rev I a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. The plutonium stabilization program at the Plutonium Finishing Plant (PFP) uses heat to convert plutonium-bearing materials into dry powder that is chemically stable for long term storage. The stabilized plutonium is transferred into one of several gloveboxes for the canning process, Gloveboxes HC-18M in Room 228'2, HA-20MB in Room 235B, and HC-21A in Room 230B are to be used for this process. This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-I8M and HA-20MB, and is documented in HNF-2707 Rev l a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. Evaluation of this operation included normal, base cases, and contingencies. The base cases took the normal operations for each type of feed material and added the likely off-normal events. Each contingency is evaluated assuming the unlikely event happens to the conservative base case. Each contingency was shown to meet the double contingency requirement. That is, at least two unlikely, independent, and concurrent changes in process conditions are required before a criticality is possible

  13. Use of simulation to examine operational scenarios in a lathe glovebox for the processing of nuclear materials

    International Nuclear Information System (INIS)

    McQueen, M.; Ashok, P.; Cox, D.J.; Pittman, P.C.; Turner, C.J.; Hollen, R.M.

    2001-01-01

    In the process of dispositioning nuclear materials into storage, the use of a robot eliminates the safety risks to humans and increases productivity. The current process of processing typically uses humans to handle the hazardous material using gloves through glove-ports. This process is not only dangerous, but also costly, because humans can only be subjected to limited exposure to nuclear materials due to the actual Occupational Radiation Exposure (ORE) and thus have a fixed amount of dedicated workload per unit time. Use of robotics reduces ORE to humans and increases productivity. The Robotics Research Group at the University of Texas at Austin has created a simulation model of a conceptual application that uses a robot inside the glovebox to handle hazardous materials for lathe machining process operations in cooperation with Los Alamos National Laboratories (LANL). The actions of the robot include preparing the parts for entry into the box, weighing the parts, positioning the parts into the headstock chuck of the lathe, handling the subsequent processed parts, changing and replacing the lathe tools and chuck assemblies are necessary to process the material. The full three-dimensional geometric model of the simulation demonstrates the normal expected operation from beginning to end and verifies the path plans for the robot. The emphasis of this paper is to report additional findings from the simulation model, which is currently being expanded to include failure mode analysis, error recovery, and other what-if scenarios involved in unexpected, or unplanned, operation of the robot and lathe process inside of the glovebox.

  14. Evolving Capabilities for Virtual Globes

    Science.gov (United States)

    Glennon, A.

    2006-12-01

    Though thin-client spatial visualization software like Google Earth and NASA World Wind enjoy widespread popularity, a common criticism is their general lack of analytical functionality. This concern, however, is rapidly being addressed; standard and advanced geographic information system (GIS) capabilities are being developed for virtual globes--though not centralized into a single implementation or software package. The innovation is mostly originating from the user community. Three such capabilities relevant to the earth science, education, and emergency management communities are modeling dynamic spatial phenomena, real-time data collection and visualization, and multi-input collaborative databases. Modeling dynamic spatial phenomena has been facilitated through joining virtual globe geometry definitions--like KML--to relational databases. Real-time data collection uses short scripts to transform user-contributed data into a format usable by virtual globe software. Similarly, collaborative data collection for virtual globes has become possible by dynamically referencing online, multi-person spreadsheets. Examples of these functions include mapping flows within a karst watershed, real-time disaster assessment and visualization, and a collaborative geyser eruption spatial decision support system. Virtual globe applications will continue to evolve further analytical capabilities, more temporal data handling, and from nano to intergalactic scales. This progression opens education and research avenues in all scientific disciplines.

  15. Device Assembly Facility (DAF) Glovebox Radioactive Waste Characterization

    International Nuclear Information System (INIS)

    Dominick, J L

    2001-01-01

    The Device Assembly Facility (DAF) at the Nevada Test Site (NTS) provides programmatic support to the Joint Actinide Shock Physics Experimental Research (JASPER) Facility in the form of target assembly. The target assembly activities are performed in a glovebox at DAF and include Special Nuclear Material (SNM). Currently, only activities with transuranic SNM are anticipated. Preliminary discussions with facility personnel indicate that primarily two distributions of SNM will be used: Weapons Grade Plutonium (WG-Pu), and Pu-238 enhanced WG-Pu. Nominal radionuclide distributions for the two material types are included in attachment 1. Wastes generated inside glove boxes is expected to be Transuranic (TRU) Waste which will eventually be disposed of at the Waste Isolation Pilot Plant (WIPP). Wastes generated in the Radioactive Material Area (RMA), outside of the glove box is presumed to be low level waste (LLW) which is destined for disposal at the NTS. The process knowledge quantification methods identified herein may be applied to waste generated anywhere within or around the DAF and possibly JASPER as long as the fundamental waste stream boundaries are adhered to as outlined below. The method is suitable for quantification of waste which can be directly surveyed with the Blue Alpha meter or swiped. An additional quantification methodology which requires the use of a high resolution gamma spectroscopy unit is also included and relies on the predetermined radionuclide distribution and utilizes scaling to measured nuclides for quantification

  16. NASA Cloud-Based Climate Data Services

    Science.gov (United States)

    McInerney, M. A.; Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, W. D., III; Thompson, J. H.; Gill, R.; Jasen, J. E.; Samowich, B.; Pobre, Z.; Salmon, E. M.; Rumney, G.; Schardt, T. D.

    2012-12-01

    Cloud-based scientific data services are becoming an important part of NASA's mission. Our technological response is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service (VaaS). A virtual climate data server (vCDS) is an Open Archive Information System (OAIS) compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have deployed vCDS Version 1.0 in the Amazon EC2 cloud using S3 object storage and are using the system to deliver a subset of NASA's Intergovernmental Panel on Climate Change (IPCC) data products to the latest CentOS federated version of Earth System Grid Federation (ESGF), which is also running in the Amazon cloud. vCDS-managed objects are exposed to ESGF through FUSE (Filesystem in User Space), which presents a POSIX-compliant filesystem abstraction to applications such as the ESGF server that require such an interface. A vCDS manages data as a distinguished collection for a person, project, lab, or other logical unit. A vCDS can manage a collection across multiple storage resources using rules and microservices to enforce collection policies. And a vCDS can federate with other vCDSs to manage multiple collections over multiple resources, thereby creating what can be thought of as an ecosystem of managed collections. With the vCDS approach, we are trying to enable the full information lifecycle management of scientific data collections and make tractable the task of providing diverse climate data services. In this presentation, we describe our approach, experiences, lessons learned, and plans for the future.; (A) vCDS/ESG system stack. (B) Conceptual architecture for NASA cloud-based data services.

  17. Utilization of Virtual Server Technology in Mission Operations

    Science.gov (United States)

    Felton, Larry; Lankford, Kimberly; Pitts, R. Lee; Pruitt, Robert W.

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  18. Overview of the Life Science Glovebox (LSG) Facility and the Research Performed in the LSG

    Science.gov (United States)

    Cole, J. Michael; Young, Yancy

    2016-01-01

    The Life Science Glovebox (LSG) is a rack facility currently under development with a projected availability for International Space Station (ISS) utilization in the FY2018 timeframe. Development of the LSG is being managed by the Marshal Space Flight Center (MSFC) with support from Ames Research Center (ARC) and Johnson Space Center (JSC). The MSFC will continue management of LSG operations, payload integration, and sustaining following delivery to the ISS. The LSG will accommodate life science and technology investigations in a "workbench" type environment. The facility has a.Ii enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for handling Biohazard Level II and lower biological materials. This containment approach protects the crew from possible hazardous operations that take place inside the LSG work volume. Research investigations operating inside the LSG are provided approximately 15 cubic feet of enclosed work space, 350 watts of28Vdc and l IOVac power (combined), video and data recording, and real time downlink. These capabilities will make the LSG a highly utilized facility on ISS. The LSG will be used for biological studies including rodent research and cell biology. The LSG facility is operated by the Payloads Operations Integration Center at MSFC. Payloads may also operate remotely from different telescience centers located in the United States and different countries. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the LSG facility. NASA provides an LSG qualification unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This poster will provide an overview of the LSG facility and a synopsis of the research that will be accomplished in the LSG. The authors would like to acknowledge Ames Research Center, Johnson

  19. Virtual Acoustics: Evaluation of Psychoacoustic Parameters

    Science.gov (United States)

    Begault, Durand R.; Null, Cynthia H. (Technical Monitor)

    1997-01-01

    Current virtual acoustic displays for teleconferencing and virtual reality are usually limited to very simple or non-existent renderings of reverberation, a fundamental part of the acoustic environmental context that is encountered in day-to-day hearing. Several research efforts have produced results that suggest that environmental cues dramatically improve perceptual performance within virtual acoustic displays, and that is possible to manipulate signal processing parameters to effectively reproduce important aspects of virtual acoustic perception in real-time. However, the computational resources for rendering reverberation remain formidable. Our efforts at NASA Ames have been focused using a several perceptual threshold metrics, to determine how various "trade-offs" might be made in real-time acoustic rendering. This includes both original work and confirmation of existing data that was obtained in real rather than virtual environments. The talk will consider the importance of using individualized versus generalized pinnae cues (the "Head-Related Transfer Function"); the use of head movement cues; threshold data for early reflections and late reverberation; and consideration of the necessary accuracy for measuring and rendering octave-band absorption characteristics of various wall surfaces. In addition, a consideration of the analysis-synthesis of the reverberation within "everyday spaces" (offices, conference rooms) will be contrasted to the commonly used paradigm of concert hall spaces.

  20. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    Science.gov (United States)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  1. Prediction of dose and field mapping around a shielded plutonium fuel fabrication glovebox

    International Nuclear Information System (INIS)

    Strode, J.N.; Soldat, K.L.; Brackenbush, L.W.

    1984-01-01

    Westinghouse Hanford Company, as the Department of Energy's (DOE) prime contractor for the operation of the Hanford Engineering Development Laboratory (HEDL), is responsible for the development of the Secure Automated Fabrication (SAF) Line which is to be installed in the recently constructed Fuels and Materials Examination Facility (FMEF). The SAF Line will fabricate mixed-oxide (MOX) fuel pins for the Fast Flux Test Facility (FFTF) at an annual throughput rate of six (6) metric tons (MT) of MOX. The SAF Line will also demonstrate the automated manufacture of fuel pins on a production-scale. This paper describes some of the techniques used to reduce personnel exposure on the SAF Line, as well as the prediction and field mapping of doses from a shielded fuel fabrication glovebox. Tables are also presented from which exposure rate estimates can be made for plutonium recovered from fuels having different isotopic compositions as a result of varied burnup

  2. Evaluation of Life Sciences Glovebox (LSG) and Multi-Purpose Crew Restraint Concepts

    Science.gov (United States)

    Whitmore, Mihriban

    2005-01-01

    Within the scope of the Multi-purpose Crew Restraints for Long Duration Spaceflights project, funded by Code U, it was proposed to conduct a series of evaluations on the ground and on the KC-135 to investigate the human factors issues concerning confined/unique workstations, such as the design of crew restraints. The usability of multiple crew restraints was evaluated for use with the Life Sciences Glovebox (LSG) and for performing general purpose tasks. The purpose of the KC-135 microgravity evaluation was to: (1) to investigate the usability and effectiveness of the concepts developed, (2) to gather recommendations for further development of the concepts, and (3) to verify the validity of the existing requirements. Some designs had already been tested during a March KC-135 evaluation, and testing revealed the need for modifications/enhancements. This flight was designed to test the new iterations, as well as some new concepts. This flight also involved higher fidelity tasks in the LSG, and the addition of load cells on the gloveports.

  3. Virtual Machine Language Controls Remote Devices

    Science.gov (United States)

    2014-01-01

    Kennedy Space Center worked with Blue Sun Enterprises, based in Boulder, Colorado, to enhance the company's virtual machine language (VML) to control the instruments on the Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction mission. Now the NASA-improved VML is available for crewed and uncrewed spacecraft, and has potential applications on remote systems such as weather balloons, unmanned aerial vehicles, and submarines.

  4. Images of Earth and Space: The Role of Visualization in NASA Science

    Science.gov (United States)

    1996-01-01

    Fly through the ocean at breakneck speed. Tour the moon. Even swim safely in the boiling sun. You can do these things and more in a 17 minute virtual journey through Earth and space. The trek is by way of colorful scientific visualizations developed by the NASA/Goddard Space Flight Center's Scientific Visualization Studio and the NASA HPCC Earth and Space Science Project investigators. Various styles of electronic music and lay-level narration provide the accompaniment.

  5. NASA's Bio-Inspired Acoustic Absorber Concept

    Science.gov (United States)

    Koch, L. Danielle

    2017-01-01

    are encouraged to contact the NASA Glenn Technology Transfer Office, https:technology.grc.nasa.gov. The NASA Glenn Office of Education https:www.nasa.govcentersglenneducationindex.html and the NASA Glenn Virtual Interchange for Nature-Inspired Exploration https:www.grc.nasa.govvine are also helping to make research like this accessible to the public and students of all ages.

  6. SHARED VIRTUAL ENVIRONMENTS FOR COLLECTIVE TRAINING

    Science.gov (United States)

    Loftin, R. Bowen

    2000-01-01

    Historically NASA has trained teams of astronauts by bringing them to the Johnson Space Center in Houston to undergo generic training, followed by mission-specific training. This latter training begins after a crew has been selected for a mission (perhaps two years before the launch of that mission). While some Space Shuttle flights have included an astronaut from a foreign country, the International Space Station will be consistently crewed by teams comprised of astronauts from two or more of the partner nations. The cost of training these international teams continues to grow in both monetary and personal terms. Thus, NASA has been seeking alternative training approaches for the International Space Station program. Since 1994 we have been developing, testing, and refining shared virtual environments for astronaut team training, including the use of virtual environments for use while in or in transit to the task location. In parallel with this effort, we have also been preparing applications for training teams of military personnel engaged in peacekeeping missions. This paper will describe the applications developed to date, some of the technological challenges that have been overcome in their development, and the research performed to guide the development and to measure the efficacy of these shared environments as training tools.

  7. Curating Virtual Data Collections

    Science.gov (United States)

    Lynnes, Chris; Leon, Amanda; Ramapriyan, Hampapuram; Tsontos, Vardis; Shie, Chung-Lin; Liu, Zhong

    2015-01-01

    NASAs Earth Observing System Data and Information System (EOSDIS) contains a rich set of datasets and related services throughout its many elements. As a result, locating all the EOSDIS data and related resources relevant to particular science theme can be daunting. This is largely because EOSDIS data's organizing principle is affected more by the way they are produced than around the expected end use. Virtual collections oriented around science themes can overcome this by presenting collections of data and related resources that are organized around the user's interest, not around the way the data were produced. Virtual collections consist of annotated web addresses (URLs) that point to data and related resource addresses, thus avoiding the need to copy all of the relevant data to a single place. These URL addresses can be consumed by a variety of clients, ranging from basic URL downloaders (wget, curl) and web browsers to sophisticated data analysis programs such as the Integrated Data Viewer.

  8. The NASA Astrobiology Institute: early history and organization

    Science.gov (United States)

    Blumberg, Baruch S.

    2003-01-01

    The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.

  9. From AISR to the Virtual Observatory

    Science.gov (United States)

    Szalay, Alexander S.

    2014-01-01

    The talk will provide a retrospective on important results enabled by the NASA AISR program. The program had a unique approach to funding research at the intersection of astrophysics, applied computer science and statistics. It had an interdisciplinary angle, encouraged high risk, high return projects. Without this program the Virtual Observatory would have never been started. During its existence the program has funded some of the most innovative applied computer science projects in astrophysics.

  10. NASA Missions Inspire Online Video Games

    Science.gov (United States)

    2012-01-01

    Fast forward to 2035. Imagine being part of a community of astronauts living and working on the Moon. Suddenly, in the middle of just another day in space, a meteorite crashes into the surface of the Moon, threatening life as you know it. The support equipment that provides oxygen for the entire community has been compromised. What would you do? While this situation is one that most people will never encounter, NASA hopes to place students in such situations - virtually - to inspire, engage, and educate about NASA technologies, job opportunities, and the future of space exploration. Specifically, NASA s Learning Technologies program, part of the Agency s Office of Education, aims to inspire and motivate students to pursue careers in the science, technology, engineering, and math (STEM) disciplines through interactive technologies. The ultimate goal of these educational programs is to support the growth of a pool of qualified scientific and technical candidates for future careers at places like NASA. STEM education has been an area of concern in the United States; according to the results of the 2009 Program for International Student Assessment, 23 countries had higher average scores in mathematics literacy than the United States. On the science literacy scale, 18 countries had higher average scores. "This is part of a much bigger picture of trying to grow skilled graduates for places like NASA that will want that technical expertise," says Daniel Laughlin, the Learning Technologies project manager at Goddard Space Flight Center. "NASA is trying to increase the number of students going into those fields, and so are other government agencies."

  11. Virtual surgical planning in endoscopic skull base surgery.

    Science.gov (United States)

    Haerle, Stephan K; Daly, Michael J; Chan, Harley H L; Vescan, Allan; Kucharczyk, Walter; Irish, Jonathan C

    2013-12-01

    Skull base surgery (SBS) involves operative tasks in close proximity to critical structures in a complex three-dimensional (3D) anatomy. The aim was to investigate the value of virtual planning (VP) based on preoperative magnetic resonance imaging (MRI) for surgical planning in SBS and to compare the effects of virtual planning with 3D contours between the expert and the surgeon in training. Retrospective analysis. Twelve patients with manually segmented anatomical structures based on preoperative MRI were evaluated by eight surgeons in a randomized order using a validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Multivariate analysis revealed significant reduction of workload when using VP (PNASA-TLX differences (P.05). Preoperative anatomical segmentation with virtual surgical planning using contours in endoscopic SBS significantly reduces the workload for the expert and the surgeon in training. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  12. CSER 90-006, addendum 1: Criticality safety control for source term reduction project in the scrubber glovebox of Building 232-Z. Revision 1

    International Nuclear Information System (INIS)

    Hess, A.L.

    1995-01-01

    This Criticality Safety Evaluation Report addendum extends the coverage of the original CSER (90-006) about dismantling the ductwork in 232-Z to include cleanout of the Scrubber Glovebox, with an estimated residual Pu holdup of less than 200 grams. For conservatism and containment considerations, the provisions about waste packaging and water exclusion from the original work are retained, even though it is not credible for the Scrubber Pu content to be made critical with water added (NDA gives about 1/3 a minimum critical mass)

  13. Evolving Storage and Cyber Infrastructure at the NASA Center for Climate Simulation

    Science.gov (United States)

    Salmon, Ellen; Duffy, Daniel; Spear, Carrie; Sinno, Scott; Vaughan, Garrison; Bowen, Michael

    2018-01-01

    This talk will describe recent developments at the NASA Center for Climate Simulation, which is funded by NASAs Science Mission Directorate, and supports the specialized data storage and computational needs of weather, ocean, and climate researchers, as well as astrophysicists, heliophysicists, and planetary scientists. To meet requirements for higher-resolution, higher-fidelity simulations, the NCCS augments its High Performance Computing (HPC) and storage retrieval environment. As the petabytes of model and observational data grow, the NCCS is broadening data services offerings and deploying and expanding virtualization resources for high performance analytics.

  14. Engaging Students, Teachers, and the Public with NASA Astromaterials Research and Exploration Science (ARES) Assets

    Science.gov (United States)

    Graff, P. V.; Foxworth, S.; Kascak, A.; Luckey, M. K.; Mcinturff, B.; Runco, S.; Willis, K. J.

    2016-01-01

    Engaging students, teachers, and the public with NASA Astromaterials Research and Exploration Science (ARES) assets, including Science, Technology, Engineering and Mathematics (STEM) experts and NASA curation astromaterial samples, provides an extraordinary opportunity to connect citizens with authentic aspects unique to our nation's space program. Effective engagement can occur through both virtual connections such as webcasts and in-person connections at educator workshops and public outreach events. Access to NASA ARES assets combined with adaptable resources and techniques that engage and promote scientific thinking helps translate the science and research being facilitated through NASA exploration, elicits a curiosity that aims to carry over even after a given engagement, and prepares our next generation of scientific explorers.

  15. Virtually teaching virtual leadership

    DEFF Research Database (Denmark)

    Henriksen, Thomas Duus; Nielsen, Rikke Kristine; Børgesen, Kenneth

    2017-01-01

    This paper seeks to investigate the challenges to virtual collaboration and leadership on basis of findings from a virtual course on collaboration and leadership. The course used for this experiment was designed as a practical approach, which allowed participants to experience curriculum phenomena....... This experimental course provided insights into the challenges involved in virtual processes, and those experiences where used for addressing the challenges that virtual leadership is confronted with. Emphasis was placed on the reduction of undesired virtual distance and its consequences through affinity building....... We found that student scepticism appeared when a breakdown resulted in increasing virtual distance, and raises questions on how leaders might translate or upgrade their understandings of leadership to handling such increased distance through affinity building....

  16. NASA Operation IceBridge Flies Into the Classroom!

    Science.gov (United States)

    Kane, M.

    2017-12-01

    Field research opportunities for educators is leveraged as an invaluable tool to increase public engagement in climate research and the geosciences. We investigate the influence of educator's authentic fieldwork by highlighting the post-field impacts of a PolarTREC Teacher who participated in two campaigns, including NASA Operation IceBridge campaign over Antarctica in 2016. NASA's Operation IceBridge has hosted PolarTREC teachers since 2012, welcoming five teachers aboard multiple flights over the Arctic and one over Antarctica. The continuity of teacher inclusion in Operation IceBridge campaigns has facilitated a platform for collaborative curriculum development and revision, integration of National Snow and Ice Data Center (NSIDC) data into multiple classrooms, and given us a means whereby students can interact with science team members. I present impacts to my teaching and classrooms as I grapple with "Big Data" to allow students to work directly with lidar and radar data, I examine public outreach impacts through analytics from virtual networking tools including social media, NASA's Mission Tools Suite for Education, and field blog interactions.

  17. SPASE, Metadata, and the Heliophysics Virtual Observatories

    Science.gov (United States)

    Thieman, James; King, Todd; Roberts, Aaron

    2010-01-01

    To provide data search and access capability in the field of Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) a number of Virtual Observatories (VO) have been established both via direct funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Virtual Observatories in the Heliophysics community, 9 of them funded by NASA. The problem is that different metadata and data search approaches are used by these VO's and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's. The SPASE Data Model has been developed through the common efforts of the Heliophysics Data and Model Consortium (HDMC) representatives over a number of years. We currently have released Version 2.1 of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development.

  18. Virtualizing Resources for the Application Services and Framework Team

    Science.gov (United States)

    Varner, Justin T.; Crawford, Linda K.

    2010-01-01

    Virtualization is an emerging technology that will undoubtedly have a major impact on the future of Information Technology. It allows for the centralization of resources in an enterprise system without the need to make any changes to the host operating system, file system, or registry. In turn, this significantly reduces cost and administration, and provides a much greater level of security, compatibility, and efficiency. This experiment examined the practicality, methodology, challenges, and benefits of implementing the technology for the Launch Control System (LCS), and more specifically the Application Services (AS) group of the National Aeronautics and Space Administration (NASA) at the Kennedy Space Center (KSC). In order to carry out this experiment, I used several tools from the virtualization company known as VMWare; these programs included VMWare ThinApp, VMWare Workstation, and VMWare ACE. Used in conjunction, these utilities provided the engine necessary to virtualize and deploy applications in a desktop environment on any Windows platform available. The results clearly show that virtualization is a viable technology that can, when implemented properly, dramatically cut costs, enhance stability and security, and provide easier management for administrators.

  19. Capabilities of the NASA/IPAC extragalactic database in the era of a global virtual observatory

    Science.gov (United States)

    Mazzarella, Joseph M.; Madore, Barry F.; Helou, George

    2001-11-01

    We review the capabilities of the NASA/IPAC Extragalactic Database (NED, http://ned.ipac.caltech.edu) for information retrieval and knowledge discovery in the context of a globally distributed virtual observatory. Since it's inception in 1990, NED has provided astronomers world-wide with the results of a systematic cross-correlation of catalogs covering all wavelengths, along with thousands of extragalactic observations culled from published journal articles. NED is continuously being expanded and revised to include new catalogs and published observations, each undergoing a process of cross-identification to capture the current state of knowledge about extragalactic sources in a panchromatic fashion. In addition to assimilating data from the literature, the team in incrementally folding in millions of observations from new large-scale sky surveys such as 2MASS, NVSS, APM, and SDSS. At the time of writing the system contains over 3.3 million unique objects with 4.2 million cross-identifications. We summarize the recent evolution of NED from its initial emphasis on object name-, position-, and literature-based queries into a research environment that also assists statistical data exploration and discovery using large samples of objects. Newer capabilities enable intelligent Web mining of entries in geographically distributed astronomical archives that are indexed by object names and positions in NED, sample building using constraints on redshifts, object types and other parameters, as well as image and spectral archives for targeted or serendipitous discoveries. A pilot study demonstrates how NED is being used in conjunction with linked survey archives to characterize the properties of galaxy classes to form a training set for machine learning algorithms; an initial goal is production of statistical likelihoods that newly discovered sources belong to known classes, represent statistical outliers, or candidates for fundamentally new types of objects. Challenges and

  20. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  1. In situ remediation of plutonium from glovebox exhaust ducts at the Department of Energy's Rocky Flats Plant

    International Nuclear Information System (INIS)

    Dugdale, J.S.; Humiston, T.J.; Omer, G.E.

    1993-01-01

    Plutonium and other miscellaneous hold-up materials have been accumulating in the glovebox exhaust ducts at the Rocky Flats Plant over the 40 years of weapons production at the site. The Duct Remediation Project was undertaken to assess the safety impacts of this material, and to remove it from the ductwork. The project necessitated the development of specialized tools, equipment and methods to remediate the material from continuously operating ventilation systems. Special engineered access locations were also required to provide access to the ductwork, and to ensure that safety and system operability were not degraded as a result of the remediation efforts. Operations personnel underwent significant training and development, and became an important asset to the success of the project. In total, the project succeeded in removing over 40 kilograms of plutonium-bearing material from one of the major weapons production buildings at the plant

  2. The art and science of data curation: Lessons learned from constructing a virtual collection

    Science.gov (United States)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick

    2018-03-01

    A digital, or virtual, collection is a value added service developed by libraries that curates information and resources around a topic, theme or organization. Adoption of the virtual collection concept as an Earth science data service improves the discoverability, accessibility and usability of data both within individual data centers but also across data centers and disciplines. In this paper, we introduce a methodology for systematically and rigorously curating Earth science data and information into a cohesive virtual collection. This methodology builds on the geocuration model of searching, selecting and synthesizing Earth science data, metadata and other information into a single and useful collection. We present our experiences curating a virtual collection for one of NASA's twelve Distributed Active Archive Centers (DAACs), the Global Hydrology Resource Center (GHRC), and describe lessons learned as a result of this curation effort. We also provide recommendations and best practices for data centers and data providers who wish to curate virtual collections for the Earth sciences.

  3. Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG

    Science.gov (United States)

    Jordan, Lee

    2016-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of direct current power via a versatile supply interface (120, 28, plus or minus 12, and 5 volts direct current), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 27,000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, biological studies and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space Flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the MSG facility

  4. An Application-Based Performance Evaluation of NASAs Nebula Cloud Computing Platform

    Science.gov (United States)

    Saini, Subhash; Heistand, Steve; Jin, Haoqiang; Chang, Johnny; Hood, Robert T.; Mehrotra, Piyush; Biswas, Rupak

    2012-01-01

    The high performance computing (HPC) community has shown tremendous interest in exploring cloud computing as it promises high potential. In this paper, we examine the feasibility, performance, and scalability of production quality scientific and engineering applications of interest to NASA on NASA's cloud computing platform, called Nebula, hosted at Ames Research Center. This work represents the comprehensive evaluation of Nebula using NUTTCP, HPCC, NPB, I/O, and MPI function benchmarks as well as four applications representative of the NASA HPC workload. Specifically, we compare Nebula performance on some of these benchmarks and applications to that of NASA s Pleiades supercomputer, a traditional HPC system. We also investigate the impact of virtIO and jumbo frames on interconnect performance. Overall results indicate that on Nebula (i) virtIO and jumbo frames improve network bandwidth by a factor of 5x, (ii) there is a significant virtualization layer overhead of about 10% to 25%, (iii) write performance is lower by a factor of 25x, (iv) latency for short MPI messages is very high, and (v) overall performance is 15% to 48% lower than that on Pleiades for NASA HPC applications. We also comment on the usability of the cloud platform.

  5. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    Science.gov (United States)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  6. NASA World Wind: A New Mission

    Science.gov (United States)

    Hogan, P.; Gaskins, T.; Bailey, J. E.

    2008-12-01

    Virtual Globes are well into their first generation, providing increasingly rich and beautiful visualization of more types and quantities of information. However, they are still mostly single and proprietary programs, akin to a web browser whose content and functionality are controlled and constrained largely by the browser's manufacturer. Today Google and Microsoft determine what we can and cannot see and do in these programs. NASA World Wind started out in nearly the same mode, a single program with limited functionality and information content. But as the possibilities of virtual globes became more apparent, we found that while enabling a new class of information visualization, we were also getting in the way. Many users want to provide World Wind functionality and information in their programs, not ours. They want it in their web pages. They want to include their own features. They told us that only with this kind of flexibility, could their objectives and the potential of the technology be truly realized. World Wind therefore changed its mission: from providing a single information browser to enabling a whole class of 3D geographic applications. Instead of creating one program, we create components to be used in any number of programs. World Wind is NASA open source software. With the source code being fully visible, anyone can readily use it and freely extend it to serve any use. Imagery and other information provided by the World Wind servers is also free and unencumbered, including the server technology to deliver geospatial data. World Wind developers can therefore provide exclusive and custom solutions based on user needs.

  7. Virtual goods recommendations in virtual worlds.

    Science.gov (United States)

    Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren

    2015-01-01

    Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods.

  8. The National Virtual Observatory Science Definintion Team: Report and Status

    Science.gov (United States)

    Djorgovski, S. G.; NVO SDT Team

    2002-05-01

    Astronomy has become an enormously data-rich science, with numerous multi-Terabyte sky surveys and archives over the full range of wavelengths, and Petabyte-scale data sets already on the horizon. The amount of the available information is growing exponentially, largely driven by the progress in detector and information technology, and the quality and complexity of the data are unprecedented. This great quantitative advance will result in qualitative changes in the way astronomy is done. The Virtual Observatory concept is the astronomy community's organized response to the challenges posed by efficient handling and scientific exploration of new, massive data sets. The NAS Decadal Survey, Astronomy and Astrophysics in the New Millennium, recommends as the first priority in the ``small'' projects category creation of the National Virtual Observatory (NVO). In response to this, the NSF and NASA formed in June 2001 the NVO Science Definition Team (SDT), with a mandate to: (1) Define and formulate a joint NASA/NSF initiative to pursue the NVO goals; (2) Solicit input from the U.S. astronomy community, and incorporate it in the NVO definition documents and recommendations for further actions; and (3) Serve as liaison to broader space science, computer science, and statistics communities for the NVO initiative, and as liaison with the similar efforts in Europe, looking forward towards a truly Global Virtual Observatory. The Team has delivered its report to the agencies and made it publicly available on its website (http://nvosdt.org), where many other relevant links can be found. We will summarize the report, its conclusions, and recommendations.

  9. Virtual marketing in virtual enterprises

    OpenAIRE

    Ale Ebrahim, Nader; Fattahi, Hamaid Ali; Golnam, Arash

    2008-01-01

    Virtualization caused tremendous evolution in the economics of marketing channels, patterns of physical distribution and the structure of distributors and developed a new concept that is known as virtual marketing (VM). VM combines the powerful technologies of interactive marketing and virtual reality. Virtual enterprise (VE) refers to an organization not having a clear physical locus. In other words, VE is an organization distributed geographically and whose work is coordinated through e...

  10. Solar System Exploration Research Virtual Institute: Year Three Annual Report 2016

    Science.gov (United States)

    Pendleton, Yvonne; Schmidt, Greg; Kring, David; Horanyi, Mihaly; Heldmann, Jennifer; Glotch, Timothy; Rivkin, Andy; Farrell, William; Pieters, Carle; Bottke, William; hide

    2016-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) is pleased to present the 2016 Annual Report. Each year brings new scientific discoveries, technological breakthroughs, and collaborations. The integration of basic research and development, industry and academic partnerships, plus the leveraging of existing technologies, has further opened a scientific window into human exploration. SSERVI sponsorship by the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD) continues to enable the exchange of insights between the human exploration and space science communities, paving a clearer path for future space exploration. SSERVI provides a unique environment for scientists and engineers to interact within multidisciplinary research teams. As a virtual institute, the best teaming arrangements can be made irrespective of the geographical location of individuals or laboratory facilities. The interdisciplinary science that ensues from virtual and in-person interactions, both within the teams and across team lines, provides answers to questions that many times cannot be foreseen. Much of this research would not be accomplished except for the catalyzing, collaborative environment enabled by SSERVI. The SSERVI Central Office, located at NASA Ames Research Center in Silicon Valley, California, provides the leadership, guidance and technical support that steers the virtual institute. At the start of 2016, our institute had nine U.S. teams, each mid-way through their five-year funding cycle, plus nine international partnerships. However, by the end of the year we were well into the selection of four new domestic teams, selected through NASA's Cooperative Agreement Notice (CAN) process, and a new international partnership. Understanding that human and robotic exploration is most successful as an international endeavor, international partnerships collaborate with SSERVI domestic teams on a no-exchange of funds basis

  11. Dismantling of a furnace and gloveboxes of a U{sub 3}O{sub 8} with 20% enrichment production line; Desmantelamiento de un horno y cajas de guantes de una linea de produccion de U{sub 3}O{sub 8} enriquecido al 20%

    Energy Technology Data Exchange (ETDEWEB)

    Yorio, Daniel; Cinat, Enrique; Cincotta, Daniel; Fernandez, Carlos A; Bruno, Hernan R; Camacho, Esteban F; Boero, Norma [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Combustibles Nucleares

    1999-07-01

    In the Uranium Powder Manufacturing Plant at CAC, U{sub 3}O{sub 8} with 20% enrichment is manufactured for fuel plates to be used in test reactors. This plant is in full operation since 1986, producing uranium oxide for Peru, Algeria, Iran, Egypt and the RA-3-CAE reactors. Some of the equipment of the Plant have finished their life time and one of the furnaces of the processing line had to be replaced. This work implied the dismantling not only of the furnace, but also of the gloveboxes connected to the furnace and the dismantling of the extraction lines and air injection of the gloveboxes. The work had to be performed with the necessary care in order to minimize risks and effects on personnel, installations and environment involved. (author)

  12. Virtual Presenters: Towards Interactive Virtual Presentations

    NARCIS (Netherlands)

    Nijholt, Antinus; Cappellini, V.; Hemsley, J.

    2005-01-01

    We discuss having virtual presenters in virtual environments that present information to visitors of these environments. Some current research is surveyed and we will look in particular to our research in the context of a virtual meeting room where a virtual presenter uses speech, gestures, pointing

  13. Virtual Worlds for Virtual Organizing

    Science.gov (United States)

    Rhoten, Diana; Lutters, Wayne

    The members and resources of a virtual organization are dispersed across time and space, yet they function as a coherent entity through the use of technologies, networks, and alliances. As virtual organizations proliferate and become increasingly important in society, many may exploit the technical architecture s of virtual worlds, which are the confluence of computer-mediated communication, telepresence, and virtual reality originally created for gaming. A brief socio-technical history describes their early origins and the waves of progress followed by stasis that brought us to the current period of renewed enthusiasm. Examination of contemporary examples demonstrates how three genres of virtual worlds have enabled new arenas for virtual organizing: developer-defined closed worlds, user-modifiable quasi-open worlds, and user-generated open worlds. Among expected future trends are an increase in collaboration born virtually rather than imported from existing organizations, a tension between high-fidelity recreations of the physical world and hyper-stylized imaginations of fantasy worlds, and the growth of specialized worlds optimized for particular sectors, companies, or cultures.

  14. Astronaut Prepares for Mission With Virtual Reality Hardware

    Science.gov (United States)

    2001-01-01

    Astronaut John M. Grunsfeld, STS-109 payload commander, uses virtual reality hardware at Johnson Space Center to rehearse some of his duties prior to the STS-109 mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. This technology allows NASA astronauts to practice International Space Station work missions in advance. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

  15. VERSE - Virtual Equivalent Real-time Simulation

    Science.gov (United States)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  16. Applying Spatial Audio to Human Interfaces: 25 Years of NASA Experience

    Science.gov (United States)

    Begault, Durand R.; Wenzel, Elizabeth M.; Godfrey, Martine; Miller, Joel D.; Anderson, Mark R.

    2010-01-01

    From the perspective of human factors engineering, the inclusion of spatial audio within a human-machine interface is advantageous from several perspectives. Demonstrated benefits include the ability to monitor multiple streams of speech and non-speech warning tones using a cocktail party advantage, and for aurally-guided visual search. Other potential benefits include the spatial coordination and interaction of multimodal events, and evaluation of new communication technologies and alerting systems using virtual simulation. Many of these technologies were developed at NASA Ames Research Center, beginning in 1985. This paper reviews examples and describes the advantages of spatial sound in NASA-related technologies, including space operations, aeronautics, and search and rescue. The work has involved hardware and software development as well as basic and applied research.

  17. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  18. The Living Universe: NASA and the Development of Astrobiology

    Science.gov (United States)

    Dick, Steven J.; Strick, James E.

    2004-01-01

    In the opening weeks of 1998 a news article in the British journal Nature reported that NASA was about to enter biology in a big way. A "virtual" Astrobiology Institute was gearing up for business, and NASA administrator Dan Goldin told his external advisory council that he would like to see spending on the new institute eventually reach $100 million per year. "You just wait for the screaming from the physical scientists (when that happens)," Goldin was quoted as saying. Nevertheless, by the time of the second Astrobiology Science Conference in 2002, attended by seven hundred scientists from many disciplines, NASA spending on astrobiology had reached nearly half that amount and was growing at a steady pace. Under NASA leadership numerous institutions around the world applied the latest scientific techniques in the service of astrobiology's ambitious goal: the study of what NASA's 1996 Strategic Plan termed the "living universe." This goal embraced nothing less than an understanding of the origin, history, and distribution of life in the universe, including Earth. Astrobiology, conceived as a broad interdisciplinary research program, held the prospect of being the science for the twenty-first century which would unlock the secrets to some of the great questions of humanity. It is no surprise that these age-old questions should continue into the twenty-first century. But that the effort should be spearheaded by NASA was not at all obvious to those - inside and outside the agency - who thought NASA's mission was human spaceflight, rather than science, especially biological science. NASA had, in fact, been involved for four decades in "exobiology," a field that embraced many of the same questions but which had stagnated after the 1976 Viking missions to Mars. In this volume we tell the colorful story of the rise of the discipline of exobiology, how and why it morphed into astrobiology at the end of the twentieth century, and why NASA was the engine for both the

  19. Application of new technologies in the virtual library: Seminars in Turkey, Portugal, and Spain

    Science.gov (United States)

    Hunter, Judy F.; Cotter, Gladys A.

    1994-01-01

    This paper focuses on the technologies that are available today to support the concept of a virtual library. The concept of a 'virtual library' or a 'library without walls' is meant to convey the idea that information in any format should be available to the end-user from the desktop as if it were located on the local workstation. Discussed here are the background, trends, technology enablers, end-user requirements, and the NASA Access Mechanism (NAM) system, one example of how it is possible to apply existing technologies to the client server architecture to logically centralize geographically distributed applications and information.

  20. Virtual Exercise Training Software System

    Science.gov (United States)

    Vu, L.; Kim, H.; Benson, E.; Amonette, W. E.; Barrera, J.; Perera, J.; Rajulu, S.; Hanson, A.

    2018-01-01

    The purpose of this study was to develop and evaluate a virtual exercise training software system (VETSS) capable of providing real-time instruction and exercise feedback during exploration missions. A resistive exercise instructional system was developed using a Microsoft Kinect depth-camera device, which provides markerless 3-D whole-body motion capture at a small form factor and minimal setup effort. It was hypothesized that subjects using the newly developed instructional software tool would perform the deadlift exercise with more optimal kinematics and consistent technique than those without the instructional software. Following a comprehensive evaluation in the laboratory, the system was deployed for testing and refinement in the NASA Extreme Environment Mission Operations (NEEMO) analog.

  1. Sensorial Virtualization: Coupling Gaming and Virtual Environment

    NARCIS (Netherlands)

    Garbaya, S.; Miraoui, C.; Wendrich, Robert E.; Lim, T.; Stanescu, I.A.; Hauge, J.B.

    2014-01-01

    Virtual reality and virtualization are currently used to design complex systems and demonstrate that they represent the functionalities of real systems. However, the design refinement of the virtual environment (VE) and distributed virtual environment (DVE) are still time consuming and costly, as it

  2. Virtual Class Support at the Virtual Machine Level

    DEFF Research Database (Denmark)

    Nielsen, Anders Bach; Ernst, Erik

    2009-01-01

    This paper describes how virtual classes can be supported in a virtual machine.  Main-stream virtual machines such as the Java Virtual Machine and the .NET platform dominate the world today, and many languages are being executed on these virtual machines even though their embodied design choices...... conflict with the design choices of the virtual machine.  For instance, there is a non-trivial mismatch between the main-stream virtual machines mentioned above and dynamically typed languages.  One language concept that creates an even greater mismatch is virtual classes, in particular because fully...... general support for virtual classes requires generation of new classes at run-time by mixin composition.  Languages like CaesarJ and ObjectTeams can express virtual classes restricted to the subset that does not require run-time generation of classes, because of the restrictions imposed by the Java...

  3. Virtual Array Receiver Options for 64-ary Pulse Position Modulation (PPM)

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-01-12

    NASA is developing technology for 64 64-ary PPM using relatively large PPM time slots (10 ns) an and relatively simple d electronic electronic-based receiver logic. In this paper we describe photonic photonics-based receiver options for the case of much higher data rates and inherently shorter decision times. The receivers take the form of virtual ( array or quadrant) arrays with associated comparison tests. Previously we explored this concept for 4-ary and 16-ary PPM at data rates of up to 10 Gb/s. The lessons learned are applied to the case of 64 64-ary PPM at 1.25 Gb/s s. Various receiver designs are compare, and t the optimum design, based on virtual array he arrays, is s, evaluated using numerical simulations.

  4. NASA Game Changing Development Program Manufacturing Innovation Project

    Science.gov (United States)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  5. NASA World Wind, Open Source 4D Geospatial Visualization Platform: *.NET & Java*

    Science.gov (United States)

    Hogan, P.; Coughlan, J.

    2006-12-01

    NASA World Wind has only one goal, to provide the maximum opportunity for geospatial information to be experienced, be it education, science, research, business, or government. The benefits to understanding for information delivered in the context of its 4D virtual reality are extraordinary. The NASA World Wind visualization platform is open source and therefore lends itself well to being extended to service *any* requirements, be they proprietary and commercial or simply available. Data accessibility is highly optimized using standard formats including internationally certified open standards (W*S). Although proprietary applications can be built based on World Wind, and proprietary data delivered that leverage World Wind, there is nothing proprietary about the visualization platform itself or the multiple planetary data sets readily available, including global animations of live weather. NASA World Wind is being used by NASA research teams as well as being a formal part of high school and university curriculum. The National Guard uses World Wind for emergency response activities and State governments have incorporated high resolution imagery for GIS management as well as for their cross-agency emergency response activities. The U.S. federal government uses NASA World Wind for a myriad of GIS and security-related issues (NSA, NGA, DOE, FAA, etc.).

  6. A virtual reality browser for Space Station models

    Science.gov (United States)

    Goldsby, Michael; Pandya, Abhilash; Aldridge, Ann; Maida, James

    1993-01-01

    The Graphics Analysis Facility at NASA/JSC has created a visualization and learning tool by merging its database of detailed geometric models with a virtual reality system. The system allows an interactive walk-through of models of the Space Station and other structures, providing detailed realistic stereo images. The user can activate audio messages describing the function and connectivity of selected components within his field of view. This paper presents the issues and trade-offs involved in the implementation of the VR system and discusses its suitability for its intended purposes.

  7. Microsoft Virtualization Master Microsoft Server, Desktop, Application, and Presentation Virtualization

    CERN Document Server

    Olzak, Thomas; Boomer, Jason; Keefer, Robert M

    2010-01-01

    Microsoft Virtualization helps you understand and implement the latest virtualization strategies available with Microsoft products. This book focuses on: Server Virtualization, Desktop Virtualization, Application Virtualization, and Presentation Virtualization. Whether you are managing Hyper-V, implementing desktop virtualization, or even migrating virtual machines, this book is packed with coverage on all aspects of these processes. Written by a talented team of Microsoft MVPs, Microsoft Virtualization is the leading resource for a full installation, migration, or integration of virtual syste

  8. Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses.

    Science.gov (United States)

    Laufersky, Geoffry; Bradley, Siobhan; Frécaut, Elian; Lein, Matthias; Nann, Thomas

    2018-05-10

    The synthesis of colloidal indium phosphide quantum dots (InP QDs) has always been plagued by difficulties arising from limited P3- sources. Being effectively restricted to the highly pyrophoric tris(trimethylsilyl) phosphine (TMS3P) creates complications for the average chemist and presents a significant risk for industrially scaled reactions. The adaptation of tris(dialkylamino) phosphines for these syntheses has garnered attention, as these new phosphines are much safer and can generate nanoparticles with competitive photoluminescence properties to those from (TMS)3P routes. Until now, the reaction mechanics of this precursor were elusive due to many experimental optimizations, such as the inclusion of a high concentration of zinc salts, being atypical of previous InP syntheses. Herein, we utilize density functional theory calculations to outline a logical reaction mechanism. The aminophosphine precursor is found to require activation by a zinc halide before undergoing a disproportionation reaction to self-reduce this P(iii) material to a P(-iii) source. We use this understanding to adapt this precursor for a two-pot nanoparticle synthesis in a noncoordinating solvent outside of glovebox conditions. This allowed us to generate spherical InP/ZnS nanoparticles possessing fluorescence quantum yields >55% and lifetimes as fast as 48 ns, with tunable emission according to varying zinc halide acidity. The development of high quality and efficient InP QDs with this safer aminophosphine in simple Schlenk environments will enable a broader range of researchers to synthesize these nontoxic materials for a variety of high-value applications.

  9. Novel Problem Solving - The NASA Solution Mechanism Guide

    Science.gov (United States)

    Keeton, Kathryn E.; Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-01-01

    Over the past five years, the Human Health and Performance (HH&P) Directorate at the NASA Johnson Space Center (JSC) has conducted a number of pilot and ongoing projects in collaboration and open innovation. These projects involved the use of novel open innovation competitions that sought solutions from "the crowd", non-traditional problem solvers. The projects expanded to include virtual collaboration centers such as the NASA Human Health and Performance Center (NHHPC) and more recently a collaborative research project between NASA and the National Science Foundation (NSF). These novel problem-solving tools produced effective results and the HH&P wanted to capture the knowledge from these new tools, to teach the results to the directorate, and to implement new project management tools and coursework. The need to capture and teach the results of these novel problem solving tools, the HH&P decided to create a web-based tool to capture best practices and case studies, to teach novice users how to use new problem solving tools and to change project management training/. This web-based tool was developed with a small, multi-disciplinary group and named the Solution Mechanism Guide (SMG). An alpha version was developed that was tested against several sessions of user groups to get feedback on the SMG and determine a future course for development. The feedback was very positive and the HH&P decided to move to the beta-phase of development. To develop the web-based tool, the HH&P utilized the NASA Tournament Lab (NTL) to develop the software with TopCoder under an existing contract. In this way, the HH&P is using one new tool (the NTL and TopCoder) to develop the next generation tool, the SMG. The beta-phase of the SMG is planed for release in the spring of 2014 and results of the beta-phase testing will be available for the IAC meeting in September. The SMG is intended to disrupt the way problem solvers and project managers approach problem solving and to increase the

  10. Virtual Library: An essential component of virtual education

    Directory of Open Access Journals (Sweden)

    M zarghani

    2015-06-01

    Full Text Available Abstract Introduction: Library is one of the essential elements of universities which provide some important educational needs of students. Virtual education can not be exempted and virtual libraries are important support for virtual training programs. The purpose of this study is to evaluate the viewpoint of administrators and students in virtual education centers about the virtual library, its role and resources. Methods: This study was a descriptive survey. The research instrument was a researcher made questionnaire that its validity and reliability was confirmed. The study population consisted of 19 virtual training centers in Tehran city. Out of 19 centers, simple randomized sampling was done in five Centers. The sample size was 360 students. Data collection was conducted online and descriptive statistics using SPSS 18 and Excel software were used. Results: The results showed that viewpoints of administrators and students about the mission and services of virtual libraries in some cases were similar and in some cases were different. One of the administrators’ reasons for setting up a virtual learning system was lifelong learning, and lack of knowledge about virtual libraries was the reason for inadequate use of virtual libraries. The best format of virtual library from the administrators’ and students’ viewpoint, was portal document format (PDF. Conclusion: One of the most important function of a virtual library, is lifelong learning and empowering users to provide information and educational needs. The main reason for not setting up a virtual library is t lack of knowledge about it.

  11. Virtual Reality and the Virtual Library.

    Science.gov (United States)

    Oppenheim, Charles

    1993-01-01

    Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…

  12. From virtual environment to virtual community

    NARCIS (Netherlands)

    Nijholt, Antinus; Terano, Takao; Nishida, Toyoaki; Namatame, Akira; Tsumoto, Syusaku; Ohsawa, Yukido; Washio, Takashi

    2001-01-01

    We discuss a virtual reality theater environment and its transition to a virtual community by adding domain agents and by allowing multiple users to visit this environment. The environment has been built using VRML (Virtual Reality Modeling Language). We discuss how our ideas about this environment

  13. Commercialization of JPL Virtual Reality calibration and redundant manipulator control technologies

    Science.gov (United States)

    Kim, Won S.; Seraji, Homayoun; Fiorini, Paolo; Brown, Robert; Christensen, Brian; Beale, Chris; Karlen, James; Eismann, Paul

    1994-01-01

    Within NASA's recent thrust for industrial collaboration, JPL (Jet Propulsion Laboratory) has recently established two technology cooperation agreements in the robotics area: one on virtual reality (VR) calibration with Deneb Robotics, Inc., and the other on redundant manipulator control with Robotics Research Corporation (RRC). These technology transfer cooperation tasks will enable both Deneb and RRC to commercialize enhanced versions of their products that will greatly benefit both space and terrestrial telerobotic applications.

  14. Virtual Team Governance: Addressing the Governance Mechanisms and Virtual Team Performance

    Science.gov (United States)

    Zhan, Yihong; Bai, Yu; Liu, Ziheng

    As technology has improved and collaborative software has been developed, virtual teams with geographically dispersed members spread across diverse physical locations have become increasingly prominent. Virtual team is supported by advancing communication technologies, which makes virtual teams able to largely transcend time and space. Virtual teams have changed the corporate landscape, which are more complex and dynamic than traditional teams since the members of virtual teams are spread on diverse geographical locations and their roles in the virtual team are different. Therefore, how to realize good governance of virtual team and arrive at good virtual team performance is becoming critical and challenging. Good virtual team governance is essential for a high-performance virtual team. This paper explores the performance and the governance mechanism of virtual team. It establishes a model to explain the relationship between the performance and the governance mechanisms in virtual teams. This paper is focusing on managing virtual teams. It aims to find the strategies to help business organizations to improve the performance of their virtual teams and arrive at the objectives of good virtual team management.

  15. Science Initiatives of the US Virtual Astronomical Observatory

    Science.gov (United States)

    Hanisch, R. J.

    2012-09-01

    The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (Fabbiano et al. 2011), we have focused on five science initiatives in the first two years of VAO operations: 1) scalable cross-comparisons between astronomical source catalogs, 2) dynamic spectral energy distribution construction, visualization, and model fitting, 3) integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, 4) integration of VO data discovery and access tools into the IRAF data analysis environment, and 5) a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  16. Science Initiatives of the US Virtual Astronomical Observatory

    Directory of Open Access Journals (Sweden)

    Hanisch Robert J.

    2012-09-01

    Full Text Available The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (advisory committee, we are focusing on five science initiatives in the first two years of VAO operations: (1 scalable cross-comparisons between astronomical source catalogs, (2 dynamic spectral energy distribution construction, visualization, and model fitting, (3 integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, (4 integration of VO data discovery and access tools into the IR AF data analysis environment, and (5 a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  17. An Onboard ISS Virtual Reality Trainer

    Science.gov (United States)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT

  18. Innovative application of virtual display technique in virtual museum

    Science.gov (United States)

    Zhang, Jiankang

    2017-09-01

    Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.

  19. Realistic Visualization of Virtual Views and Virtual Cinema

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    Realistic Virtual View Visualization is a new field of research which has received increasing attention in recent years. It is strictly related to the increased popularity of virtual reality and the spread of its applications, among which virtual photography and cinematography. The use of computer...... generated characters, "virtual actors", in the motion picture production increases every day. While the most known computer graphics techniques have largely been adopted successfully in nowadays fictions, it still remains very challenging to implement virtual actors which would resemble, visually, human...... beings. Interestingly, film directors have been looking at the recent progress achieved by the research community in the field of realistic visualization of virtual views, and they have successfully implemented state of the art research approaches in their productions. An innovative concept...

  20. Virtual Trondheim: A Virtual Environment for Tourism and Education

    OpenAIRE

    Jose, Dawn Alphonse

    2015-01-01

    The purpose of this study is to investigate whether educational activities in tourism can be supported by virtual reality technologies, using virtual world frameworks. Settings of virtual world of SecondLife and a recent Virtual Reality technology known as Oculus Rift were used in the thesis work with the city of Trondheim as the main context. Theoretical studies on Virtual Reality systems were conducted and data for the research were obtained through empirical studies condu...

  1. Expanding NASA's Land, Atmosphere Near real-time Capability for EOS

    Science.gov (United States)

    Davies, D.; Michael, K.; Masuoka, E.; Ye, G.; Schmaltz, J. E.; Harrison, S.; Ziskin, D.; Durbin, P. B.; Protack, S.; Rinsland, P. L.; Slayback, D. A.; Policelli, F. S.; Olsina, O.; Fu, G.; Ederer, G. A.; Ding, F.; Braun, J.; Gumley, L.; Prins, E. M.; Davidson, C. C.; Wong, M. M.

    2017-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) is a virtual system that provides near real-time EOS data and imagery to meet the needs of scientists and application users interested in monitoring a wide variety of natural and man-made phenomena in near real-time. Over the last year: near real-time products and imagery from MOPITT, MISR, OMPS and VIIRS (Land and Atmosphere) have been added; the Fire Information for Resource Management System (FIRMS) has been updated and LANCE has begun the process of integrating the Global NRT flood product. In addition, following the AMSU-A2 instrument anomaly in September 2016, AIRS-only products have replaced the NRT level 2 AIRS+AMSU products. This presentation provides a brief overview of LANCE, describes the new products that are recently available and contains a preview of what to expect in LANCE over the coming year. For more information visit: https://earthdata.nasa.gov/lance

  2. NASA World Wind, Open Source 4D Geospatial Visualization Platform: *.NET & Java* for EDUCATION

    Science.gov (United States)

    Hogan, P.; Kuehnel, F.

    2006-12-01

    NASA World Wind has only one goal, to provide the maximum opportunity for geospatial information to be experienced, be it education, science, research, business, or government. The benefits to understanding for information delivered in the context of its 4D virtual reality are extraordinary. The NASA World Wind visualization platform is open source and therefore lends itself well to being extended to service *any* requirements, be they proprietary and commercial or simply available. Data accessibility is highly optimized using standard formats including internationally certified open standards (W*S). Although proprietary applications can be built based on World Wind, and proprietary data delivered that leverage World Wind, there is nothing proprietary about the visualization platform itself or the multiple planetary data sets readily available, including global animations of live weather. NASA World Wind is being used by NASA research teams as well as being a formal part of high school and university curriculum. The National Guard uses World Wind for emergency response activities and State governments have incorporated high resolution imagery for GIS management as well as for their cross-agency emergency response activities. The U.S. federal government uses NASA World Wind for a myriad of GIS and security-related issues (NSA, NGA, DOE, FAA, etc.).

  3. Labview Interface Concepts Used in NASA Scientific Investigations and Virtual Instruments

    Science.gov (United States)

    Roth, Don J.; Parker, Bradford H.; Rapchun, David A.; Jones, Hollis H.; Cao, Wei

    2001-01-01

    This article provides an overview of several software control applications developed for NASA using LabVIEW. The applications covered here include (1) an Ultrasonic Measurement System for nondestructive evaluation of advanced structural materials, an Xray Spectral Mapping System for characterizing the quality and uniformity of developing photon detector materials, (2) a Life Testing System for these same materials, (3) and the instrument panel for an aircraft mounted Cloud Absorption Radiometer that measures the light scattered by clouds in multiple spectral bands. Many of the software interface concepts employed are explained. Panel layout and block diagram (code) strategies for each application are described. In particular, some of the more unique features of the applications' interfaces and source code are highlighted. This article assumes that the reader has a beginner-to-intermediate understanding of LabVIEW methods.

  4. Virtual Trackballs Revisited

    DEFF Research Database (Denmark)

    Henriksen, Knud; Sporring, Jon; Hornbæk, Kasper

    2004-01-01

    reviews and provides a mathematical foundation for virtual trackballs. The first, but still popular, virtual trackball was described by Chen et al. [CHECK END OF SENTENCE]. We show that the virtual trackball by Chen et al. does not rotate the object along the intended great circular arc on the virtual...... trackball and we give a correction. Another popular virtual trackball is Shoemake's quaternion implementation [CHECK END OF SENTENCE], which we show to be a special case of the virtual trackball by Chen et al.. Shoemake extends the scope of the virtual trackball to the full screen. Unfortunately, Shoemake......'s virtual trackball is inhomogeneous and discontinuous with consequences for usability. Finally, we review Bell's virtual trackball [CHECK END OF SENTENCE] and discuss studies of the usability of virtual trackballs....

  5. Personal Virtual Libraries

    Science.gov (United States)

    Pappas, Marjorie L.

    2004-01-01

    Virtual libraries are becoming more and more common. Most states have a virtual library. A growing number of public libraries have a virtual presence on the Web. Virtual libraries are a growing addition to school library media collections. The next logical step would be personal virtual libraries. A personal virtual library (PVL) is a collection…

  6. Wireless virtualization

    CERN Document Server

    Wen, Heming; Le-Ngoc, Tho

    2013-01-01

    This SpringerBriefs is an overview of the emerging field of wireless access and mobile network virtualization. It provides a clear and relevant picture of the current virtualization trends in wireless technologies by summarizing and comparing different architectures, techniques and technologies applicable to a future virtualized wireless network infrastructure. The readers are exposed to a short walkthrough of the future Internet initiative and network virtualization technologies in order to understand the potential role of wireless virtualization in the broader context of next-generation ubiq

  7. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    International Nuclear Information System (INIS)

    Teese, G.D.; Randall, W.J.

    1992-01-01

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended

  8. Implementation of dynamic cross-talk correction (DCTC) for MOX holdup assay measurements among multiple gloveboxes

    International Nuclear Information System (INIS)

    Nakamichi, Hideo; Nakamura, Hironobu; Mukai, Yasunobu; Kurita, Tsutomu; Beddingfield, David H.

    2012-01-01

    Plutonium holdup in gloveboxes (GBs) are measured by (passive neutron based NDA (HBAS) for the material control and accountancy (MC and A) at Plutonium Conversion Development Facility (PCDF). In the case that the GBs are installed close to one another, the cross-talk which means neutron double counting among GBs should be corrected properly. Though we used to use predetermined constants as the cross-talk correction, a new correction methodology for neutron cross-talk among the GBs with inventory changes is required for the improvement of MC and A. In order to address the issue of variable cross-talk contributions to holdup assay values, we applied a dynamic cross-talk correction (DCTC) method, based on the distributed source-term analysis approach, to obtain the actual doubles derived from the cross-talk between multiple GBs. As a result of introduction of DCTC for HBAS measurement, we could reduce source biases from the assay result by estimating the reliable doubles-counting derived from the cross-talk. Therefore, we could improve HBAS measurement uncertainty to a half of conventional system, and we are going to confirm the result. Since the DCTC methodology can be used to determine the cross-correlation among multiple inventories in small areas, it is expected that this methodology can be extended to the knowledge of safeguards by design. (author)

  9. FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research

    Science.gov (United States)

    Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.

  10. Virtual colonoscopy

    Science.gov (United States)

    Colonoscopy - virtual; CT colonography; Computed tomographic colonography; Colography - virtual ... Differences between virtual and conventional colonoscopy include: VC can view the colon from many different angles. This is not as easy ...

  11. Virtual Exploratories

    DEFF Research Database (Denmark)

    Jensen, Sisse Siggaard

    2006-01-01

    -systems, the paper introduces the designing strategy referred to as virtual exploratories. Some of the advanced virtual worlds may inspire the design of such provoking and challenging virtual exploratories, and especially the Massively Multi-User Online Role-Playing Games (MMORPGS). However, if we have to learn from...... the design and activity of the advanced virtual worlds and role-playing games, then the empirical research on the actors’ activity, while they are acting, is an important precondition to it. A step towards the conception of such a designing strategy for virtual exploratories is currently pursued....... [1] The research project: Actors and Avatars Communicating in Virtual Worlds – an Empirical Analysis of Actors’ Sense-making Strategies When Based on a Communication Theoretical Approach’ (2006-2007) is supported...

  12. Sensitivity-based virtual fields for the non-linear virtual fields method

    Science.gov (United States)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  13. Localized intraoperative virtual endoscopy (LIVE) for surgical guidance in 16 skull base patients.

    Science.gov (United States)

    Haerle, Stephan K; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian; Gentili, Fred; Zadeh, Gelareh; Kucharczyk, Walter; Irish, Jonathan C

    2015-01-01

    Previous preclinical studies of localized intraoperative virtual endoscopy-image-guided surgery (LIVE-IGS) for skull base surgery suggest a potential clinical benefit. The first aim was to evaluate the registration accuracy of virtual endoscopy based on high-resolution magnetic resonance imaging under clinical conditions. The second aim was to implement and assess real-time proximity alerts for critical structures during skull base drilling. Patients consecutively referred for sinus and skull base surgery were enrolled in this prospective case series. Five patients were used to check registration accuracy and feasibility with the subsequent 11 patients being treated under LIVE-IGS conditions with presentation to the operating surgeon (phase 2). Sixteen skull base patients were endoscopically operated on by using image-based navigation while LIVE-IGS was tested in a clinical setting. Workload was quantitatively assessed using the validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Real-time localization of the surgical drill was accurate to ~1 to 2 mm in all cases. The use of 3-mm proximity alert zones around the carotid arteries and optic nerve found regular clinical use, as the median minimum distance between the tracked drill and these structures was 1 mm (0.2-3.1 mm) and 0.6 mm (0.2-2.5 mm), respectively. No statistical differences were found in the NASA-TLX indicators for this experienced surgical cohort. Real-time proximity alerts with virtual endoscopic guidance was sufficiently accurate under clinical conditions. Further clinical evaluation is required to evaluate the potential surgical benefits, particularly for less experienced surgeons or for teaching purposes. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  14. On virtual displacement and virtual work in Lagrangian dynamics

    International Nuclear Information System (INIS)

    Ray, Subhankar; Shamanna, J

    2006-01-01

    The confusion and ambiguity encountered by students in understanding virtual displacement and virtual work is discussed in this paper. A definition of virtual displacement is presented that allows one to express them explicitly for holonomic (velocity independent), non-holonomic (velocity dependent), scleronomous (time independent) and rheonomous (time dependent) constraints. It is observed that for holonomic, scleronomous constraints, the virtual displacements are the displacements allowed by the constraints. However, this is not so for a general class of constraints. For simple physical systems, it is shown that the work done by the constraint forces on virtual displacements is zero. This motivates Lagrange's extension of d'Alembert's principle to a system of particles in constrained motion. However, a similar zero work principle does not hold for the allowed displacements. It is also demonstrated that d'Alembert's principle of zero virtual work is necessary for the solvability of a constrained mechanical problem. We identify this special class of constraints, physically realized and solvable, as the ideal constraints. The concept of virtual displacement and the principle of zero virtual work by constraint forces are central to both Lagrange's method of undetermined multipliers and Lagrange's equations in generalized coordinates

  15. Virtual Reality

    Science.gov (United States)

    1993-04-01

    until exhausted. SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete. UNCLASSIFIED " VIRTUAL REALITY JAMES F. DAILEY, LIEUTENANT COLONEL...US" This paper reviews the exciting field of virtual reality . The author describes the basic concepts of virtual reality and finds that its numerous...potential benefits to society could revolutionize everyday life. The various components that make up a virtual reality system are described in detail

  16. Framework for Virtual Cognitive Experiment in Virtual Geographic Environments

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2018-01-01

    Full Text Available Virtual Geographic Environment Cognition is the attempt to understand the human cognition of surface features, geographic processes, and human behaviour, as well as their relationships in the real world. From the perspective of human cognition behaviour analysis and simulation, previous work in Virtual Geographic Environments (VGEs has focused mostly on representing and simulating the real world to create an ‘interpretive’ virtual world and improve an individual’s active cognition. In terms of reactive cognition, building a user ‘evaluative’ environment in a complex virtual experiment is a necessary yet challenging task. This paper discusses the outlook of VGEs and proposes a framework for virtual cognitive experiments. The framework not only employs immersive virtual environment technology to create a realistic virtual world but also involves a responsive mechanism to record the user’s cognitive activities during the experiment. Based on the framework, this paper presents two potential implementation methods: first, training a deep learning model with several hundred thousand street view images scored by online volunteers, with further analysis of which visual factors produce a sense of safety for the individual, and second, creating an immersive virtual environment and Electroencephalogram (EEG-based experimental paradigm to both record and analyse the brain activity of a user and explore what type of virtual environment is more suitable and comfortable. Finally, we present some preliminary findings based on the first method.

  17. Use of the Remote Access Virtual Environment Network (RAVEN) for coordinated IVA-EVA astronaut training and evaluation.

    Science.gov (United States)

    Cater, J P; Huffman, S D

    1995-01-01

    This paper presents a unique virtual reality training and assessment tool developed under a NASA grant, "Research in Human Factors Aspects of Enhanced Virtual Environments for Extravehicular Activity (EVA) Training and Simulation." The Remote Access Virtual Environment Network (RAVEN) was created to train and evaluate the verbal, mental and physical coordination required between the intravehicular (IVA) astronaut operating the Remote Manipulator System (RMS) arm and the EVA astronaut standing in foot restraints on the end of the RMS. The RAVEN system currently allows the EVA astronaut to approach the Hubble Space Telescope (HST) under control of the IVA astronaut and grasp, remove, and replace the Wide Field Planetary Camera drawer from its location in the HST. Two viewpoints, one stereoscopic and one monoscopic, were created all linked by Ethernet, that provided the two trainees with the appropriate training environments.

  18. The Virtual Wave Observatory (VWO): A Portal to Heliophysics Wave Data

    Science.gov (United States)

    Fung, Shing F.

    2010-01-01

    The Virtual Wave Observatory (VWO) is one of the discipline-oriented virtual observatories that help form the nascent NASA Heliophysics Data environment to support heliophysics research. It focuses on supporting the searching and accessing of distributed heliophysics wave data and information that are available online. Since the occurrence of a natural wave phenomenon often depends on the underlying geophysical -- i.e., context -- conditions under which the waves are generated and propagate, and the observed wave characteristics can also depend on the location of observation, VWO will implement wave-data search-by-context conditions and location, in addition to searching by time and observing platforms (both space-based and ground-based). This paper describes the VWO goals, the basic design objectives, and the key VWO functionality to be expected. Members of the heliophysics community are invited to participate in VWO development in order to ensure its usefulness and success.

  19. Web Map Apps using NASA's Earth Observing Fleet

    Science.gov (United States)

    Boller, R.; Baynes, K.; Pressley, N.; Thompson, C.; Cechini, M.; Schmaltz, J.; Alarcon, C.; De Cesare, C.; Gunnoe, T.; Wong, M.; hide

    2016-01-01

    Through the miracle of open web mapping services for satellite imagery, a garden of new applications has sprouted to monitor the planet across a variety of domains. The Global Imagery Browse Services (GIBS) provide free and open access to full resolution imagery captured by NASAs Earth observing fleet. Spanning 15+ years and running through as recently as a few hours ago, GIBS aims to provide a general-purpose window into NASA's vast archive of the planet. While the vast nature of this archive can be daunting, many domain-specific applications have been built to meet the needs of their respective communities. This presentation will demonstrate a diverse set of these new applications which can take planetarium visitors into (virtual) orbit, guide fire resource managers to hotspots, help anglers find their next catch, illustrate global air quality patterns to local regulators, and even spur a friendly competition to find clouds which are shaped the most like cats. We hope this garden will continue to grow and will illustrate upcoming upgrades to GIBS which may open new pathways for development. data visualization, web services, open access

  20. Virtual Exploration of Earth's Evolution

    Science.gov (United States)

    Anbar, A. D.; Bruce, G.; Semken, S. C.; Summons, R. E.; Buxner, S.; Horodyskyj, L.; Kotrc, B.; Swann, J.; Klug Boonstra, S. L.; Oliver, C.

    2014-12-01

    Traditional introductory STEM courses often reinforce misconceptions because the large scale of many classes forces a structured, lecture-centric model of teaching that emphasizes delivery of facts rather than exploration, inquiry, and scientific reasoning. This problem is especially acute in teaching about the co-evolution of Earth and life, where classroom learning and textbook teaching are far removed from the immersive and affective aspects of field-based science, and where the challenges of taking large numbers of students into the field make it difficult to expose them to the complex context of the geologic record. We are exploring the potential of digital technologies and online delivery to address this challenge, using immersive and engaging virtual environments that are more like games than like lectures, grounded in active learning, and deliverable at scale via the internet. The goal is to invert the traditional lecture-centric paradigm by placing lectures at the periphery and inquiry-driven, integrative virtual investigations at the center, and to do so at scale. To this end, we are applying a technology platform we devised, supported by NASA and the NSF, that integrates a variety of digital media in a format that we call an immersive virtual field trip (iVFT). In iVFTs, students engage directly with virtual representations of real field sites, with which they interact non-linearly at a variety of scales via game-like exploration while guided by an adaptive tutoring system. This platform has already been used to develop pilot iVFTs useful in teaching anthropology, archeology, ecology, and geoscience. With support the Howard Hughes Medical Institute, we are now developing and evaluating a coherent suite of ~ 12 iVFTs that span the sweep of life's history on Earth, from the 3.8 Ga metasediments of West Greenland to ancient hominid sites in East Africa. These iVFTs will teach fundamental principles of geology and practices of scientific inquiry, and expose

  1. Medicine in long duration space exploration: the role of virtual reality and broad bandwidth telecommunications networks

    Science.gov (United States)

    Ross, M. D.

    2001-01-01

    Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies. c 2001. Elsevier Science Ltd. All rights reserved.

  2. Virtualization Security Combining Mandatory Access Control and Virtual Machine Introspection

    OpenAIRE

    Win, Thu Yein; Tianfield, Huaglory; Mair, Quentin

    2014-01-01

    Virtualization has become a target for attacks in cloud computing environments. Existing approaches to protecting the virtualization environment against the attacks are limited in protection scope and are with high overheads. This paper proposes a novel virtualization security solution which aims to provide comprehensive protection of the virtualization environment.

  3. NASA Center for Climate Simulation (NCCS) Advanced Technology AT5 Virtualized Infiniband Report

    Science.gov (United States)

    Thompson, John H.; Bledsoe, Benjamin C.; Wagner, Mark; Shakshober, John; Fromkin, Russ

    2013-01-01

    The NCCS is part of the Computational and Information Sciences and Technology Office (CISTO) of Goddard Space Flight Center's (GSFC) Sciences and Exploration Directorate. The NCCS's mission is to enable scientists to increase their understanding of the Earth, the solar system, and the universe by supplying state-of-the-art high performance computing (HPC) solutions. To accomplish this mission, the NCCS (https://www.nccs.nasa.gov) provides high performance compute engines, mass storage, and network solutions to meet the specialized needs of the Earth and space science user communities

  4. Virtual Sensor Web Architecture

    Science.gov (United States)

    Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.

    2006-12-01

    NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.

  5. Virtual Box

    DEFF Research Database (Denmark)

    Davis, Hilary; Skov, Mikael B.; Stougaard, Malthe

    2007-01-01

    . This paper reports on the design, implementation and initial evaluation of Virtual Box. Virtual Box attempts to create a physical and engaging context in order to support reciprocal interactions with expressive content. An implemented version of Virtual Box is evaluated in a location-aware environment...

  6. The Virtual Space Physics Observatory: Quick Access to Data and Tools

    Science.gov (United States)

    Cornwell, Carl; Roberts, D. Aaron; McGuire, Robert E.

    2006-01-01

    The Virtual Space Physics Observatory (VSPO; see http://vspo.gsfc.nasa.gov) has grown to provide a way to find and access about 375 data products and services from over 100 spacecraft/observatories in space and solar physics. The datasets are mainly chosen to be the most requested, and include most of the publicly available data products from operating NASA Heliophysics spacecraft as well as from solar observatories measuring across the frequency spectrum. Service links include a "quick orbits" page that uses SSCWeb Web Services to provide a rapid answer to questions such as "What spacecraft were in orbit in July 1992?" and "Where were Geotail, Cluster, and Polar on 2 June 2001?" These queries are linked back to the data search page. The VSPO interface provides many ways of looking for data based on terms used in a registry of resources using the SPASE Data Model that will be the standard for Heliophysics Virtual Observatories. VSPO itself is accessible via an API that allows other applications to use it as a Web Service; this has been implemented in one instance using the ViSBARD visualization program. The VSPO will become part of the Space Physics Data Facility, and will continue to expand its access to data. A challenge for all VOs will be to provide uniform access to data at the variable level, and we will be addressing this question in a number of ways.

  7. Cultivating a Grassroots Aerospace Innovation Culture at NASA Ames Research Center

    Science.gov (United States)

    D'Souza, Sarah; Sanchez, Hugo; Lewis, Ryan

    2017-01-01

    This paper details the adaptation of specific 'knowledge production' methods to implement a first of its kind, grassroots event that provokes a cultural change in how the NASA Ames civil servant community engages in the creation and selection of innovative ideas. Historically, selection of innovative proposals at NASA Ames Research Center is done at the highest levels of management, isolating the views and perspectives of the larger civil servant community. Additionally, NASA innovation programs are typically open to technical organizations and do not engage non-technical organizations to bring forward innovative processes/business practices. Finally, collaboration on innovative ideas and associated solutions tend to be isolated to organizational silos. In this environment, not all Ames employees feel empowered to innovate and opportunities for employee collaboration are limited. In order to address these issues, the 'innovation contest' method was adapted to create the NASA Ames Innovation Fair, a unique, grassroots innovation opportunity for the civil servant community. The Innovation Fair consisted of a physical event with a virtual component. The physical event provided innovators the opportunity to collaborate and pitch their innovations to the NASA Ames community. The civil servant community then voted for the projects that they viewed as innovative and would contribute to NASA's core mission, making this event a truly grassroots effort. The Innovation Fair website provided a location for additional knowledge sharing, discussion, and voting. On March 3rd, 2016, the 'First Annual NASA Ames Innovation Fair' was held with 49 innovators and more than 300 participants collaborating and/or voting for the best innovations. Based on the voting results, seven projects were awarded seed funding for projects ranging from innovative cost models to innovations in aerospace technology. Surveys of both innovators and Fair participants show the Innovation Fair was successful

  8. Workload assessment of surgeons: correlation between NASA TLX and blinks.

    Science.gov (United States)

    Zheng, Bin; Jiang, Xianta; Tien, Geoffrey; Meneghetti, Adam; Panton, O Neely M; Atkins, M Stella

    2012-10-01

    Blinks are known as an indicator of visual attention and mental stress. In this study, surgeons' mental workload was evaluated utilizing a paper assessment instrument (National Aeronautics and Space Administration Task Load Index, NASA TLX) and by examining their eye blinks. Correlation between these two assessments was reported. Surgeons' eye motions were video-recorded using a head-mounted eye-tracker while the surgeons performed a laparoscopic procedure on a virtual reality trainer. Blink frequency and duration were computed using computer vision technology. The level of workload experienced during the procedure was reported by surgeons using the NASA TLX. A total of 42 valid videos were recorded from 23 surgeons. After blinks were computed, videos were divided into two groups based on the blink frequency: infrequent group (≤ 6 blinks/min) and frequent group (more than 6 blinks/min). Surgical performance (measured by task time and trajectories of tool tips) was not significantly different between these two groups, but NASA TLX scores were significantly different. Surgeons who blinked infrequently reported a higher level of frustration (46 vs. 34, P = 0.047) and higher overall level of workload (57 vs. 47, P = 0.045) than those who blinked more frequently. The correlation coefficients (Pearson test) between NASA TLX and the blink frequency and duration were -0.17 and 0.446. Reduction of blink frequency and shorter blink duration matched the increasing level of mental workload reported by surgeons. The value of using eye-tracking technology for assessment of surgeon mental workload was shown.

  9. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    Science.gov (United States)

    Jordan, Lee P.

    2013-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 14500 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The investigative Payload Integration Manager (iPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers

  10. Realidad virtual y materialidad

    OpenAIRE

    Pérez Herranz, Fernando Miguel

    2009-01-01

    1. Fenomenología de partida: Real / Simbólico / Imaginario 2. Realidad 3. Virtual 3.1. Virtual / real / posible / probable 3.2. Los contextos de la realidad virtual A) REALIDAD VIRTUAL INMERSIVA B) REALIDAD VIRTUAL NO INMERSIVA C) REALIDAD VIRTUAL Y DIGITALIZACIÓN 3.3. Cruce virtual / real 3.4. Cuestiones filosóficas 4. Materialidad 5. Materialidad y descentramiento 5.1. Ejemplos de descentramiento en los contextos de Realidad Virtual A’) DUALISMO CARTESIANO, CUERPO Y «CIBORG » B’) EL ESPÍRIT...

  11. A virtual network computer's optical storage virtualization scheme

    Science.gov (United States)

    Wang, Jianzong; Hu, Huaixiang; Wan, Jiguang; Wang, Peng

    2008-12-01

    In this paper, we present the architecture and implementation of a virtual network computers' (VNC) optical storage virtualization scheme called VOSV. Its task is to manage the mapping of virtual optical storage to physical optical storage, a technique known as optical storage virtualization. The design of VOSV aims at the optical storage resources of different clients and servers that have high read-sharing patterns. VOSV uses several schemes such as a two-level Cache mechanism, a VNC server embedded module and the iSCSI protocols to improve the performance. The results measured on the prototype are encouraging, and indicating that VOSV provides the high I/O performance.

  12. Virtual bronchoscopy

    International Nuclear Information System (INIS)

    Rogalla, P.; Meiri, N.; Hamm, B.; Rueckert, J.C.; Schmidt, B.; Witt, C.

    2001-01-01

    Flexible bronchoscopy represents a clinically well-established invasive diagnostic tool. Virtual bronchoscopies, calculated from thin-slice CT sections, allow astonishing immitations of reality although principal differences exist between both technologies: the Fact that colour representation is artificial and concommitant interventions are impossible limits the clinical use of virtual bronchoscopy. However, its value increases when calculations can be attained within minutes due to technological advancements, and when virtually any chest CT is suitable for further postprocessing. Indications, findings and the clinical role of virtual bronchoscopy are discussed. (orig.) [de

  13. Virtual button interface

    Science.gov (United States)

    Jones, J.S.

    1999-01-12

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  14. 3-D Imaging In Virtual Environment: A Scientific Clinical and Teaching Tool

    Science.gov (United States)

    Ross, Muriel D.; DeVincenzi, Donald L. (Technical Monitor)

    1996-01-01

    The advent of powerful graphics workstations and computers has led to the advancement of scientific knowledge through three-dimensional (3-D) reconstruction and imaging of biological cells and tissues. The Biocomputation Center at NASA Ames Research Center pioneered the effort to produce an entirely computerized method for reconstruction of objects from serial sections studied in a transmission electron microscope (TEM). The software developed, ROSS (Reconstruction of Serial Sections), is now being distributed to users across the United States through Space Act Agreements. The software is in widely disparate fields such as geology, botany, biology and medicine. In the Biocomputation Center, ROSS serves as the basis for development of virtual environment technologies for scientific and medical use. This report will describe the Virtual Surgery Workstation Project that is ongoing with clinicians at Stanford University Medical Center, and the role of the Visible Human data in the project.

  15. Building effective learning experiences around visualizations: NASA Eyes on the Solar System and Infiniscope

    Science.gov (United States)

    Tamer, A. J. J.; Anbar, A. D.; Elkins-Tanton, L. T.; Klug Boonstra, S.; Mead, C.; Swann, J. L.; Hunsley, D.

    2017-12-01

    Advances in scientific visualization and public access to data have transformed science outreach and communication, but have yet to realize their potential impacts in the realm of education. Computer-based learning is a clear bridge between visualization and education, but creating high-quality learning experiences that leverage existing visualizations requires close partnerships among scientists, technologists, and educators. The Infiniscope project is working to foster such partnerships in order to produce exploration-driven learning experiences around NASA SMD data and images, leveraging the principles of ETX (Education Through eXploration). The visualizations inspire curiosity, while the learning design promotes improved reasoning skills and increases understanding of space science concepts. Infiniscope includes both a web portal to host these digital learning experiences, as well as a teaching network of educators using and modifying these experiences. Our initial efforts to enable student discovery through active exploration of the concepts associated with Small Worlds, Kepler's Laws, and Exoplanets led us to develop our own visualizations at Arizona State University. Other projects focused on Astrobiology and Mars geology led us to incorporate an immersive Virtual Field Trip platform into the Infiniscope portal in support of virtual exploration of scientifically significant locations. Looking to apply ETX design practices with other visualizations, our team at Arizona State partnered with the Jet Propulsion Lab to integrate the web-based version of NASA Eyes on the Eclipse within Smart Sparrow's digital learning platform in a proof-of-concept focused on the 2017 Eclipse. This goes a step beyond the standard features of "Eyes" by wrapping guided exploration, focused on a specific learning goal into standards-aligned lesson built around the visualization, as well as its distribution through Infiniscope and it's digital teaching network. Experience from this

  16. Virtual Web Services

    OpenAIRE

    Rykowski, Jarogniew

    2007-01-01

    In this paper we propose an application of software agents to provide Virtual Web Services. A Virtual Web Service is a linked collection of several real and/or virtual Web Services, and public and private agents, accessed by the user in the same way as a single real Web Service. A Virtual Web Service allows unrestricted comparison, information merging, pipelining, etc., of data coming from different sources and in different forms. Detailed architecture and functionality of a single Virtual We...

  17. Structure functions of longitudinal virtual photons at low virtualities

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Shushpanov, I.A.

    1996-01-01

    The structure functions F L 1 and F L 2 of longitudinal virtual photons at low virtualities are calculated in the framework of chiral perturbation theory (ChPT) in the zero and first order of ChPT. It is assumed that the virtuality of a target longitudinal photon p 2 is much less than the virtuality of the hard projectile photon Q 2 and both are less than the characteristic ChPT scale. In this approximation the structure functions are determined by the production of two pions in γγ collisions. The numerical results for F L 2 and F L 1 are presented (the upper index refers to the longitudinal polarization of the virtual target photon). The possibilities of measurements of these structure functions are briefly discussed. copyright 1996 The American Physical Society

  18. Virtual hand: a 3D tactile interface to virtual environments

    Science.gov (United States)

    Rogowitz, Bernice E.; Borrel, Paul

    2008-02-01

    We introduce a novel system that allows users to experience the sensation of touch in a computer graphics environment. In this system, the user places his/her hand on an array of pins, which is moved about space on a 6 degree-of-freedom robot arm. The surface of the pins defines a surface in the virtual world. This "virtual hand" can move about the virtual world. When the virtual hand encounters an object in the virtual world, the heights of the pins are adjusted so that they represent the object's shape, surface, and texture. A control system integrates pin and robot arm motions to transmit information about objects in the computer graphics world to the user. It also allows the user to edit, change and move the virtual objects, shapes and textures. This system provides a general framework for touching, manipulating, and modifying objects in a 3-D computer graphics environment, which may be useful in a wide range of applications, including computer games, computer aided design systems, and immersive virtual worlds.

  19. NASA Thesaurus

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Technical Reports Server (NTRS) and the NTRS...

  20. Advanced server virtualization VMware and Microsoft platforms in the virtual data center

    CERN Document Server

    Marshall, David; McCrory, Dave

    2006-01-01

    Executives of IT organizations are compelled to quickly implement server virtualization solutions because of significant cost savings. However, most IT professionals tasked with deploying virtualization solutions have little or no experience with the technology. This creates a high demand for information on virtualization and how to properly implement it in a datacenter. Advanced Server Virtualization: VMware® and Microsoft® Platforms in the Virtual Data Center focuses on the core knowledge needed to evaluate, implement, and maintain an environment that is using server virtualization. This boo

  1. A Virtual Class Calculus

    DEFF Research Database (Denmark)

    Ernst, Erik; Ostermann, Klaus; Cook, William Randall

    2006-01-01

    Virtual classes are class-valued attributes of objects. Like virtual methods, virtual classes are defined in an object's class and may be redefined within subclasses. They resemble inner classes, which are also defined within a class, but virtual classes are accessed through object instances...... model for virtual classes has been a long-standing open question. This paper presents a virtual class calculus, vc, that captures the essence of virtual classes in these full-fledged programming languages. The key contributions of the paper are a formalization of the dynamic and static semantics of vc...

  2. Virtual projects

    DEFF Research Database (Denmark)

    Svejvig, Per; Commisso, Trine Hald

    2012-01-01

    that the best practice knowledge has not permeated sufficiently to the practice. Furthermore, the appropriate application of information and communication technology (ICT) remains a big challenge, and finally project managers are not sufficiently trained in organizing and conducting virtual projects....... The overall implications for research and practice are to acknowledge virtual project management as very different to traditional project management and to address this difference.......Virtual projects are common with global competition, market development, and not least the financial crisis forcing organizations to reduce their costs drastically. Organizations therefore have to place high importance on ways to carry out virtual projects and consider appropriate practices...

  3. NASA Center for Astronomy Education: Building a Community of Practice

    Science.gov (United States)

    Brissenden, Gina; Prather, E. E.; Slater, T. F.; Greene, W. M.; Thaller, M.; Alvidrez, R.

    2007-12-01

    The NASA Center for Astronomy Education (CAE) is devoted to the professional development of introductory college astronomy instructors teaching at community colleges. The primary goal is building a "community of practice." Evaluation results suggest this community of practice model is effective at improving instructional practices, particularly in settings where instructors feel isolated from their peers. For community college faculty this isolation can be quite real. Many are the only astronomer, if not the only scientist, at their institution. In addition, they may be adjunct instructors who have no office, no institutional email address, nor appear in the campus directory. CAE works to prevent this sense of isolation by building both actual and virtual communities for these instructors, as well as provide actual and virtual professional development opportunities. CAE's major effort is providing multi-tiered "Teaching Excellence Workshops" offered at national and regional venues. Recently added to our workshop offerings is a Tier II, or advanced, workshop for instructors who have attended a previous Teaching Excellence Workshop. The focus of the Tier II workshops is on implementation issues. In addition, we are now also offering a workshop exclusively for post-docs, graduates, and undergraduate students. Ongoing support is offered through the CAE website. Instructors can learn about, and register for, upcoming workshops. They can engage in discussions about educational issues and share best practices with peers using the moderated discussion group Astrolrner@CAE. CAE also provides an updated article "This Month's Teaching Strategy” which is a reflection on teaching strategies discussed in the workshops. Instructors can also find their peers through the online map of US community colleges offering introductory astronomy courses. Lastly, CAE Regional Teaching Exchanges facilitate local, and sustained, community building. CAE is supported by the NASA/JPL Navigator

  4. Modeling Constellation Virtual Missions Using the Vdot(Trademark) Process Management Tool

    Science.gov (United States)

    Hardy, Roger; ONeil, Daniel; Sturken, Ian; Nix, Michael; Yanez, Damian

    2011-01-01

    The authors have identified a software tool suite that will support NASA's Virtual Mission (VM) effort. This is accomplished by transforming a spreadsheet database of mission events, task inputs and outputs, timelines, and organizations into process visualization tools and a Vdot process management model that includes embedded analysis software as well as requirements and information related to data manipulation and transfer. This paper describes the progress to date, and the application of the Virtual Mission to not only Constellation but to other architectures, and the pertinence to other aerospace applications. Vdot s intuitive visual interface brings VMs to life by turning static, paper-based processes into active, electronic processes that can be deployed, executed, managed, verified, and continuously improved. A VM can be executed using a computer-based, human-in-the-loop, real-time format, under the direction and control of the NASA VM Manager. Engineers in the various disciplines will not have to be Vdot-proficient but rather can fill out on-line, Excel-type databases with the mission information discussed above. The author s tool suite converts this database into several process visualization tools for review and into Microsoft Project, which can be imported directly into Vdot. Many tools can be embedded directly into Vdot, and when the necessary data/information is received from a preceding task, the analysis can be initiated automatically. Other NASA analysis tools are too complex for this process but Vdot automatically notifies the tool user that the data has been received and analysis can begin. The VM can be simulated from end-to-end using the author s tool suite. The planned approach for the Vdot-based process simulation is to generate the process model from a database; other advantages of this semi-automated approach are the participants can be geographically remote and after refining the process models via the human-in-the-loop simulation, the

  5. Transforming Virtual Teams

    DEFF Research Database (Denmark)

    Bjørn, Pernille

    2005-01-01

    Investigating virtual team collaboration in industry using grounded theory this paper presents the in-dept analysis of empirical work conducted in a global organization of 100.000 employees where a global virtual team with participants from Sweden, United Kingdom, Canada, and North America were...... studied. The research question investigated is how collaboration is negotiated within virtual teams? This paper presents findings concerning how collaboration is negotiated within a virtual team and elaborate the difficulties due to invisible articulation work and managing multiple communities...... in transforming the virtual team into a community. It is argued that translucence in communication structures within the virtual team and between team and management is essential for engaging in a positive transformation process of trustworthiness supporting the team becoming a community, managing the immanent...

  6. Trust and virtual worlds

    DEFF Research Database (Denmark)

    Ess, Charles; Thorseth, May

    2011-01-01

    We collect diverse philosophical analyses of the issues and problems clustering around trust online with specific attention to establishing trust in virtual environments. The book moves forward important discussions of how virtual worlds and virtuality are to be defined and understood; the role o...... by virtuality, such as virtual child pornography. The introduction further develops a philosophical anthropology, rooted in Kantian ethics, phenomenology, virtue ethics, and feminist perspectives, that grounds a specific approach to ethical issues in virtual environments....

  7. Open Innovation at NASA: A New Business Model for Advancing Human Health and Performance Innovations

    Science.gov (United States)

    Davis, Jeffrey R.; Richard, Elizabeth E.; Keeton, Kathryn E.

    2014-01-01

    This paper describes a new business model for advancing NASA human health and performance innovations and demonstrates how open innovation shaped its development. A 45 percent research and technology development budget reduction drove formulation of a strategic plan grounded in collaboration. We describe the strategy execution, including adoption and results of open innovation initiatives, the challenges of cultural change, and the development of virtual centers and a knowledge management tool to educate and engage the workforce and promote cultural change.

  8. Virtual water: Virtuous impact? : the unsteady state of virtual water

    NARCIS (Netherlands)

    Roth, D.; Warner, J.F.

    2008-01-01

    Virtual water,” water needed for crop production, is now being mainstreamed in the water policy world. Relying on virtual water in the form of food imports is increasingly recommended as good policy for water-scarce areas. Virtual water globalizes discussions on water scarcity, ecological

  9. Evolution-based Virtual Content Insertion with Visually Virtual Interactions in Videos

    Science.gov (United States)

    Chang, Chia-Hu; Wu, Ja-Ling

    With the development of content-based multimedia analysis, virtual content insertion has been widely used and studied for video enrichment and multimedia advertising. However, how to automatically insert a user-selected virtual content into personal videos in a less-intrusive manner, with an attractive representation, is a challenging problem. In this chapter, we present an evolution-based virtual content insertion system which can insert virtual contents into videos with evolved animations according to predefined behaviors emulating the characteristics of evolutionary biology. The videos are considered not only as carriers of message conveyed by the virtual content but also as the environment in which the lifelike virtual contents live. Thus, the inserted virtual content will be affected by the videos to trigger a series of artificial evolutions and evolve its appearances and behaviors while interacting with video contents. By inserting virtual contents into videos through the system, users can easily create entertaining storylines and turn their personal videos into visually appealing ones. In addition, it would bring a new opportunity to increase the advertising revenue for video assets of the media industry and online video-sharing websites.

  10. Theft of Virtual Property — Towards Security Requirements for Virtual Worlds

    Science.gov (United States)

    Beyer, Anja

    The article is focused to introduce the topic of information technology security for Virtual Worlds to a security experts’ audience. Virtual Worlds are Web 2.0 applications where the users cruise through the world with their individually shaped avatars to find either amusement, challenges or the next best business deal. People do invest a lot of time but beyond they invest in buying virtual assets like fantasy witcheries, wepaons, armour, houses, clothes,...etc with the power of real world money. Although it is called “virtual” (which is often put on the same level as “not existent”) there is a real value behind it. In November 2007 dutch police arrested a seventeen years old teenager who was suspicted to have stolen virtual items in a Virtual World called Habbo Hotel [Reuters07]. In order to successfully provide security mechanisms into Virtual Worlds it is necessarry to fully understand the domain for which the security mechansims are defined. As Virtual Worlds must be clasified into the domain of Social Software the article starts with an overview of how to understand Web 2.0 and gives a short introduction to Virtual Worlds. The article then provides a consideration of assets of Virtual Worlds participants, describes how these assets can be threatened and gives an overview of appopriate security requirements and completes with an outlook of possible countermeasures.

  11. Interaction with virtual crowd in Immersive and semi‐Immersive Virtual Reality systems

    OpenAIRE

    Kyriakou, Marios; Pan, Xueni; Chrysanthou, Yiorgos

    2016-01-01

    This study examines attributes of virtual human behavior that may increase the plausibility of a simulated crowd and affect the user's experience in Virtual Reality. Purpose-developed experiments in both Immersive and semi-Immersive Virtual Reality systems queried the impact of collision and basic interaction between real-users and the virtual crowd and their effect on the apparent realism and ease of navigation within Virtual Reality (VR). Participants' behavior and subjective measurements i...

  12. The Heliophysics Data Environment, Virtual Observatories, NSSDC, and SPASE

    Science.gov (United States)

    Thieman, James; Grayzeck, Edwin; Roberts, Aaron; King, Todd

    2010-01-01

    Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) has an interesting data environment in that the data are often to be found in relatively small data sets widely scattered in archives around the world. Within the last decade there have been more concentrated efforts to organize the data access methods and create a Heliophysics Data and Model Consortium (HDMC). To provide data search and access capability a number of Virtual Observatories (VO's) have been established both via funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Heliophysics Virtual Observatories, 9 of them funded by NASA. Other parts of this data environment include Resident Archives, and the final, or "deep" archive at the National Space Science Data Center (NSSDC). The problem is that different data search and access approaches are used by all of these elements of the HDMC and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's and other data environment elements. The SPASE Data Model has been developed through the common efforts of the HDMC representatives over a number of years. We currently have released Version 2.1. of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development.

  13. Designing Virtual Worlds

    DEFF Research Database (Denmark)

    Gürsimsek, Remzi Ates

    2014-01-01

    The online social platforms known as virtual worlds present their users various affordances for avatar based co-presence, social interaction and provide tools for collaborative content creation, including objects, textures and animations. The users of these worlds navigate their avatars as personal...... the audio-visual characteristics of designing in multi-user virtual environments generate experiential, interpersonal and textual meaning potentials....... mediators in 3D virtual space to collaborate and co-design the digital content. These co-designers are also the residents of these worlds, as they socialize by building inworld friendships. This article presents a social semiotic analysis of the three-dimensional virtual places and artifacts in the virtual...

  14. Server virtualization solutions

    OpenAIRE

    Jonasts, Gusts

    2012-01-01

    Currently in the information technology sector that is responsible for a server infrastructure is a huge development in the field of server virtualization on x86 computer architecture. As a prerequisite for such a virtualization development is growth in server productivity and underutilization of available computing power. Several companies in the market are working on two virtualization architectures – hypervizor and hosting. In this paper several of virtualization products that use host...

  15. Virtual Trackballs Revisited

    OpenAIRE

    Henriksen, Knud; Sporring, Jon; Hornbæk, Kasper

    2004-01-01

    Udgivelsesdato: March/April Rotation of three-dimensional objects by a two-dimensional mouse is a typical task in computer-aided design, operation simulations, and desktop virtual reality. The most commonly used rotation technique is a virtual trackball surrounding the object and operated by the mouse pointer. This article reviews and provides a mathematical foundation for virtual trackballs. The first, but still popular, virtual trackball was described by Chen et al. [CHECK END OF SENTENC...

  16. Interactive Virtual Cinematography

    OpenAIRE

    Burelli, Paolo

    2012-01-01

    A virtual camera represents the point-of-view of the player through which sheperceives the game world and gets feedback on her actions. Thus, the virtualcamera plays a vital role in 3D computer games and aects player experienceand enjoyability in games. Interactive virtual cinematography is the process ofvisualising the content of a virtual environment by positioning and animatingthe virtual camera in the context of interactive applications such as a computergame.Camera placement and animatio...

  17. Virtual Reflexes

    OpenAIRE

    Jonker, Catholijn; Broekens, Joost; Plaat, Aske

    2014-01-01

    Virtual Reality is used successfully to treat people for regular phobias. A new challenge is to develop Virtual Reality Exposure Training for social skills. Virtual actors in such systems have to show appropriate social behavior including emotions, gaze, and keeping distance. The behavior must be realistic and real-time. Current approaches consist of four steps: 1) trainee social signal detection, 2) cognitive-affective interpretation, 3) determination of the appropriate bodily responses, and...

  18. Determination of balloon gas mass and revised estimates of drag and virtual mass coefficients

    Science.gov (United States)

    Robbins, E.; Martone, M.

    1993-01-01

    In support of the NASA Balloon Program, small-scale balloons were flown with varying lifting gas and total system mass. Instrument packages were developed to measure and record acceleration and temperature data during these tests. Top fitting and instrument payload accelerations were measured from launch to steady state ascent and through ballast drop transients. The development of the small lightweight self-powered Stowaway Special instrument packages is discussed along with mathematical models developed to determine gas mass, drag and virtual mass coefficients.

  19. NASA Astrophysics Technology Needs

    Science.gov (United States)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  20. An Interdisciplinary Method for the Visualization of Novel High-Resolution Precision Photography and Micro-XCT Data Sets of NASA's Apollo Lunar Samples and Antarctic Meteorite Samples to Create Combined Research-Grade 3D Virtual Samples for the Benefit of Astromaterials Collections Conservation, Curation, Scientific Research and Education

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2016-01-01

    New technologies make possible the advancement of documentation and visualization practices that can enhance conservation and curation protocols for NASA's Astromaterials Collections. With increasing demands for accessibility to updated comprehensive data, and with new sample return missions on the horizon, it is of primary importance to develop new standards for contemporary documentation and visualization methodologies. Our interdisciplinary team has expertise in the fields of heritage conservation practices, professional photography, photogrammetry, imaging science, application engineering, data curation, geoscience, and astromaterials curation. Our objective is to create virtual 3D reconstructions of Apollo Lunar and Antarctic Meteorite samples that are a fusion of two state-of-the-art data sets: the interior view of the sample by collecting Micro-XCT data and the exterior view of the sample by collecting high-resolution precision photography data. These new data provide researchers an information-rich visualization of both compositional and textural information prior to any physical sub-sampling. Since January 2013 we have developed a process that resulted in the successful creation of the first image-based 3D reconstruction of an Apollo Lunar Sample correlated to a 3D reconstruction of the same sample's Micro- XCT data, illustrating that this technique is both operationally possible and functionally beneficial. In May of 2016 we began a 3-year research period during which we aim to produce Virtual Astromaterials Samples for 60 high-priority Apollo Lunar and Antarctic Meteorite samples and serve them on NASA's Astromaterials Acquisition and Curation website. Our research demonstrates that research-grade Virtual Astromaterials Samples are beneficial in preserving for posterity a precise 3D reconstruction of the sample prior to sub-sampling, which greatly improves documentation practices, provides unique and novel visualization of the sample's interior and

  1. [Virtual + 1] * Reality

    Science.gov (United States)

    Beckhaus, Steffi

    Virtual Reality aims at creating an artificial environment that can be perceived as a substitute to a real setting. Much effort in research and development goes into the creation of virtual environments that in their majority are perceivable only by eyes and hands. The multisensory nature of our perception, however, allows and, arguably, also expects more than that. As long as we are not able to simulate and deliver a fully sensory believable virtual environment to a user, we could make use of the fully sensory, multi-modal nature of real objects to fill in for this deficiency. The idea is to purposefully integrate real artifacts into the application and interaction, instead of dismissing anything real as hindering the virtual experience. The term virtual reality - denoting the goal, not the technology - shifts from a core virtual reality to an “enriched” reality, technologically encompassing both the computer generated and the real, physical artifacts. Together, either simultaneously or in a hybrid way, real and virtual jointly provide stimuli that are perceived by users through their senses and are later formed into an experience by the user's mind.

  2. Virtual Vision

    Science.gov (United States)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  3. Tangible interfaces in virtual environments, case study: Instituto de Engenharia Nuclear Virtual

    Energy Technology Data Exchange (ETDEWEB)

    Santo, Andre Cotelli do E.; Mol, Antonio Carlos A.; Pinto, Emanuele Oliveira; Melo, Joao Victor da C.; Paula, Vanessa Marcia de; Freitas, Victor Goncalves Gloria [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Machado, Daniel Mol [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto Alberto Luiz Coimbra

    2015-07-01

    Virtual Reality (VR) techniques allow the creation of realistic representations of an individual. These technologies are being applied in several fields such as training, simulations, virtual experiments and new applications are constantly being found. This work aims to present an interactive system in virtual environments without the use of peripherals typically found in computers such as mouse and keyboard. Through the movement of head and hands it is possible to control and navigate the virtual character (avatar) in a virtual environment, an improvement in the man-machine integration. The head movements are recognized using a virtual helmet with a tracking system. An infrared camera detects the position of infrared LEDs located in the operator's head and places the vision of the virtual character in accordance with the operator's vision. The avatar control is performed by a system that detects the movement of the hands, using infrared sensors, allowing the user to move it in the virtual environment. This interaction system was implemented in the virtual model of the Instituto de Engenharia Nuclear (IEN), which is located on the Ilha do Fundao - Rio de Janeiro - Brazil. This three-dimensional environment, in which avatars can move and interact according to the user movements, gives a feeling of realism to the operator. The results show an interface that allows a higher degree of immersion of the operator in the virtual environment, promoting a more engaging and dynamic way of working. (author)

  4. Tangible interfaces in virtual environments, case study: Instituto de Engenharia Nuclear Virtual

    International Nuclear Information System (INIS)

    Santo, Andre Cotelli do E.; Mol, Antonio Carlos A.; Pinto, Emanuele Oliveira; Melo, Joao Victor da C.; Paula, Vanessa Marcia de; Freitas, Victor Goncalves Gloria; Machado, Daniel Mol

    2015-01-01

    Virtual Reality (VR) techniques allow the creation of realistic representations of an individual. These technologies are being applied in several fields such as training, simulations, virtual experiments and new applications are constantly being found. This work aims to present an interactive system in virtual environments without the use of peripherals typically found in computers such as mouse and keyboard. Through the movement of head and hands it is possible to control and navigate the virtual character (avatar) in a virtual environment, an improvement in the man-machine integration. The head movements are recognized using a virtual helmet with a tracking system. An infrared camera detects the position of infrared LEDs located in the operator's head and places the vision of the virtual character in accordance with the operator's vision. The avatar control is performed by a system that detects the movement of the hands, using infrared sensors, allowing the user to move it in the virtual environment. This interaction system was implemented in the virtual model of the Instituto de Engenharia Nuclear (IEN), which is located on the Ilha do Fundao - Rio de Janeiro - Brazil. This three-dimensional environment, in which avatars can move and interact according to the user movements, gives a feeling of realism to the operator. The results show an interface that allows a higher degree of immersion of the operator in the virtual environment, promoting a more engaging and dynamic way of working. (author)

  5. Virtual reality in medical education and assessment

    Science.gov (United States)

    Sprague, Laurie A.; Bell, Brad; Sullivan, Tim; Voss, Mark; Payer, Andrew F.; Goza, Stewart Michael

    1994-01-01

    The NASA Johnson Space Center (JSC)/LinCom Corporation, the University of Texas Medical Branch at Galveston (UTMB), and the Galveston Independent School District (GISD) have teamed up to develop a virtual visual environment display (VIVED) that provides a unique educational experience using virtual reality (VR) technologies. The VIVED end product will be a self-contained educational experience allowing students a new method of learning as they interact with the subject matter through VR. This type of interface is intuitive and utilizes spatial and psychomotor abilities which are now constrained or reduced by the current two dimensional terminals and keyboards. The perpetual challenge to educators remains the identification and development of methodologies which conform the learners abilities and preferences. The unique aspects of VR provide an opportunity to explore a new educational experience. Endowing medical students with an understanding of the human body poses some difficulty challenges. One of the most difficult is to convey the three dimensional nature of anatomical structures. The ideal environment for addressing this problem would be one that allows students to become small enough to enter the body and travel through it - much like a person walks through a building. By using VR technology, this effect can be achieved; when VR is combined with multimedia technologies, the effect can be spectacular.

  6. Toward Optimization of Gaze-Controlled Human-Computer Interaction: Application to Hindi Virtual Keyboard for Stroke Patients.

    Science.gov (United States)

    Meena, Yogesh Kumar; Cecotti, Hubert; Wong-Lin, Kongfatt; Dutta, Ashish; Prasad, Girijesh

    2018-04-01

    Virtual keyboard applications and alternative communication devices provide new means of communication to assist disabled people. To date, virtual keyboard optimization schemes based on script-specific information, along with multimodal input access facility, are limited. In this paper, we propose a novel method for optimizing the position of the displayed items for gaze-controlled tree-based menu selection systems by considering a combination of letter frequency and command selection time. The optimized graphical user interface layout has been designed for a Hindi language virtual keyboard based on a menu wherein 10 commands provide access to type 88 different characters, along with additional text editing commands. The system can be controlled in two different modes: eye-tracking alone and eye-tracking with an access soft-switch. Five different keyboard layouts have been presented and evaluated with ten healthy participants. Furthermore, the two best performing keyboard layouts have been evaluated with eye-tracking alone on ten stroke patients. The overall performance analysis demonstrated significantly superior typing performance, high usability (87% SUS score), and low workload (NASA TLX with 17 scores) for the letter frequency and time-based organization with script specific arrangement design. This paper represents the first optimized gaze-controlled Hindi virtual keyboard, which can be extended to other languages.

  7. Virtual volatility

    Science.gov (United States)

    Silva, A. Christian; Prange, Richard E.

    2007-03-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.

  8. Virtual laboratories : comparability of real and virtual environments for environmental psychology

    NARCIS (Netherlands)

    Kort, de Y.A.W.; IJsselsteijn, W.A.; Kooijman, J.M.A.; Schuurmans, Y.

    2003-01-01

    Virtual environments have the potential to become important new research tools in environment behavior research. They could even become the future (virtual) laboratories, if reactions of people to virtual environments are similar to those in real environments. The present study is an exploration of

  9. Intelligent launch and range operations virtual testbed (ILRO-VTB)

    Science.gov (United States)

    Bardina, Jorge; Rajkumar, Thirumalainambi

    2003-09-01

    Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.

  10. An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center

    Science.gov (United States)

    Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.

    2010-01-01

    Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures

  11. High availability using virtualization

    International Nuclear Information System (INIS)

    Calzolari, Federico; Arezzini, Silvia; Ciampa, Alberto; Mazzoni, Enrico; Domenici, Andrea; Vaglini, Gigliola

    2010-01-01

    High availability has always been one of the main problems for a data center. Till now high availability was achieved by host per host redundancy, a highly expensive method in terms of hardware and human costs. A new approach to the problem can be offered by virtualization. Using virtualization, it is possible to achieve a redundancy system for all the services running on a data center. This new approach to high availability allows the running virtual machines to be distributed over a small number of servers, by exploiting the features of the virtualization layer: start, stop and move virtual machines between physical hosts. The 3RC system is based on a finite state machine, providing the possibility to restart each virtual machine over any physical host, or reinstall it from scratch. A complete infrastructure has been developed to install operating system and middleware in a few minutes. To virtualize the main servers of a data center, a new procedure has been developed to migrate physical to virtual hosts. The whole Grid data center SNS-PISA is running at the moment in virtual environment under the high availability system.

  12. Virtual reality in education

    OpenAIRE

    Minocha, Shailey; Tudor, Ana-Despina

    2017-01-01

    In this workshop-presentation, we described the evolution of virtual reality technologies and our research from 3D virtual worlds, 3D virtual environments built in gaming environments such as Unity 3D, 360-degree videos, and mobile virtual reality via Google Expeditions. For each of these four technologies, we discussed the affordances of the technologies and how they contribute towards learning and teaching. We outlined the significance of students being aware of the different virtual realit...

  13. NASA strategic plan

    Science.gov (United States)

    1994-01-01

    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  14. Virtual Reality: Principles and Applications

    OpenAIRE

    MÉRIENNE , Frédéric

    2017-01-01

    Virtual reality aims at immersing a user in a virtual environment. Dedicated virtual reality technologies of human–computer interaction enable to make the link between the user and a virtual environment in capturing the user’s motion, acting on his senses as well as computing the virtual experience in real-time. The immersion in virtual environment is evaluated through the user’s perception and reaction. Virtual reality is used in a large variety of application domains which need multisensory...

  15. Virtual Organizations: Beyond Network Organization

    Directory of Open Access Journals (Sweden)

    Liviu Gabriel CRETU

    2006-01-01

    Full Text Available One of the most used buzz-words in (e-business literature of the last decade is virtual organization. The term "virtual" can be identified in all sorts of combinations regarding the business world. From virtual products to virtual processes or virtual teams, everything that is “touched” by the computer’s processing power instantly becomes virtual. Moreover, most of the literature treats virtual and network organizations as being synonyms. This paper aims to draw a much more distinctive line between the two concepts. Providing a more coherent description of what virtual organization might be is also one of our intentions.

  16. Virtual Reference Services.

    Science.gov (United States)

    Brewer, Sally

    2003-01-01

    As the need to access information increases, school librarians must create virtual libraries. Linked to reliable reference resources, the virtual library extends the physical collection and library hours and lets students learn to use Web-based resources in a protected learning environment. The growing number of virtual schools increases the need…

  17. Game-Based Virtual Worlds as Decentralized Virtual Activity Systems

    Science.gov (United States)

    Scacchi, Walt

    There is widespread interest in the development and use of decentralized systems and virtual world environments as possible new places for engaging in collaborative work activities. Similarly, there is widespread interest in stimulating new technological innovations that enable people to come together through social networking, file/media sharing, and networked multi-player computer game play. A decentralized virtual activity system (DVAS) is a networked computer supported work/play system whose elements and social activities can be both virtual and decentralized (Scacchi et al. 2008b). Massively multi-player online games (MMOGs) such as World of Warcraft and online virtual worlds such as Second Life are each popular examples of a DVAS. Furthermore, these systems are beginning to be used for research, deve-lopment, and education activities in different science, technology, and engineering domains (Bainbridge 2007, Bohannon et al. 2009; Rieber 2005; Scacchi and Adams 2007; Shaffer 2006), which are also of interest here. This chapter explores two case studies of DVASs developed at the University of California at Irvine that employ game-based virtual worlds to support collaborative work/play activities in different settings. The settings include those that model and simulate practical or imaginative physical worlds in different domains of science, technology, or engineering through alternative virtual worlds where players/workers engage in different kinds of quests or quest-like workflows (Jakobsson 2006).

  18. Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment

    Science.gov (United States)

    Schwartz, Richard J.; McCrea, Andrew C.

    2010-01-01

    The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.

  19. Virtualization A Manager's Guide

    CERN Document Server

    Kusnetzky, Dan

    2011-01-01

    What exactly is virtualization? As this concise book explains, virtualization is a smorgasbord of technologies that offer organizations many advantages, whether you're managing extremely large stores of rapidly changing data, scaling out an application, or harnessing huge amounts of computational power. With this guide, you get an overview of the five main types of virtualization technology, along with information on security, management, and modern use cases. Topics include: Access virtualization-Allows access to any application from any deviceApplication virtualization-Enables applications

  20. Virtual reality - aesthetic consequences

    OpenAIRE

    Benda, Lubor

    2014-01-01

    In the present work we study aesthetic consequences of virtual reality. Exploring the fringe between fictional and virtual is one of the key goals, that will be achieved through etymologic and technologic definition of both fiction and virtual reality, fictional and virtual worlds. Both fiction and virtual reality will be then studied from aesthetic distance and aesthetic pleasure point of view. At the end, we will see the main difference as well as an common grounds between fiction and virtu...

  1. User-centered virtual environment design for virtual rehabilitation

    Directory of Open Access Journals (Sweden)

    Rizzo Albert A

    2010-02-01

    Full Text Available Abstract Background As physical and cognitive rehabilitation protocols utilizing virtual environments transition from single applications to comprehensive rehabilitation programs there is a need for a new design cycle methodology. Current human-computer interaction designs focus on usability without benchmarking technology within a user-in-the-loop design cycle. The field of virtual rehabilitation is unique in that determining the efficacy of this genre of computer-aided therapies requires prior knowledge of technology issues that may confound patient outcome measures. Benchmarking the technology (e.g., displays or data gloves using healthy controls may provide a means of characterizing the "normal" performance range of the virtual rehabilitation system. This standard not only allows therapists to select appropriate technology for use with their patient populations, it also allows them to account for technology limitations when assessing treatment efficacy. Methods An overview of the proposed user-centered design cycle is given. Comparisons of two optical see-through head-worn displays provide an example of benchmarking techniques. Benchmarks were obtained using a novel vision test capable of measuring a user's stereoacuity while wearing different types of head-worn displays. Results from healthy participants who performed both virtual and real-world versions of the stereoacuity test are discussed with respect to virtual rehabilitation design. Results The user-centered design cycle argues for benchmarking to precede virtual environment construction, especially for therapeutic applications. Results from real-world testing illustrate the general limitations in stereoacuity attained when viewing content using a head-worn display. Further, the stereoacuity vision benchmark test highlights differences in user performance when utilizing a similar style of head-worn display. These results support the need for including benchmarks as a means of better

  2. User-centered virtual environment design for virtual rehabilitation.

    Science.gov (United States)

    Fidopiastis, Cali M; Rizzo, Albert A; Rolland, Jannick P

    2010-02-19

    As physical and cognitive rehabilitation protocols utilizing virtual environments transition from single applications to comprehensive rehabilitation programs there is a need for a new design cycle methodology. Current human-computer interaction designs focus on usability without benchmarking technology within a user-in-the-loop design cycle. The field of virtual rehabilitation is unique in that determining the efficacy of this genre of computer-aided therapies requires prior knowledge of technology issues that may confound patient outcome measures. Benchmarking the technology (e.g., displays or data gloves) using healthy controls may provide a means of characterizing the "normal" performance range of the virtual rehabilitation system. This standard not only allows therapists to select appropriate technology for use with their patient populations, it also allows them to account for technology limitations when assessing treatment efficacy. An overview of the proposed user-centered design cycle is given. Comparisons of two optical see-through head-worn displays provide an example of benchmarking techniques. Benchmarks were obtained using a novel vision test capable of measuring a user's stereoacuity while wearing different types of head-worn displays. Results from healthy participants who performed both virtual and real-world versions of the stereoacuity test are discussed with respect to virtual rehabilitation design. The user-centered design cycle argues for benchmarking to precede virtual environment construction, especially for therapeutic applications. Results from real-world testing illustrate the general limitations in stereoacuity attained when viewing content using a head-worn display. Further, the stereoacuity vision benchmark test highlights differences in user performance when utilizing a similar style of head-worn display. These results support the need for including benchmarks as a means of better understanding user outcomes, especially for patient

  3. Virtual Space Exploration: Let's Use Web-Based Computer Game Technology to Boost IYA 2009 Public Interest

    Science.gov (United States)

    Hussey, K.; Doronila, P.; Kulikov, A.; Lane, K.; Upchurch, P.; Howard, J.; Harvey, S.; Woodmansee, L.

    2008-09-01

    With the recent releases of both Google's "Sky" and Microsoft's "WorldWide Telescope" and the large and increasing popularity of video games, the time is now for using these tools, and those crafted at NASA's Jet Propulsion Laboratory, to engage the public in astronomy like never before. This presentation will use "Cassini at Saturn Interactive Explorer " (CASSIE) to demonstrate the power of web-based video-game engine technology in providing the public a "first-person" look at space exploration. The concept of virtual space exploration is to allow the public to "see" objects in space as if they were either riding aboard or "flying" next to an ESA/NASA spacecraft. Using this technology, people are able to immediately "look" in any direction from their virtual location in space and "zoom-in" at will. Users can position themselves near Saturn's moons and observe the Cassini Spacecraft's "encounters" as they happened. Whenever real data for their "view" exists it is incorporated into the scene. Where data is missing, a high-fidelity simulation of the view is generated to fill in the scene. The observer can also change the time of observation into the past or future. Our approach is to utilize and extend the Unity 3d game development tool, currently in use by the computer gaming industry, along with JPL mission specific telemetry and instrument data to build our virtual explorer. The potential of the application of game technology for the development of educational curricula and public engagement are huge. We believe this technology can revolutionize the way the general public and the planetary science community views ESA/NASA missions and provides an educational context that is attractive to the younger generation. This technology is currently under development and application at JPL to assist our missions in viewing their data, communicating with the public and visualizing future mission plans. Real-time demonstrations of CASSIE and other applications in development

  4. Trends in Virtualized User Environments

    Directory of Open Access Journals (Sweden)

    Diane Barrett

    2008-06-01

    Full Text Available Virtualized environments can make forensics investigation more difficult. Technological advances in virtualization tools essentially make removable media a PC that can be carried around in a pocket or around a neck. Running operating systems and applications this way leaves very little trace on the host system. This paper will explore all the newest methods for virtualized environments and the implications they have on the world of forensics. It will begin by describing and differentiating between software and hardware virtualization. It will then move on to explain the various methods used for server and desktop virtualization. Next, it will explain how virtualization affects the basic forensic process. Finally, it will describe the common methods to find virtualization artifacts and identify virtual activities that affect the examination process of certain virtualized user environments.

  5. A methodology to emulate and evaluate a productive virtual workstation

    Science.gov (United States)

    Krubsack, David; Haberman, David

    1992-01-01

    The Advanced Display and Computer Augmented Control (ADCACS) Program at ACT is sponsored by NASA Ames to investigate the broad field of technologies which must be combined to design a 'virtual' workstation for the Space Station Freedom. This program is progressing in several areas and resulted in the definition of requirements for a workstation. A unique combination of technologies at the ACT Laboratory have been networked to effectively create an experimental environment. This experimental environment allows the integration of nonconventional input devices with a high power graphics engine within the framework of an expert system shell which coordinates the heterogeneous inputs with the 'virtual' presentation. The flexibility of the workstation is evolved as experiments are designed and conducted to evaluate the condition descriptions and rule sets of the expert system shell and its effectiveness in driving the graphics engine. Workstation productivity has been defined by the achievable performance in the emulator of the calibrated 'sensitivity' of input devices, the graphics presentation, the possible optical enhancements to achieve a wide field of view color image and the flexibility of conditional descriptions in the expert system shell in adapting to prototype problems.

  6. Internal NASA Study: NASAs Protoflight Research Initiative

    Science.gov (United States)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  7. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    Science.gov (United States)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  8. Virtual Workshop

    DEFF Research Database (Denmark)

    Buus, Lillian; Bygholm, Ann

    In relation to the Tutor course in the Mediterranean Virtual University (MVU) project, a virtual workshop “Getting experiences with different synchronous communication media, collaboration, and group work” was held with all partner institutions in January 2006. More than 25 key-tutors within MVU...

  9. Creating Virtual-hand and Virtual-face Illusions to Investigate Self-representation.

    Science.gov (United States)

    Ma, Ke; Lippelt, Dominique P; Hommel, Bernhard

    2017-03-01

    Studies investigating how people represent themselves and their own body often use variants of "ownership illusions", such as the traditional rubber-hand illusion or the more recently discovered enfacement illusion. However, these examples require rather artificial experimental setups, in which the artificial effector needs to be stroked in synchrony with the participants' real hand or face-a situation in which participants have no control over the stroking or the movements of their real or artificial effector. Here, we describe a technique to establish ownership illusions in a setup that is more realistic, more intuitive, and of presumably higher ecological validity. It allows creating the virtual-hand illusion by having participants control the movements of a virtual hand presented on a screen or in virtual space in front of them. If the virtual hand moves in synchrony with the participants' own real hand, they tend to perceive the virtual hand as part of their own body. The technique also creates the virtual-face illusion by having participants control the movements of a virtual face in front of them, again with the effect that they tend to perceive the face as their own if it moves in synchrony with their real face. Studying the circumstances that illusions of this sort can be created, increased, or reduced provides important information about how people create and maintain representations of themselves.

  10. Collaborative Mission Design at NASA Langley Research Center

    Science.gov (United States)

    Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.

    2005-01-01

    NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.

  11. Virtual data in CMS production

    International Nuclear Information System (INIS)

    Arbree, A. et al.

    2004-01-01

    Initial applications of the GriPhyN Chimera Virtual Data System have been performed within the context of CMS Production of Monte Carlo Simulated Data. The GriPhyN Chimera system consists of four primary components: (1) a Virtual Data Language, which is used to describe virtual data products, (2) a Virtual Data Catalog, which is used to store virtual data entries, (3) an Abstract Planner, which resolves all dependencies of a particular virtual data product and forms a location and existence independent plan, (4) a Concrete Planner, which maps an abstract, logical plan onto concrete, physical grid resources accounting for staging in/out files and publishing results to a replica location service. A CMS Workflow Planner, MCRunJob, is used to generate virtual data products using the Virtual Data Language. Subsequently, a prototype workflow manager, known as WorkRunner, is used to schedule the instantiation of virtual data products across a grid

  12. Virtual Data in CMS Production

    CERN Document Server

    Arbree, A; Bourilkov, D; Cavanaugh, R J; Graham, G; Katageri, S; Rodríguez, J; Voeckler, J; Wilde, M

    2003-01-01

    Initial applications of the GriPhyN Chimera Virtual Data System have been performed within the context of CMS Production of Monte Carlo Simulated Data. The GriPhyN Chimera system consists of four primary components: 1) a Virtual Data Language, which is used to describe virtual data products, 2) a Virtual Data Catalog, which is used to store virtual data entries, 3) an Abstract Planner, which resolves all dependencies of a particular virtual data product and forms a location and existence independent plan, 4) a Concrete Planner, which maps an abstract, logical plan onto concrete, physical grid resources accounting for staging in/out files and publishing results to a replica location service. A CMS Workflow Planner, MCRunJob, is used to generate virtual data products using the Virtual Data Language. Subsequently, a prototype workflow manager, known as WorkRunner, is used to schedule the instantiation of virtual data products across a grid.

  13. Virtual reality exposure therapy

    OpenAIRE

    Rothbaum, BO; Hodges, L; Kooper, R

    1997-01-01

    It has been proposed that virtual reality (VR) exposure may be an alternative to standard in vivo exposure. Virtual reality integrates real-time computer graphics, body tracking devices, visual displays, and other sensory input devices to immerse a participant in a computer- generated virtual environment. Virtual reality exposure is potentially an efficient and cost-effective treatment of anxiety disorders. VR exposure therapy reduced the fear of heights in the first control...

  14. Virtual data

    International Nuclear Information System (INIS)

    Bjorklund, E.

    1993-01-01

    In the 1970's, when computers were memory limited, operating system designers created the concept of ''virtual memory'' which gave users the ability to address more memory than physically existed. In the 1990s, many large control systems have the potential for becoming data limited. We propose that many of the principles behind virtual memory systems (working sets, locality, caching, and clustering) can also be applied to data-limited systems - creating, in effect, ''virtual data systems.'' At the Los Alamos National Laboratory's Clinton P. Anderson Meson Physics Facility (LAMPF), we have applied these principles to a moderately sized (10,000 data points) data acquisition and control system. To test the principles, we measured the system's performance during tune-up, production, and maintenance periods. In this paper, we present a general discussion of the principles of a virtual data system along with some discussion of our own implementation and the results of our performance measurements

  15. Universidades virtuales: ¿aprendizaje real?

    OpenAIRE

    Valenzuela González, Jaime R.

    2015-01-01

    1. Introducción; 2. Modalidades educativas; 3. Concepto y características de las universidades virtuales; 4. Un modelo de universidad virtual; 5. Universidades virtuales ¿aprendizaje real?; 6. Tensiones de las universidades virtuales; 7. Referencias

  16. Using blackmail, bribery, and guilt to address the tragedy of the virtual intellectual commons

    Science.gov (United States)

    Griffith, P. C.; Cook, R. B.; Wilson, B. E.; Gentry, M. J.; Horta, L. M.; McGroddy, M.; Morrell, A. L.; Wilcox, L. E.

    2008-12-01

    One goal of the NSF's vision for 21st Century Cyberinfrastructure is to create a virtual intellectual commons for the scientific community where advanced technologies perpetuate transformation of this community's productivity and capabilities. The metadata describing scientific observations, like the first paragraph of a news story, should answer the questions who? what? why? where? when? and how?, making them discoverable, comprehensible, contextualized, exchangeable, and machine-readable. Investigators who create good scientific metadata increase the scientific value of their observations within such a virtual intellectual commons. But the tragedy of this commons arises when investigators wish to receive without giving in return. The authors of this talk will describe how they have used combinations of blackmail, bribery, and guilt to motivate good behavior by investigators participating in two major scientific programs (NASA's component of the Large-scale Biosphere-Atmosphere Experiment in Amazonia; and the US Climate Change Science Program's North American Carbon Program).

  17. MULTIMEDIA EDITOR OF VIRTUAL PHYSICAL LABORATORY IN DISTANCE LEARNING SYSTEM «KHERSON VIRTUAL UNIVERSITY»

    Directory of Open Access Journals (Sweden)

    Kravtsov H.

    2017-12-01

    Full Text Available The questions of modeling the structure of the objects of the system, the design of software modules and technologies for creating the editor of a virtual laboratory are considered. The relevance of the study is due to the lack in existing distance learning systems of support for the creation and use of virtual laboratory work on disciplines of the natural-science profile. The subject of the study is a software module for creating and using virtual laboratory work in a distance learning system. The purpose of the study is the development of a system model and a description of the software development technology of a virtual laboratory for physics for a distance learning system. The information technologies of designing the structure of the virtual laboratory and the main modes of the program module of the editor of the virtual laboratory work are described. At the heart of the structure of the software module "Virtual Laboratory" is the multimedia Web-editor of virtual laboratory works, which is created using object-oriented design technology. The program library of multimedia 3D objects created in the development environment of interactive graphic objects Unity3D. It unifies the process of creation and processing of virtual laboratory works. The basic mathematical package for supporting calculations is the mathematical processor Waterloo Maple. The application of the developed software interface will allow teachers to create laboratory works and use them in their distance courses. Students, in turn, will be able to conduct research, performing virtual laboratory work. As an example, the editor of the virtual laboratory for physics in the distance learning system "Kherson Virtual University" is considered.

  18. Virtualized Networks and Virtualized Optical Line Terminal (vOLT)

    Science.gov (United States)

    Ma, Jonathan; Israel, Stephen

    2017-03-01

    The success of the Internet and the proliferation of the Internet of Things (IoT) devices is forcing telecommunications carriers to re-architecture a central office as a datacenter (CORD) so as to bring the datacenter economics and cloud agility to a central office (CO). The Open Network Operating System (ONOS) is the first open-source software-defined network (SDN) operating system which is capable of managing and controlling network, computing, and storage resources to support CORD infrastructure and network virtualization. The virtualized Optical Line Termination (vOLT) is one of the key components in such virtualized networks.

  19. A study on development of virtual panel and virtual collaboration system

    International Nuclear Information System (INIS)

    Yoo, H. J.; Park, S. Y.; Lee, M. S.; Hong, J. H.

    2001-01-01

    The Nuclear I and C group of KEPRI has been peforming research and development on the VRCATS, Virtual Reality based Computer Assisted Training System. For the past two years, we have developed the first VRCATS for Youngkwang 1 nuclear power plant. Currently, we are developing an advanced VRCATS for Uljin 3 nuclear power plant. In this paepr, we will describe virtual panel system and VR based collaborate training system (VRCATS) of the Uljin VRCATS. Since Virtual Panel provides the same environment as the real MCR, trainees can expect the same training effect with Virtual Panel as they do with full scope simulator. i.e., trainees can check key variables and operate the plants and get responses with Virtual Panel. VRCTS provides another realistic training environment for trainees. In VRCATS, for example, operators in a group can work together t handle LOCA (Loss of Coolant Accident) according to emergency operation procedures

  20. Using virtual machine monitors to overcome the challenges of monitoring and managing virtualized cloud infrastructures

    Science.gov (United States)

    Bamiah, Mervat Adib; Brohi, Sarfraz Nawaz; Chuprat, Suriayati

    2012-01-01

    Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency, flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization, using this technique, memory, CPU and computational power is provided to clients' VMs by utilizing the underlying physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor (VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM). Considering the challenge of VM management, this paper describes several techniques to monitor and manage virtualized cloud infrastructures.

  1. Organization Virtual or Networked?

    Directory of Open Access Journals (Sweden)

    Rūta Tamošiūnaitė

    2013-08-01

    Full Text Available Purpose—to present distinction between “virtual organization” and “networked organization”; giving their definitions.Design/methodology/approach—review of previous researches, systemic analyses of their findings and synthesis of distinctive characteristics of ”virtual organization” and “networked organization.”Findings—the main result of the research is key diverse features separating ”virtual organization” and ”networked organization.” Definitions of “virtual organization” and “networked organization” are presented.Originality/Value—distinction between “virtual organization” and “networked organization” creates possibilities to use all advantages of those types of organizations and gives foundation for deeper researches in this field.Research type: general review.

  2. Perception of Virtual Audiences.

    Science.gov (United States)

    Chollet, Mathieu; Scherer, Stefan

    2017-01-01

    A growing body of evidence shows that virtual audiences are a valuable tool in the treatment of social anxiety, and recent works show that it also a useful in public-speaking training programs. However, little research has focused on how such audiences are perceived and on how the behavior of virtual audiences can be manipulated to create various types of stimuli. The authors used a crowdsourcing methodology to create a virtual audience nonverbal behavior model and, with it, created a dataset of videos with virtual audiences containing varying behaviors. Using this dataset, they investigated how virtual audiences are perceived and which factors affect this perception.

  3. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    Science.gov (United States)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  4. Virtual School Startups: Founder Processes in American K-12 Public Virtual Schools

    Science.gov (United States)

    Taylor, Brett D.; McNair, Delores E.

    2018-01-01

    Traditional school districts do not have a lot of experience with virtual schools and have lost students to state and charter virtual schools. To retain students and offer alternative learning opportunities, more public districts are starting their own virtual schools. This study was an examination of foundational processes at three California…

  5. The NASA Astrophysics Program

    Science.gov (United States)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  6. NASA systems engineering handbook

    Science.gov (United States)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  7. Leader competencies in virtual organization

    OpenAIRE

    Bulinska-Stangrecka, Helena

    2018-01-01

    This paper discusses the competence required in the leadership of virtual organization. The specics of virtual organization presents a challenge to traditional managerial styles. In order to achieve success in virtual environment, a leader must develop specic abilities. This analysis examines the uniqueness of the virtual organization, including team work and management. The last part presents ndings and summaries regarding e€ective e-leadership requirement. A virtual leader ma...

  8. Virtual Reality: An Overview.

    Science.gov (United States)

    Franchi, Jorge

    1994-01-01

    Highlights of this overview of virtual reality include optics; interface devices; virtual worlds; potential applications, including medicine and archaeology; problems, including costs; current research and development; future possibilities; and a listing of vendors and suppliers of virtual reality products. (Contains 11 references.) (LRW)

  9. Virtual currencies- Real opportunities?

    OpenAIRE

    Selldahl, Sara

    2013-01-01

    The European Central Bank defines virtual currencies as ”unregulated, digital money, which is issued and usually controlled by its developers, and used and accepted among the members of a specific virtual community.” (European Central Bank, 2012, p. 5) The interest in virtual currencies has increased immensely over the last few years as they become increasingly prevalent in our society across many different industries. Up until now, the field of virtual currencies has been mainly uncharted ...

  10. Agreements in Virtual Organizations

    Science.gov (United States)

    Pankowska, Malgorzata

    This chapter is an attempt to explain the important impact that contract theory delivers with respect to the concept of virtual organization. The author believes that not enough research has been conducted in order to transfer theoretical foundations for networking to the phenomena of virtual organizations and open autonomic computing environment to ensure the controllability and management of them. The main research problem of this chapter is to explain the significance of agreements for virtual organizations governance. The first part of this chapter comprises explanations of differences among virtual machines and virtual organizations for further descriptions of the significance of the first ones to the development of the second. Next, the virtual organization development tendencies are presented and problems of IT governance in highly distributed organizational environment are discussed. The last part of this chapter covers analysis of contracts and agreements management for governance in open computing environments.

  11. Virtual Machine in Automation Projects

    OpenAIRE

    Xing, Xiaoyuan

    2010-01-01

    Virtual machine, as an engineering tool, has recently been introduced into automation projects in Tetra Pak Processing System AB. The goal of this paper is to examine how to better utilize virtual machine for the automation projects. This paper designs different project scenarios using virtual machine. It analyzes installability, performance and stability of virtual machine from the test results. Technical solutions concerning virtual machine are discussed such as the conversion with physical...

  12. The Virtuality Continuum Revisited

    NARCIS (Netherlands)

    Nijholt, Antinus; Traum, D.; Zhai, Sh.; Kellogg, W.

    2005-01-01

    We survey the themes and the aims of a workshop devoted to the state-of-the-art virtuality continuum. In this continuum, ranging from fully virtual to real physical environments, allowing for mixed, augmented and desktop virtual reality, several perspectives can be taken. Originally, the emphasis

  13. The virtual nose: a 3-dimensional virtual reality model of the human nose.

    Science.gov (United States)

    Vartanian, A John; Holcomb, Joi; Ai, Zhuming; Rasmussen, Mary; Tardy, M Eugene; Thomas, J Regan

    2004-01-01

    The 3-dimensionally complex interplay of soft tissue, cartilaginous, and bony elements makes the mastery of nasal anatomy difficult. Conventional methods of learning nasal anatomy exist, but they often involve a steep learning curve. Computerized models and virtual reality applications have been used to facilitate teaching in a number of other complex anatomical regions, such as the human temporal bone and pelvic floor. We present a 3-dimensional (3-D) virtual reality model of the human nose. Human cadaveric axial cross-sectional (0.33-mm cuts) photographic data of the head and neck were used. With 460 digitized images, individual structures were traced and programmed to create a computerized polygonal model of the nose. Further refinements to this model were made using a number of specialized computer programs. This 3-D computer model of the nose was then programmed to operate as a virtual reality model. Anatomically correct 3-D model of the nose was produced. High-resolution images of the "virtual nose" demonstrate the nasal septum, lower lateral cartilages, middle vault, bony dorsum, and other structural details of the nose. Also, the model can be combined with a separate virtual reality model of the face and its skin cover as well as the skull. The user can manipulate the model in space, examine 3-D anatomical relationships, and fade superficial structures to reveal deeper ones. The virtual nose is a 3-D virtual reality model of the nose that is accurate and easy to use. It can be run on a personal computer or in a specialized virtual reality environment. It can serve as an effective teaching tool. As the first virtual reality model of the nose, it establishes a virtual reality platform from which future applications can be launched.

  14. Virtual Museums as Educational Tool

    DEFF Research Database (Denmark)

    2007-01-01

    Virtual Museums as Educational Tool On this web site you will find a collection of resources on virtual museums. The web site is meant to be a knowledge base for people with interest in museums, virtuality and education, and how virtual museums may contribute to adult education and lifelong...

  15. [Virtual reality in neurosurgery].

    Science.gov (United States)

    Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S

    2000-03-01

    Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.

  16. Stepping Into Science Data: Data Visualization in Virtual Reality

    Science.gov (United States)

    Skolnik, S.

    2017-12-01

    Have you ever seen people get really excited about science data? Navteca, along with the Earth Science Technology Office (ESTO), within the Earth Science Division of NASA's Science Mission Directorate have been exploring virtual reality (VR) technology for the next generation of Earth science technology information systems. One of their first joint experiments was visualizing climate data from the Goddard Earth Observing System Model (GEOS) in VR, and the resulting visualizations greatly excited the scientific community. This presentation will share the value of VR for science, such as the capability of permitting the observer to interact with data rendered in real-time, make selections, and view volumetric data in an innovative way. Using interactive VR hardware (headset and controllers), the viewer steps into the data visualizations, physically moving through three-dimensional structures that are traditionally displayed as layers or slices, such as cloud and storm systems from NASA's Global Precipitation Measurement (GPM). Results from displaying this precipitation and cloud data show that there is interesting potential for scientific visualization, 3D/4D visualizations, and inter-disciplinary studies using VR. Additionally, VR visualizations can be leveraged as 360 content for scientific communication and outreach and VR can be used as a tool to engage policy and decision makers, as well as the public.

  17. Study on virtual instrument developing system based on intelligent virtual control

    International Nuclear Information System (INIS)

    Tang Baoping; Cheng Fabin; Qin Shuren

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instrument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described

  18. Study on virtual instrument developing system based on intelligent virtual control

    Energy Technology Data Exchange (ETDEWEB)

    Tang Baoping; Cheng Fabin; Qin Shuren [Test Center, College of Mechanical Engineering, Chongqing University , Chongqing 400030 (China)

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instrument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.

  19. Virtual Reality Design: How Head-Mounted Displays Change Design Paradigms of Virtual Reality Worlds

    Directory of Open Access Journals (Sweden)

    Christian Stein

    2016-09-01

    Full Text Available With the upcoming generation of virtual reality HMDs, new virtual worlds, scenarios, and games are created especially for them. These are no longer bound to a remote screen or a relatively static user, but to an HMD as a more immersive device. This article discusses requirements for virtual scenarios implemented in new-generation HMDs to achieve a comfortable user experience. Furthermore, the effects of positional tracking are introduced and the relation between the user’s virtual and physical body is analyzed. The observations made are exemplified by existing software prototypes. They indicate how the term “virtual reality,” with all its loaded connotations, may be reconceptualized to express the peculiarities of HMDs in the context of gaming, entertainment, and virtual experiences.

  20. Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL

    Science.gov (United States)

    Dumas, Joseph D., II

    2002-01-01

    The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.

  1. Using Docker Containers to Extend Reproducibility Architecture for the NASA Earth Exchange (NEX)

    Science.gov (United States)

    Votava, Petr; Michaelis, Andrew; Spaulding, Ryan; Becker, Jeffrey C.

    2016-01-01

    NASA Earth Exchange (NEX) is a data, supercomputing and knowledge collaboratory that houses NASA satellite, climate and ancillary data where a focused community can come together to address large-scale challenges in Earth sciences. As NEX has been growing into a petabyte-size platform for analysis, experiments and data production, it has been increasingly important to enable users to easily retrace their steps, identify what datasets were produced by which process chains, and give them ability to readily reproduce their results. This can be a tedious and difficult task even for a small project, but is almost impossible on large processing pipelines. We have developed an initial reproducibility and knowledge capture solution for the NEX, however, if users want to move the code to another system, whether it is their home institution cluster, laptop or the cloud, they have to find, build and install all the required dependencies that would run their code. This can be a very tedious and tricky process and is a big impediment to moving code to data and reproducibility outside the original system. The NEX team has tried to assist users who wanted to move their code into OpenNEX on Amazon cloud by creating custom virtual machines with all the software and dependencies installed, but this, while solving some of the issues, creates a new bottleneck that requires the NEX team to be involved with any new request, updates to virtual machines and general maintenance support. In this presentation, we will describe a solution that integrates NEX and Docker to bridge the gap in code-to-data migration. The core of the solution is saemi-automatic conversion of science codes, tools and services that are already tracked and described in the NEX provenance system, to Docker - an open-source Linux container software. Docker is available on most computer platforms, easy to install and capable of seamlessly creating and/or executing any application packaged in the appropriate format. We

  2. Virtualization Technologies for the Business

    OpenAIRE

    Sabina POPESCU

    2011-01-01

    There is a new trend of change in today's IT industry. It's called virtualization. In datacenter virtualization can occur on several levels, but the type of virtualization has created this trend change is the operating system offered or server virtualization. OS virtualization technologies come in two forms. First, there is a software component that is used to simulate a natural machine that has total control of an operating system operating on the host equipment. The second is a hypervisor, ...

  3. Sobre objetos y experiencias virtuales

    OpenAIRE

    Pacho, Julián

    2009-01-01

    This paper analyses basic onto-epistemological properties of the virtual reality and suggests these theses. First, the virtual reality establishes a new nature; its essential feature is to be an organic world of emancipated techno-theories. Second, the virtual reality doesn’t substitutes the traditional book; it substitutes the world. Third, the experience of the world in the virtual reality excludes the natural world experience. Fourth, the ontology of virtual reality is build without an act...

  4. Etnografía virtual Virtual ethnography: exploring a methodological option for the research on virtual learning environments.

    Directory of Open Access Journals (Sweden)

    Álvarez Cadavid Gloria María

    2009-01-01

    Full Text Available Este artículo pretende esbozar algunas de las consideraciones metodológicas que hoy confluyen en el estudio de los ambientes virtuales, desde la opción etnográfica. De manera específica se quiere observar la forma en que, algunos investigadores han abordado el aspecto metodológico para estudiar los ambientes virtuales, líneas de evolución y posible contribución al conocimiento y mejoramiento de los procesos de e-learning. This article aims to outline some methodological considerations that merge together on the study of virtual learning environments, especially from the ethnographic perspective. Specifically, what we want to observe, is the way some researchers have approached the methodological aspect in order to study virtual learning environments, the evolution lines and the possible contribution they’ve made to knowledge and improvement of e-learning processes.

  5. Photon virtual bound state

    International Nuclear Information System (INIS)

    Inoue, J.; Ohtaka, K.

    2004-01-01

    We study virtual bound states in photonics, which are a vectorial extension of electron virtual bound states. The condition for these states is derived. It is found that the Mie resonant state which satisfies the condition that the size parameter is less than the angular momentum should be interpreted as a photon virtual bound state. In order to confirm the validity of the concept, we compare the photonic density of states, the width of which represents the lifetime of the photon virtual bound states, with numerical results

  6. [Research on the virtual water composition and virtual water trade for agriculture in Beijing].

    Science.gov (United States)

    Wang, Hong-rui; Wang, Yan; Wang, Jun-hong; Dong, Yan-yan; Han, Zhao-xing

    2007-12-01

    Based on the irrigation norm of typical district and county, and revised by the isoline map of Chinese crops water demand, the change of crops program was analyzed as well as the agricultural water use and its GDP benefits. Then the virtual water was calculated for years. At last, the input-output method was used to calculate the trade of virtual water in Beijing. As the results, the virtual water for cereal crops has been decreasing in Beijing, from 1.832 x 10(9) m3 in 1990 to 4.283 x 10(8) m3 in 2004. Otherwise the virtual water for technical crops has been increasing, which is from 9.06 x 10(8) m3 in 1990 to 1.492 x 10(9) m3 in 2004. On the whole, the virtual water for crops has been decreasing in Beijing. From the angle of primary products Beijing is a virtual water importing area. Virtual water importing of annual average is 2.37 x 10(8) m3, which is about 5.93% of the total water of Beijing. Virtual water has been an important supplement of local real water of Beijing.

  7. A convertor and user interface to import CAD files into worldtoolkit virtual reality systems

    Science.gov (United States)

    Wang, Peter Hor-Ching

    1996-01-01

    Virtual Reality (VR) is a rapidly developing human-to-computer interface technology. VR can be considered as a three-dimensional computer-generated Virtual World (VW) which can sense particular aspects of a user's behavior, allow the user to manipulate the objects interactively, and render the VW at real-time accordingly. The user is totally immersed in the virtual world and feel the sense of transforming into that VW. NASA/MSFC Computer Application Virtual Environments (CAVE) has been developing the space-related VR applications since 1990. The VR systems in CAVE lab are based on VPL RB2 system which consists of a VPL RB2 control tower, an LX eyephone, an Isotrak polhemus sensor, two Fastrak polhemus sensors, a folk of Bird sensor, and two VPL DG2 DataGloves. A dynamics animator called Body Electric from VPL is used as the control system to interface with all the input/output devices and to provide the network communications as well as VR programming environment. The RB2 Swivel 3D is used as the modelling program to construct the VW's. A severe limitation of the VPL VR system is the use of RB2 Swivel 3D, which restricts the files to a maximum of 1020 objects and doesn't have the advanced graphics texture mapping. The other limitation is that the VPL VR system is a turn-key system which does not provide the flexibility for user to add new sensors and C language interface. Recently, NASA/MSFC CAVE lab provides VR systems built on Sense8 WorldToolKit (WTK) which is a C library for creating VR development environments. WTK provides device drivers for most of the sensors and eyephones available on the VR market. WTK accepts several CAD file formats, such as Sense8 Neutral File Format, AutoCAD DXF and 3D Studio file format, Wave Front OBJ file format, VideoScape GEO file format, Intergraph EMS stereolithographics and CATIA Stereolithographics STL file formats. WTK functions are object-oriented in their naming convention, are grouped into classes, and provide easy C

  8. Sensor Webs as Virtual Data Systems for Earth Science

    Science.gov (United States)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  9. Art in virtual reality 2010

    Science.gov (United States)

    Chang, Ben

    2010-01-01

    For decades, virtual reality artwork has existed in a small but highly influential niche in the world of electronic and new media art. Since the early 1990's, virtual reality installations have come to define an extreme boundary point of both aesthetic experience and technological sophistication. Classic virtual reality artworks have an almost mythological stature - powerful, exotic, and often rarely exhibited. Today, art in virtual environments continues to evolve and mature, encompassing everything from fully immersive CAVE experiences to performance art in Second Life to the use of augmented and mixed reality in public space. Art in Virtual Reality 2010 is a public exhibition of new artwork that showcases the diverse ways that contemporary artists use virtual environments to explore new aesthetic ground and investigate the continually evolving relationship between our selves and our virtual worlds.

  10. Setting up virtual private network

    International Nuclear Information System (INIS)

    Huang Hongmei; Zhang Chengjun

    2003-01-01

    Setting up virtual private network for business enterprise provides a low cost network foundation, increases enterprise's network function and enlarges its private scope. The text introduces virtual private network's principal, privileges and protocols that use in virtual private network. At last, this paper introduces several setting up virtual private network's technologies which based on LAN

  11. Setting up virtual private network

    International Nuclear Information System (INIS)

    Huang Hongmei; Zhang Chengjun

    2003-01-01

    Setting up virtual private network for business enterprise provides a low cost network foundation, increases enterprise network function and enlarges its private scope. This text introduces virtual private network principal, privileges and protocols applied in virtual private network. At last, this paper introduces several setting up virtual private network technologies which is based on LAN

  12. Virtuality and Reality in Science

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1995-01-01

    This book compiles eight contributions devoted to the topical question about the relation between virtuality and reality. In the theoretical frame of quantum and relativistic particle physics, the concept of virtuality is used according to its strict and precise meaning. In this context, particles are generally invented before their discovery. Some famous historical experiments which led to the postulation and then the discovery of new particles are mentioned. These examples are used to illustrate and to discuss the concept of virtuality as well as the physical reality of virtual processes. But, how can the concept of virtuality in other scientific fields be applied ? In order to answer this question, the concepts of virtuality and reality are discussed in other branches of physics as well as in other fields such as geophysics, cosmology and biology. Philosophical and sociological implications of virtual realities are also considered. Moreover, in relation to virtuality and reality, the connections between modeling, simulation and experimentation, their respective roles, the advantages and risks of their use are discussed (in relation to nuclear sciences and geophysical problems) (N.T.)

  13. Optimizing Virtual Network Functions Placement in Virtual Data Center Infrastructure Using Machine Learning

    Science.gov (United States)

    Bolodurina, I. P.; Parfenov, D. I.

    2018-01-01

    We have elaborated a neural network model of virtual network flow identification based on the statistical properties of flows circulating in the network of the data center and characteristics that describe the content of packets transmitted through network objects. This enabled us to establish the optimal set of attributes to identify virtual network functions. We have established an algorithm for optimizing the placement of virtual data functions using the data obtained in our research. Our approach uses a hybrid method of visualization using virtual machines and containers, which enables to reduce the infrastructure load and the response time in the network of the virtual data center. The algorithmic solution is based on neural networks, which enables to scale it at any number of the network function copies.

  14. Incorporating Virtually Immersive Environments as a Collaborative Medium for Virtual Teaming

    Directory of Open Access Journals (Sweden)

    Charles J. Lesko, Jr.

    2012-08-01

    Full Text Available Virtually immersive environments incorporate the use of various computer modelling and simulation techniques enabling geographically dispersed virtual project teams to interact within an artificially projected three-dimensional space online. This study focused on adoption of virtually immersive technologies as a collaborative media to support virtual teaming of both graduate and undergraduate-level project management students. The data and information from this study has implications for educators using virtually immersive environments in the classroom. In this study, we specifically evaluated two key components in this paper: 1 students’ level of trust and; 2 students’ willingness to use the technology, along with their belief about the virtual environment’s ability to extend and improve knowledge sharing in their team work environment. We learned that while students did find the environment a positive add on for working collaboratively, there were students who were neither more nor less likely to use the technology for future collaborative ventures. Most of the students who were not very positive about the environment were “fence sitters” likely indicating needs related to additional training to improve communication skills. Finally, based on the full study results we have provided basic recommendations designed to support team trust building in the system along with interpersonal trust building to facilitate knowledge transfer and better strategic us of the technology.

  15. NASA's "Eyes On The Solar System:" A Real-time, 3D-Interactive Tool to Teach the Wonder of Planetary Science

    Science.gov (United States)

    Hussey, K.

    2014-12-01

    NASA's Jet Propulsion Laboratory is using video game technology to immerse students, the general public and mission personnel in our solar system and beyond. "Eyes on the Solar System," a cross-platform, real-time, 3D-interactive application that can run on-line or as a stand-alone "video game," is of particular interest to educators looking for inviting tools to capture students interest in a format they like and understand. (eyes.nasa.gov). It gives users an extraordinary view of our solar system by virtually transporting them across space and time to make first-person observations of spacecraft, planetary bodies and NASA/ESA missions in action. Key scientific results illustrated with video presentations, supporting imagery and web links are imbedded contextually into the solar system. Educators who want an interactive, game-based approach to engage students in learning Planetary Science will see how "Eyes" can be effectively used to teach its principles to grades 3 through 14.The presentation will include a detailed demonstration of the software along with a description/demonstration of how this technology is being adapted for education. There will also be a preview of coming attractions. This work is being conducted by the Visualization Technology Applications and Development Group at NASA's Jet Propulsion Laboratory, the same team responsible for "Eyes on the Earth 3D," and "Eyes on Exoplanets," which can be viewed at eyes.nasa.gov/earth and eyes.nasa.gov/exoplanets.

  16. Virtual Teaming and Collaboration Technology: A Study of Influences on Virtual Project Outcomes

    Science.gov (United States)

    Broils, Gary C.

    2014-01-01

    The purpose of this quantitative correlational study was to explore the relationships between the independent variables, contextual factors for virtual teams and collaboration technology, and the dependent variable, virtual project outcomes. The problem leading to the need for the study is a lower success rate for virtual projects compared to…

  17. Interpretations of virtual reality.

    Science.gov (United States)

    Voiskounsky, Alexander

    2011-01-01

    University students were surveyed to learn what they know about virtual realities. The two studies were administered with a half-year interval in which the students (N=90, specializing either in mathematics and science, or in social science and humanities) were asked to name particular examples of virtual realities. The second, but not the first study, was administered after the participants had the chance to see the movie "Avatar" (no investigation was held into whether they really saw it). While the students in both studies widely believed that activities such as social networking and online gaming represent virtual realities, some other examples provided by the students in the two studies differ: in the second study the participants expressed a better understanding of the items related to virtual realities. At the same time, not a single participant reported particular psychological states (either regular or altered) as examples of virtual realities. Profound popularization efforts need to be done to acquaint the public, including college students, with virtual realities and let the public adequately understand how such systems work.

  18. NASA reports

    Science.gov (United States)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    1992-01-01

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  19. Virtual Dance and Motion-Capture

    Directory of Open Access Journals (Sweden)

    Marc Boucher

    2011-01-01

    Full Text Available A general view of various ways in which virtual dance can be understood is presented in the first part of this article. It then appraises the uses of the term “virtual” in previous studies of digital dance. A more in-depth view of virtual dance as it relates to motion-capture is offered, and key issues are discussed regarding computer animation, digital imaging, motion signature, virtual reality and interactivity. The paper proposes that some forms of virtual dance be defined in relation to both digital technologies and contemporary theories of virtuality.

  20. Sense of presence and anxiety during virtual social interactions between a human and virtual humans.

    Science.gov (United States)

    Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Emmelkamp, Paul M G

    2014-01-01

    Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using different virtual reality displays. A non-clinical sample of 38 participants was randomly assigned to either a head-mounted display (HMD) with motion tracker and sterescopic view condition or a one-screen projection-based virtual reality display condition. Participants in both conditions engaged in free speech dialogues with virtual humans controlled by research assistants. It was hypothesized that exposure to virtual social interactions will elicit moderate levels of sense of presence and anxiety in both groups. Further it was expected that participants in the HMD condition will report higher scores of sense of presence and anxiety than participants in the one-screen projection-based display condition. Results revealed that in both conditions virtual social interactions were associated with moderate levels of sense of presence and anxiety. Additionally, participants in the HMD condition reported significantly higher levels of presence than those in the one-screen projection-based display condition (p = .001). However, contrary to the expectations neither the average level of anxiety nor the highest level of anxiety during exposure to social virtual environments differed between the groups (p = .97 and p = .75, respectively). The findings suggest that virtual social interactions can be successfully applied in VRET to enhance sense of presence and anxiety. Furthermore, our results indicate that one-screen projection-based displays can successfully activate levels of anxiety in

  1. Sense of presence and anxiety during virtual social interactions between a human and virtual humans

    Directory of Open Access Journals (Sweden)

    Nexhmedin Morina

    2014-04-01

    Full Text Available Virtual reality exposure therapy (VRET has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using different virtual reality displays. A non-clinical sample of 38 participants was randomly assigned to either a head-mounted display (HMD with motion tracker and sterescopic view condition or a one-screen projection-based virtual reality display condition. Participants in both conditions engaged in free speech dialogues with virtual humans controlled by research assistants. It was hypothesized that exposure to virtual social interactions will elicit moderate levels of sense of presence and anxiety in both groups. Further it was expected that participants in the HMD condition will report higher scores of sense of presence and anxiety than participants in the one-screen projection-based display condition. Results revealed that in both conditions virtual social interactions were associated with moderate levels of sense of presence and anxiety. Additionally, participants in the HMD condition reported significantly higher levels of presence than those in the one-screen projection-based display condition (p = .001. However, contrary to the expectations neither the average level of anxiety nor the highest level of anxiety during exposure to social virtual environments differed between the groups (p = .97 and p = .75, respectively. The findings suggest that virtual social interactions can be successfully applied in VRET to enhance sense of presence and anxiety. Furthermore, our results indicate that one-screen projection-based displays can successfully activate levels

  2. Got a Minute? Tune Your iPad to NASA's Best

    Science.gov (United States)

    Leon, N.; Fitzpatrick, A. J.; Fisher, D. K.; Netting, R. A.

    2012-12-01

    Space Place Prime is a content presentation app for the iPad. It gathers some of the best and most recent web offerings from NASA. A spinoff of NASA's popular kids' website The Space Place (spaceplace.nasa.gov or science.nasa.gov/kids), Space Place Prime taps timely educational and easy-to-read articles from the website, as well as daily updates of NASA space and Earth images and the latest informative videos, including Science Casts and the monthly "What's up in the Sky." Space Place Prime targets a multigenerational audience, including anyone with an interest in NASA and science in general. Features are offered for kids, teachers, parents, space enthusiasts, and everyone in between. The app can be the user's own NASA news source. Like a newspaper or magazine app, Space Place Prime downloads new content daily via wireless connection. In addition to the Space Place website, several NASA RSS feeds are tapped to provide new content. Content is retained for the previous several days or some number of editions of each feed. All content is controlled on the server side, so we can push features about the latest news or change any content without updating the app in the Apple Store. The Space Place Prime interface is a virtual endless grid of small images with short titles, each image a link to an image, video, article, or hands-on activity for kids. The grid can be dragged in any direction with no boundaries. (Image links repeat to fill in the grid "infinitely.") For a more focused search, a list mode presents menus of images, videos, and articles (including activity articles) separately. If the user tags a page (image, video, or article) as a Favorite, the content is downloaded and maintained on the device, and remains permanently available regardless of connectivity. (Very large video files are permanently retained on the server side, however, rather than taking up the limited storage on the iPad.) Facebook, twitter, and e-mail connections make any feature easy to

  3. Innovation and Virtual Environments: Towards Virtual Knowledge Brokers

    OpenAIRE

    VERONA G; PRANDELLI E.; SAWHNEY M.

    2006-01-01

    The authors examine the implications of virtual customer environments for supporting the innovation process. By building on the literature of knowledge brokers, they introduce the concept of virtual knowledge brokers — actors who leverage the internet to support third parties’ innovation activities. These actors enable firms to extend their reach in engaging with customers and they also allow firms to have a richer dialogue with customers because of their perceived neutrality. Consequently...

  4. Virtual Pediatric Hospital

    Science.gov (United States)

    ... Thoracopaedia - An Imaging Encyclopedia of Pediatric Thoracic Disease Virtual Pediatric Hospital is the Apprentice's Assistant™ Last revised ... pediatric resources: GeneralPediatrics.com | PediatricEducation.org | SearchingPediatrics.com Virtual Pediatric Hospital is curated by Donna M. D' ...

  5. Virtual Project Teams

    DEFF Research Database (Denmark)

    Bjørn, Pernille

    technology in six real-life virtual teams, two in industry and four in education, applying interpretative research and action research methods. Two main lines of investigation are pursued: the first involves an examination of the organisational issues related to groupware adaptation in virtual project teams......, professional disciplines, time differences and technology. This thesis comprises a general introduction, referred to as the summary report, and seven research papers, which deal in detail with the results and findings of the empirical cases. The summary report provides a general introduction to the research......, while the second looks at the social context and practices of virtual project teams. Two of the key findings are 1) that the process of groupware adaptation by virtual project teams can be viewed as a process of expanding and aligning the technological frames of the participants, which includes mutual...

  6. Interactive exploration of tokamak turbulence simulations in virtual reality

    International Nuclear Information System (INIS)

    Kerbel, G.D.; Pierce, T.; Milovich, J.L.; Shumaker, D.E.

    1996-01-01

    We have developed an immersive visualization system designed for interactive data exploration as an integral part of our computing environment for studying tokamak turbulence. This system of codes can reproduce the results of simulations visually for scrutiny in real time, interactively and with more realism than ever before. At peak performance, the VR system can present for view some 400 coordinated images per second. The long term vision this approach targets is a open-quote holodeck-like close-quote virtual-reality environment in which one can explore gyrofluid or gyrokinetic plasma simulations interactively and in real time, visually, with concurrent simulations of experimental diagnostic devices. In principle, such a open-quote virtual tokamak close-quote computed environment could be as all encompassing or as focussed as one likes, in terms of the physics involved. The computing framework in one within which a group of researchers can work together to produce a real and identifiable product with easy access to all contributions. This could be our version of NASA's next generation Numerical Wind Tunnel. The principal purpose of this VR capability for Numerical Tokamak simulation is to provide interactive visual experience to help create new ways of understanding aspects of the convective transport processes operating in tokamak fusion experiments. The effectiveness of the visualization method is strongly dependent on the density of frame-to-frame correlation. Below a threshold of this quantity, short term visual memory does not bridge the gap between frames well enough for there to exist a strong visual connection. Above the threshold, evolving structures appear clearly. The visualizations show the 3D structure of vortex evolution and the gyrofluid motion associated with it. We discovered that it was very helpful for visualizing the cross field flows to compress the virtual world in the toroidal angle

  7. Exploring Virtual Reality for Classroom Use: The Virtual Reality and Education Lab at East Carolina University.

    Science.gov (United States)

    Auld, Lawrence W. S.; Pantelidis, Veronica S.

    1994-01-01

    Describes the Virtual Reality and Education Lab (VREL) established at East Carolina University to study the implications of virtual reality for elementary and secondary education. Highlights include virtual reality software evaluation; hardware evaluation; computer-based curriculum objectives which could use virtual reality; and keeping current…

  8. Virtual Machine Logbook - Enabling virtualization for ATLAS

    International Nuclear Information System (INIS)

    Yao Yushu; Calafiura, Paolo; Leggett, Charles; Poffet, Julien; Cavalli, Andrea; Frederic, Bapst

    2010-01-01

    ATLAS software has been developed mostly on CERN linux cluster lxplus or on similar facilities at the experiment Tier 1 centers. The fast rise of virtualization technology has the potential to change this model, turning every laptop or desktop into an ATLAS analysis platform. In the context of the CernVM project we are developing a suite of tools and CernVM plug-in extensions to promote the use of virtualization for ATLAS analysis and software development. The Virtual Machine Logbook (VML), in particular, is an application to organize work of physicists on multiple projects, logging their progress, and speeding up ''context switches'' from one project to another. An important feature of VML is the ability to share with a single 'click' the status of a given project with other colleagues. VML builds upon the save and restore capabilities of mainstream virtualization software like VMware, and provides a technology-independent client interface to them. A lot of emphasis in the design and implementation has gone into optimizing the save and restore process to makepractical to store many VML entries on a typical laptop disk or to share a VML entry over the network. At the same time, taking advantage of CernVM's plugin capabilities, we are extending the CernVM platform to help increase the usability of ATLAS software. For example, we added the ability to start the ATLAS event display on any computer running CernVM simply by clicking a button in a web browser. We want to integrate seamlessly VML with CernVM unique file system design to distribute efficiently ATLAS software on every physicist computer. The CernVM File System (CVMFS) download files on-demand via HTTP, and cache it locally for future use. This reduces by one order of magnitude the download sizes, making practical for a developer to work with multiple software releases on a virtual machine.

  9. Virtual Seminar Room

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Fosgerau, Anders; Hansen, Peter Søren Kirk

    1999-01-01

    The initial design considerations and research goals for an ATM network based virtual seminar room with 5 sites are presented.......The initial design considerations and research goals for an ATM network based virtual seminar room with 5 sites are presented....

  10. International Observe the Moon Night: Eight Years of Engaging Scientists, Educators, and Citizen Enthusiasts in NASA Science

    Science.gov (United States)

    Buxner, Sanlyn; Jones, Andrea; Bleacher, Lora; Wasser, Molly; Day, Brian; Bakerman, Maya; Shaner, Andrew; Joseph, Emily; International Observe the Moon Night Coordinating Committee

    2018-01-01

    International Observe the Moon Night (InOMN) is an annual worldwide event, held in the fall, that celebrates lunar and planetary science and exploration. InOMN is sponsored by NASA’s Lunar Reconnaissance Orbiter (LRO) in collaboration with NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the NASA’s Heliophysics Education Consortium, CosmoQuest, Night Sky Network, and Science Festival Alliance. Other key partners include the NASA Museum Alliance, Night Sky Network, and NASA Solar System Ambassadors.In 2017 InOMN will be held on October 28th, and will engage thousands of people across the globe to observe and learn about the Moon and its connection to planetary science. This year, we have partnered with the NASA Science Mission Directorate total solar eclipse team to highlight InOMN as an opportunity to harness and sustain the interest and momentum in space science and observation following the August 21st eclipse. Since 2010, over 3,800 InOMN events have been registered engaging over 550,000 visitors worldwide. Most InOMN events are held in the United States, with strong representation from many other countries. We will present current results from the 2017 InOMN evaluation.Through InOMN, we annually provide resources such as event-specific Moon maps, presentations, advertising materials, and certificates of participation. Additionally, InOMN highlights partner resources such as online interfaces including Moon Trek (https://moontrek.jpl.nasa.gov) and CosmoQuest (https://cosmoquest.org/x/) to provide further opportunities to engage with NASA science.Learn more about InOMN at http://observethemoonnight.org.

  11. A Virtual Commissioning Learning Platform

    DEFF Research Database (Denmark)

    Mortensen, Steffen; Madsen, Ole

    2018-01-01

    The introduction of reconfigurable manufacturing systems (RMS), Industry 4.0 and the associated technologies requires the establishment of new competencies. Towards that goal, Aalborg University (AAU) has developed an Industry 4.0 learning factory, the AAU Smart Production Lab. The AAU Smart...... Production Lab integrates a number of Industry 4.0 technologies for learning and research purposes. One of the many techniques is virtual commissioning. Virtual commissioning uses a virtual plant model and real controllers (PLCs) enabling a full emulation of the manufacturing system for verification. Virtual...... commissioning can lower the commissioning time up to 63%, allowing faster time to market. However, virtual commission is still missing industrial impact one of the reasons being lack of competencies and integration experiences. The paper presents the setup of the virtual commissioning learning platform...

  12. Virtual toolbox

    Science.gov (United States)

    Jacobus, Charles J.; Jacobus, Heidi N.; Mitchell, Brian T.; Riggs, A. J.; Taylor, Mark J.

    1993-04-01

    At least three of the five senses must be fully addressed in a successful virtual reality (VR) system. Sight, sound, and touch are the most critical elements for the creation of the illusion of presence. Since humans depend so much on sight to collect information about their environment, this area has been the focus of much of the prior art in virtual reality, however, it is also crucial that we provide facilities for force, torque, and touch reflection, and sound replay and 3-D localization. In this paper we present a sampling of hardware and software in the virtual environment maker's `toolbox' which can support rapidly building up of customized VR systems. We provide demonstrative examples of how some of the tools work and we speculate about VR applications and future technology needs.

  13. A Virtual History of Mauritius

    African Journals Online (AJOL)

    admpather

    University of Mauritius, Réduit, Mauritius. 116. A Virtual History ... out will be presented. Keywords: Virtual Heritage, Virtual Reality, Archaeology, Mauritius ... money would better be spent on other major education and IT development projects ...

  14. Effects of VIrtualIty on Employee Performance and CommItment: A Research

    OpenAIRE

    Baysal, Zeynep; Baraz, Barış

    2017-01-01

    In the modern business world, due to the impact of technological advancements and globalisation,organisations are obliged to keep up with the change in order to seize new opportunities they encounterand overcome the obstacles in their way. Concepts of virtuality and virtual organisations are amongthese concepts which surfaced as a result of these changes. All white-collar employees have a certaindegree of virtuality and the fact that organisations are taking rapid steps towards virtualisation...

  15. Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions

    Science.gov (United States)

    Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Savalle, Renaud; Stéphane, Erard; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinski, Dave; Sky, Jim; Higgins, Chuck; Imai, Masafumi

    2016-04-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  16. Virtual reality for employability skills

    OpenAIRE

    Minocha, Shailey; Tudor, Ana-Despina

    2017-01-01

    We showed a variety of virtual reality technologies, and through examples, we discussed how virtual reality technology is transforming work styles and workplaces. Virtual reality is becoming pervasive in almost all domains starting from arts, environmental causes to medical education and disaster management training, and to supporting patients with Dementia. Thus, an awareness of the virtual reality technology and its integration in curriculum design will provide and enhance employability ski...

  17. Investigating Astromaterials Curation Applications for Dexterous Robotic Arms

    Science.gov (United States)

    Snead, C. J.; Jang, J. H.; Cowden, T. R.; McCubbin, F. M.

    2018-01-01

    The Astromaterials Acquisition and Curation office at NASA Johnson Space Center is currently investigating tools and methods that will enable the curation of future astromaterials collections. Size and temperature constraints for astromaterials to be collected by current and future proposed missions will require the development of new robotic sample and tool handling capabilities. NASA Curation has investigated the application of robot arms in the past, and robotic 3-axis micromanipulators are currently in use for small particle curation in the Stardust and Cosmic Dust laboratories. While 3-axis micromanipulators have been extremely successful for activities involving the transfer of isolated particles in the 5-20 micron range (e.g. from microscope slide to epoxy bullet tip, beryllium SEM disk), their limited ranges of motion and lack of yaw, pitch, and roll degrees of freedom restrict their utility in other applications. For instance, curators removing particles from cosmic dust collectors by hand often employ scooping and rotating motions to successfully free trapped particles from the silicone oil coatings. Similar scooping and rotating motions are also employed when isolating a specific particle of interest from an aliquot of crushed meteorite. While cosmic dust curators have been remarkably successful with these kinds of particle manipulations using handheld tools, operator fatigue limits the number of particles that can be removed during a given extraction session. The challenges for curation of small particles will be exacerbated by mission requirements that samples be processed in N2 sample cabinets (i.e. gloveboxes). We have been investigating the use of compact robot arms to facilitate sample handling within gloveboxes. Six-axis robot arms potentially have applications beyond small particle manipulation. For instance, future sample return missions may involve biologically sensitive astromaterials that can be easily compromised by physical interaction with

  18. The Virtual Robotics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  19. The Virtual Robotics Laboratory

    International Nuclear Information System (INIS)

    Kress, R.L.; Love, L.J.

    1997-01-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations

  20. Virtual Campus Hub technology

    DEFF Research Database (Denmark)

    Vercoulen, Frank; Badger, Merete; Monaco, Lucio

    This deliverable briefly describes which technological components have been delivered for the Virtual Campus Hub and how they can be used. A detailed discussion of the technical details of the components, how they were realized and how they fit the VCH concept can be found in deliverables D5.......4. Virtual Campus Hub Technology Evaluation Report and D6.7 The Virtual Campus Hub Concept....

  1. Real and virtual radiation

    International Nuclear Information System (INIS)

    Wolynec, E.

    1988-01-01

    Electrodisintegration cross sections related to the corresponding photonuclear process through virtual-photon spectra. A brief review of virtual-photon theory is presented. Calculations of DWBA virtual-photon spectra for finite nuclei are compared with experimental results. The multipole decomposition of electrodisintegration cross sections using these spectra is discussed and several experimental results are presented. A brief review for the bremsstrahlung cross section is also presented. (author) [pt

  2. Varieties of virtualization

    Science.gov (United States)

    Ellis, Stephen R.

    1991-01-01

    Natural environments have a content, i.e., the objects in them; a geometry, i.e., a pattern of rules for positioning and displacing the objects; and a dynamics, i.e., a system of rules describing the effects of forces acting on the objects. Human interaction with most common natural environments has been optimized by centuries of evolution. Virtual environments created through the human-computer interface similarly have a content, geometry, and dynamics, but the arbitrary character of the computer simulation creating them does not insure that human interaction with these virtual environments will be natural. The interaction, indeed, could be supernatural but it also could be impossible. An important determinant of the comprehensibility of a virtual environment is the correspondence between the environmental frames of reference and those associated with the control of environmental objects. The effects of rotation and displacement of control frames of reference with respect to corresponding environmental references differ depending upon whether perceptual judgement or manual tracking performance is measured. The perceptual effects of frame of reference displacement may be analyzed in terms of distortions in the process of virtualizing the synthetic environment space. The effects of frame of reference displacement and rotation have been studied by asking subjects to estimate exocentric direction in a virtual space.

  3. Cooperation, Coordination, and Trust in Virtual Teams: Insights from Virtual Games

    Science.gov (United States)

    Korsgaard, M. Audrey; Picot, Arnold; Wigand, Rolf T.; Welpe, Isabelle M.; Assmann, Jakob J.

    This chapter considers fundamental concepts of effective virtual teams, illustrated by research on Travian, a massively multiplayer online strategy game wherein players seek to build empires. Team inputs are the resources that enable individuals to work interdependently toward a common goal, including individual and collective capabilities, shared knowledge structures, and leadership style. Team processes, notably coordination and cooperation, transform team inputs to desired collective outcomes. Because the members of virtual teams are geographically dispersed, relying on information and communication technology, three theories are especially relevant for understanding how they can function effectively: social presence theory, media richness theory, and media synchronicity theory. Research in settings like Travian can inform our understanding of structures, processes, and performance of virtual teams. Such research could provide valuable insight into the emergence and persistence of trust and cooperation, as well as the impact of different communication media for coordination and information management in virtual organizations.

  4. ROLE OF VIRTUALIZATION IN CLOUD COMPUTING

    OpenAIRE

    Avneet kaur; Dr. Gaurav Gupta; Dr. Gurjit Singh Bhathal

    2017-01-01

    Cloud Computing is the fundamental change happening in the field of Information Technology.. Virtualization is the key component of cloud computing. With the use of virtualization, cloud computing brings about not only convenience and efficiency benefits, but also great challenges in the field of data security and privacy protection. .In this paper, we are discussing about virtualization, architecture of virtualization technology as well as Virtual Machine Monitor (VMM). Further discussing ab...

  5. Virtual care

    DEFF Research Database (Denmark)

    Kamp, Annette; Aaløkke Ballegaard, Stinne

    of retrenchment, promising better quality, empowerment of citizens and work that is smarter and more qualified. Through ethnographic field studies we study the introduction of virtual home care in Danish elderly care, focusing on the implications for relational work and care relations. Virtual home care entails...... the performance of specific home care services by means of video conversations rather than physical visits in the citizens’ homes. As scholars within the STS tradition maintain, technologies do not simply replace a human function; they rather transform care work, redistributing tasks between citizens, technology...... point out how issues of trust and surveillance, which are always negotiated in care relations, are in fact accentuated in this kind of virtual care work. Moreover, we stress that the contemporary institutional context, organization and time schedules have a vast impact on the practices developed....

  6. vSphere virtual machine management

    CERN Document Server

    Fitzhugh, Rebecca

    2014-01-01

    This book follows a step-by-step tutorial approach with some real-world scenarios that vSphere businesses will be required to overcome every day. This book also discusses creating and configuring virtual machines and also covers monitoring virtual machine performance and resource allocation options. This book is for VMware administrators who want to build their knowledge of virtual machine administration and configuration. It's assumed that you have some experience with virtualization administration and vSphere.

  7. APLIKASI SERVER VIRTUAL IP UNTUK MIKROKONTROLER

    OpenAIRE

    Ashari, Ahmad

    2008-01-01

    Selama ini mikrokontroler yang terhubung ke satu komputer hanya dapat diakses melalui satu IP saja, padahal kebanyakan sistem operasi sekarang dapat memperjanjikan lebih dari satu IP untuk setiap komputer dalam bentuk virtual IP. Penelitian ini mengkaji pemanfaatan virtual IP dari IP aliasing pada sistem operasi Linux sebagai Server Virtual IP untuk mikrokontroler. Prinsip dasar Server Virtual IP adalah pembuatan Virtual Host pada masing-masing IP untuk memproses paket-paket data dan menerjem...

  8. Security challenges for virtualization in cloud

    International Nuclear Information System (INIS)

    Tayab, A.

    2015-01-01

    Virtualization is a model that is vastly growing in IT industry. Virtualization provides more than one logical resource in one single physical machine. Infrastructure use cloud services and on behalf of virtualization, cloud computing is also a rapidly growing model of IT industry. Cloud provider and cloud user, both remain ignorant of each other's security. Since virtualization and cloud computing are rapidly expanding and becoming more and more complex in infrastructure, more security is required to protect them from potential attacks and security threats. Virtualization provides various benefits in terms of hardware utilization, resources protection, remote access and other resources. This paper intends to discuss the common exploits of security uses in the virtualized environment and focuses on the security threats from the attacker's perspective. This paper discuss the major areas of virtualized model environment and also address the security concerns. And finally presents a solution for secure valorization in IT infrastructure and to protect inter communication of virtual machines. (author)

  9. Talking with a Virtual Human : Controlling the Human Experience and Behavior in a Virtual Conversation

    NARCIS (Netherlands)

    Qu, C.

    2014-01-01

    Virtual humans are often designed to replace real humans in virtual reality applications for e.g., psychotherapy, education and entertainment. In general, applications with virtual humans are created for modifying a person's knowledge, beliefs, attitudes, emotions or behaviors. Reaching these

  10. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    Science.gov (United States)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  11. Diagnostic accuracy in virtual dermatopathology

    DEFF Research Database (Denmark)

    Mooney, E.; Kempf, W.; Jemec, G.B.E.

    2012-01-01

    Background Virtual microscopy is used for teaching medical students and residents and for in-training and certification examinations in the United States. However, no existing studies compare diagnostic accuracy using virtual slides and photomicrographs. The objective of this study was to compare...... diagnostic accuracy of dermatopathologists and pathologists using photomicrographs vs. digitized images, through a self-assessment examination, and to elucidate assessment of virtual dermatopathology. Methods Forty-five dermatopathologists and pathologists received a randomized combination of 15 virtual...... slides and photomicrographs with corresponding clinical photographs and information in a self-assessment examination format. Descriptive data analysis and comparison of groups were performed using a chi-square test. Results Diagnostic accuracy in dermatopathology using virtual dermatopathology...

  12. Through the Eyes of NASA: NASA's 2017 Eclipse Education Progam

    Science.gov (United States)

    Mayo, L.

    2017-12-01

    Over the last three years, NASA has been developing plans to bring the August 21st total solar eclipse to the nation, "as only NASA can", leveraging its considerable space assets, technology, scientists, and its unmatched commitment to science education. The eclipse, long anticipated by many groups, represents the largest Big Event education program that NASA has ever undertaken. It is the latest in a long string of successful Big Event international celebrations going back two decades including both transits of Venus, three solar eclipses, solar maximum, and mission events such as the MSL/Curiosity landing on Mars, and the launch of the Lunar Reconnaissance Orbiter (LRO) to name a few. This talk will detail NASA's program development methods, strategic partnerships, and strategies for using this celestial event to engage the nation and improve overall science literacy.

  13. International virtual teams engineering global success

    CERN Document Server

    Brewer, P

    2015-01-01

    As a complete guide to international virtual team communication with practical problem-solving strategies, this book is a must read for managers and engineers in all stages of their professional development This book provides essential information for creating and maintaining successful international virtual teams for those who manage, participate in, or train others in international virtual teaming. Based on new studies in engineering communication, this book presents processes and principles that can help managers and engineers establish global virtual teams that work, assess the virtual team climate, and maintain the effectiveness of virtual teams across cultural boundaries. It provides knowledge and tools necessary to understand the variable contexts of global virtual teams, so that organizations are able to respond to inevitable changes in technology and the global marketplace.

  14. NASA Earthdata Forums: An Interactive Venue for Discussions of NASA Data and Earth Science

    Science.gov (United States)

    Hearty, Thomas J., III; Acker, James; Meyer, Dave; Northup, Emily A.; Bagwell, Ross E.

    2017-01-01

    We demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  15. CCSDS Advanced Orbiting Systems Virtual Channel Access Service for QoS MACHETE Model

    Science.gov (United States)

    Jennings, Esther H.; Segui, John S.

    2011-01-01

    To support various communications requirements imposed by different missions, interplanetary communication protocols need to be designed, validated, and evaluated carefully. Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in "Simulator of Space Communication Networks" (NPO-41373), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. By building abstract behavioral models of network protocols, one can validate performance after identifying the appropriate metrics of interest. The innovators have extended the MACHETE model library to include a generic link-layer Virtual Channel (VC) model supporting quality-of-service (QoS) controls based on IP streams. The main purpose of this generic Virtual Channel model addition was to interface fine-grain flow-based QoS (quality of service) between the network and MAC layers of the QualNet simulator, a commercial component of MACHETE. This software model adds the capability of mapping IP streams, based on header fields, to virtual channel numbers, allowing extended QoS handling at link layer. This feature further refines the QoS v existing at the network layer. QoS at the network layer (e.g. diffserv) supports few QoS classes, so data from one class will be aggregated together; differentiating between flows internal to a class/priority is not supported. By adding QoS classification capability between network and MAC layers through VC, one maps multiple VCs onto the same physical link. Users then specify different VC weights, and different queuing and scheduling policies at the link layer. This VC model supports system performance analysis of various virtual channel link-layer QoS queuing schemes independent of the network-layer QoS systems.

  16. Distributed Virtual Reality: System Concepts for Cooperative Training and Commanding in Virtual Worlds

    Directory of Open Access Journals (Sweden)

    Eckhard Freund

    2003-02-01

    Full Text Available The general aim of the development of virtual reality technology for automation applications at the IRF is to provide the framework for Projective Virtual Reality which allows users to "project" their actions in the virtual world into the real world primarily by means of robots but also by other means of automation. The framework is based on a new task-oriented approach which builds on the "task deduction" capabilities of a newly developed virtual reality system and a task planning component. The advantage of this new approach is that robots which work at great distances from the control station can be controlled as easily and intuitively as robots that work right next to the control station. Robot control technology now provides the user in the virtual world with a "prolonged arm" into the physical environment, thus paving the way for a new quality of userfriendly man machine interfaces for automation applications. Lately, this work has been enhanced by a new structure that allows to distribute the virtual reality application over multiple computers. With this new step, it is now possible for multiple users to work together in the same virtual room, although they may physically be thousands of miles apart. They only need an Internet or ISDN connection to share this new experience. Last but not least, the distribution technology has been further developed to not just allow users to cooperate but to be able to run the virtual world on many synchronized PCs so that a panorama projection or even a cave can be run with 10 synchronized PCs instead of high-end workstations, thus cutting down the costs for such a visualization environment drastically and allowing for a new range of applications.

  17. Software for virtual accelerator designing

    International Nuclear Information System (INIS)

    Kulabukhova, N.; Ivanov, A.; Korkhov, V.; Lazarev, A.

    2012-01-01

    The article discusses appropriate technologies for software implementation of the Virtual Accelerator. The Virtual Accelerator is considered as a set of services and tools enabling transparent execution of computational software for modeling beam dynamics in accelerators on distributed computing resources. Distributed storage and information processing facilities utilized by the Virtual Accelerator make use of the Service-Oriented Architecture (SOA) according to a cloud computing paradigm. Control system tool-kits (such as EPICS, TANGO), computing modules (including high-performance computing), realization of the GUI with existing frameworks and visualization of the data are discussed in the paper. The presented research consists of software analysis for realization of interaction between all levels of the Virtual Accelerator and some samples of middle-ware implementation. A set of the servers and clusters at St.-Petersburg State University form the infrastructure of the computing environment for Virtual Accelerator design. Usage of component-oriented technology for realization of Virtual Accelerator levels interaction is proposed. The article concludes with an overview and substantiation of a choice of technologies that will be used for design and implementation of the Virtual Accelerator. (authors)

  18. Virtual currencies : Real opportunities?

    OpenAIRE

    Selldahl, Sara

    2013-01-01

    AbstractThe European Central Bank defines virtual currencies as ”unregulated, digital money, which is issued and usuallycontrolled by its developers, and used and accepted among the members of a specific virtual community.”(European Central Bank, 2012, p. 5) The interest in virtual currencies has increased immensely over the last fewyears as they become increasingly prevalent in our society across many different industries. Up until now, the field ofvirtual currencies has been mainly uncharte...

  19. Corporate Training in Virtual Worlds

    Directory of Open Access Journals (Sweden)

    Charles Nebolsky

    2004-12-01

    Full Text Available This paper presents virtual training worlds that are relatively low-cost distributed collaborative learning environments suitable for corporate training. A virtual training world allows a facilitator, experts and trainees communicating and acting in the virtual environment for practicing skills during collaborative problem solving. Using these environments is beneficial to both trainees and corporations. Two system prototypes – the sales training and the leadership training virtual worlds – are described. The leadership training course design is discussed in details.

  20. Sense of presence and anxiety during virtual social interactions between a human and virtual humans

    OpenAIRE

    Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Emmelkamp, Paul M.G.

    2014-01-01

    Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using d...

  1. NASA EEE Parts and NASA Electronic Parts and Packaging (NEPP) Program Update 2018

    Science.gov (United States)

    Label, Kenneth A.; Sampson, Michael J.; Pellish, Jonathan A.; Majewicz, Peter J.

    2018-01-01

    NASA Electronic Parts and Packaging (NEPP) Program and NASA Electronic Parts Assurance Group (NEPAG) are NASAs point-of-contacts for reliability and radiation tolerance of EEE parts and their packages. This presentation includes an FY18 program overview.

  2. State Virtual Libraries

    Science.gov (United States)

    Pappas, Marjorie L.

    2003-01-01

    Virtual library? Electronic library? Digital library? Online information network? These all apply to the growing number of Web-based resource collections managed by consortiums of state library entities. Some, like "INFOhio" and "KYVL" ("Kentucky Virtual Library"), have been available for a few years, but others are just starting. Searching for…

  3. CEDS Addresses: Virtual and Blended Learning

    Science.gov (United States)

    US Department of Education, 2015

    2015-01-01

    The Common Education Data Standards (CEDS) common data vocabulary supports the collection and use of information about virtual and blended learning. The data element "Virtual Indicator", introduced in version 3 of CEDS, supports a range of virtual learning-related use cases. The Virtual Indicator element may be related to a Course…

  4. Virtual Reality for Anxiety Disorders

    Directory of Open Access Journals (Sweden)

    Elif Uzumcu

    2018-03-01

    Full Text Available Virtual reality is a relatively new exposure tool that uses three-dimensional computer-graphics-based technologies which allow the individual to feel as if they are physically inside the virtual environment by misleading their senses. As virtual reality studies have become popular in the field of clinical psychology in recent years, it has been observed that virtual-reality-based therapies have a wide range of application areas, especially on anxiety disorders. Studies indicate that virtual reality can be more realistic than mental imagery and can create a stronger feeling of ԰resenceԻ that it is a safer starting point compared to in vivo exposure; and that it can be applied in a more practical and controlled manner. The aim of this review is to investigate exposure studies based on virtual reality in anxiety disorders (specific phobias, panic disorder and agoraphobias, generalized anxiety disorder, social phobia, posttraumatic stress disorder and obsessive compulsive disorder.

  5. The ethnography of virtual reality

    Directory of Open Access Journals (Sweden)

    Gavrilović Ljiljana 1

    2004-01-01

    Full Text Available This paper discusses possible application of ethnographic research in the realm of virtual reality, especially in the relationship between cultures in virtual communities. This represents an entirely new area of ethnographic research and therefore many adjustments in the research design are needed for example, a development of a specific method of data gathering and tools for their verification. A virtual, cyber space is a version of social space more or less synchronous with it, but without the, "real", that is, physical presence of the people who create it. This virtual reality, defined and bounded by virtual space, is in fact real - and though we are not able to observe real, physical parameters of its existence, we can perceive its consequences. In sum, an innovative ethnographic research method is fully applicable for exploring the realm of virtual reality; in order to do so we need to expand, in addition to the new research design and methods, the field of science itself.

  6. Virtual reality technology and applications

    CERN Document Server

    Mihelj, Matjaž; Beguš, Samo

    2014-01-01

    As virtual reality expands from the imaginary worlds of science fiction and pervades every corner of everyday life, it is becoming increasingly important for students and professionals alike to understand the diverse aspects of this technology. This book aims to provide a comprehensive guide to the theoretical and practical elements of virtual reality, from the mathematical and technological foundations of virtual worlds to the human factors and the applications that enrich our lives: in the fields of medicine, entertainment, education and others. After providing a brief introduction to the topic, the book describes the kinematic and dynamic mathematical models of virtual worlds. It explores the many ways a computer can track and interpret human movement, then progresses through the modalities that make up a virtual world: visual, acoustic and haptic. It explores the interaction between the actual and virtual environments, as well as design principles of the latter. The book closes with an examination of diff...

  7. Surgery applications of virtual reality

    Science.gov (United States)

    Rosen, Joseph

    1994-01-01

    Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.

  8. NASA Parts Selection List (NPSL) WWW Site http://nepp.nasa.gov/npsl

    Science.gov (United States)

    Brusse, Jay

    2000-01-01

    The NASA Parts Selection List (NPSL) is an on-line resource for electronic parts selection tailored for use by spaceflight projects. The NPSL provides a list of commonly used electronic parts that have a history of satisfactory use in spaceflight applications. The objective of this www site is to provide NASA projects, contractors, university experimenters, et al with an easy to use resource that provides a baseline of electronic parts from which designers are encouraged to select. The NPSL is an ongoing resource produced by Code 562 in support of the NASA HQ funded NASA Electronic Parts and Packaging (NEPP) Program. The NPSL is produced as an electronic format deliverable made available via the referenced www site administered by Code 562. The NPSL does not provide information pertaining to patented or proprietary information. All of the information contained in the NPSL is available through various other public domain resources such as US Military procurement specifications for electronic parts, NASA GSFC's Preferred Parts List (PPL-21), and NASA's Standard Parts List (MIL-STD975).

  9. Virtual Sustainability

    Directory of Open Access Journals (Sweden)

    William Sims Bainbridge

    2010-09-01

    Full Text Available In four ways, massively multiplayer online role-playing games may serve as tools for advancing sustainability goals, and as laboratories for developing alternatives to current social arrangements that have implications for the natural environment. First, by moving conspicuous consumption and other usually costly status competitions into virtual environments, these virtual worlds might reduce the need for physical resources. Second, they provide training that could prepare individuals to be teleworkers, and develop or demonstrate methods for using information technology to replace much transportation technology, notably in commuting. Third, virtual worlds and online games build international cooperation, even blending national cultures, thereby inching us toward not only the world consciousness needed for international agreements about the environment, but also toward non-spatial government that cuts across archaic nationalisms. Finally, realizing the potential social benefits of this new technology may urge us to reconsider a number of traditional societal institutions.

  10. Virtual Tower

    International Nuclear Information System (INIS)

    Wayne, R.A.

    1997-01-01

    The primary responsibility of an intrusion detection system (IDS) operator is to monitor the system, assess alarms, and summon and coordinate the response team when a threat is acknowledged. The tools currently provided to the operator are somewhat limited: monitors must be switched, keystrokes must be entered to call up intrusion sensor data, and communication with the response force must be maintained. The Virtual tower is an operator interface assembled from low-cost commercial-off-the-shelf hardware and software; it enables large amounts of data to be displayed in a virtual manner that provides instant recognition for the operator and increases assessment accuracy in alarm annunciator and control systems. This is accomplished by correlating and fusing the data into a 360-degree visual representation that employs color, auxiliary attributes, video, and directional audio to prompt the operator. The Virtual Tower would be a valuable low-cost enhancement to existing systems

  11. Development of a Virtual Museum Including a 4d Presentation of Building History in Virtual Reality

    Science.gov (United States)

    Kersten, T. P.; Tschirschwitz, F.; Deggim, S.

    2017-02-01

    In the last two decades the definition of the term "virtual museum" changed due to rapid technological developments. Using today's available 3D technologies a virtual museum is no longer just a presentation of collections on the Internet or a virtual tour of an exhibition using panoramic photography. On one hand, a virtual museum should enhance a museum visitor's experience by providing access to additional materials for review and knowledge deepening either before or after the real visit. On the other hand, a virtual museum should also be used as teaching material in the context of museum education. The laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has developed a virtual museum (VM) of the museum "Alt-Segeberger Bürgerhaus", a historic town house. The VM offers two options for visitors wishing to explore the museum without travelling to the city of Bad Segeberg, Schleswig-Holstein, Germany. Option a, an interactive computer-based, tour for visitors to explore the exhibition and to collect information of interest or option b, to immerse into virtual reality in 3D with the HTC Vive Virtual Reality System.

  12. NASA Accountability Report

    Science.gov (United States)

    1997-01-01

    NASA is piloting fiscal year (FY) 1997 Accountability Reports, which streamline and upgrade reporting to Congress and the public. The document presents statements by the NASA administrator, and the Chief Financial Officer, followed by an overview of NASA's organizational structure and the planning and budgeting process. The performance of NASA in four strategic enterprises is reviewed: (1) Space Science, (2) Mission to Planet Earth, (3) Human Exploration and Development of Space, and (4) Aeronautics and Space Transportation Technology. Those areas which support the strategic enterprises are also reviewed in a section called Crosscutting Processes. For each of the four enterprises, there is discussion about the long term goals, the short term objectives and the accomplishments during FY 1997. The Crosscutting Processes section reviews issues and accomplishments relating to human resources, procurement, information technology, physical resources, financial management, small and disadvantaged businesses, and policy and plans. Following the discussion about the individual areas is Management's Discussion and Analysis, about NASA's financial statements. This is followed by a report by an independent commercial auditor and the financial statements.

  13. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  14. Saving Money and Time with Virtual Server

    CERN Document Server

    Sanders, Chris

    2006-01-01

    Microsoft Virtual Server 2005 consistently proves to be worth its weight in gold, with new implementations thought up every day. With this product now a free download from Microsoft, scores of new users are able to experience what the power of virtualization can do for their networks. This guide is aimed at network administrators who are interested in ways that Virtual Server 2005 can be implemented in their organizations in order to save money and increase network productivity. It contains information on setting up a virtual network, virtual consolidation, virtual security, virtual honeypo

  15. NASA Technology Plan 1998

    Science.gov (United States)

    1998-01-01

    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA.

  16. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    Science.gov (United States)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  17. Management and Engineering of Virtual Enterprises

    DEFF Research Database (Denmark)

    Tølle, Martin

    ) Component layer: consists of reusable components and modules. - Each layer builds on the previous one, i.e. the VE concept is captured in VERA, and the VERA can be used to structure each of the VERAM components. * C) A methodology for virtual enterprise named VEM (Virtual Enterprise Methodology) - One...... to the set up of virtual enterprises. Types of work preparation include definitions (e.g. shared terminology), ICT support (e.g. infrastructure and applications), procedures (e.g. how to set up virtual enterprises, partner selection), reference models (e.g. contract models and product structure) and the like....... * B) A framework and a reference architecture for virtual enterprises named VERAM (Virtual Enterprise Reference Architecture and Methodology) and VERA (Virtual Enterprise Reference Architecture) respectively. - VERAM is a framework that structures the body of knowledge related to preparation, set up...

  18. Virtual Reality in the Classroom.

    Science.gov (United States)

    Pantelidis, Veronica S.

    1993-01-01

    Considers the concept of virtual reality; reviews its history; describes general uses of virtual reality, including entertainment, medicine, and design applications; discusses classroom uses of virtual reality, including a software program called Virtus WalkThrough for use with a computer monitor; and suggests future possibilities. (34 references)…

  19. Interacting with a Virtual Conductor

    NARCIS (Netherlands)

    Bos, Pieter; Reidsma, Dennis; Ruttkay, Zsófia; Nijholt, Anton; Harper, Richard; Rauterberg, Matthias; Combetto, Marco

    This paper presents a virtual embodied agent that can conduct musicians in a live performance. The virtual conductor conducts music specified by a MIDI file and uses input from a microphone to react to the tempo of the musicians. The current implementation of the virtual conductor can interact with

  20. Virtual reality in surgical training.

    Science.gov (United States)

    Lange, T; Indelicato, D J; Rosen, J M

    2000-01-01

    Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.

  1. Virtual School Counseling

    Science.gov (United States)

    Osborn, Debra S.; Peterson, Gary W.; Hale, Rebecca R.

    2015-01-01

    The advent of virtual schools opens doors to opportunity for delivery of student services via the Internet. Through the use of structured interviews with four practicing Florida virtual school counselors, and a follow-up survey, the authors examined the experiences and reflections of school counselors who are employed full time in a statewide…

  2. NASA Information Technology Implementation Plan

    Science.gov (United States)

    2000-01-01

    NASA's Information Technology (IT) resources and IT support continue to be a growing and integral part of all NASA missions. Furthermore, the growing IT support requirements are becoming more complex and diverse. The following are a few examples of the growing complexity and diversity of NASA's IT environment. NASA is conducting basic IT research in the Intelligent Synthesis Environment (ISE) and Intelligent Systems (IS) Initiatives. IT security, infrastructure protection, and privacy of data are requiring more and more management attention and an increasing share of the NASA IT budget. Outsourcing of IT support is becoming a key element of NASA's IT strategy as exemplified by Outsourcing Desktop Initiative for NASA (ODIN) and the outsourcing of NASA Integrated Services Network (NISN) support. Finally, technology refresh is helping to provide improved support at lower cost. Recently the NASA Automated Data Processing (ADP) Consolidation Center (NACC) upgraded its bipolar technology computer systems with Complementary Metal Oxide Semiconductor (CMOS) technology systems. This NACC upgrade substantially reduced the hardware maintenance and software licensing costs, significantly increased system speed and capacity, and reduced customer processing costs by 11 percent.

  3. Analisis Gameplay Game Genre Virtual Pet

    Directory of Open Access Journals (Sweden)

    Abi Senoprabowo

    2015-02-01

    Full Text Available Game adalah struktur interaktif yang membuat pemain berjuang menuju sebuah tujuan. Game dapat memberikan emosi dan mood, menghubungkan dengan orang latihan, sarana latihan, serta dapat memberikan edukasi. Salah satu game yang berkembang saat ini adalah game bergenre Virtual pet. Game virtual pet merupakan game simulasi memelihara sesuatu. Virtual pet memiliki gameplay yang menarik dan menyenangkan yang membuat pemain seolah-olah benar-benar memiliki binatang peliharaan mereka sendiri. Virtual pet dianggap oleh sebagian besar penggunanya dapat memberikan kegembiraan serta rasa kasih sayang karena tingkat interaksinya yang baik. Banyak pengembang game pemula yang mengembangkan genre ini sebagai game yang mereka buat karena kemudahaan dan tingkat penggunanya yang banyak. Akan tetapi banyak dari pengembang game pemula tidak memperhatikan tingkat keberlanjutan game virtual pet yang mereka buat sehingga membuat pemain cepat bosan. Pada penelitian ini, analisis game bergenre virtual pet yang sudah sukses dibuat seperti Zombigotchi, Tamagotchi Unicorn, dan Bird Land, diharapkan dapat membantu para pengembang game pemula agar mengetahui cara merancang dan mengembangkan game virtual pet dengan baik. Kata Kunci: game, gameplay, virtual pet

  4. Ethnography in a Virtual World

    Science.gov (United States)

    Shumar, Wesley; Madison, Nora

    2013-01-01

    This article situates the discussion of virtual ethnography within the larger political/economic changes of twenty-first century consumer capitalism and suggests that increasingly our entire social world is a virtual world and that there were very particular utopian and dystopian framings of virtual community growing out of that history. The…

  5. Virtual superheroes: using superpowers in virtual reality to encourage prosocial behavior.

    Directory of Open Access Journals (Sweden)

    Robin S Rosenberg

    Full Text Available BACKGROUND: Recent studies have shown that playing prosocial video games leads to greater subsequent prosocial behavior in the real world. However, immersive virtual reality allows people to occupy avatars that are different from them in a perceptually realistic manner. We examine how occupying an avatar with the superhero ability to fly increases helping behavior. PRINCIPAL FINDINGS: Using a two-by-two design, participants were either given the power of flight (their arm movements were tracked to control their flight akin to Superman's flying ability or rode as a passenger in a helicopter, and were assigned one of two tasks, either to help find a missing diabetic child in need of insulin or to tour a virtual city. Participants in the "super-flight" conditions helped the experimenter pick up spilled pens after their virtual experience significantly more than those who were virtual passengers in a helicopter. CONCLUSION: The results indicate that having the "superpower" of flight leads to greater helping behavior in the real world, regardless of how participants used that power. A possible mechanism for this result is that having the power of flight primed concepts and prototypes associated with superheroes (e.g., Superman. This research illustrates the potential of using experiences in virtual reality technology to increase prosocial behavior in the physical world.

  6. Virtual Peace Education

    Science.gov (United States)

    Firer, Ruth

    2008-01-01

    This article is based on the convictions that peace education is the basis for any sustainable non-violent relations between parties in a conflict, and that virtual peace education is almost the only feasible way to practise peace education in an open violent conflict as is the current Israeli/Palestinians one. Moreover, virtual peace education…

  7. Developing a Virtual Book - Material for Virtual Learning Environments

    Directory of Open Access Journals (Sweden)

    Anne Karin Larsen

    2007-12-01

    Full Text Available This article describes the process of, and considerations taken when Virtual Learning Materials were developed for an international study in Comparative Social Work arranged by the VIRCLASS project. The steps taken and the elements included in the Virtual Book – A Guide to Social Work in Europe are presented in details to inform others who are planning to make virtual learning materials. Students from 11 countries in Europe participated, and their reception of this material and learning outcomes from using it are analysed and presented. Furthermore; the article discuss how the learning material contributes to students’ learning, how a common understanding of practice enhances knowledge-building and in what way audio-visual learning material can contribute to good learning in e-learning courses. The results are discussed in relation to theories about composite texts and community of inquiry, and outlines some challenges for e-teachers’ competences.

  8. A virtual tour of virtual reality

    Science.gov (United States)

    Harris, Margaret

    2018-03-01

    Virtual-reality glasses might still be on the starting blocks, but plenty of companies are working on the technology. Margaret Harris tries on some examples at the Photonics West show in San Francisco

  9. NASA's Big Data Task Force

    Science.gov (United States)

    Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.

    2017-12-01

    Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.

  10. Learning Ethics through Virtual Fieldtrips: Teaching Ethical Theories through Virtual Experiences

    Science.gov (United States)

    Houser, Rick; Thoma, Steve; Coppock, Amanda; Mazer, Matthew; Midkiff, Lewis; Younanian, Marisa; Young, Sarah

    2011-01-01

    Teaching ethical reasoning is considered an important component of the undergraduate learning experience. A recent approach to teaching using experiential learning is through virtual worlds such as Second Life. We discuss how ethics may be taught using experiential learning in the virtual world of Second Life. Participants in the class in this…

  11. Virtual Stationary Automata for Mobile Networks

    National Research Council Canada - National Science Library

    Dolev, Shlomi; Gilbert, Seth; Lahiani, Limor; Lynch, Nancy; Nolte, Tina

    2005-01-01

    We define a programming abstraction for mobile networks called the Virtual Stationary Automata programming layer, consisting of real mobile clients, virtual timed I/O automata called virtual stationary automata (VSAs...

  12. Engaging Scientists with the CosmoQuest Citizen Science Virtual Research Facility

    Science.gov (United States)

    Grier, Jennifer A.; Gay, Pamela L.; Buxner, Sanlyn; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    NASA Science Mission Directorate missions and research return more data than subject matter experts (SMEs - scientists and engineers) can effectively utilize. Citizen scientist volunteers represent a robust pool of energy and talent that SMEs can draw upon to advance projects that require the processing of large quantities of images, and other data. The CosmoQuest Virtual Research Facility has developed roles and pathways to engage SMEs in ways that advance the education of the general public while producing science results publishable in peer-reviewed journals, including through the CosmoQuest Facility Small Grants Program and CosmoAcademy. Our Facility Small Grants Program is open to SMEs to fund them to work with CosmoQuest and engage the public in analysis. Ideal projects have a specific and well-defined need for additional eyes and minds to conduct basic analysis and data collection (such as crater counting, identifying lineaments, etc.) Projects selected will undergo design and implementation as Citizen Science Portals, and citizen scientists will be recruited and trained to complete the project. Users regularly receive feedback on the quality of their data. Data returned will be analyzed by the SME and the CQ Science Team for joint publication in a peer-reviewed journal. SMEs are also invited to consider presenting virtual learning courses in the subjects of their choice in CosmoAcademy. The audience for CosmoAcademy are lifelong-learners and education professionals. Classes are capped at 10, 15, or 20 students. CosmoAcademy can also produce video material to archive seminars long-term. SMEs function as advisors in many other areas of CosmoQuest, including the Educator's Zone (curricular materials for K-12 teachers), Science Fair Projects, and programs that partner to produce material for podcasts and planetaria. Visit the CosmoQuest website at cosmoquest.org to learn more, and to investigate current opportunities to engage with us. CosmoQuest is funded

  13. Integration of the virtual 3D model of a control system with the virtual controller

    Science.gov (United States)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the

  14. Manually locating physical and virtual reality objects.

    Science.gov (United States)

    Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G

    2014-09-01

    In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.

  15. A Virtual Tomb for Kelvingrove: Virtual Reality, Archaeology and Education

    Directory of Open Access Journals (Sweden)

    Melissa M. Terras

    1999-11-01

    Full Text Available The use of computers as an educational resource in museums is becoming increasingly popular as more and more institutions realise that multimedia displays are very successful in imparting a broad variety of information. Although three-dimensional reconstructions of sites and structures have been used in archaeology for many years, the majority of museum computer installations have dealt with two-dimensional media because of the costs, equipment and labour involved in producing interactive 3D scenes. The birth of VRML (Virtual Reality Modeling Language has changed the way virtual reality is implemented and viewed. As an internet protocol, VRML can be used on most major platforms and implemented by anyone with a word-processing package, an internet browser, and the relevant plug-in. There is no reason why this new technology cannot be adopted by archaeologists and museums to produce virtual reality models of structures, sites and objects to aid the research of specialists and the education of the public. This project (undertaken at the Humanities Advanced Technology and Information Institute, University of Glasgow, Scotland, between May and October 1998 investigated the practicalities involved in using VRML to create a virtual reality model for use in a public space. A model of the Egyptian tomb of Sen-nedjem was developed for installation in the Egyptian Gallery of the Kelvingrove Museum and Art Gallery, Glasgow, in the hope that the introduction of this computer display would encourage the museum visitor's interest in the gallery's existing artefacts. Creation of the model would also investigate the possibility of using VRML to build accurate archaeological reconstructions cheaply and efficiently using publicly available software and existing archaeological resources. A fully functioning virtual reality model of the tomb of Sen-nedjem has been created, incorporating interactive elements, photorealistic representation, and animation, and this

  16. A conceptualisation of the relationship between virtual experience and cybernauts' satisfaction with virtual communities

    OpenAIRE

    Bouattour , Dorra; Debos , Franck; Abdellatif , Tarek

    2015-01-01

    International audience; In this research, we developed and tested an integrated model relating individuals' satisfaction with their experiential values in virtual communities. Using a realised factorial analysis and regression, we identified the factors that influence member satisfaction in virtual communities. Adopting Mathwick et al.'s (2001) concept of experiential value, we proposed a conceptualisation of a virtual experience that fits closely with the original nomological framework advoc...

  17. Virtual environments simulation in research reactor

    Science.gov (United States)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  18. Virtually naked: virtual environment reveals sex-dependent nature of skin disclosure.

    Directory of Open Access Journals (Sweden)

    Anna M Lomanowska

    Full Text Available The human tendency to reveal or cover naked skin reflects a competition between the individual propensity for social interactions related to sexual appeal and interpersonal touch versus climatic, environmental, physical, and cultural constraints. However, due to the ubiquitous nature of these constraints, isolating on a large scale the spontaneous human tendency to reveal naked skin has remained impossible. Using the online 3-dimensional virtual world of Second Life, we examined spontaneous human skin-covering behavior unhindered by real-world climatic, environmental, and physical variables. Analysis of hundreds of avatars revealed that virtual females disclose substantially more naked skin than virtual males. This phenomenon was not related to avatar hypersexualization as evaluated by measurement of sexually dimorphic body proportions. Furthermore, analysis of skin-covering behavior of a population of culturally homogeneous avatars indicated that the propensity of female avatars to reveal naked skin persisted despite explicit cultural norms promoting less revealing attire. These findings have implications for further understanding how sex-specific aspects of skin disclosure influence human social interactions in both virtual and real settings.

  19. Virtual polytopes

    International Nuclear Information System (INIS)

    Panina, G Yu; Streinu, I

    2015-01-01

    Originating in diverse branches of mathematics, from polytope algebra and toric varieties to the theory of stressed graphs, virtual polytopes represent a natural algebraic generalization of convex polytopes. Introduced as elements of the Grothendieck group associated to the semigroup of convex polytopes, they admit a variety of geometrizations. The present survey connects the theory of virtual polytopes with other geometrical subjects, describes a series of geometrizations together with relations between them, and gives a selection of applications. Bibliography: 50 titles

  20. Virtualization and cloud computing in dentistry.

    Science.gov (United States)

    Chow, Frank; Muftu, Ali; Shorter, Richard

    2014-01-01

    The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.

  1. Kinematic evaluation of virtual walking trajectories.

    Science.gov (United States)

    Cirio, Gabriel; Olivier, Anne-Hélène; Marchal, Maud; Pettré, Julien

    2013-04-01

    Virtual walking, a fundamental task in Virtual Reality (VR), is greatly influenced by the locomotion interface being used, by the specificities of input and output devices, and by the way the virtual environment is represented. No matter how virtual walking is controlled, the generation of realistic virtual trajectories is absolutely required for some applications, especially those dedicated to the study of walking behaviors in VR, navigation through virtual places for architecture, rehabilitation and training. Previous studies focused on evaluating the realism of locomotion trajectories have mostly considered the result of the locomotion task (efficiency, accuracy) and its subjective perception (presence, cybersickness). Few focused on the locomotion trajectory itself, but in situation of geometrically constrained task. In this paper, we study the realism of unconstrained trajectories produced during virtual walking by addressing the following question: did the user reach his destination by virtually walking along a trajectory he would have followed in similar real conditions? To this end, we propose a comprehensive evaluation framework consisting on a set of trajectographical criteria and a locomotion model to generate reference trajectories. We consider a simple locomotion task where users walk between two oriented points in space. The travel path is analyzed both geometrically and temporally in comparison to simulated reference trajectories. In addition, we demonstrate the framework over a user study which considered an initial set of common and frequent virtual walking conditions, namely different input devices, output display devices, control laws, and visualization modalities. The study provides insight into the relative contributions of each condition to the overall realism of the resulting virtual trajectories.

  2. Virtualization for the LHCb Online system

    International Nuclear Information System (INIS)

    Bonaccorsi, Enrico; Brarda, Loic; Moine, Gary; Neufeld, Niko

    2011-01-01

    Virtualization has long been advertised by the IT-industry as a way to cut down cost, optimise resource usage and manage the complexity in large data-centers. The great number and the huge heterogeneity of hardware, both industrial and custom-made, has up to now led to reluctance in the adoption of virtualization in the IT infrastructure of large experiment installations. Our experience in the LHCb experiment has shown that virtualization improves the availability and the manageability of the whole system. We have done an evaluation of available hypervisors / virtualization solutions and find that the Microsoft HV technology provides a high level of maturity and flexibility for our purpose. We present the results of these comparison tests, describing in detail, the architecture of our virtualization infrastructure with a special emphasis on the security for services visible to the outside world. Security is achieved by a sophisticated combination of VLANs, firewalls and virtual routing - the cost and benefits of this solution are analysed. We have adapted our cluster management tools, notably Quattor, for the needs of virtual machines and this allows us to migrate smoothly services on physical machines to the virtualized infrastructure. The procedures for migration will also be described. In the final part of the document we describe our recent R and D activities aiming to replacing the SAN-backend for the virtualization by a cheaper iSCSI solution - this will allow to move all servers and related services to the virtualized infrastructure, excepting the ones doing hardware control via non-commodity PCI plugin cards.

  3. Virtual corporations, enterprise and organisation

    Directory of Open Access Journals (Sweden)

    Carmen RÃDUT

    2009-06-01

    Full Text Available Virtual organisation is a strategic paradigm that is centred on the use of information and ICT to create value. Virtual organisation is presented as a metamanagement strategy that has application in all value oriented organisations. Within the concept of Virtual organisation, the business model is an ICT based construct that bridges and integrates enterprise strategic and operational concerns. Firms try to ameliorate the impacts of risk and product complexity by forming alliances and partnerships with others to spread the risk of new products and new ventures and to increase organisational competence. The result is a networked virtual organization.

  4. Playful mediation and virtual sociality

    Directory of Open Access Journals (Sweden)

    Sihem NAJJAR

    2010-01-01

    Full Text Available As a space of sociability, virtual games, especially online role playing games, allow us to capture the interest of the playfulness in social life, but they are means by which users are able to experiment their relationship to others. The virtual games as a mediation device, constitute a "pretext" to forge friendships, develop love relationships, improve language skills, discover other cultures, etc. Based on a sociological survey of Tunisian Internet users (both sexes fans of virtual games we try to show how playful mediation is producing a multifaceted virtual sociality inherent in our contemporary societies.

  5. DEVELOPMENT OF A VIRTUAL MUSEUM INCLUDING A 4D PRESENTATION OF BUILDING HISTORY IN VIRTUAL REALITY

    OpenAIRE

    T. P. Kersten; F. Tschirschwitz; S. Deggim

    2017-01-01

    In the last two decades the definition of the term “virtual museum” changed due to rapid technological developments. Using today’s available 3D technologies a virtual museum is no longer just a presentation of collections on the Internet or a virtual tour of an exhibition using panoramic photography. On one hand, a virtual museum should enhance a museum visitor's experience by providing access to additional materials for review and knowledge deepening either before or after the real ...

  6. Realistic Visualization of Virtual Views

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    that can be impractical and sometime impossible. In addition, the artificial nature of data often makes visualized virtual scenarios not realistic enough. Not realistic in the sense that a synthetic scene is easy to discriminate visually from a natural scene. A new field of research has consequently...... developed and received much attention in recent years: Realistic Virtual View Synthesis. The main goal is a high fidelity representation of virtual scenarios while easing modeling and physical phenomena simulation. In particular, realism is achieved by the transfer to the novel view of all the physical...... phenomena captured in the reference photographs, (i.e. the transfer of photographic-realism). An overview of most prominent approaches in realistic virtual view synthesis will be presented and briefly discussed. Applications of proposed methods to visual survey, virtual cinematography, as well as mobile...

  7. Virtual Prototyping at CERN

    Science.gov (United States)

    Gennaro, Silvano De

    The VENUS (Virtual Environment Navigation in the Underground Sites) project is probably the largest Virtual Reality application to Engineering design in the world. VENUS is just over one year old and offers a fully immersive and stereoscopic "flythru" of the LHC pits for the proposed experiments, including the experimental area equipment and the surface models that are being prepared for a territorial impact study. VENUS' Virtual Prototypes are an ideal replacement for the wooden models traditionally build for the past CERN machines, as they are generated directly from the EUCLID CAD files, therefore they are totally reliable, they can be updated in a matter of minutes, and they allow designers to explore them from inside, in a one-to-one scale. Navigation can be performed on the computer screen, on a stereoscopic large projection screen, or in immersive conditions, with an helmet and 3D mouse. By using specialised collision detection software, the computer can find optimal paths to lower each detector part into the pits and position it to destination, letting us visualize the whole assembly probess. During construction, these paths can be fed to a robot controller, which can operate the bridge cranes and build LHC almost without human intervention. VENUS is currently developing a multiplatform VR browser that will let the whole HEP community access LHC's Virtual Protoypes over the web. Many interesting things took place during the conference on Virtual Reality. For more information please refer to the Virtual Reality section.

  8. Chemical-Based Formulation Design: Virtual Experimentation

    DEFF Research Database (Denmark)

    Conte, Elisa; Gani, Rafiqul

    This paper presents a software, the virtual Product-Process Design laboratory (virtual PPD-lab) and the virtual experimental scenarios for design/verification of consumer oriented liquid formulated products where the software can be used. For example, the software can be employed for the design......, the additives and/or their mixtures (formulations). Therefore, the experimental resources can focus on a few candidate product formulations to find the best product. The virtual PPD-lab allows various options for experimentations related to design and/or verification of the product. For example, the selection...... design, model adaptation). All of the above helps to perform virtual experiments by blending chemicals together and observing their predicted behaviour. The paper will highlight the application of the virtual PPD-lab in the design and/or verification of different consumer products (paint formulation...

  9. Virtual landmarks

    Science.gov (United States)

    Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Bai, Peirui; Torigian, Drew A.

    2017-03-01

    Much has been published on finding landmarks on object surfaces in the context of shape modeling. While this is still an open problem, many of the challenges of past approaches can be overcome by removing the restriction that landmarks must be on the object surface. The virtual landmarks we propose may reside inside, on the boundary of, or outside the object and are tethered to the object. Our solution is straightforward, simple, and recursive in nature, proceeding from global features initially to local features in later levels to detect landmarks. Principal component analysis (PCA) is used as an engine to recursively subdivide the object region. The object itself may be represented in binary or fuzzy form or with gray values. The method is illustrated in 3D space (although it generalizes readily to spaces of any dimensionality) on four objects (liver, trachea and bronchi, and outer boundaries of left and right lungs along pleura) derived from 5 patient computed tomography (CT) image data sets of the thorax and abdomen. The virtual landmark identification approach seems to work well on different structures in different subjects and seems to detect landmarks that are homologously located in different samples of the same object. The approach guarantees that virtual landmarks are invariant to translation, scaling, and rotation of the object/image. Landmarking techniques are fundamental for many computer vision and image processing applications, and we are currently exploring the use virtual landmarks in automatic anatomy recognition and object analytics.

  10. Material and Virtuality

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    Through tangible experiments this paper discusses the dialogues between digital architectural drawing and the process of materialisation. The paper sets op the spans between virtual and actual and control and uncertainty making these oppositions a combined spaces where information between a digital...... world and a physical world can interchange. The paper suggest an approach where an overlapping of virtuality and the tangible material output from digital fabrication machines create a method of using materialisation tools as instruments to connect the reality of materials and to an exploring process...... through these experiments is both tangible and directly connected to real actions in digital drawing or material processing but also the base for theoretical contemplations of the relation between virtual and actual and control and uncertainty....

  11. The Virtual Shopping Experience: using virtual presence to motivate online shopping

    Directory of Open Access Journals (Sweden)

    Carolyn Chin

    2005-11-01

    Full Text Available Online shopping has thus far tended to be a niche business – highly successful in selling digital products such as shares, software and, increasingly, music and films, it has been less successful in persuading the purchasers of ‘traditional’ goods such as cars, clothes, toiletries, or household appliances to forsake their physical retailers and move into cyberspace. In this wide-ranging review paper we investigate the issue of the virtual experience – endeavouring to understand what is needed for a successful ‘shopping experience’ online and what the possible obstacles or pitfalls along the way might be. We initially introduce the concepts of virtual presence (the sense of ‘being there’ and virtual reality, discussing the possible roles both can play in providing a solution to the problem of effective online shopping. We then consider the Experience Economy, a concept which encapsulates many of the issues related to the problem of online shopping and which suggests ways in which online retailers can enhance the effectiveness of their sites by means of a virtual ‘experience’. Having set the scene for online shopping, we discuss eTailing today in terms of direct product experience and the opportunities which cyber-shopping offers to replicate this process. Finally, we identify some of the possibilities and problems of online shopping today, illustrating the current status of virtual presence in retailing with two micro-cases of success and failure.

  12. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2016-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  13. Time-Predictable Virtual Memory

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang; Schoeberl, Martin

    2016-01-01

    Virtual memory is an important feature of modern computer architectures. For hard real-time systems, memory protection is a particularly interesting feature of virtual memory. However, current memory management units are not designed for time-predictability and therefore cannot be used...... in such systems. This paper investigates the requirements on virtual memory from the perspective of hard real-time systems and presents the design of a time-predictable memory management unit. Our evaluation shows that the proposed design can be implemented efficiently. The design allows address translation...... and address range checking in constant time of two clock cycles on a cache miss. This constant time is in strong contrast to the possible cost of a miss in a translation look-aside buffer in traditional virtual memory organizations. Compared to a platform without a memory management unit, these two additional...

  14. NASA Johnson Space Center Small Business Innovation Research (SBIR) Successes, Infusion and Commercializations and Potential International Partnering Opportunities

    Science.gov (United States)

    Packard, Kathryn; Goodman, Doug; Whittington, James

    2016-01-01

    The NASA Small Business Innovation Research (SBIR) Program has served as a beneficial funding vehicle to both US small technology businesses and the Federal Agencies that participate in the program. This paper, to the extent possible, while observing Intellectual Property (IP) laws, will discuss the many SBIR and STTR (SBIR Technology Transfer) successes in the recent history of the NASA Johnson Space Center (JSC). Many of the participants of the International Conference on Environmental Systems (ICES) have based their research and papers on technologies that were made possible by SBIR/STTR awards and post award funding. Many SBIR/STTR successes have flown on Space Shuttle missions, Space X Dragons, and other spacecraft. SBIR/STTR technologies are currently infused on the International Space Station (ISS) and satellites, one of which was a NASA/JAXA (Japanese Space Agency) joint venture. Many of these companies have commercialized their technologies and grown as businesses while helping the economy through the creation of new jobs. In addition, this paper will explore the opportunity for international partnership with US SBIR/STTR companies as up to 49% of the makeup of the company is not required to be American owned. Although this paper will deal with technical achievements, it does not purport to be technical in nature. It will address the many requests for information on successes and opportunities within NASA SBIR and the virtually untapped potential of international partnering.

  15. The Virtual Dressing Room

    DEFF Research Database (Denmark)

    Holte, Michael Boelstoft; Gao, Yi; Petersson, Eva

    2015-01-01

    This paper presents the design and evaluation of a usability and user experience test of a virtual dressing room. First, we motivate and introduce our recent developed prototype of a virtual dressing room. Next, we present the research and test design grounded in related usability and user...... experience studies. We give a description of the experimental setup and the execution of the designed usability and user experience test. To this end, we report interesting results and discuss the results with respect to user-centered design and development of a virtual dressing room....

  16. Virtual Reality Musical Instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low-cost technologies have created a wide interest in virtual reality. In the field of computer music, the term “virtual musical instruments” has been used for a long time to describe software simulations, extensions of existing musical instruments......, and ways to control them with new interfaces for musical expression. Virtual reality musical instruments (VRMIs) that include a simulated visual component delivered via a head-mounted display or other forms of immersive visualization have not yet received much attention. In this article, we present a field...

  17. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    . In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus......We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering...

  18. Virtual reality in pediatric psychology

    OpenAIRE

    Parsons, T. D.; Riva, G.; Parsons, S. J.; Mantovani, F.; Newbutt, N.; Lin, L.; Venturini, E.; Hall, T.

    2017-01-01

    Virtual reality technologies allow for controlled simulations of affectively engaging background narratives. These virtual environments offer promise for enhancing emotionally relevant experiences and social interactions. Within this context virtual reality can allow instructors, therapists, neuropsychologists, and service providers to offer safe, repeatable, and diversifiable interventions that can benefit assessments and learning in both typically developing children and children with disab...

  19. Virtual Company and Modelbank

    DEFF Research Database (Denmark)

    Thorsteinsson, Uffe

    1996-01-01

    Ansøgning til Socrates programmet vedr. Tematisk netværk inden for området Virtual Company and Modelbank......Ansøgning til Socrates programmet vedr. Tematisk netværk inden for området Virtual Company and Modelbank...

  20. Virtual Reality Hysteroscopy

    Science.gov (United States)

    Levy

    1996-08-01

    New interactive computer technologies are having a significant influence on medical education, training, and practice. The newest innovation in computer technology, virtual reality, allows an individual to be immersed in a dynamic computer-generated, three-dimensional environment and can provide realistic simulations of surgical procedures. A new virtual reality hysteroscope passes through a sensing device that synchronizes movements with a three-dimensional model of a uterus. Force feedback is incorporated into this model, so the user actually experiences the collision of an instrument against the uterine wall or the sensation of the resistance or drag of a resectoscope as it cuts through a myoma in a virtual environment. A variety of intrauterine pathologies and procedures are simulated, including hyperplasia, cancer, resection of a uterine septum, polyp, or myoma, and endometrial ablation. This technology will be incorporated into comprehensive training programs that will objectively assess hand-eye coordination and procedural skills. It is possible that by incorporating virtual reality into hysteroscopic training programs, a decrease in the learning curve and the number of complications presently associated with the procedures may be realized. Prospective studies are required to assess these potential benefits.

  1. Virtualization for the LHCb experiment

    International Nuclear Information System (INIS)

    Bonaccorsi, E.; Brarda, L.; Chebbi, M.; Neufeld, N.; Sborzacci, F.

    2012-01-01

    The LHCb experiment, one of the 4 large particle detector at CERN, counts in its Online System more than 2000 servers and embedded systems. As a result of ever-increasing CPU performance in modern servers, many of the applications in the controls system are excellent candidates for virtualization technologies. We see virtualization as an approach to cut down cost, optimize resource usage and manage the complexity of the IT infrastructure of LHCb. Recently we have added a Kernel Virtual Machine (KVM) cluster based on Red Hat Enterprise Virtualization for Servers (RHEV) complementary to the existing Hyper-V cluster devoted only to the virtualization of the windows guests. This paper describes the architecture of our solution based on KVM and RHEV as along with its integration with the existing Hyper-V infrastructure and the Quattor cluster management tools and in particular how we use to run controls applications on a virtualized infrastructure. We present performance results of both the KVM and Hyper-V solutions, problems encountered and a description of the management tools developed for the integration with the Online cluster and LHCb SCADA control system based on PVSS. (authors)

  2. Providing Virtual Execution Environments: A Twofold Illustration

    CERN Document Server

    Grehant, Xavier

    2008-01-01

    Platform virtualization helps solving major grid computing challenges: share resource with flexible, user-controlled and custom execution environments and in the meanwhile, isolate failures and malicious code. Grid resource management tools will evolve to embrace support for virtual resource. We present two open source projects that transparently supply virtual execution environments. Tycoon has been developed at HP Labs to optimise resource usage in creating an economy where users bid to access virtual machines and compete for CPU cycles. SmartDomains provides a peer-to-peer layer that automates virtual machines deployment using a description language and deployment engine from HP Labs. These projects demonstrate both client-server and peer-to-peer approaches to virtual resource management. The first case makes extensive use of virtual machines features for dynamic resource allocation. The second translates virtual machines capabilities into a sophisticated language where resource management components can b...

  3. Virtual reality training improves balance function.

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  4. Virtual reality training improves balance function

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  5. NASA and the National Climate Assessment: Promoting awareness of NASA Earth science

    Science.gov (United States)

    Leidner, A. K.

    2014-12-01

    NASA Earth science observations, models, analyses, and applications made significant contributions to numerous aspects of the Third National Climate Assessment (NCA) report and are contributing to sustained climate assessment activities. The agency's goal in participating in the NCA was to ensure that NASA scientific resources were made available to understand the current state of climate change science and climate change impacts. By working with federal agency partners and stakeholder communities to develop and write the report, the agency was able to raise awareness of NASA climate science with audiences beyond the traditional NASA community. To support assessment activities within the NASA community, the agency sponsored two competitive programs that not only funded research and tools for current and future assessments, but also increased capacity within our community to conduct assessment-relevant science and to participate in writing assessments. Such activities fostered the ability of graduate students, post-docs, and senior researchers to learn about the science needs of climate assessors and end-users, which can guide future research activities. NASA also contributed to developing the Global Change Information System, which deploys information from the NCA to scientists, decision makers, and the public, and thus contributes to climate literacy. Finally, NASA satellite imagery and animations used in the Third NCA helped the pubic and decision makers visualize climate changes and were frequently used in social media to communicate report key findings. These resources are also key for developing educational materials that help teachers and students explore regional climate change impacts and opportunities for responses.

  6. Formal modeling of virtual machines

    Science.gov (United States)

    Cremers, A. B.; Hibbard, T. N.

    1978-01-01

    Systematic software design can be based on the development of a 'hierarchy of virtual machines', each representing a 'level of abstraction' of the design process. The reported investigation presents the concept of 'data space' as a formal model for virtual machines. The presented model of a data space combines the notions of data type and mathematical machine to express the close interaction between data and control structures which takes place in a virtual machine. One of the main objectives of the investigation is to show that control-independent data type implementation is only of limited usefulness as an isolated tool of program development, and that the representation of data is generally dictated by the control context of a virtual machine. As a second objective, a better understanding is to be developed of virtual machine state structures than was heretofore provided by the view of the state space as a Cartesian product.

  7. Virtual reality for dermatologic surgery: virtually a reality in the 21st century.

    Science.gov (United States)

    Gladstone, H B; Raugi, G J; Berg, D; Berkley, J; Weghorst, S; Ganter, M

    2000-01-01

    In the 20th century, virtual reality has predominantly played a role in training pilots and in the entertainment industry. Despite much publicity, virtual reality did not live up to its perceived potential. During the past decade, it has also been applied for medical uses, particularly as training simulators, for minimally invasive surgery. Because of advances in computer technology, virtual reality is on the cusp of becoming an effective medical educational tool. At the University of Washington, we are developing a virtual reality soft tissue surgery simulator. Based on fast finite element modeling and using a personal computer, this device can simulate three-dimensional human skin deformations with real-time tactile feedback. Although there are many cutaneous biomechanical challenges to solve, it will eventually provide more realistic dermatologic surgery training for medical students and residents than the currently used models.

  8. Virtual reality as a way to good business

    OpenAIRE

    Mošorinski Predrag

    2016-01-01

    A virtual economy is the emergent property of the interaction between participants in a virtual world. As businesses compete in the real world, they also compete in virtual worlds. Many companies now incorporate virtual world as a new form of advertising. There are many advantages to using these methods of commercialization. The use of advertising within virtual world is a relatively new idea, due to Virtual World as a relatively new technology. According to trade media company Virtual Worlds...

  9. Two-beam virtual cathode accelerator

    International Nuclear Information System (INIS)

    Peter, W.

    1992-01-01

    A proposed method to control the motion of a virtual cathode is investigated. Applications to collective ion acceleration and microwave generation are indicated. If two counterstreaming relativistic electron beams of current I are injected into a drift tube of space-charge-limiting current I L = 2I, it is shown that one beam can induce a moving virtual cathode in the other beam. By dynamically varying the current injected into the drift tube region, the virtual cathode can undergo controlled motion. For short drift tubes, the virtual cathodes on each end are strongly-coupled and undergo coherent large-amplitude spatial oscillations within the drift tube

  10. Update on NASA Microelectronics Activities

    Science.gov (United States)

    Label, Kenneth A.; Sampson, Michael J.; Casey, Megan; Lauenstein, Jean-Marie

    2017-01-01

    Mission Statement: The NASA Electronic Parts and Packaging (NEPP) Program provides NASA's leadership for developing and maintaining guidance for the screening, qualification, test. and usage of EEE parts by NASA as well as in collaboration with other government Agencies and industry. NASA Space Technology Mission Directorate (STMD) "STMD rapidly develops, demonstrates, and infuses revolutionary, high-payoff technologies through transparent, collaborative partnerships, expanding the boundaries of the aerospace enterprise." Mission Statement: The Space Environments Testing Management Office (SETMO) will identify, prioritize, and manage a select suite of Agency key capabilities/assets that are deemed to be essential to the future needs of NASA or the nation, including some capabilities that lack an adequate business base over the budget horizon. NESC mission is to perform value-added independent testing, analysis, and assessments of NASA's high-risk projects to ensure safety and mission success. NASA Space Environments and Avionics Fellows as well as Radiation and EEE Parts Community of Practice (CoP) leads.

  11. The Virtual Robotics Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Kress, R.L.; Love, L.J.

    1999-01-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations

  12. Understanding Retailers’ Acceptance of Virtual Stores

    OpenAIRE

    Irene Y.L. Chen

    2010-01-01

    The acceptance of e-commerce among consumers has stimulated the rise of virtual stores. Increasing traditional retailers or people who do not have sufficient capital for maintaining a brick-and-mortar store have considered using virtual stores to reach global market. In the e-commerce literature, there has been rich research evidence concerning consumers’ acceptance of virtual stores. However, rigorous academic research on retailers’ acceptance of virtual stores is relatively scarce today. Th...

  13. Who Benefits from Virtuality?

    Science.gov (United States)

    Harper, Barry; Hedberg, John G.; Wright, Rob

    2000-01-01

    Discusses the use of constructivist frameworks to develop effective and successful learning environments, including educational software. Topics include technology supporting reform; virtuality and multimedia; attributes of interactive multimedia and virtual reality; and examples of context and learner active participation. (Contains 35…

  14. Virtual Cystoscopy

    International Nuclear Information System (INIS)

    Mejia Restrepo, Jorge; Aldana S, Natalia; Munoz Sierra, Juan; Lopez Amaya, Juan

    2011-01-01

    Introduction: virtual cystoscopy is a minimally invasive procedure that facilitates the evaluation of the urinary tract, allowing intraluminal navigation through the urinary tract structures on the basis of CT imaging reconstructions. it allows detection of various pathologies of the system, through high-sensitivity, three-dimensional lesion visualization with some advantages over conventional cystoscopy. Objective: to describe the technique used for virtual cystoscopy at our institution,and present some representative cases. Materials and methods: We describe the main indications, advantages and limitations of the method, followed by a description of the technique used in our institution, and finally, we present five representative cases of bladder and urethral pathology. Conclusion: virtual cystoscopy is a sensitive technique for the diagnosis of bladder tumors, even those smaller than 5mm. it is the preferred method in patients who have contraindications for conventional cystoscopy, such as prostate hyperplasia, urethral stenoses and active haematuria.it is less invasive and has a lower complication rate when compared with conventional cystoscopy. It has limited use in the assessment of the mucosa and of small, flat lesions.

  15. Virtual Networking Performance in OpenStack Platform for Network Function Virtualization

    Directory of Open Access Journals (Sweden)

    Franco Callegati

    2016-01-01

    Full Text Available The emerging Network Function Virtualization (NFV paradigm, coupled with the highly flexible and programmatic control of network devices offered by Software Defined Networking solutions, enables unprecedented levels of network virtualization that will definitely change the shape of future network architectures, where legacy telco central offices will be replaced by cloud data centers located at the edge. On the one hand, this software-centric evolution of telecommunications will allow network operators to take advantage of the increased flexibility and reduced deployment costs typical of cloud computing. On the other hand, it will pose a number of challenges in terms of virtual network performance and customer isolation. This paper intends to provide some insights on how an open-source cloud computing platform such as OpenStack implements multitenant network virtualization and how it can be used to deploy NFV, focusing in particular on packet forwarding performance issues. To this purpose, a set of experiments is presented that refer to a number of scenarios inspired by the cloud computing and NFV paradigms, considering both single tenant and multitenant scenarios. From the results of the evaluation it is possible to highlight potentials and limitations of running NFV on OpenStack.

  16. Virtual-World Naturalism

    Directory of Open Access Journals (Sweden)

    Daniel Reynolds

    2010-07-01

    Full Text Available Sometimes a player will stray from the path described by a game, moving into new spaces, developing new possible modes of interaction, and often discovering the rougher edges of the game world, where physics models break down, textures become incongruous, and the pieces don’t quite fit together. Gameplay that seeks out these spaces and these phenomena, that searches for such clues to the underlying construction of the virtual environment, is a kind of virtual-world naturalism, at once a return to an investigative urge that has been subsumed to the exhaustive mapping and description of the real world and a form of resistance to the very idea of pre-defined paths of action, of externally imposed limits, in virtual worlds as well as in our own.

  17. Leading a Virtual Intercultural Team. Implications for Virtual Team Leaders

    OpenAIRE

    Chutnik, Monika; Grzesik, Katarzyna

    2009-01-01

    Increasing number of companies operate in the setup of teams whose members are geographically scattered and have different cultural origins. They work through access to the same digital network and communicate by means of modern technology. Sometimes they are located in different time zones and have never met each other face to face. This is the age of a virtual team leader. Virtual leadership in intercultural groups requires special skills from leaders. Many of these reflect leadership s...

  18. Designing Virtual Learning Environments

    DEFF Research Database (Denmark)

    Veirum, Niels Einar

    2003-01-01

    The main objective of this working paper is to present a conceptual model for media integrated communication in virtual learning environments. The model for media integrated communication is very simple and identifies the necessary building blocks for virtual place making in a synthesis of methods...

  19. Representing Large Virtual Worlds

    NARCIS (Netherlands)

    Kol, T.R.

    2018-01-01

    The ubiquity of large virtual worlds and their growing complexity in computer graphics require efficient representations. This means that we need smart solutions for the underlying storage of these complex environments, but also for their visualization. How the virtual world is best stored and how

  20. VEM: Virtual Enterprise Methodology

    DEFF Research Database (Denmark)

    Tølle, Martin; Vesterager, Johan

    2003-01-01

    This chapter presents a virtual enterprise methodology (VEM) that outlines activities to consider when setting up and managing virtual enterprises (VEs). As a methodology the VEM helps companies to ask the right questions when preparing for and setting up an enterprise network, which works...