WorldWideScience

Sample records for narrow-band imaging system

  1. An enhanced narrow-band imaging method for the microvessel detection

    Science.gov (United States)

    Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng

    2018-02-01

    A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.

  2. Narrow-Band Imaging: Clinical Application in Gastrointestinal Endoscopy

    Directory of Open Access Journals (Sweden)

    Sandra Barbeiro

    2018-03-01

    Full Text Available Narrow-band imaging is an advanced imaging system that applies optic digital methods to enhance endoscopic images and improves visualization of the mucosal surface architecture and microvascular pattern. Narrow-band imaging use has been suggested to be an important adjunctive tool to white-light endoscopy to improve the detection of lesions in the digestive tract. Importantly, it also allows the distinction between benign and malignant lesions, targeting biopsies, prediction of the risk of invasive cancer, delimitation of resection margins, and identification of residual neoplasia in a scar. Thus, in expert hands it is a useful tool that enables the physician to decide on the best treatment (endoscopic or surgical and management. Current evidence suggests that it should be used routinely for patients at increased risk for digestive neoplastic lesions and could become the standard of care in the near future, at least in referral centers. However, adequate training programs to promote the implementation of narrow-band imaging in daily clinical practice are needed. In this review, we summarize the current scientific evidence on the clinical usefulness of narrow-band imaging in the diagnosis and characterization of digestive tract lesions/cancers and describe the available classification systems.

  3. Electron correlations in narrow band systems

    International Nuclear Information System (INIS)

    Kishore, R.

    1983-01-01

    The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt

  4. US images encoding envelope amplitude following narrow band filtering

    International Nuclear Information System (INIS)

    Sommer, F.G.; Stern, R.A.; Chen, H.S.

    1986-01-01

    Ultrasonic waveform data from phantoms having differing scattering characteristics and from normal and cirrhotic human liver in vivo were recorded within a standardized dynamic range and filtered with narrow band filters either above or below the mean recorded ultrasonic center frequency. Images created by mapping the amplitudes of received ultrasound following such filtration permitted dramatic differentiation, not discernible in conventional US images, of phantoms having differing scattering characteristics, and of normal and cirrhotic human livers

  5. Development and Validation of a Classification System to Identify High-Grade Dysplasia and Esophageal Adenocarcinoma in Barrett's Esophagus Using Narrow-Band Imaging

    NARCIS (Netherlands)

    Sharma, Prateek; Bergman, Jacques J. G. H. M.; Goda, Kenichi; Kato, Mototsugu; Messmann, Helmut; Alsop, Benjamin R.; Gupta, Neil; Vennalaganti, Prashanth; Hall, Matt; Konda, Vani; Koons, Ann; Penner, Olga; Goldblum, John R.; Waxman, Irving

    2016-01-01

    Although several classification systems have been proposed for characterization of Barrett's esophagus (BE) surface patterns based on narrow-band imaging (NBI), none have been widely accepted. The Barrett's International NBI Group (BING) aimed to develop and validate an NBI classification system for

  6. Application of narrow-band television to industrial and commercial communications

    Science.gov (United States)

    Embrey, B. C., Jr.; Southworth, G. R.

    1974-01-01

    The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.

  7. The visible to the near infrared narrow band acousto-optic tunable filter and the hyperspectral microscopic imaging on biomedicine study

    International Nuclear Information System (INIS)

    Zhang, Chunguang; Wang, Hao; Huang, Junfeng; Gao, Qiang

    2014-01-01

    Based on the parallel tangents momentum-matching condition, a narrow band noncollinear acousto-optic tunable filter (AOTF) using a single TeO 2 crystal is designed with the consideration of the birefringence and the rotatory property of the material. An effective setup is established to evaluate the performance of the designed AOTF. The experimental observed spectrum pattern of the diffracted light is nearly the same with the theoretical result. The measured tuning relationship between the diffracted central optical wavelength and acoustic frequency is in accordance with the theoretical prospect. The optical bandwidth of the diffracted light is as narrow as 1.88 nm when the central wavelength is 556.75 nm. The high spectral resolution is significant in practical applications of imaging AOTF. Additionally, the AOTF based hyperspectral microscopic imaging system is established. The stability and the image resolution of the designed narrow band AOTF are satisfying. Finally, the study of the biologic samples indicates the feasibility of our system on biomedicine. (paper)

  8. Therapeutic efficacy of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome.

    Science.gov (United States)

    Kajiwara, Mitsuru; Inoue, Shougo; Kobayashi, Kanao; Ohara, Shinya; Teishima, Jun; Matsubara, Akio

    2014-04-01

    Narrow band imaging cystoscopy can increase the visualization and detection of Hunner's lesions. A single-center, prospective clinical trial was carried out aiming to show the effectiveness of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome. A total of 23 patients (19 women and 4 men) diagnosed as having ulcer-type interstitial cystitis/painful bladder syndrome were included. All typical Hunner's lesions and suspected areas identified by narrow band imaging were electrocoagulated endoscopically after the biopsy of those lesions. Therapeutic efficacy was assessed prospectively by using visual analog scale score of pain, O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score. The mean follow-up period was 22 months. All patients (100%) experienced a substantial improvement in pain. The average visual analog scale pain scores significantly decreased from 7.3 preoperatively to 1.2 1 month postoperatively. A total of 21 patients (91.3%) who reported improvement had at least a 50% reduction in bladder pain, and five reported complete resolution. Daytime frequency was significantly decreased postoperatively. O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score were significantly decreased postoperatively. However, during the follow-up period, a total of six patients had recurrence, and repeat narrow band imaging-assisted transurethral electrocoagulation of the recurrent lesions was carried out for five of the six patients, with good response in relieving bladder pain. Our results showed that narrow band imaging-assisted transurethral electrocoagulation could be a valuable therapeutic alternative in patients with ulcer-type interstitial cystitis/painful bladder syndrome, with good efficacy and reduction of recurrence rate. © 2014 The Japanese Urological Association.

  9. A multicenter validation of an endoscopic classification with narrow band imaging for gastric precancerous and cancerous lesions

    NARCIS (Netherlands)

    Pimentel-Nunes, P.; Dinis-Ribeiro, M.; Soares, J. B.; Marcos-Pinto, R.; Santos, C.; Rolanda, C.; Bastos, R. P.; Areia, M.; Afonso, L.; Bergman, J.; Sharma, P.; Gotoda, T.; Henrique, R.; Moreira-Dias, L.

    2012-01-01

    Background and study aim: The reliability and external validity of narrow band imaging (NBI) in the stomach have not been described consistently. The aim of the current study was to describe and estimate the accuracy and reliability of a simplified classification system for NBI in the diagnosis of

  10. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system

    NARCIS (Netherlands)

    Curvers, W. L.; Singh, R.; Song, L.-M. Wong-Kee; Wolfsen, H. C.; Ragunath, K.; Wang, K.; Wallace, M. B.; Fockens, P.; Bergman, J. J. G. H. M.

    2008-01-01

    OBJECTIVE: To investigate the diagnostic potential of endoscopic tri-modal imaging and the relative contribution of each imaging modality (i.e. high-resolution endoscopy (HRE), autofluorescence imaging (AFI) and narrow-band imaging (NBI)) for the detection of early neoplasia in Barrett's oesophagus.

  11. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    Science.gov (United States)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  12. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.

    Science.gov (United States)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-16

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  13. Polyp Detection, Characterization, and Management Using Narrow-Band Imaging with/without Magnification

    Directory of Open Access Journals (Sweden)

    Takahiro Utsumi

    2015-11-01

    Full Text Available Narrow-band imaging (NBI is a new imaging technology that was developed in 2006 and has since spread worldwide. Because of its convenience, NBI has been replacing the role of chromoendoscopy. Here we review the efficacy of NBI with/without magnification for detection, characterization, and management of colorectal polyps, and future perspectives for the technology, including education. Recent studies have shown that the next-generation NBI system can detect significantly more colonic polyps than white light imaging, suggesting that NBI may become the modality of choice from the beginning of screening. The capillary pattern revealed by NBI, and the NBI International Colorectal Endoscopic classification are helpful for prediction of histology and for estimating the depth of invasion of colorectal cancer. However, NBI with magnifying colonoscopy is not superior to magnifying chromoendoscopy for estimation of invasion depth. Currently, therefore, chromoendoscopy should also be performed additionally if deep submucosal invasive cancer is suspected. If endoscopists become able to accurately estimate colorectal polyp pathology using NBI, this will allow adenomatous polyps to be resected and discarded; thus, reducing both the risk of polypectomy and costs. In order to achieve this goal, a suitable system for education and training in in vivo diagnostics will be necessary.

  14. Acquisition and visualization techniques for narrow spectral color imaging.

    Science.gov (United States)

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  15. Next-generation narrow band imaging system for colonic polyp detection: a prospective multicenter randomized trial.

    Science.gov (United States)

    Horimatsu, Takahiro; Sano, Yasushi; Tanaka, Shinji; Kawamura, Takuji; Saito, Shoichi; Iwatate, Mineo; Oka, Shiro; Uno, Koji; Yoshimura, Kenichi; Ishikawa, Hideki; Muto, Manabu; Tajiri, Hisao

    2015-07-01

    Previous studies have yielded conflicting results on the colonic polyp detection rate with narrow-band imaging (NBI) compared with white-light imaging (WLI). We compared the mean number of colonic polyps detected per patient for NBI versus WLI using a next-generation NBI system (EVIS LUCERA ELITE; Olympus Medical Systems) used with standard-definition (SD) colonoscopy and wide-angle (WA) colonoscopy. this study is a 2 × 2 factorial, prospective, multicenter randomized controlled trial. this study was conducted at five academic centers in Japan. patients were allocated to one of four groups: (1) WLI with SD colonoscopy (H260AZI), (2) NBI with SD colonoscopy (H260AZI), (3) WLI with WA colonoscopy (CF-HQ290), and (4) NBI with WA colonoscopy (CF-HQ290). the mean numbers of polyps detected per patient were compared between the four groups: WLI with/without WA colonoscopy and NBI with/without WA colonoscopy. Of the 454 patients recruited, 431 patients were enrolled. The total numbers of polyps detected by WLI with SD, NBI with SD, WLI with WA, and NBI with WA were 164, 176, 188, and 241, respectively. The mean number of polyps detected per patient was significantly higher in the NBI group than in the WLI group (2.01 vs 1.56; P = 0.032). The rate was not higher in the WA group than in the SD group (1.97 vs 1.61; P = 0.089). Although WA colonoscopy did not improve the polyp detection, next-generation NBI colonoscopy represents a significant improvement in the detection of colonic polyps.

  16. High-resolution endoscopy plus chromoendoscopy or narrow-band imaging in Barrett's esophagus: a prospective randomized crossover study

    NARCIS (Netherlands)

    Kara, M. A.; Peters, F. P.; Rosmolen, W. D.; Krishnadath, K. K.; ten Kate, F. J.; Fockens, P.; Bergman, J. J. G. H.

    2005-01-01

    Background and study aims: High-resolution endoscopy (HRE) may improve the detection of early neoplasia in Barrett's esophagus. Indigo carmine chromoendoscopy (ICc) and narrow-band imaging (NBI) may be useful techniques to complement HRE. The aim of this study was to compare HRE-ICC with HrE-NBI for

  17. Increased polyp detection using narrow band imaging compared with high resolution endoscopy in patients with hyperplastic polyposis syndrome

    NARCIS (Netherlands)

    Boparai, K. S.; van den Broek, F. J. C.; van Eeden, S.; Fockens, P.; Dekker, E.

    2011-01-01

    Hyperplastic polyposis syndrome (HPS) is associated with colorectal cancer and is characterized by multiple hyperplastic polyps, sessile serrated adenomas (SSAs) and adenomas. Narrow band imaging (NBI) may improve the detection of polyps in HPS. We aimed to compare polyp miss rates with NBI with

  18. Wide applicability of high-Tc pairing originating from coexisting wide and incipient narrow bands in quasi-one-dimensional systems

    Science.gov (United States)

    Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko

    2018-01-01

    We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.

  19. Peritoneal vascular density assessment using narrow-band imaging and vascular analysis software, and cytokine analysis in women with and without endometriosis.

    Science.gov (United States)

    Kuroda, Keiji; Kitade, Mari; Kikuchi, Iwaho; Kumakiri, Jun; Matsuoka, Shozo; Kuroda, Masako; Takeda, Satoru

    2010-01-01

    The development and onset of endometriosis is associated with angiogenesis and angiogenic factors including cytokines. We analyzed intrapelvic conditions in women with endometriosis via vascular density assessment of grossly normal peritoneum and determination of cytokine levels in peritoneal fluid. Seventy-three patients underwent laparoscopic surgery because of gynecologic disease including endometriosis in our department using a narrow-band imaging system. Each patient was analyzed for peritoneal vascular density using commercially available vascular analysis software (SolemioENDO ProStudy; Olympus Corp, Tokyo, Japan). Each patient was also subjected to analysis of interleukin 6 (IL-6), IL-8, tumor necrosis factor-alpha, and vascular endothelial growth factor concentrations in peritoneal fluid. We defined 4 groups as follows: group 1, endometriosis: gonadotropin-releasing hormone (GnRH) agonist administration group (n=27); group 2, endometriosis: GnRH agonist nonadministration group (n=15); group 3, no endometriosis: GnRH agonist administration group (n=18); and group 4, no endometriosis: GnRH agonist nonadministration group (n=13). No significant differences in peritoneal vascular density between the 4 groups were found under conventional light; however, under narrow-band light, vascular density in the endometriosis groups (groups 1 and 2) was significantly higher. Cytokine analysis of the 4 groups determined that IL-6 and IL-8 concentrations were significantly higher compared with the no endometriosis groups (groups 3 and 4). Tumor necrosis factor-alpha and vascular endothelial growth factor concentrations were not significantly different between groups. In endometriosis, peritoneal vascular density was significantly higher as assessed using the narrow-band imaging system and SolemioENDO ProStudy, whereas GnRH agonist did not obviously decrease vascular density but IL-6 concentration was lower in the GnRH agonist administration group. Copyright (c) 2010 AAGL

  20. Dosimetry of narrow band UVB treatments

    International Nuclear Information System (INIS)

    Goode, D.H.; Mannering, D.M.

    1996-01-01

    Full text: For many years psoriasis has been treated with broad band UVB lamps. These lamps have a bell shaped spectrum which peaks at 305 nm and extends from 280 nm to 350 nm. However research with monochromatic UV radiation has shown that wavelengths between 300 nm and 320 nm are the most efficacious for clearing psoriasis while wavelengths below 305 nm are most effective for producing the undesirable side effect of erythema (sunburn). In response to these findings Philips developed a narrow band UVB tube in which a large fraction of the output was confined to a narrow peak (bandwidth 2.5 nm) situated at 311 nm. Christchurch Hospital replaced broad band UVB with narrow band treatments in August 1995 and as this required UV exposures to be substantially increased new protocols had to be developed. Three aspects needed to be addressed. These were translating the dose from broad band to narrow band for current patients, determining the initial dose for new patients and developing a formula for increasing subsequent exposures to both types of patient. To translate doses the spectral irradiance (μW/cm 2 /nm) that would fall on the patient was measured in both the old broad band and the new narrow band treatment units and from this UV doses were calculated. All doses were expressed in mJ/cm 2 of unweighted UV over the range 250 nm to 400 nm. The erythemal effectiveness of the two units were compared by using the CIE 1987 curve to express doses in terms of the equivalent exposure of monochromatic 297 nm radiation. It was found that an exposure of 3.96 mJ/cm 2 from the broad band FS40 tubes and 12.79 mJ/cm 2 from the narrow band TL/01 tubes were both equivalent to 1.00 mJ/cm 2 of monochromatic 297 nm radiation so when transferring patients all broad band doses needed to be increased by a factor of 3.2. Before transferring any patients this factor was confirmed by conducting two minimal erythema dose (MED) tests on a normal subject, one in each unit. For new patients a

  1. The narrow-band imaging examination method in otorhinolaryngology

    Directory of Open Access Journals (Sweden)

    Robert Šifrer

    2013-10-01

    Full Text Available Early diagnostics could improve the prognosis of patients with squamous-cell carcinomas of the head and neck. Narrow-Band Imaging (NBI is the latest examination method in the group of biologic endoscopies. NBI improves the distinction between malignant and benign mucosal lesions. Early suspect oncologic lesions that may otherwise be missed by normal white light illumination can also be diagnosed. The biggest benefit of NBI technology is achieved by using it together with a HDTV camera that enables better contrast and higher resolution. NBI is based on better imaging of superficial mucosal vasculature. The biologic potential of mucosal lesions could be predicted from vascular changes. The colour of normal mucosa under NBI is blue and green and the vessels show no pathological features. Well-demarcated brownish areas and scattered thick dark spots and abnormal winding and branching out of vessels on the mucosa are all oncologically suspicious features. Authors report the experience from literature on the use of NBI to identify carcinomas of the oral cavity, epipharynx, oropharynx, hypopharynx and larynx and evaluation of unknown primaries. In addition, the literature reports the benefit of NBI in identifying early stage carcinomas in previously irradiated patients. Persistence and recurrence of carcinoma and the development of new primary tumour could easily be missed by using only standard white-light illumination. The method proved to be highly sensitive and specific for predicting malignant changes in the above-mentioned circumstances. Authors report their own experience with NBI technology as well. For further improvement of the method, new technologic development is expected to enable the connection of NBI and HDTV with flexible endoscopes.

  2. O2 atmospheric band measurements with WINDII: Performance of a narrow band filter/wide angle Michelson combination in space

    International Nuclear Information System (INIS)

    Ward, W.E.; Hersom, C.H.; Tai, C.C.; Gault, W.A.; Shepherd, G.G.; Solheim, B.H.

    1994-01-01

    Among the emissions viewed by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) are selected lines in the (0-0) transition of the O2 atmospheric band. These lines are viewed simultaneously using a narrow band filter/wide-angle Michelson interferometer combination. The narrow band filter is used to separate the lines on the CCD (spectral-spatial scanning) and the Michelson used to modulate the emissions so that winds and rotational temperatures may be measured from the Doppler shifts and relative intensities of the lines. In this report this technique will be outlined and the on-orbit behavior since launch summarized

  3. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  4. The role of high-resolution endoscopy and narrow-band imaging in the evaluation of upper GI neoplasia in familial adenomatous polyposis

    NARCIS (Netherlands)

    Lopez-Ceron, Maria; van den Broek, Frank J. C.; Mathus-Vliegen, Elisabeth M.; Boparai, Karam S.; van Eeden, Susanne; Fockens, Paul; Dekker, Evelien

    2013-01-01

    The Spigelman classification stratifies cancer risk in familial adenomatous polyposis (FAP) patients with duodenal adenomatosis. High-resolution endoscopy (HRE) and narrow-band imaging (NBI) may identify lesions at high risk. To compare HRE and NBI for the detection of duodenal and gastric polyps

  5. Narrow Band Imaging Enhances the Detection Rate of Penetration and Aspiration in FEES.

    Science.gov (United States)

    Nienstedt, Julie C; Müller, Frank; Nießen, Almut; Fleischer, Susanne; Koseki, Jana-Christiane; Flügel, Till; Pflug, Christina

    2017-06-01

    Narrow band imaging (NBI) is widely used in gastrointestinal, laryngeal, and urological endoscopy. Its original purpose was to visualize vessels and epithelial irregularities. Based on our observation that adding NBI to common white light (WL) improves the contrast of the test bolus in fiberoptic endoscopic evaluation of swallowing (FEES), we now investigated the potential value of NBI in swallowing disorders. 148 FEES images were analyzed from 74 consecutive patients with swallowing disorders, including 74 with and 74 without NBI. All images were evaluated by four dysphagia specialists. Findings were classified according to Rosenbek's penetration-aspiration scale modified for evaluating these FEES images. Intra- and inter-rater reliability was determined as well as observer confidence. A better visualization of the bolus is the main advantage of NBI in FEES. This generally leads to sharper optical contrasts and better detection of small bolus quantities. Accordingly, NBI enhances the detection rate of penetration and aspiration. On average, identification of laryngeal penetration increased from 40 to 73% and of aspiration from 13 to 24% (each p dysphagia evaluation and shortening FEES evaluation time. It leads to a markedly higher detection rate of pathological findings. The significantly better intra- and inter-rater reliability argues further for a better overall reproducibly of FEES interpretation.

  6. Use of narrow-band imaging bronchoscopy in detection of lung cancer.

    Science.gov (United States)

    Zaric, Bojan; Perin, Branislav

    2010-05-01

    Narrow-band imaging (NBI) is a new endoscopic technique designed for detection of pathologically altered submucosal and mucosal microvascular patterns. The combination of magnification videobronchoscopy and NBI showed great potential in the detection of precancerous and cancerous lesions of the bronchial mucosa. The preliminary studies confirmed supremacy of NBI over white-light videobronchoscopy in the detection of premalignant and malignant lesions. Pathological patterns of capillaries in bronchial mucosa are known as Shibuya's descriptors (dotted, tortuous and abrupt-ending blood vessels). Where respiratory endoscopy is concerned, the NBI is still a 'technology in search of proper indication'. More randomized trials are necessary to confirm the place of NBI in the diagnostic algorithm, and more trials are needed to evaluate the relation of NBI to autofluorescence videobronchoscopy and to white-light magnification videobronchoscopy. Considering the fact that NBI examination of the tracheo-bronchial tree is easy, reproducible and clear to interpret, it is certain that NBI videobronchoscopy will play a significant role in the future of lung cancer detection and staging.

  7. Narrow-band imaging of the inner R Aquarii nebula - Further evidence for shock excitation

    International Nuclear Information System (INIS)

    Burgarella, D.; Paresce, F.

    1991-01-01

    The jetlike nebulosity in the inner regions of the symbiotic variable R Aqr was imaged through narrow-band interference filters. A high spatial resolution image in the forbidden N II 6583 A line shows that the relative fluxes of features B and D defined by Paresce et al. (1988) have changed in the sense of a higher D/B brightness ratio at this line in a little over a year with respect to that observed previously in similar seeing conditions. The overall morphology of the jet has remained stable in this period. Line ratios for feature B are presented which can be best understood in terms of excitation of gas clumps surrounding R Aqr by a moving shock. Comparison of the observed fluxes with theoretical expectations yields shock velocity of order 90-100 km/s, a preshock gas density of roughly 10/cu cm, and a gas temperature of roughly 10,000 K. 26 refs

  8. Deep narrow band imagery of the diffuse ISM in M33

    Science.gov (United States)

    Hester, J. Jeff; Kulkarni, Shrinivas R.

    1990-01-01

    Very deep narrow band images were obtained for several fields in the local group spiral galaxy M33 using a wide field reimaging Charge Coupled Device (CCD) camera on the 1.5 m telescope at Palomar Observatory. The reimaging system uses a 306 mm collimator and a 58 mm camera lens to put a 16 minute by 16 minute field onto a Texas Instruments 800 x 800 pixel CCD at a resolution of 1.2 arcseconds pixel (-1). The overall system is f/1.65. Images were obtained in the light of H alpha (S II) lambda lambda 6717, 6731, (O III) lambda 5007, and line-free continuum bands 100A wide, centered at 6450A and 5100A. Assuming a distance of 600 kpc to M33 (Humphreys 1980, Ap. J., 241, 587), this corresponds to a linear scale of 3.5 pc pixel (-1), and a field size of 2.8 kpc x 2.8 kpc. Researchers discuss the H alpha imagery of a field centered approx. equal to 8 minutes NE of the nucleus, including the supergiant HII region complex NGC 604. Two 2000 second H alpha images and two 300 second red continuum images were obtained of two slightly offset fields. The fields were offset to allow for discrimination between real emission and possible artifacts in the images. All images were resampled to align them with one of the H alpha frames. The continuum images were normalized to the line images using the results of aperture photometry on a grid of stars in the field, then the rescaled continuum data were directly subtracted from the line data.

  9. Implementation of Industrial Narrow Band Communication System into SDR Concept

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2008-12-01

    Full Text Available The rapid expansion of the digital signal processing has penetrated recently into a sphere of high performance industrial narrow band communication systems which had been for long years dominated by the traditional analog circuit design. Although it brings new potential to even increase the efficiency of the radio channel usage it also forces new challenges and compromises radio designers have to face. In this article we describe the design of the IF sampling industrial narrowband radio receiver, optimize a digital receiver structure implemented in a single FPGA circuit and study the performance of such radio receiver architecture. As an evaluation criterion the communication efficiency in form of maximum usable receiver sensitivity, co-channel rejection, adjacent channel selectivity and radio blocking measurement have been selected.

  10. NARROW-K-BAND OBSERVATIONS OF THE GJ 1214 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Colón, Knicole D.; Gaidos, Eric, E-mail: colonk@hawaii.edu [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2013-10-10

    GJ 1214 is a nearby M dwarf star that hosts a transiting super-Earth-size planet, making this system an excellent target for atmospheric studies. Most studies find that the transmission spectrum of GJ 1214b is flat, which favors either a high mean molecular weight or cloudy/hazy hydrogen (H) rich atmosphere model. Photometry at short wavelengths (<0.7 μm) and in the K band can discriminate the most between these different atmosphere models for GJ 1214b, but current observations do not have sufficiently high precision. We present photometry of seven transits of GJ 1214b through a narrow K-band (2.141 μm) filter with the Wide Field Camera on the 3.8 m United Kingdom Infrared Telescope. Our photometric precision is typically 1.7 × 10{sup –3} (for a single transit), comparable with other ground-based observations of GJ 1214b. We measure a planet-star radius ratio of 0.1158 ± 0.0013, which, along with other studies, also supports a flat transmission spectrum for GJ 1214b. Since this does not exclude a scenario where GJ 1214b has an H-rich envelope with heavy elements that are sequestered below a cloud/haze layer, we compare K-band observations with models of H{sub 2} collision-induced absorption in an atmosphere for a range of temperatures. While we find no evidence for deviation from a flat spectrum (slope s = 0.0016 ± 0.0038), an H{sub 2}-dominated upper atmosphere (<60 mbar) cannot be excluded. More precise observations at <0.7 μm and in the K band, as well as a uniform analysis of all published data, would be useful for establishing more robust limits on atmosphere models for GJ 1214b.

  11. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq; Al-Naffouri, Tareq Y.; Al-Ghadhban, Samir N.

    2012-01-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous

  12. Image registration for a UV-Visible dual-band imaging system

    Science.gov (United States)

    Chen, Tao; Yuan, Shuang; Li, Jianping; Xing, Sheng; Zhang, Honglong; Dong, Yuming; Chen, Liangpei; Liu, Peng; Jiao, Guohua

    2018-06-01

    The detection of corona discharge is an effective way for early fault diagnosis of power equipment. UV-Visible dual-band imaging can detect and locate corona discharge spot at all-weather condition. In this study, we introduce an image registration protocol for this dual-band imaging system. The protocol consists of UV image denoising and affine transformation model establishment. We report the algorithm details of UV image preprocessing, affine transformation model establishment and relevant experiments for verification of their feasibility. The denoising algorithm was based on a correlation operation between raw UV images, a continuous mask and the transformation model was established by using corner feature and a statistical method. Finally, an image fusion test was carried out to verify the accuracy of affine transformation model. It has proved the average position displacement error between corona discharge and equipment fault at different distances in a 2.5m-20 m range are 1.34 mm and 1.92 mm in the horizontal and vertical directions, respectively, which are precise enough for most industrial applications. The resultant protocol is not only expected to improve the efficiency and accuracy of such imaging system for locating corona discharge spot, but also supposed to provide a more generalized reference for the calibration of various dual-band imaging systems in practice.

  13. Evaluation of an e-learning system for diagnosis of gastric lesions using magnifying narrow-band imaging: a multicenter randomized controlled study.

    Science.gov (United States)

    Nakanishi, Hiroyoshi; Doyama, Hisashi; Ishikawa, Hideki; Uedo, Noriya; Gotoda, Takuji; Kato, Mototsugu; Nagao, Shigeaki; Nagami, Yasuaki; Aoyagi, Hiroyuki; Imagawa, Atsushi; Kodaira, Junichi; Mitsui, Shinya; Kobayashi, Nozomu; Muto, Manabu; Takatori, Hajime; Abe, Takashi; Tsujii, Masahiko; Watari, Jiro; Ishiyama, Shuhei; Oda, Ichiro; Ono, Hiroyuki; Kaneko, Kazuhiro; Yokoi, Chizu; Ueo, Tetsuya; Uchita, Kunihisa; Matsumoto, Kenshi; Kanesaka, Takashi; Morita, Yoshinori; Katsuki, Shinichi; Nishikawa, Jun; Inamura, Katsuhisa; Kinjo, Tetsu; Yamamoto, Katsumi; Yoshimura, Daisuke; Araki, Hiroshi; Kashida, Hiroshi; Hosokawa, Ayumu; Mori, Hirohito; Yamashita, Haruhiro; Motohashi, Osamu; Kobayashi, Kazuhiko; Hirayama, Michiaki; Kobayashi, Hiroyuki; Endo, Masaki; Yamano, Hiroo; Murakami, Kazunari; Koike, Tomoyuki; Hirasawa, Kingo; Miyaoka, Youichi; Hamamoto, Hidetaka; Hikichi, Takuto; Hanabata, Norihiro; Shimoda, Ryo; Hori, Shinichiro; Sato, Tadashi; Kodashima, Shinya; Okada, Hiroyuki; Mannami, Tomohiko; Yamamoto, Shojiro; Niwa, Yasumasa; Yashima, Kazuo; Tanabe, Satoshi; Satoh, Hiro; Sasaki, Fumisato; Yamazato, Tetsuro; Ikeda, Yoshiou; Nishisaki, Hogara; Nakagawa, Masahiro; Matsuda, Akio; Tamura, Fumio; Nishiyama, Hitoshi; Arita, Keiko; Kawasaki, Keisuke; Hoppo, Kazushige; Oka, Masashi; Ishihara, Shinichi; Mukasa, Michita; Minamino, Hiroaki; Yao, Kenshi

    2017-10-01

    Background and study aim  Magnifying narrow-band imaging (M-NBI) is useful for the accurate diagnosis of early gastric cancer (EGC). However, acquiring skill at M-NBI diagnosis takes substantial effort. An Internet-based e-learning system to teach endoscopic diagnosis of EGC using M-NBI has been developed. This study evaluated its effectiveness. Participants and methods  This study was designed as a multicenter randomized controlled trial. We recruited endoscopists as participants from all over Japan. After completing Test 1, which consisted of M-NBI images of 40 gastric lesions, participants were randomly assigned to the e-learning or non-e-learning groups. Only the e-learning group was allowed to access the e-learning system. After the e-learning period, both groups received Test 2. The analysis set was participants who scored e-learning group and 197 in the non-e-learning group). After the e-learning period, all 395 completed Test 2. The analysis sets were e-learning group: n = 184; and non-e-learning group: n = 184. The mean Test 1 score was 59.9 % for the e-learning group and 61.7 % for the non-e-learning group. The change in accuracy in Test 2 was significantly higher in the e-learning group than in the non-e-learning group (7.4 points vs. 0.14 points, respectively; P  e-learning system in improving practitioners' capabilities to diagnose EGC using M-NBI.Trial registered at University Hospital Medical Information Network Clinical Trials Registry (UMIN000008569). © Georg Thieme Verlag KG Stuttgart · New York.

  14. OLGA- and OLGIM-based staging of gastritis using narrow-band imaging magnifying endoscopy.

    Science.gov (United States)

    Saka, Akiko; Yagi, Kazuyoshi; Nimura, Satoshi

    2015-11-01

    As atrophic gastritis and intestinal metaplasia as a result of Helicobacter pylori are considered risk factors for gastric cancer, it is important to assess their severity. In the West, the operative link for gastritis assessment (OLGA) and operative link for gastric intestinal metaplasia assessment (OLGIM) staging systems based on biopsy have been widely adopted. In Japan, however, narrow-band imaging (NBI)-magnifying endoscopic diagnosis of gastric mucosal inflammation, atrophy, and intestinal metaplasia has been reported to be fairly accurate. Therefore, we investigated the practicality of NBI-magnifying endoscopy (NBI-ME) for gastritis staging. We enrolled 55 patients, in whom NBI-ME was used to score the lesser curvature of the antrum (antrum) and the lesser curvature of the lower body (corpus). The NBI-ME score classification was established from images obtained beforehand, and then biopsy specimens taken from the observed areas were scored according to histological findings. The NBI-ME and histology scores were then compared. Furthermore, we assessed the NBI-ME and histology stages using a combination of scores for the antrum and corpus, and divided the stages into two risk groups: low and high. The degree to which the stage assessed by NBI-ME approximated that assessed by histology was then ascertained. Degree of correspondence between the NBI-ME and histology scores was 69.1% for the antrum and 72.7% for the corpus, and that between the high- and low-risk groups was 89.1%. Staging of gastritis using NBI-ME approximates that based on histology, and would be a practical alternative to the latter. © 2015 The Authors. Digestive Endoscopy © 2015 Japan Gastroenterological Endoscopy Society.

  15. Novel structural flexibility identification in narrow frequency bands

    International Nuclear Information System (INIS)

    Zhang, J; Moon, F L

    2012-01-01

    A ‘Sub-PolyMAX’ method is proposed in this paper not only for estimating modal parameters, but also for identifying structural flexibility by processing the impact test data in narrow frequency bands. The traditional PolyMAX method obtains denominator polynomial coefficients by minimizing the least square (LS) errors of frequency response function (FRF) estimates over the whole frequency range, but FRF peaks in different structural modes may have different levels of magnitude, which leads to the modal parameters identified for the modes with small FRF peaks being inaccurate. In contrast, the proposed Sub-PolyMAX method implements the LS solver in each subspace of the whole frequency range separately; thus the results identified from a narrow frequency band are not affected by FRF data in other frequency bands. In performing structural identification in narrow frequency bands, not in the whole frequency space, the proposed method has the following merits: (1) it produces accurate modal parameters, even for the modes with very small FRF peaks; (2) it significantly reduces computation cost by reducing the number of frequency lines and the model order in each LS implementation; (3) it accurately identifies structural flexibility from impact test data, from which structural deflection under any static load can be predicted. Numerical and laboratory examples are investigated to verify the effectiveness of the proposed method. (paper)

  16. From Narrow to Wide Band Normalizer for LHC

    CERN Document Server

    Vismara, Giuseppe

    1997-01-01

    The narrow band normalizer (NBN) based on the phase processor is working to full satisfaction in the LEP BOM system for almost 10 years. Recently a new idea for a wide band normaliser (WBN) based on a time processor exploiting a single oscillation period has been developed. The position information is converted into a time difference between the zero crossing of two recombined and shaped electrode signals. It appears that the NBN can be easily adapted to perform as a wide band processor. To do so, the BP filter and the 90° Hybrid are replaced by low pass filter and delay lines. A prototype based on the present NBN has been developed and tested to prove the feasibility of the new idea. The paper gives an overview of the advantages and limitations of the BOM NB processor. It summarizes the useful LHC parameters and describes the specifications for the beam position acquisition system. After describing the basic principles, it analyzes in detail all the blocks of the processing chain and presents the measurem...

  17. Large-amplitude and narrow-band vibration phenomenon of a foursquare fix-supported flexible plate in a rigid narrow channel

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lifang, E-mail: liu_lifang1106@yahoo.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Lu Daogang, E-mail: ludaogang@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Li Yang, E-mail: qinxiuyi@sina.com [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Zhang Pan, E-mail: zhangpan@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Niu Fenglei, E-mail: niufenglei@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China)

    2011-08-15

    Highlights: > FIV of a foursquare fix-supported flexible plate exposed to axial flow was studied. > Special designed test section and advanced measuring equipments were adopted. > The narrow-band vibration phenomenon with large amplitude was observed. > Line of plate's vibration amplitude and flow rate was investigated. > The phenomenon and the measurement error were analyzed. - Abstract: An experiment was performed to analyze the flow-induced vibration behavior of a foursquare fix-supported flexible plate exposed to the axial flow within a rigid narrow channel. The large-amplitude and narrow-band vibration phenomenon was observed in the experiment when the flow velocity varied with the range of 0-5 m/s. The occurring condition and some characteristics of the large-amplitude and narrow-band vibrations were investigated.

  18. Office-based narrow band imaging-guided flexible laryngoscopy tissue sampling: A cost-effectiveness analysis evaluating its impact on Taiwanese health insurance program

    OpenAIRE

    Fang, Tuan-Jen; Li, Hsueh-Yu; Liao, Chun-Ta; Chiang, Hui-Chen; Chen, I-How

    2015-01-01

    Narrow band imaging (NBI)-guided flexible laryngoscopy tissue sampling for laryngopharyngeal lesions is a novel technique. Patients underwent the procedure in an office-based setting without being sedated, which is different from the conventional technique performed using direct laryngoscopy. Although the feasibility and effects of this procedure were established, its financial impact on the institution and Taiwanese National Health Insurance program was not determined. Methods: This is a ...

  19. HIGH RESOLUTION He i 10830 Å NARROW-BAND IMAGING OF AN M-CLASS FLARE. I. ANALYSIS OF SUNSPOT DYNAMICS DURING FLARING

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ya; Su, Yingna; Hong, Zhenxiang; Ji, Haisheng [Key Laboratory of DMSA, Purple Mountain Observatory, CAS, Nanjing, 210008 (China); Zeng, Zhicheng; Goode, Philip R.; Cao, Wenda [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Ji, Kaifan [Yunnan Astronomical Observatories, Kunming 650011 (China)

    2016-12-20

    In this paper, we report our first-step results of high resolution He i 10830 Å narrow-band imaging (bandpass: 0.5 Å) of an M1.8 class two-ribbon flare on 2012 July 5. The flare was observed with the 1.6 m aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extension of umbral flashes; both take the form of absorption in the 10830 Å narrow-band images. From a space–time image made of a slit cutting across a flare ribbon and the sunspot, we find that the dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside the ribbon when it sweeps into the sunspot’s penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a return of the absorption strip with similar speed. We tentatively explain the phenomena as the result of a sudden increase in the density of ortho-helium atoms in the area of the sunspot being excited by the flare’s extreme ultraviolet illumination. This explanation is based on the observation that 10830 Å absorption around the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.

  20. Subharmonic response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random excitation.

    Science.gov (United States)

    Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong

    2009-08-01

    The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.

  1. Itinerant ferromagnetism in the narrow band limit

    CERN Document Server

    Liu, S H

    2000-01-01

    It is shown that in the narrow band, strong interaction limit the paramagnetic state of an itinerant ferromagnet is described by the disordered local moment state. As a result, the Curie temperature is orders of magnitude lower than what is expected from the large exchange splitting of the spin bands. An approximate analysis has also been carried out for the partially ordered state, and the result explains the temperature evolvement of the magnetic contributions to the resistivity and low-energy optical conductivity of CrO sub 2.

  2. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    Science.gov (United States)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  3. Head and hand detuning effect study of narrow-band against wide-band mobile phone antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2014-01-01

    Wide-band (WB) and narrow-band (NB) antennas in terms of performance are compared, when interacting with the user’s right head and hand (RHH). The investigations are done through experimental measurements, using standardised head phantom and hand. It is shown that WB antennas detune more than NB ...

  4. Gas Distributions in Comet ISON’s Coma: Concurrent Integral-Field Spectroscopy and Narrow-band Imaging.

    Science.gov (United States)

    Schmidt, Carl; Johnson, Robert E.; Baumgardner, Jeffrey; Mendillo, Michael

    2014-11-01

    At a solar distance of 0.44 AU, Oort cloud comet C/2012 S1 (ISON) exhibited an outburst phase that was observed by small telescopes at the McDonald Observatory. In conjunction with narrow-band (14Å) imaging over a wide-field, an image-slicer spectrograph ( 20,000) simultaneously measured the spatial distribution of ISON’s coma over a 1.6 x 2.7 arcminute field made up of 246 individual spectra. More than fifty emission lines from C2, NH2, CO, H2O+ and Na were observed within a single Echelle order spanning 5868Å to 5930Å. Spatial reconstructions of these species reveal that ISON’s coma was quite elongated several thousand km along the axis perpendicular to its motion. The ion tail appeared distinctly broader than the neutral Na tail, providing strong evidence that Na in the coma did not originate by dissociative recombination of a sodium bearing molecular ion. Production rates increased from 1.6 ± 0.3 x 1023 to 5.8 ± 1 x 1023 Na atoms/s within 24 hours, outgassing much less than comparable comets relative to ISON’s water production. The anti-sunward Na tail was imaged >106 km from the nucleus. Its distribution indicates origins both near the nucleus and in the dust tail, with the ratio of these Na sources varying on hourly timescales due to outburst activity.

  5. "Leopard skin sign": the use of narrow-band imaging with magnification endoscopy in celiac disease.

    Science.gov (United States)

    Tchekmedyian, Asadur J; Coronel, Emmanuel; Czul, Frank

    2014-01-01

    Celiac Disease (CD) is an immune reaction to gluten containing foods such as rye, wheat and barley. This condition affects individuals with a genetic predisposition; it targets the small bowel and may cause symptoms including diarrhea, malabsorption, weight loss, abdominal pain and bloating. The diagnosis is made by serologic testing of celiac-specific antibodies and confirmed by histology. Certain endoscopic characteristics, such as scalloping, reduction in the number of folds, mosaic-pattern mucosa or nodular mucosa, are suggestive of CD and can be visualized under white light endoscopy. Due to its low sensitivity, endoscopy alone is not recommended to diagnose CD; however, enhanced visual identification of suspected mucosal abnormalities through the use of new technologies, such as narrow band imaging with magnification (NBI-ME), could assist in targeting biopsies and thereby increasing the sensitivity of endoscopy. This is a case series of seven patients with serologic and histologic diagnoses of CD who underwent upper endoscopies with NBI-ME imaging technology as part of their CD evaluation. By employing this imaging technology, we could identify patchy atrophy sites in a mosaic pattern, with flattened villi and alteration of the central capillaries of the duodenal mucosa. We refer to this epithelial pattern as "Leopard Skin Sign". Since epithelial lesions are easily seen using NBI-ME, we found it beneficial for identifying and targeting biopsy sites. Larger prospective studies are warranted to confirm our findings.

  6. Sensitivity and specificity of narrow-band imaging nasoendoscopy compared to histopathology results in patients with suspected nasopharyngeal carcinoma

    Science.gov (United States)

    Adham, M.; Musa, Z.; Lisnawati; Suryati, I.

    2017-08-01

    Nasopharyngeal carcinoma (NPC) is a disease which is prevalent in developing countries like Indonesia. There were 164 new cases of nasopharyngeal carcinoma in the ear, nose, and throat (ENT) oncology outpatient clinic of the Cipto Mangunkusumo hospital in 2014, and 142 cases in 2015. Unfortunately, almost all of these cases presented at an advanced stage. The success of nasopharyngeal carcinoma treatment is largely determined by the stage when patients are diagnosed; it is critical to diagnose NPC as early as possible. Narrow-band imaging (NBI) is an endoscopic instrument with a light system that can improve the visualization of blood vessels of mucosal epithelial malignant tumors. NBI is expected to help clinicians to assess whether a lesion is malignant or not; to do so, it is important to know the value of sensitivity and specificity. This study is a cross-sectional form of a diagnostic test which was performed in the outpatient clinic of the ENT Head and Neck Surgery Department for the Cipto Mangunkusumo Hospital, from January to June 2016, and involved 56 subjects. Patients with a nasopharyngeal mass discovered by physical examination or imaging, and a suspected nasopharyngeal carcinoma were included as a subject. An NBI examination and biopsy was performed locally. Based on this research, NBI could be used as a screening tool for nasopharyngeal carcinoma with high sensitivity (100%), but with a low specificity result (6.7%).

  7. Narrow band flame emission from dieseline and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Wu, Zengyang

    2016-08-18

    In this paper, spray combustion of diesel (No. 2) and diesel-gasoline blend (dieseline: 80% diesel and 20% gasoline by volume) were investigated in an optically accessible constant volume combustion chamber. Effects of ambient conditions on flame emissions were studied. Ambient oxygen concentration was varied from 12% to 21% and three ambient temperatures were selected: 800 K, 1000 K and 1200 K. An intensified CCD camera coupled with bandpass filters was employed to capture the quasi-steady state flame emissions at 430 nm and 470 nm bands. Under non-sooting conditions, the narrow-band flame emissions at 430 nm and 470 nm can be used as indicators of CH∗ (methylidyne) and HCHO∗ (formaldehyde), respectively. The lift-off length was measured by imaging the OH∗ chemiluminescence at 310 nm. Flame emission structure and intensity distribution were compared between dieseline and diesel at wavelength bands. Flame emission images show that both narrow band emissions become shorter, thinner and stronger with higher oxygen concentration and higher ambient temperature for both fuels. Areas of weak intensity are observed at the flame periphery and the upstream for both fuels under all ambient conditions. Average flame emission intensity and area were calculated for 430 nm and 470 nm narrow-band emissions. At a lower ambient temperature the average intensity increases with increasing ambient oxygen concentration. However, at the 1200 K ambient temperature condition, the average intensity is not increasing monotonically for both fuels. For most of the conditions, diesel has a stronger average flame emission intensity than dieseline for the 430 nm band, and similar phenomena can be observed for the 470 nm band with 800 K and 1200 K ambient temperatures. However, for the 1000 K ambient temperature cases, dieseline has stronger average flame emission intensities than diesel for all oxygen concentrations at 470 nm band. Flame emissions for the two bands have a

  8. Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Ahmed, Arham S.; Shafeeq, M. Muhamed; Singla, M.L.; Tabassum, Sartaj; Naqvi, Alim H.; Azam, Ameer

    2011-01-01

    Nickel-doped tin oxide nanoparticles (sub-5 nm size) with intense fluorescence emission behavior have been synthesized by sol-gel route. The structural and compositional analysis has been carried out by using XRD, TEM, FESEM and EDAX. The optical absorbance spectra indicate a band gap narrowing effect and it was found to increase with the increase in nickel concentration. The band gap narrowing at low dopant concentration ( 2 -SnO 2-x alloying effect and for higher doping it may be due to the formation of defect sub-bands below the conduction band.

  9. Perturbation method for calculation of narrow-band impedance and trapped modes

    International Nuclear Information System (INIS)

    Heifets, S.A.

    1987-01-01

    An iterative method for calculation of the narrow-band impedance is described for a system with a small variation in boundary conditions, so that the variation can be considered as a perturbation. The results are compared with numeric calculations. The method is used to relate the origin of the trapped modes with the degeneracy of the spectrum of an unperturbed system. The method also can be applied to transverse impedance calculations. 6 refs., 6 figs., 1 tab

  10. Nonstationary Narrow-Band Response and First-Passage Probability

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    The notion of a nonstationary narrow-band stochastic process is introduced without reference to a frequency spectrum, and the joint distribution function of two consecutive maxima is approximated by use of an envelope. Based on these definitions the first passage problem is treated as a Markov po...

  11. Double symbol error rates for differential detection of narrow-band FM

    Science.gov (United States)

    Simon, M. K.

    1985-01-01

    This paper evaluates the double symbol error rate (average probability of two consecutive symbol errors) in differentially detected narrow-band FM. Numerical results are presented for the special case of MSK with a Gaussian IF receive filter. It is shown that, not unlike similar results previously obtained for the single error probability of such systems, large inaccuracies in predicted performance can occur when intersymbol interference is ignored.

  12. Narrow-band radio flares from red dwarf stars

    Science.gov (United States)

    White, Stephen M.; Kundu, Mukul R.; Jackson, Peter D.

    1986-01-01

    VLA observations of narrow-band behavior in 20 cm flares from two red dwarf stars, L726 - 8A and AD Leo, are reported. The flare on L726 - 8A was observed at 1415 and 1515 MHz; the flux and the evolution differed significantly at the two frequencies. The flare on AD Leo lasted for 2 hr at 1415 MHz but did not appear at 1515 MHz. The AD Leo flare appears to rule out a source drifting through the stellar corona and is unlikely to be due to plasma emission. In the cyclotron maser model the narrow-band behavior reflects the range of magnetic fields present within the source. The apparent constancy of this field for 2 hr is difficult to understand if magnetic reconnection is the source of energy for the flare. The consistent polarization exhibited by red dwarf flares at 20 cm may be related to stellar activity cycles, and changes in this polarization will permit measuring the length of these cycles.

  13. Stability of the split-band solution and energy gap in the narrow-band region of the Hubbard model

    International Nuclear Information System (INIS)

    Arai, T.; Cohen, M.H.

    1980-01-01

    By inserting quasielectron energies ω calculated from the fully renormalized Green's function of the Hubbard model obtained in the preceding paper into the exact expression of Galitskii and Migdal, the ground-state energy, the chemical potential, and the dynamic- and thermodynamic-stability conditions are calculated in the narrow-band region. The results show that as long as the interaction energy I is finite, electrons in the narrow-band region do not obey the Landau theory of Fermi liquids, and a gap appears between the lowest quasielectron energy ω and the chemical potential μ for any occupation n, regardless of whether the lower band is exactly filled or not. This unusual behavior is possible because, when an electron is added to the system of N electrons, the whole system relaxes due to the strong interaction, introducing a relaxation energy difference between the two quantities. We also show that all previous solutions which exhibit the split-band structure, including Hubbard's work, yield the same conclusion that electrons do not behave like Landau quasiparticles. However, the energy gap is calculated to be negative at least for some occupations n, demonstrating the dynamic instability of those solutions. They also exhibit thermodynamic instability for certain occupations, while the fully renormalized solution, having sufficient electron correlations built in, satisfies the dynamic and thermodynamic stability conditions for all occupations. When the lower band is nearly filled, the nature of the solution is shown to change, making the coherent motion of electrons with fixed k values more difficult. In the pathological limit where I=infinity, however, the gap vanishes, yielding a metallic state

  14. Laterally Spreading Tumors of the Colon During High Resolution Colonoscopy with Narrow Band Imaging and Acetic Acid Chromoscopy

    Directory of Open Access Journals (Sweden)

    V.A. Yakovenko

    2015-02-01

    Materials and Methods. 1632 colonoscopy protocols were studied: 735 — by using video colonoscope Olympus CF-HQ190L and 897 — Olympus CF-150. Results and Discussion. In study group, adenoma detection rate was higher than in control one: 0.78 (571/735 vs. 0.47 (422/897, p < 0.00001; c2 = 157.9. Adenoma detection index was 3.6 times higher in study group than in control one: 2.9 (2,104/735 vs. 0.8 (708/897. Laterally spreading tumors were diagnosed 2.2 times more often in study group than in control one: 22 % (187/735 vs. 10 % (85/897, p < 0.00001; c2 = 53.6. Conclusions. High resolution colonoscopy with narrow band imaging and acetic acid chromoscopy has a high diagnostic value for detection of laterally spreading tumors of the colon.

  15. Narrow-band radio flares from red dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    White, S.M.; Kundu, M.R.; Jackson, P.D.

    1986-12-01

    VLA observations of narrow-band behavior in 20 cm flares from two red dwarf stars, L726 - 8A and AD Leo, are reported. The flare on L726 - 8A was observed at 1415 and 1515 MHz; the flux and the evolution differed significantly at the two frequencies. The flare on AD Leo lasted for 2 hr at 1415 MHz but did not appear at 1515 MHz. The AD Leo flare appears to rule out a source drifting through the stellar corona and is unlikely to be due to plasma emission. In the cyclotron maser model the narrow-band behavior reflects the range of magnetic fields present within the source. The apparent constancy of this field for 2 hr is difficult to understand if magnetic reconnection is the source of energy for the flare. The consistent polarization exhibited by red dwarf flares at 20 cm may be related to stellar activity cycles, and changes in this polarization will permit measuring the length of these cycles. 22 references.

  16. Intensities, broadening and narrowing parameters in the ν3 band of methane

    KAUST Repository

    Es-sebbar, Et-touhami; Farooq, Aamir

    2014-01-01

    The P-branch of methane's ν3 band is probed to carry out an extensive study of the 2905-2908cm-1 infrared spectral region. Absolute line intensities as well as N2-, O2-, H2-, He-, Ar- and CO2-broadening coefficients are determined for nine transitions at room temperature. Narrowing parameters due to the Dicke effect have also been investigated. A narrow emission line-width (~0.0001cm-1) difference-frequency-generation (DFG) laser system is used as the tunable light source. To retrieve the CH4 spectroscopic parameters, Voigt and Galatry profiles were used to simulate the measured line shape of the individual transitions.

  17. Intensities, broadening and narrowing parameters in the ν3 band of methane

    KAUST Repository

    Es-sebbar, Et-touhami

    2014-12-01

    The P-branch of methane\\'s ν3 band is probed to carry out an extensive study of the 2905-2908cm-1 infrared spectral region. Absolute line intensities as well as N2-, O2-, H2-, He-, Ar- and CO2-broadening coefficients are determined for nine transitions at room temperature. Narrowing parameters due to the Dicke effect have also been investigated. A narrow emission line-width (~0.0001cm-1) difference-frequency-generation (DFG) laser system is used as the tunable light source. To retrieve the CH4 spectroscopic parameters, Voigt and Galatry profiles were used to simulate the measured line shape of the individual transitions.

  18. Superconductivity in narrow-band systems with local nonretarded attractive interactions

    International Nuclear Information System (INIS)

    Micnas, R.; Ranninger, J.; Robaszkiewicz, S.

    1990-01-01

    In narrow-band systems electrons can interact with each other via a short-range nonretarded attractive potential. The origin of such an effective local attraction can be polaronic or it can be due to a coupling between electrons and excitons or plasmons. It can also result from purely chemical (electronic) mechanisms, especially in compounds with elements favoring disproportionation of valent states. These mechanisms are discussed and an exhaustive list of materials in which such local electron pairing occurs is given. The authors review the thermodynamic and electromagnetic properties of such systems in several limiting scenarios: (i) Systems with on-site pairing which can be described by the extended negative-U Hubbard model. The strong-attraction limit of this model, at which it reduces to a system of tightly bound electron pairs (bipolarons) on a lattice, is extensively discussed. These electron pairs behaving as hard-core charged bosons can exhibit a superconducting state analogous to that of superfluid 4 He II. The changeover from weak-attraction BCS-like superconductivity to the superfluidity of charged hard-core bosons is examined. (ii) Systems with intersite pairing described by an extended Hubbard model with U>0 and nearest-neighbor attraction and/or nearest-neighbor spin exchange as well as correlated hopping. (iii) A mixture of local pairs and itinerant electrons interacting via a charge-exchange mechanism giving rise to a mutually induced superconductivity in both subsystems. The authors discuss to what extent the picture of local pairing, and in particular superfluidity of hard-core charged bosons on a lattice, can be an explanation for the superconducting and normal-state properties of the high-T c oxides: doped BaBiO 3 and the cuprates

  19. Low-dose narrow-band UVB phototherapy combined with topical therapy is effective in psoriasis and does not inhibit systemic T-cell activation

    NARCIS (Netherlands)

    de Rie, M. A.; Out, T. A.; Bos, J. D.

    1998-01-01

    Psoriasis is a chronic T-cell-mediated inflammatory skin disease which can be treated with topical medication, phototherapy or systemic medication. A subgroup of psoriatic patients does not respond to monotherapy and needs combination therapy. We used low-dose narrow-band UVB phototherapy, combined

  20. Diagnostic efficacy of magnifying endoscopy with narrow-band imaging for gastric neoplasms: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Xiuhe Lv

    Full Text Available Magnifying endoscopy with narrow-band imaging (ME-NBI is a novel, image-enhanced endoscopic technique for differentiating gastrointestinal neoplasms and potentially enabling pathological diagnosis.The aim of this analysis was to assess the diagnostic performance of ME-NBI for gastric neoplasms.We performed a systematic search of the PubMed, EMbase, Web of Science, and Cochrane Library databases for relevant studies. Meta-DiSc (version 1.4 and STATA (version 11.0 software were used for the data analysis. Random effects models were used to assess diagnostic efficacy. Heterogeneity was tested by the Q statistic and I2 statistic. Meta-regression was used to analyze the sources of heterogeneity.A total of 10 studies, with 2151 lesions, were included. The pooled characteristics of these studies were as follows: sensitivity 0.85 (95% confidence interval [CI]: 0.81-0.89, specificity 0.96 (95% confidence interval [CI]: 0.95-0.97, and area under the curve (AUC 0.9647. In the subgroup analysis, which compared the diagnostic efficacy of ME-NBI and white light imaging (WLI, the pooled sensitivity and specificity of ME-NBI were 0.87 (95% CI: 0.80-0.92 and 0.93 (95% CI: 0.90-0.95, respectively, and the area under the curve (AUC was 0.9556. In contrast, the pooled sensitivity and specificity of WLI were 0.61 (95% CI: 0.53-0.69 and 0.65 (95% CI: 0.60-0.69, respectively, and the area under the curve (AUC was 0.6772.ME-NBI presents a high diagnostic value for gastric neoplasms and has a high specificity.

  1. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq

    2012-06-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous with the frequency grid of the ZP-OFDM system. The proposed structure based technique uses the fact that the NBI signal is sparse as compared to the ZP-OFDM signal in the frequency domain. The structure is also useful in reducing the computational complexity of the proposed method. The paper also presents a data aided approach for improved NBI estimation. The suitability of the proposed method is demonstrated through simulations. © 2012 IEEE.

  2. Band gap narrowing and fluorescence properties of nickel doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Arham S; Shafeeq, M Muhamed [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Singla, M L [Central Scientific Instruments Organization (CSIO), Council of Scientific and Industrial Research (CSIR), Materials Research and Bio-Nanotechnology Division, Sector - 30/C, Chandigarh-160030 (India); Tabassum, Sartaj [Department of Chemistry, Aligarh Muslim University, Aligarh-202002 (India); Naqvi, Alim H [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Azam, Ameer [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India)

    2011-01-15

    Nickel-doped tin oxide nanoparticles (sub-5 nm size) with intense fluorescence emission behavior have been synthesized by sol-gel route. The structural and compositional analysis has been carried out by using XRD, TEM, FESEM and EDAX. The optical absorbance spectra indicate a band gap narrowing effect and it was found to increase with the increase in nickel concentration. The band gap narrowing at low dopant concentration (<5%) can be assigned to SnO{sub 2}-SnO{sub 2-x} alloying effect and for higher doping it may be due to the formation of defect sub-bands below the conduction band.

  3. f-band narrowing in uranium intermetallics

    International Nuclear Information System (INIS)

    Dunlap, B.D.; Litterst, F.J.; Malik, S.K.; Kierstead, H.A.; Crabtree, G.W.; Kwok, W.; Lam, D.J.; Mitchell, A.W.

    1987-01-01

    Although the discovery of heavy fermion behavior in uranium compounds has attracted a great deal of attention, relatively little work has been done which is sufficiently systematic to allow an assessment of the relationship of such behavior to more common phenomena, such as mixed valence, narrow-band effects, etc. In this paper we report bulk property measurements for a number of alloys which form a part of such a systematic study. The approach has been to take relatively simple and well-understood materials and alter their behavior by alloying to produce heavy fermion or Kondo behavior in a controlled way

  4. Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm

    Directory of Open Access Journals (Sweden)

    Guanquan Liang

    2011-12-01

    Full Text Available A prototype of planar silicon photonic structure is designed and simulated to provide narrow resonant line-width (∼2 nm in a wide photonic band gap (∼210 nm with broad tunable resonant wavelength range (∼100 nm around the optical communication wavelength 1550 nm. This prototype is based on the combination of two modified basic photonic structures, i.e. a split tapered photonic crystal micro-cavity embedded in a photonic wire waveguide, and a slot waveguide with narrowed slabs. This prototype is then further integrated with a MEMS (microelectromechanical systems based electrostatic comb actuator to achieve “coarse tune” and “fine tune” at the same time for wide range and narrow-band filtering and modulating. It also provides a wide range tunability to achieve the designed resonance even fabrication imperfection occurs.

  5. Predicting soil nitrogen content using narrow-band indices from ...

    African Journals Online (AJOL)

    Optimal fertiliser applications for sustainable forest stand productivity management, whilst protecting the environment, is vital. This study estimated soil nitrogen content using leaf-level narrow-band vegetation indices derived from a hand-held 350–2 500 nm spectroradiometer. Leaf-level spectral data were collected and ...

  6. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    Science.gov (United States)

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-11

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  7. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    Science.gov (United States)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been

  8. The differences in brain activity between narrow band noise and pure tone tinnitus.

    Directory of Open Access Journals (Sweden)

    Sven Vanneste

    Full Text Available BACKGROUND: Tinnitus is an auditory sensation characterized by the perception of sound or noise in the absence of any external sound source. Based on neurobiological research, it is generally accepted that most forms of tinnitus are attributable to maladaptive plasticity due to damage to auditory system. Changes have been observed in auditory structures such as the inferior colliculus, the thalamus and the auditory cortex as well as in non-auditory brain areas. However, the observed changes show great variability, hence lacking a conclusive picture. One of the reasons might be the selection of inhomogeneous groups in data analysis. METHODOLOGY: The aim of the present study was to delineate the differences between the neural networks involved in narrow band noise and pure tone tinnitus conducting LORETA based source analysis of resting state EEG. CONCLUSIONS: Results demonstrated that narrow band noise tinnitus patients differ from pure tone tinnitus patients in the lateral frontopolar (BA 10, PCC and the parahippocampal area for delta, beta and gamma frequency bands, respectively. The parahippocampal-PCC current density differences might be load dependent, as noise-like tinnitus constitutes multiple frequencies in contrast to pure tone tinnitus. The lateral frontopolar differences might be related to pitch specific memory retrieval.

  9. Efektivitas Terapi Kortikosteroid Intranasal pada Hipertrofi Adenoid Usia Dewasa berdasarkan Pemeriksaan Narrow Band Imaging

    Directory of Open Access Journals (Sweden)

    Sinta Sari Ratunanda

    2016-12-01

    Full Text Available Adenoid hypertrophy is a process in which adenoid size becomes enlarged and causes clinical symptoms, especially nasal obstruction. Adenoid hypertrophy can be due to physiological, inflammatory, or malignancy processes. Adenoid inflammatory process can be assessed using a flexible fiberoptic nasoendoscopy with narrow band imaging (NBI. Intranasal corticosteroid is one of the choices to treat adenoid hypertrophy in children; however, more experiments are needed to use it in adults. This study was performed in the period of November 2012 to January 2013 at the outpatient clinic of the Otorhinolaryngology-Head and Neck Surgery Department of Dr. Hasan Sadikin General Hospital Bandung, using pre- and post-test open-labeled quasiexperimental design. Sample was selected through consecutive sampling, involving 11 subjects. Diagnosis was based on research subject’s anamnesis, ear nose and throat (ENT physical examination, NBI-equipped fiberoptic nasoendocopy examination, and adenoid mucosal biopsy. Subjects were given intranasal corticosteroid therapy for four weeks. NBI-equipped fiberoptic nasoendocopy examination and biopsy examination were performed after therapy. Data were analyzed using Wilcoxon test, showing significant improvement of the adenoid inflammation after intranasal corticosteroids therapy (p<0.05. McNemar test results showed a significant reduction in adenoid size (p<0.05. Spearman rank test showed a significant correlation between histopathologic findings and NBI examination result (p<0.05. In conclusion, intranasal corticosteroids are effective for adult adenoid hypertrophy treatment based on NBI examination. [MKB. 2016;48(4:228–33

  10. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  11. DATA QUALITY EVALUATION AND APPLICATION POTENTIAL ANALYSIS OF TIANGONG-2 WIDE-BAND IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    B. Qin

    2018-04-01

    Full Text Available Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  12. Data Quality Evaluation and Application Potential Analysis of TIANGONG-2 Wide-Band Imaging Spectrometer

    Science.gov (United States)

    Qin, B.; Li, L.; Li, S.

    2018-04-01

    Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  13. Diagnostic Performance of Narrow Band Imaging for Nasopharyngeal Cancer: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Sun, Changling; Zhang, Yayun; Han, Xue; Du, Xiaodong

    2018-03-01

    Objective The purposes of this study were to verify the effectiveness of the narrow band imaging (NBI) system in diagnosing nasopharyngeal cancer (NPC) as compared with white light endoscopy. Data Sources PubMed, Cochrane Library, EMBASE, CNKI, and Wan Fang databases. Review Methods Data analyses were performed with Meta-Disc. The updated Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess study quality and potential bias. Publication bias was assessed with a Deeks asymmetry test. The registry number of the protocol published on PROSPERO is CRD42015026244. Results This meta-analysis included 10 studies of 1337 lesions. For NBI diagnosis of NPC, the pooled values were as follows: sensitivity, 0.83 (95% CI, 0.80-0.86); specificity, 0.91 (95% CI, 0.89-0.93); positive likelihood ratio, 8.82 (95% CI, 5.12-15.21); negative likelihood ratio, 0.18 (95% CI, 0.12-0.27); and diagnostic odds ratio, 65.73 (95% CI, 36.74-117.60). The area under the curve was 0.9549. For white light endoscopy in diagnosing NPC, the pooled values were as follows: sensitivity, 0.79 (95% CI, 0.75-0.83); specificity, 0.87 (95% CI, 0.84-0.90); positive likelihood ratio, 5.02 (95% CI, 1.99-12.65); negative likelihood ratio, 0.34 (95% CI, 0.24-0.49); and diagnostic odds ratio, 16.89 (95% CI, 5.98-47.66). The area under the curve was 0.8627. The evaluation of heterogeneity, calculated per the diagnostic odds ratio, gave an I 2 of 0.326. No marked publication bias ( P = .68) existed in this meta-analysis. Conclusion The sensitivity and specificity of NBI for the diagnosis of NPC are similar to those of white light endoscopy, and the potential value of NBI for the diagnosis of NPC needs to be validated further.

  14. Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn

    Science.gov (United States)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2011-06-01

    Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.

  15. Research on mechanism of the large-amplitude and narrow-band vibration of a flexible flat plate in the rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lifang, E-mail: liu_lifang1106@yahoo.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); State Nuclear Power Software Development Center, Building 1, Compound No. 29, North Third Ring Road, Xicheng District, Beijing 100029 (China); Lu Daogang [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The large amplitude and narrow-band vibration experiment was performed. Black-Right-Pointing-Pointer The added mass theory was used to analyze the test plates' natural vibration characteristics in static water. Black-Right-Pointing-Pointer The occurring condition of the large amplitude and narrow band vibration was investigated. Black-Right-Pointing-Pointer The large amplitude and narrow-band vibration mechanism was investigated. - Abstract: Further experiments and theoretical analysis were performed to investigate mechanism of the large-amplitude and narrow-band vibration behavior of a flexible flat plate in a rectangular channel. Test plates with different thicknesses were adopted in the FIV experiments. The natural vibration characteristics of the flexible flat plates in air were tested, and the added mass theory of column was used to analyze the flexible flat plates' natural vibration characteristics in static water. It was found that the natural vibration frequency of a certain test plate in static water is approximately within the main vibration frequency band of the plate when it was induced to vibrate with the large-amplitude and narrow-band in the rectangular channel. It can be concluded that the harmonic between the flowing fluid and the vibrating plate is one of the key reasons to induce the large-amplitude and narrow-band vibration phenomenon. The occurring condition of the phenomenon and some important narrow-band vibration characteristics of a foursquare fix-supported flexible flat plate were investigated.

  16. Narrow-band imaging can increase the visibility of fibrin caps after bleeding of esophageal varices: a case with extensive esophageal candidiasis.

    Science.gov (United States)

    Furuichi, Yoshihiro; Kasai, Yoshitaka; Takeuchi, Hirohito; Yoshimasu, Yuu; Kawai, Takashi; Sugimoto, Katsutoshi; Kobayashi, Yoshiyuki; Nakamura, Ikuo; Itoi, Takao

    2017-08-01

    A 58-year-old man with hepatitis B cirrhosis noticed black stools and underwent an endoscopy at a community hospital. The presence of esophageal varices (EVs) was confirmed, but the bleeding point was not found. He was referred to our institution and underwent a second endoscopy. Extensive white patches of esophageal candidiasis were visible on endoscopy by white-light imaging (WLI), but it was difficult to find the fibrin cap of the EVs. This was easier under narrow-band imaging (NBI), however, as the color turned red from absorption by hemoglobin adhered to it. We retrospectively measured the color differences (CD) between the fibrin cap and the surrounding mucosa 10 times using the CIE (L*a*b*) color space method. The median value of CD increased after NBI (13.9 → 43.0, p candidiasis, but the increased visibility of the fibrin cap by NBI enabled it to be found more easily. This is the first report of a case in which NBI was helpful in locating a fibrin cap of EVs.

  17. Detection of Mucosal Recurrent Nasopharyngeal Carcinomas After Radiotherapy With Narrow-Band Imaging Endoscopy

    International Nuclear Information System (INIS)

    Wang, Wen-Hung; Lin, Yen-Chun; Chen, Wen-Cheng; Chen, Miao-Fen; Chen, Chih-Cheng; Lee, Kam-Fai

    2012-01-01

    Purpose: This study evaluated the feasibility of screening mucosal recurrent nasopharyngeal carcinoma with narrow-band imaging (NBI) endoscopy. Methods and Materials: One hundred and six patients were enrolled. All patients underwent conventional white-light (WL) endoscopic examination of the nasopharynx followed by NBI endoscopy. Biopsies were performed if recurrence was suspected. Results: We identified 32 suspected lesions by endoscopy in WL and/or NBI mode. Scattered brown spots (BS) were identified in 22 patients, and 4 of the 22 who had negative MRI findings were histopathologically confirmed to be neoplasias that were successfully removed via endoscopy. A comparison of the visualization in NBI closer view corresponded to histopathological findings in 22 BS, and the prevalence rates of neoplasias in tail signs, round signs, and irregularities signs were 0% (0/6), 0% (0/7), and 44.4% (4/9), respectively (p = 0.048). The sensitivity, specificity, and diagnostic capability were 37.5%, 92.9% and 0.652 for WL, 87.5%, 74.5% and 0.810 for NBI, and 87.5%, 87.8%, and 0.876 for NBI closer view, respectively. NBI closer view was effective in increasing specificity compared with NBI alone (87.8% vs. 74.5%, p < 0.05), and in increasing sensitivity and diagnostic capability compared to WL alone (87.5% vs. 37.5%, p < 0.05; 0.876 vs. 0.652, p = 0.0001). Conclusions: Although NBI in endoscopy can improve sensitivity of mucosal recurrent nasopharyngeal neoplasias, false-positive (nonneoplasia BS) results may be obtained in areas with nonspecific inflammatory changes due to postradiation effects. NBI closer view not only can offer a timely, convenient, and highly reliable assessment of mucosal recurrent nasopharyngeal carcinoma, it can also make endoscopic removal possible.

  18. Coded excitation and sub-band processing for blood velocity estmation in medical ultrasound

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Jensen, Jørgen Arendt

    2007-01-01

    This paper investigates the use of broadband coded excitation and subband processing for blood velocity estimation in medical ultrasound. In conventional blood velocity estimation a long (narrow-band) pulse is emitted and the blood velocity is estimated using an auto-correlation based approach....... However, the axial resolution of the narrow-band pulse is too poor for brightness-mode (B-mode) imaging. Therefore, a separate transmission sequence is used for updating the B-mode image, which lowers the overall frame-rate of the system. By using broad-band excitation signals, the backscattered received...... signal can be divided into a number of narrow frequency bands. The blood velocity can be estimated in each of the bands and the velocity estimates can be averaged to form an improved estimate. Furthermore, since the excitation signal is broadband, no secondary B-mode sequence is required, and the frame...

  19. Active halo control through narrow-band excitation with the ADT at injection

    CERN Document Server

    Wagner, Joschka; Garcia Morales, Hector; Redaelli, Stefano; Valentino, Gianluca; Valuch, Daniel; CERN. Geneva. ATS Department

    2016-01-01

    During this MD (MD1388), the capabilities of an active halo control for beam tail depletion in the LHC were tested. The studied method relies on using the Transverse Damper (ADT) to perform a narrow-band excitation.

  20. Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials

    Science.gov (United States)

    Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin

    2017-12-01

    Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.

  1. Investigation of mucosal pattern of gastric antrum using magnifying narrow-band imaging in patients with chronic atrophic fundic gastritis.

    Science.gov (United States)

    Yamasaki, Yasushi; Uedo, Noriya; Kanzaki, Hiromitsu; Kato, Minoru; Hamada, Kenta; Aoi, Kenji; Tonai, Yusuke; Matsuura, Noriko; Kanesaka, Takashi; Yamashina, Takeshi; Akasaka, Tomofumi; Hanaoka, Noboru; Takeuchi, Yoji; Higashino, Koji; Ishihara, Ryu; Tomita, Yasuhiko; Iishi, Hiroyasu

    2017-01-01

    Magnifying narrow-band imaging (M-NBI) can reportedly help predict the presence and distribution of atrophy and intestinal metaplasia in the gastric corpus. However, the micro-mucosal pattern of the antrum shown by M-NBI differs from that of the corpus. We studied the distribution and histology of the micro-mucosal pattern in the antrum based on magnifying endoscopy. Endoscopic images of the greater curvature of the antrum were evaluated in 50 patients with chronic atrophic fundic gastritis (CAFG). The extent of CAFG was evaluated by autofluorescence imaging. The micro-mucosal pattern was evaluated by M-NBI and classified into groove and white villiform types. The localization of white villiform type mucosa was classified into three types in relation to the areae gastricae : null, central, and segmental types. Biopsies were taken from regions showing different micro-mucosal patterns. Associations among the extent of CAFG, micro-mucosal pattern, and histology were examined. As the extent of CAFG increased, the proportion of white villiform type mucosa increased, whereas that of groove type mucosa decreased (P=0.022). In patients with extensive CAFG, most of the areae gastricae was composed of the segmental or central type of white villiform type mucosa (P=0.044). The white villiform type mucosa had significantly higher grades of atrophy (P=0.002) and intestinal metaplasia (P<0.001) than did the groove type mucosa. White villiform type mucosa is indicative of atrophy and intestinal metaplasia in the gastric antrum. It extends to the whole or central part of the areae gastricae as CAFG becomes more extensive.

  2. Band-gap narrowing of TiO2 films induced by N-doping

    International Nuclear Information System (INIS)

    Nakano, Y.; Morikawa, T.; Ohwaki, T.; Taga, Y.

    2006-01-01

    N-doped TiO 2 films were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 o C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined from X-ray photoelectron spectroscopy measurements. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at 1.18 and 2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. Additionally, the 2.48 eV band is newly introduced by the N-doping and contributes to band-gap narrowing by mixing with the O 2p valence band

  3. The Role of Narrow Band Imaging in the Detection of Recurrent Laryngeal and Hypopharyngeal Cancer after Curative Radiotherapy

    Directory of Open Access Journals (Sweden)

    Michal Zabrodsky

    2014-01-01

    Full Text Available Narrow band imaging is considered a significant improvement in the possibility of detecting early mucosal lesion of the upper aerodigestive tract. Early detection of mucosal neoplastic lesions is of utmost importance for patients survival. There is evidence that, especially in patients previously treated by means of curative radiotherapy or chemoradiotherapy, the early detection rate of recurrent disease is quite low. The aim of this study was to prove whether the videoendoscopy coupled with NBI might help detect recurrent or secondary tumors of the upper aerodigestive tract. 66 patients previously treated by means of RT or CRT with curative intent were enrolled in the study. All patients underwent transnasal flexible videoendoscopy with NBI mode under local anesthesia. When a suspicious lesion was identified in an ambulatory setting, its nature was proved histologically. Many of these changes were not identifiable by means of conventional white light (WL endoscopy. The accuracy, sensitivity, specificity, and positive and negative predictive value of the method are very high (88%, 92%, 76%, 96%, and 91%, resp.. Results demonstrate that outpatient transnasal endoscopy with NBI is an excellent method for the follow-up of patients with carcinomas of the larynx and the hypopharynx primarily treated with radiotherapy.

  4. Diagnostic Performance of Narrow Band Imaging for Laryngeal Cancer: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Sun, Changling; Han, Xue; Li, Xiaoying; Zhang, Yayun; Du, Xiaodong

    2017-04-01

    Objective To evaluate the performance of narrow band imaging (NBI) for the diagnosis of laryngeal cancer and to compare the diagnostic value of NBI with that of white light endoscopy. Data Sources PubMed, Embase, Cochrane Library, and CNKI databases. Review Methods Data analyses were performed with Meta-DiSc. The updated Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess study quality and potential bias. Publication bias was assessed with the Deeks's asymmetry test. The protocol used in this article has been published on PROSPERO and is in accordance with the PRISMA checklist. The registry number for this study is CRD42015025866. Results Six studies including 716 lesions were included in this meta-analysis. The pooled sensitivity, specificity, and diagnostic odds ratio for the NBI diagnosis of laryngeal cancer were 0.94 (95% confidence interval [95% CI]: 0.91-0.96), 0.89 (95% CI: 0.85-0.92), and 142.12 (95% CI: 46.42-435.15), respectively, and the area under receiver operating characteristics curve was 0.97. Among the 6 studies, 3 evaluated the diagnostic value of white light endoscopy, with a sensitivity of 0.81 (95% CI: 0.76-0.86), a specificity of 0.92 (95% CI: 0.88-0.95), and a diagnostic odds ratio of 33.82 (95% CI: 14.76-77.49). The evaluation of heterogeneity, calculated per the diagnostic odds ratio, gave an I 2 of 66%. No marked publication bias ( P = .84) was detected in this meta-analysis. Conclusion The sensitivity of NBI is superior to white light endoscopy, and the potential value of NBI needs to be validated in future studies.

  5. Optimized fan-shaped chiral metamaterial as an ultrathin narrow-band circular polarizer at visible frequencies

    Science.gov (United States)

    He, Yizhuo; Wang, Xinghai; Ingram, Whitney; Ai, Bin; Zhao, Yiping

    2018-04-01

    Chiral metamaterials have the great ability to manipulate the circular polarizations of light, which can be utilized to build ultrathin circular polarizers. Here we build a narrow-band circular polarizer at visible frequencies based on plasmonic fan-shaped chiral nanostructures. In order to achieve the best optical performance, we systematically investigate how different fabrication factors affect the chiral optical response of the fan-shaped chiral nanostructures, including incident angle of vapor depositions, nanostructure thickness, and post-deposition annealing. The optimized fan-shaped nanostructures show two narrow bands for different circular polarizations with the maximum extinction ratios 7.5 and 6.9 located at wavelength 687 nm and 774 nm, respectively.

  6. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding.

    Science.gov (United States)

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-07-28

    To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both imaging and training, it may be possible to increase the sensitivity and specificity of the scopes and hence save money for eliminating time and the cost of Immunohistochemistry/pathology.

  7. Comparison of high-resolution magnification narrow-band imaging and white-light endoscopy in the prediction of histology in Barrett's oesophagus.

    Science.gov (United States)

    Singh, Rajvinder; Karageorgiou, Haris; Owen, Victoria; Garsed, Klara; Fortun, Paul J; Fogden, Edward; Subramaniam, Venkataraman; Shonde, Anthony; Kaye, Philip; Hawkey, Christopher J; Ragunath, Krish

    2009-01-01

    To evaluate whether there is any appreciable difference in imaging characteristics between high-resolution magnification white-light endoscopy (WLE-Z) and narrow-band imaging (NBI-Z) in Barrett's oesophagus (BE) and if this translates into superior prediction of histology. This was a prospective single-centre study involving 21 patients (75 areas, corresponding NBI-Z and WLE-Z images) with BE. Mucosal patterns (pit pattern and microvascular morphology) were evaluated for their image quality on a visual analogue scale (VAS) of 1-10 by five expert endoscopists. The endoscopists then predicted mucosal morphology based on four subtypes which can be visualized in BE. Type A: round pits, regular microvasculature; type B: villous/ridge pits, regular microvasculature; type C: absent pits, regular microvasculature; type D: distorted pits, irregular microvasculature. The sensitivity (Sn), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and accuracy (Acc) were then compared with the final histopathological analysis and the interobserver variability calculated. The overall pit and microvasculature quality was significantly higher for NBI-Z, pit: NBI-Z=6, WLE-Z=4.5, p < 0.001; microvasculature: NBI-Z=7.3, WLE-Z=4.9, p < 0.001. This translated into a superior prediction of histology (Sn: NBI-Z: 88.9, WLE-Z: 71.9, p < 0.001). For the prediction of dysplasia, NBI-Z was superior to WLE-Z (chi(2)=10.3, p < 0.05). The overall kappa agreement among the five endoscopists for NBI-Z and WLE-Z, respectively, was 0.59 and 0.31 (p < 0.001). NBI-Z is superior to WLE-Z in the prediction of histology in BE, with good reproducibility. This novel imaging modality could be an important tool for surveillance of patients with BE.

  8. Characterization of 3 to 5 Micron Thermal Imagers and Analysis of Narrow Band Images

    National Research Council Canada - National Science Library

    Quek, Yew S

    2004-01-01

    ...) and the Minimum Resolvable Temperature (MRT). An available thermal imager, the Cincinnati Electronics IRRIS-256LN, and a newly purchased thermal imager, the Indigo Systems Merlin InSb Laboratory Camera, were investigated and compared...

  9. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU

    Science.gov (United States)

    Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.

    2018-01-01

    There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.

  10. A Compact Narrow-Band Bandstop Filter Using Spiral-Shaped Defected Microstrip Structure

    Directory of Open Access Journals (Sweden)

    J. Wang

    2014-04-01

    Full Text Available A novel compact narrow-band bandstop filter is implemented by using the proposed spiral-shaped defected microstrip structure (SDMS in this paper. Compared with other DMSs, the presented SDMS exhibits the advantage of compact size and narrow stopband. Meanwhile, an approximate design rule of the SDMS is achieved and the effects of the dimensions on the resonant frequency and 3 dB fractional bandwidth (FBW are analyzed in detail. Both the simulation and measurement results of the fabricated bandstop filter show that it has a 10 dB stopband from 3.4 GHz to 3.6 GHz with more than 45 dB rejection at the center frequency.

  11. An Optimized, Grid Independent, Narrow Band Data Structure for High Resolution Level Sets

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Museth, Ken

    2004-01-01

    enforced by the convex boundaries of an underlying cartesian computational grid. Here we present a novel very memory efficient narrow band data structure, dubbed the Sparse Grid, that enables the representation of grid independent high resolution level sets. The key features our new data structure are...

  12. Enhancing Coverage in Narrow Band-IoT Using Machine Learning

    OpenAIRE

    Chafii , Marwa; Bader , Faouzi; Palicot , Jacques

    2018-01-01

    International audience; —Narrow Band-Internet of Thing (NB-IoT) is a recently proposed technology by 3GPP in Release-13. It provides low energy consumption and wide coverage in order to meet the requirements of its diverse applications that span social, industrial and environmental aspects. Increasing the number of repetitions of the transmission has been selected as a promising approach to enhance the coverage in NB-IoT up to 164 dB in terms of maximum coupling loss for uplink transmissions,...

  13. Utility of the cromoendoscopy and the narrow band image at colon polyps; Utilidad de la cromoendoscopia y la imagen de banda estrecha en los polipos de colon

    Energy Technology Data Exchange (ETDEWEB)

    Perez Gonzalez, Teresita; Chao Gonzalez, Lissette; Tusen Toledo, Yunia, E-mail: teresitaperez@infomed.sld.cu [Centro de Investigaciones Medico Quirurgicas, La Habana (Cuba); others, and

    2013-07-01

    Colorrectal adenomas constitute the best characterized pre-malignancy injury in the development of the cancer in the colon. Colonoscopy with diagnostic and therapeutic aims is essential to prevent the cancer appearance. A prospective, descriptive and observational study was carried out in patients that assisted for colonoscopy at Medical Surgical Research Center from September 2010 to July 2011 The Kudo and the Sano-Emura classifications were used to determine the importance of the cromoendoscopy and the narrow band image at the time to identify histological nature of the polyps in the colon. Sensibility, specificity, positive and negative predictable values and the concordance degree were estimated. The morfology and the dysplasia degree were associated.

  14. Using narrow-band imaging with conventional hysteroscopy increases the detection of chronic endometritis in abnormal uterine bleeding and postmenopausal bleeding.

    Science.gov (United States)

    Ozturk, Mustafa; Ulubay, Mustafa; Alanbay, Ibrahim; Keskin, Uğur; Karasahin, Emre; Yenen, Müfit Cemal

    2016-01-01

    A preliminary study was designed to evaluate whether a narrow-band imaging (NBI) endoscopic light source could detect chronic endometritis that was not identifiable with a white light hysteroscope. A total of 86 patients with endometrial pathology (71 abnormal uterine bleeding and 15 postmenopausal bleeding) were examined by NBI endoscopy and white light hysteroscopy between February 2010 and February 2011. The surgeon initially observed the uterine cavity using white light hysteroscopy and made a diagnostic impression, which was recorded. Subsequently, after pressing a button on the telescope, NBI was used to reevaluate the endometrial mucosa. The median age of the patients was 40 years (range: 30-60 years). Endometritis was diagnosed histologically. Six cases of abnormal uterine bleeding (6/71, 8.4%, 95% confidence interval [CI] 0.03-0.17) and one case of postmenopausal bleeding (1/15, 6%, 95%CI 0.01-0.29) were only diagnosed with chronic endometritis by NBI (7/86, 8.1%, 95%CI 0.04-0.15). Capillary patterns of the endometrium can be observed by NBI and this method can be used to assess chronic endometritis. © 2015 Japan Society of Obstetrics and Gynecology.

  15. The Low Band Observatory (LOBO): Expanding the VLA Low Frequency Commensal System for Continuous, Broad-band, sub-GHz Observations

    Science.gov (United States)

    Kassim, Namir E.; Clarke, Tracy E.; Helmboldt, Joseph F.; Peters, Wendy M.; Brisken, Walter; Hyman, Scott D.; Polisensky, Emil; Hicks, Brian

    2015-01-01

    The Naval Research Laboratory (NRL) and the National Radio Astronomy Observatory (NRAO) are currently commissioning the VLA Low Frequency Ionosphere and Transient Experiment (VLITE) on a subset of JVLA antennas at modest bandwidth. Its bounded scientific goals are to leverage thousands of JVLA on-sky hours per year for ionospheric and transient studies, and to demonstrate the practicality of a prime-focus commensal system on the JVLA. Here we explore the natural expansion of VLITE to a full-antenna, full-bandwidth Low Band Observatory (LOBO) that would follow naturally from a successful VLITE experience. The new Low Band JVLA receivers, coupled with the existing primary focus feeds, can access two frequency bands: 4 band (54 - 86 MHz) and P band (236-492 MHz). The 4 band feeds are newly designed and now undergoing testing. If they prove successful then they can be permanently mounted at the primary focus, unlike their narrow band predecessors. The combination of Low Band receivers and fixed, primary-focus feeds could provide continuous, broad-band data over two complimentary low-frequency bands. The system would also leverage the relatively large fields-of-view of ~10 degrees at 4 band, and ~2.5 degrees at P band, coupling an excellent survey capability with a natural advantage for serendipitous discoveries. We discuss the compelling science case that flows from LOBO's robust imaging and time domain capabilities coupled with thousands of hours of wide-field, JVLA observing time each year. We also touch on the possibility to incorporate Long Wavelength Array (LWA) stations as additional 'dishes' through the LOBO backend, to improve calibration and sensitivity in LOBO's 4 band.

  16. Lateralization of narrow-band noise by blind and sighted listeners.

    Science.gov (United States)

    Simon, Helen J; Divenyi, Pierre L; Lotze, Al

    2002-01-01

    The effects of varying interaural time delay (ITD) and interaural intensity difference (IID) were measured in normal-hearing sighted and congenitally blind subjects as a function of eleven frequencies and at sound pressure levels of 70 and 90 dB, and at a sensation level of 25 dB (sensation level refers to the pressure level of the sound above its threshold for the individual subject). Using an 'acoustic' pointing paradigm, the subject varied the IID of a 500 Hz narrow-band (100 Hz) noise (the 'pointer') to coincide with the apparent lateral position of a 'target' ITD stimulus. ITDs of 0, +/-200, and +/-400 micros were obtained through total waveform delays of narrow-band noise, including envelope and fine structure. For both groups, the results of this experiment confirm the traditional view of binaural hearing for like stimuli: non-zero ITDs produce little perceived lateral displacement away from 0 IID at frequencies above 1250 Hz. To the extent that greater magnitude of lateralization for a given ITD, presentation level, and center frequency can be equated with superior localization abilities, blind listeners appear at least comparable and even somewhat better than sighted subjects, especially when attending to signals in the periphery. The present findings suggest that blind listeners are fully able to utilize the cues for spatial hearing, and that vision is not a mandatory prerequisite for the calibration of human spatial hearing.

  17. MRI of surgically created pulmonary artery narrowing in the dog

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, R.J.; Rocchini, A.P.; Bove, E.L.; Chenevert, T.L.; Gubin, B. (Michigan Univ., Ann Arbor (USA). Dept. of Radiology)

    1989-11-01

    Narrowing of the pulmonary arteries was created surgically in twelve dogs. In six of the dogs the narrowing was central (main pulmonary artery), and in the remaining six the narrowing was located peripherally at the hilar level of the right pulmonary artery beyond the pericardial reflection. MRI and angiography were performed in all dogs. MRI clearly delineated the site of the pulmonary band and the caliber of the pulmonary artery at the site of the band in all dogs (N=6). MRI was not able to visualize any of the stenosis of the right pulmonary arteries at the hila, beyond the pericardial reflection. In addition, optimal imaging planes to depict each segment of the central pulmonary arteries were determined. The capability to image in oblique planes is essential in evaluating the morphology of the central pulmonary arteries. (orig.).

  18. MRI of surgically created pulmonary artery narrowing in the dog

    International Nuclear Information System (INIS)

    Hernandez, R.J.; Rocchini, A.P.; Bove, E.L.; Chenevert, T.L.; Gubin, B.

    1989-01-01

    Narrowing of the pulmonary arteries was created surgically in twelve dogs. In six of the dogs the narrowing was central (main pulmonary artery), and in the remaining six the narrowing was located peripherally at the hilar level of the right pulmonary artery beyond the pericardial reflection. MRI and angiography were performed in all dogs. MRI clearly delineated the site of the pulmonary band and the caliber of the pulmonary artery at the site of the band in all dogs (N=6). MRI was not able to visualize any of the stenosis of the right pulmonary arteries at the hila, beyond the pericardial reflection. In addition, optimal imaging planes to depict each segment of the central pulmonary arteries were determined. The capability to image in oblique planes is essential in evaluating the morphology of the central pulmonary arteries. (orig.)

  19. Five years of Project META - An all-sky narrow-band radio search for extraterrestrial signals

    Science.gov (United States)

    Horowitz, Paul; Sagan, Carl

    1993-01-01

    We have conducted a five-year search of the northern sky (delta between 30 and 60 deg) for narrow-band radio signals near the 1420 MHz line of neutral hydrogen, and its second harmonic, using an 8.4 x 10 exp 6 channel Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing Doppler signature for narrow-band signals of extraterrestrial origin. Among the 6 x 10 exp 13 spectral channels searched, we have found 37 candidate events exceeding the average detection threshold of 1.7 x 10 exp -23 W/sq m, none of which was detected upon reobservation. The strongest of these appear to be dominated by rare processor errors. However, the strongest signals that survive culling for terrestrial interference lie in or near the Galactic plane. We describe the search and candidate events, and set limits on the prevalence of supercivilizations transmitting Doppler-precompensated beacons at H I or its second harmonic. We conclude with recommendations for future searches, based upon these findings, and a description of our next-generation search system.

  20. Advantages of magnifying narrow-band imaging for diagnosing colorectal cancer coexisting with sessile serrated adenoma/polyp.

    Science.gov (United States)

    Chino, Akiko; Osumi, Hiroki; Kishihara, Teruhito; Morishige, Kenjiro; Ishikawa, Hirotaka; Tamegai, Yoshiro; Igarashi, Masahiro

    2016-04-01

    In the present study, we investigated the advantages of narrow-band imaging (NBI) for efficient diagnosis of sessile serrated adenoma/polyp (SSA/P). The main objective of this study was to analyze the characteristic features of cancer coexisting with serrated lesion by carrying out NBI. We evaluated 264 non-malignant serrated lesions by using three modalities (conventional white light colonoscopy, magnifying chromoendoscopy, and magnifying NBI). Of the evaluated cancer cases with serrated lesions, 37 fulfilled the inclusion criteria. In diagnosing non-malignant SSA/P, an expanded crypt opening (ECO) under magnifying NBI is a useful sign. One hundred and twenty-five lesions (87%) of observed ECO were, at the same time, detected to have type II open pit pattern, which is known to be a valuable indicator when using magnifying chromoendoscopy. ECO had high sensitivity of 80% for identifying SSA/P, with 62% specificity and 83% positive predictive value (PPV). In detecting the cancer with SSA/P, irregular vessels under magnifying NBI were frequently observed with 100% sensitivity and 99% specificity, 86% PPV and 100% negative predictive value. A focus on irregular vessels in serrated lesions might be useful for identification of cancer with SSA/P. This is an advantage of carrying out magnifying NBI in addition to being used simultaneously with other modalities by switching, and observations can be made by using wash-in water alone. We can carry out advanced examinations for selected lesions with irregular vessels. To confirm cancerous demarcation and invasion depth, a combination of all three aforementioned modalities should be done. © 2016 The Authors Digestive Endoscopy © 2016 Japan Gastroenterological Endoscopy Society.

  1. Narrow-band imaging (NBI for improving the assessment of vocal fold leukoplakia and overcoming the umbrella effect.

    Directory of Open Access Journals (Sweden)

    H Klimza

    Full Text Available It is crucial to find a balance between functional and oncological outcome when choosing an adequate method for the management of vocal fold leukoplakia. Therefore, a detailed examination is a milestone in the decision-making process.To examine whether narrow-band imaging (NBI can be helpful in vocal fold assessment in the case of leukoplakia and how to overcome the "umbrella effect"- understood as the submucosal vascular pattern hidden under the plaque.Prospective cohort of 41 consecutive patients. Inclusion criteria: vocal fold leukoplakia, no previous procedures (surgery, radiotherapy, and preoperative endoscopy with an optical filter for NBI. Two groups: "suspicious" and "normal", according to the submucosal microvascular pattern of peripheral regions of the mucosa surrounding the plaque, were distinguished. Patients were qualified for a full-thickness or partial-thickness biopsy, respectively. Criteria defining suspected characters were well-demarcated brownish areas with scattered brown spots corresponding to type IV, Va, Vb, and Vc NI classifications.In 22/41 (53.7% patients with "suspected" microvascular pattern, full-thickness biopsy was performed. Moderate and severe dysplasia was revealed in 15 type IV and 7 type Va NI patients. In 19/41 (46.3% patients with proper NBI vessel pattern treated by partial-thickness biopsy, hyperkeratosis was diagnosed. There was a strong correlation between the NBI pattern and final histology: Chi2 (2 = 41.0 (p = 0.0000.The results demonstrate that NBI endoscopic assessment of the submucosal microvascular pattern of mucosa surrounding the plaque can be an effective method to categorise the risk in vocal fold leukoplakia prior to treatment.

  2. Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera

    Science.gov (United States)

    Jhan, Jyun-Ping; Rau, Jiann-Yeou; Haala, Norbert

    2018-03-01

    Utilizing miniature multispectral (MS) or hyperspectral (HS) cameras by mounting them on an Unmanned Aerial System (UAS) has the benefits of convenience and flexibility to collect remote sensing imagery for precision agriculture, vegetation monitoring, and environment investigation applications. Most miniature MS cameras adopt a multi-lens structure to record discrete MS bands of visible and invisible information. The differences in lens distortion, mounting positions, and viewing angles among lenses mean that the acquired original MS images have significant band misregistration errors. We have developed a Robust and Adaptive Band-to-Band Image Transform (RABBIT) method for dealing with the band co-registration of various types of miniature multi-lens multispectral cameras (Mini-MSCs) to obtain band co-registered MS imagery for remote sensing applications. The RABBIT utilizes modified projective transformation (MPT) to transfer the multiple image geometry of a multi-lens imaging system to one sensor geometry, and combines this with a robust and adaptive correction (RAC) procedure to correct several systematic errors and to obtain sub-pixel accuracy. This study applies three state-of-the-art Mini-MSCs to evaluate the RABBIT method's performance, specifically the Tetracam Miniature Multiple Camera Array (MiniMCA), Micasense RedEdge, and Parrot Sequoia. Six MS datasets acquired at different target distances and dates, and locations are also applied to prove its reliability and applicability. Results prove that RABBIT is feasible for different types of Mini-MSCs with accurate, robust, and rapid image processing efficiency.

  3. Two cases of eczematid-like purpura of Doucas and Kapetanakis responsive to narrow band ultraviolet B treatment.

    Science.gov (United States)

    Karadag, Ayse Serap; Bilgili, Serap Gunes; Onder, Sevda; Calka, Omer

    2013-04-01

    Eczematid-like purpura of Doucas and Kapetanakis is a type of pigmented purpuric dermatoses (PPDs) with eczematous changes in the purpuric surface. A 10-year-old male and a 44-year-old male patients were admitted to our clinics for itching and flaking of the skin rashes. Based on the clinical and histopathological evaluations, the rashes were identified as eczematid-like PPDs of Doucas and Kapetanakis. Both patients were treated with narrow band ultraviolet B. The lesions were remarkably regressed following the treatment. These cases reported due its rarity and good response to narrow band ultraviolet B. © 2013 John Wiley & Sons A/S.

  4. On the joint distribution of excursion duration and amplitude of a narrow-band Gaussian process

    DEFF Research Database (Denmark)

    Ghane, Mahdi; Gao, Zhen; Blanke, Mogens

    2018-01-01

    of amplitude and period are limited to excursion through a mean-level or to describe the asymptotic behavior of high level excursions. This paper extends the knowledge by presenting a theoretical derivation of probability of wave exceedance amplitude and duration, for a narrow-band Gaussian process......The probability density of crest amplitude and of duration of exceeding a given level are used in many theoretical and practical problems in engineering. The joint density is essential for design of constructions that are subjected to waves and wind. The presently available joint distributions...... distribution, as expected, and that the marginal distribution of excursion duration works both for asymptotic and non-asymptotic cases. The suggested model is found to be a good replacement for the empirical distributions that are widely used. Results from simulations of narrow-band Gaussian processes, real...

  5. Synthesis of Multispectral Bands from Hyperspectral Data: Validation Based on Images Acquired by AVIRIS, Hyperion, ALI, and ETM+

    Science.gov (United States)

    Blonski, Slawomir; Glasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki

    2003-01-01

    Spectral band synthesis is a key step in the process of creating a simulated multispectral image from hyperspectral data. In this step, narrow hyperspectral bands are combined into broader multispectral bands. Such an approach has been used quite often, but to the best of our knowledge accuracy of the band synthesis simulations has not been evaluated thus far. Therefore, the main goal of this paper is to provide validation of the spectral band synthesis algorithm used in the ART software. The next section contains a description of the algorithm and an example of its application. Using spectral responses of AVIRIS, Hyperion, ALI, and ETM+, the following section shows how the synthesized spectral bands compare with actual bands, and it presents an evaluation of the simulation accuracy based on results of MODTRAN modeling. In the final sections of the paper, simulated images are compared with data acquired by actual satellite sensors. First, a Landsat 7 ETM+ image is simulated using an AVIRIS hyperspectral data cube. Then, two datasets collected with the Hyperion instrument from the EO-1 satellite are used to simulate multispectral images from the ALI and ETM+ sensors.

  6. Narrow-band 1, 2, 3, 4, 8, 16 and 24 cycles/360o angular frequency filters

    Directory of Open Access Journals (Sweden)

    Simas M.L.B.

    2002-01-01

    Full Text Available We measured human frequency response functions for seven angular frequency filters whose test frequencies were centered at 1, 2, 3, 4, 8, 16 or 24 cycles/360º using a supra-threshold summation method. The seven functions of 17 experimental conditions each were measured nine times for five observers. For the arbitrarily selected filter phases, the maximum summation effect occurred at test frequency for filters at 1, 2, 3, 4 and 8 cycles/360º. For both 16 and 24 cycles/360º test frequencies, maximum summation occurred at the lower harmonics. These results allow us to conclude that there are narrow-band angular frequency filters operating somehow in the human visual system either through summation or inhibition of specific frequency ranges. Furthermore, as a general result, it appears that addition of higher angular frequencies to lower ones disturbs low angular frequency perception (i.e., 1, 2, 3 and 4 cycles/360º, whereas addition of lower harmonics to higher ones seems to improve detection of high angular frequency harmonics (i.e., 8, 16 and 24 cycles/360º. Finally, we discuss the possible involvement of coupled radial and angular frequency filters in face perception using an example where narrow-band low angular frequency filters could have a major role.

  7. A 1.1-1.9 GHz SETI SURVEY OF THE KEPLER FIELD. I. A SEARCH FOR NARROW-BAND EMISSION FROM SELECT TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Siemion, Andrew P. V.; Korpela, Eric; Werthimer, Dan; Cobb, Jeff; Lebofsky, Matt; Marcy, Geoffrey W. [University of California, Berkeley, 110 Sproul Hall, Berkeley, CA 94720 (United States); Demorest, Paul; Maddalena, Ron J.; Langston, Glen [National Radio Astronomy Observatory, 520 Edgemont Rd Charlottesville, VA 22903 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 640 North A' ohoku Place, 209 Hilo, HI 96720-2700 (United States); Tarter, Jill [SETI Institute, 189 Bernardo Ave 100 Mountain View, CA 94043 (United States)

    2013-04-10

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T{sub eq} > 230 K, stars with five or more detected candidates or stars with a super-Earth (R{sub p} < 3 R{sub Circled-Plus }) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than {approx}1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of {approx}1.5 Multiplication-Sign 10{sup 21} erg s{sup -1}, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be <10{sup -6} M{sub Sun }{sup -1}. Here we describe our observations, data reduction procedures and results.

  8. Ultrabright narrow-band telecom two-photon source for long-distance quantum communication

    Science.gov (United States)

    Niizeki, Kazuya; Ikeda, Kohei; Zheng, Mingyang; Xie, Xiuping; Okamura, Kotaro; Takei, Nobuyuki; Namekata, Naoto; Inoue, Shuichiro; Kosaka, Hideo; Horikiri, Tomoyuki

    2018-04-01

    We demonstrate an ultrabright narrow-band two-photon source at the 1.5 µm telecom wavelength for long-distance quantum communication. By utilizing a bow-tie cavity, we obtain a cavity enhancement factor of 4.06 × 104. Our measurement of the second-order correlation function G (2)(τ) reveals that the linewidth of 2.4 MHz has been hitherto unachieved in the 1.5 µm telecom band. This two-photon source is useful for obtaining a high absorption probability close to unity by quantum memories set inside quantum repeater nodes. Furthermore, to the best of our knowledge, the observed spectral brightness of 3.94 × 105 pairs/(s·MHz·mW) is also the highest reported over all wavelengths.

  9. On a business cycle model with fractional derivative under narrow-band random excitation

    International Nuclear Information System (INIS)

    Lin, Zifei; Li, Jiaorui; Li, Shuang

    2016-01-01

    This paper analyzes the dynamics of a business cycle model with fractional derivative of order  α (0 < α < 1) subject to narrow-band random excitation, in which fractional derivative describes the memory property of the economic variables. Stochastic dynamical system concepts are integrated into the business cycle model for understanding the economic fluctuation. Firstly, the method of multiple scales is applied to derive the model to obtain the approximate analytical solution. Secondly, the effect of economic policy with fractional derivative on the amplitude of the economic fluctuation and the effect on stationary probability density are studied. The results show macroeconomic regulation and control can lower the stable amplitude of economic fluctuation. While in the process of equilibrium state, the amplitude is magnified. Also, the macroeconomic regulation and control improves the stability of the equilibrium state. Thirdly, how externally stochastic perturbation affects the dynamics of the economy system is investigated.

  10. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    Science.gov (United States)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  11. Narrow band wavelength selective filter using grating assisted single ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Prabhathan, P., E-mail: PPrabhathan@ntu.edu.sg; Murukeshan, V. M. [Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ∼60 nm and side band rejection ratio >15 dB.

  12. Narrowing of band gap at source/drain contact scheme of nanoscale InAs-nMOS

    Science.gov (United States)

    Mohamed, A. H.; Oxland, R.; Aldegunde, M.; Hepplestone, S. P.; Sushko, P. V.; Kalna, K.

    2018-04-01

    A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1 × 1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq.

  13. Implementation of Texture Based Image Retrieval Using M-band Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    LiaoYa-li; Yangyan; CaoYang

    2003-01-01

    Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing.The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.

  14. Control of fibre laser mode-locking by narrow-band Bragg gratings

    International Nuclear Information System (INIS)

    Laegsgaard, J

    2008-01-01

    The use of narrow-band high-reflectivity fibre Bragg gratings (FBGs) as end mirrors in a fibre laser cavity with passive mode-locking provided by a semiconductor saturable absorber mirror (SESAM) is investigated numerically. The FBG is found to control the energy range of stable mode-locking, which may be shifted far outside the regime of SESAM saturation by a suitable choice of FBG and cavity length. The pulse shape is controlled by the combined effects of FBG dispersion and self-phase modulation in the fibres, and a few ps pulses can be obtained with standard uniform FBGs

  15. Phase distribution measurements in narrow rectangular channels using image processing techniques

    International Nuclear Information System (INIS)

    Bentley, C.; Ruggles, A.

    1991-01-01

    Many high flux research reactor fuel assemblies are cooled by systems of parallel narrow rectangular channels. The HFIR is cooled by single phase forced convection under normal operating conditions. However, two-phase forced convection or two phase mixed convection can occur in the fueled region as a result of some hypothetical accidents. Such flow conditions would occur only at decay power levels. The system pressure would be around 0.15 MPa in such circumstances. Phase distribution of air-water flow in a narrow rectangular channel is examined using image processing techniques. Ink is added to the water and clear channel walls are used to allow high speed still photographs and video tape to be taken of the air-water flow field. Flow field images are digitized and stored in a Macintosh 2ci computer using a frame grabber board. Local grey levels are related to liquid thickness in the flow channel using a calibration fixture. Image processing shareware is used to calculate the spatially averaged liquid thickness from the image of the flow field. Time averaged spatial liquid distributions are calculated using image calculation algorithms. The spatially averaged liquid distribution is calculated from the time averaged spatial liquid distribution to formulate the combined temporally and spatially averaged fraction values. The temporally and spatially averaged liquid fractions measured using this technique compare well to those predicted from pressure gradient measurements at zero superficial liquid velocity

  16. Optimal wavelength band clustering for multispectral iris recognition.

    Science.gov (United States)

    Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi

    2012-07-01

    This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.

  17. Vascular density of superficial esophageal squamous cell carcinoma determined by direct observation of resected specimen using narrow band imaging with magnifying endoscopy.

    Science.gov (United States)

    Kikuchi, D; Iizuka, T; Hoteya, S; Nomura, K; Kuribayashi, Y; Toba, T; Tanaka, M; Yamashita, S; Furuhata, T; Matsui, A; Mitani, T; Inoshita, N; Kaise, M

    2017-11-01

    Observation of the microvasculature using narrow band imaging (NBI) with magnifying endoscopy is useful for diagnosing superficial squamous cell carcinoma. Increased vascular density is indicative of cancer, but not many studies have reported differences between cancerous and noncancerous areas based on an objective comparison. We observed specimens of endoscopic submucosal dissection (ESD) using NBI magnification, and determined the vascular density of cancerous and noncancerous areas. A total of 25 lesions of esophageal squamous cell carcinoma that were dissected en bloc by ESD between July 2013 and December 2013 were subjected to NBI magnification. We constructed a device that holds an endoscope and precisely controls the movement along the vertical axis in order to observe submerged specimens by NBI magnification. NBI image files of both cancerous (pathologically determined invasion depth, m1/2) and surrounding noncancerous areas were created and subjected to vascular density assessment by two endoscopists who were blinded to clinical information. The invasion depth was m1/2 in 20, m3/sm1 in four and sm2 in one esophageal cancer lesion. Mean vascular density was significantly increased in cancerous areas (37.6 ± 16.3 vessels/mm2) compared with noncancerous areas (17.6 ± 10.0 vessels/mm2) (P squamous cell carcinoma. The rates of agreement between vascular density values determined by two independent operators were high. © The Authors 2017. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. First-principles study of direct and narrow band gap semiconducting β-CuGaO2

    International Nuclear Information System (INIS)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-01-01

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. The optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment. (paper)

  19. Ionic Potential and Band Narrowing as a Source of Orbital Polarization in Nickelate/Insulator Superlattices

    Science.gov (United States)

    Georgescu, Alexandru B.; Disa, Ankit S.; Kumah, Divine P.; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    Nickelate interfaces display complex, interacting electronic properties such as thickness dependent metal-insulator transitions. One large body of effort involving nickelates has aimed to split the energies of the Ni 3d orbitals (orbital polarization) to make the resulting band structure resemble that of cuprate superconductors. The most commonly studied interfacial system involves superlattices of alternating nickelate and insulating perovksite-structure layers; the resulting orbital polarization at the nickelate-insulator interface is understood as being due to confinement or structural symmetry breaking. By using first principles theory on the NdNiO3/NdAlO3 superlattice, we show that another important source of orbital polarization stems from electrostatic effects: the more ionic nature of the cations in the insulator (when compared to the nickelate) can shift the relative orbital energies of the Ni. We use density functional theory (DFT) and add electronic correlations via slave-bosons to describe the effect of correlation-induced band narrowing on the orbital polarization. Work supported by NSF Grant MRSEC DMR-1119826.

  20. A test of ν stability using a 200 GeV narrow-band neutrino beam at BEBC

    Science.gov (United States)

    Deden, H.; Grässler, H.; Kirch, D.; Schultze, K.; Böckmann, K.; Glimpf, W.; Kokott, T. P.; Nellen, B.; Saarikko, H.; Wünsch, B.; Bosetti, P. C.; Cundy, D. C.; Grant, A. L.; Hulth, P. O.; Pape, L.; Peyrou, Ch.; Skjeggestad, O.; Wachsmuth, H.; Mermikides, M.; Vayaki, A.; Barnham, K. W. J.; Butterworth, I.; Chima, J. S.; Clayton, E. F.; Miller, D. B.; Mobayyen, M.; Petrides, A.; Powell, K. J.; Albajar, C.; Lloyd, J. L.; Myatt, G.; Perkins, D. H.; Poppe, M.; Radojicic, D.; Renton, P.; Saitta, B.; Wells, J.; Bloch, M.; Bolognese, T.; Tallini, B.; Velasco, J.; Vignaud, D.; Aachen-Bonn-CERN-Demokritos Athens-I. C. London-Oxford-Saclay Collaboration

    1981-01-01

    νe induced events obtained in a 200 GeV narrow-band beam have been studied and compared to the number expected from K e3+ decay. Agreement is found between the expected and observed numbers allowing limits to be set on νe → νx mixing.

  1. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.

    Science.gov (United States)

    Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R

    2001-04-15

    Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.

  2. M-BAND IMAGING OF THE HR 8799 PLANETARY SYSTEM USING AN INNOVATIVE LOCI-BASED BACKGROUND SUBTRACTION TECHNIQUE

    International Nuclear Information System (INIS)

    Galicher, Raphael; Marois, Christian; Macintosh, Bruce; Konopacky, Quinn; Barman, Travis

    2011-01-01

    Multi-wavelength observations/spectroscopy of exoplanetary atmospheres are the basis of the emerging exciting field of comparative exoplanetology. The HR 8799 planetary system is an ideal laboratory to study our current knowledge gap between massive field brown dwarfs and the cold 5 Gyr old solar system planets. The HR 8799 planets have so far been imaged at J- to L-band, with only upper limits available at M-band. We present here deep high-contrast Keck II adaptive optics M-band observations that show the imaging detection of three of the four currently known HR 8799 planets. Such detections were made possible due to the development of an innovative LOCI-based background subtraction scheme that is three times more efficient than a classical median background subtraction for Keck II AO data, representing a gain in telescope time of up to a factor of nine. These M-band detections extend the broadband photometric coverage out to ∼5 μm and provide access to the strong CO fundamental absorption band at 4.5 μm. The new M-band photometry shows that the HR 8799 planets are located near the L/T-type dwarf transition, similar to what was found by other studies. We also confirm that the best atmospheric fits are consistent with low surface gravity, dusty, and non-equilibrium CO/CH 4 chemistry models.

  3. H-tailored surface conductivity in narrow band gap In(AsN)

    Energy Technology Data Exchange (ETDEWEB)

    Velichko, A. V., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Patanè, A., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Makarovsky, O. [School of Physics and Astronomy, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Capizzi, M.; Polimeni, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Roma (Italy); Sandall, I. C.; Tan, C. H. [Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Giubertoni, D. [Center for Materials and Microsystems—Fondazione Bruno Kessler, via Sommarive 18, 38123 Povo, Trento (Italy); Krier, A.; Zhuang, Q. [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2015-01-12

    We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼10{sup 18 }m{sup −2} and a high electron mobility (μ > 0.1 m{sup 2}V{sup −1}s{sup −1} at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.

  4. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    Science.gov (United States)

    Kasparek, W.; Petelin, M. I.; Shchegolkov, D. Yu; Erckmann, V.; Plaum, B.; Bruschi, A.; ECRH Groups at IPP Greifswald; Karlsruhe, FZK; Stuttgart, IPF

    2008-05-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented.

  5. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    International Nuclear Information System (INIS)

    Kasparek, W.; Plaum, B.; Petelin, M.I.; Shchegolkov, D.Yu; Erckmann, V.; Bruschi, A.

    2008-01-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented

  6. The effects of narrow-band middle infrared radiation in enhancing the antitumor activity of paclitaxel.

    Science.gov (United States)

    Tsai, Shang-Ru; Sheu, Bor-Ching; Huang, Pei-Shen; Lee, Si-Chen

    2016-01-01

    Paclitaxel is used as an adjuvant to enhance the effectiveness of ionization radiation therapy; however, high-energy radiation often damages the healthy cells surrounding cancer cells. Low-energy, middle-infrared radiation (MIR) has been shown to prevent tissue damage, and recent studies have begun combining MIR with paclitaxel. However, the cytotoxic effects of this treatment combination remain unclear, and the mechanism underlying its effects on HeLa cells has yet to be elucidated. This study investigated the effectiveness of treating HeLa human cervical cancer cells with a combination of paclitaxel for 48 h in conjunction with narrow-band MIR from 3.0 to 5.0 μm. This combined treatment significantly inhibited the growth of HeLa cells. Specifically, results from Annexin V-FITC/PI apoptosis detection and cell mitochondrial membrane potential analyses revealed an increase in apoptotic cell death and a collapse of mitochondrial membrane potential. One possible mechanism underlying cellular apoptosis is an increase in oxidative stress. These preliminary findings provide evidence to support the combination of narrow-band MIR with paclitaxel as an alternative approach in the treatment of human cervical cancer.

  7. An alternative option for "resect and discard" strategy, using magnifying narrow-band imaging: a prospective "proof-of-principle" study.

    Science.gov (United States)

    Takeuchi, Yoji; Hanafusa, Masao; Kanzaki, Hiromitsu; Ohta, Takashi; Hanaoka, Noboru; Yamamoto, Sachiko; Higashino, Koji; Tomita, Yasuhiko; Uedo, Noriya; Ishihara, Ryu; Iishi, Hiroyasu

    2015-10-01

    The "resect and discard" strategy is beneficial for cost savings on screening and surveillance colonoscopy, but it has the risk to discard lesions with advanced histology or small invasive cancer (small advanced lesion; SALs). The aim of this study was to prove the principle of new "resect and discard" strategy with consideration for SALs using magnifying narrow-band imaging (M-NBI). Patients undergoing colonoscopy at a tertiary center were involved in this prospective trial. For each detected polyp <10 mm, optical diagnosis (OD) and virtual management ("leave in situ", "discard" or "send for pathology") were independently made using non-magnifying NBI (N-NBI) and M-NBI, and next surveillance interval were predicted. Histological and optical diagnosis results of all polyps were compared. While the management could be decided in 82% of polyps smaller than 10 mm, 24/31 (77%) SALs including two small invasive cancers were not discarded based on OD using M-NBI. The sensitivity [90% confidence interval (CI)] of M-NBI for SALs was 0.77 (0.61-0.89). The risk for discarding SALs using N-NBI was significantly higher than that using M-NBI (53 vs. 23%, p = 0.02). The diagnostic accuracy (95% CI) of M-NBI in distinguishing neoplastic from non-neoplastic lesions [0.88 (0.86-0.90)] was significantly better than that of N-NBI [0.84 (0.82-0.87)] (p = 0.005). The results of our study indicated that our "resect and discard" strategy using M-NBI could work to reduce the risk for discarding SALs including small invasive cancer (UMIN-CTR, UMIN000003740).

  8. How narrow-band and broad-band uvb irradiation influences the immunohistochemistry analyses of experimental animals’ skin – a comparative study. Part II

    Directory of Open Access Journals (Sweden)

    Katarzyna Borowska

    2017-09-01

    Full Text Available This is the second part of the artcle series impact narrow-band UVB radiation (NB-UVB and broad-band UVB radiation (BB-UVB on experimental animals’ skin (white Wistar female rats. The aim of this comparative study was immunohistochemistry analyses containing expression of p53 protein. Expression of p53 protein was performed on two experimental groups. One – exposed to NB-UVB; the other – exposed to BB-UVB radiation. The results indicate that p53 protein takes an active part in the process of apoptosis that is induced by both NB-UVB and BB-UVB. The results showed an increase in p53 expressing cells following BB-UVB than NB-UVB phototherapy.

  9. Experimental studies of narrow band effects in the actinides

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, M.B.

    1976-01-01

    In many actinide metallic systems the f-electrons exhibit band behavior. This is a consequence of direct f-f wave function overlap or hybridization of f-electrons with s-, p-, and d-electrons. The f-bands can be responsible for large electronic densities of states at the Fermi level which may lead to band magnetism of various types. Although the concept of valence instabilities must be approached cautiously especially in the light actinides, it would not be surprising to observe them in the future, especially in Am compounds.

  10. Experimental studies of narrow band effects in the actinides

    International Nuclear Information System (INIS)

    Brodsky, M.B.

    1976-01-01

    In many actinide metallic systems the f-electrons exhibit band behavior. This is a consequence of direct f-f wave function overlap or hybridization of f-electrons with s-, p-, and d-electrons. The f-bands can be responsible for large electronic densities of states at the Fermi level which may lead to band magnetism of various types. Although the concept of valence instabilities must be approached cautiously especially in the light actinides, it would not be surprising to observe them in the future, especially in Am compounds

  11. Prediction of Helicobacter pylori status by conventional endoscopy, narrow-band imaging magnifying endoscopy in stomach after endoscopic resection of gastric cancer.

    Science.gov (United States)

    Yagi, Kazuyoshi; Saka, Akiko; Nozawa, Yujiro; Nakamura, Atsuo

    2014-04-01

    To reduce the incidence of metachronous gastric carcinoma after endoscopic resection of early gastric cancer, Helicobacter pylori eradication therapy has been endorsed. It is not unusual for such patients to be H. pylori negative after eradication or for other reasons. If it were possible to predict H. pylori status using endoscopy alone, it would be very useful in clinical practice. To clarify the accuracy of endoscopic judgment of H. pylori status, we evaluated it in the stomach after endoscopic submucosal dissection (ESD) of gastric cancer. Fifty-six patients treated by ESD were enrolled. The diagnostic criteria for H. pylori status by conventional endoscopy and narrow-band imaging (NBI)-magnifying endoscopy were decided, and H. pylori status was judged by two endoscopists. Based on the H. pylori stool antigen test as a diagnostic gold standard, conventional endoscopy and NBI-magnifying endoscopy were compared for their sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Interobserver agreement was assessed in terms of κ value. Interobserver agreement was moderate (0.56) for conventional endoscopy and substantial (0.77) for NBI-magnifying endoscopy. The sensitivity, specificity, PPV, and NPV were 0.79, 0.52, 0.70, and 0.63 for conventional endoscopy and 0.91, 0.83, 0.88, and 0.86 for NBI-magnifying endoscopy, respectively. Prediction of H. pylori status using NBI-magnifying endoscopy is practical, and interobserver agreement is substantial. © 2013 John Wiley & Sons Ltd.

  12. Reducing contrast contamination in radial turbo-spin-echo acquisitions by combining a narrow-band KWIC filter with parallel imaging.

    Science.gov (United States)

    Neumann, Daniel; Breuer, Felix A; Völker, Michael; Brandt, Tobias; Griswold, Mark A; Jakob, Peter M; Blaimer, Martin

    2014-12-01

    Cartesian turbo spin-echo (TSE) and radial TSE images are usually reconstructed by assembling data containing different contrast information into a single k-space. This approach results in mixed contrast contributions in the images, which may reduce their diagnostic value. The goal of this work is to improve the image contrast from radial TSE acquisitions by reducing the contribution of signals with undesired contrast information. Radial TSE acquisitions allow the reconstruction of multiple images with different T2 contrasts using the k-space weighted image contrast (KWIC) filter. In this work, the image contrast is improved by reducing the band-width of the KWIC filter. Data for the reconstruction of a single image are selected from within a small temporal range around the desired echo time. The resulting dataset is undersampled and, therefore, an iterative parallel imaging algorithm is applied to remove aliasing artifacts. Radial TSE images of the human brain reconstructed with the proposed method show an improved contrast when compared with Cartesian TSE images or radial TSE images with conventional KWIC reconstructions. The proposed method provides multi-contrast images from radial TSE data with contrasts similar to multi spin-echo images. Contaminations from unwanted contrast weightings are strongly reduced. © 2014 Wiley Periodicals, Inc.

  13. High thermal stability solution-processable narrow-band gap molecular semiconductors.

    Science.gov (United States)

    Liu, Xiaofeng; Hsu, Ben B Y; Sun, Yanming; Mai, Cheng-Kang; Heeger, Alan J; Bazan, Guillermo C

    2014-11-19

    A series of narrow-band gap conjugated molecules with specific fluorine substitution patterns has been synthesized in order to study the effect of fluorination on bulk thermal stability. As the number of fluorine substituents on the backbone increase, one finds more thermally robust bulk structures both under inert and ambient conditions as well as an increase in phase transition temperatures in the solid state. When integrated into field-effect transistor devices, the molecule with the highest degree of fluorination shows a hole mobility of 0.15 cm(2)/V·s and a device thermal stability of >300 °C. Generally, the enhancement in thermal robustness of bulk organization and device performance correlates with the level of C-H for C-F substitution. These findings are relevant for the design of molecular semiconductors that can be introduced into optoelectronic devices to be operated under a wide range of conditions.

  14. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    Energy Technology Data Exchange (ETDEWEB)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ita, Yoshifusa [Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Komugi, Shinya [Division of Liberal Arts, Kogakuin University, 2665-1, Hachioji, Tokyo 192-0015 (Japan); Koshida, Shintaro [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Manabe, Sho [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Nakashima, Asami, E-mail: tateuchi@ioa.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  15. SHARPENDING OF THE VNIR AND SWIR BANDS OF THE WIDE BAND SPECTRAL IMAGER ONBOARD TIANGONG-II IMAGERY USING THE SELECTED BANDS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2018-04-01

    Full Text Available The Tiangong-II space lab was launched at the Jiuquan Satellite Launch Center of China on September 15, 2016. The Wide Band Spectral Imager (WBSI onboard the Tiangong-II has 14 visible and near-infrared (VNIR spectral bands covering the range from 403–990 nm and two shortwave infrared (SWIR bands covering the range from 1230–1250 nm and 1628–1652 nm respectively. In this paper the selected bands are proposed which aims at considering the closest spectral similarities between the VNIR with 100 m spatial resolution and SWIR bands with 200 m spatial resolution. The evaluation of Gram-Schmidt transform (GS sharpening techniques embedded in ENVI software is presented based on four types of the different low resolution pan band. The experimental results indicated that the VNIR band with higher CC value with the raw SWIR Band was selected, more texture information was injected the corresponding sharpened SWIR band image, and at that time another sharpened SWIR band image preserve the similar spectral and texture characteristics to the raw SWIR band image.

  16. Synchrotron Studies of Narrow Band and Low-Dimensional Materials. Final Report for July 1, 1990 --- December 31, 2002

    International Nuclear Information System (INIS)

    Allen, J. W.

    2003-01-01

    This report summarizes a 12-year program of various kinds of synchrotron spectroscopies directed at the electronic structures of narrow band and low-dimensional materials that display correlated electron behaviors such as metal-insulator transitions, mixed valence, superconductivity, Kondo moment quenching, heavy Fermions, and non-Fermi liquid properties

  17. Thermal Loss Becomes an Issue for Tunable Narrow-band Antennas in Fourth Generation Handsets

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2015-01-01

    Antenna tuning is a very promising technique to cope with the expansion of the mobile communication frequency spectrum. Tunable antennas can address a wide range of operating frequencies, while being highly integrated. In particular, high-Q antennas (also named narrow-band antennas) are very...... compact, thus are good candidates to be embedded on fourth generation handsets. This study focuses on ‘high-Q’ tunable antennas and contributes with a characterisation of their loss mechanism, which is a major parameter in link-budget calculations. This study shows, through an example, that the tuner loss...

  18. Enhanced dissociation of charge-transfer states in narrow band gap polymer:fullerene solar cells processed with 1,8-octanedithiol

    NARCIS (Netherlands)

    Moet, D.J.D.; Lenes, M.; Morana, M.; Azimi, H.; Brabec, C.J.; Blom, P.W.M.

    2010-01-01

    The improved photovoltaic performance of narrow band gap polymer:fullerene solar cells processed from solutions containing small amounts of 1,8-octanedithiol is analyzed by modeling of the experimental photocurrent. In contrast to devices that are spin coated from pristine chlorobenzene, these cells

  19. Enhanced dissociation of charge-transfer states in narrow band gap polymer : fullerene solar cells processed with 1,8-octanedithiol

    NARCIS (Netherlands)

    Moet, D. J. D.; Lenes, M.; Morana, M.; Azimi, H.; Brabec, C. J.; Blom, P. W. M.

    2010-01-01

    The improved photovoltaic performance of narrow band gap polymer:fullerene solar cells processed from solutions containing small amounts of 1,8-octanedithiol is analyzed by modeling of the experimental photocurrent. In contrast to devices that are spin coated from pristine chlorobenzene, these cells

  20. Water vapor transmittance models for narrow bands in the 13 to 19 μm spectral region

    International Nuclear Information System (INIS)

    Weichel, R.L.

    1983-10-01

    The purpose of this report is to document the development of water vapor transmittance models for narrow bands (satellite sensor channels) in the 13 to 19 μm spectral region. The models are the result of research efforts of the author in 1971-1972 while on active duty with the US Air Force at the Air Force Global Weather Central (AFGWC). The models were developed for application in studies involving a temperature profiling sensor system carried aboard the satellites of the Defense Meteorological Satellite Program (DMSP), formerly DAPP. Recently, (Lovill et al., 1978; Luther et al., 1981) the models were implemented for studies concerned with methodologies to retrieve total atmospheric column ozone from measurements of newer DMSP Block 5D series satellite sensors with similar channels (see Nichols, 1975)

  1. Recovering physical properties from narrow-band photometry

    Science.gov (United States)

    Schoenell, W.; Cid Fernandes, R.; Benítez, N.; Vale Asari, N.

    2013-05-01

    Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity distributions? Can we separate star-forming galaxies from AGN? Can we measure emission lines, nebular abundances and extinction? With what precision? To accomplish this, we selected a sample of about 300k galaxies with good S/N from the SDSS and divided them in two groups: 200k objects and a template library of 100k. We corrected the spectra to z = 0 and converted them to filter fluxes. Using a statistical approach, we calculated a Probability Distribution Function (PDF) for each property of each object and the library. Since we have the properties of all the data from the STARLIGHT-SDSS database, we could compare them with the results obtained from summaries of the PDF (mean, median, etc). Our results shows that we retrieve the weighted average of the log of the galaxy age with a good error margin (σ ≈ 0.1 - 0.2 dex), and similarly for the physical properties such as mass-to-light ratio, mean stellar metallicity, etc. Furthermore, our main result is that we can derive emission line intensities and ratios with similar precision. This makes this method unique in comparison to the other methods on the market to analyze photometry data and shows that, from the point of view of galaxy studies, future photometric surveys will be much more useful than anticipated.

  2. Medical image transmission via communication satellite: evaluation of ultrasonographic images.

    Science.gov (United States)

    Suzuki, H; Horikoshi, H; Shiba, H; Shimamoto, S

    1996-01-01

    As compared with terrestrial circuits, communication satellites possess superior characteristics such as wide area coverage, broadcasting functions, high capacity, and resistance to disasters. Utilizing the narrow band channel (64 kbps) of the stationary communication satellite JCSAT1 located at an altitude of 36,000 km above the equator, we investigated satelliterelayed dynamic medical images transmitted by video signals, using hepatic ultrasonography as a model. We conclude that the "variable playing speed transmission scheme" proposed by us is effective for the transmission of dynamic images in the narrow band channel. This promises to permit diverse utilization and applications for purposes such as the transmission of other types of ultrasonic images as well as remotely directed medical diagnosis and treatment.

  3. Full-sky survey searching for ultra-narrow-band artificial CW signals: analysis of the results of Project META

    Science.gov (United States)

    Lemarchand, Guillermo A.

    1996-06-01

    Project META (Megachannel ExtraTerrestrial Assay), a full-sky survey for artificial narrow-band signals, has been conducted from the Harvard/Smithsonian 26 m radiotelescope at Agassiz Station and from one of the two 30 m radiotelescopes of the Instituto Argentino de Radioastronomia (IAR). The search was performed near the 1420 MHz line of neutral hydrogen, and its second harmonic, using two 8.4 X 10(superscript 6) channel Fourier spectrometers of 0.05 Hz resolution and 400 kHz of instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. Among the 6 X 10(superscript 13) spectral channels searched in the northern hemisphere, Horowitz and Sagan reported 37 candidates events exceeding the average threshold of 1.7 X 10(superscript -23) W m(superscript -2), while in the southern hemisphere among 2 X 10(superscript 13) spectral channels analyzed we found 19 events exceeding the same threshold. The strongest signals that survive culling for terrestrial interference lie in or near the Galactic Plane. The first high resolution southern target search around 71 stars (-90 degrees intelligence. It is showed that these narrow-band non-repeating 'events' found by Project META can be generated by (a) radiometer noise fluctuations, (b) a population of constant galactic sources which undergo deep fading and amplification due to interstellar scintillation, consistent with ETI transmissions and (c) real, transient signals of either terrestrial or extraterrestrial origin. The Bayesian test shows that hypothesis (b) and (c) are both highly preferred to (a), but the first two are about equally likely. Using this analysis we discuss the best observing strategies to determine the real origin of these 'events'.

  4. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    Science.gov (United States)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  5. Interface band gap narrowing behind open circuit voltage losses in Cu2ZnSnS4 solar cells

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Palsgaard, Mattias Lau Nøhr; Gunst, Tue

    2017-01-01

    We present evidence that bandgap narrowing at the heterointerface may be a major cause of the large open circuit voltage deficit of Cu2ZnSnS4/CdS solar cells. Bandgap narrowing is caused by surface states that extend the Cu2ZnSnS4valence band into the forbidden gap. Those surface states...... are consistently found in Cu2ZnSnS4, but not in Cu2ZnSnSe4, by first-principles calculations. They do not simply arise from defects at surfaces but are an intrinsic feature of Cu2ZnSnS4 surfaces. By including those states in a device model, the outcome of previously published temperature-dependent open circuit...... voltage measurements on Cu2ZnSnS4 solar cells can be reproduced quantitatively without necessarily assuming a cliff-like conduction band offset with the CdS buffer layer. Our first-principles calculations indicate that Zn-based alternative buffer layers are advantageous due to the ability of...

  6. Intercomparison of unmanned aerial vehicle and ground-based narrow band spectrometers applied to crop trait monitoring in organic potato production

    NARCIS (Netherlands)

    Domingues Franceschini, Marston; Bartholomeus, Harm; Apeldoorn, van Dirk; Suomalainen, Juha; Kooistra, Lammert

    2017-01-01

    Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions

  7. All-mechanical quantum noise cancellation for accelerometry: broadband with momentum measurements, narrow band without

    International Nuclear Information System (INIS)

    Jacobs, Kurt; Balu, Radhakrishnan; Tezak, Nikolas; Mabuchi, Hideo

    2016-01-01

    We show that the ability to make direct measurements of momentum, in addition to the usual direct measurements of position, allows a simple configuration of two identical mechanical oscillators to be used for broadband back-action-free force metrology. This would eliminate the need for an optical reference oscillator in the scheme of Tsang and Caves (2010 Phys. Rev. Lett.  105 123601), along with its associated disadvantages. We also show that if one is restricted to position measurements alone then two copies of the same two-oscillator configuration can be used for narrow-band back-action-free force metrology. (paper)

  8. Detection and recurrence rate of transurethral resection of bladder tumors by narrow-band imaging: Prospective, randomized comparison with white light cystoscopy

    Directory of Open Access Journals (Sweden)

    Seung Bin Kim

    2018-03-01

    Full Text Available Purpose: The purpose of this study was to evaluate the efficacy of narrow-band imaging (NBI as a diagnostic tool for detecting bladder tumors during cystoscopy compared with white light cystoscopy (WLC. Materials and Methods: From December 2013 to June 2017, a randomized prospective study was conducted on 198 patients underwent transurethral resection of bladder tumor by a single surgeon. The patients were divided into two groups according to diagnostic method. In Group I, WLC only was performed. In Group II, NBI was additionally performed after WLC. We analyzed the rate of detection of bladder tumors as a primary endpoint. In addition, we evaluated rates of recurrence in each group. Results: There were no significant differences between the two groups in characteristics except hypertension. In the analysis of rates of detection, the probability of diagnosing cancer was 80.9% (114/141 in the WLC group, and the probability of diagnosing cancer using WLC in the NBI group was 85.5% (159/186. After switching from WLC to NBI for second-look cystoscopy in the NBI group, NBI was shown to detect additional tumors with a detection rate of 35.1% (13/37 from the perspective of the patients and 42.2% (27/64 from the perspective of the tumors. The 1-year recurrence-free rate was 72.2% in the WLC group and 85.2% in the NBI group (p=0.3. Conclusions: NBI had benefits for detecting tumors overlooked by WLC. Although the difference in the 1-year recurrence-free rate was not statistically significant, our results showed a trend for higher recurrence in the NBI group.

  9. Phototherapy UVB narrow band treatment of psoriasis, mycosis fungoides and vitiligo

    International Nuclear Information System (INIS)

    Reyes, M.V.; Kutnizky, R.; Bosch, M.P.; Ruiz Lascano, A.

    2013-01-01

    Introduction: Numerous studies have shown the beneficial effect of ultraviolet radiation for the treatment of lymphoproliferative or inflammatory skin diseases. Objective: To determine the response to UVB narrow band (UVB-nb) in psoriasis, mycosis fungoides stage IA, IB and vitiligo, in the Dermatology Department of Hospital Privado from May 2009 to January 2011. To correlate total energy dose used and the total number of sessions with the response achieved in each disease. To describe adverse reactions; determine demographic characteristics of the population and comorbidities in psoriasis and vitiligo. Material and Methods: We performed a prospective, descriptive, analytical, observational study. We included all patients assessed for initiation of UVB-nb. Regarding the patients who did not start or interrupted the treatment a survey was conducted to assess the causes. We calculated the cumulative dose and number of sessions at the end of treatment. (authors) [es

  10. [Nursing care management in dermatological patient on phototherapy narrow band UVB].

    Science.gov (United States)

    de Argila Fernández-Durán, Nuria; Blasco Maldonado, Celeste; Martín Gómez, Mónica

    2013-01-01

    Phototherapy with narrow band ultraviolet B is a treatment used in some dermatology units, and is the first choice in some dermatological diseases due to being comfortable and cheap. The aim of this paper is to describe the management and nursing care by grouping more specific diagnoses, following NANDA-NIC/NOC taxonomy, such as the methodology from application, technique, material, and personnel to space-related aspects, with the aim of avoiding the clinical variability and the possible associated risks for the patients, and for the nurses who administer the treatment. The continuity of the same nurse in the follow-up sessions stimulates the relationship between medical personnel and patients, key points for loyalty and therapeutic adherence. This paper examines a consensus procedure with the Dermatology Unit Team and accredited by the Hospital Quality Unit. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  11. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    NARCIS (Netherlands)

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of

  12. Office-based narrow band imaging-guided flexible laryngoscopy tissue sampling: A cost-effectiveness analysis evaluating its impact on Taiwanese health insurance program.

    Science.gov (United States)

    Fang, Tuan-Jen; Li, Hsueh-Yu; Liao, Chun-Ta; Chiang, Hui-Chen; Chen, I-How

    2015-07-01

    Narrow band imaging (NBI)-guided flexible laryngoscopy tissue sampling for laryngopharyngeal lesions is a novel technique. Patients underwent the procedure in an office-based setting without being sedated, which is different from the conventional technique performed using direct laryngoscopy. Although the feasibility and effects of this procedure were established, its financial impact on the institution and Taiwanese National Health Insurance program was not determined. This is a retrospective case-control study. From May 2010 to April 2011, 20 consecutive patients who underwent NBI flexible laryngoscopy tissue sampling were recruited. During the same period, another 20 age-, sex-, and lesion-matched cases were enrolled in the control group. The courses for procedures and financial status were analyzed and compared between groups. Office-based NBI flexible laryngoscopy tissue sampling procedure took 27 minutes to be completed, while 191 minutes were required for the conventional technique. Average reimbursement for each case was New Taiwan Dollar (NT$)1264 for patients undergoing office-based NBI flexible laryngoscopy tissue sampling, while NT$10,913 for those undergoing conventional direct laryngoscopy in the operation room (p institution suffered a loss of at least NT$690 when performing NBI flexible laryngoscopy tissue sampling. Office-based NBI flexible laryngoscopy tissue sampling is a cost-saving procedure for patients and the Taiwanese National Health Insurance program. It also saves the procedure time. However, the net financial loss for the institution and physician would limit its popularization unless reimbursement patterns are changed. Copyright © 2013. Published by Elsevier B.V.

  13. DETECTIONS OF LYMAN CONTINUUM FROM STAR-FORMING GALAXIES AT z ∼ 3 THROUGH SUBARU/SUPRIME-CAM NARROW-BAND IMAGING

    International Nuclear Information System (INIS)

    Iwata, I.; Inoue, A. K.; Matsuda, Y.; Furusawa, H.; Akiyama, M.; Hayashino, T.; Kousai, K.; Yamada, T.; Burgarella, D.; Deharveng, J.-M.

    2009-01-01

    Knowing the amount of ionizing photons from young star-forming galaxies is of particular importance to understanding the reionization process. Here we report initial results of a Subaru/Suprime-Cam deep imaging observation of the SSA22 proto-cluster region at z = 3.09, using a special narrow-band filter to optimally trace ionizing radiation from galaxies at z ∼ 3. The unique wide field-of-view of Suprime-Cam enabled us to search for ionizing photons from 198 galaxies (73 Lyman break galaxies (LBGs) and 125 Lyα emitters (LAEs)) with spectroscopically measured redshifts z ≅ 3.1. We detected ionizing radiation from 7 LBGs, as well as from 10 LAE candidates. Some of the detected galaxies show significant spatial offsets of ionizing radiation from nonionizing UV emission. For some LBGs the observed nonionizing UV to Lyman continuum flux density ratios are smaller than values expected from population synthesis models with a standard Salpeter initial mass function (IMF) with moderate dust attenuation (which is suggested from the observed UV slopes), even if we assume very transparent intergalactic medium along the sightlines of these objects. This implies an intrinsically bluer spectral energy distribution, e.g., that produced by a top-heavy IMF, for these LBGs. The observed flux density ratios of nonionizing UV to ionizing radiation of 7 detected LBGs range from 2.4 to 23.8 and the median is 6.6. The observed flux density ratios of the detected LAEs are even smaller than LBGs, if they are truly at z ≅ 3.1. We find that the median value of the flux density ratio for the detected LBGs suggests that their escape fractions are likely to be higher than 4%, if the Lyman continuum escape is isotropic. The results imply that some of the LBGs in the proto-cluster at z ∼ 3 have escape fraction significantly higher than that of galaxies (in a general field) at z ∼ 1 studied previously.

  14. The learning curve for narrow-band imaging in the diagnosis of precancerous gastric lesions by using Web-based video.

    Science.gov (United States)

    Dias-Silva, Diogo; Pimentel-Nunes, Pedro; Magalhães, Joana; Magalhães, Ricardo; Veloso, Nuno; Ferreira, Carlos; Figueiredo, Pedro; Moutinho, Pedro; Dinis-Ribeiro, Mário

    2014-06-01

    A simplified narrow-band imaging (NBI) endoscopy classification of gastric precancerous and cancerous lesions was derived and validated in a multicenter study. This classification comes with the need for dissemination through adequate training. To address the learning curve of this classification by endoscopists with differing expertise and to assess the feasibility of a YouTube-based learning program to disseminate it. Prospective study. Five centers. Six gastroenterologists (3 trainees, 3 fully trained endoscopists [FTs]). Twenty tests provided through a Web-based program containing 10 randomly ordered NBI videos of gastric mucosa were taken. Feedback was sent 7 days after every test submission. Measures of accuracy of the NBI classification throughout the time. From the first to the last 50 videos, a learning curve was observed with a 10% increase in global accuracy, for both trainees (from 64% to 74%) and FTs (from 56% to 65%). After 200 videos, sensitivity and specificity of 80% and higher for intestinal metaplasia were observed in half the participants, and a specificity for dysplasia greater than 95%, along with a relevant likelihood ratio for a positive result of 7 to 28 and likelihood ratio for a negative result of 0.21 to 0.82, were achieved by all of the participants. No constant learning curve was observed for the identification of Helicobacter pylori gastritis and sensitivity to dysplasia. The trainees had better results in all of the parameters, except specificity for dysplasia, compared with the FTs. Globally, participants agreed that the program's structure was adequate, except on the feedback, which should have consisted of a more detailed explanation of each answer. No formal sample size estimate. A Web-based learning program could be used to teach and disseminate classifications in the endoscopy field. In this study, an NBI classification for gastric mucosal features seems to be easily learned for the identification of gastric preneoplastic

  15. Narrow-band tunable terahertz emission from ferrimagnetic Mn{sub 3-x}Ga thin films

    Energy Technology Data Exchange (ETDEWEB)

    Awari, N. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); University of Groningen, 9747 AG Groningen (Netherlands); Kovalev, S., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Fowley, C., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Green, B.; Yildirim, O.; Lindner, J.; Fassbender, J.; Deac, A. M.; Gensch, M. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Rode, K., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Lau, Y.-C.; Betto, D.; Thiyagarajah, N.; Coey, J. M. D. [CRANN, AMBER and School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Gallardo, R. A. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparíso (Chile)

    2016-07-18

    Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn{sub 3-x}Ga Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20–0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.

  16. Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line

    International Nuclear Information System (INIS)

    Tian Long; Li Shujing; Yuan Haoxiang; Wang Hai

    2016-01-01

    Using the process of cavity-enhanced spontaneous parametric down-conversion (SPDC), we generate a narrow-band polarization-entangled photon pair resonant on the rubidium (Rb) D1 line (795 nm). The degenerate single-mode photon pair is selected by multiple temperature controlled etalons. The linewidth of generated polarization-entangled photon pairs is 15 MHz which matches the typical atomic memory bandwidth. The measured Bell parameter for the polarization-entangled photons S = 2.73 ± 0.04 which violates the Bell-CHSH inequality by ∼18 standard deviations. The presented entangled photon pair source could be utilized in quantum communication and quantum computing based on quantum memories in atomic ensemble. (author)

  17. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  18. Deep Ly alpha imaging of two z=2.04 GRB host galaxy fields

    DEFF Research Database (Denmark)

    Fynbo, J.P.U.; Møller, Per; Thomsen, Bente

    2002-01-01

    We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest-frame equ......We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest...... - I colour than the eastern component, suggesting the presence of at least some dust. We do not detect the host galaxy of GRB 000301C in neither Lyalpha emission nor in U and I broad-band images. The strongest limit comes from combining the narrow and U-band imaging where we infer a limit of U...

  19. The add-on N-acetylcysteine is more effective than dimethicone alone to eliminate mucus during narrow-band imaging endoscopy: a double-blind, randomized controlled trial.

    Science.gov (United States)

    Chen, Ming-Jen; Wang, Horng-Yuan; Chang, Chen-Wang; Hu, Kuang-Chun; Hung, Chien-Yuan; Chen, Chih-Jen; Shih, Shou-Chuan

    2013-02-01

    Recent studies have shown that pronase can improve mucosal visibility, but this agent is not uniformly available for human use worldwide. This study aimed to assess the efficacy of N-acetylcysteine (NAC), a mucolytic agent, in improving mucus elimination as measured by decreased endoscopic water flushes during narrow-band imaging (NBI) endoscopy. A consecutive series of patients scheduled for upper gastrointestinal endoscopy at outpatient clinics were enrolled in this double-blind, randomized controlled trial. The control group drank a preparation of 100 mg dimethicone (5 ml at 20 mg/ml) plus water up to 100 ml, and the NAC group drank 300 mg NAC plus 100 mg dimethicone and water up to 100 ml. During the endoscopy, the endoscopist used as many flushes of water as deemed necessary to produce a satisfactory NBI view of the entire gastric mucosa. In all, 177 patients with a mean age of 51 years were evaluated in this study. Significantly lesser water was used for flushing during NBI endoscopy for the NAC group than the control group; 40 ml (30-70, 0-120) versus 50 ml (30-100, 0-150) (median (interquartile range, range), p = 0.0095). Considering the safety profile of NAC, decreasing the number of water flushes for optimal vision and unavailability of pronase in some areas, the authors suggest the use of add-on NAC to eliminate mucus during NBI endoscopy.

  20. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    Science.gov (United States)

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  1. A network meta-analysis of therapeutic outcomes after new image technology-assisted transurethral resection for non-muscle invasive bladder cancer: 5-aminolaevulinic acid fluorescence vs hexylaminolevulinate fluorescence vs narrow band imaging

    International Nuclear Information System (INIS)

    Lee, Joo Yong; Cho, Kang Su; Kang, Dong Hyuk; Jung, Hae Do; Kwon, Jong Kyou; Oh, Cheol Kyu; Ham, Won Sik; Choi, Young Deuk

    2015-01-01

    This study included a network meta-analysis of evidence from randomized controlled trials (RCTs) to assess the therapeutic outcome of transurethral resection (TUR) in patients with non-muscle-invasive bladder cancer assisted by photodynamic diagnosis (PDD) employing 5-aminolaevulinic acid (5-ALA) or hexylaminolevulinate (HAL) or by narrow band imaging (NBI). Relevant RCTs were identified from electronic databases. The proceedings of relevant congresses were also searched. Fifteen articles based on RCTs were included in the analysis, and the comparisons were made by qualitative and quantitative syntheses using pairwise and network meta-analyses. Seven of 15 RCTs were at moderate risk of bias for all quality criteria and two studies were classified as having a high risk of bias. The recurrence rate of cancers resected with 5-ALA-based PDD was lower than of those resected using HAL-based PDD (odds ratio (OR) = 0.48, 95 % confidence interval (CI) [0.26–0.95]) but was not significantly different than those resected with NBI (OR = 0.53, 95 % CI [0.26–1.09]). The recurrence rate of cancers resected using HAL-based PDD versus NBI did not significantly differ (OR = 1.11, 95 % CI [0.55–2.1]). All cancers resected using 5-ALA-based PDD, HAL-based PDD, or NBI recurred at a lower rate than those resected using white light cystoscopy (WLC). No difference in progression rate was observed between cancers resected by all methods investigated. The recurrence rate of some bladder cancers can be decreased by the implementation of either PDD- and NBI-assisted TUR; in real settings, clinicians should consider replacing WLC as the standard imaging technology to guide TUR

  2. Image segmentation of pyramid style identifier based on Support Vector Machine for colorectal endoscopic images.

    Science.gov (United States)

    Okamoto, Takumi; Koide, Tetsushi; Sugi, Koki; Shimizu, Tatsuya; Anh-Tuan Hoang; Tamaki, Toru; Raytchev, Bisser; Kaneda, Kazufumi; Kominami, Yoko; Yoshida, Shigeto; Mieno, Hiroshi; Tanaka, Shinji

    2015-08-01

    With the increase of colorectal cancer patients in recent years, the needs of quantitative evaluation of colorectal cancer are increased, and the computer-aided diagnosis (CAD) system which supports doctor's diagnosis is essential. In this paper, a hardware design of type identification module in CAD system for colorectal endoscopic images with narrow band imaging (NBI) magnification is proposed for real-time processing of full high definition image (1920 × 1080 pixel). A pyramid style image segmentation with SVMs for multi-size scan windows, which can be implemented on an FPGA with small circuit area and achieve high accuracy, is proposed for actual complex colorectal endoscopic images.

  3. Observations of the Galaxy NGC 3077 in the Narrow-Band [S II] and Hα Filters

    Directory of Open Access Journals (Sweden)

    Andjelić M.

    2011-09-01

    Full Text Available We present observations of the H I tidal arm near a dwarf galaxy NGC 3077 (member of the M81 galaxy group in the narrow-band [S II] and Hα filters. Observations were carried out in 2011 March with the 2 m RCC telescope at the NAO Rozhen, Bulgaria. Our search for possible supernova remnant candidates (identified as sources with enhanced [S II] emission relative to their Hα emission in this region yielded no sources of this kind. Nevertheless, we found a number of objects with significant Hα emission that probably represent uncatalogued, low brightness H II regions.

  4. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    Science.gov (United States)

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  5. Extreme ultraviolet narrow band emission from electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Zhao, H. Y.; Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Li, X. X.; Zhu, Y. H.; Sheng, L. S.; Zhang, G. B.; Tian, Y. C.

    2008-01-01

    Extreme ultraviolet lithography (EUVL) is considered as the most promising solution at and below dynamic random access memory 32 nm half pitch among the next generation lithography, and EUV light sources with high output power and sufficient lifetime are crucial for the realization of EUVL. However, there is no EUV light source completely meeting the requirements for the commercial application in lithography yet. Therefore, ECR plasma is proposed as a novel concept EUV light source. In order to investigate the feasibility of ECR plasma as a EUV light source, the narrow band EUV power around 13.5 nm emitted by two highly charged ECR ion sources--LECR2M and SECRAL--was measured with a calibrated EUV power measurement tool. Since the emission lines around 13.5 nm can be attributed to the 4d-5p transitions of Xe XI or the 4d-4f unresolved transition array of Sn VIII-XIII, xenon plasma was investigated. The dependence of the EUV throughput and the corresponding conversion efficiency on the parameters of the ion source, such as the rf power and the magnetic confinement configurations, were preliminarily studied

  6. NMR imaging of solids with multiple-pulse line narrowing and radiofrequency gradients

    International Nuclear Information System (INIS)

    Werner, M.H.

    1993-01-01

    The usual methods of magnetic resonance imaging fail in rigid solids due to the line-shape contributions of dipolar coupling, chemical shift dispersion and anisotropy, and bulk magnetic susceptibility. This dissertation presents a new method of solid-stage imaging by nuclear magnetic resonance which averages away these contributions with multiple-pulse line-narrowing and encodes spatial information with pulsed radiofrequency field gradients. This method is closely related to simultaneously developed methods utilizing pulsed DC gradients, and offers similar improvements in sensitivity and resolution. The advantage of rf gradients is that they can be rapidly switched without inducing eddy currents in the probe or the magnet. In addition, the phases and amplitudes of the rf gradients can be switched by equipment which is already part of an NMR spectrometer capable of solid-state spectroscopy. The line-narrowing and gradient pulses originate in separate rf circuits tuned to the same frequency. Interactions between the circuits have been minimized by a method of active Q-switching which employs PIN diodes in the matching networks of these circuits. Both one- and two-dimensional images are presented. The latter are obtained by a novel method in which the two dimensions of imaging transverse to the static magnetic field are encoded by two orthogonal components of a single rf gradient. A π/2 phase shift of the rf phase relative to that of the line-narrowing pulses selects one component or the other. This arrangement allows the solid-state analogs of versatile imaging sequences based on Fourier imaging and eliminates the need for sample rotation and back-projection methods. Coherent averaging theory is used to analyze this imaging technique and exact numerical simulations on several coupled spins are discussed. These lend insight to the residual linewidth and its dependence on pixel position as well as to the range of applicability of this technique

  7. Pattern-based compression of multi-band image data for landscape analysis

    CERN Document Server

    Myers, Wayne L; Patil, Ganapati P

    2006-01-01

    This book describes an integrated approach to using remotely sensed data in conjunction with geographic information systems for landscape analysis. Remotely sensed data are compressed into an analytical image-map that is compatible with the most popular geographic information systems as well as freeware viewers. The approach is most effective for landscapes that exhibit a pronounced mosaic pattern of land cover. The image maps are much more compact than the original remotely sensed data, which enhances utility on the internet. As value-added products, distribution of image-maps is not affected by copyrights on original multi-band image data.

  8. Narrow field electromagnetic sensor system and method

    International Nuclear Information System (INIS)

    McEwan, T.E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs

  9. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    Science.gov (United States)

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  10. Effect of band gap narrowing on GaAs tunnel diode I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lebib, A.; Hannanchi, R. [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); Beji, L., E-mail: lotbej_fr@yahoo.fr [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); EL Jani, B. [Unité de Recherche sur les Hétéro-Epitaxies et Applications, Faculté des Sciences, Université de Monastir, 5019 Monastir (Tunisia)

    2016-12-01

    We report on experimental and theoretical study of current-voltage characteristics of C/Si-doped GaAs tunnel diode. For the investigation of the experimental data, we take into account the band-gap narrowing (BGN) effect due to heavily-doped sides of the tunnel diode. The BGN of the n- and p-sides of tunnel diode was measured by photoluminescence spectroscopy. The comparison between theoretical results and experimental data reveals that BGN effect enhances tunneling currents and hence should be considered to identify more accurately the different transport mechanisms in the junction. For C/Si-doped GaAs tunnel diode, we found that direct tunneling is the dominant transport mechanism at low voltages. At higher voltages, this mechanism is replaced by the rate-controlling tunneling via gap states in the forbidden gap.

  11. Study of human interface for narrow road drive assist system considered characteristic of driver; Driver no tokusei wo koryoshita kyoro soko shien system no human interface no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, A [Subaru Research Center Co., Tokyo (Japan); Amada, N; Kawashima, H [Keio University, Tokyo (Japan)

    1997-10-01

    The measurement of driver`s watching point, driving time on narrow road and the evaluation of stress etc. were conducted in order to construct the narrow road drive assist system using the stereo image recognition system. Consequently, the driver`s thinking process, stress factor and the indispensable information for this system were clarified. 4 refs., 8 figs., 3 tabs.

  12. Band Subset Selection for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Chunyan Yu

    2018-01-01

    Full Text Available This paper develops a new approach to band subset selection (BSS for hyperspectral image classification (HSIC which selects multiple bands simultaneously as a band subset, referred to as simultaneous multiple band selection (SMMBS, rather than one band at a time sequentially, referred to as sequential multiple band selection (SQMBS, as most traditional band selection methods do. In doing so, a criterion is particularly developed for BSS that can be used for HSIC. It is a linearly constrained minimum variance (LCMV derived from adaptive beamforming in array signal processing which can be used to model misclassification errors as the minimum variance. To avoid an exhaustive search for all possible band subsets, two numerical algorithms, referred to as sequential (SQ and successive (SC algorithms are also developed for LCMV-based SMMBS, called SQ LCMV-BSS and SC LCMV-BSS. Experimental results demonstrate that LCMV-based BSS has advantages over SQMBS.

  13. Design of an S band narrow-band bandpass BAW filter

    Science.gov (United States)

    Gao, Yang; Zhao, Kun-li; Han, Chao

    2017-11-01

    An S band narrowband bandpass filter BAW with center frequency 2.460 GHz, bandwidth 41MHz, band insertion loss - 1.154 dB, the passband ripple 0.9 dB, the out of band rejection about -42.5dB@2.385 GHz; -45.5dB@2.506 GHz was designed for potential UAV measurement and control applications. According to the design specifications, the design is as follows: each FBAR's stack was designed in BAW filter by using Mason model. Each FBAR's shape was designed with the method of apodization electrode. The layout of BAW filter was designed. The acoustic-electromagnetic cosimulation model was built to validate the performance of the designed BAW filter. The presented design procedure is a common one, and there are two characteristics: 1) an A and EM co-simulation method is used for the final BAW filter performance validation in the design stage, thus ensures over-optimistic designs by the bare 1D Mason model are found and rejected in time; 2) An in-house developed auto-layout method is used to get compact BAW filter layout, which simplifies iterative error-and-try work here and output necessary in-plane geometry information to the A and EM cosimulation model.

  14. Fluorene-based narrow-band-gap copolymers for red light- emitting diodes and bulk heterojunction photovoltaic cells

    Institute of Scientific and Technical Information of China (English)

    Mingliang SUN; Li WANG; Yangjun XIA; Bin DU; Ransheng LIU; Yong CAO

    2008-01-01

    A series of narrow band-gap conjugated copo-lymers (PFO-DDQ) derived from 9,9-dioctylfluorene (DOF) and 2,3-dimethyl-5,8-dithien-2-yl-quinoxalines (DDQ) is prepaid by the palladium-catalyzed Suzuki coupling reaction with the molar feed ratio of DDQ at around 1%,5%,15%,30% and 50%,respectively.The obtained polymers are readily soluble in common organic solvents.The solutions and the thin solid films of the copolymers absorb light from 300-590 nm with two absorbance.peaks at around 380 and 490 nm.The intens-ity of 490 nm peak increases with the increasing DDQ content in the polymers.Efficient energy transfer due to exciton trapping on narrow-band-gap DDQ sites has been observed.The PL emission consists exclusively of DDQ unit emission at around 591 643 nm depending on the DDQ content in solid film.The EL emission peaks are red-shifted from 580 nm for PFO-DDQ1 to 635 nm for PFO-DDQ50.The highest external quantum efficiency achieved with the device configuration ITO/PEDOT/ PVK/PFO-DDQt5/Ba/A1 is 1.33% with a luminous effi-ciency 1.54 cd/A.Bulk heterojunction photovoltaic cells fabricated from composite films of PFO-DDQ30 copoly-mer and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as electron donor and electron acceptor,respect-ively in device configuration:ITO/PEDOT:PSS/PFO-DDQ30:PCBM/PFPNBr/Al shows power conversion effi-ciencies of 1.18% with open-circuit voltage (Voc) of 0.90 V and short-circuit current density (Jsc) of 2.66 mA/cm2 under an AM1.5 solar simulator (100 mW/cm2).The photocurrent response wavelengths of the PVCs based on PFO-DDQ30/PCBM blends covers 300-700 nm.This indicates that these kinds of low band-gap polymers are promising candidates for polymeric solar cells and red light-emitting diodes.

  15. Optical observations of the nearby galaxy IC342 with narrow band [SII] and Hα filters. I

    Directory of Open Access Journals (Sweden)

    Vučetić M.M.

    2013-01-01

    Full Text Available We present observations of a portion of the nearby spiral galaxy IC342 using narrow band [SII] and Hα filters. These observations were carried out in November 2011 with the 2m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper we report coordinates, diameters, Hα and [SII] fluxes for 203 HII regions detected in two fields of view in IC342 galaxy. The number of detected HII regions is 5 times higher than previously known in these two parts of the galaxy. [Projekat Ministarstva nauke Republike Srbije, br. 176005: Emission nebulae: structure and evolution

  16. Playback system designed for X-Band SAR

    International Nuclear Information System (INIS)

    Yuquan, Liu; Changyong, Dou

    2014-01-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement

  17. Playback system designed for X-Band SAR

    Science.gov (United States)

    Yuquan, Liu; Changyong, Dou

    2014-03-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.

  18. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  19. Directly imaged L-T transition exoplanets in the mid-infrared {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri Largo E. Fermi 5 50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-09-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  20. Study of Oxidative Stress in Vitiligo and Use of Narrow Band UVB-311 as a Method of Treatment

    International Nuclear Information System (INIS)

    Fawzy, N.; Rashed, L.

    2012-01-01

    Vitiligo is an acquired depigmenting disease characterized by circumscribed depigmenting macules devoid of identifiable melanocytes. The disease has uncertain aetiopathogenesis. The aim of this research is to estimate the level of superoxide dismutase (SOD) and catalase (CAT) as antioxidants and Nitric oxide and superoxide anion as oxidants in vitiligo patients and evaluate the clinical effectiveness of narrow band UVB (NB-UVB-311) as a method of treatment and repairing the oxidative stress-induced damage. This study included twenty vitiligo patients and fifteen-age and sex matched control. There was statistically significant increase in the levels of SOD in active vitiligo lesions compared to control (P<0.001). There was statistically significant decrease in the level of CAT in vitiligo skin lesions compared to skin of control. After using NB-UVB- 311 the level of SOD was significantly decreased and CAT level was significantly increased (P<0.001). There was statistically significant increase in the level of nitric oxide and superoxide in vitiligo patients compared to control. After using NB-UVB-311 as treatment, the level of nitric oxide and superoxide anion was significantly decreased (P<0.001) in vitiligo patients. These results provide some evidence regarding the oxidant /antioxidant balance in vitiligo patients and the positive role of narrow band UVB- 311 as a treatment of vitiligo

  1. Band-to-Band Misregistration of the Images of MODIS Onboard Calibrators and Its Impact on Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBCs), including a solar diffuser, a blackbody, and a space view port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPAs). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are coregistered onboard by delaying the appropriate band-dependent amount of time, depending on the band locations on the FPA. While this coregistration mechanismis functioning well for the far-field remote targets such as earth view scenes or the moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, particularly in OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistrationis proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration on the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  2. Analysis of the outlook for using narrow-band spontaneous emission sources for atmospheric air purification

    International Nuclear Information System (INIS)

    Boyarchuk, K A; Karelin, A V; Shirokov, R V

    2003-01-01

    The outlook for using narrow-band spontaneous emission sources for purification of smoke gases from sulphur and nitrogen oxides is demonstrated by calculations based on a nonstationary kinetic model of the N 2 - O 2 - H 2 O - CO 2 - SO 2 mixture. The dependences of the mixture purification efficiency on the UV source power at different wavelengths, the exposure time, and the mixture temperature are calculated. It is shown that the radiation sources proposed in the paper will provide better purification of waste gases in the atmosphere. The most promising is a KrCl* lamp emitting an average power of no less than 100 W at 222 nm. (laser applications and other topics in quantum electronics)

  3. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  4. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period.

    Science.gov (United States)

    Martinez, E I Rodríguez; Barriga-Paulino, C I; Zapata, M I; Chinchilla, C; López-Jiménez, A M; Gómez, C M

    2012-08-24

    The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.

  5. The OMERACT-RAMRIS Rheumatoid Arthritis Magnetic Resonance Imaging Joint Space Narrowing Score

    DEFF Research Database (Denmark)

    Møller Døhn, Uffe; Conaghan, Philip G; Eshed, Iris

    2014-01-01

    To test the intrareader and interreader reliability of assessment of joint space narrowing (JSN) in rheumatoid arthritis (RA) wrist and metacarpophalangeal (MCP) joints on magnetic resonance imaging (MRI) and computed tomography (CT) using the newly proposed OMERACT-RAMRIS JSN scoring method...

  6. Micro-Bunched Beam Production at FAST for Narrow Band THz Generation Using a Slit-Mask

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, J. [Sokendai, Tsukuba; Crawford, D. [Fermilab; Edstrom Jr, D. [Fermilab; Ruan, J. [Fermilab; Santucci, J. [Fermilab; Thurman-Keup, R. [Fermilab; Sen, T. [Fermilab; Thangaraj, J. C. [Fermilab

    2018-04-01

    We discuss simulations and experiments on creating micro-bunch beams for generating narrow band THz radiation at the Fermilab Accelerator Science and Technology (FAST) facility. The low-energy electron beamline at FAST consists of a photoinjector-based RF gun, two Lband superconducting accelerating cavities, a chicane, and a beam dump. The electron bunches are lengthened with cavity phases set off-crest for better longitudinal separation and then micro-bunched with a slit-mask installed in the chicane. We carried out the experiments with 30 MeV electron beams and detected signals of the micro-bunching using a skew quadrupole magnet in the chicane. In this paper, the details of micro-bunch beam production, the detection of micro-bunching and comparison with simulations are described.

  7. Surface correlation effects in two-band strongly correlated slabs.

    Science.gov (United States)

    Esfahani, D Nasr; Covaci, L; Peeters, F M

    2014-02-19

    Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.

  8. Optical Observations of M81 Galaxy Group in Narrow Band [SII] and H_alpha Filters: Holmberg IX

    Directory of Open Access Journals (Sweden)

    Arbutina, B.

    2009-12-01

    Full Text Available We present observations of the nearby tidal dwarf galaxy Holmberg IX in M81 galaxy group in narrow band [SII] and H$alpha$ filters, carried out in March and November 2008 with the 2m RCC telescope at NAO Rozhen, Bulgaria. Our search for resident supernova remnants (identified as sources with enhanced [SII] emission relative to their H$alpha$ emission in this galaxy yielded no sources of this kind, besides M&H 10-11 or HoIX X-1. Nevertheless, we found a number of objects with significant H$alpha$ emission that probably represent uncatalogued HII regions.

  9. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    International Nuclear Information System (INIS)

    Kapaev, V. V.; Kopaev, Yu. V.; Savinov, S. A.; Murzin, V. N.

    2013-01-01

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schrödinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In 0.53 Ga 0.47 As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V dc in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.

  10. Mitigation of Unwanted Forward Narrow-band Radiation from PCBs with a Metamaterial Unit Cell

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2013-01-01

    Mitigation of EMI from a PCB is obtained through the use of a metamaterial unit cell. The focus is on the reduction of narrow-band radiation in the forward hemisphere when the resonant element is etched on a layer located between the source of radiation and the ground plane. As opposed to previous...... publications in the literature, the aim of this work is the application of a filter to scattered radiation, generalizing the former characterizations based solely upon transmission lines’ insertion loss. The radiating area accounts for traces and components placed on the top layer of a PCB and is simulated via...... a patch antenna. The study exhibits how the radiation pattern and the electric field on the patch antenna change within and outside the resonance bandwidth of the parasitic element. An EMC assessment provides experimental verification of the operating principle....

  11. A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression.

    Science.gov (United States)

    Hadarig, Ramona Cosmina; de Cos Gomez, Maria Elena; Las-Heras, Fernando

    2013-12-03

    The design of a novel band-pass filter with narrow-band features based on an electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and characterized in terms of transmission and reflection coefficient. The selective passband and suppression of the second harmonic make the filter suitable to be used in a C band frequency range for radar systems and satellite/terrestrial applications. To avoid substantial interference for this kind of applications, passive components with narrow band features and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, less than 10% is sufficient.

  12. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    International Nuclear Information System (INIS)

    Piot, P.; Maxwell, T. J.; Sun, Y.-E; Ruan, J.; Lumpkin, A. H.; Thurman-Keup, R.; Rihaoui, M. M.

    2011-01-01

    We experimentally demonstrate the production of narrow-band (δf/f≅20% at f≅0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  13. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    OpenAIRE

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of the two materials led to the formation of an energetically favorable bulk hetero-junction with a broad spectral response. Using a basic device structure, we reached a power conversion efficiency of s...

  14. UWB Filtering Power Divider with Two Narrow Notch-bands and Wide Stop-band

    Science.gov (United States)

    Wei, Feng; Wang, Xin-Yi; Zou, Xin Tong; Shi, Xiao Wei

    2017-12-01

    A compact filtering ultra-wideband (UWB) microstrip power divider (PD) with two sharply rejected notch-bands and wide stopband is analyzed and designed in this paper. The proposed UWB PD is based on a conventional Wilkinson power divider, while two stub loaded resonators (SLRs) are coupled into two symmetrical output ports to achieve a bandpass filtering response. The simplified composite right/left-handed (SCRLH) resonators are employed to generate the dual notched bands. Defected ground structure (DGS) is introduced to improve the passband performance. Good insertion/return losses, isolation and notch-band rejection are achieved as demonstrated in both simulation and experiment.

  15. Ultrabright, narrow-band photon-pair source for atomic quantum memories

    Science.gov (United States)

    Tsai, Pin-Ju; Chen, Ying-Cheng

    2018-06-01

    We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.

  16. A Multiple-Channel Sub-Band Transient Detection System

    Energy Technology Data Exchange (ETDEWEB)

    David A. Smith

    1998-11-01

    We have developed a unique multiple-channel sub-band transient detection system to record transient electromagnetic signals in carrier-dominated radio environments; the system has been used to make unique observations of weak, transient HF signals. The detection system has made these observations possible through improved sensitivity compared to conventional broadband transient detection systems; the sensitivity improvement is estimated to be at least 20 dB. The increase in sensitivity has been achieved through subdivision of the band of interest (an 18 MHz tunable bandwidth) into eight sub-band independent detection channels, each with a 400 kHz bandwidth and its own criteria. The system generates a system trigger signal when a predetermined number of channels (typically five) trigger within a predetermined window of time (typically 100 ~s). Events are recorded with a broadband data acquisition system sampling at 50 or 100 Msample/s, so despite the fact that the detection system operates on portions of the signal confined to narrow bands, data acquisition is broadband. Between May and September of 1994, the system was used to detect and record over six thousand transient events in the frequency band from 3 to 30 MHz. Approximately 500 of the events have been characterized as paired bursts of radio noise with individual durations of 2 to 10 ps and separations between the bursts of 5 to 160 ps. The paired transients are typically 5 to 40 dB brighter than the background electromagnetic spectrum between carrier signals. We have termed these events SubIonospheric Pulse Pairs (SIPPS) and presently have no explanation as to their source. Our observations of SIPPS resemble observations of TransIonospheric Pulse Pairs (TIPPs) recorded by the Blackboard instrument on the ALEXIS satellite; the source of TIPP events is also unknown. Most of the recorded SIPP events do not exhibit frequency dispersion, implying propagation along a line-of-sight (groundwave) path; but seven of

  17. COMPACT HYPERSPECTRAL IMAGING SYSTEM (COSI FOR SMALL REMOTELY PILOTED AIRCRAFT SYSTEMS (RPAS – SYSTEM OVERVIEW AND FIRST PERFORMANCE EVALUATION RESULTS

    Directory of Open Access Journals (Sweden)

    A. A. Sima

    2016-06-01

    Full Text Available This paper gives an overview of the new COmpact hyperSpectral Imaging (COSI system recently developed at the Flemish Institute for Technological Research (VITO, Belgium and suitable for remotely piloted aircraft systems. A hyperspectral dataset captured from a multirotor platform over a strawberry field is presented and explored in order to assess spectral bands co-registration quality. Thanks to application of line based interference filters deposited directly on the detector wafer the COSI camera is compact and lightweight (total mass of 500g, and captures 72 narrow (FWHM: 5nm to 10 nm bands in the spectral range of 600-900 nm. Covering the region of red edge (680 nm to 730 nm allows for deriving plant chlorophyll content, biomass and hydric status indicators, making the camera suitable for agriculture purposes. Additionally to the orthorectified hypercube digital terrain model can be derived enabling various analyses requiring object height, e.g. plant height in vegetation growth monitoring. Geometric data quality assessment proves that the COSI camera and the dedicated data processing chain are capable to deliver very high resolution data (centimetre level where spectral information can be correctly derived. Obtained results are comparable or better than results reported in similar studies for an alternative system based on the Fabry–Pérot interferometer.

  18. A Frequency Splitting Method For CFM Imaging

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    The performance of conventional CFM imaging will often be degraded due to the relatively low number of pulses (4-10) used for each velocity estimate. To circumvent this problem we propose a new method using frequency splitting (FS). The FS method uses broad band chirps as excitation pulses instead...... of narrow band pulses as in conventional CFM imaging. By appropriate filtration, the returned signals are divided into a number of narrow band signals which are approximately disjoint. After clutter filtering the velocities are found from each frequency band using a conventional autocorrelation estimator......, a 5 MHz linear array transducer was used to scan a vessel situated at 30 mm depth with a maximum flow velocity of 0.1 m/s. The pulse repetition frequency was 1.8 kHz and the angle between the flow and the beam was 60 deg. A 15 mus chirp was used as excitation pulse and 40 independent velocity...

  19. A Strong High Altitude Narrow Jet At Saturn'S Equator From Cassini/ISS Images

    Science.gov (United States)

    Garcia-Melendo, Enrique; Sánchez-Lavega, A.; Legarreta, J.; Pérez-Hoyos, S.; Hueso, R.

    2010-10-01

    The intense equatorial eastward jets observed at cloud level in Jupiter and Saturn, represent a major challenge for geophysical fluid dynamics. Saturn's equatorial jet is of particular interest in view of its three dimensional structure, suspected large temporal variability, and related stratospheric semiannual oscillation. Here we report the discovery at the upper cloud level of an extremely narrow and strong jet centered in the middle of the broad equatorial jet. Previously published works on Saturn's equatorial winds at cloud level provided only a partial coverage. Automatic correlation of brightness scans and manually tracked cloud features, retrieved from images obtained by the Cassini Imaging Science Subsystem (ISS), show that the jet reaches 430 ms-1 with a peak speed difference of 180 ms-1 relative to nearby latitudes at 60 mbar and 390 ms-1 at depths > 500 mbar. Images were obtained in two filters: MT3, centred at the 889nm strong methane absorption band, and CB3 centred at the near infrared 939nm continuum, which are sensitive to different altitude levels at the upper clouds and hazes. Contrarily to what is observed in other latitudes, its velocity increases with altitude. Our findings helps to extend the view we have of the equatorial stratospheric dynamics of fast rotating planets beyond the best known terrestrial environment, and extract more general consequences of the interaction between waves and mean flow. It remains to be known if this equatorial jet structure, now determined in detail in three dimensions, is permanent or variable with the seasonal solar insolation cycle, including the variable shadow cast by the rings. EGM, ASL, JL, SPH, and RH have been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and ASL, JL, SPH, and RH by Grupos Gobierno Vasco IT-464-07

  20. The TRICLOBS Dynamic Multi-Band Image Data Set for the Development and Evaluation of Image Fusion Methods.

    Directory of Open Access Journals (Sweden)

    Alexander Toet

    Full Text Available The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4-0.7μm, near-infrared (NIR, 0.7-1.0μm and long-wave infrared (LWIR, 8-14μm motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer. The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs

  1. Omnidirectional narrow optical filters for circularly polarized light in a nanocomposite structurally chiral medium.

    Science.gov (United States)

    Avendaño, Carlos G; Palomares, Laura O

    2018-04-20

    We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.

  2. Hyperspectral band selection and classification of Hyperion image of Bhitarkanika mangrove ecosystem, eastern India

    Science.gov (United States)

    Ashokkumar, L.; Shanmugam, S.

    2014-10-01

    Tropical mangrove forests along the coast evolve dynamically due to constant changes in the natural ecosystem and ecological cycle. Remote sensing has paved the way for periodic monitoring and conservation of such floristic resources, compared to labour intensive in-situ observations. With the laboratory quality image spectra obtained from hyperspectral image data, species level discrimination in habitats and ecosystems is attainable. One of the essential steps before classification of hyperspectral image data is band selection. It is important to eliminate the redundant bands to mitigate the problems of Hughes effect that are likely to affect further image analysis and classification accuracy. This paper presents a methodology for the selection of appropriate hyperspectral bands from the EO-1 Hyperion image for the identification and mapping of mangrove species and coastal landcover types in the Bhitarkanika coastal forest region, eastern India. Band selection procedure follows class based elimination procedure and the separability of the classes are tested in the band selection process. Individual bands are de-correlated and redundant bands are removed from the bandwise correlation matrix. The percent contribution of class variance in each band is analysed from the factors of PCA component ranking. Spectral bands are selected from the wavelength groups and statistically tested. Further, the band selection procedure is compared with similar techniques (Band Index and Mutual information) for validation. The number of bands in the Hyperion image was reduced from 196 to 88 by the Factor-based ranking approach. Classification was performed by Support Vector Machine approach. It is observed that the proposed Factor-based ranking approach performed well in discriminating the mangrove species and other landcover units compared to the other statistical approaches. The predominant mangrove species Heritiera fomes, Excoecaria agallocha and Cynometra ramiflora are spectral

  3. Experimental performance assessment of the sub-band minimum variance beamformer for ultrasound imaging

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Greenaway, Alan H.; Anderson, Tom

    2017-01-01

    Recent progress in adaptive beamforming techniques for medical ultrasound has shown that current resolution limits can be surpassed. One method of obtaining improved lateral resolution is the Minimum Variance (MV) beamformer. The frequency domain implementation of this method effectively divides...... the broadband ultrasound signals into sub-bands (MVS) to conform with the narrow-band assumption of the original MV theory. This approach is investigated here using experimental Synthetic Aperture (SA) data from wire and cyst phantoms. A 7 MHz linear array transducer is used with the SARUS experimental...

  4. Towards simultaneous Talbot bands based optical coherence tomography and scanning laser ophthalmoscopy imaging.

    Science.gov (United States)

    Marques, Manuel J; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-05-01

    We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer's dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners' scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential "on-demand" mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented.

  5. The impact of the depth of field on cytogenetic image quality in scanning microscopy

    Science.gov (United States)

    Qiu, Yuchen; Chen, Xiaodong; Li, Yuhua; Zheng, Bin; Li, Shibo; Zhang, Roy R.; Chen, Wei R.; Liu, Hong

    2011-03-01

    The purpose of this study is to investigate the impact of the depth of field (DOF) of microscopic systems on cytogenetic image qualities. Due to the narrow DOF of high magnification, large numerical aperture (N.A.) objective lenses, random vibrations of even high precision scanning stages may result in large amount of off focused images. In this study, the DOF of microscopic systems with various objective magnifications/numerical apertures (N.A.) is first measured using standard resolution targets. The impact of DOF on cytogenetic image qualities is then subjectively evaluated with clinical samples, by comparing the band shape and sharpness of analyzable chromosomes. For a specific digital microscopic system with 100× objective lens (N.A. = 1.25), the results of observational studies revealed that chromosomal bands are still recognizable when the images are obtained approximately +/- 1 μm from the focusing plane. The chromosomal bands become fuzzy and unrecognizable when the system is 1.5 μm away from the focusing position. The results of this preliminary experimental study may provide useful design trade-off parameters for developing optimal scanning microscopic systems for cytogenetic applications.

  6. Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes

    Science.gov (United States)

    Honkavaara, Eija; Rosnell, Tomi; Oliveira, Raquel; Tommaselli, Antonio

    2017-12-01

    A recent revolution in miniaturised sensor technology has provided markets with novel hyperspectral imagers operating in the frame format principle. In the case of unmanned aerial vehicle (UAV) based remote sensing, the frame format technology is highly attractive in comparison to the commonly utilised pushbroom scanning technology, because it offers better stability and the possibility to capture stereoscopic data sets, bringing an opportunity for 3D hyperspectral object reconstruction. Tuneable filters are one of the approaches for capturing multi- or hyperspectral frame images. The individual bands are not aligned when operating a sensor based on tuneable filters from a mobile platform, such as UAV, because the full spectrum recording is carried out in the time-sequential principle. The objective of this investigation was to study the aspects of band registration of an imager based on tuneable filters and to develop a rigorous and efficient approach for band registration in complex 3D scenes, such as forests. The method first determines the orientations of selected reference bands and reconstructs the 3D scene using structure-from-motion and dense image matching technologies. The bands, without orientation, are then matched to the oriented bands accounting the 3D scene to provide exterior orientations, and afterwards, hyperspectral orthomosaics, or hyperspectral point clouds, are calculated. The uncertainty aspects of the novel approach were studied. An empirical assessment was carried out in a forested environment using hyperspectral images captured with a hyperspectral 2D frame format camera, based on a tuneable Fabry-Pérot interferometer (FPI) on board a multicopter and supported by a high spatial resolution consumer colour camera. A theoretical assessment showed that the method was capable of providing band registration accuracy better than 0.5-pixel size. The empirical assessment proved the performance and showed that, with the novel method, most parts of

  7. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    Science.gov (United States)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  8. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    Science.gov (United States)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  9. CLUSTER GLIMPSES WITH RAVEN: AO-CORRECTED NEAR AND MID-INFRARED IMAGES OF GLIMPSE C01 AND GLIMPSE C02

    Energy Technology Data Exchange (ETDEWEB)

    Davidge, T. J.; Andersen, D. R. [Dominion Astrophysical Observatory, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Lardière, O., E-mail: tim.davidge@nrc.ca, E-mail: david.andersen@nrc.ca, E-mail: lardiere@uvic.ca [Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 3P2 (Canada); and others

    2016-12-01

    We discuss images of the star clusters GLIMPSE C01 (GC01) and GLIMPSE C02 (GC02) that were recorded with the Subaru IRCS. Distortions in the wavefront were corrected with the RAVEN adaptive optics (AO) science demonstrator, allowing individual stars in the central regions of both clusters—where the fractional contamination from non-cluster objects is lowest—to be imaged. In addition to J , H , and K ′ images, both clusters were observed through a narrow-band filter centered near 3.05 μ m; GC01 was also observed through two other narrow-band filters that sample longer wavelengths. Stars in the narrow-band images have an FWHM that is close to the telescope diffraction limit, demonstrating that open-loop AO systems like RAVEN can deliver exceptional image quality. The near-infrared color–magnitude diagram of GC01 is smeared by non-uniform extinction with a 1 σ dispersion Δ A{sub K}  = ±0.13 mag. Spatial variations in A{sub K} are not related in a systematic way to location in the field. The Red Clump is identified in the K luminosity function (LF) of GC01, and a distance modulus of 13.6 is found. The K LF of GC01 is consistent with a system that is dominated by stars with an age >1 Gyr. As for GC02, the K LF is flat for K  > 16, and the absence of a sub-giant branch argues against an old age if the cluster is at a distance of ∼7 kpc. Archival SPITZER [3.6] and [4.5] images of the clusters are also examined, and the red giant branch-tip is identified. It is demonstrated in the Appendix that the [3.6] surface brightness profiles of both clusters can be traced out to radii of at least 100 arcsec.

  10. Band-to-Band Misregistration of the Images of MODIS On-Board Calibrators and Its Impact to Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The MODIS instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBC) including a solar diffuser (SD), a blackbody (BB) and a space view (SV) port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPA). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are co-registered on board by delaying appropriate band dependent amount of time depending on the band locations on the FPA. While this co-registration mechanism is functioning well for the "far field" remote targets such as Earth view (EV) scenes or the Moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, in particular the OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistration is proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration to the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1 of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  11. Vibration-tolerant narrow-linewidth semiconductor disk laser using novel frequency-stabilisation schemes

    Science.gov (United States)

    Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.

    2018-02-01

    This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.

  12. C-band RF-system development for e{sup +}e{sup -} linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Shintake, T.; Akasaka, N.; Matsumoto, H. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Oh, J.S.; Yoshida, M.; Watanabe, K.; Ohkubo, Y.; Yonezawa, H.; Baba, H.

    1998-11-01

    Hardware R and D on the C-band (5712 MHz) RF-system for an electron/positron linear collider started in 1996 at KEK. During two years R and D, we have developed a 50-MW C-band klystron (TOSHIBA E3746), a 'Smart Modulator', a traveling-wave resonator (TWR) and a cold model of the rf-pulse compressor. A C-band accelerating structure, which uses the choke-mode cavity, is under development. Its HOM damping performance will be tested using short-bunch beams of ASSET beam-line at SLAC in this year. The C-band system is able to accelerate a high-current beam at an accelerating gradient higher than that in a conventional S-band system, therefore, there will be various applications in the future beside the linear collider. For example, we can build an injector for a SR-ring and for various physics experiments within a short site-length. Additionally, since the C-band components are compact, it has a big potentiality to be widely used in various medical and industrial applications, such as an electron-beam radiotherapy machine, or a compact non-destructive X-ray imaging system. (author)

  13. Simulation of the Application Layer in NarrowBand Networks with Conditional Data Injection XML Scheme Based on Universal Data Generator

    Directory of Open Access Journals (Sweden)

    Ondrej Vondrous

    2017-01-01

    Full Text Available In this article, we would like to deal with challenges and analysis approaches in the area of narrow band communication networks. Especially those networks which use TCP/IP protocol family. We also present a new universal data generator for OMNeT++ simulation environment. We created this generator to satisfy the evaluation, stress testing and benchmarking demands of more and more complex industrial and the Internet of Things networks. We also present the methods for evaluation and comparison of results obtained from simulated and real TCP/IP based networks in this article.

  14. Effect of combination of fractional CO2 laser and narrow-band ultraviolet B versus narrow-band ultraviolet B in the treatment of non-segmental vitiligo.

    Science.gov (United States)

    El-Zawahry, Mohamed Bakr; Zaki, Naglaa Sameh; Wissa, Marian Youssry; Saleh, Marwah Adly

    2017-12-01

    The present study was designed to evaluate the effect of combining fractional CO 2 laser with narrow-band ultraviolet B (NB-UVB) versus NB-UVB in the treatment of non-segmental vitiligo. The study included 20 patients with non-segmental stable vitiligo. They were divided into two groups. Group I received a single session of fractional CO 2 laser therapy on the right side of the body followed by NB-UVB phototherapy twice per week for 8 weeks. Group II received a second session of fractional CO 2 laser therapy after 4 weeks from starting treatment with NB-UVB. The vitiligo lesions were assessed before treatment and after 8 weeks of treatment by VASI. At the end of the study period, the vitiligo area score index (VASI) in group I decreased insignificantly on both the right (-2.6%) and left (-16.4%) sides. In group II, VASI increased insignificantly on the right (+14.4%) and left (+2.5%) sides. Using Adobe Photoshop CS6 extended program to measure the area of vitiligo lesions, group I showed a decrease of -1.02 and -6.12% in the mean area percentage change of vitiligo lesions on the right and left sides, respectively. In group II the change was +9.84 and +9.13% on the right and left sides, respectively. In conclusion, combining fractional CO 2 laser with NB-UVB for the treatment of non-segmental vitiligo did not show any significant advantage over treatment with NB-UVB alone. Further study of this combination for longer durations in the treatment of vitiligo is recommended.

  15. Stokes image reconstruction for two-color microgrid polarization imaging systems.

    Science.gov (United States)

    Lemaster, Daniel A

    2011-07-18

    The Air Force Research Laboratory has developed a new microgrid polarization imaging system capable of simultaneously reconstructing linear Stokes parameter images in two colors on a single focal plane array. In this paper, an effective method for extracting Stokes images is presented for this type of camera system. It is also shown that correlations between the color bands can be exploited to significantly increase overall spatial resolution. Test data is used to show the advantages of this approach over bilinear interpolation. The bounds (in terms of available reconstruction bandwidth) on image resolution are also provided.

  16. Bands, Chords, Tendons, and Membranes in the Heart: An Imaging Overview.

    Science.gov (United States)

    Baxi, Ameya Jagdish; Tavakoli, Sina; Vargas, Daniel; Restrepo, Carlos S

    Crests, bands, chords, and membranes can be seen within the different cardiac chambers, with variable clinical significance. They can be incidental or can have clinical implications by causing hemodynamic disturbance. It is crucial to know the morphology and orientation of normal structures, aberrant or accessory muscles, and abnormal membranes to diagnose the hemodynamic disturbance associated with them. Newer generation computed tomographic scanners and faster magnetic resonance imaging sequences offer high spatial and temporal resolution allowing for acquisition of high resolution images of the cardiac chambers improving identification of small internal structures, such as papillary muscles, muscular bands, chords, and membranes. They also help in identification of other associated complications, malformations, and provide a road map for treatment. In this article, we review cross-sectional cardiac imaging findings of normal anatomical variants and distinctive imaging features of pathologic bands, chords, or membranes, which may produce significant hemodynamic changes and clinical symptomatology. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Multilayer Photonic Crystal for Spectral Narrowing of Emission

    Directory of Open Access Journals (Sweden)

    Zhanfang LIU

    2017-08-01

    Full Text Available Multilayer colloidal crystal has been prepared by the layer-by-layer deposition of silica microspheres on a glass slide. Each layer is a slab consisting of a fcc close-packed colloidal arrays. By properly choosing the sizes of spheres, the whole spectral feature of multilayer colloidal crystal can be tuned. Here, we engineered a multilayer superlattice structure with an effective passband between two stop bands. This gives a strong narrowing effect on emission spectrum. With the stop bands at the shortwave and longwave edges of emission spectrum, the passband in the central wavelength region can be regarded as a strong decrease of suppression effect and enhancement of a narrow wavelength region of emission. The spectral narrowing modification effect of suitably engineered colloidal crystals shows up their importance in potential application as optical filters and lasing devices.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16320

  18. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Wang, Junfeng [Department of Astronomy, Physics Building, Xiamen University Xiamen, Fujian, 361005 (China); Storchi-Bergmann, Thaisa, E-mail: walter.maksym@cfa.harvard.edu [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-07-20

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  19. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Science.gov (United States)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  20. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    International Nuclear Information System (INIS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-01-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  1. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liefeng, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda; Yao, Dongsheng [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Li, Yang [Business and Vocational College of Hainan, Haikou 570203 (China); Li, Ding; Hu, Xiaodong [Research Center for Wide Band Gap Semiconductors, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Li, Hongru, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn [State Key Laboratory for Medicinal Chemistry and Biology, College of Pharmacy, Nankai University, Tianjin 300071 (China)

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u} is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  2. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    International Nuclear Information System (INIS)

    Feng, Liefeng; Yang, Xiufang; Wang, Cunda; Yao, Dongsheng; Li, Yang; Li, Ding; Hu, Xiaodong; Li, Hongru

    2015-01-01

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I th l and I th u , as shown in Fig. 2; I th l is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I th u is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V j ) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I th l and I th u . The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region

  3. Magnetic resonance imaging signs of iliotibial band friction in patients with isolated medial compartment osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Vasilevska, Violeta; Szeimies, Ulrike; Staebler, Axel

    2009-01-01

    The purpose of this retrospective study was to assess the frequency of magnetic resonance imaging (MRI) signs of iliotibial band friction (ITBF) in patients with advanced medial compartment knee osteoarthritis. Proton density-weighted (PDw) fat-saturated (fatsat) MR images (1.5 T, slice thickness (SL) 2.5-3 mm, eight-channel phased array coil) of 128 patients with isolated advanced osteoarthritis of the medial knee compartment and complete or subtotal (>80%) loss of cartilage were evaluated. There were 41 men and 87 women. Mean age was 63 years, range 34-89 years. The control group consisted of 94 patients with medial meniscus degeneration without cartilage loss (56 men and 38 women, mean age 50 years, range 16-89 years). MRI signs of ITBF were evaluated in both groups [poorly defined abnormalities of signal intensity and localized fluid collection lateral, distal or proximal to the lateral epicondyle; signal intensity abnormalities superficial to or deep by the iliotibial band (ITB)]. Transverse images were evaluated separately. Consensus evaluation using all imaging planes was performed. Of 128 patients with osteoarthritis, 95 had moderate or advanced MRI signs of ITBF (74.2%). Eighty-nine patients (69.5%) had advanced degeneration of the meniscus. In the control group, 26 of 94 patients had only moderate MRI signs of ITBF. There was a statistically significant difference between both groups for the presence of MR signs of ITBF (P ≤ 0.01). MRI signs of ITBF were frequently present in patients with severe medial compartment osteoarthritis of the knee. Joint space narrowing with varus knee deformity may be a cause of ITBF. Level 4 (Historic, non-randomized, retrospective, cohort study with a control group) (orig.)

  4. Magnetic resonance imaging signs of iliotibial band friction in patients with isolated medial compartment osteoarthritis of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevska, Violeta [University Surgical Clinic ' St. Naum Ohridski' , Skopje (Macedonia (The Former Yugoslav Republic of)); Szeimies, Ulrike; Staebler, Axel [Radiology in Muenchen Harlaching, Orthopedic Clinic Harlaching, Munich (Germany)

    2009-09-15

    The purpose of this retrospective study was to assess the frequency of magnetic resonance imaging (MRI) signs of iliotibial band friction (ITBF) in patients with advanced medial compartment knee osteoarthritis. Proton density-weighted (PDw) fat-saturated (fatsat) MR images (1.5 T, slice thickness (SL) 2.5-3 mm, eight-channel phased array coil) of 128 patients with isolated advanced osteoarthritis of the medial knee compartment and complete or subtotal (>80%) loss of cartilage were evaluated. There were 41 men and 87 women. Mean age was 63 years, range 34-89 years. The control group consisted of 94 patients with medial meniscus degeneration without cartilage loss (56 men and 38 women, mean age 50 years, range 16-89 years). MRI signs of ITBF were evaluated in both groups [poorly defined abnormalities of signal intensity and localized fluid collection lateral, distal or proximal to the lateral epicondyle; signal intensity abnormalities superficial to or deep by the iliotibial band (ITB)]. Transverse images were evaluated separately. Consensus evaluation using all imaging planes was performed. Of 128 patients with osteoarthritis, 95 had moderate or advanced MRI signs of ITBF (74.2%). Eighty-nine patients (69.5%) had advanced degeneration of the meniscus. In the control group, 26 of 94 patients had only moderate MRI signs of ITBF. There was a statistically significant difference between both groups for the presence of MR signs of ITBF (P {<=} 0.01). MRI signs of ITBF were frequently present in patients with severe medial compartment osteoarthritis of the knee. Joint space narrowing with varus knee deformity may be a cause of ITBF. Level 4 (Historic, non-randomized, retrospective, cohort study with a control group) (orig.)

  5. A High-resolution Multi-wavelength Simultaneous Imaging System with Solar Adaptive Optics

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Changhui; Zhu, Lei; Gu, Naiting; Rao, Xuejun; Zhang, Lanqiang; Bao, Hua; Kong, Lin; Guo, Youming; Zhong, Libo; Ma, Xue’an; Li, Mei; Wang, Cheng; Zhang, Xiaojun; Fan, Xinlong; Chen, Donghong; Feng, Zhongyi; Wang, Xiaoyun; Wang, Zhiyong, E-mail: gunaiting@ioe.ac.cn [The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, P.O. Box 350, Shuangliu, Chengdu 610209, Sichuan (China)

    2017-10-01

    A high-resolution multi-wavelength simultaneous imaging system from visible to near-infrared bands with a solar adaptive optics system, in which seven imaging channels, including the G band (430.5 nm), the Na i line (589 nm), the H α line (656.3 nm), the TiO band (705.7 nm), the Ca ii IR line (854.2 nm), the He i line (1083 nm), and the Fe i line (1565.3 nm), are chosen, is developed to image the solar atmosphere from the photosphere layer to the chromosphere layer. To our knowledge, this is the solar high-resolution imaging system with the widest spectral coverage. This system was demonstrated at the 1 m New Vaccum Solar Telescope and the on-sky high-resolution observational results were acquired. In this paper, we will illustrate the design and performance of the imaging system. The calibration and the data reduction of the system are also presented.

  6. Comparison of Scheimpflug imaging and spectral domain anterior segment optical coherence tomography for detection of narrow anterior chamber angles.

    Science.gov (United States)

    Grewal, D S; Brar, G S; Jain, R; Grewal, S P S

    2011-05-01

    To compare the performance of anterior chamber volume (ACV) and anterior chamber depth (ACD) obtained using Scheimpflug imaging with angle opening distance (AOD500) and trabecular-iris space area (TISA500) obtained using spectral domain anterior segment optical coherence tomography (SD-ASOCT) in detecting narrow angles classified using gonioscopy. In this prospective, cross-sectional observational study, 265 eyes of 265 consecutive patients underwent sequential Scheimpflug imaging, SD-ASOCT imaging, and gonioscopy. Correlations between gonioscopy grading, ACV, ACD, AOD500, and TISA500 were evaluated. Area under receiver operating characteristic curve (AUC), sensitivity, specificity, and likelihood ratios (LRs) were calculated to assess the performance of ACV, ACD, AOD500, and TISA500 in detecting narrow angles (defined as Shaffer grade ≤1 in all quadrants). SD-ASOCT images were obtained at the nasal and temporal quadrants only. Twenty-eight eyes (10.6%) were classified as narrow angles on gonioscopy. ACV correlated with gonioscopy grading (P<0.001) for temporal (r=0.204), superior (r=0.251), nasal (r=0.213), and inferior (r=0.236) quadrants. ACV correlated with TISA500 for nasal (r=0.135, P=0.029) and temporal (P=0.160, P=0.009) quadrants and also with AOD500 for nasal (r=0.498, P<0.001) and temporal (r=0.517, P<0.001) quadrants. For detection of narrow angles, ACV (AUC=0.935; 95% confidence interval (CI) =0.898-0.961) performed similar to ACD (AUC=0.88, P=0.06) and significantly better than AOD500 nasal (AUC=0.761, P=0.001), AOD500 temporal (AUC=0.808, P<0.001), TISA500 nasal (AUC=0.756, P<0.001), and TISA500 temporal (AUC=0.738, P<0.001). Using a cutoff of 113 mm(3), ACV had 90% sensitivity and 88% specificity for detecting narrow angles. Positive and negative LRs for ACV were 8.63 (95% CI=7.4-10.0) and 0.11 (95% CI=0.03-0.4), respectively. ACV measurements using Scheimpflug imaging outperformed AOD500 and TISA500 using SD-ASOCT for detecting narrow angles.

  7. X-Band CubeSat Communication System Demonstration

    Science.gov (United States)

    Altunc, Serhat; Kegege, Obadiah; Bundick, Steve; Shaw, Harry; Schaire, Scott; Bussey, George; Crum, Gary; Burke, Jacob C.; Palo, Scott; O'Conor, Darren

    2015-01-01

    Today's CubeSats mostly operate their communications at UHF- and S-band frequencies. UHF band is presently crowded, thus downlink communications are at lower data rates due to bandwidth limitations and are unreliable due to interference. This research presents an end-to-end robust, innovative, compact, efficient and low cost S-band uplink and X-band downlink CubeSat communication system demonstration between a balloon and a Near Earth Network (NEN) ground system. Since communication systems serve as umbilical cords for space missions, demonstration of this X-band communication system is critical for successfully supporting current and future CubeSat communication needs. This research has three main objectives. The first objective is to design, simulate, and test a CubeSat S- and X-band communication system. Satellite Tool Kit (STK) dynamic link budget calculations and HFSS Simulations and modeling results have been used to trade the merit of various designs for small satellite applications. S- and X-band antennas have been tested in the compact antenna test range at Goddard Space Flight Center (GSFC) to gather radiation pattern data. The second objective is simulate and test a CubeSat compatible X-band communication system at 12.5Mbps including S-band antennas, X-band antennas, Laboratory for Atmospheric and Space Physics (LASP) /GSFC transmitter and an S-band receiver from TRL-5 to TRL-8 by the end of this effort. Different X-band communication system components (antennas, diplexers, etc.) from GSFC, other NASA centers, universities, and private companies have been investigated and traded, and a complete component list for the communication system baseline has been developed by performing analytical and numerical analysis. This objective also includes running simulations and performing trades between different X-band antenna systems to optimize communication system performance. The final objective is to perform an end-to-end X-band CubeSat communication system

  8. Study on general design of dual-DMD based infrared two-band scene simulation system

    Science.gov (United States)

    Pan, Yue; Qiao, Yang; Xu, Xi-ping

    2017-02-01

    Mid-wave infrared(MWIR) and long-wave infrared(LWIR) two-band scene simulation system is a kind of testing equipment that used for infrared two-band imaging seeker. Not only it would be qualified for working waveband, but also realize the essence requests that infrared radiation characteristics should correspond to the real scene. Past single-digital micromirror device (DMD) based infrared scene simulation system does not take the huge difference between targets and background radiation into account, and it cannot realize the separated modulation to two-band light beam. Consequently, single-DMD based infrared scene simulation system cannot accurately express the thermal scene model that upper-computer built, and it is not that practical. To solve the problem, we design a dual-DMD based, dual-channel, co-aperture, compact-structure infrared two-band scene simulation system. The operating principle of the system is introduced in detail, and energy transfer process of the hardware-in-the-loop simulation experiment is analyzed as well. Also, it builds the equation about the signal-to-noise ratio of infrared detector in the seeker, directing the system overall design. The general design scheme of system is given, including the creation of infrared scene model, overall control, optical-mechanical structure design and image registration. By analyzing and comparing the past designs, we discuss the arrangement of optical engine framework in the system. According to the main content of working principle and overall design, we summarize each key techniques in the system.

  9. Optical coherence tomography imaging of colonic crypts in a mouse model of colorectal cancer

    Science.gov (United States)

    Welge, Weston A.; Barton, Jennifer K.

    2016-03-01

    Aberrant crypt foci (ACF) are abnormal epithelial lesions that precede development of colonic polyps. As the earliest morphological change in the development of colorectal cancer, ACF is a highly studied phenomenon. The most common method of imaging ACF is chromoendoscopy using methylene blue as a contrast agent. Narrow- band imaging is a contrast-agent-free modality for imaging the colonic crypts. Optical coherence tomography (OCT) is an attractive alternative to chromoendoscopy and narrow-band imaging because it can resolve the crypt structure at sufficiently high sampling while simultaneously providing depth-resolved data. We imaged in vivo the distal 15 mm of colon in the azoxymethane (AOM) mouse model of colorectal cancer using a commercial swept-source OCT system and a miniature endoscope designed and built in-house. We present en face images of the colonic crypts and demonstrate that different patterns in healthy and adenoma tissue can be seen. These patterns correspond to those reported in the literature. We have previously demonstrated early detection of colon adenoma using OCT by detecting minute thickening of the mucosa. By combining mucosal thickness measurement with imaging of the crypt structure, OCT can be used to correlate ACF and adenoma development in space and time. These results suggest that OCT may be a superior imaging modality for studying the connection between ACF and colorectal cancer.

  10. Analysis of the Electronic Crosstalk Effect in Terra MODIS Long-Wave Infrared Photovoltaic Bands Using Lunar Images

    Science.gov (United States)

    Wilson, Truman; Wu, Aisheng; Wang, Zhipeng; Xiong, Xiaoxiong

    2016-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors among the suite of remote sensing instruments on board the Earth Observing System Terra and Aqua spacecrafts. For each MODIS spectral band, the sensor degradation has been measured using a set of on-board calibrators. MODIS also uses lunar observations from nearly monthly spacecraft maneuvers, which bring the Moon into view through the space-view port, helping to characterize the scan mirror degradation at a different angles of incidence. Throughout the Terra mission, contamination of the long-wave infrared photovoltaic band (LWIR PV, bands 27-30) signals has been observed in the form of electronic crosstalk, where signal from each of the detectors among the LWIR PV bands can leak to the other detectors, producing a false signal contribution. This contamination has had a noticeable effect on the MODIS science products since 2010 for band 27, and since 2012 for bands 28 and 29. Images of the Moon have been used effectively for determining the contaminating bands, and have also been used to derive correction coefficients for the crosstalk contamination. In this paper, we introduce an updated technique for characterizing the crosstalk contamination among the LWIR PV bands using data from lunar calibration events. This approach takes into account both the in-band and out-of-band contribution to the signal contamination for each detector in bands 27-30, which is not considered in previous works. The crosstalk coefficients can be derived for each lunar calibration event, providing the time dependence of the crosstalk contamination. Application of these coefficients to Earth-view image data results in a significant reduction in image contamination and a correction of the scene radiance for bands 27- 30. Also, this correction shows a significant improvement to certain threshold tests in the MODIS Level-2 Cloud Mask. In this paper, we will detail the methodology used to identify and correct

  11. Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture

    NARCIS (Netherlands)

    Kolkman, R.G.M.; Hondebrink, Erwin; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2004-01-01

    A photoacoustic double-ring sensor, featuring a narrow angular aperture, is developed for laser-induced photoacoustic imaging of blood vessels. An integrated optical fiber enables reflection-mode detection of ultrasonic waves. By using the cross-correlation between the signals detected by the two

  12. Tuning the band gap of PbCrO{sub 4} through high-pressure: Evidence of wide-to-narrow semiconductor transitions

    Energy Technology Data Exchange (ETDEWEB)

    Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Física Aplicada-ICMUV, Universitat de València, MALTA ConsoliderTeam, C/Dr. Moliner 50, 46100 Burjassot (Spain); Bandiello, E.; Segura, A. [Departamento de Física Aplicada-ICMUV, Universitat de València, MALTA ConsoliderTeam, C/Dr. Moliner 50, 46100 Burjassot (Spain); Hamlin, J.J.; Maple, M.B. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Rodriguez-Hernandez, P.; Muñoz, A. [Departamento de Física Fundamental II, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, MALTA ConsoliderTeam, La Laguna, 38205 Tenerife (Spain)

    2014-02-25

    Highlights: • Electronic and optical properties of PbCrO{sub 4} are studied under compression. • Band-gap collapses are observed and correlated with structural phase transitions. • PbCrO{sub 4} band-gap is reduced from 2.3 to 0.8 eV in a 20 GPa range. • PbCrO{sub 4} is an n-type semiconductor with donor levels associated to Frenkel defects. • A deep-to-shallow donor transformation at HP induces a large resistivity decrease. -- Abstract: The electronic transport properties and optical properties of lead(II) chromate (PbCrO{sub 4}) have been studied at high pressure by means of resistivity, Hall-effect, and optical-absorption measurements. Band-structure first-principle calculations have been also performed. We found that the low-pressure phase is a direct band-gap semiconductor (Eg = 2.3 eV) that shows a high resistivity. At 3.5 GPa, associated to a structural phase transition, a band-gap collapse takes place, becoming Eg = 1.8 eV. At the same pressure the resistivity suddenly decreases due to an increase of the carrier concentration. In the HP phase, PbCrO{sub 4} behaves as an n-type semiconductor, with a donor level probably associated to the formation of oxygen vacancies. At 15 GPa a second phase transition occurs to a phase with Eg = 1.2 eV. In this phase, the resistivity increases as pressure does probably due to the self-compensation of donor levels and the augmentation of the scattering of electrons with ionized impurities. In the three phases the band gap red shifts under compression. At 20 GPa, Eg reaches a value of 0.8 eV, behaving PbCrO{sub 4} as a narrow-gap semiconductor.

  13. Band gap effects of hexagonal boron nitride using oxygen plasma

    International Nuclear Information System (INIS)

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-01-01

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing

  14. Band gap effects of hexagonal boron nitride using oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  15. Chronic exposure of Sk-1 hairless mice to narrow-band ultraviolet A (320-355 nm)

    International Nuclear Information System (INIS)

    Menter, J.M.; Sayre, R.M.; Etemadi, A.A.; Agin, P.P.; Wills, I.

    1996-01-01

    Several recent investigations collectively suggest that the role of ultraviolet A (UVA) in chronic actinic skin damage may be greater than originally thought. In the present work, the output of a xenon-arc solar-simulator passed through a Bausch and Lomb monochromator in conjunction with a 2-mm Schott WG-320 filter produced narrow-band UVA centered at 338 nm, half-band width 24 nm, I 0 =3.4±0.3 mW/cm 2 . We chronically irradiated 10 SK-1 albino hairless mice 5 times per week for 18 weeks, starting with 1.25 J/cm 2 , for 33 irradiation days, sequentially followed by 1.50 J/cm 2 (34 days), 1.8 J/cm 2 (10 days), 2.0 J/cm 2 (22 days) to afford a total UVA dose of 154.3 J/cm 2 over 99 irradiation days. Erythema was noted clinically by day 6, which persisted throughout the irradiation. During the irradiation period, some scaling, consistent with mild epidermal hyperplasia was noted during irradiation days 37-56. This response later regressed despite continued chronic irradiation. Hematoxylin and eosin examination immediately after the final irradiation revealed a mild inflammatory response, with some dermal restructuring. At the end of the experiment, no significant signs of epidermal hyperplasia or (pre)malignant lesions were seen, although some stratum corneum thickening was noted. Marked dermal collagen damage and moderate elastosis was also evident. We believe that the observed differences in results reported in previous studies are in large part due to differences in light sources and irradiation protocols. (au)

  16. Clinical Evaluation of Endoscopic Trimodal Imaging for the Detection and Differentiation of Colonic Polyps

    NARCIS (Netherlands)

    van den Broek, Frank J. C.; Fockens, Paul; van Eeden, Susanne; Kara, Mohammed A.; Hardwick, James C. H.; Reitsma, Johannes B.; Dekker, Evelien

    2009-01-01

    Background & Aims: Endoscopic trimodal imaging (ETMI) incorporates high-resolution endoscopy (HRE) and autofluorescence imaging (AFI) for adenoma detection, and narrow-band imaging (NBI) for differentiation of adenomas from nonneoplastic polyps. The aim of this study was to compare AFI with HRE for

  17. Image plane detector spectrophotometer - Application to O2 atmospheric band nightglow

    Science.gov (United States)

    Luo, Mingzhao; Yee, Jeng-Hwa; Hays, Paul B.

    1988-01-01

    A new variety of low resolution spectrometer is described. This device, an image plane detector spectrophotometer, has high sensitivity and modest resolution sufficient to determine the rotational temperature and brightness of molecular band emissions. It uses an interference filter as a dispersive element and a multichannel image plane detector as the photon collecting device. The data analysis technqiue used to recover the temperature of the emitter and the emission brightness is presented. The atmospheric band of molecular oxygen is used to illustrate the use of the device.

  18. A natural-color mapping for single-band night-time image based on FPGA

    Science.gov (United States)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  19. Three-Dimensional Simulation of DRIE Process Based on the Narrow Band Level Set and Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Jia-Cheng Yu

    2018-02-01

    Full Text Available A three-dimensional topography simulation of deep reactive ion etching (DRIE is developed based on the narrow band level set method for surface evolution and Monte Carlo method for flux distribution. The advanced level set method is implemented to simulate the time-related movements of etched surface. In the meanwhile, accelerated by ray tracing algorithm, the Monte Carlo method incorporates all dominant physical and chemical mechanisms such as ion-enhanced etching, ballistic transport, ion scattering, and sidewall passivation. The modified models of charged particles and neutral particles are epitomized to determine the contributions of etching rate. The effects such as scalloping effect and lag effect are investigated in simulations and experiments. Besides, the quantitative analyses are conducted to measure the simulation error. Finally, this simulator will be served as an accurate prediction tool for some MEMS fabrications.

  20. Suppression of narrow-band interference in a PN spread-spectrum receiver using a CTD-based adaptive filter

    Science.gov (United States)

    Saulnier, G. J.; Das, P.; Milstein, L. B.

    1984-11-01

    Analytical results have shown that adaptive filtering can be a powerful tool for the rejection of narrow-band interference in a spread-spectrum receiver. However, the complexity of adaptive filtering hardware has hindered the experimental verification of these results. This paper describes a new adaptive filter architecture for implementing the Widrow-Hoff LMS algorithm while using only two multipliers regardless of filter order. This hardware simplification is achieved through the use of a burst processing technique. A 16-tap version of this adaptive filter constructed using charge-transfer devices (CTD's) is used to suppress a single tone jammer in a direct sequence spread-spectrum receiver. Probability of error measurements demonstrating the effectiveness of the adaptive filter for suppressing the single tone jammer along with simulation results for the optimal Weiner-Hopf filter are presented and discussed.

  1. OUTFLOWS AND DARK BANDS AT ARCADE-LIKE ACTIVE REGION CORE BOUNDARIES

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J. T.; Martens, P. C. H.; Tarr, L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2013-03-10

    Observations from the EUV Imaging Spectrometer (EIS) on board Hinode have revealed outflows and non-thermal line broadening in low intensity regions at the edges of active regions (ARs). We use data from Hinode's EIS, Solar Dynamic Observatory's Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager, and the Transition Region and Coronal Explorer instrument to investigate the boundaries of arcade-like AR cores for NOAA ARs 11112, 10978, and 9077. A narrow, low intensity region that is observed at the core's periphery as a dark band shows outflows and increased spectral line broadening. This dark band is found to exist for days and appears between the bright coronal loop structures of different coronal topologies. We find a case where the dark band region is formed between the magnetic field from emerging flux and the field of the pre-existing flux. A magnetic field extrapolation indicates that this dark band is coincident with the spine lines or magnetic separatrices in the extrapolated field. This occurs over unipolar regions where the brightened coronal field is separated in connectivity and topology. This separation does not appear to be infinitesimal and an initial estimate of the minimum distance of separation is found to be Almost-Equal-To 1.5-3.5 Mm.

  2. Antibody Banding Patterns of the Enzyme-Linked Immunoelectrotransfer Blot and Brain Imaging Findings in Patients With Neurocysticercosis.

    Science.gov (United States)

    Arroyo, Gianfranco; Rodriguez, Silvia; Lescano, Andres G; Alroy, Karen A; Bustos, Javier A; Santivañez, Saul; Gonzales, Isidro; Saavedra, Herbert; Pretell, E Javier; Gonzalez, Armando E; Gilman, Robert H; Tsang, Victor C W; Garcia, Hector H

    2018-01-06

    The enzyme-linked immunoelectrotransfer blot (EITB) assay is the reference serological test for neurocysticercosis (NCC). A positive result on EITB does not always correlate with the presence of active infections in the central nervous system (CNS), and patients with a single viable brain cyst may be EITB negative. Nonetheless, EITB antibody banding patterns appears to be related with the expression of 3 protein families of Taenia solium, and in turn with the characteristics of NCC in the CNS (type, stage, and burden of viable cysts). We evaluated EITB antibody banding patterns and brain imaging findings of 548 NCC cases. Similar banding patterns were grouped into homogeneous classes using latent class analysis. The association between classes and brain imaging findings was assessed. Four classes were identified. Class 1 (patients negative or only positive to the GP50 band, related to the protein family of the same name) was associated with nonviable or single viable parenchymal cysticerci; class 2 (patients positive to bands GP42-39 and GP24, related to the T24-42 protein family, with or without anti-GP50 antibodies) was associated with intraparenchymal viable and nonviable infections; classes 3 and 4 (positive to GP50, GP42-39, and GP24 but also responding to low molecular weight bands GP21, GP18, GP14, and GP13, related to the 8 kDa protein family) were associated with extraparenchymal and intraparenchymal multiple viable cysticerci. EITB antibody banding patterns correlate with brain imaging findings and complement imaging information for the diagnosis of NCC and for staging NCC patients. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  3. The marginal band system in nymphalid butterfly wings.

    Science.gov (United States)

    Taira, Wataru; Kinjo, Seira; Otaki, Joji M

    2015-01-01

    Butterfly wing color patterns are highly complex and diverse, but they are believed to be derived from the nymphalid groundplan, which is composed of several color pattern systems. Among these pattern systems, the marginal band system, including marginal and submarginal bands, has rarely been studied. Here, we examined the color pattern diversity of the marginal band system among nymphalid butterflies. Marginal and submarginal bands are usually expressed as a pair of linear bands aligned with the wing margin. However, a submarginal band can be expressed as a broken band, an elongated oval, or a single dot. The marginal focus, usually a white dot at the middle of a wing compartment along the wing edge, corresponds to the pupal edge spot, one of the pupal cuticle spots that signify the locations of color pattern organizing centers. A marginal band can be expressed as a semicircle, an elongated oval, or a pair of eyespot-like structures, which suggest the organizing activity of the marginal focus. Physical damage at the pupal edge spot leads to distal dislocation of the submarginal band in Junonia almana and in Vanessa indica, suggesting that the marginal focus functions as an organizing center for the marginal band system. Taken together, we conclude that the marginal band system is developmentally equivalent to other symmetry systems. Additionally, the marginal band is likely a core element and the submarginal band a paracore element of the marginal band system, and both bands are primarily specified by the marginal focus organizing center.

  4. OFDM techniques for narrow-band power line communications; OFDM-Verfahren fuer die schmalbandige Datenuebertragung im elektrischen Energieversorgungsnetz

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, Martin

    2012-07-01

    In Power Line Communications (PLC) the power distribution grid is modelled by a frequency-selective time-variant channel. Therefore, OFDM techniques are suited very well for this application since they equalize the frequency-selective behaviour in a simple fashion. For narrow-band PLC, where only little amounts of data are to be transmitted, it is advantageous to employ a non-coherent system that does not need a training sequence for channel estimation. Such type of system can be brought up with CyclicPrefix OFDM in combination with Differential Phase-Shift Keying (DPSK). In an alternative, Unique-Word OFDM, the guard interval is not filled by a cyclic prefix, but a ''unique word'', which can be deployed for channel estimation. However, there is a loss in signal-to-noise power ratio due to the special type of signal generation. This loss can be more than regained in principle, but only by applying expensive detection. Another interesting technique is Wavelet-OFDM as its transmit spectrum can be formed outstandingly because of extended transmit pulses. This implies a large overhead when short packets of data are transmitted - additionally to a training sequence, for non-coherent detection is not possible. Cyclic-Prefix OFDM and DPSK are the basis of the Physical Layers of the PLC systems ''PLC G3'' and ''PRIME''. Comparing their specifications and analyzing simulation results ''PLC G3'' turns out to be the more reliable system. In order to equalize the time-variant behaviour of the power line channel, linear equalization and Multiple Symbol Differential Detection is studied as well as algorithms to estimate the time-variant envelope. (orig.)

  5. Application of an improved band-gap narrowing model to the numerical simulation of recombination properties of phosphorus-doped silicon emitters

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, J.O. [Fraunhofer Institute for Solar Energy Systems ISE, Oltmannsstr, 5, D-79100 Freiburg (Germany); Altermatt, P.P.; Heiser, G.; Aberle, A.G. [Photovoltaics Special Research Centre, University of NSW, 2052 Sydney (Australia)

    2001-01-01

    The commonly used band-gap narrowing (BGN) models for crystalline silicon do not describe heavily doped emitters with desirable precision. One of the reasons for this is that the applied BGN models were empirically derived from measurements assuming Boltzmann statistics. We apply a new BGN model derived by Schenk from quantum mechanical principles and demonstrate that carrier degeneracy and the new BGN model both substantially affect the electron-hole product within the emitter region. Simulated saturation current densities of heavily phosphorus-doped emitters, calculated with the new BGN model, are lower than results obtained with the widely used empirical BGN model of del Alamo.

  6. Left mainstem bronchial narrowing: a vascular compression syndrome? Evaluation by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hungate, R.G.; Newman, B.; Meza, M.P.

    1998-01-01

    aortopexy and ligation of the ligamentum arteriosum. Conclusion. LMSB narrowing is well-defined by MR imaging. While a prespinal position of the DA occurs in some children as a normal variant, it is more common and more marked in children with LMSB narrowing. Vascular compression of the LMSB between an anteriorly positioned DA and the pulmonary artery appears to be important in children with symptomatic LMSB narrowing. (orig.)

  7. Development of the high-power THz spectroscopy and imaging systems on the basis of an S-band compact electron LINAC

    International Nuclear Information System (INIS)

    Kuroda, R.; Taira, Y.; Tanaka, M.; Toyokawa, H.; Yamada, K.; Kumaki, M.; Tachibana, M.; Sakaue, K.; Washio, M.

    2014-01-01

    The high-power terahertz time-domain spectroscopy (THz-TDS) and imaging systems have been developed on the basis of an S-band compact electron linac at AIST. Such high-power THz source is strongly expected for inspection of dangerous materials in the homeland security field. The high-power THz radiations are generated in two methods with the high-brightness ultra-short electron bunch. One is THz coherent synchrotron radiation (THz-CSR) for THz imaging applications. The other is THz coherent transition radiation (THz-CTR) for the THz spectroscopy. The THz-CTR time-domain spectroscopy (TDS) has been constructed with the EO sampling method and demonstrated in freq. range between 0.1-2 THz. The absorption measurements of drug samples have been successfully performed in atmosphere. In this symposium, we will describe details of the THz-CTR-TDS and imaging experiments and a future plan of the THz applications. (author)

  8. Spectrally narrowed emissions in 2,5-bis(4-biphenylyl)thiophene crystals pumped by fs laser pulse

    International Nuclear Information System (INIS)

    Kobayashi, S.; Sasaki, F.; Yanagi, H.; Hotta, S.; Ichikawa, M.; Taniguchi, Y.

    2005-01-01

    Spectrally narrowed emission (SNE) in 2,5-bis(4-biphenylyl)thiophene (BP1T) crystals is investigated using fs laser pulse. Two different types of narrowing are observed at different vibronic emission bands with increasing pump intensities. Based on their pump intensity dependence and illumination area dependence, we assign the SNE at 20,200 cm -1 (β-band) to amplified spontaneous emission (ASE) and the SNE at 21,600 cm -1 (α-band) to superfluorescence rather than ASE

  9. Automated Registration of Images from Multiple Bands of Resourcesat-2 Liss-4 camera

    Science.gov (United States)

    Radhadevi, P. V.; Solanki, S. S.; Jyothi, M. V.; Varadan, G.

    2014-11-01

    Continuous and automated co-registration and geo-tagging of images from multiple bands of Liss-4 camera is one of the interesting challenges of Resourcesat-2 data processing. Three arrays of the Liss-4 camera are physically separated in the focal plane in alongtrack direction. Thus, same line on the ground will be imaged by extreme bands with a time interval of as much as 2.1 seconds. During this time, the satellite would have covered a distance of about 14 km on the ground and the earth would have rotated through an angle of 30". A yaw steering is done to compensate the earth rotation effects, thus ensuring a first level registration between the bands. But this will not do a perfect co-registration because of the attitude fluctuations, satellite movement, terrain topography, PSM steering and small variations in the angular placement of the CCD lines (from the pre-launch values) in the focal plane. This paper describes an algorithm based on the viewing geometry of the satellite to do an automatic band to band registration of Liss-4 MX image of Resourcesat-2 in Level 1A. The algorithm is using the principles of photogrammetric collinearity equations. The model employs an orbit trajectory and attitude fitting with polynomials. Then, a direct geo-referencing with a global DEM with which every pixel in the middle band is mapped to a particular position on the surface of the earth with the given attitude. Attitude is estimated by interpolating measurement data obtained from star sensors and gyros, which are sampled at low frequency. When the sampling rate of attitude information is low compared to the frequency of jitter or micro-vibration, images processed by geometric correction suffer from distortion. Therefore, a set of conjugate points are identified between the bands to perform a relative attitude error estimation and correction which will ensure the internal accuracy and co-registration of bands. Accurate calculation of the exterior orientation parameters with

  10. Design of a modified endoscope illuminator for spectral imaging of colorectal tissues

    Science.gov (United States)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    The gold standard for locating colonic polyps is a white light endoscope in a colonoscopy, however, polyps smaller than 5 mm can be easily missed. Modified procedures such as narrow band imaging have shown only marginal increases in detection rates. Spectral imaging is a potential solution to improve the sensitivity and specificity of colonoscopies by providing the ability to distinguish molecular fluorescence differences in tissues. The goal of this work is to implement a spectral endoscopic light source to acquire spectral image data of colorectal tissues. A beta-version endoscope light source was developed, by retrofitting a white light endoscope light source (Olympus, CLK-4) with 16 narrow band LEDs. This redesigned, beta-prototype uses high-power LEDs with a minimum output of 500 mW to provide sufficient spectral output (0.5 mW) through the endoscope. A mounting apparatus was designed to provide sufficient heat dissipation. Here, we report recent results of our tests to characterize the intensity output through the light source and endoscope to determine the flat spectral output for imaging and intensity losses through the endoscope. We also report preliminary spectral imaging data from transverse pig colon that demonstrates the ability to result in working practical spectral data. Preliminary results of this revised prototype spectral endoscope system demonstrate that there is sufficient power to allow the imaging process to continue and potentially determine spectral differences in cancerous and normal tissue from imaging ex vivo pairs. Future work will focus on building a spectral library for the colorectal region and refining the user interface the system for in vivo use.

  11. A three-color absorption/scattering imaging technique for simultaneous measurements on distributions of temperature and fuel concentration in a spray

    Science.gov (United States)

    Qi, Wenyuan; Zhang, Yuyin

    2018-04-01

    A three-color imaging technique was proposed for simultaneous measurements on distributions of fuel/air mixture temperature and fuel vapor/liquid concentrations in evaporating sprays. The idea is based on that the vapor concentration is proportional to the absorption of vapor to UV light, the liquid-phase concentration is related to the light extinction due to scattering of droplet to visible light, and the mixture temperature can be correlated to the absorbance ratio at two absorbing wavelengths or narrow bands. For verifying the imaging system, the molar absorption coefficients of p-xylene at the three narrow bands, which were centered respectively at 265, 289, and 532 nm with FWHM of 10 nm, were measured in a specially designed calibration chamber at different temperatures (423-606 K) and pressure of 3.6 bar. It was found that the ratio of the molar absorption coefficients of p-xylene at the two narrow bands centered at the two UV wavelengths is sensitive to the mixture temperature. On the other hand, the distributions of fuel vapor/liquid concentrations can be obtained by use of absorbance due to ultraviolet absorption of vapor and visible light scattering of droplets. Combining these two methods, a simultaneous measurement on distributions of mixture temperature and fuel vapor/liquid concentrations can be realized. In addition, the temperature field obtained from the ratio of the two absorbing narrow bands can be further used to improve the measurement accuracy of vapor/liquid concentrations, because the absorption coefficients depend on temperature. This diagnostic was applied to an evaporating spray inside a high-temperature and high-pressure constant volume chamber.

  12. Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films

    Science.gov (United States)

    Hassan, Ali; Jin, Yuhua; Irfan, Muhammad; Jiang, Yijian

    2018-03-01

    Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM) analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (˜ 6 nm to 10 nm) and surface roughness rms value 3 nm for thickness ˜315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV) region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.

  13. Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films

    Directory of Open Access Journals (Sweden)

    Ali Hassan

    2018-03-01

    Full Text Available Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (∼ 6 nm to 10 nm and surface roughness rms value 3 nm for thickness ∼315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD, Energy Dispersive X-ray Spectroscopy (EDS and X-ray Photoelectron Spectroscopy (XPS have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.

  14. Real-Time Imaging with Frequency Scanning Array Antenna for Industrial Inspection Applications at W band

    Science.gov (United States)

    Larumbe, Belen; Laviada, Jaime; Ibáñez-Loinaz, Asier; Teniente, Jorge

    2018-01-01

    A real-time imaging system based on a frequency scanning antenna for conveyor belt setups is presented in this paper. The frequency scanning antenna together with an inexpensive parabolic reflector operates at the W band enabling the detection of details with dimensions in the order of 2 mm. In addition, a low level of sidelobes is achieved by optimizing unequal dividers to window the power distribution for sidelobe reduction. Furthermore, the quality of the images is enhanced by the radiation pattern properties. The performance of the system is validated by showing simulation as well as experimental results obtained in real time, proving the feasibility of these kinds of frequency scanning antennas for cost-effective imaging applications.

  15. Anisotropic ionizing radiation in Seyfert galaxies. I - The extended narrow-line region in Markarian 573

    Science.gov (United States)

    Tsvetanov, Zlatan; Walsh, J. R.

    1992-01-01

    The morphology, kinematics, and ionization state of the nuclear extended narrow-line region (ENLR) of the Seyfert 2 galaxy Mrk 573 are studied using narrow-band images of a grid of long-slit spectra. The entire ENLR is mapped spectroscopically, and velocity structure is studied. The velocity field map shows a typical galactic rotation picture with some important deviations. A simple geometric model, in accordance with the 'unified schemes', is employed to study the effects of various parameters of the observed picture. The best match is achieved when a biconical radiation field illuminates the ISM of the host galaxy that takes part in a normal galaxy rotation but also has radial motions close to the nucleus. The emission-line images reveal an ENLR elongated along the radio axis in the northwest-southeast direction, but a map of the flux ratio forbidden O III 5007/(H-alpha + forbidden N II) shows a different structure, with the highest excitation peak offset by about 4 arcsec along the radio axis to the southeast.

  16. Contrast based band selection for optimized weathered oil detection in hyperspectral images

    Science.gov (United States)

    Levaux, Florian; Bostater, Charles R., Jr.; Neyt, Xavier

    2012-09-01

    Hyperspectral imagery offers unique benefits for detection of land and water features due to the information contained in reflectance signatures such as the bi-directional reflectance distribution function or BRDF. The reflectance signature directly shows the relative absorption and backscattering features of targets. These features can be very useful in shoreline monitoring or surveillance applications, for example to detect weathered oil. In real-time detection applications, processing of hyperspectral data can be an important tool and Optimal band selection is thus important in real time applications in order to select the essential bands using the absorption and backscatter information. In the present paper, band selection is based upon the optimization of target detection using contrast algorithms. The common definition of the contrast (using only one band out of all possible combinations available within a hyperspectral image) is generalized in order to consider all the possible combinations of wavelength dependent contrasts using hyperspectral images. The inflection (defined here as an approximation of the second derivative) is also used in order to enhance the variations in the reflectance spectra as well as in the contrast spectrua in order to assist in optimal band selection. The results of the selection in term of target detection (false alarms and missed detection) are also compared with a previous method to perform feature detection, namely the matched filter. In this paper, imagery is acquired using a pushbroom hyperspectral sensor mounted at the bow of a small vessel. The sensor is mechanically rotated using an optical rotation stage. This opto-mechanical scanning system produces hyperspectral images with pixel sizes on the order of mm to cm scales, depending upon the distance between the sensor and the shoreline being monitored. The motion of the platform during the acquisition induces distortions in the collected HSI imagery. It is therefore

  17. Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude

    Science.gov (United States)

    Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.

    2018-05-01

    One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.

  18. Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence

    Directory of Open Access Journals (Sweden)

    G. Baskaran

    2006-01-01

    Full Text Available In a recent X-ray absorption study in boron doped diamond, Nakamura et al. have seen a well isolated narrow boron impurity band in non-superconducting samples and an additional narrow band at the chemical potential in a superconducting sample. We interpret the beautiful spectra as evidence for upper Hubbard band of a Mott insulating impurity band and an additional metallic 'mid-gap band' of a conducting 'self-doped' Mott insulator. This supports the basic framework of a recent theory of the present author of strongly correlated impurity band superconductivity (impurity band resonating valence bond, IBRVB theory in a template of a wide-gap insulator, with no direct involvement of valence band states.

  19. Superconducting correlations in the one- and two-band Hubbard models

    International Nuclear Information System (INIS)

    Jain, K.P.; Ramakumar, R.; Chancey, C.C.

    1989-01-01

    An approximate expression is derived for the generalized energy gap function Δ kμ for a system of interacting electrons in a narrow s-band. This function has the virtue that it interpolates between the weak interaction limit (BCS) and the intermediate coupling regime. Starting from the Cooper pairing state, the authors investigate the build-up of pairing correlations and study the properties of the generalized gap in these two regimes as a function of the band filling. The coupled equations for the gap and the band filling define the self-consistency conditions. A recent extension of this analysis to the two-band model is also discussed

  20. An Algorithm for Surface Current Retrieval from X-band Marine Radar Images

    Directory of Open Access Journals (Sweden)

    Chengxi Shen

    2015-06-01

    Full Text Available In this paper, a novel current inversion algorithm from X-band marine radar images is proposed. The routine, for which deep water is assumed, begins with 3-D FFT of the radar image sequence, followed by the extraction of the dispersion shell from the 3-D image spectrum. Next, the dispersion shell is converted to a polar current shell (PCS using a polar coordinate transformation. After removing outliers along each radial direction of the PCS, a robust sinusoidal curve fitting is applied to the data points along each circumferential direction of the PCS. The angle corresponding to the maximum of the estimated sinusoid function is determined to be the current direction, and the amplitude of this sinusoidal function is the current speed. For validation, the algorithm is tested against both simulated radar images and field data collected by a vertically-polarized X-band system and ground-truthed with measurements from an acoustic Doppler current profiler (ADCP. From the field data, it is observed that when the current speed is less than 0.5 m/s, the root mean square differences between the radar-derived and the ADCP-measured current speed and direction are 7.3 cm/s and 32.7°, respectively. The results indicate that the proposed procedure, unlike most existing current inversion schemes, is not susceptible to high current speeds and circumvents the need to consider aliasing. Meanwhile, the relatively low computational cost makes it an excellent choice in practical marine applications.

  1. Propagation Characteristics in an Underground Shopping Area for 5GHz-band Wireless Access Systems

    Science.gov (United States)

    Itokawa, Kiyohiko; Kita, Naoki; Sato, Akio; Matsue, Hideaki; Mori, Daisuke; Watanabe, Hironobu

    5-GHz band wireless access systems, such as the RLAN (Radio Local Area Network) system of IEEE802.11a, HiperLAN/2, HiSWANa and AWA, are developed and provide transmission rates over 20 Mbps for indoor use. Those 5-GHz access systems are expected to extend service areas from the office to the so-called “hot-spot" in public areas. Underground shopping malls are one of the anticipated service areas for such a nomadic wireless access service. Broadband propagation characteristics are required for radio zone design in an underground mall environment despite previous results obtained by narrow band measurements. This paper presents results of an experimental study on the propagation characteristics for broadband wireless access systems in an underground mall environment. First, broadband propagation path loss is measured and formulated considering human body shadowing. A ray trace simulation is used to clarify the basic propagation mechanism in such a closed environment. Next, a distance dependency of the delay spread during a crowded time period, rush hour, is found to be at most 65 nsec, which is under the permitted maximum value of the present 5-GHz systems. Finally, above propagation characteristics support the result of transmission test carried out by using AWA equipment.

  2. Design of a Lossless Image Compression System for Video Capsule Endoscopy and Its Performance in In-Vivo Trials

    Science.gov (United States)

    Khan, Tareq H.; Wahid, Khan A.

    2014-01-01

    In this paper, a new low complexity and lossless image compression system for capsule endoscopy (CE) is presented. The compressor consists of a low-cost YEF color space converter and variable-length predictive with a combination of Golomb-Rice and unary encoding. All these components have been heavily optimized for low-power and low-cost and lossless in nature. As a result, the entire compression system does not incur any loss of image information. Unlike transform based algorithms, the compressor can be interfaced with commercial image sensors which send pixel data in raster-scan fashion that eliminates the need of having large buffer memory. The compression algorithm is capable to work with white light imaging (WLI) and narrow band imaging (NBI) with average compression ratio of 78% and 84% respectively. Finally, a complete capsule endoscopy system is developed on a single, low-power, 65-nm field programmable gate arrays (FPGA) chip. The prototype is developed using circular PCBs having a diameter of 16 mm. Several in-vivo and ex-vivo trials using pig's intestine have been conducted using the prototype to validate the performance of the proposed lossless compression algorithm. The results show that, compared with all other existing works, the proposed algorithm offers a solution to wireless capsule endoscopy with lossless and yet acceptable level of compression. PMID:25375753

  3. Spontaneous emission spectrum from a V-type three-level atom in a double-band photonic crystal

    International Nuclear Information System (INIS)

    Zhang Han Zhuang; Tang Sing Hai; Dong Po; He Jun

    2002-01-01

    The spontaneous emission spectrum from a V-type three-level atom embedded in a double-band photonic band gap (PBG) material has been investigated for the first time. Most interestingly it is shown that there is not only a black dark line, but also a narrow spontaneous line near the edges of the double photonic band. The positions of the dark line and narrow spontaneous line are near the transition from an empty upper level to a lower level. The lines stem from destructive and constructive quantum interferences, which induce population transfer between the two upper levels, in the PBG reservoirs. The effects of system parameters on the interference have been discussed in detail

  4. Spatio-Temporal Encoding in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik

    2005-01-01

    In this dissertation two methods for spatio-temporal encoding in medical ultrasound imaging are investigated. The first technique is based on a frequency division approach. Here, the available spectrum of the transducer is divided into a set of narrow bands. A waveform is designed for each band...... the signal to noise ratio and simultaneously the penetration depth so that the medical doctor can image deeper lying structures. The method is tested both experimentally and in simulation and has also evaluated for the purpose of blood flow estimation. The work presented is based on four papers which...

  5. Ka-band InSAR Imaging and Analysis Based on IMU Data

    Directory of Open Access Journals (Sweden)

    Shi Jun

    2014-02-01

    Full Text Available Compared with other bands, the millimeter wave Interferometric Synthetic Aperture Radar (InSAR has high accuracy and small size, which is a hot topic in InSAR research. On the other hand, shorter wavelength causes difficulties in 2D imaging and interferometric phase extraction. In this study, the imaging and phase performance of the streaming Back Projection (BP method combined with IMU data are analyzed and discussed on the basis of actual Ka-band InSAR data. It is found that because the wavelength of the Ka-band is short, it is more sensitive to the antenna phase-center history. To ensure the phase-preserving capacity, the IMU data must be used with accurate motion error compensation. Furthermore, during data processing, we verify the flat-earth-removing capacity of the BP algorithm that calculates and compensates the master and slave antenna phase centers individually.

  6. Narrow-band modulation of semiconductor lasers at millimeter wave frequencies (7100 GHz) by mode locking

    International Nuclear Information System (INIS)

    Lau, K.Y.

    1990-01-01

    This paper reports on the possibility of mode locking a semiconductor laser at millimeter wave frequencies approaching and beyond 100 GHz which was investigated theoretically and experimentally. It is found that there are no fundamental theoretical limitations in mode locking at frequencies below 100 GHz. AT these high frequencies, only a few modes are locked and the output usually takes the form of a deep sinusoidal modulation which is synchronized in phase with the externally applied modulation at the intermodal heat frequency. This can be regarded for practical purposes as a highly efficient means of directly modulating an optical carrier over a narrow band at millimeter wave frequencies. Both active and passive mode locking are theoretically possible. Experimentally, predictions on active mode locking have been verified in prior publications up to 40 GHz. For passive mode locking, evidence consistent with passive mode locking was observed in an inhomogeneously pumped GaAIAs laser at a frequency of approximately 70 GHz. A large differential gain-absorption ratio such as that present in an inhomogeneously pumped single quantum well laser is necessary for pushing the passive mode-locking frequency beyond 100 GHz

  7. A protein-dye hybrid system as a narrow range tunable intracellular pH sensor.

    Science.gov (United States)

    Anees, Palapuravan; Sudheesh, Karivachery V; Jayamurthy, Purushothaman; Chandrika, Arunkumar R; Omkumar, Ramakrishnapillai V; Ajayaghosh, Ayyappanpillai

    2016-11-18

    Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.

  8. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications

    International Nuclear Information System (INIS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; Van der Zanden, Koen; Napier, Bruce

    2015-01-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described. (paper)

  9. Raman imaging using fixed bandpass filter

    Science.gov (United States)

    Landström, L.; Kullander, F.; Lundén, H.; Wästerby, P.

    2017-05-01

    By using fixed narrow band pass optical filtering and scanning the laser excitation wavelength, hyperspectral Raman imaging could be achieved. Experimental, proof-of-principle results from the Chemical Warfare Agent (CWA) tabun (GA) as well as the common CWA simulant tributyl phosphate (TBP) on different surfaces/substrates are presented and discussed.

  10. Development of Fluorescence Spectral Imaging for Location of Uranium Deposited on Surfaces

    International Nuclear Information System (INIS)

    Monts, D.L.; Wang, G.; Su, Y.; Jang, P.R.; Waggoner, Ch.A.

    2009-01-01

    Since the 1980's, depleted uranium (DU) has been the primary material used by the US military in armor-piercing rounds. Domestic firing ranges that have been used for DU munitions training purposes are located around the country and have varying extents of contamination by other types of projectiles. A project is underway to develop a set of sensors to locate expended DU rounds and to process soil and debris to recover the material. In the environment, metallic DU readily oxidizes to form uranium compounds that contain the uranyl (UO 2 +2 ) moiety. For more than a hundred and fifty years, it has been known that when illuminated with ultraviolet (UV) light, uranyl compounds exhibit characteristic fluorescence in the visible region (450 - 650 nm). We report our efforts to develop a transportable, quantitative Fluorescence Spectral Imaging (FSI) system to locate and quantify uranyl compounds dispersed in soils and on other surfaces on domestic firing ranges; this system can also be utilized to monitor excavation of DU munitions and separation of uranyl compounds from soils. FSI images are acquired by illuminating a surface with a UV light and using a narrow band pass filter on a camera, recording an image of the resulting fluorescence. FSI images provide both spatial and spectral information. The FSI system is described and its performance characterized in the field and also by using field samples. The development and characterization of an improved transportable FSI system is presented. The applicability of this system for detection of uranium compounds deposited on surfaces for Decontaminating and Decommissioning (D and D) activities is discussed. We have successfully demonstrated in situ a first-generation, transportable Fluorescence Spectral Imaging (FSI) system for locating uranyl compounds dispersed in soils and on other surfaces of a domestic firing range. FSI images provide both spatial and spectral information. FSI images are acquired by illuminating a

  11. Probing Xylan-Specific Raman Bands for Label-Free Imaging Xylan in Plant Cell Wall

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh; Tucker, Melvin P.; Vinzant, Todd; Himmel, Michael E.

    2015-06-15

    Xylan constitutes a significant portion of biomass (e.g. 22% in corn stover used in this study). Xylan is also an important source of carbohydrates, besides cellulose, for renewable and sustainable energy applications. Currently used method for the localization of xylan in biomass is to use fluorescence confocal microscope to image the fluorescent dye labeled monoclonal antibody that specifically binds to xylan. With the rapid adoption of the Raman-based label-free chemical imaging techniques in biology, identifying Raman bands that are unique to xylan would be critical for the implementation of the above label-free techniques for in situ xylan imaging. Unlike lignin and cellulose that have long be assigned fingerprint Raman bands, specific Raman bands for xylan remain unclear. The major challenge is the cellulose in plant cell wall, which has chemical units highly similar to that of xylan. Here we report using xylanase to specifically remove xylan from feedstock. Under various degree of xylan removal, with minimum impact to other major cell wall components, i.e. lignin and cellulose, we have identified Raman bands that could be further tested for chemical imaging of xylan in biomass in situ.

  12. 1.7  μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission.

    Science.gov (United States)

    Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin

    2017-12-10

    A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.

  13. DEEP U BAND AND R IMAGING OF GOODS-SOUTH: OBSERVATIONS, DATA REDUCTION AND FIRST RESULTS ,

    International Nuclear Information System (INIS)

    Nonino, M.; Cristiani, S.; Vanzella, E.; Dickinson, M.; Reddy, N.; Rosati, P.; Grazian, A.; Giavalisco, M.; Kuntschner, H.; Fosbury, R. A. E.; Daddi, E.; Cesarsky, C.

    2009-01-01

    We present deep imaging in the U band covering an area of 630 arcmin 2 centered on the southern field of the Great Observatories Origins Deep Survey (GOODS). The data were obtained with the VIMOS instrument at the European Southern Observatory (ESO) Very Large Telescope. The final images reach a magnitude limit U lim ∼ 29.8 (AB, 1σ, in a 1'' radius aperture), and have good image quality, with full width at half-maximum ∼0.''8. They are significantly deeper than previous U-band images available for the GOODS fields, and better match the sensitivity of other multiwavelength GOODS photometry. The deeper U-band data yield significantly improved photometric redshifts, especially in key redshift ranges such as 2 lim ∼ 29 (AB, 1σ, 1'' radius aperture), and image quality ∼0.''75. We discuss the strategies for the observations and data reduction, and present the first results from the analysis of the co-added images.

  14. THz Imaging by a Wide-band Compact FEL

    CERN Document Server

    Uk Jeong Young; Cheol Lee Byung; Hee-Park, S

    2004-01-01

    We have developed a laboratory-scale users facility with a compact THz FEL. The FEL operates in the wide wavelength range of 100–1200 μm, which corresponds to 0.3-3 THz. THz radiation from the FEL shows well collimated Gaussian spatial distribution and narrow spectral width of 0.3 μm, which is Fourier transform limited by the estimated pulse duration of 20 ps. The main application of the FEL is THz imaging for bio-medical researches. We are developing THz imaging techniques by 2-D scanning, single pulse capturing with the electro-optic method, and 3-D holography. High power, coherent, and pulsed feature of the FEL radiation is expected to show much better performance in advanced THz imaging of 3-D tomography by comparing with incoherent and weak THz sources. By controlling the optical delay between reference beam and scattered light from an object, we can get its 3-D tomography by the holograms. The coherent and pulse length of the FEL beam is measured to be 3-6 mm. In this paper we will show a...

  15. Highly Protable Airborne Multispectral Imaging System

    Science.gov (United States)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  16. Experimental performance assessment of the sub-band minimum variance beamformer for ultrasound imaging

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Greenaway, Alan H.; Anderson, Tom

    2017-01-01

    Recent progress in adaptive beamforming techniques for medical ultrasound has shown that current resolution limits can be surpassed. One method of obtaining improved lateral resolution is the Minimum Variance (MV) beamformer. The frequency domain implementation of this method effectively divides...... the broadband ultrasound signals into sub-bands (MVS) to conform with the narrow-band assumption of the original MV theory. This approach is investigated here using experimental Synthetic Aperture (SA) data from wire and cyst phantoms. A 7 MHz linear array transducer is used with the SARUS experimental...... ultrasound scanner for the data acquisition. The lateral resolution and the contrast obtained, are evaluated and compared with those from the conventional Delay-and-Sum (DAS) beamformer and the MV temporal implementation (MVT). From the wire phantom the Full-Width-at-Half-Maximum (FWHM) measured at a depth...

  17. Modification of grey scale in computer tomographic images

    International Nuclear Information System (INIS)

    Hemmingsson, A.; Jung, B.

    1980-01-01

    Optimum perception of minute but relevant attenuation differences in CT images often requires display window settings so narrow that a considerable fraction of the image appears completely black or white and consequently without structure. In order to improve the display characteristics two principles of grey scale modification are presented. In one method the pixel contents are displayed unchanged within a selectable attenuation band but moved towards the limits of the band for pixels that are outside it. In the other the grey scale is arranged to a constant number of pixels per grey scale interval. (Auth.)

  18. Advances in X-Band and S-Band Linear Accelerators for Security, NDT, and Other Applications

    CERN Document Server

    Mishin, Andrey V

    2005-01-01

    At AS&E High Energy Systems Division, we designed several new advanced high energy electron beam and X-ray sources. Our primary focus has always been in building the world's most portable commercial X-band accelerators. Today, our X-band systems frequently exceed performance of the similar S-band machines, while they are more portable compared to the latter. The new designs of the X-band accelerators in the most practical energy range from 1 MeV to 6 MeV have been tested delivering outstanding results. Seventy 6 MeV X-band linacs systems have been produced. The most compact linac for security is used by AS&E in a self-shielded, Shaped Energy™ cargo screening system. We pioneered using the X-band linear accelerators for CT, producing high quality images of oil pipes and wood logs. An X-band linear accelerator head on a robotic arm has been used for electron beam radiation curing of an odd-shaped graphite composite part. We developed the broad-range 4 MeV to over 10 MeV energy-regulated X-band ...

  19. Intercomparison of Unmanned Aerial Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop Trait Monitoring in Organic Potato Production

    Directory of Open Access Journals (Sweden)

    Marston Héracles Domingues Franceschini

    2017-06-01

    Full Text Available Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions fitted to vegetation indices, can relate spectra with crop traits. Although monitoring frameworks using multiple sensors can be more flexible, they may result in higher inaccuracy due to differences related to the sensors characteristics, which can affect information sampling. Also organic production systems can benefit from continuous monitoring focusing on crop management and stress detection, but few studies have evaluated applications with this objective. In this study, ground-based and UAV spectrometers were compared in the context of organic potato cultivation. Relatively accurate estimates were obtained for leaf chlorophyll (RMSE = 6.07 µg·cm−2, leaf area index (RMSE = 0.67 m2·m−2, canopy chlorophyll (RMSE = 0.24 g·m−2 and ground cover (RMSE = 5.5% using five UAV-based data acquisitions, from 43 to 99 days after planting. These retrievals are slightly better than those derived from ground-based measurements (RMSE = 7.25 µg·cm−2, 0.85 m2·m−2, 0.28 g·m−2 and 6.8%, respectively, for the same period. Excluding observations corresponding to the first acquisition increased retrieval accuracy and made outputs more comparable between sensors, due to relatively low vegetation cover on this date. Intercomparison of vegetation indices indicated that indices based on the contrast between spectral bands in the visible and near-infrared, like OSAVI, MCARI2 and CIg provided, at certain extent, robust outputs that could be transferred between sensors. Information sampling at plot level by both sensing solutions resulted in comparable discriminative potential concerning advanced stages of late blight incidence. These results indicate that optical

  20. Microscopic Fermi liquid approach to disordered narrow band systems

    International Nuclear Information System (INIS)

    Kolley, E.; Kolley, W.

    1977-01-01

    A Fermi liquid approach to tightly bound electrons in disordered systems is proposed to evaluate two-particle correlation functions L at T=0 deg K. Starting with a random Hubbard model and using a local ladder approximation in the particle-particle channel the irreducible particle-hole vertex is derived, being the kernel of the Bethe-Salpeter equation for L. CPA vertex corrections to the electrical conductivity and, for the ordered case, the correlation-enhanced paramagnetic susceptibility are calculated

  1. Spectroscopic evidence for 5f bands at room temperature in uranium-based heavy fermions

    International Nuclear Information System (INIS)

    Arko, A.J.; Koelling, D.D.; Dunlap, B.D.; Capasso, C.; del Giudice, M.

    1988-01-01

    We present data on the alloy system UPd/sub 3-x/Pt/sub x/ and show that in the double hexagonal phase (x 2.4) as well, except that the low-binding energy feature is locked in at E/sub F/ and shows evidence of energy dispersion at room temperature/endash/consistent with well-defined bands. Conversely, we show that even in well-behaved narrow band systems (USn 3 there is evidence for satellite formation. 44 refs., 8 figs

  2. Multi-spectral band selection for satellite-based systems

    International Nuclear Information System (INIS)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-01-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed

  3. Suppressing band gap of MoS{sub 2} by the incorporation of four- and eight-membered rings

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liyan; Zhang, Tingting, E-mail: ttzhang@hytc.edu.cn [Huaiyin Normal University, School of Physics and Electronic & Electrical Engineering, and Jiangsu Key Laboratory of Modern Measurement Technology and Intelligent Systems (China)

    2015-05-15

    A stable planar allotrope of MoS{sub 2}, formed by introducing four- and eight-membered rings into its hexagonal network (H468), is identified to be a narrow direct-band-gap semiconductor by first principle calculations, which is remarkably different from the large band gap semiconductor of conventional MoS{sub 2} and also the zero band gap allotrope consisting of four- and eight-membered rings (H48) only. The medium-sized direct band gap indicates that H468 would find applications in nanoelectronics and near-infrared optoelectronic devices. Furthermore, the distinctive simulated scanning tunneling microscope images under positive and negative biases might be a unique characteristic for the experimental identification of such an allotrope of MoS{sub 2}.

  4. Active multispectral imaging system for photodiagnosis and personalized phototherapies

    Energy Technology Data Exchange (ETDEWEB)

    Ugarte, M. F., E-mail: marta.ugarte@uem.es, E-mail: sbriz@fis.uc3m.es; Chávarri, L.; Padrón, V. M. [Industrial Engineering Department, Universidad Europea de Madrid, C/ Tajo, s/n 28670 Villaviciosa de Odón, Madrid (Spain); Briz, S., E-mail: marta.ugarte@uem.es, E-mail: sbriz@fis.uc3m.es [Physics Department, Universidad Carlos III de Madrid, Avda. de la Universidad, 30,28911 Leganés, Madrid (Spain); García-Cuesta, E. [Computer Science and Telecommunications Department, Universidad Europea de Madrid, C/ Tajo, s/n 28670 Villaviciosa de Odón, Madrid (Spain)

    2014-10-15

    The proposed system has been designed to identify dermatopathologies or to apply personalized phototherapy treatments. The system emits electromagnetic waves in different spectral bands in the range of visible and near infrared to irradiate the target (skin or any other object) to be spectrally characterized. Then, an imaging sensor measures the target response to the stimulus at each spectral band and, after processing, the system displays in real time two images. In one of them the value of each pixel corresponds to the more reflected wavenumber whereas in the other image the pixel value represents the energy absorbed at each band. The diagnosis capability of this system lies in its multispectral design, and the phototherapy treatments are adapted to the patient and his lesion by measuring his absorption capability. This “in situ” absorption measurement allows us to determine the more appropriate duration of the treatment according to the wavelength and recommended dose. The main advantages of this system are its low cost, it does not have moving parts or complex mechanisms, it works in real time, and it is easy to handle. For these reasons its widespread use in dermatologist consultation would facilitate the work of the dermatologist and would improve the efficiency of diagnosis and treatment. In fact the prototype has already been successfully applied to pathologies such as carcinomas, melanomas, keratosis, and nevi.

  5. Active multispectral imaging system for photodiagnosis and personalized phototherapies

    International Nuclear Information System (INIS)

    Ugarte, M. F.; Chávarri, L.; Padrón, V. M.; Briz, S.; García-Cuesta, E.

    2014-01-01

    The proposed system has been designed to identify dermatopathologies or to apply personalized phototherapy treatments. The system emits electromagnetic waves in different spectral bands in the range of visible and near infrared to irradiate the target (skin or any other object) to be spectrally characterized. Then, an imaging sensor measures the target response to the stimulus at each spectral band and, after processing, the system displays in real time two images. In one of them the value of each pixel corresponds to the more reflected wavenumber whereas in the other image the pixel value represents the energy absorbed at each band. The diagnosis capability of this system lies in its multispectral design, and the phototherapy treatments are adapted to the patient and his lesion by measuring his absorption capability. This “in situ” absorption measurement allows us to determine the more appropriate duration of the treatment according to the wavelength and recommended dose. The main advantages of this system are its low cost, it does not have moving parts or complex mechanisms, it works in real time, and it is easy to handle. For these reasons its widespread use in dermatologist consultation would facilitate the work of the dermatologist and would improve the efficiency of diagnosis and treatment. In fact the prototype has already been successfully applied to pathologies such as carcinomas, melanomas, keratosis, and nevi

  6. Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies

    Science.gov (United States)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-10-01

    We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  7. Mass measurements on neutron-deficient nuclides at SHIPTRAP and commissioning of a cryogenic narrow-band FT-ICR mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer Garcia, R.

    2007-07-01

    The dissertation presented here deals with high-precision Penning trap mass spectrometry on short-lived radionuclides. Owed to the ability of revealing all nucleonic interactions, mass measurements far off the line of {beta}-stability are expected to bring new insight to the current knowledge of nuclear properties and serve to test the predictive power of mass models and formulas. In nuclear astrophysics, atomic masses are fundamental parameters for the understanding of the synthesis of nuclei in the stellar environments. This thesis presents ten mass values of radionuclides around A=90 interspersed in the predicted rp-process pathway. Six of them have been experimentally determined for the first time. The measurements have been carried out at the Penning-trap mass spectrometer SHIPTRAP using the destructive time-of-flight ion-cyclotron-resonance (TOF-ICR) detection technique. Given the limited performance of the TOF-ICR detection when trying to investigate heavy/superheavy species with small production cross sections ({sigma} <1 {mu}b), a new detection system is found to be necessary. Thus, the second part of this thesis deals with the commissioning of a cryogenic double-Penning trap system for the application of a highly-sensitive, narrow-band Fourier-transform ion-cyclotron-resonance (FT-ICR) detection technique. With the non-destructive FT-ICR detection method a single singly-charged trapped ion will provide the required information to determine its mass. First off-line tests of a new detector system based on a channeltron with an attached conversion dynode, of a cryogenic pumping barrier, to guarantee ultra-high vacuum conditions during mass determination, and of the detection electronics for the required single-ion sensitivity are reported. (orig.)

  8. Hydrographic surveys of four narrows within the Namakan reservoir system, Voyageurs National Park, Minnesota, 2011

    Science.gov (United States)

    Densmore, Brenda K.; Strauch, Kellan R.; Ziegeweid, Jeffrey R.

    2013-01-01

    The U.S. Geological Survey performed multibeam echosounder hydrographic surveys of four narrows in the Namakan reservoir system in August 2011, in cooperation with the International Joint Commission and Environment Canada. The data-collection effort was completed to provide updated and detailed hydrographic data to Environment Canada for inclusion in a Hydrologic Engineering Centers River Analysis System hydraulic model. The Namakan reservoir system is composed of Namakan, Kabetogama, Sand Point, Crane, and Little Vermilion Lakes. Water elevations in the Namakan reservoir system are regulated according to rule curves, or guidelines for water-level management based on the time of year, established by the International Joint Commission. Water levels are monitored by established gages on Crane Lake and the outlet of Namakan Lake at Kettle Falls, but water elevations throughout the system may deviate from these measured values by as much as 0.3 meters, according to lake managers and residents. Deviations from expected water elevations may be caused by between-lake constrictions (narrows). According to the 2000 Rule Curve Assessment Workgroup, hydrologic models of the reservoir system are needed to better understand the system and to evaluate the recent changes made to rule curves in 2000. Hydrographic surveys were performed using a RESON SeaBat™7125 multibeam echosounder system. Surveys were completed at Namakan Narrows, Harrison Narrows, King Williams Narrows, and Little Vermilion Narrows. Hydrographic survey data were processed using Caris HIPSTM and SIPSTM software that interpolated a combined uncertainty and bathymetric estimator (CUBE) surface. Quality of the survey results was evaluated in relation to standards set by the International Hydrographic Organization (IHO) for describing the uncertainty of hydrographic surveys. More than 90 percent of the surveyed areas at the four narrows have resulting bed elevations that meet the IHO “Special Order” quality

  9. Note: Folded optical system for narrow forward looking probe

    International Nuclear Information System (INIS)

    Hou, Hsuan-Chao; Hah, Dooyoung; Kim, Jeonghwan; Feldman, M.

    2014-01-01

    An optical system is described in which a laser beam makes three passes through a single graded index lens, forming a focus along the optic axis. It has important applications in endoscopic probes, where the forward looking characteristic permits the avoidance of obstacles and the narrow structure makes it minimally invasive

  10. Integrating two spectral imaging systems in an automated mineralogy application

    CSIR Research Space (South Africa)

    Harris, D

    2009-11-01

    Full Text Available is treated in batches, with trays of mono-layered material presented to various imaging systems. The identification of target grains is achieved by means of spectral imaging in two wavelength bands (Visible, and Long Wave Infrared). Target grains...

  11. The Establishment of the SAR images database System Based on Oracle and ArcSDE

    International Nuclear Information System (INIS)

    Zhou, Jijin; Li, Zhen; Chen, Quan; Tian, Bangsen

    2014-01-01

    Synthetic aperture radar is a kind of microwave imaging system, and has the advantages of multi-band, multi-polarization and multi-angle. At present, there is no SAR images database system based on typical features. For solving problems in interpretation and identification, a new SAR images database system of the typical features is urgent in the current development need. In this article, a SAR images database system based on Oracle and ArcSDE was constructed. The main works involving are as follows: (1) SAR image data was calibrated and corrected geometrically and geometrically. Besides, the fully polarimetric image was processed as the coherency matrix[T] to preserve the polarimetric information. (2) After analyzing multiple space borne SAR images, the metadata table was defined as: IMAGEID; Name of features; Latitude and Longitude; Sensor name; Range and Azimuth resolution etc. (3) Through the comparison between GeoRaster and ArcSDE, result showed ArcSDE is a more appropriate technology to store images in a central database. The System stores and manages multisource SAR image data well, reflects scattering, geometry, polarization, band and angle characteristics, and combines with analysis of the managed objects and service objects of the database as well as focuses on constructing SAR image system in the aspects of data browse and data retrieval. According the analysis of characteristics of SAR images such as scattering, polarization, incident angle and wave band information, different weights can be given to these characteristics. Then an interpreted tool is formed to provide an efficient platform for interpretation

  12. Design of visible and IR infrared dual-band common-path telescope system

    Science.gov (United States)

    Guo, YuLin; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    The use of visible and IR infrared dual-band combination can effectively improve the performance of photoelectric detection system,TV and IR system were designed with the common path by the common reflection optical system.A TV/IR infrared common-caliber and common-path system is designed,which can realize the Remote and all-day information.For the 640×512 cooled focal plane array,an infrared middle wave system was presented with a focal length of 600mm F number of 4 field of view(FOV) of 0.38°×0.43°, the system uses optical passive thermal design, has o compact structure and can meet 100% cold shield efficiency,meanwhile it meets the design requirements of lightweight and athermalization. For the 1920×1080 pixels CCD,a visible (TV) system ,which had 500mm focal length, 4F number,was completed.The final optical design along with their modulation transfer function is presented,showing excellent imaging performance in dual-band at the temperature range between -40° and 60°.

  13. DEEP KECK u-BAND IMAGING OF THE HUBBLE ULTRA DEEP FIELD: A CATALOG OF z ∼ 3 LYMAN BREAK GALAXIES

    International Nuclear Information System (INIS)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, H.-W.; Armandroff, Taft E.; Wirth, Gregory D.

    2009-01-01

    We present a sample of 407 z ∼ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec -2 , making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ∼50% of the z ∼ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ∼ 3 and z ∼ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ∼ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  14. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    Science.gov (United States)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  15. Lyman Break Galaxies in the Hubble Ultra Deep Field through Deep U-Band Imaging

    Science.gov (United States)

    Rafelski, Marc; Wolfe, A. M.; Cooke, J.; Chen, H. W.; Armandroff, T. E.; Wirth, G. D.

    2009-12-01

    We introduce an extremely deep U-band image taken of the Hubble Ultra Deep Field (HUDF), with a one sigma depth of 30.7 mag arcsec-2 and a detection limiting magnitude of 28 mag arcsec-2. The observations were carried out on the Keck I telescope using the LRIS-B detector. The U-band image substantially improves the accuracy of photometric redshift measurements of faint galaxies in the HUDF at z=[2.5,3.5]. The U-band for these galaxies is attenuated by lyman limit absorption, allowing for more reliable selections of candidate Lyman Break Galaxies (LBGs) than from photometric redshifts without U-band. We present a reliable sample of 300 LBGs at z=[2.5,3.5] in the HUDF. Accurate redshifts of faint galaxies at z=[2.5,3.5] are needed to obtain empirical constraints on the star formation efficiency of neutral gas at high redshift. Wolfe & Chen (2006) showed that the star formation rate (SFR) density in damped Ly-alpha absorption systems (DLAs) at z=[2.5,3.5] is significantly lower than predicted by the Kennicutt-Schmidt law for nearby galaxies. One caveat to this result that we wish to test is whether LBGs are embedded in DLAs. If in-situ star formation is occurring in DLAs, we would see it as extended low surface brightness emission around LBGs. We shall use the more accurate photometric redshifts to create a sample of LBGs around which we will look for extended emission in the more sensitive and higher resolution HUDF images. The absence of extended emission would put limits on the SFR density of DLAs associated with LBGs at high redshift. On the other hand, detection of faint emission on scales large compared to the bright LBG cores would indicate the presence of in situ star formation in those DLAs. Such gas would presumably fuel the higher star formation rates present in the LBG cores.

  16. Remote defect imaging for plate-like structures based on the scanning laser source technique

    Science.gov (United States)

    Hayashi, Takahiro; Maeda, Atsuya; Nakao, Shogo

    2018-04-01

    In defect imaging with a scanning laser source technique, the use of a fixed receiver realizes stable measurements of flexural waves generated by laser at multiple rastering points. This study discussed the defect imaging by remote measurements using a laser Doppler vibrometer as a receiver. Narrow-band burst waves were generated by modulating laser pulse trains of a fiber laser to enhance signal to noise ratio in frequency domain. Averaging three images obtained at three different frequencies suppressed spurious distributions due to resonance. The experimental system equipped with these newly-devised means enabled us to visualize defects and adhesive objects in plate-like structures such as a plate with complex geometries and a branch pipe.

  17. Spatio-temporal encoding using narrow-band linear frequency modulated signals in synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2005-01-01

    In this paper a method for spatio-temporal encoding is presented for synthetic transmit aperture ultrasound imaging (STA). The purpose is to excite several transmitters at the same time in order to transmit more acoustic energy in every single transmission. When increasing the transmitted acousti...

  18. Fast isotropic banding-free bSSFP imaging using 3D dynamically phase-cycled radial bSSFP (3D DYPR-SSFP)

    Energy Technology Data Exchange (ETDEWEB)

    Benkert, Thomas; Blaimer, Martin; Breuer, Felix A. [Research Center Magnetic Resonance Bavaria (MRB), Wuerzburg (Germany); Ehses, Philipp [Tuebingen Univ. (Germany). Dept. of Neuroimaging; Max Planck Institute for Biological Cybernetics, Tuebingen (Germany). High-Field MR Center; Jakob, Peter M. [Research Center Magnetic Resonance Bavaria (MRB), Wuerzburg (Germany); Wuerzburg Univ. (Germany). Dept. of Experimental Physics 5

    2016-05-01

    Aims: Dynamically phase-cycled radial balanced steady-state free precession (DYPR-SSFP) is a method for efficient banding artifact removal in bSSFP imaging. Based on a varying radiofrequency (RF) phase-increment in combination with a radial trajectory, DYPR-SSFP allows obtaining a banding-free image out of a single acquired k-space. The purpose of this work is to present an extension of this technique, enabling fast three-dimensional isotropic banding-free bSSFP imaging. Methods: While banding artifact removal with DYPR-SSFP relies on the applied dynamic phase-cycle, this aspect can lead to artifacts, at least when the number of acquired projections lies below a certain limit. However, by using a 3D radial trajectory with quasi-random view ordering for image acquisition, this problem is intrinsically solved, enabling 3D DYPR-SSFP imaging at or even below the Nyquist criterion. The approach is validated for brain and knee imaging at 3 Tesla. Results: Volumetric, banding-free images were obtained in clinically acceptable scan times with an isotropic resolution up to 0.56 mm. Conclusion: The combination of DYPR-SSFP with a 3D radial trajectory allows banding-free isotropic volumetric bSSFP imaging with no expense of scan time. Therefore, this is a promising candidate for clinical applications such as imaging of cranial nerves or articular cartilage.

  19. Robust rooftop extraction from visible band images using higher order CRF

    KAUST Repository

    Li, Er; Femiani, John; Xu, Shibiao; Zhang, Xiaopeng; Wonka, Peter

    2015-01-01

    In this paper, we propose a robust framework for building extraction in visible band images. We first get an initial classification of the pixels based on an unsupervised presegmentation. Then, we develop a novel conditional random field (CRF

  20. Energy correlations for mixed rotational bands

    International Nuclear Information System (INIS)

    Doessing, T.

    1985-01-01

    A schematic model for the mixing of rotational bands above the yrast line in well deformed nuclei is considered. Many-particle configurations of a rotating mean field form basis bands, and these are subsequently mixed due to a two body residual interaction. The energy interval over which a basis band is spread out increases with increasing excitation energy above the yrast line. Conversely, the B(E2) matrix element for rotational decay out of one of the mixed band states is spread over an interval which is predicted to become more narrow with increasing excitation energy. Finally, the implication of band mixing for γ-ray energy correlations is briefly discussed. (orig.)

  1. Determination of Seed Soundness in Conifers Cryptomeria japonica and Chamaecyparis obtusa Using Narrow-Multiband Spectral Imaging in the Short-Wavelength Infrared Range

    Science.gov (United States)

    Matsuda, Osamu; Hara, Masashi; Tobita, Hiroyuki; Yazaki, Kenichi; Nakagawa, Toshinori; Shimizu, Kuniyoshi; Uemura, Akira; Utsugi, Hajime

    2015-01-01

    Regeneration of planted forests of Cryptomeria japonica (sugi) and Chamaecyparis obtuse (hinoki) is the pressing importance to the forest administration in Japan. Low seed germination rate of these species, however, has hampered low-cost production of their seedlings for reforestation. The primary cause of the low germinability has been attributed to highly frequent formation of anatomically unsound seeds, which are indistinguishable from sound germinable seeds by visible observation and other common criteria such as size and weight. To establish a method for sound seed selection in these species, hyperspectral imaging technique was used to identify a wavelength range where reflectance spectra differ clearly between sound and unsound seeds. In sound seeds of both species, reflectance in a narrow waveband centered at 1,730 nm, corresponding to a lipid absorption band in the short-wavelength infrared (SWIR) range, was greatly depressed relative to that in adjacent wavebands on either side. Such depression was absent or less prominent in unsound seeds. Based on these observations, a reflectance index SQI, abbreviated for seed quality index, was formulated using reflectance at three narrow SWIR wavebands so that it represents the extent of the depression. SQI calculated from seed area-averaged reflectance spectra and spatial distribution patterns of pixelwise SQI within each seed area were both proven as reliable criteria for sound seed selection. Enrichment of sound seeds was accompanied by an increase in germination rate of the seed lot. Thus, the methods described are readily applicable toward low-cost seedling production in combination with single seed sowing technology. PMID:26083366

  2. Nonlinear ultrasonic imaging with X wave

    Science.gov (United States)

    Du, Hongwei; Lu, Wei; Feng, Huanqing

    2009-10-01

    X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.

  3. Narrowband imaging of the Herbig-Haro object HH 46/47

    International Nuclear Information System (INIS)

    Raga, A.C.; Mateo, M.

    1987-01-01

    Narrow-band CCD images of the HH 46/47 system were obtained in the light of the H-alpha, forbidden N II 6583-A forbidden S II 6717-A and forbidden S II 6731-A emission lines. The images include HH 46, HH 47B, and HH 47A. A calibration for these images was carried out that makes it possible to calculate line ratios, and then use these line ratios as diagnostics of the physical conditions in the radiating gas. The study shows that the bright condensation HH 47A has a higher electron density and a lower excitation spectrum than the jet that joins this condensation to the central source. This result does not agree with the observations of other morphologically similar Herbig-Haro objects. 36 references

  4. Ground-based multi-station spectroscopic imaging with ALIS. - Scientific highlights, project status and future prospects

    Science.gov (United States)

    Brändström; Gustavsson, Björn; Pellinen-Wannberg, Asta; Sandahl, Ingrid; Sergienko, Tima; Steen, Ake

    2005-08-01

    The Auroral Large Imaging System (ALIS) was first proposed at the ESA-PAC meeting in Lahnstein 1989. The first spectroscopic imaging station was operational in 1994, and since then up to six stations have been in simultaneous operation. Each station has a scientific-grade CCD-detector and a filter-wheel for narrow-band interference-filters with six positions. The field-of-view is around 70°. Each imager is mounted in a positioning system, enabling imaging of a common volume from several sites. This enables triangulation and tomography. Raw data from ALIS is freely available at ("http://alis.irf.se") and ALIS is open for scientific colaboration. ALIS made the first unambiguous observations of Radio-induced optical emissions at high latitudes, and the detection of water in a Leonid meteor-trail. Both rockets and satellite coordination are considered for future observations with ALIS.

  5. Narrow in-gap states in doped Al2O3

    KAUST Repository

    Casas-Cabanas, Montse; Fré sard, Marion; Lü ders, Ulrike; Fré sard, Raymond; Schuster, Cosima B.; Schwingenschlö gl, Udo

    2011-01-01

    Based on XRD data testifying that the M ions occupy substitutional sites, transmittance measurement are discussed in comparison to electronic structure calculations for M-doped Al2O3 with M = V, Mn, and Cr. The M 3d states are found approximatively 2 eV above the top of the host valence band. The fundamental band gap of Al2O3 is further reduced in the V and Mn cases due to a splitting of the narrow band at the Fermi energy. Nevertheless the measured transmittance in the visible range remains high in all three cases. © 2011 Elsevier B.V. All rights reserved.

  6. Narrow in-gap states in doped Al2O3

    KAUST Repository

    Casas-Cabanas, Montse

    2011-10-01

    Based on XRD data testifying that the M ions occupy substitutional sites, transmittance measurement are discussed in comparison to electronic structure calculations for M-doped Al2O3 with M = V, Mn, and Cr. The M 3d states are found approximatively 2 eV above the top of the host valence band. The fundamental band gap of Al2O3 is further reduced in the V and Mn cases due to a splitting of the narrow band at the Fermi energy. Nevertheless the measured transmittance in the visible range remains high in all three cases. © 2011 Elsevier B.V. All rights reserved.

  7. Calculation of electrostatic multipoles of electron localized in narrow-band InSb spherical nanolayer

    International Nuclear Information System (INIS)

    Amirkhanyan, S.M.; Kazaryan, E.M.; Sarkisyan, H.A.

    2015-01-01

    Behavior of electron in narrow-gap spherical nanolayer of InSb is considered. Dispersion law of electron is described within the double-gap Kane model, when arises a necessity for considering of Klein-Gordon equation for description of behavior of electrons and light holes. Dipole and quadrupole momentums of electron in specified systems are defined on the base of the obtained expressions. It is shown, that average value of dipole momentum equals to zero and that for definition of average value of tensor of quadrupole momentum it is enough to calculate the average value of diagonal z-component of this tensor. Electrostatic potentials and tensions of fields created by electron located in different quantum states are defined

  8. Hyperspectral image compressing using wavelet-based method

    Science.gov (United States)

    Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng

    2017-10-01

    Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.

  9. Experimental single-chip color HDTV image acquisition system with 8M-pixel CMOS image sensor

    Science.gov (United States)

    Shimamoto, Hiroshi; Yamashita, Takayuki; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji

    2006-02-01

    We have developed an experimental single-chip color HDTV image acquisition system using 8M-pixel CMOS image sensor. The sensor has 3840 × 2160 effective pixels and is progressively scanned at 60 frames per second. We describe the color filter array and interpolation method to improve image quality with a high-pixel-count single-chip sensor. We also describe an experimental image acquisition system we used to measured spatial frequency characteristics in the horizontal direction. The results indicate good prospects for achieving a high quality single chip HDTV camera that reduces pseudo signals and maintains high spatial frequency characteristics within the frequency band for HDTV.

  10. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  11. Dual-band infrared capabilities for imaging buried object sites

    Energy Technology Data Exchange (ETDEWEB)

    Del Grande, N.K.; Durbin, P.F.; Gorvad, M.R.; Perkins, D.E.; Clark, G.A.; Hernandez, J.E.; Sherwood, R.J.

    1993-04-02

    We discuss dual-band infrared (DBIR) capabilities for imaging buried object sizes. We identify physical features affecting thermal contrast needed to distinguish buried object sites from undisturbed sites or surface clutter. Apart from atmospheric transmission and system performance, these features include: object size, shape, and burial depth; ambient soil, disturbed soil and object site thermal diffusivity differences; surface temperature, emissivity, plant-cover, slope, albedo and roughness variations; weather conditions and measurement times. We use good instrumentation to measure the time-varying temperature differences between buried object sites and undisturbed soil sites. We compare near surface soil temperature differences with radiometric infrared (IR) surface temperature differences recorded at 4.7 {plus_minus} 0.4 {mu}m and at 10.6 {plus_minus} 1.0 {mu}m. By producing selective DBIR image ratio maps, we distinguish temperature-difference patterns from surface emissivity effects. We discuss temperature differences between buried object sites, filled hole site (without buried objects), cleared (undisturbed) soil sites, and grass-covered sites (with and without different types of surface clutter). We compare temperature, emissivity-ratio, visible and near-IR reflectance signatures of surface objects, leafy plants and sod. We discuss the physical aspects of environmental, surface and buried target features affecting interpretation of buried targets, surface objects and natural backgrounds.

  12. Wide field-of-view dual-band multispectral muzzle flash detection

    Science.gov (United States)

    Montoya, J.; Melchor, J.; Spiliotis, P.; Taplin, L.

    2013-06-01

    Sensor technologies are undergoing revolutionary advances, as seen in the rapid growth of multispectral methodologies. Increases in spatial, spectral, and temporal resolution, and in breadth of spectral coverage, render feasible sensors that function with unprecedented performance. A system was developed that addresses many of the key hardware requirements for a practical dual-band multispectral acquisition system, including wide field of view and spectral/temporal shift between dual bands. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that creates two side-by-side images of a scene on a single sensor. A high-speed CMOS sensor was used to simultaneously capture data from the entire scene in both spectral bands using a short focal-length lens that provided a wide field-of-view. The beam-splitter components were arranged such that the two images were maintained in optical alignment and real-time intra-band processing could be carried out using only simple arithmetic on the image halves. An experiment related to limitations of the system to address multispectral detection requirements was performed. This characterized the system's low spectral variation across its wide field of view. This paper provides lessons learned on the general limitation of key hardware components required for multispectral muzzle flash detection, using the system as a hardware example combined with simulated multispectral muzzle flash and background signatures.

  13. Strong coupling between a permalloy ferromagnetic contact and helical edge channel in a narrow HgTe quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Kononov, A.; Egorov, S. V. [Russian Academy Sciences, Institute of Solid State Physics (Russian Federation); Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A. [Institute of Semiconductor Physics (Russian Federation); Deviatov, E. V., E-mail: dev@issp.ac.ru [Russian Academy Sciences, Institute of Solid State Physics (Russian Federation)

    2016-11-15

    We experimentally investigate spin-polarized electron transport between a permalloy ferromagnet and the edge of a two-dimensional electron system with band inversion, realized in a narrow, 8 nm wide, HgTe quantum well. In zero magnetic field, we observe strong asymmetry of the edge potential distribution with respect to the ferromagnetic ground lead. This result indicates that the helical edge channel, specific for the structures with band inversion even at the conductive bulk, is strongly coupled to the ferromagnetic side contact, possibly due to the effects of proximity magnetization. This allows selective and spin-sensitive contacting of helical edge states.

  14. Optimization of band-pass filtering parameters of a Raman lidar detecting atmospheric water vapor

    International Nuclear Information System (INIS)

    Cao, Kai-Fa; Hu, Shun-Xing; Wang, Ying-jian

    2012-01-01

    It is very important for daytime Raman lidar measurement of water vapor to determine the parameters of a band-pass filter, which are pertinent to the lidar signal to noise ratio (SNR). The simulated annealing (SA) algorithm method has an advantage in finding the extremum of a certain cost function. In this paper, the Raman spectrum of water vapor is simulated and then a first realization of a simulated annealing algorithm in the optimization of a band-pass filter of a Raman lidar system designed to detect daytime water vapor is presented. The simulated results indicate that the narrow band-pass filter has higher SNR than the wide filter does but there would be an increase in the temperature sensitivity of a narrowband Raman water vapor lidar in the upper troposphere. The numerical simulation indicates that the magnitude of the temperature dependent effect can reach 3.5% or more for narrow band-pass Raman water vapor measurements so it is necessary to consider a new water vapor Raman lidar equation that permits the temperature sensitivity of these equations to be confined to a single term. (paper)

  15. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C. [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X. [University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  16. Power-scalable, polarization-stable, dual-colour DFB fibre laser system for CW terahertz imaging

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Pedersen, Jens Engholm; Jepsen, Peter Uhd

    Imaging with electromagnetic radiation in the terahertz (THz) range has received a large amount of attention during recent years. THz imaging systems have diverse potential application areas such as security screening, medical diagnostics and non-destructive testing. We will discuss a power......-scalable, dual-colour, polarization-maintaining distributed feedback (DFB) fibre laser system with an inherent narrow linewidth from the DFB fibre laser oscillators. The laser system can be used as source in CW THz systems employing photomixing (optical heterodyning) for generation and detection...

  17. Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range

    Science.gov (United States)

    Jiménez, A.; Milde, T.; Staacke, N.; Aßmann, C.; Carpintero, G.; Sacher, J.

    2017-07-01

    Narrow-linewidth tunable diode lasers are an important tool for spectroscopic instrumentation. Conventional external cavity diode lasers offer high output power and narrow linewidth. However, most external cavity diode lasers are designed as laboratory instrument and do not allow portability. In comparison, other commonly used lasers, like distributed feedback lasers (DFB) that are capable of driving a handheld device, are limited in power and show linewidths which are not sufficiently narrow for certain applications. We present new miniaturized types of tunable external cavity diode laser which overcome the drawbacks of conventional external cavity diode lasers and which preserve the advantages of this laser concept. Three different configurations are discussed in this article. The three types of miniaturized external cavity diode laser systems achieve power values of more than 50 mW within the 1.4 μm water vapor absorption band with excellent side-mode suppression and linewidth below 100 kHz. Typical features outstand with respect to other type of laser systems which are of extended use such as DFB laser diodes. The higher output power and the lower linewidth will enable a higher sensitivity and resolution for a wide range of applications.

  18. A comparison of L-band and C-band rf guns as sources for inline-injection systems

    International Nuclear Information System (INIS)

    Gallardo, J.C.; Kirk, H.G.; Meyerer, T.

    1994-12-01

    We consider the beam dynamics associated with installing a BNL type 1 1/2 cell L-band or C-band rf gun before two TESLA L-band cryomodules. This system will deliver a 25 MeV electron beam with peak currents on the order of 100 A suitable for further magnetic compression. evaluate the injection systems utilizing the electron beam dynamic code PARMELA from the point of view of minimizing the transverse invariant emittance

  19. Single Lens Dual-Aperture 3D Imaging System: Color Modeling

    Science.gov (United States)

    Bae, Sam Y.; Korniski, Ronald; Ream, Allen; Fritz, Eric; Shearn, Michael

    2012-01-01

    In an effort to miniaturize a 3D imaging system, we created two viewpoints in a single objective lens camera. This was accomplished by placing a pair of Complementary Multi-band Bandpass Filters (CMBFs) in the aperture area. Two key characteristics about the CMBFs are that the passbands are staggered so only one viewpoint is opened at a time when a light band matched to that passband is illuminated, and the passbands are positioned throughout the visible spectrum, so each viewpoint can render color by taking RGB spectral images. Each viewpoint takes a different spectral image from the other viewpoint hence yielding a different color image relative to the other. This color mismatch in the two viewpoints could lead to color rivalry, where the human vision system fails to resolve two different colors. The difference will be closer if the number of passbands in a CMBF increases. (However, the number of passbands is constrained by cost and fabrication technique.) In this paper, simulation predicting the color mismatch is reported.

  20. Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?

    Science.gov (United States)

    Draaijers, Lieneke J; Tempelman, Fenike R H; Botman, Yvonne A M; Kreis, Robert W; Middelkoop, Esther; van Zuijlen, Paul P M

    2004-03-01

    The evaluation of scar colour is, at present, usually limited to an assessment according to a scar assessment scale. Although useful, these assessment scales only evaluate subjectively the degree of scar colour. In this study, the reliability of the subjective assessment of scar colour by observers is compared to the reliability of the measurements of two objective colour measurement instruments. Four independent observers subjectively assessed the vascularisation and pigmentation of 49 scar areas in 20 patients. The degree of vascularisation and pigmentation was scored according to a scale ranging from '1', when it appeared to be like healthy skin, to '10', which corresponds to the worst imaginable outcome of vascularisation or pigmentation. The observers also scored the pigmentation categories of the scar (hypopigmention, hyperpigmention or mixed pigmentation). Finally, each observer measured the scar areas with a tristimulus colorimeter (Minolta Chromameter) and a narrow-band simple reflectance meter (DermaSpectrometer). A single observer could reliably carry out measurements of the DermaSpectrometer and the Minolta Chromameter for the evaluation of scar colour (r = 0.72). The vascularisation of scars could also be assessed reliably with a single observer (r = 0.76) whereas for a reliable assessment of pigmentation at least three observers were necessary (r > or = 0.77). The agreement between the observers for the pigmentation categories also turned out to be unacceptably low (k = 0.349). This study shows that an overall evaluation of scar colour with the DermaSpectrometer and the Minolta Chromameter is more reliable than the evaluation of scar colour with observers. Of both instruments for measuring scar colour, we prefer, because of its feasibility, the DermaSpectrometer.

  1. GTC/CanariCam Mid-IR Imaging of the Fullerene-rich Planetary Nebula IC 418: Searching for the Spatial Distribution of Fullerene-like Molecules

    Science.gov (United States)

    Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Villaver, E.; García-Segura, G.

    2018-03-01

    We present seeing-limited narrow-band mid-IR GTC/CanariCam images of the spatially extended fullerene-containing planetary nebula (PN) IC 418. The narrow-band images cover the C60 fullerene band at 17.4 μm, the polycyclic aromatic hydrocarbon like (PAH-like) feature at 11.3 μm, the broad 9–13 μm feature, and their adjacent continua at 9.8 and 20.5 μm. We study the relative spatial distribution of these complex species, all detected in the Spitzer and Infrared Space Observatory spectra of IC 418, with the aim of getting observational constraints to the formation process of fullerenes in H-rich circumstellar environments. A similar ring-like extended structure is seen in all narrow-band filters, except in the dust continuum emission at 9.8 μm, which peaks closer to the central star. The continuum-subtracted images display a clear ring-like extended structure for the carrier of the broad 9–13 μm emission, while the spatial distribution of the (PAH-like) 11.3 μm emission is not so well defined. Interestingly, a residual C60 17.4 μm emission (at about 4σ from the sky background) is seen when subtracting the dust continuum emission at 20.5 μm. This residual C60 emission, if real, might have several interpretations, the most exciting being perhaps that other fullerene-based species like hydrogenated fullerenes with very low H-content may contribute to the observed 17.4 μm emission. We conclude that higher sensitivity mid-IR images and spatially resolved spectroscopic observations (especially in the Q-band) are necessary to get some clues about fullerene formation in PNe.

  2. INVESTIGATION OF PARALLAX ISSUES FOR MULTI-LENS MULTISPECTRAL CAMERA BAND CO-REGISTRATION

    Directory of Open Access Journals (Sweden)

    J. P. Jhan

    2017-08-01

    Full Text Available The multi-lens multispectral cameras (MSCs, such as Micasense Rededge and Parrot Sequoia, can record multispectral information by each separated lenses. With their lightweight and small size, which making they are more suitable for mounting on an Unmanned Aerial System (UAS to collect high spatial images for vegetation investigation. However, due to the multi-sensor geometry of multi-lens structure induces significant band misregistration effects in original image, performing band co-registration is necessary in order to obtain accurate spectral information. A robust and adaptive band-to-band image transform (RABBIT is proposed to perform band co-registration of multi-lens MSCs. First is to obtain the camera rig information from camera system calibration, and utilizes the calibrated results for performing image transformation and lens distortion correction. Since the calibration uncertainty leads to different amount of systematic errors, the last step is to optimize the results in order to acquire a better co-registration accuracy. Due to the potential issues of parallax that will cause significant band misregistration effects when images are closer to the targets, four datasets thus acquired from Rededge and Sequoia were applied to evaluate the performance of RABBIT, including aerial and close-range imagery. From the results of aerial images, it shows that RABBIT can achieve sub-pixel accuracy level that is suitable for the band co-registration purpose of any multi-lens MSC. In addition, the results of close-range images also has same performance, if we focus on the band co-registration on specific target for 3D modelling, or when the target has equal distance to the camera.

  3. Present and future status of flexible spectral imaging color enhancement and blue laser imaging technology.

    Science.gov (United States)

    Osawa, Hiroyuki; Yamamoto, Hironori

    2014-01-01

    The usefulness of flexible spectral imaging color enhancement (FICE) has been reported for evaluating the esophagus, stomach, and small and large intestine. Higher contrast is shown between cancer and the surrounding mucosa in the esophagus and stomach and may facilitate the detection of gastric cancers missed by white light imaging alone. The surface patterns of gastric mucosa are clearly visualized in non-malignant areas but are irregular and blurred in malignant areas, leading to clear demarcation. Capsule endoscopy with FICE detects angiodysplasia and erosions of the small intestine. The surface and vascular pattern with FICE is useful for the differential diagnosis of colorectal polyps. However, FICE remains somewhat poor at visualizing mucosal microvasculature on a tumor surface. Narrow-band imaging (NBI) is dark in observing whole gastric mucosa and poor at visualizing mucosal microstructure. Blue laser imaging (BLI) has the potential to resolve these limitations. Narrow-band laser light combined with white light shows irregular microvessels on both differentiated and undifferentiated gastric cancer similar to those using NBI. In addition, irregular surface patterns including minute white zones are clearly seen on the uneven surface of differentiated lesions, resulting in exclusion of undifferentiated lesions. Using both distant and close-up views, a high contrast between green intestinal metaplasia and brown gastric cancer may lead to early detection of gastric cancers and determination of a demarcation line. BLI produces high-contrast images in esophageal cancer with clear vision of intrapapillary capillary loops and also predicts the histopathological diagnosis and depth of invasion in colorectal neoplasms. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.

  4. Using an Elastic Band Device After a Severe Obstetric Pubic Symphyseal Separation: Clinical and Imaging Evaluation.

    Science.gov (United States)

    Lasbleiz, Jeremy; Sevestre, François-Xavier; Moquet, Pierre-Yves

    2017-09-01

    Severe separation of the pubic symphysis is a rare delivery complication. Facing this pathology, we decided to study a new elastic band device. To evaluate the elastic band device, clinical (pain-rated) and imaging (magnetic resonance imaging and radiography) evaluations with and without the device were performed. The elastic band device is a European Conformity-certified medical device, which is made of neoprene straps, that reduces the mobility of the pelvis and the use of the internal rotator muscles. Once the elastic band device was in place, on postpartum day 1, radiography showed a decrease of the pubic width from 41 to 12 mm. Furthermore, pain decreased from 10 of 10 to 2 of 10 in 2 days, allowing the patient to ambulate and avoid surgery. After 1 month, the pubic width (6 mm) and anatomy were recovered but minor pain was still present with hip rotatory movements. The elastic band device was worn 24 hours a day from postpartum days 1-90 and 12 hours a day from postpartum days 90 to 150; afterward, the patient returned to normal life without the elastic band device. Use of an elastic band device was associated with a reduction of the pubic width and pain associated after obstetric pubic symphysis separation.

  5. Exposure measuring techniques for wide band mobile radio-communications

    International Nuclear Information System (INIS)

    Trinchero, S.; Benedetto, A.; Anglesio, L.; D'Amore, G.; Trinchero, D.

    2004-01-01

    The paper illustrates the limits and performances of different experimental monitoring techniques, which are applied to digitally modulated radiofrequency electromagnetic fields used for mobile telecommunications. Different experimental set-ups have been developed, verified and applied for the analysis and characterisation of wide band probes and narrow band measuring procedures. (authors)

  6. Magnetron based high energy S-band linac system

    International Nuclear Information System (INIS)

    Tiwari, T.; Krishnan, R.; Phatangare, Manoj

    2012-01-01

    This paper deals with the study of magnetron based high energy S-band linear accelerator (linac) system operating at spot frequency 2.998 GHz. The energy and dose are two important parameters of linac system which depend on input power of microwave source and length of linac tube. Here the author has studied how these parameters can be improved for side coupled standing wave S-band linac system

  7. Panchromatic cooperative hyperspectral adaptive wide band deletion repair method

    Science.gov (United States)

    Jiang, Bitao; Shi, Chunyu

    2018-02-01

    In the hyperspectral data, the phenomenon of stripe deletion often occurs, which seriously affects the efficiency and accuracy of data analysis and application. Narrow band deletion can be directly repaired by interpolation, and this method is not ideal for wide band deletion repair. In this paper, an adaptive spectral wide band missing restoration method based on panchromatic information is proposed, and the effectiveness of the algorithm is verified by experiments.

  8. Multi-Frequency Encoding for Rapid Color Flow and Quadroplex Imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels; Gran, Fredrik; Jensen, Jørgen Arendt

    2007-01-01

    Ultrasonic color flow maps are made by estimating the velocities line by line over the region of interest. For each velocity estimate, multiple repetitions are needed. This sets a limit on the frame rate, which becomes increasingly severe when imaging deeper lying structures or when simultaneously...... acquiring spectrogram data for triplex imaging. This paper proposes a method for decreasing the data acquisition time by simultaneously sampling multiple lines at different spatial positions for the color flow map using narrow band signals with disjoint spectral support. The signals are separated...... in the receiver by filters matched to the emitted waveforms and the autocorrelation estimator is applied. Alternatively, one spectral band can be used for creating a color flow map, while data for a number of spectrograms are acquired simultaneously. Using three disjoint spectral bands, this will result...

  9. The split symbol moments SNR estimator in narrow-band channels

    Science.gov (United States)

    Shah, Biren; Hinedi, Sami

    1990-01-01

    The split symbol moments estimator is an algorithm that is designed to estimate symbol SNR in the presence of additive white Gaussian noise. The performance of the algorithm in band-limited channels is examined, and the effects of the resulting intersymbol interference are quantified. All results obtained are in closed form and can be easily evaluated numerically for performance-prediction purposes. The results are also validated through digital simulations.

  10. Fluorescence spectral imaging as a tool for locating uranium deposited on surfaces - 16089

    International Nuclear Information System (INIS)

    Monts, David L.; Wang, Guangjun; Su, Yi; Jang, Ping-Rey; Waggoner, Charles A.

    2009-01-01

    In the environment, metallic uranium readily oxidizes to form uranium compounds that contain the uranyl (UO 2 +2 ) moiety. For more than a hundred and fifty years, it has been known that when illuminated with ultraviolet (UV) light, uranyl compounds exhibit characteristic fluorescence in the visible region (450-650 nm). We report our efforts to develop a transportable, quantitative Fluorescence Spectral Imaging (FSI) system as a tool for locating and quantifying uranyl compounds dispersed in soils and on other surfaces. A project is underway to develop a set of sensors to locate expended depleted uranium (DU) rounds and to process soil and debris to recover the material from domestic firing ranges. The FSI system can also be utilized to monitor excavation of DU munitions and separation of uranyl compounds from soils. FSI images are acquired by illuminating a surface with a UV light and using a narrow band pass filter on a camera, recording an image of the resulting fluorescence. The FSI image provides both spatial and spectral information. The FSI system is described and its performance characterized using field samples. (authors)

  11. Design considerations for highly effective fluorescence excitation and detection optical systems for molecular diagnostics

    Science.gov (United States)

    Kasper, Axel; Van Hille, Herbert; Kuk, Sola

    2018-02-01

    Modern instruments for molecular diagnostics are continuously optimized for diagnostic accuracy, versatility and throughput. The latest progress in LED technology together with tailored optics solutions allows developing highly efficient photonics engines perfectly adapted to the sample under test. Super-bright chip-on-board LED light sources are a key component for such instruments providing maximum luminous intensities in a multitude of narrow spectral bands. In particular the combination of white LEDs with other narrow band LEDs allows achieving optimum efficiency outperforming traditional Xenon light sources in terms of energy consumption, heat dissipation in the system, and switching time between spectral channels. Maximum sensitivity of the diagnostic system can only be achieved with an optimized optics system for the illumination and imaging of the sample. The illumination beam path must be designed for optimum homogeneity across the field while precisely limiting the angular distribution of the excitation light. This is a necessity for avoiding spill-over to the detection beam path and guaranteeing the efficiency of the spectral filtering. The imaging optics must combine high spatial resolution, high light collection efficiency and optimized suppression of excitation light for good signal-to-noise ratio. In order to achieve minimum cross-talk between individual wells in the sample, the optics design must also consider the generation of stray light and the formation of ghost images. We discuss what parameters and limitations have to be considered in an integrated system design approach covering the full path from the light source to the detector.

  12. The role of rare earths in narrow energy gap semiconductors

    International Nuclear Information System (INIS)

    Partin, D.L.; Heremans, J.; Morelli, D.T.; Thrush, C.M.

    1991-01-01

    Narrow energy band gap semiconductors are potentially useful for various devices, including infrared detectors and diode lasers. Rare earth elements have been introduced into lead chalcogenide semiconductors using the molecular beam epitaxy growth process. Europium and ytterbium increase the energy band gap, and nearly lattice-matched heterojunctions have been grown. In some cases, valence changes in the rare earth element cause doping of the alloy. In this paper some initial investigations of the addition of europium to indium antimonide are reported, including the variation of lattice parameter and optical transmission with composition and a negative magnetoresistance effect

  13. [Comparation on Haversian system between human and animal bones by imaging analysis].

    Science.gov (United States)

    Lu, Hui-Ling; Zheng, Jing; Yao, Ya-Nan; Chen, Sen; Wang, Hui-Pin; Chen, Li-Xian; Guo, Jing-Yuan

    2006-04-01

    To explore the differences in Haversian system between human and animal bones through imaging analysis and morphology description. Thirty-five slices grinding from human being as well as dog, pig, cow and sheep bones were observed to compare their structure, then were analysed with the researchful microscope. Plexiform bone or oeston band was not found in human bones; There were significant differences in the shape, size, location, density of Haversian system, between human and animal bones. The amount of Haversian lamella and diameter of central canal in human were the biggest; Significant differences in the central canal diameter and total area percentage between human and animal bones were shown by imaging analysis. (1) Plexiform bone and osteon band could be the exclusive index in human bone; (2) There were significant differences in the structure of Haversian system between human and animal bones; (3) The percentage of central canals total area was valuable in species identification through imaging analysis.

  14. Demosaicking for full motion video 9-band SWIR sensor

    Science.gov (United States)

    Kanaev, Andrey V.; Rawhouser, Marjorie; Kutteruf, Mary R.; Yetzbacher, Michael K.; DePrenger, Michael J.; Novak, Kyle M.; Miller, Corey A.; Miller, Christopher W.

    2014-05-01

    Short wave infrared (SWIR) spectral imaging systems are vital for Intelligence, Surveillance, and Reconnaissance (ISR) applications because of their abilities to autonomously detect targets and classify materials. Typically the spectral imagers are incapable of providing Full Motion Video (FMV) because of their reliance on line scanning. We enable FMV capability for a SWIR multi-spectral camera by creating a repeating pattern of 3x3 spectral filters on a staring focal plane array (FPA). In this paper we present the imagery from an FMV SWIR camera with nine discrete bands and discuss image processing algorithms necessary for its operation. The main task of image processing in this case is demosaicking of the spectral bands i.e. reconstructing full spectral images with original FPA resolution from spatially subsampled and incomplete spectral data acquired with the choice of filter array pattern. To the best of author's knowledge, the demosaicking algorithms for nine or more equally sampled bands have not been reported before. Moreover all existing algorithms developed for demosaicking visible color filter arrays with less than nine colors assume either certain relationship between the visible colors, which are not valid for SWIR imaging, or presence of one color band with higher sampling rate compared to the rest of the bands, which does not conform to our spectral filter pattern. We will discuss and present results for two novel approaches to demosaicking: interpolation using multi-band edge information and application of multi-frame super-resolution to a single frame resolution enhancement of multi-spectral spatially multiplexed images.

  15. Clinical relevance of narrow-band imaging in flexible cystoscopy

    DEFF Research Database (Denmark)

    Drejer, Ditte; Béji, Sami; Munk Nielsen, Anna

    2017-01-01

    urological departments. Patients had either hematuria (n = 483) or known recurrent non-muscle-invasive bladder cancer (NMIBC) (n = 472). High-definition (HD) cystoscopy was performed in white light (WL) and a preliminary clinical decision was made. Then, a second cystoscopy was performed in NBI...... in NBI compared to WL (NBI: 100.0% vs WL: 83.2%, p decision making as a supplement to WL because it yields a significantly higher...... and a conclusive clinical decision was made. A difference between the two decisions that had a clinical impact on the patient was considered clinically relevant. RESULTS: Pathology was found in 216 WL cystoscopies, and additional pathology in 15 NBI cystoscopies (6.9%). Based on NBI, pathology was suspected in 23...

  16. Wide-band IR imaging in the NIR-MIR-FIR regions for in situ analysis of frescoes

    Science.gov (United States)

    Daffara, C.; Pezzati, L.; Ambrosini, D.; Paoletti, D.; Di Biase, R.; Mariotti, P. I.; Frosinini, C.

    2011-06-01

    Imaging methods offer several advantages in the field of conservation allowing to perform non-invasive inspection of works of art. In particular, non-invasive techniques based on imaging in different infrared (IR) regions are widely used for the investigation of paintings. Using radiation beyond the visible range, different characteristics of the inspected artwork may be revealed according to the bandwidth acquired. In this paper we present the recent results of a joint project among the two research institutes DIMEG and CNR-INO, and the restoration facility Opificio delle Pietre Dure, concerning the wide-band integration of IR imaging techniques, in the spectral ranges NIR 0.8-2.5 μm, MIR 3-5 μm, and FIR 8-12 μm, for in situ analysis of artworks. A joint, multi-mode use of reflection and thermal bands is proposed for the diagnostics of mural paintings, and it is demonstrated to be an effective tool in inspecting the layered structure. High resolution IR reflectography and, to a greater extent, IR imaging in the 3-5 μm band, are effectively used to characterize the superficial layer of the fresco and to analyze the stratigraphy of different pictorial layers. IR thermography in the 8-12 μm band is used to characterize the support deep structure. The integration of all the data provides a multi- layered and multi-spectral representation of the fresco that yields a comprehensive analysis.

  17. Theta band activity in response to emotional expressions and its relationship with gamma band activity as revealed by MEG and advanced beamformer source imaging

    Directory of Open Access Journals (Sweden)

    Qian eLuo

    2014-02-01

    Full Text Available Neuronal oscillations in the theta and gamma bands have been shown to be important for cognition. Here we examined the temporal and spatial relationship between the two frequency bands in emotional processing using Magnetoencephalography and an advanced dynamic beamformer source imaging method called Synthetic Aperture Magnetometry. We found that areas including the amygdala, visual and frontal cortex showed significant event-related synchronization (ERS in both bands, suggesting a functional association of neuronal oscillations in the same areas in the two bands. However, while the temporal profile in both bands was similar in the amygdala, the peak in gamma band power was much earlier within both visual and frontal areas. Our results do not support a traditional view that the localizations of lower and higher frequencies are spatially distinct. Instead, they suggest that in emotional processing, neuronal oscillations in the gamma and theta bands may reflect, at least in visual and frontal cortex either different but related functional processes or, perhaps more probably, different computational components of the same functional process.

  18. Device Physics of Narrow Gap Semiconductors

    CERN Document Server

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  19. The power of Kawaii: viewing cute images promotes a careful behavior and narrows attentional focus.

    Directory of Open Access Journals (Sweden)

    Hiroshi Nittono

    Full Text Available Kawaii (a Japanese word meaning "cute" things are popular because they produce positive feelings. However, their effect on behavior remains unclear. In this study, three experiments were conducted to examine the effects of viewing cute images on subsequent task performance. In the first experiment, university students performed a fine motor dexterity task before and after viewing images of baby or adult animals. Performance indexed by the number of successful trials increased after viewing cute images (puppies and kittens; M ± SE=43.9 ± 10.3% improvement more than after viewing images that were less cute (dogs and cats; 11.9 ± 5.5% improvement. In the second experiment, this finding was replicated by using a non-motor visual search task. Performance improved more after viewing cute images (15.7 ± 2.2% improvement than after viewing less cute images (1.4 ± 2.1% improvement. Viewing images of pleasant foods was ineffective in improving performance (1.2 ± 2.1%. In the third experiment, participants performed a global-local letter task after viewing images of baby animals, adult animals, and neutral objects. In general, global features were processed faster than local features. However, this global precedence effect was reduced after viewing cute images. Results show that participants performed tasks requiring focused attention more carefully after viewing cute images. This is interpreted as the result of a narrowed attentional focus induced by the cuteness-triggered positive emotion that is associated with approach motivation and the tendency toward systematic processing. For future applications, cute objects may be used as an emotion elicitor to induce careful behavioral tendencies in specific situations, such as driving and office work.

  20. The Power of Kawaii: Viewing Cute Images Promotes a Careful Behavior and Narrows Attentional Focus

    Science.gov (United States)

    Nittono, Hiroshi; Fukushima, Michiko; Yano, Akihiro; Moriya, Hiroki

    2012-01-01

    Kawaii (a Japanese word meaning “cute”) things are popular because they produce positive feelings. However, their effect on behavior remains unclear. In this study, three experiments were conducted to examine the effects of viewing cute images on subsequent task performance. In the first experiment, university students performed a fine motor dexterity task before and after viewing images of baby or adult animals. Performance indexed by the number of successful trials increased after viewing cute images (puppies and kittens; M ± SE = 43.9±10.3% improvement) more than after viewing images that were less cute (dogs and cats; 11.9±5.5% improvement). In the second experiment, this finding was replicated by using a non-motor visual search task. Performance improved more after viewing cute images (15.7±2.2% improvement) than after viewing less cute images (1.4±2.1% improvement). Viewing images of pleasant foods was ineffective in improving performance (1.2±2.1%). In the third experiment, participants performed a global–local letter task after viewing images of baby animals, adult animals, and neutral objects. In general, global features were processed faster than local features. However, this global precedence effect was reduced after viewing cute images. Results show that participants performed tasks requiring focused attention more carefully after viewing cute images. This is interpreted as the result of a narrowed attentional focus induced by the cuteness-triggered positive emotion that is associated with approach motivation and the tendency toward systematic processing. For future applications, cute objects may be used as an emotion elicitor to induce careful behavioral tendencies in specific situations, such as driving and office work. PMID:23050022

  1. The power of Kawaii: viewing cute images promotes a careful behavior and narrows attentional focus.

    Science.gov (United States)

    Nittono, Hiroshi; Fukushima, Michiko; Yano, Akihiro; Moriya, Hiroki

    2012-01-01

    Kawaii (a Japanese word meaning "cute") things are popular because they produce positive feelings. However, their effect on behavior remains unclear. In this study, three experiments were conducted to examine the effects of viewing cute images on subsequent task performance. In the first experiment, university students performed a fine motor dexterity task before and after viewing images of baby or adult animals. Performance indexed by the number of successful trials increased after viewing cute images (puppies and kittens; M ± SE=43.9 ± 10.3% improvement) more than after viewing images that were less cute (dogs and cats; 11.9 ± 5.5% improvement). In the second experiment, this finding was replicated by using a non-motor visual search task. Performance improved more after viewing cute images (15.7 ± 2.2% improvement) than after viewing less cute images (1.4 ± 2.1% improvement). Viewing images of pleasant foods was ineffective in improving performance (1.2 ± 2.1%). In the third experiment, participants performed a global-local letter task after viewing images of baby animals, adult animals, and neutral objects. In general, global features were processed faster than local features. However, this global precedence effect was reduced after viewing cute images. Results show that participants performed tasks requiring focused attention more carefully after viewing cute images. This is interpreted as the result of a narrowed attentional focus induced by the cuteness-triggered positive emotion that is associated with approach motivation and the tendency toward systematic processing. For future applications, cute objects may be used as an emotion elicitor to induce careful behavioral tendencies in specific situations, such as driving and office work.

  2. Feasibility study and quality assessment of unmanned aircraft system-derived multispectral images

    Science.gov (United States)

    Chang, Kuo-Jen

    2017-04-01

    The purpose of study is to explore the precision and the applicability of UAS-derived multispectral images. In this study, the Micro-MCA6 multispectral camera was mounted on quadcopter. The Micro-MCA6 shoot images synchronized of each single band. By means of geotagged images and control points, the orthomosaic images of each single band generated firstly by 14cm resolution. The multispectral image was merged complete with 6 bands. In order to improve the spatial resolution, the 6 band image fused with 9cm resolution image taken from RGB camera. Quality evaluation of the image is verified of the each single band by using control points and check points. The standard deviations of errors are within 1 to 2 pixel resolution of each band. The quality of the multispectral image is compared with 3 cm resolution orthomosaic RGB image gathered from UAV in the same mission, as well. The standard deviations of errors are within 2 to 3 pixel resolution. The result shows that the errors resulting from the blurry and the band dislocation of the objects edge identification. To the end, the normalized difference vegetation index (NDVI) extracted from the image to explore the condition of vegetation and the nature of the environment. This study demonstrates the feasibility and the capability of the high resolution multispectral images.

  3. Using hyperspectral imaging to determine germination of native Australian plant seeds.

    Science.gov (United States)

    Nansen, Christian; Zhao, Genpin; Dakin, Nicole; Zhao, Chunhui; Turner, Shane R

    2015-04-01

    We investigated the ability to accurately and non-destructively determine the germination of three native Australian tree species, Acacia cowleana Tate (Fabaceae), Banksia prionotes L.F. (Proteaceae), and Corymbia calophylla (Lindl.) K.D. Hill & L.A.S. Johnson (Myrtaceae) based on hyperspectral imaging data. While similar studies have been conducted on agricultural and horticultural seeds, we are unaware of any published studies involving reflectance-based assessments of the germination of tree seeds. Hyperspectral imaging data (110 narrow spectral bands from 423.6nm to 878.9nm) were acquired of individual seeds after 0, 1, 2, 5, 10, 20, 30, and 50days of standardized rapid ageing. At each time point, seeds were subjected to hyperspectral imaging to obtain reflectance profiles from individual seeds. A standard germination test was performed, and we predicted that loss of germination was associated with a significant change in seed coat reflectance profiles. Forward linear discriminant analysis (LDA) was used to select the 10 spectral bands with the highest contribution to classifications of the three species. In all species, germination decreased from over 90% to below 20% in about 10-30days of experimental ageing. P50 values (equal to 50% germination) for each species were 19.3 (A. cowleana), 7.0 (B. prionotes) and 22.9 (C. calophylla) days. Based on independent validation of classifications of hyperspectral imaging data, we found that germination of Acacia and Corymbia seeds could be classified with over 85% accuracy, while it was about 80% for Banksia seeds. The selected spectral bands in each LDA-based classification were located near known pigment peaks involved in photosynthesis and/or near spectral bands used in published indices to predict chlorophyll or nitrogen content in leaves. The results suggested that seed germination may be successfully classified (predicted) based on reflectance in narrow spectral bands associated with the primary metabolism

  4. Compression of Multispectral Images with Comparatively Few Bands Using Posttransform Tucker Decomposition

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available Up to now, data compression for the multispectral charge-coupled device (CCD images with comparatively few bands (MSCFBs is done independently on each multispectral channel. This compression codec is called a “monospectral compressor.” The monospectral compressor does not have a removing spectral redundancy stage. To fill this gap, we propose an efficient compression approach for MSCFBs. In our approach, the one dimensional discrete cosine transform (1D-DCT is performed on spectral dimension to exploit the spectral information, and the posttransform (PT in 2D-DWT domain is performed on each spectral band to exploit the spatial information. A deep coupling approach between the PT and Tucker decomposition (TD is proposed to remove residual spectral redundancy between bands and residual spatial redundancy of each band. Experimental results on multispectral CCD camera data set show that the proposed compression algorithm can obtain a better compression performance and significantly outperforms the traditional compression algorithm-based TD in 2D-DWT and 3D-DCT domain.

  5. Imaging spectrophotometry of ionized gas in NGC 1068. I - Kinematics of the narrow-line region

    Science.gov (United States)

    Cecil, Gerald; Bland, Jonathan; Tully, R. Brent

    1990-01-01

    The kinematics of collisionally excited forbidden N II 6548, 6583 across the inner 1 arcmin diameter of the nearby Seyfert galaxy NGC 1068 is mapped using an imaging Fabry-Perot interferometer and low-noise CCD. The stack of monochromatic images, which spatially resolved the high-velocity gas, was analyzed for kinematic and photometric content. Profiles agree well with previous long-slit work, and their complete spatial coverage makes it possible to constrain the gas volume distribution. It is found that the narrow-line region is distributed in a thick center-darkened, line-emitting cylinder that envelopes the collimated radio jet. Three distinct kinematic subsystems, of which the cylinder is composed, are discussed in detail. Detailed behavior of the emission-line profiles, at the few points in the NE quadrant with simple kinematics, argues that the ionized gas develops a significant component of motion perpendicular to the jet axis.

  6. Space imaging measurement system based on fixed lens and moving detector

    Science.gov (United States)

    Akiyama, Akira; Doshida, Minoru; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2006-08-01

    We have developed the Space Imaging Measurement System based on the fixed lens and fast moving detector to the control of the autonomous ground vehicle. The space measurement is the most important task in the development of the autonomous ground vehicle. In this study we move the detector back and forth along the optical axis at the fast rate to measure the three-dimensional image data. This system is just appropriate to the autonomous ground vehicle because this system does not send out any optical energy to measure the distance and keep the safety. And we use the digital camera of the visible ray range. Therefore it gives us the cost reduction of the three-dimensional image data acquisition with respect to the imaging laser system. We can combine many pieces of the narrow space imaging measurement data to construct the wide range three-dimensional data. This gives us the improvement of the image recognition with respect to the object space. To develop the fast movement of the detector, we build the counter mass balance in the mechanical crank system of the Space Imaging Measurement System. And then we set up the duct to prevent the optical noise due to the ray not coming through lens. The object distance is derived from the focus distance which related to the best focused image data. The best focused image data is selected from the image of the maximum standard deviation in the standard deviations of series images.

  7. Remote radiation imaging system using a compact gamma-ray imager mounted on a multicopter drone

    International Nuclear Information System (INIS)

    Sato, Yuki; Terasaka, Yuta; Kaburagi, Masaaki; Tanifuji, Yuta; Kawabata, Kuniaki; Miyamura, Hiroko; Torii, Tatsuo; Ozawa, Shingo; Izumi, Ryo; Suzuki, Toshikazu

    2018-01-01

    A remote radiation imaging system comprising a lightweight Compton camera and a multicopter drone was developed to remotely and quickly measure radioactive contamination inside the buildings of the Fukushima Daiichi Nuclear Power Station (FDNPS). The drone system is used for measuring detailed radiation distributions in narrow areas, which have been difficult to gauge with conventional aircraft monitoring using helicopters. A measurement of radiation distributions in outdoor environments in the coastal areas of Fukushima, Japan, was performed. The drone system with the Compton camera succeeded in remote observations of dense hotspots from the sky over a contaminated area near the FDNPS. The time required for image reconstruction is approximately 550 s in the case of a 9-m flight altitude for the hotspots with a surface dose rate of several tens of μSv/h. This drone system will be used inside the buildings of the FDNPS for remote measurement of radioactive contamination. (author)

  8. [Analysis of sensitive spectral bands for burning status detection using hyper-spectral images of Tiangong-01].

    Science.gov (United States)

    Qin, Xian-Lin; Zhu, Xi; Yang, Fei; Zhao, Kai-Rui; Pang, Yong; Li, Zeng-Yuan; Li, Xu-Zhi; Zhang, Jiu-Xing

    2013-07-01

    To obtain the sensitive spectral bands for detection of information on 4 kinds of burning status, i. e. flaming, smoldering, smoke, and fire scar, with satellite data, analysis was conducted to identify suitable satellite spectral bands for detection of information on these 4 kinds of burning status by using hyper-spectrum images of Tiangong-01 (TG-01) and employing a method combining statistics and spectral analysis. The results show that: in the hyper-spectral images of TG-01, the spectral bands differ obviously for detection of these 4 kinds of burning status; in all hyper-spectral short-wave infrared channels, the reflectance of flaming is higher than that of all other 3 kinds of burning status, and the reflectance of smoke is the lowest; the reflectance of smoke is higher than that of all other 3 kinds of burning status in the channels corresponding to hyper-spectral visible near-infrared and panchromatic sensors. For spectral band selection, more suitable spectral bands for flaming detection are 1 000.0-1 956.0 and 2 020.0-2 400.0 nm; the suitable spectral bands for identifying smoldering are 930.0-1 000.0 and 1 084.0-2 400.0 nm; the suitable spectral bands for smoke detection is in 400.0-920.0 nm; for fire scar detection, it is suitable to select bands with central wavelengths of 900.0-930.0 and 1 300.0-2 400.0 nm, and then to combine them to construct a detection model.

  9. Narrow dibaryon resonances

    International Nuclear Information System (INIS)

    Kajdalov, A.B.

    1986-01-01

    Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered

  10. Improved spatial resolution and lower-dose pediatric CT imaging: a feasibility study to evaluate narrowing the X-ray photon energy spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Benz, Mark G. [Safer Pediatric Imaging and Engineering Horizons International, Lincoln, VT (United States); Benz, Matthew W. [Southboro Medical Group, Southboro, MA (United States); Birnbaum, Steven B. [Dartmouth Hitchcock Clinic Manchester, Department of Radiology, Manchester, NH (United States); Chason, Eric; Sheldon, Brian W. [Brown University, Division of Engineering, Materials Science and Engineering Program, Providence, RI (United States); McGuire, Dale [R and D Manager, C and G Technologies Inc., Jeffersonville, IN (United States)

    2014-08-15

    This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique. (orig.)

  11. Full L-S Band Telemetry System

    National Research Council Canada - National Science Library

    Jensen, Michael

    2001-01-01

    Recent changes in spectrum availability as well as higher demands for spectrum have motivated the development of telemetry transmit systems capable of fully operating over both L and S telemetry bands...

  12. Full L-S Band Telemetry System

    National Research Council Canada - National Science Library

    Jensen, Michael

    2003-01-01

    Recent changes in spectrum availability as well as higher demands for spectrum have motivated the development of telemetry transmit systems capable of fully operating over both L and S telemetry bands...

  13. Full L-S Band Telemetry System

    National Research Council Canada - National Science Library

    Jensen, Michael

    2002-01-01

    Recent changes in spectrum availability as well as higher demands for spectrum have motivated the development of telemetry transmit systems capable of fully operating over both L and S telemetry bands...

  14. Highly miniaturised semi-loop meandered dual-band MIMO antenna system

    KAUST Repository

    Jehangir, Syed S.

    2017-12-05

    A novel dual-band two-element directional multiple-input-multiple-output (MIMO) antenna system is presented with 68% miniaturisation, which is achieved using a semi-loop meandered driven element and a small ground plane. The centre frequency of operation is 2 GHz. The antenna system covers two bands: the telemetry L-band 1.27-1.43 GHz and the global system for mobile communications/long-term evolution band 1.8-2.133 GHz. The simulation and measurement results are in good agreement. The proposed antenna system mimics the quasi-Yagi antenna configuration with a measured front-to-back ratio of around 15 dB at 1.35 GHz and 17 dB at 2 GHz, which is achieved without using a large ground plane, extra metallic structures, multiple reflector elements, or any complex technique. A gain of more than 5 dBi is measured for the single element with a total radiation efficiency of around 85% in both bands. The measured isolation of the proposed MIMO antenna is more than 15 dB with < 0.0785 measured envelope correlation coefficient values in both bands.

  15. Highly miniaturised semi-loop meandered dual-band MIMO antenna system

    KAUST Repository

    Jehangir, Syed S.; Sharawi, Mohammad S.; Shamim, Atif

    2017-01-01

    A novel dual-band two-element directional multiple-input-multiple-output (MIMO) antenna system is presented with 68% miniaturisation, which is achieved using a semi-loop meandered driven element and a small ground plane. The centre frequency of operation is 2 GHz. The antenna system covers two bands: the telemetry L-band 1.27-1.43 GHz and the global system for mobile communications/long-term evolution band 1.8-2.133 GHz. The simulation and measurement results are in good agreement. The proposed antenna system mimics the quasi-Yagi antenna configuration with a measured front-to-back ratio of around 15 dB at 1.35 GHz and 17 dB at 2 GHz, which is achieved without using a large ground plane, extra metallic structures, multiple reflector elements, or any complex technique. A gain of more than 5 dBi is measured for the single element with a total radiation efficiency of around 85% in both bands. The measured isolation of the proposed MIMO antenna is more than 15 dB with < 0.0785 measured envelope correlation coefficient values in both bands.

  16. Validation of the OMERACT Magnetic Resonance Imaging Joint Space Narrowing Score for the Wrist in a Multireader Longitudinal Trial

    DEFF Research Database (Denmark)

    Glinatsi, Daniel; Lillegraven, Siri; Haavardsholm, Espen A

    2015-01-01

    OBJECTIVE: To assess the intrareader and interreader agreement and sensitivity to change of the Outcome Measures in Rheumatology (OMERACT) Rheumatoid Arthritis Magnetic Resonance Imaging Joint Space Narrowing (RAMRIS-JSN) score in the rheumatoid arthritis (RA) wrist in a longitudinal multireader...... exercise. METHODS: Coronal T1-weighted MR image sets of 1 wrist from 20 patients with early RA were assessed twice for JSN at 17 sites at baseline and after 36 or 60 months by 4 readers blinded to patient data but not time order. The joints were scored 0-4 according to the OMERACT RAMRIS-JSN score...

  17. Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications

    Science.gov (United States)

    Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.

    2016-04-01

    Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.

  18. Narrow-band emission with 0.5 to 3.5 Hz varying frequency in the background of the main phase of the 17 March 2013 magnetic storm

    Directory of Open Access Journals (Sweden)

    Potapov A.S.

    2016-12-01

    Full Text Available We present results of the analysis of an unusually long narrow-band emission in the Pc1 range with increasing carrier frequency. The event was observed against the background of the main phase of a strong magnetic storm caused by arrival of a high-speed solar wind stream with a shock wave in the stream head and a long interval of negative vertical component of the interplanetary magnetic field. Emission of approximately 9-hour duration had a local character, appearing only at three stations located in the range of geographical longitude λ=100–130 E and magnetic shells L=2.2–3.4. The signal carrier frequency grew in a stepped mode from 0.5 to 3.5 Hz. We propose an emission interpretation based on the standard model of the generation of ion cyclotron waves in the magnetosphere due to the resonant wave-particle interaction with ion fluxes of moderate energies. We suppose that a continuous shift of the generation region, located in the outer area of the plasmasphere, to smaller L-shell is able to explain both the phenomenon locality and the range of the frequency increase. A narrow emission frequency band is associated with the formation of nose-like structures in the energy spectrum of ion fluxes penetrating from the geomagnetic tail into the magnetosphere. We offer a possible scenario of the processes leading to the generation of the observed emission. The scenario contains specific values of the generation region position, plasma density, magnetic field, and resonant proton energies. We discuss morphological differences of the emissions considered from known types of geomagnetic pulsations, and reasons for the occurrence of this unusual event.

  19. Modulation transfer function cascade model for a sampled IR imaging system.

    Science.gov (United States)

    de Luca, L; Cardone, G

    1991-05-01

    The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.

  20. Evaluation of a color fused dual-band NVG

    NARCIS (Netherlands)

    Hogervorst, M.A.; Toet, A.

    2009-01-01

    We have tested a prototype dual-band NVG system consisting of two NVGs fitted with filters that split the NVG sensitive range into a short (visual) and a long wavelength (NIR) band. The Color-the-night technique (see Hogervorst & Toet, SPIE D&S ‘08) was used to fuse the images of the two sensors. We

  1. Possibility of narrow resonances of the omega anti omega-system

    International Nuclear Information System (INIS)

    Duerr, H.P.

    1975-01-01

    The possibility of resonances of the Ω anti Ω-system is discussed on the basis of the medium and long range meson exchange forces. The total and partial widths of these resonances are estimated by using well known formulas of nuclear physics. It is demonstrated that analogously the phi- and rho-mesons may be interpreted as p-states of the K anti K- and π π-system, respectively. There appears, however, only a slim chance to interpret the new narrow resonances psi (3100) and psi (3700) as 7 d 1 - and 7 g 1 -Ω anti Ω configurations

  2. Design, Construction, Demonstration and Delivery of an Automated Narrow Gap Welding System.

    Science.gov (United States)

    1982-06-29

    DESIGN, CONSTRUCTION, DEMONSTRATION AND DELIVERY OF WE DA4I &NARROW GAP CONTRACT NO. NOOGOO-81-C-E923 TO DAVID TAYLOR NAVAL RESEARCH AND DEVELOPMENT...the automated * Narrow Gap welding process, is the narrow (3/8 - inch), square-butt joint *design. This narrow joint greatly reduces the volume of weld...AD-i45 495 DESIGN CONSTRUCTION DEMONSTRATION AiND DELIVERY OF RN 1/j AUrOMATED NARROW GAP WELDING SYSTEMI() CRC AUTOMATIC WELDING CO HOUSTON TX 29

  3. Dual-band infrared camera

    Science.gov (United States)

    Vogel, H.; Schlemmer, H.

    2005-10-01

    Every year, numerous accidents happen on European roads due to bad visibility (fog, night, heavy rain). Similarly, the dramatic aviation accidents of year 2001 in Milan and Zurich have reminded us that aviation safety is equally affected by reduced visibility. A dual-band thermal imager was developed in order to raise human situation awareness under conditions of reduced visibility especially in the automotive and aeronautical context but also for all transportation or surveillance tasks. The chosen wavelength bands are the Short Wave Infrared SWIR and the Long Wave Infrared LWIR band which are less obscured by reduced visibility conditions than the visible band. Furthermore, our field tests clearly show that the two different spectral bands very often contain complementary information. Pyramidal fusion is used to integrate complementary and redundant features of the multi-spectral images into a fused image which can be displayed on a monitor to provide more and better information for the driver or pilot.

  4. C/X-band SAR interferometry applied to ground monitoring: examples and new potential

    Science.gov (United States)

    Nutricato, Raffaele; Nitti, Davide O.; Bovenga, Fabio; Refice, Alberto; Wasowski, Janusz; Chiaradia, Maria T.

    2013-10-01

    Classical applications of the MTInSAR techniques have been carried out in the past on medium resolution data acquired by the ERS, Envisat (ENV) and Radarsat sensors. The new generation of high-resolution X-Band SAR sensors, such as TerraSAR-X (TSX) and the COSMO-SkyMed (CSK) constellation allows acquiring data with spatial resolution reaching metric/submetric values. Thanks to the finer spatial resolution with respect to C-band data, X-band InSAR applications result very promising for monitoring single man-made structures (buildings, bridges, railways and highways), as well as landslides. This is particularly relevant where C-band data show low density of coherent scatterers. Moreover, thanks again to the higher resolution, it is possible to infer reliable estimates of the displacement rates with a number of SAR scenes significantly lower than in C-band within the same time span or by using more images acquired in a narrower time span. We present examples of the application of a Persistent Scatterers Interferometry technique, namely the SPINUA algorithm, to data acquired by ENV, TSX and CSK on selected number of sites. Different cases are considered concerning monitoring of both instable slopes and infrastructure. Results are compared and commented with particular attention paid to the advantages provided by the new generation of X-band high resolution space-borne SAR sensors.

  5. The hyperspectral imaging trade-off

    DEFF Research Database (Denmark)

    Carstensen, Jens Michael

    , this will be the standard situation, and it enables the detection of small spectral features like peaks, valleys and shoulders for a wide range of chemistries. Everything else being equal this is what you would wish for, and hyperspectral imaging is often used in research and in remote sensing because of the needs and cost......Although it has no clear-cut definition, hyperspectral imaging in the UV-Visible-NIR wavelength region seems to mean spectral image sampling in bands from 10 nm width or narrower that enables spectral reconstruction over some wavelength interval. For non-imaging spectral applications...... structures in these projects. However, hyperspectral imaging is a sampling choice within spectral imaging that typically will impose some trade-offs, and these trade-offs will not be optimal for many applications. The purpose of this presentation is to point out and increase the awareness of these trade...

  6. Teletraffic performance Analysis of Multi-band Overlaid WCDMA Systems

    DEFF Research Database (Denmark)

    Wang, Hua; Iversen, Villy Bæk

    2007-01-01

    Wide-band Code Division Multiple Access (WCDMA) systems are considered to be among the best alternatives for Universal Mobile Telecommunication System (UMTS). In future deployment of WCDMA systems, spectrum overlay among sub-bands with different bandwidth is necessary to support various kinds of ...... of virtual channel so that classical teletraffic theory can be applied. A service class is modelled as a BPP (Binomial-Poisson-Pascal) multi-rate traffic stream....

  7. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Kajdič, P. [Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City (Mexico); Alexandrova, O.; Maksimovic, M.; Lacombe, C. [LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC UniversitéParis 06, Université Paris-Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Fazakerley, A. N., E-mail: primoz@geofisica.unam.mx [Mullard Space Science Laboratory, University College London (United Kingdom)

    2016-12-20

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E{sub T}) and ∼676 eV (∼113 E{sub T}) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  8. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Kajdič, P.; Alexandrova, O.; Maksimovic, M.; Lacombe, C.; Fazakerley, A. N.

    2016-01-01

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E T ) and ∼676 eV (∼113 E T ) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  9. A BAND SELECTION METHOD FOR SUB-PIXEL TARGET DETECTION IN HYPERSPECTRAL IMAGES BASED ON LABORATORY AND FIELD REFLECTANCE SPECTRAL COMPARISON

    Directory of Open Access Journals (Sweden)

    S. Sharifi hashjin

    2016-06-01

    Full Text Available In recent years, developing target detection algorithms has received growing interest in hyperspectral images. In comparison to the classification field, few studies have been done on dimension reduction or band selection for target detection in hyperspectral images. This study presents a simple method to remove bad bands from the images in a supervised manner for sub-pixel target detection. The proposed method is based on comparing field and laboratory spectra of the target of interest for detecting bad bands. For evaluation, the target detection blind test dataset is used in this study. Experimental results show that the proposed method can improve efficiency of the two well-known target detection methods, ACE and CEM.

  10. Mitigating the effect of optical back-scatter in multispectral underwater imaging

    International Nuclear Information System (INIS)

    Mortazavi, Halleh; Oakley, John P; Barkat, Braham

    2013-01-01

    Multispectral imaging is a very useful technique for extracting information from the underwater world. However, optical back-scatter changes the intensity value in each spectral band and this distorts the estimated spectrum. In this work, a filter is used to detect the level of optical back-scatter in each spectral band from a set of multispectral images. Extraction of underwater object spectra can be done by subtracting the estimated level of optical back-scatter and scaling the remainder in each spectral band from the captured image in the corresponding band. An experiment has been designed to show the performance of the proposed filter for correcting the set of multispectral underwater images and recovering the pixel spectra. The multispectral images are captured by a B/W CCD digital camera with a fast tunable liquid-crystal filter in 33 narrow spectral bands in clear and different levels of turbid water. Reference estimates for the optical back-scatter spectra are found by comparing a clear and a degraded set of multispectral images. The accuracy and consistency of the proposed method, the extended Oakley–Bu cost function, is examined by comparing the estimated values with the reference level of an optical back-scatter spectrum. The same comparison is made for the simple estimation approach. The results show that the simple method is not reliable and fail to estimate the level of optical back-scatter spectrum accurately. The results from processing experimental images in turbid water show that the effect of optical back-scatter can be mitigated in the image of each spectral band and, as a result, the spectra of the object can be recovered. However, for a very high level of turbid water the recovery is limited because of the effect of extinction. (paper)

  11. Dose evaluation of narrow-beam

    International Nuclear Information System (INIS)

    Goto, Shinichi

    1999-01-01

    Reliability of the dose from the narrow photon beam becomes more important since the single high-dose rate radiosurgery becoming popular. The dose evaluation for the optimal dose is difficult due to absence of lateral electronic equilibrium. Data necessary for treatment regimen are TMR (tissue maximum ratio), OCR (off center ratio) and S c,p (total scatter factor). The narrow-beam was 10 MV X-ray from Varian Clinac 2100C equipped with cylindrical Fischer collimator CBI system. Detection was performed by Kodak XV-2 film, a PTW natural diamond detector M60003, Scanditronics silicon detector EDD-5 or Fujitec micro-chamber FDC-9.4C. Phantoms were the water equivalent one (PTW, RW3), water one (PTW, MP3 system) and Wellhofer WP600 system. Factors above were actually measured to reveal that in the dose evaluation of narrow photon beam, TMR should be measured by micro-chamber, OCR, by film, and S c,p , by the two. The use of diamond detector was recommended for more precise measurement and evaluation of the dose. The importance of water phantom in the radiosurgery system was also shown. (K.H.)

  12. Counter Unmanned Aerial Systems Testing: Evaluation of VIS SWIR MWIR and LWIR passive imagers.

    Energy Technology Data Exchange (ETDEWEB)

    Birch, Gabriel Carlisle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Woo, Bryana Lynn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report contains analysis of unmanned aerial systems as imaged by visible, short-wave infrared, mid-wave infrared, and long-wave infrared passive devices. Testing was conducted at the Nevada National Security Site (NNSS) during the week of August 15, 2016. Target images in all spectral bands are shown and contrast versus background is reported. Calculations are performed to determine estimated pixels-on-target for detection and assessment levels, and the number of pixels needed to cover a hemisphere for detection or assessment at defined distances. Background clutter challenges are qualitatively discussed for different spectral bands, and low contrast scenarios are highlighted for long-wave infrared imagers.

  13. Identification of early cancerous lesion of esophagus with endoscopic images by hyperspectral image technique (Conference Presentation)

    Science.gov (United States)

    Huang, Shih-Wei; Chen, Shih-Hua; Chen, Weichung; Wu, I.-Chen; Wu, Ming Tsang; Kuo, Chie-Tong; Wang, Hsiang-Chen

    2016-03-01

    This study presents a method to identify early esophageal cancer within endoscope using hyperspectral imaging technology. The research samples are three kinds of endoscopic images including white light endoscopic, chromoendoscopic, and narrow-band endoscopic images with different stages of pathological changes (normal, dysplasia, dysplasia - esophageal cancer, and esophageal cancer). Research is divided into two parts: first, we analysis the reflectance spectra of endoscopic images with different stages to know the spectral responses by pathological changes. Second, we identified early cancerous lesion of esophagus by principal component analysis (PCA) of the reflectance spectra of endoscopic images. The results of this study show that the identification of early cancerous lesion is possible achieve from three kinds of images. In which the spectral characteristics of NBI endoscopy images of a gray area than those without the existence of the problem the first two, and the trend is very clear. Therefore, if simply to reflect differences in the degree of spectral identification, chromoendoscopic images are suitable samples. The best identification of early esophageal cancer is using the NBI endoscopic images. Based on the results, the use of hyperspectral imaging technology in the early endoscopic esophageal cancer lesion image recognition helps clinicians quickly diagnose. We hope for the future to have a relatively large amount of endoscopic image by establishing a hyperspectral imaging database system developed in this study, so the clinician can take this repository more efficiently preliminary diagnosis.

  14. A new lutetia-based ceramic scintillator for X-ray imaging

    CERN Document Server

    Lempicki, A; Szupryczynski, P; Lingertat, H; Nagarkar, V V; Tipnis, S V; Miller, S R

    2002-01-01

    We report a new scintillator based on a transparent ceramic of Lu sub 2 O sub 3 :Eu. The material has an extremely high density of 9.4 g/cm sup 3 , a light output comparable to CsI:Tl, and a narrow band emission at 610 nm that falls close to the maximum of the response curve of CCDs. Pixelation of the scintillator to prevent lateral spread of light enhances the spatial and contrast resolution, providing imaging performance that equals or surpasses all other currently known scintillators. Upon further development of readout technologies to take full advantage of its transparency, the new scintillator should play a major role in digital radiographic systems.

  15. HMB-45 Study Before and After Narrow-Band (311 nm Ultraviolet B Treatment in Vitiligo

    Directory of Open Access Journals (Sweden)

    Moosavi

    2015-06-01

    Full Text Available Background Vitiligo is an acquired disease in which the loss of functional melanocytes results in depigmented macules and patches. Over the years, wide arrays of markers for melanocytes have been described, including human melanoma black 45 (HMB-45. Narrow-band ultraviolet B (NB-UVB therapy is one of the therapeutic modalities for vitiligo. Objectives We sought to detect HMB-45 staining after 30 sessions of NB-UVB therapy in vitiligo and perivitiliginous skin. Patients and Methods All the participants were planned to have 30 sessions of NB-UVB therapy with 724 lamps (FS, 72 T, 12-HO Daavlin MED at 311 nm wavelengths. The patients underwent skin sampling from lesional and perilesional area before and after 30 sessions of treatment. The skin biopsies were sent to the laboratory for light microscopy and immunohistochemical study. The evaluation of HMB-45 was based on the quantitative method, measuring the number of positive stained cells. Clinical response was defined as repigmentation in three categories: more than 75%; between 40% and 75%; and less than 40%. The data were analyzed using SPSS (version 17. Results Twenty-nine patients completed the study. The Wilcoxon test showed a meaningful relation between HMB-45 staining before and after NB-UVB treatment in perilesional skin. We did not find a meaningful relation between HMB-45 staining before and after treatment regarding the mean age, gender, mean duration of disease, and initial lesional area (P = 0.55, P = 0.41, P = 0.55, and P = 0.87, respectively. After 30 sessions of NB-UVB therapy, repigmentation was less than 40% in 8 (27.6%, 40 - 75% in 7 (24.1%, and more than 75% in 6 patients. Conclusions The HMB-45 stain strength significantly changed after treatment in perilesional skin.

  16. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    Science.gov (United States)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  17. Cloud Classification in Wide-Swath Passive Sensor Images Aided by Narrow-Swath Active Sensor Data

    Directory of Open Access Journals (Sweden)

    Hongxia Wang

    2018-05-01

    Full Text Available It is a challenge to distinguish between different cloud types because of the complexity and diversity of cloud coverage, which is a significant clutter source that impacts on target detection and identification from the images of space-based infrared sensors. In this paper, a novel strategy for cloud classification in wide-swath passive sensor images is developed, which is aided by narrow-swath active sensor data. The strategy consists of three steps, that is, the orbit registration, most matching donor pixel selection, and cloud type assignment for each recipient pixel. A new criterion for orbit registration is proposed so as to improve the matching accuracy. The most matching donor pixel is selected via the Euclidean distance and the square sum of the radiance relative differences between the recipient and the potential donor pixels. Each recipient pixel is then assigned a cloud type that corresponds to the most matching donor. The cloud classification of the Moderate Resolution Imaging Spectroradiometer (MODIS images is performed with the aid of the data from Cloud Profiling Radar (CPR. The results are compared with the CloudSat product 2B-CLDCLASS, as well as those that are obtained using the method of the International Satellite Cloud Climatology Project (ISCCP, which demonstrates the superior classification performance of the proposed strategy.

  18. C-Band Airport Surface Communications System Standards Development, Phase I

    Science.gov (United States)

    Hall, Edward; Isaacs, James; Zelkin, Natalie; Henriksen. Steve

    2010-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." The proposed future C-band (5091- to 5150-MHz) airport surface communication system, referred to as the Aeronautical Mobile Airport Communications System (AeroMACS), is anticipated to increase overall air-to-ground data communications systems capacity by using a new spectrum (i.e., not very high frequency (VHF)). Although some critical services could be supported, AeroMACS will also target noncritical services, such as weather advisory and aeronautical information services as part of an airborne System Wide Information Management (SWIM) program. AeroMACS is to be designed and implemented in a manner that will not disrupt other services operating in the C-band. This report defines the AeroMACS concepts of use, high-level system requirements, and architecture; the performance of supporting system analyses; the development of AeroMACS test and demonstration plans; and the establishment of an operational AeroMACS capability in support of C-band aeronautical data communications standards to be advanced in both international (International Civil Aviation Organization, ICAO) and national (RTCA) forums. This includes the development of system parameter profile recommendations for AeroMACS based on existing Institute of Electrical and Electronics Engineering (IEEE) 802.16e- 2009 standards

  19. Passive millimeter wave imaging and spectroscopy system for terrestrial remote sensing

    Science.gov (United States)

    Gopalsami, Nachappa; Liao, Shaolin; Koehl, Eugene R.; Elmer, Thomas W.; Heifetz, Alexander; Chien, Hual-Te; Raptis, Apostolos C.

    2010-04-01

    We have built a passive millimeter wave imaging and spectroscopy system with a 15-channel filter bank in the 146-154 GHz band for terrestrial remote sensing. We had built the spectroscopy system first and have now retrofitted an imaging element to it as a single pixel imager. The imaging element consisted of a 15-cm-diameter imaging lens fed to a corrugated scalar horn. Image acquisition is carried out by scanning the lens with a 2-axis translation stage. A LabVIEW-based software program integrates the imaging and spectroscopy systems with online display of spectroscopic information while the system scans each pixel position. The software also allows for integrating the image intensity of all 15 channels to increase the signal-to-noise ratio by a factor of ~4 relative to single channel image. The integrated imaging and spectroscopy system produces essentially 4-D data in which spatial data are along 2 dimensions, spectral data are in the 3rd dimension, and time is the 4th dimension. The system performance was tested by collecting imaging and spectral data with a 7.5-cm-diameter and 1m long gas cell in which test chemicals were introduced against a liquid nitrogen background.

  20. Performance Analysis of HF Band FB-MC-SS

    Energy Technology Data Exchange (ETDEWEB)

    Hussein Moradi; Stephen Andrew Laraway; Behrouz Farhang-Boroujeny

    2016-01-01

    Abstract—In a recent paper [1] the filter bank multicarrier spread spectrum (FB-MC-SS) waveform was proposed for wideband spread spectrum HF communications. A significant benefit of this waveform is robustness against narrow and partial band interference. Simulation results in [1] demonstrated good performance in a wideband HF channel over a wide range of conditions. In this paper we present a theoretical analysis of the bit error probably for this system. Our analysis tailors the results from [2] where BER performance was analyzed for maximum ration combining systems that accounted for correlation between subcarriers and channel estimation error. Equations are give for BER that closely match the simulated performance in most situations.

  1. Impedance self-matching ultra-narrow linewidth fiber resonator by use of a tunable π-phase-shifted FBG.

    Science.gov (United States)

    Jing, Mingyong; Yu, Bo; Hu, Jianyong; Hou, Huifang; Zhang, Guofeng; Xiao, Liantuan; Jia, Suotang

    2017-05-15

    In this paper, we present a novel ultra-narrow linewidth fiber resonator formed by a tunable polarization maintaining (PM) π-phase-shifted fiber Bragg grating and a PM uniform fiber Bragg grating with a certain length of PM single mode fiber patch cable between them. Theoretical prediction shows that this resonator has ultra-narrow linewidth resonant peaks and is easy to realize impedance matching. We experimentally obtain 3 MHz narrow linewidth impedance matched resonant peak in a 7.3 m ultra-long passive fiber cavity. The impedance self-matching characteristic of this resonator also makes itself particularly suitable for use in ultra-sensitive sensors, ultra-narrow band rejection optical filters and fiber lasers applications.

  2. Motion tracking in narrow spaces: a structured light approach

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus; Højgaard, Liselotte

    2010-01-01

    We present a novel tracking system for patient head motion inside 3D medical scanners. Currently, the system is targeted at the Siemens High Resolution Research Tomograph (HRRT) PET scanner. Partial face surfaces are reconstructed using a miniaturized structured light system. The reconstructed 3D...... the system to a standard optical motion tracker based on a rigid tracking tool. Our system achieves an angular RMSE of 0.11 degrees demonstrating its relevance for motion compensated 3D scan image reconstructions as well as its competitiveness against the standard optical system with an RMSE of 0.08 degrees...... point clouds are matched to a reference surface using a robust iterative closest point algorithm. A main challenge is the narrow geometry requiring a compact structured light system and an oblique angle of observation. The system is validated using a mannequin head mounted on a rotary stage. We compare...

  3. Two-band model with off-diagonal occupation dependent hopping rate

    International Nuclear Information System (INIS)

    Zawadowski, A.

    1989-01-01

    In this paper two-band hopping model is treated on a two-dimensional square lattice. The atoms are located at the corners and the middles of the edges of the squares. In addition to the strongly overlapping orbitals of the atoms, there are extra orbitals at the corners, which are weakly hybridized. The assumption is made that the Fermi level is inside the broad band and is every near to the narrow band formed by the extra orbitals. The hamiltonian is Hubbard type, but the off-diagonal part of the two-site interaction t is kept also where one creation or annihilation operator acts on the extra orbital and the others on one of its neighbors. The weak coupling t is enhanced by the on-site Coulomb repulsion at the corners, which enhancement is a power function of the ratio of the broad band width and the narrow bank position measured from the Fermi level. That enhancement is obtained by summation of logarithmic Kondo-type corrections of orbital origin, which reflects the formation of a ground state of new type with strong orbital and spin correlations. Interaction between the particles of the broad band is generated by processes with one heavy and one light particle in the intermediate state

  4. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  5. An operational fluorescence system for crop assessment

    Science.gov (United States)

    Belzile, Charles; Belanger, Marie-Christine; Viau, Alain A.; Chamberland, Martin; Roy, Simon

    2004-03-01

    The development of precision farming requires new tools for plant nutritional stress monitoring. An operational fluorescence system has been designed for vegetation status mapping and stress detection at plant and field scale. The instrument gives relative values of fluorescence at different wavelengths induced by the two-excitation sources. Lightinduced fluorescence has demonstrated successful crop health monitoring and plant nutritional stress detection capabilities. The spectral response of the plants has first been measured with an hyperspectral imager using laser-induced fluorescence. A tabletop imaging fluorometer based on flash lamp technology has also been designed to study the spatial distribution of fluorescence on plant leaves. For field based non-imaging system, LED technology is used as light source to induce fluorescence of the plant. The operational fluorescence system is based on ultraviolet and blue LED to induce fluorescence. Four narrow fluorescence bands centered on 440, 520, 690 and 740nm are detected. The instrument design includes a modular approach for light source and detector. It can accommodate as many as four different light sources and six bands of fluorescence detection. As part of the design for field application, the instrument is compatible with a mobile platform equipped with a GPS and data acquisition system. The current system developed by Telops/GAAP is configured for potato crops fluorescence measurement but can easily be adapted for other crops. This new instrument offers an effective and affordable solution for precision farming.

  6. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael bachmann

    2007-01-01

    This paper further investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband...... coded signals are used to increase SNR, followed by sub-band processing. The received broadband signal, is filtered using a set of narrow-band filters. Estimating the velocity in each of the bands and averaging the results yields better performance compared to what would be possible when transmitting...... a narrow-band pulse directly. Also, the spatial resolution of the narrow-band pulse would be too poor for brightness-mode (B-mode) imaging and additional transmissions would be required to update the B-mode image. In the described approach, there is no need for additional transmissions, because...

  7. Hazard banding in compliance with the new Globally Harmonised System (GHS) for use in control banding tools.

    Science.gov (United States)

    Arnone, Mario; Koppisch, Dorothea; Smola, Thomas; Gabriel, Stefan; Verbist, Koen; Visser, Remco

    2015-10-01

    Many control banding tools use hazard banding in risk assessments for the occupational handling of hazardous substances. The outcome of these assessments can be combined with advice for the required risk management measures (RMMs). The Globally Harmonised System of Classification and Labelling of Chemicals (GHS) has resulted in a change in the hazard communication elements, i.e. Hazard (H) statements instead of Risk-phrases. Hazard banding schemes that depend on the old form of safety information have to be adapted to the new rules. The purpose of this publication is to outline the rationales for the assignment of hazard bands to H statements under the GHS. Based on this, this publication proposes a hazard banding scheme that uses the information from the safety data sheets as the basis for assignment. The assignment of hazard bands tiered according to the severity of the underlying hazards supports the important principle of substitution. Additionally, the set of assignment rules permits an exposure-route-specific assignment of hazard bands, which is necessary for the proposed route-specific RMMs. Ideally, all control banding tools should apply the same assignment rules. This GHS-compliant hazard banding scheme can hopefully help to establish a unified hazard banding strategy in the various control banding tools. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

    International Nuclear Information System (INIS)

    Wu, Chihhui; Neuner III, Burton; Shvets, Gennady; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve

    2012-01-01

    We present the concept of a solar thermo-photovoltaic (STPV) collection system based on a large-area, nanoimprint-patterned film of plasmonic structures acting as an integrated solar absorber/narrow-band thermal emitter (SANTE). The SANTE film concept is based on integrating broad-band solar radiation absorption with selective narrow-band thermal IR radiation which can be efficiently coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal (e.g., tungsten) as a plasmonic material, we demonstrate that the absorption spectrum of the SANTE film can be designed to be broad-band in the visible range and narrow-band in the infrared range. A detailed balance calculation demonstrates that the total STPV system efficiency exceeds the Shockley–Queisser limit for emitter temperatures above T e = 1200 K, and achieves an efficiency as high as 41% for T e = 2300 K. Emitter temperatures in this range are shown to be achievable under modest sun concentrations (less than 1000 suns) due to the thermal insulation provided by the SANTE film. An experimental demonstration of the wide-angle, frequency-selective absorptivity is presented

  9. Ultra-narrow bandpass filters for long range optical telecommunications at 1064nm and 1550nm, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-narrow bandpass filters with high off-band rejection are needed to maximize signal to noise for free space communications. Omega Optical is developing NIR...

  10. Oligothiophene-Indandione-Linked Narrow-Band Gap Molecules: Impact of π-Conjugated Chain Length on Photovoltaic Performance.

    Science.gov (United States)

    Komiyama, Hideaki; To, Takahiro; Furukawa, Seiichi; Hidaka, Yu; Shin, Woong; Ichikawa, Takahiro; Arai, Ryota; Yasuda, Takuma

    2018-04-04

    Solution-processed organic solar cells (OSCs) based on narrow-band gap small molecules hold great promise as next-generation energy-converting devices. In this paper, we focus on a family of A-π-D-π-A-type small molecules, namely, BDT- nT-ID ( n = 1-4) oligomers, consisting of benzo[1,2- b:4,5- b']dithiophene (BDT) as the central electron-donating (D) core, 1,3-indandione (ID) as the terminal electron-accepting (A) units, and two regioregular oligo(3-hexylthiophene)s ( nT) with different numbers of thiophene rings as the π-bridging units, and elucidate their structure-property-function relationships. The effects of the length of the π-bridging nT units on the optical absorption, thermal behavior, morphology, hole mobility, and OSC performance were systematically investigated. All oligomers exhibited broad and intense visible photoabsorption in the 400-700 nm range. The photovoltaic performances of bulk heterojunction OSCs based on BDT- nT-IDs as donors and a fullerene derivative as an acceptor were studied. Among these oligomers, BDT-2T-ID, incorporating bithiophene as the π-bridging units, showed better photovoltaic performance with a maximum power conversion efficiency as high as 6.9% under AM 1.5G illumination without using solvent additives or postdeposition treatments. These favorable properties originated from the well-developed interpenetrating network morphology of BDT-2T-ID, with larger domain sizes in the photoactive layer. Even though all oligomers have the same A-D-A main backbone, structural modulation of the π-bridging nT length was found to impact their self-organization and nanostructure formation in the solid state, as well as the corresponding OSC device performance.

  11. Calibration, Projection, and Final Image Products of MESSENGER's Mercury Dual Imaging System

    Science.gov (United States)

    Denevi, Brett W.; Chabot, Nancy L.; Murchie, Scott L.; Becker, Kris J.; Blewett, David T.; Domingue, Deborah L.; Ernst, Carolyn M.; Hash, Christopher D.; Hawkins, S. Edward; Keller, Mary R.; Laslo, Nori R.; Nair, Hari; Robinson, Mark S.; Seelos, Frank P.; Stephens, Grant K.; Turner, F. Scott; Solomon, Sean C.

    2018-02-01

    We present an overview of the operations, calibration, geodetic control, photometric standardization, and processing of images from the Mercury Dual Imaging System (MDIS) acquired during the orbital phase of the MESSENGER spacecraft's mission at Mercury (18 March 2011-30 April 2015). We also provide a summary of all of the MDIS products that are available in NASA's Planetary Data System (PDS). Updates to the radiometric calibration included slight modification of the frame-transfer smear correction, updates to the flat fields of some wide-angle camera (WAC) filters, a new model for the temperature dependence of narrow-angle camera (NAC) and WAC sensitivity, and an empirical correction for temporal changes in WAC responsivity. Further, efforts to characterize scattered light in the WAC system are described, along with a mosaic-dependent correction for scattered light that was derived for two regional mosaics. Updates to the geometric calibration focused on the focal lengths and distortions of the NAC and all WAC filters, NAC-WAC alignment, and calibration of the MDIS pivot angle and base. Additionally, two control networks were derived so that the majority of MDIS images can be co-registered with sub-pixel accuracy; the larger of the two control networks was also used to create a global digital elevation model. Finally, we describe the image processing and photometric standardization parameters used in the creation of the MDIS advanced products in the PDS, which include seven large-scale mosaics, numerous targeted local mosaics, and a set of digital elevation models ranging in scale from local to global.

  12. An Unusual Rotationally Modulated Attenuation Band in the Jovian Hectometric Radio Emission Spectrum

    Science.gov (United States)

    Gurnett, D. A.; Kurth, W. S.; Menietti, J. D.; Persoon, A. M.

    1998-01-01

    A well-defined attenuation band modulated by the rotation of Jupiter has been found in the spectrum of Jovian hectometric radiation using data from the Galileo plasma wave instrument. The center frequency of this band usually occurs in the frequency range from about 1 to 3 MHz and the bandwidth is about 10 to 20 percent. The center frequency varies systematically with the rotation of Jupiter and has two peaks per rotation, the first at a system III longitude of about 50 deg, and the second at about 185 deg. It is now believed that the attenuation occurs as the ray path from a high-latitude cyclotron maser source passes approximately parallel to the magnetic field near the northern or southern edges of the Io L-shell. The peak at 50 deg system 3 longitude is attributed to radiation from a southern hemisphere source and the peak at 185 deg is from a northern hemisphere source. The attenuation is thought to be caused by coherent scattering or shallow angle reflection from field-aligned density irregularities near the Io L-shell. The narrow bandwidth indicates that the density irregularities are confined to a very narrow range of L values (Delta L = 0.2 to 0.4) near the Io L-shell.

  13. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  14. The theory of electrocarrying in systems with narrow energetic bands in magnetic fields

    International Nuclear Information System (INIS)

    Nakonechnij, O.G.; Repets'kij, S.P.; Stashchuk, B.V.

    2009-01-01

    The method for calculation of conductivity of disorder systems with strong electron correlations is developed. The method is based on the theory of multiple scattering. The cluster expansion is derived for two-particle Green's function of a disorder system with the account electron-electron interaction. As a zero one-site approximation of that expansion it is chosen the coherent potential approximation. The received expressions allow investigating the phenomenon of spin transport in strong correlated systems.

  15. Multi-color pyrometry imaging system and method of operating the same

    Science.gov (United States)

    Estevadeordal, Jordi; Nirmalan, Nirm Velumylum; Tralshawala, Nilesh; Bailey, Jeremy Clyde

    2017-03-21

    A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.

  16. Design and laboratory calibration of the compact pushbroom hyperspectral imaging system

    Science.gov (United States)

    Zhou, Jiankang; Ji, Yiqun; Chen, Yuheng; Chen, Xinhua; Shen, Weimin

    2009-11-01

    The designed hyperspectral imaging system is composed of three main parts, that is, optical subsystem, electronic subsystem and capturing subsystem. And a three-dimensional "image cube" can be obtained through push-broom. The fore-optics is commercial-off-the-shelf with high speed and three continuous zoom ratios. Since the dispersive imaging part is based on Offner relay configuration with an aberration-corrected convex grating, high power of light collection and variable view field are obtained. The holographic recording parameters of the convex grating are optimized, and the aberration of the Offner configuration dispersive system is balanced. The electronic system adopts module design, which can minimize size, mass, and power consumption. Frame transfer area-array CCD is chosen as the image sensor and the spectral line can be binned to achieve better SNR and sensitivity without any deterioration in spatial resolution. The capturing system based on the computer can set the capturing parameters, calibrate the spectrometer, process and display spectral imaging data. Laboratory calibrations are prerequisite for using precise spectral data. The spatial and spectral calibration minimize smile and keystone distortion caused by optical system, assembly and so on and fix positions of spatial and spectral line on the frame area-array CCD. Gases excitation lamp is used in smile calibration and the keystone calculation is carried out by different viewing field point source created by a series of narrow slit. The laboratory and field imaging results show that this pushbroom hyperspectral imaging system can acquire high quality spectral images.

  17. Image formation simulation for computer-aided inspection planning of machine vision systems

    Science.gov (United States)

    Irgenfried, Stephan; Bergmann, Stephan; Mohammadikaji, Mahsa; Beyerer, Jürgen; Dachsbacher, Carsten; Wörn, Heinz

    2017-06-01

    In this work, a simulation toolset for Computer Aided Inspection Planning (CAIP) of systems for automated optical inspection (AOI) is presented along with a versatile two-robot-setup for verification of simulation and system planning results. The toolset helps to narrow down the large design space of optical inspection systems in interaction with a system expert. The image formation taking place in optical inspection systems is simulated using GPU-based real time graphics and high quality off-line-rendering. The simulation pipeline allows a stepwise optimization of the system, from fast evaluation of surface patch visibility based on real time graphics up to evaluation of image processing results based on off-line global illumination calculation. A focus of this work is on the dependency of simulation quality on measuring, modeling and parameterizing the optical surface properties of the object to be inspected. The applicability to real world problems is demonstrated by taking the example of planning a 3D laser scanner application. Qualitative and quantitative comparison results of synthetic and real images are presented.

  18. Precise Multi-Spectral Dermatological Imaging

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Carstensen, Jens Michael; Ersbøll, Bjarne Kjær

    2004-01-01

    In this work, an integrated imaging system to obtain accurate and reproducible multi-spectral dermatological images is proposed. The system is made up of an integrating sphere, light emitting diodes and a generic monochromatic camera. The system can collect up to 10 different spectral bands....... These spectral bands vary from ultraviolet to near infrared. The welldefined and diffuse illumination of the optically closed scene aims to avoid shadows and specular reflections. Furthermore, the system has been developed to guarantee the reproducibility of the collected images. This allows for comparative...

  19. Radiation systems for luggage and parcel checks

    International Nuclear Information System (INIS)

    Honomichl, V.

    1989-01-01

    The current radioscopic systems of luggage check in air traffic are based on the principle of intensifying the brightness of half-tone images on the fluorescent screen of an image intensifier, or use of very sensitive pick-up tubes with digital image processing. Computers are used for signal processing and the image is produced on a display unit. Sources of continuous or pulse X-ray radiation are used. The signals from the detector are amplified, converted and stored in a buffer and then displayed. The scanning systems use a narrow beam or, to improve rapidity and sensitivity of scanning, a sector beam of radiation. Equipment is described from Heinemann (FRG) featuring a band of 576 or 768 detectors and microprocessor controlled semiconductor tv cameras. Characteristics are also presented of equipment from Aeradio Ltd (U.K.) and Philips (FRG) companies. Attention is devoted to equipment from American Science and Engineering (U.S.) showing high quality imaging even at low radiation doses. Briefly described are portable check systems for inspection of small luggage and parcels. Characteristics are presented of systems for checking vehicles and containers in naval, air, rail and road transport. The principles and performance are described of the systems. (J.B.). 4 figs

  20. Hyperspectral Imaging of Forest Resources: The Malaysian Experience

    Science.gov (United States)

    Mohd Hasmadi, I.; Kamaruzaman, J.

    2008-08-01

    Remote sensing using satellite and aircraft images are well established technology. Remote sensing application of hyperspectral imaging, however, is relatively new to Malaysian forestry. Through a wide range of wavelengths hyperspectral data are precisely capable to capture narrow bands of spectra. Airborne sensors typically offer greatly enhanced spatial and spectral resolution over their satellite counterparts, and able to control experimental design closely during image acquisition. The first study using hyperspectral imaging for forest inventory in Malaysia were conducted by Professor Hj. Kamaruzaman from the Faculty of Forestry, Universiti Putra Malaysia in 2002 using the AISA sensor manufactured by Specim Ltd, Finland. The main objective has been to develop methods that are directly suited for practical tropical forestry application at the high level of accuracy. Forest inventory and tree classification including development of single spectral signatures have been the most important interest at the current practices. Experiences from the studies showed that retrieval of timber volume and tree discrimination using this system is well and some or rather is better than other remote sensing methods. This article reviews the research and application of airborne hyperspectral remote sensing for forest survey and assessment in Malaysia.

  1. Dual Band Magnonic Crystals: Model System and Basic Spin Wave Dynamics

    Directory of Open Access Journals (Sweden)

    Federico Montoncello

    2016-01-01

    Full Text Available We investigate a special design of two-dimensional magnonic crystal, consisting of two superimposed lattices with different lattice constants, such that spin waves (SWs can propagate either in one or the other sublattice, depending on which of the two frequency bands they belong to. The SW bands are separated by a very large bandgap (in our model system, 6 GHz, easily tunable by changing the direction of an applied magnetic field, and the overlap of their spatial distribution, for any frequency of their bands, is always negligible. These properties make the designed system an ideal test system for a magnonic dual band waveguide, where the simultaneous excitation and subsequent propagation of two independent SW signals are allowed, with no mutual interference.

  2. Non-invasive imaging and monitoring of rodent retina using simultaneous dual-band optical coherence tomography

    Science.gov (United States)

    Cimalla, Peter; Burkhardt, Anke; Walther, Julia; Hoefer, Aline; Wittig, Dierk; Funk, Richard; Koch, Edmund

    2011-03-01

    Spectral domain dual-band optical coherence tomography for simultaneous imaging of rodent retina in the 0.8 μm and 1.3 μm wavelength region and non-invasive monitoring of the posterior eye microstructure in the field of retinal degeneration research is demonstrated. The system is illuminated by a supercontinuum laser source and allows three-dimensional imaging with high axial resolution better than 3.8 μm and 5.3 μm in tissue at 800 nm and 1250 nm, respectively, for precise retinal thickness measurements. A fan-shaped scanning pattern with the pivot point close to the eye's pupil and a contact lens are applied to obtain optical access to the eye's fundus. First in vivo experiments in a RCS (royal college of surgeons) rat model with gene-related degeneration of the photoreceptor cells show good visibility of the retinal microstructure with sufficient contrast for thickness measurement of individual retinal layers. An enhanced penetration depth at 1250 nm is clearly identifiable revealing sub-choroidal structures that are not visible at 800 nm. Furthermore, additional simultaneous imaging at 1250 nm improves image quality by frequency compounding speckle noise reduction. These results are encouraging for time course studies of the rodent retina concerning its development related to disease progression and treatment response.

  3. The Role of Adjunct Imaging in Endoscopic Detection of Dysplasia in Barrett's Esophagus.

    Science.gov (United States)

    Kandel, Pujan; Wallace, Michael B

    2017-07-01

    Advances in imaging technologies have demonstrated promise in early detection of dysplasia and cancer in Barrett's esophagus (BE). Optical chromoendoscopy, dye-based chromoendoscopy, and novel technologies have provided the opportunity to visualize the cellular and subcellular structures. Only narrow-band imaging and acetic acid chromoendoscopy have reached benchmarks for clinical use. Volumetric laser endomicroscopy and molecular imaging are not established for routine use. Best practice in management of BE should be focused on careful endoscopic examination, resection, or ablation of the entire abnormal lesion, as well as the use of available imaging technique that has good diagnostic accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. DTPA: Bis benzimidazole as multi model imaging agent

    International Nuclear Information System (INIS)

    Srivastava, Vikas; Tiwari, A.K.; Sharma, H.; Sharma, R.; Mishra, A.K.

    2010-01-01

    Full text: The DTPA bis benzimidazole analogue has been tested for radiopharmaceutical efficacy. The radiolabelling was found more then 98% after 8 hrs and blood kinetics was fast. The compound was also tested for optical imaging agent. The Eu 3+ ion has an absorption band in the visible spectrum (578-582 nm) whose wavelength is very sensitive to even small changes in the coordination environment. Although the intensity of this 7F0 → 5D0 transition is low, the bands are relatively narrow, which allows distinguishing different coordination states of the metal. For Eu 3+ complexes which have two differently hydrated forms in aqueous solution, one observes two absorption bands belonging to the two species. High-resolution UV-visible spectra were recorded in aqueous solutions which show a temperature invariant absorption with two distinct, temperature-dependent absorption bands. The intensity ratio of these two bands changes with temperature: the band at shorter wavelengths is decreasing very slightly, while that at longer wavelengths is increasing with the temperature. The ratio of the integrals of the two bands is related to the equilibrium constant, and its temperature dependence yields the reaction enthalpy and entropy

  5. Fluorescence line-narrowing studies of Nd:glass laser materials

    International Nuclear Information System (INIS)

    Riseberg, L.A.; Brecher, C.

    The increasing importance of Nd glass lasers in laser fusion technology has emphasized the inadequacy in the understanding of the optical properties of rare earth ions in glasses. Indeed, it has been difficult to generate models for the performance of these devices, and the selection of host glasses could be done by little more than a trial-and-error approach. The technique of laser-induced fluorescence line-narrowing developed within the last few years provides a new and powerful tool for the study of these systems. In this technique, a laser excites within the inhomogeneously broadened absorption bands a selected subgroup of the ions in the system, namely those whose absorption energy is resonant with the laser. If the excitation does not migrate among the entire collection of ions prior to fluorescence, the fluorescence that is observed is only from the group that was excited and is narrowed. This permits the selective study of classes of ion sites within the ensemble. The concept is indicated schematically. By the use of a tunable laser, such as a dye laser, it is possible to vary the class of sites, defined by energy, that is excited and thereby study the important spectroscopic properties and their variations, unclouded by the averaging that occurs under excitation of the entire system. Furthermore, it is then possible to use the spectroscopic information to infer a description of the variation of the microscopic environment, and a rationalization of the effects of compositional changes. Use of a pulsed dye laser and time-resolved detection permits the study of the dynamics, including, for example, the energy transfer among ions of different energies within the inhomogeneously-broadened spectrum. The goal of this project has been to apply such studies to glasses of interest to glass laser technology, providing information for device modeling, and establishing design criteria for glass selection

  6. Emission bands of phosphorus and calculation of band structure of rare earth phosphides

    International Nuclear Information System (INIS)

    Al'perovich, G.I.; Gusatinskij, A.N.; Geguzin, I.I.; Blokhin, M.A.; Torbov, V.I.; Chukalin, V.I.; AN SSSR, Moscow. Inst. Novykh Khimicheskikh Problem)

    1977-01-01

    The method of x-ray emission spectroscopy has been used to investigate the electronic structure of monophosphides of rare-earth metals (REM). The fluorescence K bands of phosphorus have been obtained in LaP, PrP, SmP, GdP, TbP, DyP, HoP, ErP, TmP, YbP, and LuP and also the Lsub(2,3) bands of phosphorus in ErP, TmP, YbP, and LuP. Using the Green function technique involving the muffin-tin potential, the energy spectrum for ErP has been calculated in the single-electron approximation. The hystogram of electronic state distribution N(E) is compared with the experimental K and Lsub(2,3) bands of phosphorus in ErP. The agreement between the main details of N(E) and that of x-ray spectra allows to state that the model used provides a good description of the electron density distribution in crystals of REM monophosphides. In accordance with the character of the N(E) distribution the compounds under study are classified as semimetals or semiconductors with a very narrow forbidden band

  7. New EB curing system for narrow web, using Min-EB

    International Nuclear Information System (INIS)

    Nakamura, Tetsuhisa; Tominaga, Hiroshi; Oizumi, Kei

    2003-01-01

    We, TOYO INK, developed the new equipment of EB curing system for narrow web composed of vacuum tube-type electron beam irradiation apparatus called Min-EB which is specialized with ultra-low voltage, 50-60 KV, and not damaging against the substrate. The new development is very small size, 66 cm width, 64 cm depth, 80 cm height and convenient to install into printing and coating machines. Several tubes, Min-EB, are assembled to be multi-tube module, called MTM, to easily handle. Basically we can change the irradiation width and printing and coating speed by increasing MTM due to the sheet size and printing and coating condition. We got good results, showing high density for the printed film, after used new EB curing system. (author)

  8. Narrow plasmon resonances enabled by quasi-freestanding bilayer epitaxial graphene

    Science.gov (United States)

    Daniels, Kevin M.; Jadidi, M. Mehdi; Sushkov, Andrei B.; Nath, Anindya; Boyd, Anthony K.; Sridhara, Karthik; Drew, H. Dennis; Murphy, Thomas E.; Myers-Ward, Rachael L.; Gaskill, D. Kurt

    2017-06-01

    Exploiting the underdeveloped terahertz range (~1012-1013 Hz) of the electromagnetic spectrum could advance many scientific fields (e.g. medical imaging for the identification of tumors and other biological tissues, non-destructive evaluation of hidden objects or ultra-broadband communication). Despite the benefits of operating in this regime, generation, detection and manipulation have proven difficult, as few materials have functional interactions with THz radiation. In contrast, graphene supports resonances in the THz regime through structural confinement of surface plasmons, which can lead to enhanced absorption. In prior work, the achievable plasmon resonances in such structures have been limited by multiple electron scattering mechanisms (i.e. large carrier scattering rates) which greatly broaden the resonance (>100 cm-1 3 THz). We report the narrowest room temperature Drude response to-date, 30 cm-1 (0.87 THz), obtained using quasi-free standing bilayer epitaxial graphene (QFS BLG) synthesized on (0 0 0 1)6H-SiC. This narrow response is due to a 4-fold increase in carrier mobility and improved thickness and electronic uniformity of QFS BLG. Moreover, QFS BLG samples patterned into microribbons targeting 1.8-5.7 THz plasmon resonances also exhibit low scattering rates (37-53 cm-1). Due to the improved THz properties of QFS BLG, the effects of e-beam processing on carrier scattering rates was determined and we found that fabrication conditions can be tuned to minimize the impact on optoelectronic properties. In addition, electrostatic gating of patterned QFS BLG shows narrow band THz amplitude modulation. Taken together, these properties of QFS BLG should facilitate future development of THz optoelectronic devices for monochromatic applications.

  9. Hyperspectral band selection based on consistency-measure of neighborhood rough set theory

    International Nuclear Information System (INIS)

    Liu, Yao; Xie, Hong; Wang, Liguo; Tan, Kezhu; Chen, Yuehua; Xu, Zhen

    2016-01-01

    Band selection is a well-known approach for reducing dimensionality in hyperspectral imaging. In this paper, a band selection method based on consistency-measure of neighborhood rough set theory (CMNRS) was proposed to select informative bands from hyperspectral images. A decision-making information system was established by the reflection spectrum of soybeans’ hyperspectral data between 400 nm and 1000 nm wavelengths. The neighborhood consistency-measure, which reflects not only the size of the decision positive region, but also the sample distribution in the boundary region, was used as the evaluation function of band significance. The optimal band subset was selected by a forward greedy search algorithm. A post-pruning strategy was employed to overcome the over-fitting problem and find the minimum subset. To assess the effectiveness of the proposed band selection technique, two classification models (extreme learning machine (ELM) and random forests (RF)) were built. The experimental results showed that the proposed algorithm can effectively select key bands and obtain satisfactory classification accuracy. (paper)

  10. The band gap variation of a two dimensional binary locally resonant structure in thermal environment

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-01-01

    Full Text Available In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap. A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.

  11. Cardiac imaging systems and methods employing computerized tomographic scanning

    International Nuclear Information System (INIS)

    Richey, J.B.; Wake, R.H.; Walters, R.G.; Hunt, W.F.; Cool, S.L.

    1980-01-01

    The invention relates to cardiac imaging systems and methods employing computerised tomographic scanning. Apparatus is described which allows an image of the radiation attenuation of the heart at a desired phase of the cardiac cycle. The patients ECG signal can be used in a transverse-and-rotate type CT scanner as a time base, so that the beam reaches the heart at a desired phase of the cardiac cycle, or, in a purely rotational-type CT scanner continuously generated scan data is only stored for corresponding phases of successive cardiac cycles. Alternatively, gating of the beams themselves by shuttering or switching the power supply can be controlled by the ECG signal. A pacemaker is used to stabilize the cardiac period. Also used is a system for recognising unacceptable variations in the cardiac period and discarding corresponding scan data. In a transverse-and-rotate type fan-beam CT scanner, the effective beam width is narrowed to reduce the duration of the traverse of the heart. (U.K.)

  12. Realization of an X-Band RF System for LCLS

    CERN Document Server

    McIntosh, Peter; Brooks, William; Emma, Paul; Rago, Carl

    2005-01-01

    A single X-band (11.424 GHz) accelerating structure is to be incorporated in the LCLS Linac design to linearize the energy-time correlation (or gradient) across each bunch, features which originate in the preceding accelerating structures (L0 and L1). This harmonic RF system will operate near the negative RF crest to decelerate the beam, reducing these non-linear components of the correlation, providing a more efficient compression in the downstream bunch compressor chicanes (BC1 and BC2). These non-linear correlation components, if allowed to grow, would lead to Coherent Synchrotron Radiation (CSR) instabilities in the chicanes, effectively destroying the coherence of the photon radiation in the main LCLS undulator. The many years devoted at SLAC in the development of X-band RF components for the NLC/JLC linear collider project, has enabled the technical and financial realization of such an RF system for LCLS. This paper details the requirements for the X-band system and the proposed scheme planned for achie...

  13. Advanced structural multimodal imaging of a patient with subcortical band heterotopia.

    Science.gov (United States)

    Kini, Lohith G; Nasrallah, Ilya M; Coto, Carlos; Ferraro, Lindsay C; Davis, Kathryn A

    2016-12-01

    Subcortical band heterotopia (SBH) is a disorder of neuronal migration most commonly due to mutations of the Doublecortin (DCX) gene. A range of phenotypes is seen, with most patients having some degree of epilepsy and intellectual disability. Advanced diffusion and structural magnetic resonance imaging (MRI) sequences may be useful in identifying heterotopias and dysplasias of different sizes in drug-resistant epilepsy. We describe a patient with SBH and drug-resistant epilepsy and investigate neurite density, neurite dispersion, and diffusion parameters as compared to a healthy control through the use of multiple advanced MRI modalities. Neurite density and dispersion in heterotopia was found to be more similar to white matter than gray matter. Neurite density and dispersion maps obtained using diffusion imaging may be able to better characterize different subtypes of heterotopia.

  14. Huge operation by energy gap of novel narrow band gap Tl1-x In1-x B x Se2 (B = Si, Ge): DFT, x-ray emission and photoconductivity studies

    Science.gov (United States)

    Piasecki, M.; Myronchuk, G. L.; Zamurueva, O. V.; Khyzhun, O. Y.; Parasyuk, O. V.; Fedorchuk, A. O.; Albassam, A.; El-Naggar, A. M.; Kityk, I. V.

    2016-02-01

    It is shown that narrow band gap semiconductors Tl1-x In1-x GexSe2 are able effectively to vary the values of the energy gap. DFT simulations of the principal bands during the cationic substitutions is done. Changes of carrier transport features is explored. Relation with the changes of the near the surface states is explored . Comparison on a common energy scale of the x-ray emission Se Kβ 2 bands, representing energy distribution of the Se 4p states, indicates that these states contribute preliminary to the top of the valence band. The temperature dependence of electrical conductivity and spectral dependence photoconductivity for the Tl1-x In1-x Ge x Se2 and Tl1-x In1-x Si x Se2 single crystals were explored and compared with previously reported Tl1-x In1-x Sn x Se2. Based on our investigations, a model of centre re-charging is proposed. Contrary to other investigated crystals in Tl1-x In1-x Ge x Se2 single crystals for x = 0.1 we observe extraordinarily enormous photoresponse, which exceed more than nine times the dark current. X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces of Tl1-x In1-x GexSe2 (x = 0.1 and 0.2) single crystals have been studied. These results indicate that the relatively low hygroscopicity of the studied single crystals is typical for the Tl1-x In1-x Ge x Se2 crystals, a property that is very important for handling these quaternary selenides as infrared materials operating at ambient conditions.

  15. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  16. Pair Formation of Hard Core Bosons in Flat Band Systems

    Science.gov (United States)

    Mielke, Andreas

    2018-05-01

    Hard core bosons in a large class of one or two dimensional flat band systems have an upper critical density, below which the ground states can be described completely. At the critical density, the ground states are Wigner crystals. If one adds a particle to the system at the critical density, the ground state and the low lying multi particle states of the system can be described as a Wigner crystal with an additional pair of particles. The energy band for the pair is separated from the rest of the multi-particle spectrum. The proofs use a Gerschgorin type of argument for block diagonally dominant matrices. In certain one-dimensional or tree-like structures one can show that the pair is localised, for example in the chequerboard chain. For this one-dimensional system with periodic boundary condition the energy band for the pair is flat, the pair is localised.

  17. Wake-based ship route estimation in high-resolution SAR images

    Science.gov (United States)

    Graziano, M. Daniela; Rufino, Giancarlo; D'Errico, Marco

    2014-10-01

    This paper presents a novel algorithm for wake detection in Synthetic Aperture Radar images of the sea. The algorithm has been conceived as part of a ship traffic monitoring system, in charge of ship detection validation and to estimate ship route features, such as heading and ground speed. In addition, it has been intended to be adequate for inclusion in an automatic procedure without human operator supervision. The algorithm exploits the Radon transform to identify the images ship wake on the basis of the well known theoretical characteristics of the wakes' geometry and components, that are the turbulent wake, the narrow-V wakes, and the Kelvin arms, as well as the typical appearance of such components in Synthetic Aperture Radar images of the sea as bright or dark linear feature. Examples of application to high-resolution X-band Synthetic Aperture Radar products (COSMOSkymed and TerraSAR-X) are reported, both for wake detection and ship route estimation, showing the achieved quality and reliability of wake detection, adequacy to automatic procedures, as well as speed measure accuracy.

  18. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder

    Science.gov (United States)

    August, Isaac; Oiknine, Yaniv; Abuleil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-03-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.

  19. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2008-04-01

    Full Text Available Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray CT method using white X-ray source and energy discriminated X-ray imager by using two monochrome X-ray source method. The measurement phantom was prepared as four kinds material rods (Carbon(C, Iron(Fe, Copper(Cu, Titanium(Ti rods of 3mm-diameter inside an aluminum(Al rod of 20mm-diameter. We could observed material discriminated X-ray CT reconstructed image, however, the discrimination properties were not good than two monochrome X-ray CT method. This results was could be explained because X-ray scattering, beam-hardening and so on based on white X-ray source, which could not observe in two monochrome X-ray CT method. However, since our developed CdTe imager can be detect five energy-bands at the same time, we can use multi-band analysis to decrease the least square error margin. We will be able to obtain more high separation in atomic number mapping in X-ray CT reconstructed image by using this system.

  20. Terra MODIS Band 27 Electronic Crosstalk Effect and Its Removal

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Madhavan, Sriharsha; Wenny, Brian

    2012-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the NASA Earth Observing System (EOS). The first MODIS instrument was launched in December, 1999 on-board the Terra spacecraft. MODIS has 36 bands, covering a wavelength range from 0.4 micron to 14.4 micron. MODIS band 27 (6.72 micron) is a water vapor band, which is designed to be insensitive to Earth surface features. In recent Earth View (EV) images of Terra band 27, surface feature contamination is clearly seen and striping has become very pronounced. In this paper, it is shown that band 27 is impacted by electronic crosstalk from bands 28-30. An algorithm using a linear approximation is developed to correct the crosstalk effect. The crosstalk coefficients are derived from Terra MODIS lunar observations. They show that the crosstalk is strongly detector dependent and the crosstalk pattern has changed dramatically since launch. The crosstalk contributions are positive to the instrument response of band 27 early in the mission but became negative and much larger in magnitude at later stages of the mission for most detectors of the band. The algorithm is applied to both Black Body (BB) calibration and MODIS L1B products. With the crosstalk effect removed, the calibration coefficients of Terra MODIS band 27 derived from the BB show that the detector differences become smaller. With the algorithm applied to MODIS L1B products, the Earth surface features are significantly removed and the striping is substantially reduced in the images of the band. The approach developed in this report for removal of the electronic crosstalk effect can be applied to other MODIS bands if similar crosstalk behaviors occur.

  1. Quad-Band U-Slot Antenna for Mobile Applications

    Directory of Open Access Journals (Sweden)

    R. L. Ruiz

    2006-06-01

    Full Text Available In this paper, two different planar quad-band antennas are designed, modeled, fabricated and measured. Subsequently, the antennas are redesigned using an electromagnetic band gap substrate (EBG. Those new planar antennas operate in four frequency bands: 900 MHz, 1 800 MHz (both GSM, 1 900 MHz (USA and 2 400 to 2 500 MHz (Bluetooth The antenna has four narrow U-shaped slots etched to the patch. Using software, CST Microwave Studio [1], Zeland IE3D [2], and FEMLAB [3], simulations have been carried out to investigate the antenna's performance and characteristics. The antennas designed have been also built and measured to compare the real results with those obtained from the simulations.

  2. In vivo inflammation mapping of periodontal disease based on diffuse reflectance spectral imaging: a clinical study

    Science.gov (United States)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Jayanthi, Jayaraj L.; Nisha, Unni G.; Prasantila, Janam; Subhash, Narayanan

    2013-02-01

    Since conventional techniques using periodontal probes have inherent drawbacks in the diagnosis of different grades of gingival inflammation, development of noninvasive screening devices becomes significant. Diffuse reflectance (DR) spectra recorded with white light illumination is utilized to detect periodontal inflammation from the oxygenated hemoglobin absorption ratio R620/R575. A multispectral imaging system is utilized to record narrow-band DR images at 575 and 620 nm from the anterior sextant of the gingivia of 15 healthy volunteers and 25 patients (N=40). An experienced periodontist assesses the level of gingival inflammation at each site through periodontal probing and assigns diagnosis as healthy, mild, moderate, or severe inflammation. The DR image ratio R620/R575 computed for each pixel (8-μm resolution) from the monochrome images is pseudo-color-mapped to identify gingival inflammation sites. The DR image ratio values at each site are compared with clinical diagnosis to estimate the specificity and sensitivity of the DR imaging technique in inflammation mapping. The high diagnostic accuracy is utilized to detect underlying inflammation in six patients with a previous history of periodontitis.

  3. Tunable band gap emission and surface passivation of germanium nanocrystals synthesized in the gas phase

    NARCIS (Netherlands)

    Wheeler, LM; Levij, L.M.; Kortshagen, U.R.

    2013-01-01

    The narrow bulk band gap and large exciton Bohr radius of germanium (Ge) make it an attractive material for optoelectronics utilizing band-gap-tunable photoluminescence (PL). However, realization of PL due to quantum confinement remains scarcely reported. Instead, PL is often observed from surface

  4. Electron and hole states in quantum dot quantum wells within a spherical eight-band model

    NARCIS (Netherlands)

    Pokatilov, E.P.; Fonoberov, V.A.; Fomin, V.; Devreese, J.T.

    2001-01-01

    In order to study heterostructures composed both of materials with strongly different parameters and of materials with narrow band gaps, we have developed an approach [E. P. Pokatilov [etal], Phys. Rev. B 64, 245328 (2001), (preceding paper)], which combines the spherical eight-band effective-mass

  5. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    International Nuclear Information System (INIS)

    Aly, Arafa H; Mehaney, Ahmed

    2016-01-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification. (paper)

  6. Multi-Frequency Encoding for Fast Color Flow or Quadroplex Imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    Ultrasonic color flow maps are made by estimating the velocities line by line over the region of interest. For each velocity estimate, multiple repetitions are needed. This sets a limit on the frame rate, which becomes increasingly severe when imaging deeper lying structures or when simultaneously...... acquiring spectrogram data for triplex imaging. This paper proposes a method for decreasing the data acquisition time by simultaneously sampling multiple lines for color flow maps, using narrow band signals with approximately disjoint spectral support. The signals are separated in the receiver by filters....... A mean standard deviation across the flow profile of 3.1, 2.5, and 2.1% of the peak velocity was found for bands at 5 MHz, 7 MHz, and 9 MHz, respectively. Alternatively, the method can be used for simultaneously sampling data for a color flow map and for multiple spectrograms using different spectral...

  7. Real-space description of semiconducting band gaps in substitutional systems

    International Nuclear Information System (INIS)

    Magri, R.; Zunger, A.

    1991-01-01

    The goal of ''band-gap engineering'' in substitutional lattices is to identify atomic configurations that would give rise to a desired value of the band gap. Yet, current theoretical approaches to the problems, based largely on compilations of band structures for various latice configurations, have not yielded simple rules relating structural motifs to band gaps. We show that the band gap of substitutional AlAs/GaAs lattices can be usefully expanded in terms of a hierarchy of contributions from real-space ''atomic figures'' (pairs, triplets, quadruplets) detemined from first-principles band-structure calculations. Pair figures (up to fourth neighbors) and three-body figures are dominant. In analogy with similar cluster expansions of the total energy, this permits a systematic search among all lattice configurations for those having ''special'' band gaps. This approach enables the design of substitutional systems with certain band-gap properties by assembling atomic figures. As an illustration, we predict that the [0 bar 12]-oriented (AlAs) 1 /(GaAs) 4 /(AlAs) 1 /(GaAs) 2 superlattice has the largest band gap among all Al 0.25 Ga 0.75 As lattices with a maximum of ten cations per unit cell

  8. Wide-band cable systems at SLAC

    International Nuclear Information System (INIS)

    Struven, W.

    1983-01-01

    SLAC's first cable TV system was installed in 1979 to remotely monitor a narrow pulse which was generated in the west end of the klystron gallery. When Stanford Linear Collider (SLC) experimental work started at the west end of the accelerator, the original 1979 cable was upgraded to a bidirectional system so that 2 MBaud point-to-point data and several video and 9600 baud channels could be transmitted. The implementation of the SLC requires a complete upgrading of the accelerator control system. The system is based on a distributed processing configuration using a PDP11/780 VAX in the Main Control Center (MCC) and Intel single-board computers in a multibus configuration along the accelerator. The high-speed data linking is supplied by a 1 MBaud Time Division Multiple Access (TDMA) Network. The same cable is used to provide video, low-speed data, voice and high-speed point-to-point data services. The transmission system will utilize a wideband midsplit cable facility to collect and distribute signals to all parts of the network

  9. Crosstalk effect and its mitigation in Aqua MODIS middle wave infrared bands

    Science.gov (United States)

    Sun, Junqiang; Madhavan, Sriharsha; Wang, Menghua

    2017-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on-board the Terra spacecraft. A follow on MODIS was launched on an afternoon orbit in 2002 and is aboard the Aqua spacecraft. Both MODIS instruments are very akin, has 36 bands, among which bands 20 to 25 are Middle Wave Infrared (MWIR) bands covering a wavelength range from approximately 3.750 μm to 4.515 μm. It was found that there was severe contamination in these bands early in mission but the effect has not been characterized and mitigated at the time. The crosstalk effect induces strong striping in the Earth View (EV) images and causes significant retrieval errors in the EV Brightness Temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect and successfully applied to mitigate the effect in both Terra and Aqua MODIS Long Wave Infrared (LWIR) Photovoltaic (PV) bands. In this paper, the crosstalk effect in the Aqua MWIR bands is investigated and characterized by deriving the crosstalk coefficients using the scheduled Aqua MODIS lunar observations for the MWIR bands. It is shown that there are strong crosstalk contaminations among the five MWIR bands and they also have significant crosstalk contaminations from Short Wave Infrared (SWIR) bands. The crosstalk correction algorithm previously developed is applied to correct the crosstalk effect in these bands. It is demonstrated that the crosstalk correction successfully reduces the striping in the EV images and improves the accuracy of the EV BT in the five bands as was done similarly for LWIR PV bands. The crosstalk correction algorithm should thus be applied to improve both the image quality and radiometric accuracy of the Aqua MODIS MWIR bands Level 1B (L1B) products.

  10. Selenium, zinc, copper, Cu/Zn ratio and total antioxidant status in the serum of vitiligo patients treated by narrow-band ultraviolet-B phototherapy.

    Science.gov (United States)

    Wacewicz, Marta; Socha, Katarzyna; Soroczyńska, Jolanta; Niczyporuk, Marek; Aleksiejczuk, Piotr; Ostrowska, Jolanta; Borawska, Maria H

    2018-03-01

    Vitiligo is a chronic, depigmenting skin disorder, whose pathogenesis is still unknown. Narrow band ultraviolet-B (NB-UVB) is now one of the most widely used treatment of vitiligo. It was suggested that trace elements may play a role in pathogenesis of vitiligo. The aim of this study was to estimate the concentration of selenium (Se), zinc (Zn), copper (Cu) and Cu/Zn ratio as well as total antioxidant status (TAS) in the serum of patients with vitiligo. We assessed 50 patients with vitiligo and 58 healthy controls. Serum levels of Se, Zn and Cu were determined by the atomic absorption spectrometry method, and the Cu/Zn ratio was also calculated. TAS in serum was measured spectrophotometrically. Serum concentration of Se in patients with vitiligo before and after phototherapy was significantly lower as compared to the control group. Zn level in the serum of patients decreased significantly after phototherapy. We observed higher Cu/Zn ratio (p vitiligo patients after NB-UVB. The current study showed some disturbances in the serum levels of trace elements and total antioxidant status in vitiligo patients.

  11. Band alignment of type I at (100ZnTe/PbSe interface

    Directory of Open Access Journals (Sweden)

    Igor Konovalov

    2016-06-01

    Full Text Available A junction of lattice-matched cubic semiconductors ZnTe and PbSe results in a band alignment of type I so that the narrow band gap of PbSe is completely within the wider band gap of ZnTe. The valence band offset of 0.27 eV was found, representing a minor barrier during injection of holes from PbSe into ZnTe. Simple linear extrapolation of the valence band edge results in a smaller calculated band offset, but a more elaborate square root approximation was used instead, which accounts for parabolic bands. PbSe was electrodeposited at room temperature with and without Cd2+ ions in the electrolyte. Although Cd adsorbs at the surface, the presence of Cd in the electrolyte does not influence the band offset.

  12. Systematic study on intermolecular valence-band dispersion in molecular crystalline films

    International Nuclear Information System (INIS)

    Yamane, Hiroyuki; Kosugi, Nobuhiro

    2015-01-01

    Highlights: • Intermolecular valence-band dispersion of crystalline films of phthalocyanines. • Intermolecular transfer integral versus lattice constant. • Site-specific intermolecular interaction and resultant valence-band dispersion. • Band narrowing effect induced by elevated temperature. - Abstract: Functionalities of organic semiconductors are governed not only by individual properties of constituent molecules but also by solid-state electronic states near the Fermi level such as frontier molecular orbitals, depending on weak intermolecular interactions in various conformations. The individual molecular property has been widely investigated in detail; on the other hand, the weak intermolecular interaction is difficult to investigate precisely due to the presence of the structural and thermal energy broadenings in organic solids. Here we show quite small but essential intermolecular valence band dispersions and their temperature dependence of sub-0.1-eV scale in crystalline films of metal phthalocyanines (H_2Pc, ZnPc, CoPc, MnPc, and F_1_6ZnPc) by using angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. The observed bands show intermolecular and site dependent dispersion widths, phases, and periodicities, for different chemical substitution of terminal groups and central metals in the phthalocyanine molecule. The precise and systematic band-dispersion measurement would be a credible approach toward the comprehensive understanding of intermolecular interactions and resultant charge transport properties as well as their tuning by substituents in organic molecular systems.

  13. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    Science.gov (United States)

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  14. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua; Sha, Yi-Gao

    1995-01-01

    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  15. Fine structure of the amide i band in acetanilide

    Science.gov (United States)

    Careri, G.; Gratton, E.; Shyamsunder, E.

    1988-05-01

    Their absorption spectrum of both single crystals and powdered samples of acetanilide (a model system for proteins) has been studied in the amide i region, where a narrow band has been identified as a highly trapped soliton state. The powder-sample spectra have been decomposed using four Lorentzian bands. A strong temperature dependence has been found for the intensity of two of the subbands, which also show a complementary behavior. Polarization studies performed on thin crystals have shown that the subbands have the same polarization. Low-temperature spectra of partially deuterated samples show the presence of the subbands at the same absorption frequencies found using the fitting procedure in the spectra of nondeuterated samples. The soliton model currently proposed to explain the origin of the anomalous amide i component at 1650 cm-1 still holds, but some modification of the model is required to account for the new features revealed by this study.

  16. Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

    Science.gov (United States)

    Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony

    2016-01-01

    As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.

  17. Design of two-DMD based zoom MW and LW dual-band IRSP using pixel fusion

    Science.gov (United States)

    Pan, Yue; Xu, Xiping; Qiao, Yang

    2018-06-01

    In order to test the anti-jamming ability of mid-wave infrared (MWIR) and long-wave infrared (LWIR) dual-band imaging system, a zoom mid-wave (MW) and long-wave (LW) dual-band infrared scene projector (IRSP) based on two-digital micro-mirror device (DMD) was designed by using a projection method of pixel fusion. Two illumination systems, which illuminate the two DMDs directly with Kohler telecentric beam respectively, were combined with projection system by a spatial layout way. The distances of projection entrance pupil and illumination exit pupil were also analyzed separately. MWIR and LWIR virtual scenes were generated respectively by two DMDs and fused by a dichroic beam combiner (DBC), resulting in two radiation distributions in projected image. The optical performance of each component was evaluated by ray tracing simulations. Apparent temperature and image contrast were demonstrated by imaging experiments. On the basis of test and simulation results, the aberrations of optical system were well corrected, and the quality of projected image meets test requirements.

  18. 77 FR 48097 - Operation of Radar Systems in the 76-77 GHz Band

    Science.gov (United States)

    2012-08-13

    ... modify the emission limits for vehicular radar systems operating within the 76-77 GHz band. Specifically.... 15.253 of the rules for vehicular radar systems operating in the 76-77 GHz band. Vehicular radars can... sensors operating in the 76-77 GHz band, the spectrum shall be investigated up to 231 GHz. (f) Fundamental...

  19. Forced convective boiling heat transfer of water in vertical rectangular narrow channel

    International Nuclear Information System (INIS)

    Chen, Chong; Gao, Pu-zhen; Tan, Si-chao; Chen, Han-ying; Chen, Xian-bing

    2015-01-01

    Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m 2 , a mass flux range of 200–2400 kg/m 2 s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively

  20. An optimization of the FPGA/NIOS adaptive FIR filter using linear prediction to reduce narrow band RFI for the next generation ground-based ultra-high energy cosmic-ray experiment

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Zbigniew, E-mail: zszadkow@kfd2.phys.uni.lodz.pl [University of Lodz, Department of Physics and Applied Informatics (Poland); Fraenkel, E.D. [Kernfysisch Versneller Instituut of the University of Groningen, Groningen (Netherlands); Glas, Dariusz; Legumina, Remigiusz [University of Lodz, Department of Physics and Applied Informatics (Poland)

    2013-12-21

    The electromagnetic part of an extensive air shower developing in the atmosphere provides significant information complementary to that obtained by water Cherenkov detectors which are predominantly sensitive to the muonic content of an air shower at ground. The emissions can be observed in the frequency band between 10 and 100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. The Auger Engineering Radio Array currently suppresses the RFI by multiple time-to-frequency domain conversions using an FFT procedure as well as by a set of manually chosen IIR notch filters in the time-domain. An alternative approach developed in this paper is an adaptive FIR filter based on linear prediction (LP). The coefficients for the linear predictor are dynamically refreshed and calculated in the virtual NIOS processor. The radio detector is an autonomous system installed on the Argentinean pampas and supplied from a solar panel. Powerful calculation capacity inside the FPGA is a factor. Power consumption versus the degree of effectiveness of the calculation inside the FPGA is a figure of merit to be minimized. Results show that the RFI contamination can be significantly suppressed by the LP FIR filter for 64 or less stages. -- Highlights: • We propose an adaptive method using linear prediction for periodic RFI suppression. • Requirements are the detection of short transient signals powered by solar panels. • The RFI is significantly suppressed by ∼70%, even in a very contaminated environment. • This method consumes less energy than the current method based on FFT used in AERA. • Distortion of the short transient signals is negligible.

  1. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U

    International Nuclear Information System (INIS)

    Zhang, Yubo; Zhang, Jiawei; Wang, Youwei; Gao, Weiwei; Abtew, Tesfaye A.; Zhang, Peihong; Zhang, Wenqing

    2013-01-01

    Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of the mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within ±0.2 eV

  2. Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity

    Science.gov (United States)

    Thurston, Cameron

    Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.

  3. Magnetic resonance imaging findings of central nervous system in lysosomal storage diseases: A pictorial review.

    Science.gov (United States)

    Fagan, Nathan; Alexander, Allen; Irani, Neville; Saade, Charbel; Naffaa, Lena

    2017-06-01

    Lysosomal storage diseases (LSD) are a complex group of genetic disorders that are a result of inborn errors of metabolism. These errors result in a variety of metabolic dysfunction and build-up certain molecules within the tissues of the central nervous system (CNS). Although, they have discrete enzymatic deficiencies, symptomology and CNS imaging findings can overlap with each other, which can become challenging to radiologists. The purpose of this paper is to review the most common CNS imaging findings in LSD in order to familiarize the radiologist with their imaging findings and help narrow down the differential diagnosis. © 2016 The Royal Australian and New Zealand College of Radiologists.

  4. Step width alters iliotibial band strain during running.

    Science.gov (United States)

    Meardon, Stacey A; Campbell, Samuel; Derrick, Timothy R

    2012-11-01

    This study assessed the effect of step width during running on factors related to iliotibial band (ITB) syndrome. Three-dimensional (3D) kinematics and kinetics were recorded from 15 healthy recreational runners during overground running under various step width conditions (preferred and at least +/- 5% of their leg length). Strain and strain rate were estimated from a musculoskeletal model of the lower extremity. Greater ITB strain and strain rate were found in the narrower step width condition (p running, especially in persons whose running style is characterized by a narrow step width, may be beneficial in the treatment and prevention of running-related ITB syndrome.

  5. Wide-band slow-wave systems simulation and applications

    CERN Document Server

    Staras, Stanislovas

    2012-01-01

    The field of electromagnetics has seen considerable advances in recent years, based on the wide applications of numerical methods for investigating electromagnetic fields, microwaves, and other devices. Wide-Band Slow-Wave Systems: Simulation and Applications presents new technical solutions and research results for the analysis, synthesis, and design of slow-wave structures for modern electronic devices with super-wide pass-bands. It makes available, for the first time in English, significant research from the past 20 years that was previously published only in Russian and Lithuanian. The aut

  6. Effect of correlation on the band structure of α-cerium

    International Nuclear Information System (INIS)

    Rao, R.S.; Singh, R.P.

    1975-01-01

    The electronic band structure of f.c.c. phase of the rare earth metal cerium (α-cerium) has been calculated using a formulation of the crystal potential where correlation also has been included in addition to exchange. The Green's function method of Korringa-Kohn and Rostoker has been used due to obvious advantages in calculation. The calculations indicate that the s-d bands are hybridized with the f-levels but the f-bands are fairly narrow and lie slightly above the Fermi level. The structure of the bands is qualitatively similar to those of calculations by others except for a general shift of the entire set of bands by about 0.1 Ryd. Thd density of states has also been calculated from the bands obtained. The spin susceptibility of α-cerium has also been calculated using the Kohn-Sham method. However, the calculated additional contributions to the band structure values cannot still explain the large experimental values reported in the literature. (author)

  7. Imaging sunlight using a digital spectroheliograph

    CERN Document Server

    Harrison, Ken M

    2016-01-01

    Ken M. Harrison's latest book is a complete guide for amateur astronomers who want to obtain detailed narrowband images of the Sun using a digital spectroheliograph (SHG). The SHG allows the safe imaging of the Sun without the expense of commercial ‘etalon’ solar filters. As the supporting software continues to be refined, the use of the digital spectroheliograph will become more and more mainstream and has the potential to replace the expensive solar filters currently in use. The early chapters briefly explain the concept of the SHG and how it can produce an image from the solar spectrum. A comparison of the currently available narrow band solar filters is followed by a detailed analysis of the critical design, construction and assembly features of the SHG. The design and optimum layout of the instrument is discussed to allow evaluation of performance. This information explains how to assemble a fully functional SHG using readily available components. The software required to process the images is exp...

  8. Power Amplifier Design for E-band Wireless System Communications

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan; Krozer, Viktor; Johansen, Tom Keinicke

    2008-01-01

    E-band wireless communications will become important as the microwave backhaul for high-speed data transmission. One of the most critical components is the front-end power amplifier in this system. The paper analyzes different technologies with potential in the E-band frequency range and present...... a power amplifier design satisfying the E-band system specifications. The designed power amplifier achieves a maximum output power of ges 20 dBm with a state-of-the-art power-added efficiency of 15%. The power is realized using InP DHBT technology. To the best of our knowledge it is the highest output...... power and efficiency reported for an InP HBT power amplifier in this frequency range. The predicted power-added efficiency is higher than that of power amplifiers based on SiGe HBT and GaAs pHEMT technologies. The design shows the capabilities of InP DHBT for power amplifier applications...

  9. Towards eye-safe standoff Raman imaging systems

    Science.gov (United States)

    Glimtoft, Martin; Bââth, Petra; Saari, Heikki; Mäkynen, Jussi; Näsilä, Antti; Östmark, Henric

    2014-05-01

    Standoff Raman imaging systems have shown the ability to detect single explosives particles. However, in many cases, the laser intensities needed restrict the applications where they can be safely used. A new generation imaging Raman system has been developed based on a 355 nm UV laser that, in addition to eye safety, allows discrete and invisible measurements. Non-dangerous exposure levels for the eye are several orders of magnitude higher in UVA than in the visible range that previously has been used. The UV Raman system has been built based on an UV Fabry-Perot Interferometer (UV-FPI) developed by VTT. The design allows for precise selection of Raman shifts in combination with high out-of-band blocking. The stable operation of the UV-FPI module under varying environmental conditions is arranged by controlling the temperature of the module and using a closed loop control of the FPI air gap based on capacitive measurement. The system presented consists of a 3rd harmonics Nd:YAG laser with 1.5 W average output at 1000 Hz, a 200 mm Schmidt-Cassegrain telescope, UV-FPI filter and an ICCD camera for signal gating and detection. The design principal leads to a Raman spectrum in each image pixel. The system is designed for field use and easy manoeuvring. Preliminary results show that in measurements of <60 s on 10 m distance, single AN particles of <300 μm diameter can be identified.

  10. VizieR Online Data Catalog: Kepler follow-up observation program. I. Imaging (Furlan+, 2017)

    Science.gov (United States)

    Furlan, E.; Ciardi, D. R.; Everett, M. E.; Saylors, M.; Teske, J. K.; Horch, E. P.; Howell, S. B.; van Belle, G. T.; Hirsch, L. A.; Gautier, T. N.; Adams, E. R.; Barrado, D.; Cartier, K. M. S.; Dressing, C. D.; Dupree, A. K.; Gilliland, R. L.; Lillo-Box, J.; Lucas, P. W.; Wang, J.

    2017-07-01

    We present results from six years of follow-up imaging observations of KOI host stars, including work done by teams from the Kepler Community Follow-up Observation Program (CFOP; https://exofop.ipac.caltech.edu/cfop.php) and by other groups. Several observing facilities were used to obtain high-resolution images of KOI host stars. Table1 lists the various telescopes, instruments used, filter bandpasses, typical Point Spread Function (PSF) widths, number of targets observed, and main references for the published results. The four main observing techniques employed are adaptive optics (Keck, Palomar, Lick, MMT), speckle interferometry (Gemini North, WIYN, DCT), lucky imaging (Calar Alto), and imaging from space with HST. A total of 3557 KOI host stars were observed at 11 facilities with 9 different instruments, using filters from the optical to the near-infrared. In addition, 10 of these stars were also observed at the 8m Gemini North telescope by Ziegler et al. 2016 (AJ accepted, arXiv:1605.03584) using laser guide star adaptive optics. The largest number of KOI host stars (3320) were observed using Robo-AO at the Palomar 1.5m telescope (Baranec et al. 2014ApJ...790L...8B; Baranec et al. 2016, Cat. J/AJ/152/18; Law et al. 2014, Cat. J/ApJ/791/35; Ziegler et al. 2016, AJ accepted, arXiv:1605.03584). A total of 8332 observations were carried out from 2009 September to 2015 October covering 3557 stars. We carried out observations at the Keck, Palomar, and Lick Observatory using the facility adaptive optics systems and near-infrared cameras from 2009 to 2015. At Keck, we observed with the 10m Keck II telescope and Near-Infrared Camera, second generation (NIRC2). The pixel scale of NIRC2 was 0.01''/pixel, resulting in a field of view of about 10''*10''. We observed our targets in a narrow K-band filter, Brγ, which has a central wavelength of 2.1686μm. In most cases, when a companion was detected, we also observed the target in a narrow-band J filter, Jcont, which is

  11. Parallel exploitation of a spatial-spectral classification approach for hyperspectral images on RVC-CAL

    Science.gov (United States)

    Lazcano, R.; Madroñal, D.; Fabelo, H.; Ortega, S.; Salvador, R.; Callicó, G. M.; Juárez, E.; Sanz, C.

    2017-10-01

    Hyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVCCAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one-band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.

  12. Spin excitation and band-narrowing in AlxGa1-xAs heterostructures

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2010-01-01

    We studied the spin excitation in dependences of the applied electric field and lattice temperature (LT) via the measurements of the circularly polarized photoluminescence (CPPL) in Al x Ga 1-x As heterostructures (HSs). The intensity of CPPL was found to strongly depend on the electric field applied to the HSs. The CPPL was also found to enhance with decreasing LT. It was demonstrated that the observed LT dependence might be due to the LT-dependent band-gap shift of the HS materials.

  13. Narrow n anti n resonances

    International Nuclear Information System (INIS)

    Bogdanova, L.N.; Dalkarov, O.D.; Kerbikov, B.O.; Shapiro, I.S.

    1975-01-01

    The present status of the problem of quasinuclear states in systems of nucleons and antinucleons is reviewed. The theoretical predictions are compared with experimental data on narrow meson resonances near N anti N threshold which appeared in 1971-74

  14. Effect of conduction band nonparabolicity on the optical properties in ...

    Indian Academy of Sciences (India)

    the bulk conduction band edge, the correction due to nonparabolicity can be important. [9,10]. In a narrow QW under a strong magnetic field, the optical absorption coefficients calculated with the nonparabolicity correction shows remarkable deviation from results obtained using parabolic energy approximation [11].

  15. Optical properties of ZnTe epilayers with submonolayer planar narrow gap inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Agekian, V. F.; Filosofov, N. G., E-mail: n.filosofov@spbu.ru; Serov, A. Yu. [St. Petersburg State University, Universitetskaya nab. 7 – 9, 199034 Si. Petersburg (Russian Federation); Shtrom, I. V. [St. Petersburg State University, Universitetskaya nab. 7 – 9, 199034 Si. Petersburg (Russian Federation); Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); St. Petersburg Academic University — Nanotechnology Research and Education Centre, Russian Academy of Sciences, Khlopina 8/3, 194021 St. Petersburg (Russian Federation); Karczewski, G. [Institute of Physics Polish Academy of Science, Ał. Lotnikov 32/46, 02-668 Warsaw (Poland)

    2016-06-17

    The exciton luminescence of ZnTe matrices with the embedded CdTe submonolayer inclusions is investigated. It is shown that the exciton localized by CdTe narrow gap component dominates in the emission spectrum. These localized excitons are coupled mainly with the phonons belonging to the cadmium enriched layers. The real distribution of cadmium in the direction of the heterostructure growth is determined from the energy position of the localized exciton emission bands.

  16. Development of an ultra wide band microwave radar based footwear scanning system

    Science.gov (United States)

    Rezgui, Nacer Ddine; Bowring, Nicholas J.; Andrews, David A.; Harmer, Stuart W.; Southgate, Matthew J.; O'Reilly, Dean

    2013-10-01

    At airports, security screening can cause long delays. In order to speed up screening a solution to avoid passengers removing their shoes to have them X-ray scanned is required. To detect threats or contraband items hidden within the shoe, a method of screening using frequency swept signals between 15 to 40 GHz has been developed, where the scan is carried out whilst the shoes are being worn. Most footwear is transparent to microwaves to some extent in this band. The scans, data processing and interpretation of the 2D image of the cross section of the shoe are completed in a few seconds. Using safe low power UWB radar, scattered signals from the shoe can be observed which are caused by changes in material properties such as cavities, dielectric or metal objects concealed within the shoe. By moving the transmission horn along the length of the shoe a 2D image corresponding to a cross section through the footwear is built up, which can be interpreted by the user, or automatically, to reveal the presence of concealed threat within the shoe. A prototype system with a resolution of 6 mm or less has been developed and results obtained for a wide range of commonly worn footwear, some modified by the inclusion of concealed material. Clear differences between the measured images of modified and unmodified shoes are seen. Procedures for enhancing the image through electronic image synthesis techniques and image processing methods are discussed and preliminary performance data presented.

  17. Portable, x-band, linear accelerator systems

    International Nuclear Information System (INIS)

    Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.

    1985-01-01

    Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for nondestructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz

  18. Portable, x-band, linear accelerator systems

    International Nuclear Information System (INIS)

    Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.

    1985-01-01

    Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for non-destructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz

  19. CMOS sensors for atmospheric imaging

    Science.gov (United States)

    Pratlong, Jérôme; Burt, David; Jerram, Paul; Mayer, Frédéric; Walker, Andrew; Simpson, Robert; Johnson, Steven; Hubbard, Wendy

    2017-09-01

    Recent European atmospheric imaging missions have seen a move towards the use of CMOS sensors for the visible and NIR parts of the spectrum. These applications have particular challenges that are completely different to those that have driven the development of commercial sensors for applications such as cell-phone or SLR cameras. This paper will cover the design and performance of general-purpose image sensors that are to be used in the MTG (Meteosat Third Generation) and MetImage satellites and the technology challenges that they have presented. We will discuss how CMOS imagers have been designed with 4T pixel sizes of up to 250 μm square achieving good charge transfer efficiency, or low lag, with signal levels up to 2M electrons and with high line rates. In both devices a low noise analogue read-out chain is used with correlated double sampling to suppress the readout noise and give a maximum dynamic range that is significantly larger than in standard commercial devices. Radiation hardness is a particular challenge for CMOS detectors and both of these sensors have been designed to be fully radiation hard with high latch-up and single-event-upset tolerances, which is now silicon proven on MTG. We will also cover the impact of ionising radiation on these devices. Because with such large pixels the photodiodes have a large open area, front illumination technology is sufficient to meet the detection efficiency requirements but with thicker than standard epitaxial silicon to give improved IR response (note that this makes latch up protection even more important). However with narrow band illumination reflections from the front and back of the dielectric stack on the top of the sensor produce Fabry-Perot étalon effects, which have been minimised with process modifications. We will also cover the addition of precision narrow band filters inside the MTG package to provide a complete imaging subsystem. Control of reflected light is also critical in obtaining the

  20. Design of a Narrow Bandwidth Bandpass Filter Using Compact Spiral Resonator with Chirality

    Directory of Open Access Journals (Sweden)

    Weiping Li

    2016-01-01

    Full Text Available In this article, a compact narrow-bandpass filter with high selectivity and improved rejection level is presented. For miniaturization, a pair of double negative (DNG cells consisting of quasi-planar chiral resonators are cascaded and electrically loaded to a microstrip transmission line; short ended stubs are introduced to expand upper rejection band. The structure is analyzed using equivalent circuit models and simulated based on EM simulation software. For validation, the proposed filter is fabricated and measured. The measured results are in good agreement with the simulated ones. By comparing to other filters in the references, it is shown that the proposed filter has the advantage of skirt selectivity and compact size, so it can be integrated more conveniently in modern wireless communication systems and microwave planar circuits.

  1. X-Band wave radar system for monitoring and risk management of the coastal infrastructures

    Science.gov (United States)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco

    2017-04-01

    The presence of the infrastructures in coastal region entails an increase of the sea level and the shift of the sediment on the bottom with a continuous change of the coastline. In order to preserve the coastline, it has been necessary to resort the use of applications coastal engineering, as the construction of the breakwaters for preventing the coastal erosion. In this frame, the knowledge of the sea state parameters, as wavelength, period and significant wave height and of surface current and bathymetry can be used for the harbor operations and to prevent environmental disasters. In the last years, the study of the coastal phenomena and monitoring of the sea waves impact on the coastal infrastructures through the analysis of images acquired by marine X-band radars is of great interest [1-3]. The possibility to observe the sea surface from radar images is due to the fact that the X-band electromagnetic waves interact with the sea capillary waves (Bragg resonance), which ride on the gravity waves. However, the image acquired by a X-band radar is not the direct representation of the sea state, but it represents the sea surface as seen by the radar. Accordingly, to estimate the sea state parameters as, direction, wavelength, period of dominant waves, the significant wave height as well as the bathymetry and surface current, through a time stack of radar data are required advanced data processing procedures. In particular, in the coastal areas due to the non-uniformity of sea surface current and bathymetry fields is necessary a local analysis of the sea state parameters. In order to analyze the data acquired in coastal area an inversion procedure defined "Local Method" is adopted, which is based on the spatial partitioning of the investigated area in partially overlapping sub-areas. In addition, the analysis of the sea spectrum of each sub-area allows us to retrieve the local sea state parameters. In particular, this local analysis allows us to detect the reflected

  2. Frame-less image-guided intracranial and extracranial radiosurgery using the Cyberknife robotic system

    International Nuclear Information System (INIS)

    Gibbs, I.C.

    2006-01-01

    The Cyberknife TM is an image-guided robotic radiosurgery system. The image guidance system includes a kilo-voltage X-ray imaging source and amorphous silica detectors. The radiation delivery device is a mobile X-band linear accelerator mounted onto a robotic arm. Through a highly complex interplay between the image guidance system, an automated couch, and the high-speed linear accelerator, near real-time tracking of the target is achieved. The Cyberknife TM gained Federal Drug Administration clearance in the United States in 2001 for treatment of tumors 'anywhere in the body where radiation treatment is indicated'. Because the Cyberknife TM system does not rely on rigid fixation of a stereotactic frame, tumors outside of the intracranial compartment, even those tumors that move with respiration can be treated with a similar degree of ease as intracranial targets. A description of the Cyberknife TM technology and a review of some of the current intracranial and extracranial applications are detailed herein. (author)

  3. Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications

    Science.gov (United States)

    2016-10-22

    AFRL-AFOSR-JP-TR-2016-0088 Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications Sheng-Kwang Hwang NATIONAL CHENG KUNG...2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 26 May 2015 to 25 May 2016 4. TITLE AND SUBTITLE Nonlinear Photonic Systems for V- and W-Band...TERMS nonlinear, photonic , antenna, remote, microwave, amplification, bandwith, modulation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR

  4. Craniofacial Manifestations of Systemic Disorders: CT and MR Imaging Findings and Imaging Approach.

    Science.gov (United States)

    Andreu-Arasa, V Carlota; Chapman, Margaret N; Kuno, Hirofumi; Fujita, Akifumi; Sakai, Osamu

    2018-01-01

    Many systemic diseases or conditions can affect the maxillofacial bones; however, they are often overlooked or incidentally found at routine brain or head and neck imaging performed for other reasons. Early identification of some conditions may significantly affect patient care and alter outcomes. Early recognition of nonneoplastic hematologic disorders, such as thalassemia and sickle cell disease, may help initiate earlier treatment and prevent serious complications. The management of neoplastic diseases such as lymphoma, leukemia, or Langerhans cell histiocytosis may be different if diagnosed early, and metastases to the maxillofacial bones may be the first manifestation of an otherwise occult neoplasm. Endocrinologic and metabolic disorders also may manifest with maxillofacial conditions. Earlier recognition of osteoporosis may alter treatment and prevent complications such as insufficiency fractures, and identification of acromegaly may lead to surgical treatment if there is an underlying growth hormone-producing adenoma. Bone dysplasias sometimes are associated with skull base foraminal narrowing and subsequent involvement of the cranial nerves. Inflammatory processes such as rheumatoid arthritis and sarcoidosis may affect the maxillofacial bones, skull base, and temporomandibular joints. Radiologists should be familiar with the maxillofacial computed tomographic and magnetic resonance imaging findings of common systemic disorders because these may be the first manifestations of an otherwise unrevealed systemic process with potential for serious complications. Online supplemental material is available for this article. © RSNA, 2018.

  5. Highly Tunable Narrow Bandpass MEMS Filter

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-07-07

    We demonstrate a proof-of-concept highly tunable narrow bandpass filter based on electrothermally and electrostatically actuated microelectromechanical-system (MEMS) resonators. The device consists of two mechanically uncoupled clamped-clamped arch resonators, designed such that their resonance frequencies are independently tuned to obtain the desired narrow passband. Through the electrothermal and electrostatic actuation, the stiffness of the structures is highly tunable. We experimentally demonstrate significant percentage tuning (~125%) of the filter center frequency by varying the applied electrothermal voltages to the resonating structures, while maintaining a narrow passband of 550 ± 50 Hz, a stopband rejection of >17 dB, and a passband ripple ≤ 2.5 dB. An analytical model based on the Euler-Bernoulli beam theory is used to confirm the behavior of the filter, and the origin of the high tunability using electrothermal actuation is discussed.

  6. Narrow-band light emission from a single carbon nanotube p-n diode

    Science.gov (United States)

    Kinoshita, Megumi; Mueller, Thomas; Steiner, Mathias; Perebeinos, Vasili; Bol, Ageeth; Farmer, Damon; Avouris, Phaedon

    2010-03-01

    We present the first observation of electroluminescence from electrostatically-generated carbon nanotube (CNT) p-n junctions[1]. While CNT optoelectronics has made much progress in recent years, observations of emission from electrically excited CNT devices have been limited to the high-bias regime and with low efficiency. Furthermore, the resulting broad linewidths are broad, making it difficult to investigate electronic levels and carrier dynamics. We find that p-n junctions allow for better carrier control at lower power inputs, resulting in emission with near-zero threshold, low self-heating and efficiency two to three orders of magnitude greater compared to previous device configurations. This yields higher signal-to-noise ratio and narrower linewidths (down to ˜35 meV) that allows us to identify localized excitonic transitions that have previously been observed only in photoluminescent studies. [1] T. Mueller, M. Kinoshita, M. Steiner, V. Perebeinos, A. Bol, D. Farmer, and Ph. Avouris, Nature Nanotech., web publication, November 15 2009.

  7. UNITED STATES DEPARTMENT OF TRANSPORTATION GLOBAL POSITIONING SYSTEM (GPS) ADJACENT BAND COMPATIBILITY ASSESSMENT

    Science.gov (United States)

    2018-04-01

    The goal of the U.S. Department of Transportation (DOT) Global Positioning System (GPS) Adjacent Band Compatibility Assessment is to evaluate the maximum transmitted power levels of adjacent band radiofrequency (RF) systems that can be tolerated by G...

  8. Development of an ESR/MR dual-imaging system as a tool to detect bioradicals

    International Nuclear Information System (INIS)

    Fujii, Hirotada; Aoki, Masaaki; Haishi, Tomoyuki; Itoh, Kouichi; Sakata, Motomichi

    2006-01-01

    A system combining electron spin resonance imaging (ESRI) with another imaging modality capable of enabling visualization of the distribution of bioradicals on an anatomical map of the specimens would be a superior biomedical imaging system. We describe the development of an electron spin resonance ESR/MR dual-imaging system with one permanent magnet and the biomedical applications of this system. The magnetic circuit developed for the ESR/MR dual-imaging system consisted of the permanent magnet made of Fe-Nd-B, pole pieces, and poke. The permanent magnet was installed on the MR side only, and the ESR side was made of pole pieces only. The magnetic field was adjusted to 0.5T at MR and to 0.042T at ESR. The overall dimensions of the magnet developed for the ESR/MR imaging system were 460 (W) x 440 (D) x 460 (H) mm, and it weighed 220 kg. The distance of each center for the magnet for ESR and MR imaging could be set as close as 200 mm. The entire ESR/MR imaging system can be installed in a common laboratory without magnetic shielding. MR images of plants (myoga) and small animals (mice and rats) were successfully acquired with or without ESR operation. ESR spectra of nitroxyl spin probes were also measured, even with MRI operation. ESR signals of triarylmethyl derivatives with narrow line-width (0.026 mT) were observed in living mice while MRI was operating. The ESR/MR imaging dual functions work properly with no electric or magnetic interference. The ESR/MR dual images demonstrate that this system enables visualization of the distribution of bioradicals on the anatomical map of the object. (author)

  9. Medical Imaging System

    Science.gov (United States)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  10. Shuttle orbiter Ku-band radar/communications system design evaluation. Deliverable test equipment evaluation

    Science.gov (United States)

    Maronde, R. G.

    1980-07-01

    The Ku-band test equipment, known as the Deliverable System Test equipment (DSTE), is reviewed and evaluated. The DSTE is semiautomated and computer programs were generated for 14 communication mode tests and 17 radar mode tests. The 31 test modules provide a good cross section of tests with which to exercise the Ku-band system; however, it is very limited when being used to verify Ku-band system performance. More detailed test descriptions are needed, and a major area of concern is the DSTE sell-off procedure which is inadequate.

  11. Portable hyperspectral fluorescence imaging system for detection of biofilms on stainless steel surfaces

    Science.gov (United States)

    Jun, Won; Lee, Kangjin; Millner, Patricia; Sharma, Manan; Chao, Kuanglin; Kim, Moon S.

    2008-04-01

    A rapid nondestructive technology is needed to detect bacterial contamination on the surfaces of food processing equipment to reduce public health risks. A portable hyperspectral fluorescence imaging system was used to evaluate potential detection of microbial biofilm on stainless steel typically used in the manufacture of food processing equipment. Stainless steel coupons were immersed in bacterium cultures, such as E. coli, Pseudomonas pertucinogena, Erwinia chrysanthemi, and Listeria innocula. Following a 1-week exposure, biofilm formations were assessed using fluorescence imaging. In addition, the effects on biofilm formation from both tryptic soy broth (TSB) and M9 medium with casamino acids (M9C) were examined. TSB grown cells enhance biofilm production compared with M9C-grown cells. Hyperspectral fluorescence images of the biofilm samples, in response to ultraviolet-A (320 to 400 nm) excitation, were acquired from approximately 416 to 700 nm. Visual evaluation of individual images at emission peak wavelengths in the blue revealed the most contrast between biofilms and stainless steel coupons. Two-band ratios compared with the single-band images increased the contrast between the biofilm forming area and stainless steel coupon surfaces. The 444/588 nm ratio images exhibited the greatest contrast between the biofilm formations and stainless coupon surfaces.

  12. The InSAeS4 Airborne X-Band Interferometric SAR System: A First Assessment on Its Imaging and Topographic Mapping Capabilities

    Directory of Open Access Journals (Sweden)

    Stefano Perna

    2016-01-01

    Full Text Available We present in this work a first assessment of the imaging and topographic mapping capabilities of the InSAeS4 system, which is a single-pass interferometric airborne X-Band Synthetic Aperture Radar (SAR. In particular, we first provide a brief description of the InSAeS4 sensor. Then, we discuss the results of our analysis on the SAR and interferometric SAR products relevant to the first flight-test campaign. More specifically, we have exploited as reference the GPS measurements relevant to nine Corner Reflectors (CRs deployed over the illuminated area during the campaign and a laser scanner Digital Elevation Model (DEM. From the analysis carried out on the CRs we achieved a mean geometric resolution, for the SAR products, of about 0.14 m in azimuth and 0.49 m in range, a positioning misalignment with standard deviation of 0.07 m in range and 0.08 m in azimuth, and a height error with standard deviation of 0.51 m. From the comparison with the laser scanner DEM we estimated a height error with standard deviation of 1.57 m.

  13. Experimental study of shear bands formation in a granular material

    Directory of Open Access Journals (Sweden)

    Nguyen Thai Binh

    2017-01-01

    Full Text Available We present an experimental investigation of the formation of shear bands in a granular sample submitted to a biaxial test. Our principal result is the direct observation of the bifurcation at the origin of the localization process in the material. At the bifurcation, the shear band is spatially extended: we observe a breaking of symmetry without any sudden localization of the deformation in a narrow band. Our work thus allows to clearly distinguish different phenomena: bifurcation which is a ponctual event which occurs before the peak, localization which is a process that covers a range of deformation of several percents during which the peak occurs and finally stationary shear bands which are well-defined permanent structures that can be observed at the end of the localization process, after the peak.

  14. A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.

    Science.gov (United States)

    Linderälv, Christopher; Lindman, Anders; Erhart, Paul

    2018-01-04

    Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.

  15. Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope

    Science.gov (United States)

    Li, Tianwei; Zou, Qingze

    2017-12-01

    In this paper, an approach is proposed to achieve simultaneous imaging and broadband nanomechanical mapping of soft materials in air by using an atomic force microscope. Simultaneous imaging and nanomechanical mapping are needed, for example, to correlate the morphological and mechanical evolutions of the sample during dynamic phenomena such as the cell endocytosis process. Current techniques for nanomechanical mapping, however, are only capable of capturing static elasticity of the material, or the material viscoelasticity in a narrow frequency band around the resonant frequency(ies) of the cantilever used, not competent for broadband nanomechanical mapping, nor acquiring topography image of the sample simultaneously. These limitations are addressed in this work by enabling the augmentation of an excitation force stimuli of rich frequency spectrum for nanomechanical mapping in the imaging process. Kalman-filtering technique is exploited to decouple and split the mixed signals for imaging and mapping, respectively. Then the sample indentation generated is quantified online via a system-inversion method, and the effects of the indentation generated and the topography tracking error on the topography quantification are taken into account. Moreover, a data-driven feedforward-feedback control is utilized to track the sample topography. The proposed approach is illustrated through experimental implementation on a polydimethylsiloxane sample with a pre-fabricated pattern.

  16. Markerless PET motion correction: tracking in narrow gantries through optical fibers

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Olesen, Oline Vinter; Benjaminsen, Claus

    2015-01-01

    be accurate while only adding minimal complexity to the workflow. We present: Tracoline 2.0, a surface scanner prototype, which allows for markerless tracking in the clinic. The system uses structured light through optical fibre bundles, which easily fit in narrow gantries. The optical fibres also makes...... the system compatible with magnetic resonance (MR) imaging since all the electronics are moved away from the scanner. We demonstrate the system in a positron emission tomography (PET) study using the Siemens high resolution research tomography (HRRT). With two Ge/Ga-68 line sources fitted in a mannequin head...... for rotations up to ±25º. Based on the tracking results the PET frames were also successfully corrected for motion by aligning 10 s frames without motion for the stepwise experiment and aligning 1 s frames for the experiment with continuous motion. We have demonstrated and evaluated a system for markerless...

  17. Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal

    Science.gov (United States)

    Yue, Chenxi; Tan, Wei; Liu, Jianjun

    2018-05-01

    In this paper, the photonic band gap (PBG) properties of one-dimensional (1D) Thue-Morse photonic quasicrystal (PQC) S4 structure are theoretically investigated by using transfer matrix method in Bragg condition. The effects of the center wavelength, relative permittivity and incident angle on PBG properties are elaborately analyzed. Numerical results reveal that, in the case of normal incidence, the symmetry and periodicity properties of the photonic band structure are presented. As the center wavelength increases, the PBG center frequency and PBG width decrease while the photonic band structure is always symmetrical about the central frequency and the photonic band structure repeats periodically in the expanding observation frequency range. With the decrease of relative permittivity contrast, the PBG width and the relative PBG width gradually decreases until PBG disappears while the symmetry of the photonic band structure always exists. In the case of oblique incidence, as the incident angle increases, multiple narrow PBGs gradually merge into a wide PBG for the TE mode while for the TM mode, the number of PBG continuously decreases and eventually disappears, i.e., multiple narrow PBGs become a wide passband for the TM mode. The research results will provide a reference for the choice of the material, the incident angle for the PBG properties and its applications of 1D Thue-Morse PQC.

  18. Reconfigurable Radio Access Unit for DWDM to W-Band Wireless Conversion

    DEFF Research Database (Denmark)

    Chorchos, Łukasz; Rommel, Simon; Turkiewicz, Jarosław P.

    2017-01-01

    In this letter a reconfigurable Remote Access Unit (RAU) is proposed and demonstrated, interfacing dense wavelength division multiplexed (DWDM) optical and W-band wireless links. The RAU is composed of a tunable local oscillator, a narrow optical filter and a control unit, making it reconfigurable...

  19. Narrowband image and the p53 protein immunoexpression in patients with ulcerative colitis and dysplasia

    International Nuclear Information System (INIS)

    Chao González, Lissette

    2012-01-01

    Patients with pancolitis and long-standing ulcerative colitis are at increased risk of developing colorectal cancer, so it is advisable to colonoscopic surveillance. The objective of this study was to identify the endoscopic visualization system of imaging with narrowband and overexpression of the p53 protein as procedures useful for the research of Dysplasia in patients with ulcerative colitis and pancolitis, of eight or more years of evolution. A prospective, descriptive study was performed on 50 patients. The Fisher exact probability test was used for the statistical study and of square Chi, with a level of significance α = 0.05. Shown with narrow-band image increases the likelihood of finding suggestive areas of Dysplasia, reduces the amount of biopsy and gets a higher proportion of diagnoses of Dysplasia in fewer samples (70.4%). The overexpression of the p53 protein was associated with the presence of dysplasia (80.0%) p < 0.001 and is immunoexpress in samples with a high degree of severity of dysplasia and the low grade. Concluded that imaging with narrowband system and overexpression of the p53 protein are procedures useful for the research of Dysplasia in these patients. (author)

  20. Phase and Amplitude Drift Research of Millimeter Wave Band Local Oscillator System

    Directory of Open Access Journals (Sweden)

    Changhoon Lee

    2010-06-01

    Full Text Available In this paper, we developed a local oscillator (LO system of millimeter wave band receiver for radio astronomy observation. We measured the phase and amplitude drift stability of this LO system. The voltage control oscillator (VCO of this LO system use the 3 mm band Gunn oscillator. We developed the digital phase locked loop (DPLL module for the LO PLL function that can be computer-controlled. To verify the performance, we measured the output frequency/power and the phase/amplitude drift stability of the developed module and the commercial PLL module, respectively. We show the good performance of the LO system based on the developed PLL module from the measured data analysis. The test results and discussion will be useful tutorial reference to design the LO system for very long baseline interferometry (VLBI receiver and single dish radio astronomy receiver at the 3 mm frequency band.

  1. Are Narrow Line Seyfert 1 Galaxies Viewed Pole-on?

    Science.gov (United States)

    2011-04-01

    0.2’’ respectively. Figure 1 displays the position of each slit over a Barbosa et al. (2009) GMOS IFU image of the [S III] flux (which originates...C. Winge, H. Schmitt: Gemini/ GMOS IFU gas velocity ’tomography’ of the narrow line region of nearby active galaxies, MNRAS, 396 (2009) 2. [2] D...1995) 81. 4 P o S ( N L S 1 ) 0 5 0 Are NLS1s Pole-on? Travis C. Fischer 5 Figure 1: NGC 4051 GMOS IFU image showing integrated [SIII] flux

  2. Ultra-narrow EIA spectra of 85Rb atom in a degenerate Zeeman multiplet system

    Science.gov (United States)

    Rehman, Hafeez Ur; Qureshi, Muhammad Mohsin; Noh, Heung-Ryoul; Kim, Jin-Tae

    2015-05-01

    Ultra-narrow EIA spectral features of thermal 85Rb atom with respect to coupling Rabi frequencies in a degenerate Zeeman multiplet system have been unraveled in the cases of same (σ+ -σ+ , π ∥ π) and orthogonal (σ+ -σ- , π ⊥ π)polarization configurations. The EIA signals with subnatural linewidth of ~ 100 kHz even in the cases of same circular and linear polarizations of coupling and probe laser have been obtained for the first time theoretically and experimentally. In weak coupling power limit of orthogonal polarization configurations, time-dependent transfer of coherence plays major role in the splitting of the EIA spectra while in strong coupling power, Mollow triplet-like mechanism due to strong power bring into broad split feature. The experimental ultra-narrow EIA features using one laser combined with an AOM match well with simulated spectra obtained by using generalized time-dependent optical Bloch equations.

  3. Medical image transmission via communication satellite. Evaluation of bone scintigraphy

    International Nuclear Information System (INIS)

    Suzuki, Hideki; Inoue, Tomio; Endo, Keigo; Shimamoto, Shigeru.

    1995-01-01

    As compared with terrestrial circuits, the communication satellite possesses superior characteristics such as wide area coverage, broadcasting, high capacity, and robustness to disasters. Utilizing the narrow band channel (64 kbps) of the geostationary satellite JCSAT 1 located at the altitude of 36,000 km above the equator, the authors investigated satellite-relayed medical imagings by video signals, with bone scintigraphy as a model. Each bone scintigraphy was taken by a handy-video camera, digitalized and transmitted from faculty of technology located at 25 kilometers apart from our department. Clear bone scintigraphy was obtained via satellite, as seen on the view box. Eight nuclear physicians evaluated 20 cases of bone scintigraphy. ROC (Receiver Operating Characteristic) analysis was performed between the scintigraphies on view box and via satellite by the rating method. The area under the ROC curve was 91.6±2.6% via satellite, and 93.2±2.4% on the view box and there was no significant difference between them. These results suggest that the satellite communication is very useful and effective system to send nuclear imagings to distant institutes. (author)

  4. [Medical image transmission via communication satellite: evaluation of bone scintigraphy].

    Science.gov (United States)

    Suzuki, H; Inoue, T; Endo, K; Shimamoto, S

    1995-10-01

    As compared with terrestrial circuits, the communication satellite possesses superior characteristics such as wide area coverage, broadcasting, high capacity, and robustness to disasters. Utilizing the narrow band channel (64 kbps) of the geostationary satellite JCSAT1 located at the altitude of 36,000 km above the equator, the authors investigated satellite-relayed medical images by video signals, with bone scintigraphy as a model. Each bone scintigraphy was taken by a handy-video camera, digitalized and transmitted from faculty of technology located at 25 kilometers apart from our department. Clear bone scintigraphy was obtained via satellite, as seen on the view box. Eight nuclear physicians evaluated 20 cases of bone scintigraphy. ROC (Receiver Operating Characteristic) analysis was performed between the scintigraphies on view box and via satellite by the rating method. The area under the ROC curve was 91.6 +/- 2.6% via satellite, and 93.2 +/- 2.4% on the view box and there was no significant difference between them. These results suggest that the satellite communication is very useful and effective system to send nuclear imagings to distant institutes.

  5. Fractal Based Triple Band High Gain Monopole Antenna

    Science.gov (United States)

    Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.

    2017-10-01

    A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.

  6. Narrow resonances and short-range interactions

    International Nuclear Information System (INIS)

    Gelman, Boris A.

    2009-01-01

    Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q 0 | 0 --a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q 0 and a Breit-Wigner term of order Q 2 (δε) -1 which becomes dominant for δε 3 . Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.

  7. Design and Implementation of Dual-Band MIMO Antenna with Low Mutual Coupling Using EBG for Handheld Applications

    Directory of Open Access Journals (Sweden)

    Duong Thanh Tu

    2017-01-01

    Full Text Available A dual-band Multiple Input Multiple Output (MIMO antenna system with enhanced isolation for LTE and WLAN applications is proposed. Using a double-rectangular Defected Ground Structure (DGS, the MIMO antenna gets two resonant frequencies of 2.6 GHz and 5.7 GHz with bandwidth of 5.7% and 4.3% respectively. To reduce much more mutual coupling between dual-band MIMO antenna ports, a novel double-side Electromagnetic Band Gap (EBG structure with equivalent circuit model is proposed. Size of t gain of the antenna is getting better, especially at the low band. he EBG unit cell is 8.6x8.6 mm2 that is built on FR4 substrate with height of 1.6 mm, so it is achieved more compact size than conventional EBG structures. With 1x7 EBG structures, the mutual coupling gets -40dB in the low frequency band and -30 dB in the high one with narrow distance of 0.11 from feeding point to feeding point. Furthermore, radiation efficiency as well as gain of the antenna is getting better, especially at the low band.

  8. Determination of band-structure parameters of Pbsub(1-x)Snsub(x)Te narrow-gap semiconductor from infrared Faraday rotation

    International Nuclear Information System (INIS)

    Sizov, F.F.; Lashkarev, G.V.; Martynchuk, E.K.

    1977-01-01

    The temeprature dependences of Faraday rotation in Pbsub(1-x)Snsub(x)Te of p type with the hole density 3x10 16 -2.2x10 18 cm -3 are studied in the range 40-370 K and in the spectral interval 4-16 μm. The analysis of interband Faraday rotation confirms a conclusion made by the authors earlier that the g factor for the c band (gsub(c)) is positive, for the v band (gsub(v))-negative and that [gsub(c)] > [gsub(v)]. The temperature dependences of carrier effective masses are investigated on the basis of the two-band model. It is demonstrated that for T < 200 K the Faraday effective mass of holes near the ceiling of the valency band varies in direct proportion to the width of the forbidden band. The temperature increase of the Faraday effective mass of current carriers, which is faster than that of the effective electron mass, is discovered, and this is related to the effect of the heavy hole band

  9. Thermal band image processing on the warm water discharges of nuclear power plants and the drifting of Echizen-Jellyfishes by using terra/aqua-MODIS data

    International Nuclear Information System (INIS)

    Kato, Yoshinobu; Fujita, Yusuke

    2005-01-01

    At the Awara campus (lat. 36.264degN, long, 136.235degE) of Fukui University of Technology, a Terra/Aqua-MODIS receiving system is operated from September, 2003. This paper deals with the thermal band image processing by using the received MODIS data. In chapter 2, we investigate the image representation of the warm water discharges of nuclear power plants located with Wakasa Bay of Fukui Prefecture. In chapter 3, we describe the image processing of the drifting of Echizen-Jellyfishes. The Echizen-Jellyfish, a kind of big jellyfish, whose scientific name is Nemopilema nomurai Kishinouye, appeared in large quantities in 2003 and did serious damage to the fishery in Japan Sea. (author)

  10. A Robust Identification of the Protein Standard Bands in Two-Dimensional Electrophoresis Gel Images

    Directory of Open Access Journals (Sweden)

    Serackis Artūras

    2017-12-01

    Full Text Available The aim of the investigation presented in this paper was to develop a software-based assistant for the protein analysis workflow. The prior characterization of the unknown protein in two-dimensional electrophoresis gel images is performed according to the molecular weight and isoelectric point of each protein spot estimated from the gel image before further sequence analysis by mass spectrometry. The paper presents a method for automatic and robust identification of the protein standard band in a two-dimensional gel image. In addition, the method introduces the identification of the positions of the markers, prepared by using pre-selected proteins with known molecular mass. The robustness of the method was achieved by using special validation rules in the proposed original algorithms. In addition, a self-organizing map-based decision support algorithm is proposed, which takes Gabor coefficients as image features and searches for the differences in preselected vertical image bars. The experimental investigation proved the good performance of the new algorithms included into the proposed method. The detection of the protein standard markers works without modification of algorithm parameters on two-dimensional gel images obtained by using different staining and destaining procedures, which results in different average levels of intensity in the images.

  11. A System for Compressive Spectral and Polarization Imaging at Short Wave Infrared (SWIR) Wavelengths

    Science.gov (United States)

    2017-10-18

    UV -­‐ VIS -­‐IR   60mm   Apo   Macro  lens   Jenoptik-­‐Inc   $5,817.36   IR... VIS /NIR Compressive Spectral Imager”, Proceedings of IEEE International Conference on Image Processing (ICIP ’15), Quebec City, Canada, (September...imaging   system   will   lead   to   a   wide-­‐band   VIS -­‐NIR-­‐SWIR   compressive  spectral  and  polarimetric

  12. Adaptive active vibration isolation – A control perspective

    Directory of Open Access Journals (Sweden)

    Landau Ioan Doré

    2015-01-01

    The paper will review a number of recent developments for adaptive feedback compensation of multiple unknown and time-varying narrow band disturbances and for adaptive feedforward compensation of broad band disturbances in the presence of the inherent internal positive feedback caused by the coupling between the compensator system and the measurement of the image of the disturbance. Some experimental results obtained on a relevant active vibration control system will illustrate the performance of the various algorithms presented.

  13. Feasibility evaluation of a motion detection system with face images for stereotactic radiosurgery.

    Science.gov (United States)

    Yamakawa, Takuya; Ogawa, Koichi; Iyatomi, Hitoshi; Kunieda, Etsuo

    2011-01-01

    In stereotactic radiosurgery we can irradiate a targeted volume precisely with a narrow high-energy x-ray beam, and thus the motion of a targeted area may cause side effects to normal organs. This paper describes our motion detection system with three USB cameras. To reduce the effect of change in illuminance in a tracking area we used an infrared light and USB cameras that were sensitive to the infrared light. The motion detection of a patient was performed by tracking his/her ears and nose with three USB cameras, where pattern matching between a predefined template image for each view and acquired images was done by an exhaustive search method with a general-purpose computing on a graphics processing unit (GPGPU). The results of the experiments showed that the measurement accuracy of our system was less than 0.7 mm, amounting to less than half of that of our previous system.

  14. Tunable dual-band subwavelength imaging with a wire medium slab loaded with nanostructured graphene metasurfaces

    Directory of Open Access Journals (Sweden)

    Ali Forouzmand

    2015-07-01

    Full Text Available In this paper, we demonstrate that a wire medium slab loaded with graphene-nanopatch metasurfaces (GNMs enables the enhancement of evanescent waves for the subwavelength imaging at terahertz (THz frequencies. The analysis is based on the nonlocal homogenization model for wire medium with the additional boundary condition at the connection of wires to graphene. The physical mechanism behind this lens can be described as the surface plasmons excitement at the lower and upper GNMs which are coupled by an array of metallic wires. The dual nature (capacitive/inductive of the GNM is utilized in order to design a dual-band lens in which the unique controllable properties of graphene and the structural parameters of wire medium (WM slab provide more degrees of freedom in controlling two operating frequency bands. The lens can support the subwavelength imaging simultaneously at two tunable distinct frequencies with the resolution better than λ/6 even if the distance between GNMs is a significant fraction of wavelength (>λ/5.5. The major future challenges in the fabrication of the lens have been demonstrated and a promising approach for the practical configuration of the lens has been proposed.

  15. An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-12-01

    Full Text Available Land surface temperature (LST images retrieved from the thermal infrared (TIR band data of Moderate Resolution Imaging Spectroradiometer (MODIS have much lower spatial resolution than the MODIS visible and near-infrared (VNIR band data. The coarse pixel scale of MODIS LST images (1000 m under nadir have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD. Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI and building index (NDBI, reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER with much higher spatial resolution than MODIS data was on-board the same platform (Terra as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error

  16. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

    Science.gov (United States)

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2014-12-25

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2

  17. Energy band dispersion in photoemission spectra of argon clusters

    International Nuclear Information System (INIS)

    Foerstel, Marko; Mucke, Melanie; Arion, Tiberiu; Lischke, Toralf; Barth, Silko; Ulrich, Volker; Ohrwall, Gunnar; Bjoerneholm, Olle; Hergenhahn, Uwe; Bradshaw, Alex M.

    2011-01-01

    Using photoemission we have investigated free argon clusters from a supersonic nozzle expansion in the photon energy range from threshold up to 28 eV. Measurements were performed both at high resolution with a hemispherical electrostatic energy analyser and at lower resolution with a magnetic bottle device. The latter experiments were performed for various mean cluster sizes. In addition to the ∼1.5 eV broad 3p-derived valence band seen in previous work, there is a sharper feature at ∼15 eV binding energy. Surprisingly for non-oriented clusters, this peak shifts smoothly in binding energy over the narrow photon energy range 15.5-17.7 eV, indicating energy band dispersion. The onset of this bulk band-like behaviour could be determined from the cluster size dependence.

  18. Molecular imaging for theranostics in gastroenterology: one stone to kill two birds.

    Science.gov (United States)

    Ko, Kwang Hyun; Kown, Chang-Il; Park, Jong Min; Lee, Hoo Geun; Han, Na Young; Hahm, Ki Baik

    2014-09-01

    Molecular imaging in gastroenterology has become more feasible with recent advances in imaging technology, molecular genetics, and next-generation biochemistry, in addition to advances in endoscopic imaging techniques including magnified high-resolution endoscopy, narrow band imaging or autofluorescence imaging, flexible spectral imaging color enhancement, and confocal laser endomicroscopy. These developments have the potential to serve as "red flag" techniques enabling the earlier and accurate detection of mucosal abnormalities (such as precancerous lesions) beyond biomarkers, virtual histology of detected lesions, and molecular targeted therapy-the strategy of "one stone to kill two or three birds"; however, more effort should be done to be "blue ocean" benefit. This review deals with the introduction of Raman spectroscopy endoscopy, imaging mass spectroscopy, and nanomolecule development for theranostics. Imaging of molecular pathological changes in cells/tissues/organs might open the "royal road" to either convincing diagnosis of diseases that otherwise would only be detected in the advanced stages or novel therapeutic methods targeted to personalized medicine.

  19. Multispectral calibration to enhance the metrology performance of C-mount camera systems

    Directory of Open Access Journals (Sweden)

    S. Robson

    2014-06-01

    Full Text Available Low cost monochrome camera systems based on CMOS sensors and C-mount lenses have been successfully applied to a wide variety of metrology tasks. For high accuracy work such cameras are typically equipped with ring lights to image retro-reflective targets as high contrast image features. Whilst algorithms for target image measurement and lens modelling are highly advanced, including separate RGB channel lens distortion correction, target image circularity compensation and a wide variety of detection and centroiding approaches, less effort has been directed towards optimising physical target image quality by considering optical performance in narrow wavelength bands. This paper describes an initial investigation to assess the effect of wavelength on camera calibration parameters for two different camera bodies and the same ‘C-mount’ wide angle lens. Results demonstrate the expected strong influence on principal distance, radial and tangential distortion, and also highlight possible trends in principal point, orthogonality and affinity parameters which are close to the parameter estimation noise level from the strong convergent self-calibrating image networks.

  20. Spaceborne Applications of P Band Imaging Radars for Measuring Forest Biomass

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; vanZyl, Jakob J.

    1995-01-01

    In three sites of boreal and temperate forests, P band HH, HV, and VV polarization data combined estimate total aboveground dry woody biomass within 12 to 27% of the values derived from allometric equations, depending on forest complexity. Biomass estimates derived from HV-polarization data only are 2 to 14% less accurate. When the radar operates at circular polarization, the errors exceed 100% over flooded forests, wet or damaged trees and sparse open tall forests because double-bounce reflections of the radar signals yield radar signatures similar to that of tall and massive forests. Circular polarizations, which minimize the effect of Faraday rotation in spaceborne applications, are therefore of limited use for measuring forest biomass. In the tropical rain forest of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 50 kg/sq m in old, undisturbed floodplain stands, the P band horizontal and vertical polarization data combined separate biomass classes in good agreement with forest inventory estimates. The worldwide need for large scale, updated, biomass estimates, achieved with a uniformly applied method, justifies a more in-depth exploration of multi-polarization long wavelength imaging radar applications for tropical forests inventories.