WorldWideScience

Sample records for narrow band materials

  1. Synchrotron Studies of Narrow Band and Low-Dimensional Materials. Final Report for July 1, 1990 --- December 31, 2002

    International Nuclear Information System (INIS)

    Allen, J. W.

    2003-01-01

    This report summarizes a 12-year program of various kinds of synchrotron spectroscopies directed at the electronic structures of narrow band and low-dimensional materials that display correlated electron behaviors such as metal-insulator transitions, mixed valence, superconductivity, Kondo moment quenching, heavy Fermions, and non-Fermi liquid properties

  2. Searching for illicit materials using nuclear resonance fluorescence stimulated by narrow-band photon sources

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.S., E-mail: johnson329@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); San Jose State University, San Jose, CA 95192 (United States); Hagmann, C.A.; Hall, J.M.; McNabb, D.P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kelley, J.H.; Huibregtse, C. [North Carolina State University, Raleigh, NC 27695 (United States); Kwan, E.; Rusev, G.; Tonchev, A.P. [Duke University, Durham, NC 27708 (United States)

    2012-08-15

    We report the results of an experimental study of the sensitivity of two distinct classes of systems that exploit nuclear resonance fluorescence (NRF) to search for illicit materials in containers. One class of systems is based on the direct detection of NRF photons emitted from isotopes of interest. The other class infers the presence of a particular isotope by observing the preferential attenuation of resonant photons in the incident beam. We developed a detailed analytical model for both approaches. We performed experiments to test the model using depleted uranium as a surrogate for illicit material and used tungsten as a random choice for shielding. We performed the experiments at Duke University's High Intensity Gamma Source (HIGS). Using the methodology we detail in this paper one can use this model to estimate the performance of potential inspection systems in certifying containers as free of illicit materials and for detecting the presence of those same materials.

  3. A novel facility for ageing materials with narrow-band ultraviolet radiation exposure

    International Nuclear Information System (INIS)

    Kaerhae, Petri; Ruokolainen, Kimmo; Heikkilae, Anu; Kaunismaa, Merja

    2011-01-01

    A facility for exploring wavelength dependencies in ultraviolet (UV) radiation induced degradation in materials has been designed and constructed. The device is essentially a spectrograph separating light from a lamp to spectrally resolved UV radiation. It is based on a 1 kW xenon lamp and a flat-field concave holographic grating 10 cm in diameter. Radiation at the wavelength range 250-500 nm is dispersed onto the sample plane of 1.5 cm in height and 21 cm in width. The optical performance of the device has been characterized by radiometric measurements. Using the facility, test samples prepared of regular newspaper have been irradiated from 1 to 8 h. Color changes on the different locations of the aged samples have been quantified by color measurements. Yellowness indices computed from the color measurements demonstrate the capability of the facility in revealing wavelength dependencies of the material property changes in reasonable time frames.

  4. f-band narrowing in uranium intermetallics

    International Nuclear Information System (INIS)

    Dunlap, B.D.; Litterst, F.J.; Malik, S.K.; Kierstead, H.A.; Crabtree, G.W.; Kwok, W.; Lam, D.J.; Mitchell, A.W.

    1987-01-01

    Although the discovery of heavy fermion behavior in uranium compounds has attracted a great deal of attention, relatively little work has been done which is sufficiently systematic to allow an assessment of the relationship of such behavior to more common phenomena, such as mixed valence, narrow-band effects, etc. In this paper we report bulk property measurements for a number of alloys which form a part of such a systematic study. The approach has been to take relatively simple and well-understood materials and alter their behavior by alloying to produce heavy fermion or Kondo behavior in a controlled way

  5. Electron correlations in narrow band systems

    International Nuclear Information System (INIS)

    Kishore, R.

    1983-01-01

    The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt

  6. Itinerant ferromagnetism in the narrow band limit

    CERN Document Server

    Liu, S H

    2000-01-01

    It is shown that in the narrow band, strong interaction limit the paramagnetic state of an itinerant ferromagnet is described by the disordered local moment state. As a result, the Curie temperature is orders of magnitude lower than what is expected from the large exchange splitting of the spin bands. An approximate analysis has also been carried out for the partially ordered state, and the result explains the temperature evolvement of the magnetic contributions to the resistivity and low-energy optical conductivity of CrO sub 2.

  7. Dosimetry of narrow band UVB treatments

    International Nuclear Information System (INIS)

    Goode, D.H.; Mannering, D.M.

    1996-01-01

    Full text: For many years psoriasis has been treated with broad band UVB lamps. These lamps have a bell shaped spectrum which peaks at 305 nm and extends from 280 nm to 350 nm. However research with monochromatic UV radiation has shown that wavelengths between 300 nm and 320 nm are the most efficacious for clearing psoriasis while wavelengths below 305 nm are most effective for producing the undesirable side effect of erythema (sunburn). In response to these findings Philips developed a narrow band UVB tube in which a large fraction of the output was confined to a narrow peak (bandwidth 2.5 nm) situated at 311 nm. Christchurch Hospital replaced broad band UVB with narrow band treatments in August 1995 and as this required UV exposures to be substantially increased new protocols had to be developed. Three aspects needed to be addressed. These were translating the dose from broad band to narrow band for current patients, determining the initial dose for new patients and developing a formula for increasing subsequent exposures to both types of patient. To translate doses the spectral irradiance (μW/cm 2 /nm) that would fall on the patient was measured in both the old broad band and the new narrow band treatment units and from this UV doses were calculated. All doses were expressed in mJ/cm 2 of unweighted UV over the range 250 nm to 400 nm. The erythemal effectiveness of the two units were compared by using the CIE 1987 curve to express doses in terms of the equivalent exposure of monochromatic 297 nm radiation. It was found that an exposure of 3.96 mJ/cm 2 from the broad band FS40 tubes and 12.79 mJ/cm 2 from the narrow band TL/01 tubes were both equivalent to 1.00 mJ/cm 2 of monochromatic 297 nm radiation so when transferring patients all broad band doses needed to be increased by a factor of 3.2. Before transferring any patients this factor was confirmed by conducting two minimal erythema dose (MED) tests on a normal subject, one in each unit. For new patients a

  8. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  9. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq; Al-Naffouri, Tareq Y.; Al-Ghadhban, Samir N.

    2012-01-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous

  10. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    Science.gov (United States)

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-11

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  11. Predicting soil nitrogen content using narrow-band indices from ...

    African Journals Online (AJOL)

    Optimal fertiliser applications for sustainable forest stand productivity management, whilst protecting the environment, is vital. This study estimated soil nitrogen content using leaf-level narrow-band vegetation indices derived from a hand-held 350–2 500 nm spectroradiometer. Leaf-level spectral data were collected and ...

  12. Nonstationary Narrow-Band Response and First-Passage Probability

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    The notion of a nonstationary narrow-band stochastic process is introduced without reference to a frequency spectrum, and the joint distribution function of two consecutive maxima is approximated by use of an envelope. Based on these definitions the first passage problem is treated as a Markov po...

  13. Narrow-Band Imaging: Clinical Application in Gastrointestinal Endoscopy

    Directory of Open Access Journals (Sweden)

    Sandra Barbeiro

    2018-03-01

    Full Text Available Narrow-band imaging is an advanced imaging system that applies optic digital methods to enhance endoscopic images and improves visualization of the mucosal surface architecture and microvascular pattern. Narrow-band imaging use has been suggested to be an important adjunctive tool to white-light endoscopy to improve the detection of lesions in the digestive tract. Importantly, it also allows the distinction between benign and malignant lesions, targeting biopsies, prediction of the risk of invasive cancer, delimitation of resection margins, and identification of residual neoplasia in a scar. Thus, in expert hands it is a useful tool that enables the physician to decide on the best treatment (endoscopic or surgical and management. Current evidence suggests that it should be used routinely for patients at increased risk for digestive neoplastic lesions and could become the standard of care in the near future, at least in referral centers. However, adequate training programs to promote the implementation of narrow-band imaging in daily clinical practice are needed. In this review, we summarize the current scientific evidence on the clinical usefulness of narrow-band imaging in the diagnosis and characterization of digestive tract lesions/cancers and describe the available classification systems.

  14. Novel structural flexibility identification in narrow frequency bands

    International Nuclear Information System (INIS)

    Zhang, J; Moon, F L

    2012-01-01

    A ‘Sub-PolyMAX’ method is proposed in this paper not only for estimating modal parameters, but also for identifying structural flexibility by processing the impact test data in narrow frequency bands. The traditional PolyMAX method obtains denominator polynomial coefficients by minimizing the least square (LS) errors of frequency response function (FRF) estimates over the whole frequency range, but FRF peaks in different structural modes may have different levels of magnitude, which leads to the modal parameters identified for the modes with small FRF peaks being inaccurate. In contrast, the proposed Sub-PolyMAX method implements the LS solver in each subspace of the whole frequency range separately; thus the results identified from a narrow frequency band are not affected by FRF data in other frequency bands. In performing structural identification in narrow frequency bands, not in the whole frequency space, the proposed method has the following merits: (1) it produces accurate modal parameters, even for the modes with very small FRF peaks; (2) it significantly reduces computation cost by reducing the number of frequency lines and the model order in each LS implementation; (3) it accurately identifies structural flexibility from impact test data, from which structural deflection under any static load can be predicted. Numerical and laboratory examples are investigated to verify the effectiveness of the proposed method. (paper)

  15. US images encoding envelope amplitude following narrow band filtering

    International Nuclear Information System (INIS)

    Sommer, F.G.; Stern, R.A.; Chen, H.S.

    1986-01-01

    Ultrasonic waveform data from phantoms having differing scattering characteristics and from normal and cirrhotic human liver in vivo were recorded within a standardized dynamic range and filtered with narrow band filters either above or below the mean recorded ultrasonic center frequency. Images created by mapping the amplitudes of received ultrasound following such filtration permitted dramatic differentiation, not discernible in conventional US images, of phantoms having differing scattering characteristics, and of normal and cirrhotic human livers

  16. Narrow-band radio flares from red dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    White, S.M.; Kundu, M.R.; Jackson, P.D.

    1986-12-01

    VLA observations of narrow-band behavior in 20 cm flares from two red dwarf stars, L726 - 8A and AD Leo, are reported. The flare on L726 - 8A was observed at 1415 and 1515 MHz; the flux and the evolution differed significantly at the two frequencies. The flare on AD Leo lasted for 2 hr at 1415 MHz but did not appear at 1515 MHz. The AD Leo flare appears to rule out a source drifting through the stellar corona and is unlikely to be due to plasma emission. In the cyclotron maser model the narrow-band behavior reflects the range of magnetic fields present within the source. The apparent constancy of this field for 2 hr is difficult to understand if magnetic reconnection is the source of energy for the flare. The consistent polarization exhibited by red dwarf flares at 20 cm may be related to stellar activity cycles, and changes in this polarization will permit measuring the length of these cycles. 22 references.

  17. Narrow-band radio flares from red dwarf stars

    Science.gov (United States)

    White, Stephen M.; Kundu, Mukul R.; Jackson, Peter D.

    1986-01-01

    VLA observations of narrow-band behavior in 20 cm flares from two red dwarf stars, L726 - 8A and AD Leo, are reported. The flare on L726 - 8A was observed at 1415 and 1515 MHz; the flux and the evolution differed significantly at the two frequencies. The flare on AD Leo lasted for 2 hr at 1415 MHz but did not appear at 1515 MHz. The AD Leo flare appears to rule out a source drifting through the stellar corona and is unlikely to be due to plasma emission. In the cyclotron maser model the narrow-band behavior reflects the range of magnetic fields present within the source. The apparent constancy of this field for 2 hr is difficult to understand if magnetic reconnection is the source of energy for the flare. The consistent polarization exhibited by red dwarf flares at 20 cm may be related to stellar activity cycles, and changes in this polarization will permit measuring the length of these cycles.

  18. From Narrow to Wide Band Normalizer for LHC

    CERN Document Server

    Vismara, Giuseppe

    1997-01-01

    The narrow band normalizer (NBN) based on the phase processor is working to full satisfaction in the LEP BOM system for almost 10 years. Recently a new idea for a wide band normaliser (WBN) based on a time processor exploiting a single oscillation period has been developed. The position information is converted into a time difference between the zero crossing of two recombined and shaped electrode signals. It appears that the NBN can be easily adapted to perform as a wide band processor. To do so, the BP filter and the 90° Hybrid are replaced by low pass filter and delay lines. A prototype based on the present NBN has been developed and tested to prove the feasibility of the new idea. The paper gives an overview of the advantages and limitations of the BOM NB processor. It summarizes the useful LHC parameters and describes the specifications for the beam position acquisition system. After describing the basic principles, it analyzes in detail all the blocks of the processing chain and presents the measurem...

  19. NARROW-K-BAND OBSERVATIONS OF THE GJ 1214 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Colón, Knicole D.; Gaidos, Eric, E-mail: colonk@hawaii.edu [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2013-10-10

    GJ 1214 is a nearby M dwarf star that hosts a transiting super-Earth-size planet, making this system an excellent target for atmospheric studies. Most studies find that the transmission spectrum of GJ 1214b is flat, which favors either a high mean molecular weight or cloudy/hazy hydrogen (H) rich atmosphere model. Photometry at short wavelengths (<0.7 μm) and in the K band can discriminate the most between these different atmosphere models for GJ 1214b, but current observations do not have sufficiently high precision. We present photometry of seven transits of GJ 1214b through a narrow K-band (2.141 μm) filter with the Wide Field Camera on the 3.8 m United Kingdom Infrared Telescope. Our photometric precision is typically 1.7 × 10{sup –3} (for a single transit), comparable with other ground-based observations of GJ 1214b. We measure a planet-star radius ratio of 0.1158 ± 0.0013, which, along with other studies, also supports a flat transmission spectrum for GJ 1214b. Since this does not exclude a scenario where GJ 1214b has an H-rich envelope with heavy elements that are sequestered below a cloud/haze layer, we compare K-band observations with models of H{sub 2} collision-induced absorption in an atmosphere for a range of temperatures. While we find no evidence for deviation from a flat spectrum (slope s = 0.0016 ± 0.0038), an H{sub 2}-dominated upper atmosphere (<60 mbar) cannot be excluded. More precise observations at <0.7 μm and in the K band, as well as a uniform analysis of all published data, would be useful for establishing more robust limits on atmosphere models for GJ 1214b.

  20. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq

    2012-06-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous with the frequency grid of the ZP-OFDM system. The proposed structure based technique uses the fact that the NBI signal is sparse as compared to the ZP-OFDM signal in the frequency domain. The structure is also useful in reducing the computational complexity of the proposed method. The paper also presents a data aided approach for improved NBI estimation. The suitability of the proposed method is demonstrated through simulations. © 2012 IEEE.

  1. Implementation of Industrial Narrow Band Communication System into SDR Concept

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2008-12-01

    Full Text Available The rapid expansion of the digital signal processing has penetrated recently into a sphere of high performance industrial narrow band communication systems which had been for long years dominated by the traditional analog circuit design. Although it brings new potential to even increase the efficiency of the radio channel usage it also forces new challenges and compromises radio designers have to face. In this article we describe the design of the IF sampling industrial narrowband radio receiver, optimize a digital receiver structure implemented in a single FPGA circuit and study the performance of such radio receiver architecture. As an evaluation criterion the communication efficiency in form of maximum usable receiver sensitivity, co-channel rejection, adjacent channel selectivity and radio blocking measurement have been selected.

  2. Extreme ultraviolet narrow band emission from electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Zhao, H. Y.; Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Li, X. X.; Zhu, Y. H.; Sheng, L. S.; Zhang, G. B.; Tian, Y. C.

    2008-01-01

    Extreme ultraviolet lithography (EUVL) is considered as the most promising solution at and below dynamic random access memory 32 nm half pitch among the next generation lithography, and EUV light sources with high output power and sufficient lifetime are crucial for the realization of EUVL. However, there is no EUV light source completely meeting the requirements for the commercial application in lithography yet. Therefore, ECR plasma is proposed as a novel concept EUV light source. In order to investigate the feasibility of ECR plasma as a EUV light source, the narrow band EUV power around 13.5 nm emitted by two highly charged ECR ion sources--LECR2M and SECRAL--was measured with a calibrated EUV power measurement tool. Since the emission lines around 13.5 nm can be attributed to the 4d-5p transitions of Xe XI or the 4d-4f unresolved transition array of Sn VIII-XIII, xenon plasma was investigated. The dependence of the EUV throughput and the corresponding conversion efficiency on the parameters of the ion source, such as the rf power and the magnetic confinement configurations, were preliminarily studied

  3. The narrow-band imaging examination method in otorhinolaryngology

    Directory of Open Access Journals (Sweden)

    Robert Šifrer

    2013-10-01

    Full Text Available Early diagnostics could improve the prognosis of patients with squamous-cell carcinomas of the head and neck. Narrow-Band Imaging (NBI is the latest examination method in the group of biologic endoscopies. NBI improves the distinction between malignant and benign mucosal lesions. Early suspect oncologic lesions that may otherwise be missed by normal white light illumination can also be diagnosed. The biggest benefit of NBI technology is achieved by using it together with a HDTV camera that enables better contrast and higher resolution. NBI is based on better imaging of superficial mucosal vasculature. The biologic potential of mucosal lesions could be predicted from vascular changes. The colour of normal mucosa under NBI is blue and green and the vessels show no pathological features. Well-demarcated brownish areas and scattered thick dark spots and abnormal winding and branching out of vessels on the mucosa are all oncologically suspicious features. Authors report the experience from literature on the use of NBI to identify carcinomas of the oral cavity, epipharynx, oropharynx, hypopharynx and larynx and evaluation of unknown primaries. In addition, the literature reports the benefit of NBI in identifying early stage carcinomas in previously irradiated patients. Persistence and recurrence of carcinoma and the development of new primary tumour could easily be missed by using only standard white-light illumination. The method proved to be highly sensitive and specific for predicting malignant changes in the above-mentioned circumstances. Authors report their own experience with NBI technology as well. For further improvement of the method, new technologic development is expected to enable the connection of NBI and HDTV with flexible endoscopes.

  4. Recovering physical properties from narrow-band photometry

    Science.gov (United States)

    Schoenell, W.; Cid Fernandes, R.; Benítez, N.; Vale Asari, N.

    2013-05-01

    Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity distributions? Can we separate star-forming galaxies from AGN? Can we measure emission lines, nebular abundances and extinction? With what precision? To accomplish this, we selected a sample of about 300k galaxies with good S/N from the SDSS and divided them in two groups: 200k objects and a template library of 100k. We corrected the spectra to z = 0 and converted them to filter fluxes. Using a statistical approach, we calculated a Probability Distribution Function (PDF) for each property of each object and the library. Since we have the properties of all the data from the STARLIGHT-SDSS database, we could compare them with the results obtained from summaries of the PDF (mean, median, etc). Our results shows that we retrieve the weighted average of the log of the galaxy age with a good error margin (σ ≈ 0.1 - 0.2 dex), and similarly for the physical properties such as mass-to-light ratio, mean stellar metallicity, etc. Furthermore, our main result is that we can derive emission line intensities and ratios with similar precision. This makes this method unique in comparison to the other methods on the market to analyze photometry data and shows that, from the point of view of galaxy studies, future photometric surveys will be much more useful than anticipated.

  5. Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials

    Science.gov (United States)

    Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin

    2017-12-01

    Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.

  6. Experimental studies of narrow band effects in the actinides

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, M.B.

    1976-01-01

    In many actinide metallic systems the f-electrons exhibit band behavior. This is a consequence of direct f-f wave function overlap or hybridization of f-electrons with s-, p-, and d-electrons. The f-bands can be responsible for large electronic densities of states at the Fermi level which may lead to band magnetism of various types. Although the concept of valence instabilities must be approached cautiously especially in the light actinides, it would not be surprising to observe them in the future, especially in Am compounds.

  7. Experimental studies of narrow band effects in the actinides

    International Nuclear Information System (INIS)

    Brodsky, M.B.

    1976-01-01

    In many actinide metallic systems the f-electrons exhibit band behavior. This is a consequence of direct f-f wave function overlap or hybridization of f-electrons with s-, p-, and d-electrons. The f-bands can be responsible for large electronic densities of states at the Fermi level which may lead to band magnetism of various types. Although the concept of valence instabilities must be approached cautiously especially in the light actinides, it would not be surprising to observe them in the future, especially in Am compounds

  8. Head and hand detuning effect study of narrow-band against wide-band mobile phone antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2014-01-01

    Wide-band (WB) and narrow-band (NB) antennas in terms of performance are compared, when interacting with the user’s right head and hand (RHH). The investigations are done through experimental measurements, using standardised head phantom and hand. It is shown that WB antennas detune more than NB ...

  9. O2 atmospheric band measurements with WINDII: Performance of a narrow band filter/wide angle Michelson combination in space

    International Nuclear Information System (INIS)

    Ward, W.E.; Hersom, C.H.; Tai, C.C.; Gault, W.A.; Shepherd, G.G.; Solheim, B.H.

    1994-01-01

    Among the emissions viewed by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) are selected lines in the (0-0) transition of the O2 atmospheric band. These lines are viewed simultaneously using a narrow band filter/wide-angle Michelson interferometer combination. The narrow band filter is used to separate the lines on the CCD (spectral-spatial scanning) and the Michelson used to modulate the emissions so that winds and rotational temperatures may be measured from the Doppler shifts and relative intensities of the lines. In this report this technique will be outlined and the on-orbit behavior since launch summarized

  10. Active halo control through narrow-band excitation with the ADT at injection

    CERN Document Server

    Wagner, Joschka; Garcia Morales, Hector; Redaelli, Stefano; Valentino, Gianluca; Valuch, Daniel; CERN. Geneva. ATS Department

    2016-01-01

    During this MD (MD1388), the capabilities of an active halo control for beam tail depletion in the LHC were tested. The studied method relies on using the Transverse Damper (ADT) to perform a narrow-band excitation.

  11. Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Ahmed, Arham S.; Shafeeq, M. Muhamed; Singla, M.L.; Tabassum, Sartaj; Naqvi, Alim H.; Azam, Ameer

    2011-01-01

    Nickel-doped tin oxide nanoparticles (sub-5 nm size) with intense fluorescence emission behavior have been synthesized by sol-gel route. The structural and compositional analysis has been carried out by using XRD, TEM, FESEM and EDAX. The optical absorbance spectra indicate a band gap narrowing effect and it was found to increase with the increase in nickel concentration. The band gap narrowing at low dopant concentration ( 2 -SnO 2-x alloying effect and for higher doping it may be due to the formation of defect sub-bands below the conduction band.

  12. Band gap narrowing and fluorescence properties of nickel doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Arham S; Shafeeq, M Muhamed [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Singla, M L [Central Scientific Instruments Organization (CSIO), Council of Scientific and Industrial Research (CSIR), Materials Research and Bio-Nanotechnology Division, Sector - 30/C, Chandigarh-160030 (India); Tabassum, Sartaj [Department of Chemistry, Aligarh Muslim University, Aligarh-202002 (India); Naqvi, Alim H [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Azam, Ameer [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India)

    2011-01-15

    Nickel-doped tin oxide nanoparticles (sub-5 nm size) with intense fluorescence emission behavior have been synthesized by sol-gel route. The structural and compositional analysis has been carried out by using XRD, TEM, FESEM and EDAX. The optical absorbance spectra indicate a band gap narrowing effect and it was found to increase with the increase in nickel concentration. The band gap narrowing at low dopant concentration (<5%) can be assigned to SnO{sub 2}-SnO{sub 2-x} alloying effect and for higher doping it may be due to the formation of defect sub-bands below the conduction band.

  13. An enhanced narrow-band imaging method for the microvessel detection

    Science.gov (United States)

    Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng

    2018-02-01

    A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.

  14. Phototherapy UVB narrow band treatment of psoriasis, mycosis fungoides and vitiligo

    International Nuclear Information System (INIS)

    Reyes, M.V.; Kutnizky, R.; Bosch, M.P.; Ruiz Lascano, A.

    2013-01-01

    Introduction: Numerous studies have shown the beneficial effect of ultraviolet radiation for the treatment of lymphoproliferative or inflammatory skin diseases. Objective: To determine the response to UVB narrow band (UVB-nb) in psoriasis, mycosis fungoides stage IA, IB and vitiligo, in the Dermatology Department of Hospital Privado from May 2009 to January 2011. To correlate total energy dose used and the total number of sessions with the response achieved in each disease. To describe adverse reactions; determine demographic characteristics of the population and comorbidities in psoriasis and vitiligo. Material and Methods: We performed a prospective, descriptive, analytical, observational study. We included all patients assessed for initiation of UVB-nb. Regarding the patients who did not start or interrupted the treatment a survey was conducted to assess the causes. We calculated the cumulative dose and number of sessions at the end of treatment. (authors) [es

  15. [Nursing care management in dermatological patient on phototherapy narrow band UVB].

    Science.gov (United States)

    de Argila Fernández-Durán, Nuria; Blasco Maldonado, Celeste; Martín Gómez, Mónica

    2013-01-01

    Phototherapy with narrow band ultraviolet B is a treatment used in some dermatology units, and is the first choice in some dermatological diseases due to being comfortable and cheap. The aim of this paper is to describe the management and nursing care by grouping more specific diagnoses, following NANDA-NIC/NOC taxonomy, such as the methodology from application, technique, material, and personnel to space-related aspects, with the aim of avoiding the clinical variability and the possible associated risks for the patients, and for the nurses who administer the treatment. The continuity of the same nurse in the follow-up sessions stimulates the relationship between medical personnel and patients, key points for loyalty and therapeutic adherence. This paper examines a consensus procedure with the Dermatology Unit Team and accredited by the Hospital Quality Unit. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  16. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    Science.gov (United States)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  17. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.

    Science.gov (United States)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-16

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  18. Application of narrow-band television to industrial and commercial communications

    Science.gov (United States)

    Embrey, B. C., Jr.; Southworth, G. R.

    1974-01-01

    The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.

  19. An Optimized, Grid Independent, Narrow Band Data Structure for High Resolution Level Sets

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Museth, Ken

    2004-01-01

    enforced by the convex boundaries of an underlying cartesian computational grid. Here we present a novel very memory efficient narrow band data structure, dubbed the Sparse Grid, that enables the representation of grid independent high resolution level sets. The key features our new data structure are...

  20. Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm

    Directory of Open Access Journals (Sweden)

    Guanquan Liang

    2011-12-01

    Full Text Available A prototype of planar silicon photonic structure is designed and simulated to provide narrow resonant line-width (∼2 nm in a wide photonic band gap (∼210 nm with broad tunable resonant wavelength range (∼100 nm around the optical communication wavelength 1550 nm. This prototype is based on the combination of two modified basic photonic structures, i.e. a split tapered photonic crystal micro-cavity embedded in a photonic wire waveguide, and a slot waveguide with narrowed slabs. This prototype is then further integrated with a MEMS (microelectromechanical systems based electrostatic comb actuator to achieve “coarse tune” and “fine tune” at the same time for wide range and narrow-band filtering and modulating. It also provides a wide range tunability to achieve the designed resonance even fabrication imperfection occurs.

  1. UWB Filtering Power Divider with Two Narrow Notch-bands and Wide Stop-band

    Science.gov (United States)

    Wei, Feng; Wang, Xin-Yi; Zou, Xin Tong; Shi, Xiao Wei

    2017-12-01

    A compact filtering ultra-wideband (UWB) microstrip power divider (PD) with two sharply rejected notch-bands and wide stopband is analyzed and designed in this paper. The proposed UWB PD is based on a conventional Wilkinson power divider, while two stub loaded resonators (SLRs) are coupled into two symmetrical output ports to achieve a bandpass filtering response. The simplified composite right/left-handed (SCRLH) resonators are employed to generate the dual notched bands. Defected ground structure (DGS) is introduced to improve the passband performance. Good insertion/return losses, isolation and notch-band rejection are achieved as demonstrated in both simulation and experiment.

  2. Intensities, broadening and narrowing parameters in the ν3 band of methane

    KAUST Repository

    Es-sebbar, Et-touhami; Farooq, Aamir

    2014-01-01

    The P-branch of methane's ν3 band is probed to carry out an extensive study of the 2905-2908cm-1 infrared spectral region. Absolute line intensities as well as N2-, O2-, H2-, He-, Ar- and CO2-broadening coefficients are determined for nine transitions at room temperature. Narrowing parameters due to the Dicke effect have also been investigated. A narrow emission line-width (~0.0001cm-1) difference-frequency-generation (DFG) laser system is used as the tunable light source. To retrieve the CH4 spectroscopic parameters, Voigt and Galatry profiles were used to simulate the measured line shape of the individual transitions.

  3. Large-amplitude and narrow-band vibration phenomenon of a foursquare fix-supported flexible plate in a rigid narrow channel

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lifang, E-mail: liu_lifang1106@yahoo.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Lu Daogang, E-mail: ludaogang@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Li Yang, E-mail: qinxiuyi@sina.com [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Zhang Pan, E-mail: zhangpan@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Niu Fenglei, E-mail: niufenglei@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China)

    2011-08-15

    Highlights: > FIV of a foursquare fix-supported flexible plate exposed to axial flow was studied. > Special designed test section and advanced measuring equipments were adopted. > The narrow-band vibration phenomenon with large amplitude was observed. > Line of plate's vibration amplitude and flow rate was investigated. > The phenomenon and the measurement error were analyzed. - Abstract: An experiment was performed to analyze the flow-induced vibration behavior of a foursquare fix-supported flexible plate exposed to the axial flow within a rigid narrow channel. The large-amplitude and narrow-band vibration phenomenon was observed in the experiment when the flow velocity varied with the range of 0-5 m/s. The occurring condition and some characteristics of the large-amplitude and narrow-band vibrations were investigated.

  4. Band-gap narrowing of TiO2 films induced by N-doping

    International Nuclear Information System (INIS)

    Nakano, Y.; Morikawa, T.; Ohwaki, T.; Taga, Y.

    2006-01-01

    N-doped TiO 2 films were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 o C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined from X-ray photoelectron spectroscopy measurements. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at 1.18 and 2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. Additionally, the 2.48 eV band is newly introduced by the N-doping and contributes to band-gap narrowing by mixing with the O 2p valence band

  5. Design of an S band narrow-band bandpass BAW filter

    Science.gov (United States)

    Gao, Yang; Zhao, Kun-li; Han, Chao

    2017-11-01

    An S band narrowband bandpass filter BAW with center frequency 2.460 GHz, bandwidth 41MHz, band insertion loss - 1.154 dB, the passband ripple 0.9 dB, the out of band rejection about -42.5dB@2.385 GHz; -45.5dB@2.506 GHz was designed for potential UAV measurement and control applications. According to the design specifications, the design is as follows: each FBAR's stack was designed in BAW filter by using Mason model. Each FBAR's shape was designed with the method of apodization electrode. The layout of BAW filter was designed. The acoustic-electromagnetic cosimulation model was built to validate the performance of the designed BAW filter. The presented design procedure is a common one, and there are two characteristics: 1) an A and EM co-simulation method is used for the final BAW filter performance validation in the design stage, thus ensures over-optimistic designs by the bare 1D Mason model are found and rejected in time; 2) An in-house developed auto-layout method is used to get compact BAW filter layout, which simplifies iterative error-and-try work here and output necessary in-plane geometry information to the A and EM cosimulation model.

  6. On the joint distribution of excursion duration and amplitude of a narrow-band Gaussian process

    DEFF Research Database (Denmark)

    Ghane, Mahdi; Gao, Zhen; Blanke, Mogens

    2018-01-01

    of amplitude and period are limited to excursion through a mean-level or to describe the asymptotic behavior of high level excursions. This paper extends the knowledge by presenting a theoretical derivation of probability of wave exceedance amplitude and duration, for a narrow-band Gaussian process......The probability density of crest amplitude and of duration of exceeding a given level are used in many theoretical and practical problems in engineering. The joint density is essential for design of constructions that are subjected to waves and wind. The presently available joint distributions...... distribution, as expected, and that the marginal distribution of excursion duration works both for asymptotic and non-asymptotic cases. The suggested model is found to be a good replacement for the empirical distributions that are widely used. Results from simulations of narrow-band Gaussian processes, real...

  7. Narrow band flame emission from dieseline and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Wu, Zengyang

    2016-08-18

    In this paper, spray combustion of diesel (No. 2) and diesel-gasoline blend (dieseline: 80% diesel and 20% gasoline by volume) were investigated in an optically accessible constant volume combustion chamber. Effects of ambient conditions on flame emissions were studied. Ambient oxygen concentration was varied from 12% to 21% and three ambient temperatures were selected: 800 K, 1000 K and 1200 K. An intensified CCD camera coupled with bandpass filters was employed to capture the quasi-steady state flame emissions at 430 nm and 470 nm bands. Under non-sooting conditions, the narrow-band flame emissions at 430 nm and 470 nm can be used as indicators of CH∗ (methylidyne) and HCHO∗ (formaldehyde), respectively. The lift-off length was measured by imaging the OH∗ chemiluminescence at 310 nm. Flame emission structure and intensity distribution were compared between dieseline and diesel at wavelength bands. Flame emission images show that both narrow band emissions become shorter, thinner and stronger with higher oxygen concentration and higher ambient temperature for both fuels. Areas of weak intensity are observed at the flame periphery and the upstream for both fuels under all ambient conditions. Average flame emission intensity and area were calculated for 430 nm and 470 nm narrow-band emissions. At a lower ambient temperature the average intensity increases with increasing ambient oxygen concentration. However, at the 1200 K ambient temperature condition, the average intensity is not increasing monotonically for both fuels. For most of the conditions, diesel has a stronger average flame emission intensity than dieseline for the 430 nm band, and similar phenomena can be observed for the 470 nm band with 800 K and 1200 K ambient temperatures. However, for the 1000 K ambient temperature cases, dieseline has stronger average flame emission intensities than diesel for all oxygen concentrations at 470 nm band. Flame emissions for the two bands have a

  8. Perturbation method for calculation of narrow-band impedance and trapped modes

    International Nuclear Information System (INIS)

    Heifets, S.A.

    1987-01-01

    An iterative method for calculation of the narrow-band impedance is described for a system with a small variation in boundary conditions, so that the variation can be considered as a perturbation. The results are compared with numeric calculations. The method is used to relate the origin of the trapped modes with the degeneracy of the spectrum of an unperturbed system. The method also can be applied to transverse impedance calculations. 6 refs., 6 figs., 1 tab

  9. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.

    Science.gov (United States)

    Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R

    2001-04-15

    Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.

  10. Double symbol error rates for differential detection of narrow-band FM

    Science.gov (United States)

    Simon, M. K.

    1985-01-01

    This paper evaluates the double symbol error rate (average probability of two consecutive symbol errors) in differentially detected narrow-band FM. Numerical results are presented for the special case of MSK with a Gaussian IF receive filter. It is shown that, not unlike similar results previously obtained for the single error probability of such systems, large inaccuracies in predicted performance can occur when intersymbol interference is ignored.

  11. Stability of the split-band solution and energy gap in the narrow-band region of the Hubbard model

    International Nuclear Information System (INIS)

    Arai, T.; Cohen, M.H.

    1980-01-01

    By inserting quasielectron energies ω calculated from the fully renormalized Green's function of the Hubbard model obtained in the preceding paper into the exact expression of Galitskii and Migdal, the ground-state energy, the chemical potential, and the dynamic- and thermodynamic-stability conditions are calculated in the narrow-band region. The results show that as long as the interaction energy I is finite, electrons in the narrow-band region do not obey the Landau theory of Fermi liquids, and a gap appears between the lowest quasielectron energy ω and the chemical potential μ for any occupation n, regardless of whether the lower band is exactly filled or not. This unusual behavior is possible because, when an electron is added to the system of N electrons, the whole system relaxes due to the strong interaction, introducing a relaxation energy difference between the two quantities. We also show that all previous solutions which exhibit the split-band structure, including Hubbard's work, yield the same conclusion that electrons do not behave like Landau quasiparticles. However, the energy gap is calculated to be negative at least for some occupations n, demonstrating the dynamic instability of those solutions. They also exhibit thermodynamic instability for certain occupations, while the fully renormalized solution, having sufficient electron correlations built in, satisfies the dynamic and thermodynamic stability conditions for all occupations. When the lower band is nearly filled, the nature of the solution is shown to change, making the coherent motion of electrons with fixed k values more difficult. In the pathological limit where I=infinity, however, the gap vanishes, yielding a metallic state

  12. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    OpenAIRE

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of the two materials led to the formation of an energetically favorable bulk hetero-junction with a broad spectral response. Using a basic device structure, we reached a power conversion efficiency of s...

  13. Detection of Mucosal Recurrent Nasopharyngeal Carcinomas After Radiotherapy With Narrow-Band Imaging Endoscopy

    International Nuclear Information System (INIS)

    Wang, Wen-Hung; Lin, Yen-Chun; Chen, Wen-Cheng; Chen, Miao-Fen; Chen, Chih-Cheng; Lee, Kam-Fai

    2012-01-01

    Purpose: This study evaluated the feasibility of screening mucosal recurrent nasopharyngeal carcinoma with narrow-band imaging (NBI) endoscopy. Methods and Materials: One hundred and six patients were enrolled. All patients underwent conventional white-light (WL) endoscopic examination of the nasopharynx followed by NBI endoscopy. Biopsies were performed if recurrence was suspected. Results: We identified 32 suspected lesions by endoscopy in WL and/or NBI mode. Scattered brown spots (BS) were identified in 22 patients, and 4 of the 22 who had negative MRI findings were histopathologically confirmed to be neoplasias that were successfully removed via endoscopy. A comparison of the visualization in NBI closer view corresponded to histopathological findings in 22 BS, and the prevalence rates of neoplasias in tail signs, round signs, and irregularities signs were 0% (0/6), 0% (0/7), and 44.4% (4/9), respectively (p = 0.048). The sensitivity, specificity, and diagnostic capability were 37.5%, 92.9% and 0.652 for WL, 87.5%, 74.5% and 0.810 for NBI, and 87.5%, 87.8%, and 0.876 for NBI closer view, respectively. NBI closer view was effective in increasing specificity compared with NBI alone (87.8% vs. 74.5%, p < 0.05), and in increasing sensitivity and diagnostic capability compared to WL alone (87.5% vs. 37.5%, p < 0.05; 0.876 vs. 0.652, p = 0.0001). Conclusions: Although NBI in endoscopy can improve sensitivity of mucosal recurrent nasopharyngeal neoplasias, false-positive (nonneoplasia BS) results may be obtained in areas with nonspecific inflammatory changes due to postradiation effects. NBI closer view not only can offer a timely, convenient, and highly reliable assessment of mucosal recurrent nasopharyngeal carcinoma, it can also make endoscopic removal possible.

  14. Superconductivity in narrow-band systems with local nonretarded attractive interactions

    International Nuclear Information System (INIS)

    Micnas, R.; Ranninger, J.; Robaszkiewicz, S.

    1990-01-01

    In narrow-band systems electrons can interact with each other via a short-range nonretarded attractive potential. The origin of such an effective local attraction can be polaronic or it can be due to a coupling between electrons and excitons or plasmons. It can also result from purely chemical (electronic) mechanisms, especially in compounds with elements favoring disproportionation of valent states. These mechanisms are discussed and an exhaustive list of materials in which such local electron pairing occurs is given. The authors review the thermodynamic and electromagnetic properties of such systems in several limiting scenarios: (i) Systems with on-site pairing which can be described by the extended negative-U Hubbard model. The strong-attraction limit of this model, at which it reduces to a system of tightly bound electron pairs (bipolarons) on a lattice, is extensively discussed. These electron pairs behaving as hard-core charged bosons can exhibit a superconducting state analogous to that of superfluid 4 He II. The changeover from weak-attraction BCS-like superconductivity to the superfluidity of charged hard-core bosons is examined. (ii) Systems with intersite pairing described by an extended Hubbard model with U>0 and nearest-neighbor attraction and/or nearest-neighbor spin exchange as well as correlated hopping. (iii) A mixture of local pairs and itinerant electrons interacting via a charge-exchange mechanism giving rise to a mutually induced superconductivity in both subsystems. The authors discuss to what extent the picture of local pairing, and in particular superfluidity of hard-core charged bosons on a lattice, can be an explanation for the superconducting and normal-state properties of the high-T c oxides: doped BaBiO 3 and the cuprates

  15. The differences in brain activity between narrow band noise and pure tone tinnitus.

    Directory of Open Access Journals (Sweden)

    Sven Vanneste

    Full Text Available BACKGROUND: Tinnitus is an auditory sensation characterized by the perception of sound or noise in the absence of any external sound source. Based on neurobiological research, it is generally accepted that most forms of tinnitus are attributable to maladaptive plasticity due to damage to auditory system. Changes have been observed in auditory structures such as the inferior colliculus, the thalamus and the auditory cortex as well as in non-auditory brain areas. However, the observed changes show great variability, hence lacking a conclusive picture. One of the reasons might be the selection of inhomogeneous groups in data analysis. METHODOLOGY: The aim of the present study was to delineate the differences between the neural networks involved in narrow band noise and pure tone tinnitus conducting LORETA based source analysis of resting state EEG. CONCLUSIONS: Results demonstrated that narrow band noise tinnitus patients differ from pure tone tinnitus patients in the lateral frontopolar (BA 10, PCC and the parahippocampal area for delta, beta and gamma frequency bands, respectively. The parahippocampal-PCC current density differences might be load dependent, as noise-like tinnitus constitutes multiple frequencies in contrast to pure tone tinnitus. The lateral frontopolar differences might be related to pitch specific memory retrieval.

  16. Intensities, broadening and narrowing parameters in the ν3 band of methane

    KAUST Repository

    Es-sebbar, Et-touhami

    2014-12-01

    The P-branch of methane\\'s ν3 band is probed to carry out an extensive study of the 2905-2908cm-1 infrared spectral region. Absolute line intensities as well as N2-, O2-, H2-, He-, Ar- and CO2-broadening coefficients are determined for nine transitions at room temperature. Narrowing parameters due to the Dicke effect have also been investigated. A narrow emission line-width (~0.0001cm-1) difference-frequency-generation (DFG) laser system is used as the tunable light source. To retrieve the CH4 spectroscopic parameters, Voigt and Galatry profiles were used to simulate the measured line shape of the individual transitions.

  17. A Compact Narrow-Band Bandstop Filter Using Spiral-Shaped Defected Microstrip Structure

    Directory of Open Access Journals (Sweden)

    J. Wang

    2014-04-01

    Full Text Available A novel compact narrow-band bandstop filter is implemented by using the proposed spiral-shaped defected microstrip structure (SDMS in this paper. Compared with other DMSs, the presented SDMS exhibits the advantage of compact size and narrow stopband. Meanwhile, an approximate design rule of the SDMS is achieved and the effects of the dimensions on the resonant frequency and 3 dB fractional bandwidth (FBW are analyzed in detail. Both the simulation and measurement results of the fabricated bandstop filter show that it has a 10 dB stopband from 3.4 GHz to 3.6 GHz with more than 45 dB rejection at the center frequency.

  18. Narrowing of band gap at source/drain contact scheme of nanoscale InAs-nMOS

    Science.gov (United States)

    Mohamed, A. H.; Oxland, R.; Aldegunde, M.; Hepplestone, S. P.; Sushko, P. V.; Kalna, K.

    2018-04-01

    A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1 × 1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq.

  19. Experimental study of shear bands formation in a granular material

    Directory of Open Access Journals (Sweden)

    Nguyen Thai Binh

    2017-01-01

    Full Text Available We present an experimental investigation of the formation of shear bands in a granular sample submitted to a biaxial test. Our principal result is the direct observation of the bifurcation at the origin of the localization process in the material. At the bifurcation, the shear band is spatially extended: we observe a breaking of symmetry without any sudden localization of the deformation in a narrow band. Our work thus allows to clearly distinguish different phenomena: bifurcation which is a ponctual event which occurs before the peak, localization which is a process that covers a range of deformation of several percents during which the peak occurs and finally stationary shear bands which are well-defined permanent structures that can be observed at the end of the localization process, after the peak.

  20. Optical observations of the nearby galaxy IC342 with narrow band [SII] and Hα filters. I

    Directory of Open Access Journals (Sweden)

    Vučetić M.M.

    2013-01-01

    Full Text Available We present observations of a portion of the nearby spiral galaxy IC342 using narrow band [SII] and Hα filters. These observations were carried out in November 2011 with the 2m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper we report coordinates, diameters, Hα and [SII] fluxes for 203 HII regions detected in two fields of view in IC342 galaxy. The number of detected HII regions is 5 times higher than previously known in these two parts of the galaxy. [Projekat Ministarstva nauke Republike Srbije, br. 176005: Emission nebulae: structure and evolution

  1. Observations of the Galaxy NGC 3077 in the Narrow-Band [S II] and Hα Filters

    Directory of Open Access Journals (Sweden)

    Andjelić M.

    2011-09-01

    Full Text Available We present observations of the H I tidal arm near a dwarf galaxy NGC 3077 (member of the M81 galaxy group in the narrow-band [S II] and Hα filters. Observations were carried out in 2011 March with the 2 m RCC telescope at the NAO Rozhen, Bulgaria. Our search for possible supernova remnant candidates (identified as sources with enhanced [S II] emission relative to their Hα emission in this region yielded no sources of this kind. Nevertheless, we found a number of objects with significant Hα emission that probably represent uncatalogued, low brightness H II regions.

  2. Control of fibre laser mode-locking by narrow-band Bragg gratings

    International Nuclear Information System (INIS)

    Laegsgaard, J

    2008-01-01

    The use of narrow-band high-reflectivity fibre Bragg gratings (FBGs) as end mirrors in a fibre laser cavity with passive mode-locking provided by a semiconductor saturable absorber mirror (SESAM) is investigated numerically. The FBG is found to control the energy range of stable mode-locking, which may be shifted far outside the regime of SESAM saturation by a suitable choice of FBG and cavity length. The pulse shape is controlled by the combined effects of FBG dispersion and self-phase modulation in the fibres, and a few ps pulses can be obtained with standard uniform FBGs

  3. Enhancing Coverage in Narrow Band-IoT Using Machine Learning

    OpenAIRE

    Chafii , Marwa; Bader , Faouzi; Palicot , Jacques

    2018-01-01

    International audience; —Narrow Band-Internet of Thing (NB-IoT) is a recently proposed technology by 3GPP in Release-13. It provides low energy consumption and wide coverage in order to meet the requirements of its diverse applications that span social, industrial and environmental aspects. Increasing the number of repetitions of the transmission has been selected as a promising approach to enhance the coverage in NB-IoT up to 164 dB in terms of maximum coupling loss for uplink transmissions,...

  4. All-mechanical quantum noise cancellation for accelerometry: broadband with momentum measurements, narrow band without

    International Nuclear Information System (INIS)

    Jacobs, Kurt; Balu, Radhakrishnan; Tezak, Nikolas; Mabuchi, Hideo

    2016-01-01

    We show that the ability to make direct measurements of momentum, in addition to the usual direct measurements of position, allows a simple configuration of two identical mechanical oscillators to be used for broadband back-action-free force metrology. This would eliminate the need for an optical reference oscillator in the scheme of Tsang and Caves (2010 Phys. Rev. Lett.  105 123601), along with its associated disadvantages. We also show that if one is restricted to position measurements alone then two copies of the same two-oscillator configuration can be used for narrow-band back-action-free force metrology. (paper)

  5. Thermal Loss Becomes an Issue for Tunable Narrow-band Antennas in Fourth Generation Handsets

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2015-01-01

    Antenna tuning is a very promising technique to cope with the expansion of the mobile communication frequency spectrum. Tunable antennas can address a wide range of operating frequencies, while being highly integrated. In particular, high-Q antennas (also named narrow-band antennas) are very...... compact, thus are good candidates to be embedded on fourth generation handsets. This study focuses on ‘high-Q’ tunable antennas and contributes with a characterisation of their loss mechanism, which is a major parameter in link-budget calculations. This study shows, through an example, that the tuner loss...

  6. Narrow band wavelength selective filter using grating assisted single ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Prabhathan, P., E-mail: PPrabhathan@ntu.edu.sg; Murukeshan, V. M. [Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ∼60 nm and side band rejection ratio >15 dB.

  7. Ultrabright narrow-band telecom two-photon source for long-distance quantum communication

    Science.gov (United States)

    Niizeki, Kazuya; Ikeda, Kohei; Zheng, Mingyang; Xie, Xiuping; Okamura, Kotaro; Takei, Nobuyuki; Namekata, Naoto; Inoue, Shuichiro; Kosaka, Hideo; Horikiri, Tomoyuki

    2018-04-01

    We demonstrate an ultrabright narrow-band two-photon source at the 1.5 µm telecom wavelength for long-distance quantum communication. By utilizing a bow-tie cavity, we obtain a cavity enhancement factor of 4.06 × 104. Our measurement of the second-order correlation function G (2)(τ) reveals that the linewidth of 2.4 MHz has been hitherto unachieved in the 1.5 µm telecom band. This two-photon source is useful for obtaining a high absorption probability close to unity by quantum memories set inside quantum repeater nodes. Furthermore, to the best of our knowledge, the observed spectral brightness of 3.94 × 105 pairs/(s·MHz·mW) is also the highest reported over all wavelengths.

  8. Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn

    Science.gov (United States)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2011-06-01

    Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.

  9. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU

    Science.gov (United States)

    Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.

    2018-01-01

    There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.

  10. The effects of narrow-band middle infrared radiation in enhancing the antitumor activity of paclitaxel.

    Science.gov (United States)

    Tsai, Shang-Ru; Sheu, Bor-Ching; Huang, Pei-Shen; Lee, Si-Chen

    2016-01-01

    Paclitaxel is used as an adjuvant to enhance the effectiveness of ionization radiation therapy; however, high-energy radiation often damages the healthy cells surrounding cancer cells. Low-energy, middle-infrared radiation (MIR) has been shown to prevent tissue damage, and recent studies have begun combining MIR with paclitaxel. However, the cytotoxic effects of this treatment combination remain unclear, and the mechanism underlying its effects on HeLa cells has yet to be elucidated. This study investigated the effectiveness of treating HeLa human cervical cancer cells with a combination of paclitaxel for 48 h in conjunction with narrow-band MIR from 3.0 to 5.0 μm. This combined treatment significantly inhibited the growth of HeLa cells. Specifically, results from Annexin V-FITC/PI apoptosis detection and cell mitochondrial membrane potential analyses revealed an increase in apoptotic cell death and a collapse of mitochondrial membrane potential. One possible mechanism underlying cellular apoptosis is an increase in oxidative stress. These preliminary findings provide evidence to support the combination of narrow-band MIR with paclitaxel as an alternative approach in the treatment of human cervical cancer.

  11. Lateralization of narrow-band noise by blind and sighted listeners.

    Science.gov (United States)

    Simon, Helen J; Divenyi, Pierre L; Lotze, Al

    2002-01-01

    The effects of varying interaural time delay (ITD) and interaural intensity difference (IID) were measured in normal-hearing sighted and congenitally blind subjects as a function of eleven frequencies and at sound pressure levels of 70 and 90 dB, and at a sensation level of 25 dB (sensation level refers to the pressure level of the sound above its threshold for the individual subject). Using an 'acoustic' pointing paradigm, the subject varied the IID of a 500 Hz narrow-band (100 Hz) noise (the 'pointer') to coincide with the apparent lateral position of a 'target' ITD stimulus. ITDs of 0, +/-200, and +/-400 micros were obtained through total waveform delays of narrow-band noise, including envelope and fine structure. For both groups, the results of this experiment confirm the traditional view of binaural hearing for like stimuli: non-zero ITDs produce little perceived lateral displacement away from 0 IID at frequencies above 1250 Hz. To the extent that greater magnitude of lateralization for a given ITD, presentation level, and center frequency can be equated with superior localization abilities, blind listeners appear at least comparable and even somewhat better than sighted subjects, especially when attending to signals in the periphery. The present findings suggest that blind listeners are fully able to utilize the cues for spatial hearing, and that vision is not a mandatory prerequisite for the calibration of human spatial hearing.

  12. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding.

    Science.gov (United States)

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-07-28

    To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both imaging and training, it may be possible to increase the sensitivity and specificity of the scopes and hence save money for eliminating time and the cost of Immunohistochemistry/pathology.

  13. Effect of combination of fractional CO2 laser and narrow-band ultraviolet B versus narrow-band ultraviolet B in the treatment of non-segmental vitiligo.

    Science.gov (United States)

    El-Zawahry, Mohamed Bakr; Zaki, Naglaa Sameh; Wissa, Marian Youssry; Saleh, Marwah Adly

    2017-12-01

    The present study was designed to evaluate the effect of combining fractional CO 2 laser with narrow-band ultraviolet B (NB-UVB) versus NB-UVB in the treatment of non-segmental vitiligo. The study included 20 patients with non-segmental stable vitiligo. They were divided into two groups. Group I received a single session of fractional CO 2 laser therapy on the right side of the body followed by NB-UVB phototherapy twice per week for 8 weeks. Group II received a second session of fractional CO 2 laser therapy after 4 weeks from starting treatment with NB-UVB. The vitiligo lesions were assessed before treatment and after 8 weeks of treatment by VASI. At the end of the study period, the vitiligo area score index (VASI) in group I decreased insignificantly on both the right (-2.6%) and left (-16.4%) sides. In group II, VASI increased insignificantly on the right (+14.4%) and left (+2.5%) sides. Using Adobe Photoshop CS6 extended program to measure the area of vitiligo lesions, group I showed a decrease of -1.02 and -6.12% in the mean area percentage change of vitiligo lesions on the right and left sides, respectively. In group II the change was +9.84 and +9.13% on the right and left sides, respectively. In conclusion, combining fractional CO 2 laser with NB-UVB for the treatment of non-segmental vitiligo did not show any significant advantage over treatment with NB-UVB alone. Further study of this combination for longer durations in the treatment of vitiligo is recommended.

  14. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    Science.gov (United States)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been

  15. Analysis of the outlook for using narrow-band spontaneous emission sources for atmospheric air purification

    International Nuclear Information System (INIS)

    Boyarchuk, K A; Karelin, A V; Shirokov, R V

    2003-01-01

    The outlook for using narrow-band spontaneous emission sources for purification of smoke gases from sulphur and nitrogen oxides is demonstrated by calculations based on a nonstationary kinetic model of the N 2 - O 2 - H 2 O - CO 2 - SO 2 mixture. The dependences of the mixture purification efficiency on the UV source power at different wavelengths, the exposure time, and the mixture temperature are calculated. It is shown that the radiation sources proposed in the paper will provide better purification of waste gases in the atmosphere. The most promising is a KrCl* lamp emitting an average power of no less than 100 W at 222 nm. (laser applications and other topics in quantum electronics)

  16. H-tailored surface conductivity in narrow band gap In(AsN)

    Energy Technology Data Exchange (ETDEWEB)

    Velichko, A. V., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Patanè, A., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Makarovsky, O. [School of Physics and Astronomy, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Capizzi, M.; Polimeni, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Roma (Italy); Sandall, I. C.; Tan, C. H. [Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Giubertoni, D. [Center for Materials and Microsystems—Fondazione Bruno Kessler, via Sommarive 18, 38123 Povo, Trento (Italy); Krier, A.; Zhuang, Q. [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2015-01-12

    We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼10{sup 18 }m{sup −2} and a high electron mobility (μ > 0.1 m{sup 2}V{sup −1}s{sup −1} at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.

  17. Mitigation of Unwanted Forward Narrow-band Radiation from PCBs with a Metamaterial Unit Cell

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2013-01-01

    Mitigation of EMI from a PCB is obtained through the use of a metamaterial unit cell. The focus is on the reduction of narrow-band radiation in the forward hemisphere when the resonant element is etched on a layer located between the source of radiation and the ground plane. As opposed to previous...... publications in the literature, the aim of this work is the application of a filter to scattered radiation, generalizing the former characterizations based solely upon transmission lines’ insertion loss. The radiating area accounts for traces and components placed on the top layer of a PCB and is simulated via...... a patch antenna. The study exhibits how the radiation pattern and the electric field on the patch antenna change within and outside the resonance bandwidth of the parasitic element. An EMC assessment provides experimental verification of the operating principle....

  18. Narrow-band imaging of the inner R Aquarii nebula - Further evidence for shock excitation

    International Nuclear Information System (INIS)

    Burgarella, D.; Paresce, F.

    1991-01-01

    The jetlike nebulosity in the inner regions of the symbiotic variable R Aqr was imaged through narrow-band interference filters. A high spatial resolution image in the forbidden N II 6583 A line shows that the relative fluxes of features B and D defined by Paresce et al. (1988) have changed in the sense of a higher D/B brightness ratio at this line in a little over a year with respect to that observed previously in similar seeing conditions. The overall morphology of the jet has remained stable in this period. Line ratios for feature B are presented which can be best understood in terms of excitation of gas clumps surrounding R Aqr by a moving shock. Comparison of the observed fluxes with theoretical expectations yields shock velocity of order 90-100 km/s, a preshock gas density of roughly 10/cu cm, and a gas temperature of roughly 10,000 K. 26 refs

  19. High thermal stability solution-processable narrow-band gap molecular semiconductors.

    Science.gov (United States)

    Liu, Xiaofeng; Hsu, Ben B Y; Sun, Yanming; Mai, Cheng-Kang; Heeger, Alan J; Bazan, Guillermo C

    2014-11-19

    A series of narrow-band gap conjugated molecules with specific fluorine substitution patterns has been synthesized in order to study the effect of fluorination on bulk thermal stability. As the number of fluorine substituents on the backbone increase, one finds more thermally robust bulk structures both under inert and ambient conditions as well as an increase in phase transition temperatures in the solid state. When integrated into field-effect transistor devices, the molecule with the highest degree of fluorination shows a hole mobility of 0.15 cm(2)/V·s and a device thermal stability of >300 °C. Generally, the enhancement in thermal robustness of bulk organization and device performance correlates with the level of C-H for C-F substitution. These findings are relevant for the design of molecular semiconductors that can be introduced into optoelectronic devices to be operated under a wide range of conditions.

  20. Effect of band gap narrowing on GaAs tunnel diode I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lebib, A.; Hannanchi, R. [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); Beji, L., E-mail: lotbej_fr@yahoo.fr [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); EL Jani, B. [Unité de Recherche sur les Hétéro-Epitaxies et Applications, Faculté des Sciences, Université de Monastir, 5019 Monastir (Tunisia)

    2016-12-01

    We report on experimental and theoretical study of current-voltage characteristics of C/Si-doped GaAs tunnel diode. For the investigation of the experimental data, we take into account the band-gap narrowing (BGN) effect due to heavily-doped sides of the tunnel diode. The BGN of the n- and p-sides of tunnel diode was measured by photoluminescence spectroscopy. The comparison between theoretical results and experimental data reveals that BGN effect enhances tunneling currents and hence should be considered to identify more accurately the different transport mechanisms in the junction. For C/Si-doped GaAs tunnel diode, we found that direct tunneling is the dominant transport mechanism at low voltages. At higher voltages, this mechanism is replaced by the rate-controlling tunneling via gap states in the forbidden gap.

  1. On a business cycle model with fractional derivative under narrow-band random excitation

    International Nuclear Information System (INIS)

    Lin, Zifei; Li, Jiaorui; Li, Shuang

    2016-01-01

    This paper analyzes the dynamics of a business cycle model with fractional derivative of order  α (0 < α < 1) subject to narrow-band random excitation, in which fractional derivative describes the memory property of the economic variables. Stochastic dynamical system concepts are integrated into the business cycle model for understanding the economic fluctuation. Firstly, the method of multiple scales is applied to derive the model to obtain the approximate analytical solution. Secondly, the effect of economic policy with fractional derivative on the amplitude of the economic fluctuation and the effect on stationary probability density are studied. The results show macroeconomic regulation and control can lower the stable amplitude of economic fluctuation. While in the process of equilibrium state, the amplitude is magnified. Also, the macroeconomic regulation and control improves the stability of the equilibrium state. Thirdly, how externally stochastic perturbation affects the dynamics of the economy system is investigated.

  2. Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line

    International Nuclear Information System (INIS)

    Tian Long; Li Shujing; Yuan Haoxiang; Wang Hai

    2016-01-01

    Using the process of cavity-enhanced spontaneous parametric down-conversion (SPDC), we generate a narrow-band polarization-entangled photon pair resonant on the rubidium (Rb) D1 line (795 nm). The degenerate single-mode photon pair is selected by multiple temperature controlled etalons. The linewidth of generated polarization-entangled photon pairs is 15 MHz which matches the typical atomic memory bandwidth. The measured Bell parameter for the polarization-entangled photons S = 2.73 ± 0.04 which violates the Bell-CHSH inequality by ∼18 standard deviations. The presented entangled photon pair source could be utilized in quantum communication and quantum computing based on quantum memories in atomic ensemble. (author)

  3. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    Science.gov (United States)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  4. Laterally Spreading Tumors of the Colon During High Resolution Colonoscopy with Narrow Band Imaging and Acetic Acid Chromoscopy

    Directory of Open Access Journals (Sweden)

    V.A. Yakovenko

    2015-02-01

    Materials and Methods. 1632 colonoscopy protocols were studied: 735 — by using video colonoscope Olympus CF-HQ190L and 897 — Olympus CF-150. Results and Discussion. In study group, adenoma detection rate was higher than in control one: 0.78 (571/735 vs. 0.47 (422/897, p < 0.00001; c2 = 157.9. Adenoma detection index was 3.6 times higher in study group than in control one: 2.9 (2,104/735 vs. 0.8 (708/897. Laterally spreading tumors were diagnosed 2.2 times more often in study group than in control one: 22 % (187/735 vs. 10 % (85/897, p < 0.00001; c2 = 53.6. Conclusions. High resolution colonoscopy with narrow band imaging and acetic acid chromoscopy has a high diagnostic value for detection of laterally spreading tumors of the colon.

  5. Ionic Potential and Band Narrowing as a Source of Orbital Polarization in Nickelate/Insulator Superlattices

    Science.gov (United States)

    Georgescu, Alexandru B.; Disa, Ankit S.; Kumah, Divine P.; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    Nickelate interfaces display complex, interacting electronic properties such as thickness dependent metal-insulator transitions. One large body of effort involving nickelates has aimed to split the energies of the Ni 3d orbitals (orbital polarization) to make the resulting band structure resemble that of cuprate superconductors. The most commonly studied interfacial system involves superlattices of alternating nickelate and insulating perovksite-structure layers; the resulting orbital polarization at the nickelate-insulator interface is understood as being due to confinement or structural symmetry breaking. By using first principles theory on the NdNiO3/NdAlO3 superlattice, we show that another important source of orbital polarization stems from electrostatic effects: the more ionic nature of the cations in the insulator (when compared to the nickelate) can shift the relative orbital energies of the Ni. We use density functional theory (DFT) and add electronic correlations via slave-bosons to describe the effect of correlation-induced band narrowing on the orbital polarization. Work supported by NSF Grant MRSEC DMR-1119826.

  6. Two cases of eczematid-like purpura of Doucas and Kapetanakis responsive to narrow band ultraviolet B treatment.

    Science.gov (United States)

    Karadag, Ayse Serap; Bilgili, Serap Gunes; Onder, Sevda; Calka, Omer

    2013-04-01

    Eczematid-like purpura of Doucas and Kapetanakis is a type of pigmented purpuric dermatoses (PPDs) with eczematous changes in the purpuric surface. A 10-year-old male and a 44-year-old male patients were admitted to our clinics for itching and flaking of the skin rashes. Based on the clinical and histopathological evaluations, the rashes were identified as eczematid-like PPDs of Doucas and Kapetanakis. Both patients were treated with narrow band ultraviolet B. The lesions were remarkably regressed following the treatment. These cases reported due its rarity and good response to narrow band ultraviolet B. © 2013 John Wiley & Sons A/S.

  7. Deep narrow band imagery of the diffuse ISM in M33

    Science.gov (United States)

    Hester, J. Jeff; Kulkarni, Shrinivas R.

    1990-01-01

    Very deep narrow band images were obtained for several fields in the local group spiral galaxy M33 using a wide field reimaging Charge Coupled Device (CCD) camera on the 1.5 m telescope at Palomar Observatory. The reimaging system uses a 306 mm collimator and a 58 mm camera lens to put a 16 minute by 16 minute field onto a Texas Instruments 800 x 800 pixel CCD at a resolution of 1.2 arcseconds pixel (-1). The overall system is f/1.65. Images were obtained in the light of H alpha (S II) lambda lambda 6717, 6731, (O III) lambda 5007, and line-free continuum bands 100A wide, centered at 6450A and 5100A. Assuming a distance of 600 kpc to M33 (Humphreys 1980, Ap. J., 241, 587), this corresponds to a linear scale of 3.5 pc pixel (-1), and a field size of 2.8 kpc x 2.8 kpc. Researchers discuss the H alpha imagery of a field centered approx. equal to 8 minutes NE of the nucleus, including the supergiant HII region complex NGC 604. Two 2000 second H alpha images and two 300 second red continuum images were obtained of two slightly offset fields. The fields were offset to allow for discrimination between real emission and possible artifacts in the images. All images were resampled to align them with one of the H alpha frames. The continuum images were normalized to the line images using the results of aperture photometry on a grid of stars in the field, then the rescaled continuum data were directly subtracted from the line data.

  8. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period.

    Science.gov (United States)

    Martinez, E I Rodríguez; Barriga-Paulino, C I; Zapata, M I; Chinchilla, C; López-Jiménez, A M; Gómez, C M

    2012-08-24

    The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.

  9. Efektivitas Terapi Kortikosteroid Intranasal pada Hipertrofi Adenoid Usia Dewasa berdasarkan Pemeriksaan Narrow Band Imaging

    Directory of Open Access Journals (Sweden)

    Sinta Sari Ratunanda

    2016-12-01

    Full Text Available Adenoid hypertrophy is a process in which adenoid size becomes enlarged and causes clinical symptoms, especially nasal obstruction. Adenoid hypertrophy can be due to physiological, inflammatory, or malignancy processes. Adenoid inflammatory process can be assessed using a flexible fiberoptic nasoendoscopy with narrow band imaging (NBI. Intranasal corticosteroid is one of the choices to treat adenoid hypertrophy in children; however, more experiments are needed to use it in adults. This study was performed in the period of November 2012 to January 2013 at the outpatient clinic of the Otorhinolaryngology-Head and Neck Surgery Department of Dr. Hasan Sadikin General Hospital Bandung, using pre- and post-test open-labeled quasiexperimental design. Sample was selected through consecutive sampling, involving 11 subjects. Diagnosis was based on research subject’s anamnesis, ear nose and throat (ENT physical examination, NBI-equipped fiberoptic nasoendocopy examination, and adenoid mucosal biopsy. Subjects were given intranasal corticosteroid therapy for four weeks. NBI-equipped fiberoptic nasoendocopy examination and biopsy examination were performed after therapy. Data were analyzed using Wilcoxon test, showing significant improvement of the adenoid inflammation after intranasal corticosteroids therapy (p<0.05. McNemar test results showed a significant reduction in adenoid size (p<0.05. Spearman rank test showed a significant correlation between histopathologic findings and NBI examination result (p<0.05. In conclusion, intranasal corticosteroids are effective for adult adenoid hypertrophy treatment based on NBI examination. [MKB. 2016;48(4:228–33

  10. Narrow Band Imaging Enhances the Detection Rate of Penetration and Aspiration in FEES.

    Science.gov (United States)

    Nienstedt, Julie C; Müller, Frank; Nießen, Almut; Fleischer, Susanne; Koseki, Jana-Christiane; Flügel, Till; Pflug, Christina

    2017-06-01

    Narrow band imaging (NBI) is widely used in gastrointestinal, laryngeal, and urological endoscopy. Its original purpose was to visualize vessels and epithelial irregularities. Based on our observation that adding NBI to common white light (WL) improves the contrast of the test bolus in fiberoptic endoscopic evaluation of swallowing (FEES), we now investigated the potential value of NBI in swallowing disorders. 148 FEES images were analyzed from 74 consecutive patients with swallowing disorders, including 74 with and 74 without NBI. All images were evaluated by four dysphagia specialists. Findings were classified according to Rosenbek's penetration-aspiration scale modified for evaluating these FEES images. Intra- and inter-rater reliability was determined as well as observer confidence. A better visualization of the bolus is the main advantage of NBI in FEES. This generally leads to sharper optical contrasts and better detection of small bolus quantities. Accordingly, NBI enhances the detection rate of penetration and aspiration. On average, identification of laryngeal penetration increased from 40 to 73% and of aspiration from 13 to 24% (each p dysphagia evaluation and shortening FEES evaluation time. It leads to a markedly higher detection rate of pathological findings. The significantly better intra- and inter-rater reliability argues further for a better overall reproducibly of FEES interpretation.

  11. Use of narrow-band imaging bronchoscopy in detection of lung cancer.

    Science.gov (United States)

    Zaric, Bojan; Perin, Branislav

    2010-05-01

    Narrow-band imaging (NBI) is a new endoscopic technique designed for detection of pathologically altered submucosal and mucosal microvascular patterns. The combination of magnification videobronchoscopy and NBI showed great potential in the detection of precancerous and cancerous lesions of the bronchial mucosa. The preliminary studies confirmed supremacy of NBI over white-light videobronchoscopy in the detection of premalignant and malignant lesions. Pathological patterns of capillaries in bronchial mucosa are known as Shibuya's descriptors (dotted, tortuous and abrupt-ending blood vessels). Where respiratory endoscopy is concerned, the NBI is still a 'technology in search of proper indication'. More randomized trials are necessary to confirm the place of NBI in the diagnostic algorithm, and more trials are needed to evaluate the relation of NBI to autofluorescence videobronchoscopy and to white-light magnification videobronchoscopy. Considering the fact that NBI examination of the tracheo-bronchial tree is easy, reproducible and clear to interpret, it is certain that NBI videobronchoscopy will play a significant role in the future of lung cancer detection and staging.

  12. Narrow-band modulation of semiconductor lasers at millimeter wave frequencies (7100 GHz) by mode locking

    International Nuclear Information System (INIS)

    Lau, K.Y.

    1990-01-01

    This paper reports on the possibility of mode locking a semiconductor laser at millimeter wave frequencies approaching and beyond 100 GHz which was investigated theoretically and experimentally. It is found that there are no fundamental theoretical limitations in mode locking at frequencies below 100 GHz. AT these high frequencies, only a few modes are locked and the output usually takes the form of a deep sinusoidal modulation which is synchronized in phase with the externally applied modulation at the intermodal heat frequency. This can be regarded for practical purposes as a highly efficient means of directly modulating an optical carrier over a narrow band at millimeter wave frequencies. Both active and passive mode locking are theoretically possible. Experimentally, predictions on active mode locking have been verified in prior publications up to 40 GHz. For passive mode locking, evidence consistent with passive mode locking was observed in an inhomogeneously pumped GaAIAs laser at a frequency of approximately 70 GHz. A large differential gain-absorption ratio such as that present in an inhomogeneously pumped single quantum well laser is necessary for pushing the passive mode-locking frequency beyond 100 GHz

  13. "Leopard skin sign": the use of narrow-band imaging with magnification endoscopy in celiac disease.

    Science.gov (United States)

    Tchekmedyian, Asadur J; Coronel, Emmanuel; Czul, Frank

    2014-01-01

    Celiac Disease (CD) is an immune reaction to gluten containing foods such as rye, wheat and barley. This condition affects individuals with a genetic predisposition; it targets the small bowel and may cause symptoms including diarrhea, malabsorption, weight loss, abdominal pain and bloating. The diagnosis is made by serologic testing of celiac-specific antibodies and confirmed by histology. Certain endoscopic characteristics, such as scalloping, reduction in the number of folds, mosaic-pattern mucosa or nodular mucosa, are suggestive of CD and can be visualized under white light endoscopy. Due to its low sensitivity, endoscopy alone is not recommended to diagnose CD; however, enhanced visual identification of suspected mucosal abnormalities through the use of new technologies, such as narrow band imaging with magnification (NBI-ME), could assist in targeting biopsies and thereby increasing the sensitivity of endoscopy. This is a case series of seven patients with serologic and histologic diagnoses of CD who underwent upper endoscopies with NBI-ME imaging technology as part of their CD evaluation. By employing this imaging technology, we could identify patchy atrophy sites in a mosaic pattern, with flattened villi and alteration of the central capillaries of the duodenal mucosa. We refer to this epithelial pattern as "Leopard Skin Sign". Since epithelial lesions are easily seen using NBI-ME, we found it beneficial for identifying and targeting biopsy sites. Larger prospective studies are warranted to confirm our findings.

  14. Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films

    Science.gov (United States)

    Hassan, Ali; Jin, Yuhua; Irfan, Muhammad; Jiang, Yijian

    2018-03-01

    Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM) analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (˜ 6 nm to 10 nm) and surface roughness rms value 3 nm for thickness ˜315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV) region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.

  15. Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films

    Directory of Open Access Journals (Sweden)

    Ali Hassan

    2018-03-01

    Full Text Available Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (∼ 6 nm to 10 nm and surface roughness rms value 3 nm for thickness ∼315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD, Energy Dispersive X-ray Spectroscopy (EDS and X-ray Photoelectron Spectroscopy (XPS have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.

  16. Polyp Detection, Characterization, and Management Using Narrow-Band Imaging with/without Magnification

    Directory of Open Access Journals (Sweden)

    Takahiro Utsumi

    2015-11-01

    Full Text Available Narrow-band imaging (NBI is a new imaging technology that was developed in 2006 and has since spread worldwide. Because of its convenience, NBI has been replacing the role of chromoendoscopy. Here we review the efficacy of NBI with/without magnification for detection, characterization, and management of colorectal polyps, and future perspectives for the technology, including education. Recent studies have shown that the next-generation NBI system can detect significantly more colonic polyps than white light imaging, suggesting that NBI may become the modality of choice from the beginning of screening. The capillary pattern revealed by NBI, and the NBI International Colorectal Endoscopic classification are helpful for prediction of histology and for estimating the depth of invasion of colorectal cancer. However, NBI with magnifying colonoscopy is not superior to magnifying chromoendoscopy for estimation of invasion depth. Currently, therefore, chromoendoscopy should also be performed additionally if deep submucosal invasive cancer is suspected. If endoscopists become able to accurately estimate colorectal polyp pathology using NBI, this will allow adenomatous polyps to be resected and discarded; thus, reducing both the risk of polypectomy and costs. In order to achieve this goal, a suitable system for education and training in in vivo diagnostics will be necessary.

  17. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    Science.gov (United States)

    Kasparek, W.; Petelin, M. I.; Shchegolkov, D. Yu; Erckmann, V.; Plaum, B.; Bruschi, A.; ECRH Groups at IPP Greifswald; Karlsruhe, FZK; Stuttgart, IPF

    2008-05-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented.

  18. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    International Nuclear Information System (INIS)

    Kasparek, W.; Plaum, B.; Petelin, M.I.; Shchegolkov, D.Yu; Erckmann, V.; Bruschi, A.

    2008-01-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented

  19. A multicenter validation of an endoscopic classification with narrow band imaging for gastric precancerous and cancerous lesions

    NARCIS (Netherlands)

    Pimentel-Nunes, P.; Dinis-Ribeiro, M.; Soares, J. B.; Marcos-Pinto, R.; Santos, C.; Rolanda, C.; Bastos, R. P.; Areia, M.; Afonso, L.; Bergman, J.; Sharma, P.; Gotoda, T.; Henrique, R.; Moreira-Dias, L.

    2012-01-01

    Background and study aim: The reliability and external validity of narrow band imaging (NBI) in the stomach have not been described consistently. The aim of the current study was to describe and estimate the accuracy and reliability of a simplified classification system for NBI in the diagnosis of

  20. Increased polyp detection using narrow band imaging compared with high resolution endoscopy in patients with hyperplastic polyposis syndrome

    NARCIS (Netherlands)

    Boparai, K. S.; van den Broek, F. J. C.; van Eeden, S.; Fockens, P.; Dekker, E.

    2011-01-01

    Hyperplastic polyposis syndrome (HPS) is associated with colorectal cancer and is characterized by multiple hyperplastic polyps, sessile serrated adenomas (SSAs) and adenomas. Narrow band imaging (NBI) may improve the detection of polyps in HPS. We aimed to compare polyp miss rates with NBI with

  1. High-resolution endoscopy plus chromoendoscopy or narrow-band imaging in Barrett's esophagus: a prospective randomized crossover study

    NARCIS (Netherlands)

    Kara, M. A.; Peters, F. P.; Rosmolen, W. D.; Krishnadath, K. K.; ten Kate, F. J.; Fockens, P.; Bergman, J. J. G. H.

    2005-01-01

    Background and study aims: High-resolution endoscopy (HRE) may improve the detection of early neoplasia in Barrett's esophagus. Indigo carmine chromoendoscopy (ICc) and narrow-band imaging (NBI) may be useful techniques to complement HRE. The aim of this study was to compare HRE-ICC with HrE-NBI for

  2. A test of ν stability using a 200 GeV narrow-band neutrino beam at BEBC

    Science.gov (United States)

    Deden, H.; Grässler, H.; Kirch, D.; Schultze, K.; Böckmann, K.; Glimpf, W.; Kokott, T. P.; Nellen, B.; Saarikko, H.; Wünsch, B.; Bosetti, P. C.; Cundy, D. C.; Grant, A. L.; Hulth, P. O.; Pape, L.; Peyrou, Ch.; Skjeggestad, O.; Wachsmuth, H.; Mermikides, M.; Vayaki, A.; Barnham, K. W. J.; Butterworth, I.; Chima, J. S.; Clayton, E. F.; Miller, D. B.; Mobayyen, M.; Petrides, A.; Powell, K. J.; Albajar, C.; Lloyd, J. L.; Myatt, G.; Perkins, D. H.; Poppe, M.; Radojicic, D.; Renton, P.; Saitta, B.; Wells, J.; Bloch, M.; Bolognese, T.; Tallini, B.; Velasco, J.; Vignaud, D.; Aachen-Bonn-CERN-Demokritos Athens-I. C. London-Oxford-Saclay Collaboration

    1981-01-01

    νe induced events obtained in a 200 GeV narrow-band beam have been studied and compared to the number expected from K e3+ decay. Agreement is found between the expected and observed numbers allowing limits to be set on νe → νx mixing.

  3. Spin excitation and band-narrowing in AlxGa1-xAs heterostructures

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2010-01-01

    We studied the spin excitation in dependences of the applied electric field and lattice temperature (LT) via the measurements of the circularly polarized photoluminescence (CPPL) in Al x Ga 1-x As heterostructures (HSs). The intensity of CPPL was found to strongly depend on the electric field applied to the HSs. The CPPL was also found to enhance with decreasing LT. It was demonstrated that the observed LT dependence might be due to the LT-dependent band-gap shift of the HS materials.

  4. Therapeutic efficacy of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome.

    Science.gov (United States)

    Kajiwara, Mitsuru; Inoue, Shougo; Kobayashi, Kanao; Ohara, Shinya; Teishima, Jun; Matsubara, Akio

    2014-04-01

    Narrow band imaging cystoscopy can increase the visualization and detection of Hunner's lesions. A single-center, prospective clinical trial was carried out aiming to show the effectiveness of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome. A total of 23 patients (19 women and 4 men) diagnosed as having ulcer-type interstitial cystitis/painful bladder syndrome were included. All typical Hunner's lesions and suspected areas identified by narrow band imaging were electrocoagulated endoscopically after the biopsy of those lesions. Therapeutic efficacy was assessed prospectively by using visual analog scale score of pain, O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score. The mean follow-up period was 22 months. All patients (100%) experienced a substantial improvement in pain. The average visual analog scale pain scores significantly decreased from 7.3 preoperatively to 1.2 1 month postoperatively. A total of 21 patients (91.3%) who reported improvement had at least a 50% reduction in bladder pain, and five reported complete resolution. Daytime frequency was significantly decreased postoperatively. O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score were significantly decreased postoperatively. However, during the follow-up period, a total of six patients had recurrence, and repeat narrow band imaging-assisted transurethral electrocoagulation of the recurrent lesions was carried out for five of the six patients, with good response in relieving bladder pain. Our results showed that narrow band imaging-assisted transurethral electrocoagulation could be a valuable therapeutic alternative in patients with ulcer-type interstitial cystitis/painful bladder syndrome, with good efficacy and reduction of recurrence rate. © 2014 The Japanese Urological Association.

  5. Diagnostic Performance of Narrow Band Imaging for Laryngeal Cancer: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Sun, Changling; Han, Xue; Li, Xiaoying; Zhang, Yayun; Du, Xiaodong

    2017-04-01

    Objective To evaluate the performance of narrow band imaging (NBI) for the diagnosis of laryngeal cancer and to compare the diagnostic value of NBI with that of white light endoscopy. Data Sources PubMed, Embase, Cochrane Library, and CNKI databases. Review Methods Data analyses were performed with Meta-DiSc. The updated Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess study quality and potential bias. Publication bias was assessed with the Deeks's asymmetry test. The protocol used in this article has been published on PROSPERO and is in accordance with the PRISMA checklist. The registry number for this study is CRD42015025866. Results Six studies including 716 lesions were included in this meta-analysis. The pooled sensitivity, specificity, and diagnostic odds ratio for the NBI diagnosis of laryngeal cancer were 0.94 (95% confidence interval [95% CI]: 0.91-0.96), 0.89 (95% CI: 0.85-0.92), and 142.12 (95% CI: 46.42-435.15), respectively, and the area under receiver operating characteristics curve was 0.97. Among the 6 studies, 3 evaluated the diagnostic value of white light endoscopy, with a sensitivity of 0.81 (95% CI: 0.76-0.86), a specificity of 0.92 (95% CI: 0.88-0.95), and a diagnostic odds ratio of 33.82 (95% CI: 14.76-77.49). The evaluation of heterogeneity, calculated per the diagnostic odds ratio, gave an I 2 of 66%. No marked publication bias ( P = .84) was detected in this meta-analysis. Conclusion The sensitivity of NBI is superior to white light endoscopy, and the potential value of NBI needs to be validated in future studies.

  6. OLGA- and OLGIM-based staging of gastritis using narrow-band imaging magnifying endoscopy.

    Science.gov (United States)

    Saka, Akiko; Yagi, Kazuyoshi; Nimura, Satoshi

    2015-11-01

    As atrophic gastritis and intestinal metaplasia as a result of Helicobacter pylori are considered risk factors for gastric cancer, it is important to assess their severity. In the West, the operative link for gastritis assessment (OLGA) and operative link for gastric intestinal metaplasia assessment (OLGIM) staging systems based on biopsy have been widely adopted. In Japan, however, narrow-band imaging (NBI)-magnifying endoscopic diagnosis of gastric mucosal inflammation, atrophy, and intestinal metaplasia has been reported to be fairly accurate. Therefore, we investigated the practicality of NBI-magnifying endoscopy (NBI-ME) for gastritis staging. We enrolled 55 patients, in whom NBI-ME was used to score the lesser curvature of the antrum (antrum) and the lesser curvature of the lower body (corpus). The NBI-ME score classification was established from images obtained beforehand, and then biopsy specimens taken from the observed areas were scored according to histological findings. The NBI-ME and histology scores were then compared. Furthermore, we assessed the NBI-ME and histology stages using a combination of scores for the antrum and corpus, and divided the stages into two risk groups: low and high. The degree to which the stage assessed by NBI-ME approximated that assessed by histology was then ascertained. Degree of correspondence between the NBI-ME and histology scores was 69.1% for the antrum and 72.7% for the corpus, and that between the high- and low-risk groups was 89.1%. Staging of gastritis using NBI-ME approximates that based on histology, and would be a practical alternative to the latter. © 2015 The Authors. Digestive Endoscopy © 2015 Japan Gastroenterological Endoscopy Society.

  7. Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?

    Science.gov (United States)

    Draaijers, Lieneke J; Tempelman, Fenike R H; Botman, Yvonne A M; Kreis, Robert W; Middelkoop, Esther; van Zuijlen, Paul P M

    2004-03-01

    The evaluation of scar colour is, at present, usually limited to an assessment according to a scar assessment scale. Although useful, these assessment scales only evaluate subjectively the degree of scar colour. In this study, the reliability of the subjective assessment of scar colour by observers is compared to the reliability of the measurements of two objective colour measurement instruments. Four independent observers subjectively assessed the vascularisation and pigmentation of 49 scar areas in 20 patients. The degree of vascularisation and pigmentation was scored according to a scale ranging from '1', when it appeared to be like healthy skin, to '10', which corresponds to the worst imaginable outcome of vascularisation or pigmentation. The observers also scored the pigmentation categories of the scar (hypopigmention, hyperpigmention or mixed pigmentation). Finally, each observer measured the scar areas with a tristimulus colorimeter (Minolta Chromameter) and a narrow-band simple reflectance meter (DermaSpectrometer). A single observer could reliably carry out measurements of the DermaSpectrometer and the Minolta Chromameter for the evaluation of scar colour (r = 0.72). The vascularisation of scars could also be assessed reliably with a single observer (r = 0.76) whereas for a reliable assessment of pigmentation at least three observers were necessary (r > or = 0.77). The agreement between the observers for the pigmentation categories also turned out to be unacceptably low (k = 0.349). This study shows that an overall evaluation of scar colour with the DermaSpectrometer and the Minolta Chromameter is more reliable than the evaluation of scar colour with observers. Of both instruments for measuring scar colour, we prefer, because of its feasibility, the DermaSpectrometer.

  8. Ultrabright, narrow-band photon-pair source for atomic quantum memories

    Science.gov (United States)

    Tsai, Pin-Ju; Chen, Ying-Cheng

    2018-06-01

    We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.

  9. HMB-45 Study Before and After Narrow-Band (311 nm Ultraviolet B Treatment in Vitiligo

    Directory of Open Access Journals (Sweden)

    Moosavi

    2015-06-01

    Full Text Available Background Vitiligo is an acquired disease in which the loss of functional melanocytes results in depigmented macules and patches. Over the years, wide arrays of markers for melanocytes have been described, including human melanoma black 45 (HMB-45. Narrow-band ultraviolet B (NB-UVB therapy is one of the therapeutic modalities for vitiligo. Objectives We sought to detect HMB-45 staining after 30 sessions of NB-UVB therapy in vitiligo and perivitiliginous skin. Patients and Methods All the participants were planned to have 30 sessions of NB-UVB therapy with 724 lamps (FS, 72 T, 12-HO Daavlin MED at 311 nm wavelengths. The patients underwent skin sampling from lesional and perilesional area before and after 30 sessions of treatment. The skin biopsies were sent to the laboratory for light microscopy and immunohistochemical study. The evaluation of HMB-45 was based on the quantitative method, measuring the number of positive stained cells. Clinical response was defined as repigmentation in three categories: more than 75%; between 40% and 75%; and less than 40%. The data were analyzed using SPSS (version 17. Results Twenty-nine patients completed the study. The Wilcoxon test showed a meaningful relation between HMB-45 staining before and after NB-UVB treatment in perilesional skin. We did not find a meaningful relation between HMB-45 staining before and after treatment regarding the mean age, gender, mean duration of disease, and initial lesional area (P = 0.55, P = 0.41, P = 0.55, and P = 0.87, respectively. After 30 sessions of NB-UVB therapy, repigmentation was less than 40% in 8 (27.6%, 40 - 75% in 7 (24.1%, and more than 75% in 6 patients. Conclusions The HMB-45 stain strength significantly changed after treatment in perilesional skin.

  10. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    Science.gov (United States)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  11. Next-generation narrow band imaging system for colonic polyp detection: a prospective multicenter randomized trial.

    Science.gov (United States)

    Horimatsu, Takahiro; Sano, Yasushi; Tanaka, Shinji; Kawamura, Takuji; Saito, Shoichi; Iwatate, Mineo; Oka, Shiro; Uno, Koji; Yoshimura, Kenichi; Ishikawa, Hideki; Muto, Manabu; Tajiri, Hisao

    2015-07-01

    Previous studies have yielded conflicting results on the colonic polyp detection rate with narrow-band imaging (NBI) compared with white-light imaging (WLI). We compared the mean number of colonic polyps detected per patient for NBI versus WLI using a next-generation NBI system (EVIS LUCERA ELITE; Olympus Medical Systems) used with standard-definition (SD) colonoscopy and wide-angle (WA) colonoscopy. this study is a 2 × 2 factorial, prospective, multicenter randomized controlled trial. this study was conducted at five academic centers in Japan. patients were allocated to one of four groups: (1) WLI with SD colonoscopy (H260AZI), (2) NBI with SD colonoscopy (H260AZI), (3) WLI with WA colonoscopy (CF-HQ290), and (4) NBI with WA colonoscopy (CF-HQ290). the mean numbers of polyps detected per patient were compared between the four groups: WLI with/without WA colonoscopy and NBI with/without WA colonoscopy. Of the 454 patients recruited, 431 patients were enrolled. The total numbers of polyps detected by WLI with SD, NBI with SD, WLI with WA, and NBI with WA were 164, 176, 188, and 241, respectively. The mean number of polyps detected per patient was significantly higher in the NBI group than in the WLI group (2.01 vs 1.56; P = 0.032). The rate was not higher in the WA group than in the SD group (1.97 vs 1.61; P = 0.089). Although WA colonoscopy did not improve the polyp detection, next-generation NBI colonoscopy represents a significant improvement in the detection of colonic polyps.

  12. Diagnostic Performance of Narrow Band Imaging for Nasopharyngeal Cancer: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Sun, Changling; Zhang, Yayun; Han, Xue; Du, Xiaodong

    2018-03-01

    Objective The purposes of this study were to verify the effectiveness of the narrow band imaging (NBI) system in diagnosing nasopharyngeal cancer (NPC) as compared with white light endoscopy. Data Sources PubMed, Cochrane Library, EMBASE, CNKI, and Wan Fang databases. Review Methods Data analyses were performed with Meta-Disc. The updated Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess study quality and potential bias. Publication bias was assessed with a Deeks asymmetry test. The registry number of the protocol published on PROSPERO is CRD42015026244. Results This meta-analysis included 10 studies of 1337 lesions. For NBI diagnosis of NPC, the pooled values were as follows: sensitivity, 0.83 (95% CI, 0.80-0.86); specificity, 0.91 (95% CI, 0.89-0.93); positive likelihood ratio, 8.82 (95% CI, 5.12-15.21); negative likelihood ratio, 0.18 (95% CI, 0.12-0.27); and diagnostic odds ratio, 65.73 (95% CI, 36.74-117.60). The area under the curve was 0.9549. For white light endoscopy in diagnosing NPC, the pooled values were as follows: sensitivity, 0.79 (95% CI, 0.75-0.83); specificity, 0.87 (95% CI, 0.84-0.90); positive likelihood ratio, 5.02 (95% CI, 1.99-12.65); negative likelihood ratio, 0.34 (95% CI, 0.24-0.49); and diagnostic odds ratio, 16.89 (95% CI, 5.98-47.66). The area under the curve was 0.8627. The evaluation of heterogeneity, calculated per the diagnostic odds ratio, gave an I 2 of 0.326. No marked publication bias ( P = .68) existed in this meta-analysis. Conclusion The sensitivity and specificity of NBI for the diagnosis of NPC are similar to those of white light endoscopy, and the potential value of NBI for the diagnosis of NPC needs to be validated further.

  13. First-principles study of direct and narrow band gap semiconducting β-CuGaO2

    International Nuclear Information System (INIS)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-01-01

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. The optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment. (paper)

  14. Optimized fan-shaped chiral metamaterial as an ultrathin narrow-band circular polarizer at visible frequencies

    Science.gov (United States)

    He, Yizhuo; Wang, Xinghai; Ingram, Whitney; Ai, Bin; Zhao, Yiping

    2018-04-01

    Chiral metamaterials have the great ability to manipulate the circular polarizations of light, which can be utilized to build ultrathin circular polarizers. Here we build a narrow-band circular polarizer at visible frequencies based on plasmonic fan-shaped chiral nanostructures. In order to achieve the best optical performance, we systematically investigate how different fabrication factors affect the chiral optical response of the fan-shaped chiral nanostructures, including incident angle of vapor depositions, nanostructure thickness, and post-deposition annealing. The optimized fan-shaped nanostructures show two narrow bands for different circular polarizations with the maximum extinction ratios 7.5 and 6.9 located at wavelength 687 nm and 774 nm, respectively.

  15. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    NARCIS (Netherlands)

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of

  16. The visible to the near infrared narrow band acousto-optic tunable filter and the hyperspectral microscopic imaging on biomedicine study

    International Nuclear Information System (INIS)

    Zhang, Chunguang; Wang, Hao; Huang, Junfeng; Gao, Qiang

    2014-01-01

    Based on the parallel tangents momentum-matching condition, a narrow band noncollinear acousto-optic tunable filter (AOTF) using a single TeO 2 crystal is designed with the consideration of the birefringence and the rotatory property of the material. An effective setup is established to evaluate the performance of the designed AOTF. The experimental observed spectrum pattern of the diffracted light is nearly the same with the theoretical result. The measured tuning relationship between the diffracted central optical wavelength and acoustic frequency is in accordance with the theoretical prospect. The optical bandwidth of the diffracted light is as narrow as 1.88 nm when the central wavelength is 556.75 nm. The high spectral resolution is significant in practical applications of imaging AOTF. Additionally, the AOTF based hyperspectral microscopic imaging system is established. The stability and the image resolution of the designed narrow band AOTF are satisfying. Finally, the study of the biologic samples indicates the feasibility of our system on biomedicine. (paper)

  17. Optical band gaps of organic semiconductor materials

    Science.gov (United States)

    Costa, José C. S.; Taveira, Ricardo J. S.; Lima, Carlos F. R. A. C.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2016-08-01

    UV-Vis can be used as an easy and forthright technique to accurately estimate the band gap energy of organic π-conjugated materials, widely used as thin films/composites in organic and hybrid electronic devices such as OLEDs, OPVs and OFETs. The electronic and optical properties, including HOMO-LUMO energy gaps of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant π-conjugated systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3, Inq3, Al(qNO2)3, Al(qCl)3, Al(qBr)3, In(qNO2)3, In(qCl)3 and In(qBr)3); triphenylamine derivatives (DDP, p-TTP, TPB, TPD, TDAB, m-MTDAB, NPB, α-NPD); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2T, α-3T, β-3T, α-4T and α-5T). Additionally, some electronic properties were also explored by quantum chemical calculations. The experimental UV-Vis data are in accordance with the DFT predictions and indicate that the band gap energies of the OSCs dissolved in CHCl3 solution are consistent with the values presented for thin films.

  18. Full-sky survey searching for ultra-narrow-band artificial CW signals: analysis of the results of Project META

    Science.gov (United States)

    Lemarchand, Guillermo A.

    1996-06-01

    Project META (Megachannel ExtraTerrestrial Assay), a full-sky survey for artificial narrow-band signals, has been conducted from the Harvard/Smithsonian 26 m radiotelescope at Agassiz Station and from one of the two 30 m radiotelescopes of the Instituto Argentino de Radioastronomia (IAR). The search was performed near the 1420 MHz line of neutral hydrogen, and its second harmonic, using two 8.4 X 10(superscript 6) channel Fourier spectrometers of 0.05 Hz resolution and 400 kHz of instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. Among the 6 X 10(superscript 13) spectral channels searched in the northern hemisphere, Horowitz and Sagan reported 37 candidates events exceeding the average threshold of 1.7 X 10(superscript -23) W m(superscript -2), while in the southern hemisphere among 2 X 10(superscript 13) spectral channels analyzed we found 19 events exceeding the same threshold. The strongest signals that survive culling for terrestrial interference lie in or near the Galactic Plane. The first high resolution southern target search around 71 stars (-90 degrees intelligence. It is showed that these narrow-band non-repeating 'events' found by Project META can be generated by (a) radiometer noise fluctuations, (b) a population of constant galactic sources which undergo deep fading and amplification due to interstellar scintillation, consistent with ETI transmissions and (c) real, transient signals of either terrestrial or extraterrestrial origin. The Bayesian test shows that hypothesis (b) and (c) are both highly preferred to (a), but the first two are about equally likely. Using this analysis we discuss the best observing strategies to determine the real origin of these 'events'.

  19. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    International Nuclear Information System (INIS)

    Piot, P.; Maxwell, T. J.; Sun, Y.-E; Ruan, J.; Lumpkin, A. H.; Thurman-Keup, R.; Rihaoui, M. M.

    2011-01-01

    We experimentally demonstrate the production of narrow-band (δf/f≅20% at f≅0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  20. Optical Observations of M81 Galaxy Group in Narrow Band [SII] and H_alpha Filters: Holmberg IX

    Directory of Open Access Journals (Sweden)

    Arbutina, B.

    2009-12-01

    Full Text Available We present observations of the nearby tidal dwarf galaxy Holmberg IX in M81 galaxy group in narrow band [SII] and H$alpha$ filters, carried out in March and November 2008 with the 2m RCC telescope at NAO Rozhen, Bulgaria. Our search for resident supernova remnants (identified as sources with enhanced [SII] emission relative to their H$alpha$ emission in this galaxy yielded no sources of this kind, besides M&H 10-11 or HoIX X-1. Nevertheless, we found a number of objects with significant H$alpha$ emission that probably represent uncatalogued HII regions.

  1. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    Science.gov (United States)

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  2. Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge.

    Science.gov (United States)

    Brierley, Andrew S; Fernandes, Paul G; Brandon, Mark A; Armstrong, Frederick; Millard, Nicholas W; McPhail, Steven D; Stevenson, Peter; Pebody, Miles; Perrett, James; Squires, Mark; Bone, Douglas G; Griffiths, Gwyn

    2002-03-08

    We surveyed Antarctic krill (Euphausia superba) under sea ice using the autonomous underwater vehicle Autosub-2. Krill were concentrated within a band under ice between 1 and 13 kilometers south of the ice edge. Within this band, krill densities were fivefold greater than that of open water. The under-ice environment has long been considered an important habitat for krill, but sampling difficulties have previously prevented direct observations under ice over the scale necessary for robust krill density estimation. Autosub-2 enabled us to make continuous high-resolution measurements of krill density under ice reaching 27 kilometers beyond the ice edge.

  3. How narrow-band and broad-band uvb irradiation influences the immunohistochemistry analyses of experimental animals’ skin – a comparative study. Part II

    Directory of Open Access Journals (Sweden)

    Katarzyna Borowska

    2017-09-01

    Full Text Available This is the second part of the artcle series impact narrow-band UVB radiation (NB-UVB and broad-band UVB radiation (BB-UVB on experimental animals’ skin (white Wistar female rats. The aim of this comparative study was immunohistochemistry analyses containing expression of p53 protein. Expression of p53 protein was performed on two experimental groups. One – exposed to NB-UVB; the other – exposed to BB-UVB radiation. The results indicate that p53 protein takes an active part in the process of apoptosis that is induced by both NB-UVB and BB-UVB. The results showed an increase in p53 expressing cells following BB-UVB than NB-UVB phototherapy.

  4. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  5. Wide applicability of high-Tc pairing originating from coexisting wide and incipient narrow bands in quasi-one-dimensional systems

    Science.gov (United States)

    Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko

    2018-01-01

    We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.

  6. Computational Design of Flat-Band Material

    Science.gov (United States)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  7. Ultrawide low frequency band gap of phononic crystal in nacreous composite material

    International Nuclear Information System (INIS)

    Yin, J.; Huang, J.; Zhang, S.; Zhang, H.W.; Chen, B.S.

    2014-01-01

    The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results. - Highlights: • A Brick-and-Mortar structure is used to discuss wave propagation through nacreous materials. • A 1D Bloch wave solution of nacreous materials with a tension-shear chain model is obtained. • The band structure and transmission characteristics of nacreous materials with the FE model are examined. • An ultrawide low frequency band gap is found in nacreous materials with both theory and FE model

  8. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    Science.gov (United States)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  9. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    Science.gov (United States)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  10. The split symbol moments SNR estimator in narrow-band channels

    Science.gov (United States)

    Shah, Biren; Hinedi, Sami

    1990-01-01

    The split symbol moments estimator is an algorithm that is designed to estimate symbol SNR in the presence of additive white Gaussian noise. The performance of the algorithm in band-limited channels is examined, and the effects of the resulting intersymbol interference are quantified. All results obtained are in closed form and can be easily evaluated numerically for performance-prediction purposes. The results are also validated through digital simulations.

  11. Interface band gap narrowing behind open circuit voltage losses in Cu2ZnSnS4 solar cells

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Palsgaard, Mattias Lau Nøhr; Gunst, Tue

    2017-01-01

    We present evidence that bandgap narrowing at the heterointerface may be a major cause of the large open circuit voltage deficit of Cu2ZnSnS4/CdS solar cells. Bandgap narrowing is caused by surface states that extend the Cu2ZnSnS4valence band into the forbidden gap. Those surface states...... are consistently found in Cu2ZnSnS4, but not in Cu2ZnSnSe4, by first-principles calculations. They do not simply arise from defects at surfaces but are an intrinsic feature of Cu2ZnSnS4 surfaces. By including those states in a device model, the outcome of previously published temperature-dependent open circuit...... voltage measurements on Cu2ZnSnS4 solar cells can be reproduced quantitatively without necessarily assuming a cliff-like conduction band offset with the CdS buffer layer. Our first-principles calculations indicate that Zn-based alternative buffer layers are advantageous due to the ability of...

  12. Five years of Project META - An all-sky narrow-band radio search for extraterrestrial signals

    Science.gov (United States)

    Horowitz, Paul; Sagan, Carl

    1993-01-01

    We have conducted a five-year search of the northern sky (delta between 30 and 60 deg) for narrow-band radio signals near the 1420 MHz line of neutral hydrogen, and its second harmonic, using an 8.4 x 10 exp 6 channel Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing Doppler signature for narrow-band signals of extraterrestrial origin. Among the 6 x 10 exp 13 spectral channels searched, we have found 37 candidate events exceeding the average detection threshold of 1.7 x 10 exp -23 W/sq m, none of which was detected upon reobservation. The strongest of these appear to be dominated by rare processor errors. However, the strongest signals that survive culling for terrestrial interference lie in or near the Galactic plane. We describe the search and candidate events, and set limits on the prevalence of supercivilizations transmitting Doppler-precompensated beacons at H I or its second harmonic. We conclude with recommendations for future searches, based upon these findings, and a description of our next-generation search system.

  13. Narrow-band 1, 2, 3, 4, 8, 16 and 24 cycles/360o angular frequency filters

    Directory of Open Access Journals (Sweden)

    Simas M.L.B.

    2002-01-01

    Full Text Available We measured human frequency response functions for seven angular frequency filters whose test frequencies were centered at 1, 2, 3, 4, 8, 16 or 24 cycles/360º using a supra-threshold summation method. The seven functions of 17 experimental conditions each were measured nine times for five observers. For the arbitrarily selected filter phases, the maximum summation effect occurred at test frequency for filters at 1, 2, 3, 4 and 8 cycles/360º. For both 16 and 24 cycles/360º test frequencies, maximum summation occurred at the lower harmonics. These results allow us to conclude that there are narrow-band angular frequency filters operating somehow in the human visual system either through summation or inhibition of specific frequency ranges. Furthermore, as a general result, it appears that addition of higher angular frequencies to lower ones disturbs low angular frequency perception (i.e., 1, 2, 3 and 4 cycles/360º, whereas addition of lower harmonics to higher ones seems to improve detection of high angular frequency harmonics (i.e., 8, 16 and 24 cycles/360º. Finally, we discuss the possible involvement of coupled radial and angular frequency filters in face perception using an example where narrow-band low angular frequency filters could have a major role.

  14. Study of Oxidative Stress in Vitiligo and Use of Narrow Band UVB-311 as a Method of Treatment

    International Nuclear Information System (INIS)

    Fawzy, N.; Rashed, L.

    2012-01-01

    Vitiligo is an acquired depigmenting disease characterized by circumscribed depigmenting macules devoid of identifiable melanocytes. The disease has uncertain aetiopathogenesis. The aim of this research is to estimate the level of superoxide dismutase (SOD) and catalase (CAT) as antioxidants and Nitric oxide and superoxide anion as oxidants in vitiligo patients and evaluate the clinical effectiveness of narrow band UVB (NB-UVB-311) as a method of treatment and repairing the oxidative stress-induced damage. This study included twenty vitiligo patients and fifteen-age and sex matched control. There was statistically significant increase in the levels of SOD in active vitiligo lesions compared to control (P<0.001). There was statistically significant decrease in the level of CAT in vitiligo skin lesions compared to skin of control. After using NB-UVB- 311 the level of SOD was significantly decreased and CAT level was significantly increased (P<0.001). There was statistically significant increase in the level of nitric oxide and superoxide in vitiligo patients compared to control. After using NB-UVB-311 as treatment, the level of nitric oxide and superoxide anion was significantly decreased (P<0.001) in vitiligo patients. These results provide some evidence regarding the oxidant /antioxidant balance in vitiligo patients and the positive role of narrow band UVB- 311 as a treatment of vitiligo

  15. Calculation of electrostatic multipoles of electron localized in narrow-band InSb spherical nanolayer

    International Nuclear Information System (INIS)

    Amirkhanyan, S.M.; Kazaryan, E.M.; Sarkisyan, H.A.

    2015-01-01

    Behavior of electron in narrow-gap spherical nanolayer of InSb is considered. Dispersion law of electron is described within the double-gap Kane model, when arises a necessity for considering of Klein-Gordon equation for description of behavior of electrons and light holes. Dipole and quadrupole momentums of electron in specified systems are defined on the base of the obtained expressions. It is shown, that average value of dipole momentum equals to zero and that for definition of average value of tensor of quadrupole momentum it is enough to calculate the average value of diagonal z-component of this tensor. Electrostatic potentials and tensions of fields created by electron located in different quantum states are defined

  16. Research on mechanism of the large-amplitude and narrow-band vibration of a flexible flat plate in the rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lifang, E-mail: liu_lifang1106@yahoo.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); State Nuclear Power Software Development Center, Building 1, Compound No. 29, North Third Ring Road, Xicheng District, Beijing 100029 (China); Lu Daogang [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The large amplitude and narrow-band vibration experiment was performed. Black-Right-Pointing-Pointer The added mass theory was used to analyze the test plates' natural vibration characteristics in static water. Black-Right-Pointing-Pointer The occurring condition of the large amplitude and narrow band vibration was investigated. Black-Right-Pointing-Pointer The large amplitude and narrow-band vibration mechanism was investigated. - Abstract: Further experiments and theoretical analysis were performed to investigate mechanism of the large-amplitude and narrow-band vibration behavior of a flexible flat plate in a rectangular channel. Test plates with different thicknesses were adopted in the FIV experiments. The natural vibration characteristics of the flexible flat plates in air were tested, and the added mass theory of column was used to analyze the flexible flat plates' natural vibration characteristics in static water. It was found that the natural vibration frequency of a certain test plate in static water is approximately within the main vibration frequency band of the plate when it was induced to vibrate with the large-amplitude and narrow-band in the rectangular channel. It can be concluded that the harmonic between the flowing fluid and the vibrating plate is one of the key reasons to induce the large-amplitude and narrow-band vibration phenomenon. The occurring condition of the phenomenon and some important narrow-band vibration characteristics of a foursquare fix-supported flexible flat plate were investigated.

  17. Narrow-band light emission from a single carbon nanotube p-n diode

    Science.gov (United States)

    Kinoshita, Megumi; Mueller, Thomas; Steiner, Mathias; Perebeinos, Vasili; Bol, Ageeth; Farmer, Damon; Avouris, Phaedon

    2010-03-01

    We present the first observation of electroluminescence from electrostatically-generated carbon nanotube (CNT) p-n junctions[1]. While CNT optoelectronics has made much progress in recent years, observations of emission from electrically excited CNT devices have been limited to the high-bias regime and with low efficiency. Furthermore, the resulting broad linewidths are broad, making it difficult to investigate electronic levels and carrier dynamics. We find that p-n junctions allow for better carrier control at lower power inputs, resulting in emission with near-zero threshold, low self-heating and efficiency two to three orders of magnitude greater compared to previous device configurations. This yields higher signal-to-noise ratio and narrower linewidths (down to ˜35 meV) that allows us to identify localized excitonic transitions that have previously been observed only in photoluminescent studies. [1] T. Mueller, M. Kinoshita, M. Steiner, V. Perebeinos, A. Bol, D. Farmer, and Ph. Avouris, Nature Nanotech., web publication, November 15 2009.

  18. Correlated band magnetism of cerium and actinide materials

    International Nuclear Information System (INIS)

    Cooper, B.R.; Lin, Y.; Sheng, Q.G.

    1997-01-01

    We discuss (1) the effects to be expected by the introduction into the electronic structure of locally-based two-electron correlations between the f electrons and bonding electrons of p and d atomic origin centered off-site as well as f-f correlations, (2) the expected observable consequences of these two-electron correlations, and (3) how to perform electronic structure calculations including the two-electron correlations. We first review certain general features of the physics associated with capturing the dual energetically localized-delocalized nature of the f electron spectral density; and review model calculations involving a single on-site f electron and a single ligand p/d electron of off-site parentage which lead to the possibility of a narrow singlet and triplet (magnetic) band picture explaining heavy fermion phenomenology. We then show that the same singlet/magnetic state picture arises when we include two-electron f-l and f-f correlations for actinides, which have atomic f n configurations with n>1; and we describe a practical electronic structure scheme for real materials based on a sequence in which a conventional one-electron linearized combination of muffin-tin orbitals (LMTO) LDA+U calculation is followed by a calculation for the lattice with a helium like two-electron Hamiltonian at the f atom sites, i.e., two-electron atoms where initially for the core two electrons worth of charge are removed from the LMTO f-site atom. This procedure will reconstruct the LMTO bands to include two-electron texturing. copyright 1997 American Institute of Physics

  19. Three-Dimensional Simulation of DRIE Process Based on the Narrow Band Level Set and Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Jia-Cheng Yu

    2018-02-01

    Full Text Available A three-dimensional topography simulation of deep reactive ion etching (DRIE is developed based on the narrow band level set method for surface evolution and Monte Carlo method for flux distribution. The advanced level set method is implemented to simulate the time-related movements of etched surface. In the meanwhile, accelerated by ray tracing algorithm, the Monte Carlo method incorporates all dominant physical and chemical mechanisms such as ion-enhanced etching, ballistic transport, ion scattering, and sidewall passivation. The modified models of charged particles and neutral particles are epitomized to determine the contributions of etching rate. The effects such as scalloping effect and lag effect are investigated in simulations and experiments. Besides, the quantitative analyses are conducted to measure the simulation error. Finally, this simulator will be served as an accurate prediction tool for some MEMS fabrications.

  20. Micro-Bunched Beam Production at FAST for Narrow Band THz Generation Using a Slit-Mask

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, J. [Sokendai, Tsukuba; Crawford, D. [Fermilab; Edstrom Jr, D. [Fermilab; Ruan, J. [Fermilab; Santucci, J. [Fermilab; Thurman-Keup, R. [Fermilab; Sen, T. [Fermilab; Thangaraj, J. C. [Fermilab

    2018-04-01

    We discuss simulations and experiments on creating micro-bunch beams for generating narrow band THz radiation at the Fermilab Accelerator Science and Technology (FAST) facility. The low-energy electron beamline at FAST consists of a photoinjector-based RF gun, two Lband superconducting accelerating cavities, a chicane, and a beam dump. The electron bunches are lengthened with cavity phases set off-crest for better longitudinal separation and then micro-bunched with a slit-mask installed in the chicane. We carried out the experiments with 30 MeV electron beams and detected signals of the micro-bunching using a skew quadrupole magnet in the chicane. In this paper, the details of micro-bunch beam production, the detection of micro-bunching and comparison with simulations are described.

  1. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    Science.gov (United States)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  2. Narrow-band tunable terahertz emission from ferrimagnetic Mn{sub 3-x}Ga thin films

    Energy Technology Data Exchange (ETDEWEB)

    Awari, N. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); University of Groningen, 9747 AG Groningen (Netherlands); Kovalev, S., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Fowley, C., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Green, B.; Yildirim, O.; Lindner, J.; Fassbender, J.; Deac, A. M.; Gensch, M. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Rode, K., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Lau, Y.-C.; Betto, D.; Thiyagarajah, N.; Coey, J. M. D. [CRANN, AMBER and School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Gallardo, R. A. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparíso (Chile)

    2016-07-18

    Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn{sub 3-x}Ga Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20–0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.

  3. Water vapor transmittance models for narrow bands in the 13 to 19 μm spectral region

    International Nuclear Information System (INIS)

    Weichel, R.L.

    1983-10-01

    The purpose of this report is to document the development of water vapor transmittance models for narrow bands (satellite sensor channels) in the 13 to 19 μm spectral region. The models are the result of research efforts of the author in 1971-1972 while on active duty with the US Air Force at the Air Force Global Weather Central (AFGWC). The models were developed for application in studies involving a temperature profiling sensor system carried aboard the satellites of the Defense Meteorological Satellite Program (DMSP), formerly DAPP. Recently, (Lovill et al., 1978; Luther et al., 1981) the models were implemented for studies concerned with methodologies to retrieve total atmospheric column ozone from measurements of newer DMSP Block 5D series satellite sensors with similar channels (see Nichols, 1975)

  4. Suppression of narrow-band interference in a PN spread-spectrum receiver using a CTD-based adaptive filter

    Science.gov (United States)

    Saulnier, G. J.; Das, P.; Milstein, L. B.

    1984-11-01

    Analytical results have shown that adaptive filtering can be a powerful tool for the rejection of narrow-band interference in a spread-spectrum receiver. However, the complexity of adaptive filtering hardware has hindered the experimental verification of these results. This paper describes a new adaptive filter architecture for implementing the Widrow-Hoff LMS algorithm while using only two multipliers regardless of filter order. This hardware simplification is achieved through the use of a burst processing technique. A 16-tap version of this adaptive filter constructed using charge-transfer devices (CTD's) is used to suppress a single tone jammer in a direct sequence spread-spectrum receiver. Probability of error measurements demonstrating the effectiveness of the adaptive filter for suppressing the single tone jammer along with simulation results for the optimal Weiner-Hopf filter are presented and discussed.

  5. Band gap narrowing of SnS2 superstructures with improved hydro-gen production

    NARCIS (Netherlands)

    Li, Guowei; Su, Ren; Rao, Jiancun; Rudolf, Petra; Blake, Graeme; de Groot, Robert; Besenbacher, Flemming; Palstra, Thomas

    2016-01-01

    Transition metal sulfides exhibit chemical and physical properties that are of much scientific and technological interest and can largely be attributed to their covalent bonding of 3d electrons. Hierarchical structures of these materials are suited for a broad range of applications in energy

  6. Frequency-bin entanglement of ultra-narrow band non-degenerate photon pairs

    Science.gov (United States)

    Rieländer, Daniel; Lenhard, Andreas; Jime`nez Farìas, Osvaldo; Máttar, Alejandro; Cavalcanti, Daniel; Mazzera, Margherita; Acín, Antonio; de Riedmatten, Hugues

    2018-01-01

    We demonstrate frequency-bin entanglement between ultra-narrowband photons generated by cavity enhanced spontaneous parametric down conversion. Our source generates photon pairs in widely non-degenerate discrete frequency modes, with one photon resonant with a quantum memory material based on praseodymium doped crystals and the other photon at telecom wavelengths. Correlations between the frequency modes are analyzed using phase modulators and narrowband filters before detection. We show high-visibility two photon interference between the frequency modes, allowing us to infer a coherent superposition of the modes. We develop a model describing the state that we create and use it to estimate optimal measurements to achieve a violation of the Clauser-Horne (CH) Bell inequality under realistic assumptions. With these settings we perform a Bell test and show a significant violation of the CH inequality, thus proving the entanglement of the photons. Finally we demonstrate the compatibility with a quantum memory material by using a spectral hole in the praseodymium (Pr) doped crystal as spectral filter for measuring high-visibility two-photon interference. This demonstrates the feasibility of combining frequency-bin entangled photon pairs with Pr-based solid state quantum memories.

  7. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    International Nuclear Information System (INIS)

    Kapaev, V. V.; Kopaev, Yu. V.; Savinov, S. A.; Murzin, V. N.

    2013-01-01

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schrödinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In 0.53 Ga 0.47 As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V dc in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.

  8. Fluorene-based narrow-band-gap copolymers for red light- emitting diodes and bulk heterojunction photovoltaic cells

    Institute of Scientific and Technical Information of China (English)

    Mingliang SUN; Li WANG; Yangjun XIA; Bin DU; Ransheng LIU; Yong CAO

    2008-01-01

    A series of narrow band-gap conjugated copo-lymers (PFO-DDQ) derived from 9,9-dioctylfluorene (DOF) and 2,3-dimethyl-5,8-dithien-2-yl-quinoxalines (DDQ) is prepaid by the palladium-catalyzed Suzuki coupling reaction with the molar feed ratio of DDQ at around 1%,5%,15%,30% and 50%,respectively.The obtained polymers are readily soluble in common organic solvents.The solutions and the thin solid films of the copolymers absorb light from 300-590 nm with two absorbance.peaks at around 380 and 490 nm.The intens-ity of 490 nm peak increases with the increasing DDQ content in the polymers.Efficient energy transfer due to exciton trapping on narrow-band-gap DDQ sites has been observed.The PL emission consists exclusively of DDQ unit emission at around 591 643 nm depending on the DDQ content in solid film.The EL emission peaks are red-shifted from 580 nm for PFO-DDQ1 to 635 nm for PFO-DDQ50.The highest external quantum efficiency achieved with the device configuration ITO/PEDOT/ PVK/PFO-DDQt5/Ba/A1 is 1.33% with a luminous effi-ciency 1.54 cd/A.Bulk heterojunction photovoltaic cells fabricated from composite films of PFO-DDQ30 copoly-mer and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as electron donor and electron acceptor,respect-ively in device configuration:ITO/PEDOT:PSS/PFO-DDQ30:PCBM/PFPNBr/Al shows power conversion effi-ciencies of 1.18% with open-circuit voltage (Voc) of 0.90 V and short-circuit current density (Jsc) of 2.66 mA/cm2 under an AM1.5 solar simulator (100 mW/cm2).The photocurrent response wavelengths of the PVCs based on PFO-DDQ30/PCBM blends covers 300-700 nm.This indicates that these kinds of low band-gap polymers are promising candidates for polymeric solar cells and red light-emitting diodes.

  9. An alternative method for calibration of narrow band radiometer using a radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, J; Wolfram, E; D' Elia, R [Centro de Investigaciones en Laseres y Aplicaciones, CEILAP (CITEFA-CONICET), Juan B. de La Salle 4397 (B1603ALO), Villa Martelli, Buenos Aires (Argentina); Zamorano, F; Casiccia, C [Laboratorio de Ozono y Radiacion UV, Universidad de Magallanes, Punta Arenas (Chile) (Chile); Rosales, A [Universidad Nacional de la Patagonia San Juan Bosco, UNPSJB, Facultad de Ingenieria, Trelew (Argentina) (Argentina); Quel, E, E-mail: jsalvador@citefa.gov.ar [Universidad Nacional de la Patagonia Austral, Unidad Academica Rio Gallegos Avda. Lisandro de la Torre 1070 ciudad de Rio Gallegos-Sta Cruz (Argentina) (Argentina)

    2011-01-01

    The continual monitoring of solar UV radiation is one of the major objectives proposed by many atmosphere research groups. The purpose of this task is to determine the status and degree of progress over time of the anthropogenic composition perturbation of the atmosphere. Such changes affect the intensity of the UV solar radiation transmitted through the atmosphere that then interacts with living organisms and all materials, causing serious consequences in terms of human health and durability of materials that interact with this radiation. One of the many challenges that need to be faced to perform these measurements correctly is the maintenance of periodic calibrations of these instruments. Otherwise, damage caused by the UV radiation received will render any one calibration useless after the passage of some time. This requirement makes the usage of these instruments unattractive, and the lack of frequent calibration may lead to the loss of large amounts of acquired data. Motivated by this need to maintain calibration or, at least, know the degree of stability of instrumental behavior, we have developed a calibration methodology that uses the potential of radiative transfer models to model solar radiation with 5% accuracy or better relative to actual conditions. Voltage values in each radiometer channel involved in the calibration process are carefully selected from clear sky data. Thus, tables are constructed with voltage values corresponding to various atmospheric conditions for a given solar zenith angle. Then we model with a radiative transfer model using the same conditions as for the measurements to assemble sets of values for each zenith angle. The ratio of each group (measured and modeled) allows us to calculate the calibration coefficient value as a function of zenith angle as well as the cosine response presented by the radiometer. The calibration results obtained by this method were compared with those obtained with a Brewer MKIII SN 80 located in the

  10. Chronic exposure of Sk-1 hairless mice to narrow-band ultraviolet A (320-355 nm)

    International Nuclear Information System (INIS)

    Menter, J.M.; Sayre, R.M.; Etemadi, A.A.; Agin, P.P.; Wills, I.

    1996-01-01

    Several recent investigations collectively suggest that the role of ultraviolet A (UVA) in chronic actinic skin damage may be greater than originally thought. In the present work, the output of a xenon-arc solar-simulator passed through a Bausch and Lomb monochromator in conjunction with a 2-mm Schott WG-320 filter produced narrow-band UVA centered at 338 nm, half-band width 24 nm, I 0 =3.4±0.3 mW/cm 2 . We chronically irradiated 10 SK-1 albino hairless mice 5 times per week for 18 weeks, starting with 1.25 J/cm 2 , for 33 irradiation days, sequentially followed by 1.50 J/cm 2 (34 days), 1.8 J/cm 2 (10 days), 2.0 J/cm 2 (22 days) to afford a total UVA dose of 154.3 J/cm 2 over 99 irradiation days. Erythema was noted clinically by day 6, which persisted throughout the irradiation. During the irradiation period, some scaling, consistent with mild epidermal hyperplasia was noted during irradiation days 37-56. This response later regressed despite continued chronic irradiation. Hematoxylin and eosin examination immediately after the final irradiation revealed a mild inflammatory response, with some dermal restructuring. At the end of the experiment, no significant signs of epidermal hyperplasia or (pre)malignant lesions were seen, although some stratum corneum thickening was noted. Marked dermal collagen damage and moderate elastosis was also evident. We believe that the observed differences in results reported in previous studies are in large part due to differences in light sources and irradiation protocols. (au)

  11. Metallic photonic band-gap materials

    International Nuclear Information System (INIS)

    Sigalas, M.M.; Chan, C.T.; Ho, K.M.; Soukoulis, C.M.

    1995-01-01

    We calculate the transmission and absorption of electromagnetic waves propagating in two-dimensional (2D) and 3D periodic metallic photonic band-gap (PBG) structures. For 2D systems, there is substantial difference between the s- and p-polarized waves. The p-polarized waves exhibit behavior similar to the dielectric PBG's. But, the s-polarized waves have a cutoff frequency below which there are no propagating modes. For 3D systems, the results are qualitatively the same for both polarizations but there are important differences related to the topology of the structure. For 3D structures with isolated metallic scatterers (cermet topology), the behavior is similar to that of the dielectric PBG's, while for 3D structures with the metal forming a continuous network (network topology), there is a cutoff frequency below which there are no propagating modes. The systems with the network topology may have some interesting applications for frequencies less than about 1 THz where the absorption can be neglected. We also study the role of the defects in the metallic structures

  12. Gas Distributions in Comet ISON’s Coma: Concurrent Integral-Field Spectroscopy and Narrow-band Imaging.

    Science.gov (United States)

    Schmidt, Carl; Johnson, Robert E.; Baumgardner, Jeffrey; Mendillo, Michael

    2014-11-01

    At a solar distance of 0.44 AU, Oort cloud comet C/2012 S1 (ISON) exhibited an outburst phase that was observed by small telescopes at the McDonald Observatory. In conjunction with narrow-band (14Å) imaging over a wide-field, an image-slicer spectrograph ( 20,000) simultaneously measured the spatial distribution of ISON’s coma over a 1.6 x 2.7 arcminute field made up of 246 individual spectra. More than fifty emission lines from C2, NH2, CO, H2O+ and Na were observed within a single Echelle order spanning 5868Å to 5930Å. Spatial reconstructions of these species reveal that ISON’s coma was quite elongated several thousand km along the axis perpendicular to its motion. The ion tail appeared distinctly broader than the neutral Na tail, providing strong evidence that Na in the coma did not originate by dissociative recombination of a sodium bearing molecular ion. Production rates increased from 1.6 ± 0.3 x 1023 to 5.8 ± 1 x 1023 Na atoms/s within 24 hours, outgassing much less than comparable comets relative to ISON’s water production. The anti-sunward Na tail was imaged >106 km from the nucleus. Its distribution indicates origins both near the nucleus and in the dust tail, with the ratio of these Na sources varying on hourly timescales due to outburst activity.

  13. Sensitivity and specificity of narrow-band imaging nasoendoscopy compared to histopathology results in patients with suspected nasopharyngeal carcinoma

    Science.gov (United States)

    Adham, M.; Musa, Z.; Lisnawati; Suryati, I.

    2017-08-01

    Nasopharyngeal carcinoma (NPC) is a disease which is prevalent in developing countries like Indonesia. There were 164 new cases of nasopharyngeal carcinoma in the ear, nose, and throat (ENT) oncology outpatient clinic of the Cipto Mangunkusumo hospital in 2014, and 142 cases in 2015. Unfortunately, almost all of these cases presented at an advanced stage. The success of nasopharyngeal carcinoma treatment is largely determined by the stage when patients are diagnosed; it is critical to diagnose NPC as early as possible. Narrow-band imaging (NBI) is an endoscopic instrument with a light system that can improve the visualization of blood vessels of mucosal epithelial malignant tumors. NBI is expected to help clinicians to assess whether a lesion is malignant or not; to do so, it is important to know the value of sensitivity and specificity. This study is a cross-sectional form of a diagnostic test which was performed in the outpatient clinic of the ENT Head and Neck Surgery Department for the Cipto Mangunkusumo Hospital, from January to June 2016, and involved 56 subjects. Patients with a nasopharyngeal mass discovered by physical examination or imaging, and a suspected nasopharyngeal carcinoma were included as a subject. An NBI examination and biopsy was performed locally. Based on this research, NBI could be used as a screening tool for nasopharyngeal carcinoma with high sensitivity (100%), but with a low specificity result (6.7%).

  14. The Role of Narrow Band Imaging in the Detection of Recurrent Laryngeal and Hypopharyngeal Cancer after Curative Radiotherapy

    Directory of Open Access Journals (Sweden)

    Michal Zabrodsky

    2014-01-01

    Full Text Available Narrow band imaging is considered a significant improvement in the possibility of detecting early mucosal lesion of the upper aerodigestive tract. Early detection of mucosal neoplastic lesions is of utmost importance for patients survival. There is evidence that, especially in patients previously treated by means of curative radiotherapy or chemoradiotherapy, the early detection rate of recurrent disease is quite low. The aim of this study was to prove whether the videoendoscopy coupled with NBI might help detect recurrent or secondary tumors of the upper aerodigestive tract. 66 patients previously treated by means of RT or CRT with curative intent were enrolled in the study. All patients underwent transnasal flexible videoendoscopy with NBI mode under local anesthesia. When a suspicious lesion was identified in an ambulatory setting, its nature was proved histologically. Many of these changes were not identifiable by means of conventional white light (WL endoscopy. The accuracy, sensitivity, specificity, and positive and negative predictive value of the method are very high (88%, 92%, 76%, 96%, and 91%, resp.. Results demonstrate that outpatient transnasal endoscopy with NBI is an excellent method for the follow-up of patients with carcinomas of the larynx and the hypopharynx primarily treated with radiotherapy.

  15. Enhanced dissociation of charge-transfer states in narrow band gap polymer:fullerene solar cells processed with 1,8-octanedithiol

    NARCIS (Netherlands)

    Moet, D.J.D.; Lenes, M.; Morana, M.; Azimi, H.; Brabec, C.J.; Blom, P.W.M.

    2010-01-01

    The improved photovoltaic performance of narrow band gap polymer:fullerene solar cells processed from solutions containing small amounts of 1,8-octanedithiol is analyzed by modeling of the experimental photocurrent. In contrast to devices that are spin coated from pristine chlorobenzene, these cells

  16. Enhanced dissociation of charge-transfer states in narrow band gap polymer : fullerene solar cells processed with 1,8-octanedithiol

    NARCIS (Netherlands)

    Moet, D. J. D.; Lenes, M.; Morana, M.; Azimi, H.; Brabec, C. J.; Blom, P. W. M.

    2010-01-01

    The improved photovoltaic performance of narrow band gap polymer:fullerene solar cells processed from solutions containing small amounts of 1,8-octanedithiol is analyzed by modeling of the experimental photocurrent. In contrast to devices that are spin coated from pristine chlorobenzene, these cells

  17. Low-dose narrow-band UVB phototherapy combined with topical therapy is effective in psoriasis and does not inhibit systemic T-cell activation

    NARCIS (Netherlands)

    de Rie, M. A.; Out, T. A.; Bos, J. D.

    1998-01-01

    Psoriasis is a chronic T-cell-mediated inflammatory skin disease which can be treated with topical medication, phototherapy or systemic medication. A subgroup of psoriatic patients does not respond to monotherapy and needs combination therapy. We used low-dose narrow-band UVB phototherapy, combined

  18. The role of high-resolution endoscopy and narrow-band imaging in the evaluation of upper GI neoplasia in familial adenomatous polyposis

    NARCIS (Netherlands)

    Lopez-Ceron, Maria; van den Broek, Frank J. C.; Mathus-Vliegen, Elisabeth M.; Boparai, Karam S.; van Eeden, Susanne; Fockens, Paul; Dekker, Evelien

    2013-01-01

    The Spigelman classification stratifies cancer risk in familial adenomatous polyposis (FAP) patients with duodenal adenomatosis. High-resolution endoscopy (HRE) and narrow-band imaging (NBI) may identify lesions at high risk. To compare HRE and NBI for the detection of duodenal and gastric polyps

  19. Development and Validation of a Classification System to Identify High-Grade Dysplasia and Esophageal Adenocarcinoma in Barrett's Esophagus Using Narrow-Band Imaging

    NARCIS (Netherlands)

    Sharma, Prateek; Bergman, Jacques J. G. H. M.; Goda, Kenichi; Kato, Mototsugu; Messmann, Helmut; Alsop, Benjamin R.; Gupta, Neil; Vennalaganti, Prashanth; Hall, Matt; Konda, Vani; Koons, Ann; Penner, Olga; Goldblum, John R.; Waxman, Irving

    2016-01-01

    Although several classification systems have been proposed for characterization of Barrett's esophagus (BE) surface patterns based on narrow-band imaging (NBI), none have been widely accepted. The Barrett's International NBI Group (BING) aimed to develop and validate an NBI classification system for

  20. Intercomparison of unmanned aerial vehicle and ground-based narrow band spectrometers applied to crop trait monitoring in organic potato production

    NARCIS (Netherlands)

    Domingues Franceschini, Marston; Bartholomeus, Harm; Apeldoorn, van Dirk; Suomalainen, Juha; Kooistra, Lammert

    2017-01-01

    Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions

  1. Spin excitation and band-narrowing in Al{sub x}Ga{sub 1-x}As heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2010-11-01

    We studied the spin excitation in dependences of the applied electric field and lattice temperature (LT) via the measurements of the circularly polarized photoluminescence (CPPL) in Al{sub x}Ga{sub 1-x}As heterostructures (HSs). The intensity of CPPL was found to strongly depend on the electric field applied to the HSs. The CPPL was also found to enhance with decreasing LT. It was demonstrated that the observed LT dependence might be due to the LT-dependent band-gap shift of the HS materials.

  2. Anomalous electromagnetically induced transparency in photonic-band-gap materials

    International Nuclear Information System (INIS)

    Singh, Mahi R.

    2004-01-01

    The phenomenon of electromagnetically induced transparency has been studied when a four-level atom is located in a photonic band gap material. Quantum interference is introduced by driving the two upper levels of the atom with a strong pump laser field. The top level and one of the ground levels are coupled by a weak probe laser field and absorption takes place between these two states. The susceptibility due to the absorption for this transition has been calculated by using the master equation method in linear response theory. Numerical simulations are performed for the real and imaginary parts of the susceptibility for a photonic band gap material whose gap-midgap ratio is 21%. It is found that when resonance frequencies lie within the band, the medium becomes transparent under the action of the strong pump laser field. More interesting results are found when one of the resonance frequencies lies at the band edge and within the band gap. When the resonance frequency lies at the band edge, the medium becomes nontransparent even under a strong pump laser field. On the other hand, when the resonance frequency lies within the band gap, the medium becomes transparent even under a weak pump laser field. In summary, we found that the medium can be transformed from the transparent state to the nontransparent state just by changing the location of the resonance frequency. We call these two effects anomalous electromagnetically induced transparency

  3. Polarization catastrophe in nanostructures doped in photonic band gap materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)], E-mail: msingh@uwo.ca

    2008-11-30

    In the presence of the dipole-dipole interaction, we have studied a possible dielectric catastrophe in photonic band gap materials doped with an ensemble of four-level nanoparticles. It is found that the dielectric constant of the system has a singularity when the resonance energy lies within the bands. This phenomenon is known as the dielectric catastrophe. It is also found that this phenomenon depends on the strength of the dipole-dipole interaction.

  4. Oligothiophene-Indandione-Linked Narrow-Band Gap Molecules: Impact of π-Conjugated Chain Length on Photovoltaic Performance.

    Science.gov (United States)

    Komiyama, Hideaki; To, Takahiro; Furukawa, Seiichi; Hidaka, Yu; Shin, Woong; Ichikawa, Takahiro; Arai, Ryota; Yasuda, Takuma

    2018-04-04

    Solution-processed organic solar cells (OSCs) based on narrow-band gap small molecules hold great promise as next-generation energy-converting devices. In this paper, we focus on a family of A-π-D-π-A-type small molecules, namely, BDT- nT-ID ( n = 1-4) oligomers, consisting of benzo[1,2- b:4,5- b']dithiophene (BDT) as the central electron-donating (D) core, 1,3-indandione (ID) as the terminal electron-accepting (A) units, and two regioregular oligo(3-hexylthiophene)s ( nT) with different numbers of thiophene rings as the π-bridging units, and elucidate their structure-property-function relationships. The effects of the length of the π-bridging nT units on the optical absorption, thermal behavior, morphology, hole mobility, and OSC performance were systematically investigated. All oligomers exhibited broad and intense visible photoabsorption in the 400-700 nm range. The photovoltaic performances of bulk heterojunction OSCs based on BDT- nT-IDs as donors and a fullerene derivative as an acceptor were studied. Among these oligomers, BDT-2T-ID, incorporating bithiophene as the π-bridging units, showed better photovoltaic performance with a maximum power conversion efficiency as high as 6.9% under AM 1.5G illumination without using solvent additives or postdeposition treatments. These favorable properties originated from the well-developed interpenetrating network morphology of BDT-2T-ID, with larger domain sizes in the photoactive layer. Even though all oligomers have the same A-D-A main backbone, structural modulation of the π-bridging nT length was found to impact their self-organization and nanostructure formation in the solid state, as well as the corresponding OSC device performance.

  5. Advantages of magnifying narrow-band imaging for diagnosing colorectal cancer coexisting with sessile serrated adenoma/polyp.

    Science.gov (United States)

    Chino, Akiko; Osumi, Hiroki; Kishihara, Teruhito; Morishige, Kenjiro; Ishikawa, Hirotaka; Tamegai, Yoshiro; Igarashi, Masahiro

    2016-04-01

    In the present study, we investigated the advantages of narrow-band imaging (NBI) for efficient diagnosis of sessile serrated adenoma/polyp (SSA/P). The main objective of this study was to analyze the characteristic features of cancer coexisting with serrated lesion by carrying out NBI. We evaluated 264 non-malignant serrated lesions by using three modalities (conventional white light colonoscopy, magnifying chromoendoscopy, and magnifying NBI). Of the evaluated cancer cases with serrated lesions, 37 fulfilled the inclusion criteria. In diagnosing non-malignant SSA/P, an expanded crypt opening (ECO) under magnifying NBI is a useful sign. One hundred and twenty-five lesions (87%) of observed ECO were, at the same time, detected to have type II open pit pattern, which is known to be a valuable indicator when using magnifying chromoendoscopy. ECO had high sensitivity of 80% for identifying SSA/P, with 62% specificity and 83% positive predictive value (PPV). In detecting the cancer with SSA/P, irregular vessels under magnifying NBI were frequently observed with 100% sensitivity and 99% specificity, 86% PPV and 100% negative predictive value. A focus on irregular vessels in serrated lesions might be useful for identification of cancer with SSA/P. This is an advantage of carrying out magnifying NBI in addition to being used simultaneously with other modalities by switching, and observations can be made by using wash-in water alone. We can carry out advanced examinations for selected lesions with irregular vessels. To confirm cancerous demarcation and invasion depth, a combination of all three aforementioned modalities should be done. © 2016 The Authors Digestive Endoscopy © 2016 Japan Gastroenterological Endoscopy Society.

  6. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Kajdič, P. [Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City (Mexico); Alexandrova, O.; Maksimovic, M.; Lacombe, C. [LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC UniversitéParis 06, Université Paris-Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Fazakerley, A. N., E-mail: primoz@geofisica.unam.mx [Mullard Space Science Laboratory, University College London (United Kingdom)

    2016-12-20

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E{sub T}) and ∼676 eV (∼113 E{sub T}) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  7. OFDM techniques for narrow-band power line communications; OFDM-Verfahren fuer die schmalbandige Datenuebertragung im elektrischen Energieversorgungsnetz

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, Martin

    2012-07-01

    In Power Line Communications (PLC) the power distribution grid is modelled by a frequency-selective time-variant channel. Therefore, OFDM techniques are suited very well for this application since they equalize the frequency-selective behaviour in a simple fashion. For narrow-band PLC, where only little amounts of data are to be transmitted, it is advantageous to employ a non-coherent system that does not need a training sequence for channel estimation. Such type of system can be brought up with CyclicPrefix OFDM in combination with Differential Phase-Shift Keying (DPSK). In an alternative, Unique-Word OFDM, the guard interval is not filled by a cyclic prefix, but a ''unique word'', which can be deployed for channel estimation. However, there is a loss in signal-to-noise power ratio due to the special type of signal generation. This loss can be more than regained in principle, but only by applying expensive detection. Another interesting technique is Wavelet-OFDM as its transmit spectrum can be formed outstandingly because of extended transmit pulses. This implies a large overhead when short packets of data are transmitted - additionally to a training sequence, for non-coherent detection is not possible. Cyclic-Prefix OFDM and DPSK are the basis of the Physical Layers of the PLC systems ''PLC G3'' and ''PRIME''. Comparing their specifications and analyzing simulation results ''PLC G3'' turns out to be the more reliable system. In order to equalize the time-variant behaviour of the power line channel, linear equalization and Multiple Symbol Differential Detection is studied as well as algorithms to estimate the time-variant envelope. (orig.)

  8. Diagnostic efficacy of magnifying endoscopy with narrow-band imaging for gastric neoplasms: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Xiuhe Lv

    Full Text Available Magnifying endoscopy with narrow-band imaging (ME-NBI is a novel, image-enhanced endoscopic technique for differentiating gastrointestinal neoplasms and potentially enabling pathological diagnosis.The aim of this analysis was to assess the diagnostic performance of ME-NBI for gastric neoplasms.We performed a systematic search of the PubMed, EMbase, Web of Science, and Cochrane Library databases for relevant studies. Meta-DiSc (version 1.4 and STATA (version 11.0 software were used for the data analysis. Random effects models were used to assess diagnostic efficacy. Heterogeneity was tested by the Q statistic and I2 statistic. Meta-regression was used to analyze the sources of heterogeneity.A total of 10 studies, with 2151 lesions, were included. The pooled characteristics of these studies were as follows: sensitivity 0.85 (95% confidence interval [CI]: 0.81-0.89, specificity 0.96 (95% confidence interval [CI]: 0.95-0.97, and area under the curve (AUC 0.9647. In the subgroup analysis, which compared the diagnostic efficacy of ME-NBI and white light imaging (WLI, the pooled sensitivity and specificity of ME-NBI were 0.87 (95% CI: 0.80-0.92 and 0.93 (95% CI: 0.90-0.95, respectively, and the area under the curve (AUC was 0.9556. In contrast, the pooled sensitivity and specificity of WLI were 0.61 (95% CI: 0.53-0.69 and 0.65 (95% CI: 0.60-0.69, respectively, and the area under the curve (AUC was 0.6772.ME-NBI presents a high diagnostic value for gastric neoplasms and has a high specificity.

  9. Narrow-band imaging (NBI for improving the assessment of vocal fold leukoplakia and overcoming the umbrella effect.

    Directory of Open Access Journals (Sweden)

    H Klimza

    Full Text Available It is crucial to find a balance between functional and oncological outcome when choosing an adequate method for the management of vocal fold leukoplakia. Therefore, a detailed examination is a milestone in the decision-making process.To examine whether narrow-band imaging (NBI can be helpful in vocal fold assessment in the case of leukoplakia and how to overcome the "umbrella effect"- understood as the submucosal vascular pattern hidden under the plaque.Prospective cohort of 41 consecutive patients. Inclusion criteria: vocal fold leukoplakia, no previous procedures (surgery, radiotherapy, and preoperative endoscopy with an optical filter for NBI. Two groups: "suspicious" and "normal", according to the submucosal microvascular pattern of peripheral regions of the mucosa surrounding the plaque, were distinguished. Patients were qualified for a full-thickness or partial-thickness biopsy, respectively. Criteria defining suspected characters were well-demarcated brownish areas with scattered brown spots corresponding to type IV, Va, Vb, and Vc NI classifications.In 22/41 (53.7% patients with "suspected" microvascular pattern, full-thickness biopsy was performed. Moderate and severe dysplasia was revealed in 15 type IV and 7 type Va NI patients. In 19/41 (46.3% patients with proper NBI vessel pattern treated by partial-thickness biopsy, hyperkeratosis was diagnosed. There was a strong correlation between the NBI pattern and final histology: Chi2 (2 = 41.0 (p = 0.0000.The results demonstrate that NBI endoscopic assessment of the submucosal microvascular pattern of mucosa surrounding the plaque can be an effective method to categorise the risk in vocal fold leukoplakia prior to treatment.

  10. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Kajdič, P.; Alexandrova, O.; Maksimovic, M.; Lacombe, C.; Fazakerley, A. N.

    2016-01-01

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E T ) and ∼676 eV (∼113 E T ) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  11. Investigation of mucosal pattern of gastric antrum using magnifying narrow-band imaging in patients with chronic atrophic fundic gastritis.

    Science.gov (United States)

    Yamasaki, Yasushi; Uedo, Noriya; Kanzaki, Hiromitsu; Kato, Minoru; Hamada, Kenta; Aoi, Kenji; Tonai, Yusuke; Matsuura, Noriko; Kanesaka, Takashi; Yamashina, Takeshi; Akasaka, Tomofumi; Hanaoka, Noboru; Takeuchi, Yoji; Higashino, Koji; Ishihara, Ryu; Tomita, Yasuhiko; Iishi, Hiroyasu

    2017-01-01

    Magnifying narrow-band imaging (M-NBI) can reportedly help predict the presence and distribution of atrophy and intestinal metaplasia in the gastric corpus. However, the micro-mucosal pattern of the antrum shown by M-NBI differs from that of the corpus. We studied the distribution and histology of the micro-mucosal pattern in the antrum based on magnifying endoscopy. Endoscopic images of the greater curvature of the antrum were evaluated in 50 patients with chronic atrophic fundic gastritis (CAFG). The extent of CAFG was evaluated by autofluorescence imaging. The micro-mucosal pattern was evaluated by M-NBI and classified into groove and white villiform types. The localization of white villiform type mucosa was classified into three types in relation to the areae gastricae : null, central, and segmental types. Biopsies were taken from regions showing different micro-mucosal patterns. Associations among the extent of CAFG, micro-mucosal pattern, and histology were examined. As the extent of CAFG increased, the proportion of white villiform type mucosa increased, whereas that of groove type mucosa decreased (P=0.022). In patients with extensive CAFG, most of the areae gastricae was composed of the segmental or central type of white villiform type mucosa (P=0.044). The white villiform type mucosa had significantly higher grades of atrophy (P=0.002) and intestinal metaplasia (P<0.001) than did the groove type mucosa. White villiform type mucosa is indicative of atrophy and intestinal metaplasia in the gastric antrum. It extends to the whole or central part of the areae gastricae as CAFG becomes more extensive.

  12. A 1.1-1.9 GHz SETI SURVEY OF THE KEPLER FIELD. I. A SEARCH FOR NARROW-BAND EMISSION FROM SELECT TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Siemion, Andrew P. V.; Korpela, Eric; Werthimer, Dan; Cobb, Jeff; Lebofsky, Matt; Marcy, Geoffrey W. [University of California, Berkeley, 110 Sproul Hall, Berkeley, CA 94720 (United States); Demorest, Paul; Maddalena, Ron J.; Langston, Glen [National Radio Astronomy Observatory, 520 Edgemont Rd Charlottesville, VA 22903 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 640 North A' ohoku Place, 209 Hilo, HI 96720-2700 (United States); Tarter, Jill [SETI Institute, 189 Bernardo Ave 100 Mountain View, CA 94043 (United States)

    2013-04-10

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T{sub eq} > 230 K, stars with five or more detected candidates or stars with a super-Earth (R{sub p} < 3 R{sub Circled-Plus }) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than {approx}1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of {approx}1.5 Multiplication-Sign 10{sup 21} erg s{sup -1}, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be <10{sup -6} M{sub Sun }{sup -1}. Here we describe our observations, data reduction procedures and results.

  13. Office-based narrow band imaging-guided flexible laryngoscopy tissue sampling: A cost-effectiveness analysis evaluating its impact on Taiwanese health insurance program

    OpenAIRE

    Fang, Tuan-Jen; Li, Hsueh-Yu; Liao, Chun-Ta; Chiang, Hui-Chen; Chen, I-How

    2015-01-01

    Narrow band imaging (NBI)-guided flexible laryngoscopy tissue sampling for laryngopharyngeal lesions is a novel technique. Patients underwent the procedure in an office-based setting without being sedated, which is different from the conventional technique performed using direct laryngoscopy. Although the feasibility and effects of this procedure were established, its financial impact on the institution and Taiwanese National Health Insurance program was not determined. Methods: This is a ...

  14. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    Science.gov (United States)

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  15. Fluorescence line-narrowing studies of Nd:glass laser materials

    International Nuclear Information System (INIS)

    Riseberg, L.A.; Brecher, C.

    The increasing importance of Nd glass lasers in laser fusion technology has emphasized the inadequacy in the understanding of the optical properties of rare earth ions in glasses. Indeed, it has been difficult to generate models for the performance of these devices, and the selection of host glasses could be done by little more than a trial-and-error approach. The technique of laser-induced fluorescence line-narrowing developed within the last few years provides a new and powerful tool for the study of these systems. In this technique, a laser excites within the inhomogeneously broadened absorption bands a selected subgroup of the ions in the system, namely those whose absorption energy is resonant with the laser. If the excitation does not migrate among the entire collection of ions prior to fluorescence, the fluorescence that is observed is only from the group that was excited and is narrowed. This permits the selective study of classes of ion sites within the ensemble. The concept is indicated schematically. By the use of a tunable laser, such as a dye laser, it is possible to vary the class of sites, defined by energy, that is excited and thereby study the important spectroscopic properties and their variations, unclouded by the averaging that occurs under excitation of the entire system. Furthermore, it is then possible to use the spectroscopic information to infer a description of the variation of the microscopic environment, and a rationalization of the effects of compositional changes. Use of a pulsed dye laser and time-resolved detection permits the study of the dynamics, including, for example, the energy transfer among ions of different energies within the inhomogeneously-broadened spectrum. The goal of this project has been to apply such studies to glasses of interest to glass laser technology, providing information for device modeling, and establishing design criteria for glass selection

  16. Photonic band gap materials: design, synthesis, and applications

    International Nuclear Information System (INIS)

    John, S.

    2000-01-01

    Full text: Unlike semiconductors which facilitate the coherent propagation of electrons, photonic band gap (PBG) materials execute their novel functions through the coherent localization of photons. I review and discuss our recent synthesis of a large scale three-dimensional silicon photonic crystal with a complete photonic band gap near 1.5 microns. When a PBG material is doped with impurity atoms which have an electronic transition that lies within the gap, spontaneous emission of light from the atom is inhibited. Inside the gap, the photon forms a bound state to the atom. Outside the gap, radiative dynamics in the colored vacuum is highly non Markovian. I discuss the influence of these memory effects on laser action. When spontaneous emission is absent, the next order radiative effect (resonance dipole dipole interaction between atoms) must be incorporated leading to anomalous nonlinear optical effects which occur at a much lower threshold than in ordinary vacuum. I describe the collective switching of two-level atoms near a photonic band edge, by external laser field, from a passive state to one exhibiting population inversion. This effect is forbidden in ordinary vacuum. However, in the context of a PBG material, this effect may be utilized for an all-optical transistor. Finally, I discuss the prospects for a phase sensitive, single atom quantum memory device, onto which information may be written by an external laser pulse

  17. Detection and recurrence rate of transurethral resection of bladder tumors by narrow-band imaging: Prospective, randomized comparison with white light cystoscopy

    Directory of Open Access Journals (Sweden)

    Seung Bin Kim

    2018-03-01

    Full Text Available Purpose: The purpose of this study was to evaluate the efficacy of narrow-band imaging (NBI as a diagnostic tool for detecting bladder tumors during cystoscopy compared with white light cystoscopy (WLC. Materials and Methods: From December 2013 to June 2017, a randomized prospective study was conducted on 198 patients underwent transurethral resection of bladder tumor by a single surgeon. The patients were divided into two groups according to diagnostic method. In Group I, WLC only was performed. In Group II, NBI was additionally performed after WLC. We analyzed the rate of detection of bladder tumors as a primary endpoint. In addition, we evaluated rates of recurrence in each group. Results: There were no significant differences between the two groups in characteristics except hypertension. In the analysis of rates of detection, the probability of diagnosing cancer was 80.9% (114/141 in the WLC group, and the probability of diagnosing cancer using WLC in the NBI group was 85.5% (159/186. After switching from WLC to NBI for second-look cystoscopy in the NBI group, NBI was shown to detect additional tumors with a detection rate of 35.1% (13/37 from the perspective of the patients and 42.2% (27/64 from the perspective of the tumors. The 1-year recurrence-free rate was 72.2% in the WLC group and 85.2% in the NBI group (p=0.3. Conclusions: NBI had benefits for detecting tumors overlooked by WLC. Although the difference in the 1-year recurrence-free rate was not statistically significant, our results showed a trend for higher recurrence in the NBI group.

  18. Electronic materials with a wide band gap: recent developments

    Directory of Open Access Journals (Sweden)

    Detlef Klimm

    2014-09-01

    Full Text Available The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap Eg = 0.66 eV after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg = 1.12 eV. This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider Eg were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity.

  19. Peritoneal vascular density assessment using narrow-band imaging and vascular analysis software, and cytokine analysis in women with and without endometriosis.

    Science.gov (United States)

    Kuroda, Keiji; Kitade, Mari; Kikuchi, Iwaho; Kumakiri, Jun; Matsuoka, Shozo; Kuroda, Masako; Takeda, Satoru

    2010-01-01

    The development and onset of endometriosis is associated with angiogenesis and angiogenic factors including cytokines. We analyzed intrapelvic conditions in women with endometriosis via vascular density assessment of grossly normal peritoneum and determination of cytokine levels in peritoneal fluid. Seventy-three patients underwent laparoscopic surgery because of gynecologic disease including endometriosis in our department using a narrow-band imaging system. Each patient was analyzed for peritoneal vascular density using commercially available vascular analysis software (SolemioENDO ProStudy; Olympus Corp, Tokyo, Japan). Each patient was also subjected to analysis of interleukin 6 (IL-6), IL-8, tumor necrosis factor-alpha, and vascular endothelial growth factor concentrations in peritoneal fluid. We defined 4 groups as follows: group 1, endometriosis: gonadotropin-releasing hormone (GnRH) agonist administration group (n=27); group 2, endometriosis: GnRH agonist nonadministration group (n=15); group 3, no endometriosis: GnRH agonist administration group (n=18); and group 4, no endometriosis: GnRH agonist nonadministration group (n=13). No significant differences in peritoneal vascular density between the 4 groups were found under conventional light; however, under narrow-band light, vascular density in the endometriosis groups (groups 1 and 2) was significantly higher. Cytokine analysis of the 4 groups determined that IL-6 and IL-8 concentrations were significantly higher compared with the no endometriosis groups (groups 3 and 4). Tumor necrosis factor-alpha and vascular endothelial growth factor concentrations were not significantly different between groups. In endometriosis, peritoneal vascular density was significantly higher as assessed using the narrow-band imaging system and SolemioENDO ProStudy, whereas GnRH agonist did not obviously decrease vascular density but IL-6 concentration was lower in the GnRH agonist administration group. Copyright (c) 2010 AAGL

  20. Simulation of the Application Layer in NarrowBand Networks with Conditional Data Injection XML Scheme Based on Universal Data Generator

    Directory of Open Access Journals (Sweden)

    Ondrej Vondrous

    2017-01-01

    Full Text Available In this article, we would like to deal with challenges and analysis approaches in the area of narrow band communication networks. Especially those networks which use TCP/IP protocol family. We also present a new universal data generator for OMNeT++ simulation environment. We created this generator to satisfy the evaluation, stress testing and benchmarking demands of more and more complex industrial and the Internet of Things networks. We also present the methods for evaluation and comparison of results obtained from simulated and real TCP/IP based networks in this article.

  1. Application of an improved band-gap narrowing model to the numerical simulation of recombination properties of phosphorus-doped silicon emitters

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, J.O. [Fraunhofer Institute for Solar Energy Systems ISE, Oltmannsstr, 5, D-79100 Freiburg (Germany); Altermatt, P.P.; Heiser, G.; Aberle, A.G. [Photovoltaics Special Research Centre, University of NSW, 2052 Sydney (Australia)

    2001-01-01

    The commonly used band-gap narrowing (BGN) models for crystalline silicon do not describe heavily doped emitters with desirable precision. One of the reasons for this is that the applied BGN models were empirically derived from measurements assuming Boltzmann statistics. We apply a new BGN model derived by Schenk from quantum mechanical principles and demonstrate that carrier degeneracy and the new BGN model both substantially affect the electron-hole product within the emitter region. Simulated saturation current densities of heavily phosphorus-doped emitters, calculated with the new BGN model, are lower than results obtained with the widely used empirical BGN model of del Alamo.

  2. Correlation and Collective Modes in Narrow Band Materials: NiO and FeO.

    Science.gov (United States)

    1981-02-01

    reduced and could have been Cu 20. Madey and Hanni have made an estimate of the density of surface bosons nceded to provide the observed shielding of the...and Hanni indicates that acsuming an ideal Bose gas composed of coupled free electrons may overestimate the screening. The electric field in the...the surface state is then T m a e exp m(3.18 2e2dm J e( It is Eq. (3.18) that Madey and Hanni use to fit the experimental data of -6011 -2 Witteborn

  3. Band Gap Optimization Design of Photonic Crystals Material

    Science.gov (United States)

    Yu, Y.; Yu, B.; Gao, X.

    2017-12-01

    The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.

  4. Photonic band gap materials: Technology, applications and challenges

    International Nuclear Information System (INIS)

    Johri, M.; Ahmed, Y.A.; Bezboruah, T.

    2006-05-01

    Last century has been the age of Artificial Materials. One material that stands out in this regard is the semiconductor. The revolution in electronic industry in the 20th century was made possible by the ability of semiconductors to microscopically manipulate the flow of electrons. Further advancement in the field made scientists suggest that the new millennium will be the age of photonics in which artificial materials will be synthesized to microscopically manipulate the flow of light. One of these will be Photonic Band Gap material (PBG). PBG are periodic dielectric structures that forbid propagation of electromagnetic waves in a certain frequency range. They are able to engineer most fundamental properties of electromagnetic waves such as the laws of refraction, diffraction, and emission of light from atoms. Such PBG material not only opens up variety of possible applications (in lasers, antennas, millimeter wave devices, efficient solar cells photo-catalytic processes, integrated optical communication etc.) but also give rise to new physics (cavity electrodynamics, localization, disorder, photon-number-state squeezing). Unlike electronic micro-cavity, optical waveguides in a PBG microchip can simultaneously conduct hundreds of wavelength channels of information in a three dimensional circuit path. In this article we have discussed some aspects of PBG materials and their unusual properties, which provided a foundation for novel practical applications ranging from clinical medicine to information technology. (author)

  5. Tuning the band gap of PbCrO{sub 4} through high-pressure: Evidence of wide-to-narrow semiconductor transitions

    Energy Technology Data Exchange (ETDEWEB)

    Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Física Aplicada-ICMUV, Universitat de València, MALTA ConsoliderTeam, C/Dr. Moliner 50, 46100 Burjassot (Spain); Bandiello, E.; Segura, A. [Departamento de Física Aplicada-ICMUV, Universitat de València, MALTA ConsoliderTeam, C/Dr. Moliner 50, 46100 Burjassot (Spain); Hamlin, J.J.; Maple, M.B. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Rodriguez-Hernandez, P.; Muñoz, A. [Departamento de Física Fundamental II, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, MALTA ConsoliderTeam, La Laguna, 38205 Tenerife (Spain)

    2014-02-25

    Highlights: • Electronic and optical properties of PbCrO{sub 4} are studied under compression. • Band-gap collapses are observed and correlated with structural phase transitions. • PbCrO{sub 4} band-gap is reduced from 2.3 to 0.8 eV in a 20 GPa range. • PbCrO{sub 4} is an n-type semiconductor with donor levels associated to Frenkel defects. • A deep-to-shallow donor transformation at HP induces a large resistivity decrease. -- Abstract: The electronic transport properties and optical properties of lead(II) chromate (PbCrO{sub 4}) have been studied at high pressure by means of resistivity, Hall-effect, and optical-absorption measurements. Band-structure first-principle calculations have been also performed. We found that the low-pressure phase is a direct band-gap semiconductor (Eg = 2.3 eV) that shows a high resistivity. At 3.5 GPa, associated to a structural phase transition, a band-gap collapse takes place, becoming Eg = 1.8 eV. At the same pressure the resistivity suddenly decreases due to an increase of the carrier concentration. In the HP phase, PbCrO{sub 4} behaves as an n-type semiconductor, with a donor level probably associated to the formation of oxygen vacancies. At 15 GPa a second phase transition occurs to a phase with Eg = 1.2 eV. In this phase, the resistivity increases as pressure does probably due to the self-compensation of donor levels and the augmentation of the scattering of electrons with ionized impurities. In the three phases the band gap red shifts under compression. At 20 GPa, Eg reaches a value of 0.8 eV, behaving PbCrO{sub 4} as a narrow-gap semiconductor.

  6. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liefeng, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda; Yao, Dongsheng [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Li, Yang [Business and Vocational College of Hainan, Haikou 570203 (China); Li, Ding; Hu, Xiaodong [Research Center for Wide Band Gap Semiconductors, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Li, Hongru, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn [State Key Laboratory for Medicinal Chemistry and Biology, College of Pharmacy, Nankai University, Tianjin 300071 (China)

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u} is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  7. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    International Nuclear Information System (INIS)

    Feng, Liefeng; Yang, Xiufang; Wang, Cunda; Yao, Dongsheng; Li, Yang; Li, Ding; Hu, Xiaodong; Li, Hongru

    2015-01-01

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I th l and I th u , as shown in Fig. 2; I th l is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I th u is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V j ) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I th l and I th u . The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region

  8. Subharmonic response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random excitation.

    Science.gov (United States)

    Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong

    2009-08-01

    The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.

  9. Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal

    International Nuclear Information System (INIS)

    Gong, Yan-Xiao; Xie, Zhen-Da; Xu, Ping; Zhu, Shi-Ning; Yu, Xiao-Qiang; Xue, Peng

    2011-01-01

    We propose a scheme for the generation of counterpropagating polarization-entangled photon pairs from a dual-periodically-poled crystal. Compared with the usual forward-wave-type source, this source, in the backward-wave way, has a much narrower bandwidth. With a 2-cm-long bulk crystal, the bandwidths of the example sources are estimated to be 3.6 GHz, and the spectral brightnesses are more than 100 pairs/(s GHz mW). Two concurrent quasi-phase-matched spontaneous parametric down-conversion processes in a single crystal enable our source to be compact and stable. This scheme does not rely on any state projection and applies to both degenerate and nondegenerate cases, facilitating applications of the entangled photons.

  10. Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials

    International Nuclear Information System (INIS)

    Palacios, P.; Aguilera, I.; Wahnon, P.

    2008-01-01

    In this work, we present frozen phonon and linear response ab-initio research into the vibrational properties of the CuGaS 2 chalcopyrite and transition metal substituted (CuGaS 2 )M alloys. These systems are potential candidates for developing a novel solar-cell material with enhanced optoelectronic properties based in the implementation of the intermediate-band concept. We have previously carried out ab-initio calculations of the electronic properties of these kinds of chalcopyrite metal alloys showing a narrow transition metal band isolated in the semiconductor band gap. The substitutes used in the present work are the 3d metal elements, Titanium and Chromium. For the theoretical calculations we use standard density functional theory at local density and generalized gradient approximation levels. We found that the optical phonon branches of the transition metal chalcopyrite, are very sensitive to the specific bonding geometry and small changes in the transition metal environment

  11. A highly efficient Ho:YAG laser in-band pumped by a linewidth-narrowed Tm:YLF laser

    International Nuclear Information System (INIS)

    Duan, X M; Yang, C H; Yao, B Q; Wang, Y Z; Zhang, W S

    2013-01-01

    A highly efficient Tm:YLF-Ho:YAG laser system is presented in this paper. To obtain the narrow linewidth 1908 nm laser output, a volume Bragg grating combined with a Fabry–Perot (FP) etalon were used as wavelength selection devices. The maximum output power of 28.7 W was obtained with a slope efficiency of 42.3% in the Tm:YLF laser. An output wavelength of 1908.1 nm and FWHM linewidth of 60 pm were achieved at the maximum output level. Using this Tm:YLF laser as the pump source, high efficiency continuous wave and Q-switched operation of a Ho:YAG laser was demonstrated. Operating at continuous wave mode, up to 73.3% slope efficiency and 67.4% optical conversion efficiency were obtained in the Ho:YAG laser, corresponding to a diode-to-Ho optical conversion efficiency of 23.7%. For the Q-switched mode, when the incident Tm power was 27.3 W, the maximum single pulse energy of 3.4 mJ, pulse width of 15 ns and peak power of 229.3 kW were achieved at the pulse repetition rate of 5 kHz. The maximum average power of 18.3 W, pulse width of 18 ns and peak power of 103.6 kW were obtained at the pulse repetition rate of 10 kHz. (paper)

  12. A Dual Band Slotted Patch Antenna on Dielectric Material Substrate

    Directory of Open Access Journals (Sweden)

    M. Habib Ullah

    2014-01-01

    Full Text Available A low profile, compact dual band slotted patch antenna has been designed using finite element method-based high frequency full-wave electromagnetic simulator. The proposed antenna fabricated using LPKF printed circuit board (PCB fabrication machine on fiberglass reinforced epoxy polymer resin material substrate and the performance of the prototype has been measured in a standard far-field anechoic measurement chamber. The measured impedance bandwidths of (reflection coefficient <-10 dB 12.26% (14.3–16.2 GHZ, 8.24% (17.4–18.9 GHz, and 3.08% (19.2–19.8 have been achieved through the proposed antenna prototype. 5.9 dBi, 3.37 dBi, and 3.32 dBi peak gains have been measured and simulated radiation efficiencies of 80.3%, 81.9%, and 82.5% have been achieved at three resonant frequencies of 15.15 GHz, 18.2 GHz, and 19.5 GHz, respectively. Minimum gain variation, symmetric, and almost steady measured radiation pattern shows that the proposed antenna is suitable for Ku and K band satellite applications.

  13. Ultra Wide Band RFID Neutron Tags for Nuclear Materials Monitoring

    International Nuclear Information System (INIS)

    Nekoogar, F.; Dowla, F.; Wang, T.

    2010-01-01

    Recent advancements in the ultra-wide band Radio Frequency Identification (RFID) technology and solid state pillar type neutron detectors have enabled us to move forward in combining both technologies for advanced neutron monitoring. The LLNL RFID tag is totally passive and will operate indefinitely without the need for batteries. The tag is compact, can be directly mounted on metal, and has high performance in dense and cluttered environments. The LLNL coin-sized pillar solid state neutron detector has achieved a thermal neutron detection efficiency of 20% and neutron/gamma discrimination of 1E5. These performance values are comparable to a fieldable 3 He based detector. In this paper we will discuss features about the two technologies and some potential applications for the advanced safeguarding of nuclear materials.

  14. Utility of the cromoendoscopy and the narrow band image at colon polyps; Utilidad de la cromoendoscopia y la imagen de banda estrecha en los polipos de colon

    Energy Technology Data Exchange (ETDEWEB)

    Perez Gonzalez, Teresita; Chao Gonzalez, Lissette; Tusen Toledo, Yunia, E-mail: teresitaperez@infomed.sld.cu [Centro de Investigaciones Medico Quirurgicas, La Habana (Cuba); others, and

    2013-07-01

    Colorrectal adenomas constitute the best characterized pre-malignancy injury in the development of the cancer in the colon. Colonoscopy with diagnostic and therapeutic aims is essential to prevent the cancer appearance. A prospective, descriptive and observational study was carried out in patients that assisted for colonoscopy at Medical Surgical Research Center from September 2010 to July 2011 The Kudo and the Sano-Emura classifications were used to determine the importance of the cromoendoscopy and the narrow band image at the time to identify histological nature of the polyps in the colon. Sensibility, specificity, positive and negative predictable values and the concordance degree were estimated. The morfology and the dysplasia degree were associated.

  15. Huge operation by energy gap of novel narrow band gap Tl1-x In1-x B x Se2 (B = Si, Ge): DFT, x-ray emission and photoconductivity studies

    Science.gov (United States)

    Piasecki, M.; Myronchuk, G. L.; Zamurueva, O. V.; Khyzhun, O. Y.; Parasyuk, O. V.; Fedorchuk, A. O.; Albassam, A.; El-Naggar, A. M.; Kityk, I. V.

    2016-02-01

    It is shown that narrow band gap semiconductors Tl1-x In1-x GexSe2 are able effectively to vary the values of the energy gap. DFT simulations of the principal bands during the cationic substitutions is done. Changes of carrier transport features is explored. Relation with the changes of the near the surface states is explored . Comparison on a common energy scale of the x-ray emission Se Kβ 2 bands, representing energy distribution of the Se 4p states, indicates that these states contribute preliminary to the top of the valence band. The temperature dependence of electrical conductivity and spectral dependence photoconductivity for the Tl1-x In1-x Ge x Se2 and Tl1-x In1-x Si x Se2 single crystals were explored and compared with previously reported Tl1-x In1-x Sn x Se2. Based on our investigations, a model of centre re-charging is proposed. Contrary to other investigated crystals in Tl1-x In1-x Ge x Se2 single crystals for x = 0.1 we observe extraordinarily enormous photoresponse, which exceed more than nine times the dark current. X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces of Tl1-x In1-x GexSe2 (x = 0.1 and 0.2) single crystals have been studied. These results indicate that the relatively low hygroscopicity of the studied single crystals is typical for the Tl1-x In1-x Ge x Se2 crystals, a property that is very important for handling these quaternary selenides as infrared materials operating at ambient conditions.

  16. HIGH RESOLUTION He i 10830 Å NARROW-BAND IMAGING OF AN M-CLASS FLARE. I. ANALYSIS OF SUNSPOT DYNAMICS DURING FLARING

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ya; Su, Yingna; Hong, Zhenxiang; Ji, Haisheng [Key Laboratory of DMSA, Purple Mountain Observatory, CAS, Nanjing, 210008 (China); Zeng, Zhicheng; Goode, Philip R.; Cao, Wenda [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Ji, Kaifan [Yunnan Astronomical Observatories, Kunming 650011 (China)

    2016-12-20

    In this paper, we report our first-step results of high resolution He i 10830 Å narrow-band imaging (bandpass: 0.5 Å) of an M1.8 class two-ribbon flare on 2012 July 5. The flare was observed with the 1.6 m aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extension of umbral flashes; both take the form of absorption in the 10830 Å narrow-band images. From a space–time image made of a slit cutting across a flare ribbon and the sunspot, we find that the dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside the ribbon when it sweeps into the sunspot’s penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a return of the absorption strip with similar speed. We tentatively explain the phenomena as the result of a sudden increase in the density of ortho-helium atoms in the area of the sunspot being excited by the flare’s extreme ultraviolet illumination. This explanation is based on the observation that 10830 Å absorption around the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.

  17. 1.7  μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission.

    Science.gov (United States)

    Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin

    2017-12-10

    A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.

  18. Thermal management of magnetic focussing horns used in the narrow and broad band neutrino beams at the AGS

    International Nuclear Information System (INIS)

    Leonhardt, W.; Carroll, A.; Monaghan, R.

    1987-01-01

    Operation of the AGS Neutrino Horns and their internal and external targets takes place in an environment of high voltage, severe shock and vibration, and high radiation. To insure reliable operation, energy from Joulean heating and the proton beam interaction must be dissipated to keep component temperatures at the lowest levels practical. This has been accomplished by carefully choosing component materials and providing dedicated air and water cooling systems to transfer the 6 kW of heat efficiently and safely to the environment. This paper describes how the rigid horn and target thermal design constraints were satisfied, and provides some record of the current operating experience

  19. W-Band Transmission MeasurementS and X-Band Dielectric Properties Measurements for a Radome Material Sample

    Science.gov (United States)

    Cravey, Robin L.; Tiemsin, Pacita I.

    1997-01-01

    This paper describes measurements which were performed on a sample of radome material in the Electromagnetic Properties Measurements Laboratory (EPML). The purpose of the measurements described in this paper was to determine the one-way transmission loss through the flat panel of radome material for a frequency range of 84 to 94 GHz, for varying incidence angles. The panel, which was manufactured by Norton Performance Plastics Corporation, was provided to the EPML by TRW. The size of the panel is 40 in x 36 in x 0.422 in and consists of a foam material with one side coated with a smooth white coating (this side will be referred to as the front side). The dielectric properties of the foam material from the inside of the panel were also determined at X-band (8.2-12.4 GHz). The W-band free space measurements are presented first, followed by the X-band dielectric properties measurements.

  20. Narrow-band imaging can increase the visibility of fibrin caps after bleeding of esophageal varices: a case with extensive esophageal candidiasis.

    Science.gov (United States)

    Furuichi, Yoshihiro; Kasai, Yoshitaka; Takeuchi, Hirohito; Yoshimasu, Yuu; Kawai, Takashi; Sugimoto, Katsutoshi; Kobayashi, Yoshiyuki; Nakamura, Ikuo; Itoi, Takao

    2017-08-01

    A 58-year-old man with hepatitis B cirrhosis noticed black stools and underwent an endoscopy at a community hospital. The presence of esophageal varices (EVs) was confirmed, but the bleeding point was not found. He was referred to our institution and underwent a second endoscopy. Extensive white patches of esophageal candidiasis were visible on endoscopy by white-light imaging (WLI), but it was difficult to find the fibrin cap of the EVs. This was easier under narrow-band imaging (NBI), however, as the color turned red from absorption by hemoglobin adhered to it. We retrospectively measured the color differences (CD) between the fibrin cap and the surrounding mucosa 10 times using the CIE (L*a*b*) color space method. The median value of CD increased after NBI (13.9 → 43.0, p candidiasis, but the increased visibility of the fibrin cap by NBI enabled it to be found more easily. This is the first report of a case in which NBI was helpful in locating a fibrin cap of EVs.

  1. Clicking in a killer whale habitat: narrow-band, high-frequency biosonar clicks of harbour porpoise (Phocoena phocoena and Dall's porpoise (Phocoenoides dalli.

    Directory of Open Access Journals (Sweden)

    Line A Kyhn

    Full Text Available Odontocetes produce a range of different echolocation clicks but four groups in different families have converged on producing the same stereotyped narrow band high frequency (NBHF click. In microchiropteran bats, sympatric species have evolved the use of different acoustic niches and subtly different echolocation signals to avoid competition among species. In this study, we examined whether similar adaptations are at play among sympatric porpoise species that use NBHF echolocation clicks. We used a six-element hydrophone array to record harbour and Dall's porpoises in British Columbia (BC, Canada, and harbour porpoises in Denmark. The click source properties of all porpoise groups were remarkably similar and had an average directivity index of 25 dB. Yet there was a small, but consistent and significant 4 kHz difference in centroid frequency between sympatric Dall's (137±3 kHz and Canadian harbour porpoises (141±2 kHz. Danish harbour porpoise clicks (136±3 kHz were more similar to Dall's porpoise than to their conspecifics in Canada. We suggest that the spectral differences in echolocation clicks between the sympatric porpoises are consistent with evolution of a prezygotic isolating barrier (i.e., character displacement to avoid hybridization of sympatric species. In practical terms, these spectral differences have immediate application to passive acoustic monitoring.

  2. Using narrow-band imaging with conventional hysteroscopy increases the detection of chronic endometritis in abnormal uterine bleeding and postmenopausal bleeding.

    Science.gov (United States)

    Ozturk, Mustafa; Ulubay, Mustafa; Alanbay, Ibrahim; Keskin, Uğur; Karasahin, Emre; Yenen, Müfit Cemal

    2016-01-01

    A preliminary study was designed to evaluate whether a narrow-band imaging (NBI) endoscopic light source could detect chronic endometritis that was not identifiable with a white light hysteroscope. A total of 86 patients with endometrial pathology (71 abnormal uterine bleeding and 15 postmenopausal bleeding) were examined by NBI endoscopy and white light hysteroscopy between February 2010 and February 2011. The surgeon initially observed the uterine cavity using white light hysteroscopy and made a diagnostic impression, which was recorded. Subsequently, after pressing a button on the telescope, NBI was used to reevaluate the endometrial mucosa. The median age of the patients was 40 years (range: 30-60 years). Endometritis was diagnosed histologically. Six cases of abnormal uterine bleeding (6/71, 8.4%, 95% confidence interval [CI] 0.03-0.17) and one case of postmenopausal bleeding (1/15, 6%, 95%CI 0.01-0.29) were only diagnosed with chronic endometritis by NBI (7/86, 8.1%, 95%CI 0.04-0.15). Capillary patterns of the endometrium can be observed by NBI and this method can be used to assess chronic endometritis. © 2015 Japan Society of Obstetrics and Gynecology.

  3. Prediction of Helicobacter pylori status by conventional endoscopy, narrow-band imaging magnifying endoscopy in stomach after endoscopic resection of gastric cancer.

    Science.gov (United States)

    Yagi, Kazuyoshi; Saka, Akiko; Nozawa, Yujiro; Nakamura, Atsuo

    2014-04-01

    To reduce the incidence of metachronous gastric carcinoma after endoscopic resection of early gastric cancer, Helicobacter pylori eradication therapy has been endorsed. It is not unusual for such patients to be H. pylori negative after eradication or for other reasons. If it were possible to predict H. pylori status using endoscopy alone, it would be very useful in clinical practice. To clarify the accuracy of endoscopic judgment of H. pylori status, we evaluated it in the stomach after endoscopic submucosal dissection (ESD) of gastric cancer. Fifty-six patients treated by ESD were enrolled. The diagnostic criteria for H. pylori status by conventional endoscopy and narrow-band imaging (NBI)-magnifying endoscopy were decided, and H. pylori status was judged by two endoscopists. Based on the H. pylori stool antigen test as a diagnostic gold standard, conventional endoscopy and NBI-magnifying endoscopy were compared for their sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Interobserver agreement was assessed in terms of κ value. Interobserver agreement was moderate (0.56) for conventional endoscopy and substantial (0.77) for NBI-magnifying endoscopy. The sensitivity, specificity, PPV, and NPV were 0.79, 0.52, 0.70, and 0.63 for conventional endoscopy and 0.91, 0.83, 0.88, and 0.86 for NBI-magnifying endoscopy, respectively. Prediction of H. pylori status using NBI-magnifying endoscopy is practical, and interobserver agreement is substantial. © 2013 John Wiley & Sons Ltd.

  4. Selenium, zinc, copper, Cu/Zn ratio and total antioxidant status in the serum of vitiligo patients treated by narrow-band ultraviolet-B phototherapy.

    Science.gov (United States)

    Wacewicz, Marta; Socha, Katarzyna; Soroczyńska, Jolanta; Niczyporuk, Marek; Aleksiejczuk, Piotr; Ostrowska, Jolanta; Borawska, Maria H

    2018-03-01

    Vitiligo is a chronic, depigmenting skin disorder, whose pathogenesis is still unknown. Narrow band ultraviolet-B (NB-UVB) is now one of the most widely used treatment of vitiligo. It was suggested that trace elements may play a role in pathogenesis of vitiligo. The aim of this study was to estimate the concentration of selenium (Se), zinc (Zn), copper (Cu) and Cu/Zn ratio as well as total antioxidant status (TAS) in the serum of patients with vitiligo. We assessed 50 patients with vitiligo and 58 healthy controls. Serum levels of Se, Zn and Cu were determined by the atomic absorption spectrometry method, and the Cu/Zn ratio was also calculated. TAS in serum was measured spectrophotometrically. Serum concentration of Se in patients with vitiligo before and after phototherapy was significantly lower as compared to the control group. Zn level in the serum of patients decreased significantly after phototherapy. We observed higher Cu/Zn ratio (p vitiligo patients after NB-UVB. The current study showed some disturbances in the serum levels of trace elements and total antioxidant status in vitiligo patients.

  5. Systematic design of phononic band-gap materials and structures by topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard

    2003-01-01

    Phononic band-gap materials prevent elastic waves in certain frequency ranges from propagating, and they may therefore be used to generate frequency filters, as beam splitters, as sound or vibration protection devices, or as waveguides. In this work we show how topology optimization can be used...... to design and optimize periodic materials and structures exhibiting phononic band gaps. Firstly, we optimize infinitely periodic band-gap materials by maximizing the relative size of the band gaps. Then, finite structures subjected to periodic loading are optimized in order to either minimize the structural...

  6. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system

    NARCIS (Netherlands)

    Curvers, W. L.; Singh, R.; Song, L.-M. Wong-Kee; Wolfsen, H. C.; Ragunath, K.; Wang, K.; Wallace, M. B.; Fockens, P.; Bergman, J. J. G. H. M.

    2008-01-01

    OBJECTIVE: To investigate the diagnostic potential of endoscopic tri-modal imaging and the relative contribution of each imaging modality (i.e. high-resolution endoscopy (HRE), autofluorescence imaging (AFI) and narrow-band imaging (NBI)) for the detection of early neoplasia in Barrett's oesophagus.

  7. Conduction and Narrow Escape in Dense, Disordered, Particulate-based Heterogeneous Materials

    Science.gov (United States)

    Lechman, Jeremy

    For optimal and reliable performance, many technological devices rely on complex, disordered heterogeneous or composite materials and their associated manufacturing processes. Examples include many powder and particulate-based materials found in phyrotechnic devices for car airbags, electrodes in energy storage devices, and various advanced composite materials. Due to their technological importance and complex structure, these materials have been the subject of much research in a number of fields. Moreover, the advent of new manufacturing techniques based on powder bed and particulate process routes, the potential of functional nano-structured materials, and the additional recognition of persistent shortcomings in predicting reliable performance of high consequence applications; leading to ballooning costs of fielding and maintaining advanced technologies, should motivate renewed efforts in understanding, predicting and controlling these materials' fabrication and behavior. Our particular effort seeks to understand the link between the top-down control presented in specific non-equilibrium processes routes (i.e., manufacturing processes) and the variability and uncertainty of the end product performance. Our ultimate aim is to quantify the variability inherent in these constrained dynamical or random processes and to use it to optimize and predict resulting material properties/performance and to inform component design with precise margins. In fact, this raises a set of deep and broad-ranging issues that have been recognized and as touching the core of a major research challenge at Sandia National Laboratories. In this talk, we will give an overview of recent efforts to address aspects of this vision. In particular the case of conductive properties of packed particulate materials will be highlighted. Combining a number of existing approaches we will discuss new insights and potential directions for further development toward the stated goal. Sandia National

  8. Photonic band structures in one-dimensional photonic crystals containing Dirac materials

    International Nuclear Information System (INIS)

    Wang, Lin; Wang, Li-Gang

    2015-01-01

    We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions

  9. Intercomparison of Unmanned Aerial Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop Trait Monitoring in Organic Potato Production

    Directory of Open Access Journals (Sweden)

    Marston Héracles Domingues Franceschini

    2017-06-01

    Full Text Available Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions fitted to vegetation indices, can relate spectra with crop traits. Although monitoring frameworks using multiple sensors can be more flexible, they may result in higher inaccuracy due to differences related to the sensors characteristics, which can affect information sampling. Also organic production systems can benefit from continuous monitoring focusing on crop management and stress detection, but few studies have evaluated applications with this objective. In this study, ground-based and UAV spectrometers were compared in the context of organic potato cultivation. Relatively accurate estimates were obtained for leaf chlorophyll (RMSE = 6.07 µg·cm−2, leaf area index (RMSE = 0.67 m2·m−2, canopy chlorophyll (RMSE = 0.24 g·m−2 and ground cover (RMSE = 5.5% using five UAV-based data acquisitions, from 43 to 99 days after planting. These retrievals are slightly better than those derived from ground-based measurements (RMSE = 7.25 µg·cm−2, 0.85 m2·m−2, 0.28 g·m−2 and 6.8%, respectively, for the same period. Excluding observations corresponding to the first acquisition increased retrieval accuracy and made outputs more comparable between sensors, due to relatively low vegetation cover on this date. Intercomparison of vegetation indices indicated that indices based on the contrast between spectral bands in the visible and near-infrared, like OSAVI, MCARI2 and CIg provided, at certain extent, robust outputs that could be transferred between sensors. Information sampling at plot level by both sensing solutions resulted in comparable discriminative potential concerning advanced stages of late blight incidence. These results indicate that optical

  10. Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles

    International Nuclear Information System (INIS)

    Aguilera, I.; Palacios, P.; Wahnon, P.

    2008-01-01

    The optical properties of a novel potential high-efficiency photovoltaic material have been studied. This material is based on a chalcopyrite-type semiconductor (CuGaS 2 ) with some Ga atom substituted by Ti and is characterized by the formation of an isolated transition-metal band between the valence band and the conduction band. We present a study in which ab-initio density functional theory calculations within the generalized gradient approximation are carried out to determine the optical reflectivity and absorption coefficient of the materials of interest. Calculations for the host semiconductor are in good agreement with experimental results within the limitations of the approach. We find, as desired, that because of the intermediate band, the new Ti-substituted material would be able to absorb photons of energy lower than the band-gap of the host chalcopyrite. We also analyze the partial contributions to the main peaks of its spectrum

  11. Vascular density of superficial esophageal squamous cell carcinoma determined by direct observation of resected specimen using narrow band imaging with magnifying endoscopy.

    Science.gov (United States)

    Kikuchi, D; Iizuka, T; Hoteya, S; Nomura, K; Kuribayashi, Y; Toba, T; Tanaka, M; Yamashita, S; Furuhata, T; Matsui, A; Mitani, T; Inoshita, N; Kaise, M

    2017-11-01

    Observation of the microvasculature using narrow band imaging (NBI) with magnifying endoscopy is useful for diagnosing superficial squamous cell carcinoma. Increased vascular density is indicative of cancer, but not many studies have reported differences between cancerous and noncancerous areas based on an objective comparison. We observed specimens of endoscopic submucosal dissection (ESD) using NBI magnification, and determined the vascular density of cancerous and noncancerous areas. A total of 25 lesions of esophageal squamous cell carcinoma that were dissected en bloc by ESD between July 2013 and December 2013 were subjected to NBI magnification. We constructed a device that holds an endoscope and precisely controls the movement along the vertical axis in order to observe submerged specimens by NBI magnification. NBI image files of both cancerous (pathologically determined invasion depth, m1/2) and surrounding noncancerous areas were created and subjected to vascular density assessment by two endoscopists who were blinded to clinical information. The invasion depth was m1/2 in 20, m3/sm1 in four and sm2 in one esophageal cancer lesion. Mean vascular density was significantly increased in cancerous areas (37.6 ± 16.3 vessels/mm2) compared with noncancerous areas (17.6 ± 10.0 vessels/mm2) (P squamous cell carcinoma. The rates of agreement between vascular density values determined by two independent operators were high. © The Authors 2017. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Office-based narrow band imaging-guided flexible laryngoscopy tissue sampling: A cost-effectiveness analysis evaluating its impact on Taiwanese health insurance program.

    Science.gov (United States)

    Fang, Tuan-Jen; Li, Hsueh-Yu; Liao, Chun-Ta; Chiang, Hui-Chen; Chen, I-How

    2015-07-01

    Narrow band imaging (NBI)-guided flexible laryngoscopy tissue sampling for laryngopharyngeal lesions is a novel technique. Patients underwent the procedure in an office-based setting without being sedated, which is different from the conventional technique performed using direct laryngoscopy. Although the feasibility and effects of this procedure were established, its financial impact on the institution and Taiwanese National Health Insurance program was not determined. This is a retrospective case-control study. From May 2010 to April 2011, 20 consecutive patients who underwent NBI flexible laryngoscopy tissue sampling were recruited. During the same period, another 20 age-, sex-, and lesion-matched cases were enrolled in the control group. The courses for procedures and financial status were analyzed and compared between groups. Office-based NBI flexible laryngoscopy tissue sampling procedure took 27 minutes to be completed, while 191 minutes were required for the conventional technique. Average reimbursement for each case was New Taiwan Dollar (NT$)1264 for patients undergoing office-based NBI flexible laryngoscopy tissue sampling, while NT$10,913 for those undergoing conventional direct laryngoscopy in the operation room (p institution suffered a loss of at least NT$690 when performing NBI flexible laryngoscopy tissue sampling. Office-based NBI flexible laryngoscopy tissue sampling is a cost-saving procedure for patients and the Taiwanese National Health Insurance program. It also saves the procedure time. However, the net financial loss for the institution and physician would limit its popularization unless reimbursement patterns are changed. Copyright © 2013. Published by Elsevier B.V.

  13. Mass measurements on neutron-deficient nuclides at SHIPTRAP and commissioning of a cryogenic narrow-band FT-ICR mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer Garcia, R.

    2007-07-01

    The dissertation presented here deals with high-precision Penning trap mass spectrometry on short-lived radionuclides. Owed to the ability of revealing all nucleonic interactions, mass measurements far off the line of {beta}-stability are expected to bring new insight to the current knowledge of nuclear properties and serve to test the predictive power of mass models and formulas. In nuclear astrophysics, atomic masses are fundamental parameters for the understanding of the synthesis of nuclei in the stellar environments. This thesis presents ten mass values of radionuclides around A=90 interspersed in the predicted rp-process pathway. Six of them have been experimentally determined for the first time. The measurements have been carried out at the Penning-trap mass spectrometer SHIPTRAP using the destructive time-of-flight ion-cyclotron-resonance (TOF-ICR) detection technique. Given the limited performance of the TOF-ICR detection when trying to investigate heavy/superheavy species with small production cross sections ({sigma} <1 {mu}b), a new detection system is found to be necessary. Thus, the second part of this thesis deals with the commissioning of a cryogenic double-Penning trap system for the application of a highly-sensitive, narrow-band Fourier-transform ion-cyclotron-resonance (FT-ICR) detection technique. With the non-destructive FT-ICR detection method a single singly-charged trapped ion will provide the required information to determine its mass. First off-line tests of a new detector system based on a channeltron with an attached conversion dynode, of a cryogenic pumping barrier, to guarantee ultra-high vacuum conditions during mass determination, and of the detection electronics for the required single-ion sensitivity are reported. (orig.)

  14. The learning curve for narrow-band imaging in the diagnosis of precancerous gastric lesions by using Web-based video.

    Science.gov (United States)

    Dias-Silva, Diogo; Pimentel-Nunes, Pedro; Magalhães, Joana; Magalhães, Ricardo; Veloso, Nuno; Ferreira, Carlos; Figueiredo, Pedro; Moutinho, Pedro; Dinis-Ribeiro, Mário

    2014-06-01

    A simplified narrow-band imaging (NBI) endoscopy classification of gastric precancerous and cancerous lesions was derived and validated in a multicenter study. This classification comes with the need for dissemination through adequate training. To address the learning curve of this classification by endoscopists with differing expertise and to assess the feasibility of a YouTube-based learning program to disseminate it. Prospective study. Five centers. Six gastroenterologists (3 trainees, 3 fully trained endoscopists [FTs]). Twenty tests provided through a Web-based program containing 10 randomly ordered NBI videos of gastric mucosa were taken. Feedback was sent 7 days after every test submission. Measures of accuracy of the NBI classification throughout the time. From the first to the last 50 videos, a learning curve was observed with a 10% increase in global accuracy, for both trainees (from 64% to 74%) and FTs (from 56% to 65%). After 200 videos, sensitivity and specificity of 80% and higher for intestinal metaplasia were observed in half the participants, and a specificity for dysplasia greater than 95%, along with a relevant likelihood ratio for a positive result of 7 to 28 and likelihood ratio for a negative result of 0.21 to 0.82, were achieved by all of the participants. No constant learning curve was observed for the identification of Helicobacter pylori gastritis and sensitivity to dysplasia. The trainees had better results in all of the parameters, except specificity for dysplasia, compared with the FTs. Globally, participants agreed that the program's structure was adequate, except on the feedback, which should have consisted of a more detailed explanation of each answer. No formal sample size estimate. A Web-based learning program could be used to teach and disseminate classifications in the endoscopy field. In this study, an NBI classification for gastric mucosal features seems to be easily learned for the identification of gastric preneoplastic

  15. Evaluation of an e-learning system for diagnosis of gastric lesions using magnifying narrow-band imaging: a multicenter randomized controlled study.

    Science.gov (United States)

    Nakanishi, Hiroyoshi; Doyama, Hisashi; Ishikawa, Hideki; Uedo, Noriya; Gotoda, Takuji; Kato, Mototsugu; Nagao, Shigeaki; Nagami, Yasuaki; Aoyagi, Hiroyuki; Imagawa, Atsushi; Kodaira, Junichi; Mitsui, Shinya; Kobayashi, Nozomu; Muto, Manabu; Takatori, Hajime; Abe, Takashi; Tsujii, Masahiko; Watari, Jiro; Ishiyama, Shuhei; Oda, Ichiro; Ono, Hiroyuki; Kaneko, Kazuhiro; Yokoi, Chizu; Ueo, Tetsuya; Uchita, Kunihisa; Matsumoto, Kenshi; Kanesaka, Takashi; Morita, Yoshinori; Katsuki, Shinichi; Nishikawa, Jun; Inamura, Katsuhisa; Kinjo, Tetsu; Yamamoto, Katsumi; Yoshimura, Daisuke; Araki, Hiroshi; Kashida, Hiroshi; Hosokawa, Ayumu; Mori, Hirohito; Yamashita, Haruhiro; Motohashi, Osamu; Kobayashi, Kazuhiko; Hirayama, Michiaki; Kobayashi, Hiroyuki; Endo, Masaki; Yamano, Hiroo; Murakami, Kazunari; Koike, Tomoyuki; Hirasawa, Kingo; Miyaoka, Youichi; Hamamoto, Hidetaka; Hikichi, Takuto; Hanabata, Norihiro; Shimoda, Ryo; Hori, Shinichiro; Sato, Tadashi; Kodashima, Shinya; Okada, Hiroyuki; Mannami, Tomohiko; Yamamoto, Shojiro; Niwa, Yasumasa; Yashima, Kazuo; Tanabe, Satoshi; Satoh, Hiro; Sasaki, Fumisato; Yamazato, Tetsuro; Ikeda, Yoshiou; Nishisaki, Hogara; Nakagawa, Masahiro; Matsuda, Akio; Tamura, Fumio; Nishiyama, Hitoshi; Arita, Keiko; Kawasaki, Keisuke; Hoppo, Kazushige; Oka, Masashi; Ishihara, Shinichi; Mukasa, Michita; Minamino, Hiroaki; Yao, Kenshi

    2017-10-01

    Background and study aim  Magnifying narrow-band imaging (M-NBI) is useful for the accurate diagnosis of early gastric cancer (EGC). However, acquiring skill at M-NBI diagnosis takes substantial effort. An Internet-based e-learning system to teach endoscopic diagnosis of EGC using M-NBI has been developed. This study evaluated its effectiveness. Participants and methods  This study was designed as a multicenter randomized controlled trial. We recruited endoscopists as participants from all over Japan. After completing Test 1, which consisted of M-NBI images of 40 gastric lesions, participants were randomly assigned to the e-learning or non-e-learning groups. Only the e-learning group was allowed to access the e-learning system. After the e-learning period, both groups received Test 2. The analysis set was participants who scored e-learning group and 197 in the non-e-learning group). After the e-learning period, all 395 completed Test 2. The analysis sets were e-learning group: n = 184; and non-e-learning group: n = 184. The mean Test 1 score was 59.9 % for the e-learning group and 61.7 % for the non-e-learning group. The change in accuracy in Test 2 was significantly higher in the e-learning group than in the non-e-learning group (7.4 points vs. 0.14 points, respectively; P  e-learning system in improving practitioners' capabilities to diagnose EGC using M-NBI.Trial registered at University Hospital Medical Information Network Clinical Trials Registry (UMIN000008569). © Georg Thieme Verlag KG Stuttgart · New York.

  16. An alternative option for "resect and discard" strategy, using magnifying narrow-band imaging: a prospective "proof-of-principle" study.

    Science.gov (United States)

    Takeuchi, Yoji; Hanafusa, Masao; Kanzaki, Hiromitsu; Ohta, Takashi; Hanaoka, Noboru; Yamamoto, Sachiko; Higashino, Koji; Tomita, Yasuhiko; Uedo, Noriya; Ishihara, Ryu; Iishi, Hiroyasu

    2015-10-01

    The "resect and discard" strategy is beneficial for cost savings on screening and surveillance colonoscopy, but it has the risk to discard lesions with advanced histology or small invasive cancer (small advanced lesion; SALs). The aim of this study was to prove the principle of new "resect and discard" strategy with consideration for SALs using magnifying narrow-band imaging (M-NBI). Patients undergoing colonoscopy at a tertiary center were involved in this prospective trial. For each detected polyp <10 mm, optical diagnosis (OD) and virtual management ("leave in situ", "discard" or "send for pathology") were independently made using non-magnifying NBI (N-NBI) and M-NBI, and next surveillance interval were predicted. Histological and optical diagnosis results of all polyps were compared. While the management could be decided in 82% of polyps smaller than 10 mm, 24/31 (77%) SALs including two small invasive cancers were not discarded based on OD using M-NBI. The sensitivity [90% confidence interval (CI)] of M-NBI for SALs was 0.77 (0.61-0.89). The risk for discarding SALs using N-NBI was significantly higher than that using M-NBI (53 vs. 23%, p = 0.02). The diagnostic accuracy (95% CI) of M-NBI in distinguishing neoplastic from non-neoplastic lesions [0.88 (0.86-0.90)] was significantly better than that of N-NBI [0.84 (0.82-0.87)] (p = 0.005). The results of our study indicated that our "resect and discard" strategy using M-NBI could work to reduce the risk for discarding SALs including small invasive cancer (UMIN-CTR, UMIN000003740).

  17. Comparison of high-resolution magnification narrow-band imaging and white-light endoscopy in the prediction of histology in Barrett's oesophagus.

    Science.gov (United States)

    Singh, Rajvinder; Karageorgiou, Haris; Owen, Victoria; Garsed, Klara; Fortun, Paul J; Fogden, Edward; Subramaniam, Venkataraman; Shonde, Anthony; Kaye, Philip; Hawkey, Christopher J; Ragunath, Krish

    2009-01-01

    To evaluate whether there is any appreciable difference in imaging characteristics between high-resolution magnification white-light endoscopy (WLE-Z) and narrow-band imaging (NBI-Z) in Barrett's oesophagus (BE) and if this translates into superior prediction of histology. This was a prospective single-centre study involving 21 patients (75 areas, corresponding NBI-Z and WLE-Z images) with BE. Mucosal patterns (pit pattern and microvascular morphology) were evaluated for their image quality on a visual analogue scale (VAS) of 1-10 by five expert endoscopists. The endoscopists then predicted mucosal morphology based on four subtypes which can be visualized in BE. Type A: round pits, regular microvasculature; type B: villous/ridge pits, regular microvasculature; type C: absent pits, regular microvasculature; type D: distorted pits, irregular microvasculature. The sensitivity (Sn), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and accuracy (Acc) were then compared with the final histopathological analysis and the interobserver variability calculated. The overall pit and microvasculature quality was significantly higher for NBI-Z, pit: NBI-Z=6, WLE-Z=4.5, p < 0.001; microvasculature: NBI-Z=7.3, WLE-Z=4.9, p < 0.001. This translated into a superior prediction of histology (Sn: NBI-Z: 88.9, WLE-Z: 71.9, p < 0.001). For the prediction of dysplasia, NBI-Z was superior to WLE-Z (chi(2)=10.3, p < 0.05). The overall kappa agreement among the five endoscopists for NBI-Z and WLE-Z, respectively, was 0.59 and 0.31 (p < 0.001). NBI-Z is superior to WLE-Z in the prediction of histology in BE, with good reproducibility. This novel imaging modality could be an important tool for surveillance of patients with BE.

  18. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    Energy Technology Data Exchange (ETDEWEB)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ita, Yoshifusa [Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Komugi, Shinya [Division of Liberal Arts, Kogakuin University, 2665-1, Hachioji, Tokyo 192-0015 (Japan); Koshida, Shintaro [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Manabe, Sho [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Nakashima, Asami, E-mail: tateuchi@ioa.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  19. Tight-Binding Parametrization for Photonic Band Gap Materials

    International Nuclear Information System (INIS)

    Lidorikis, E.; Sigalas, M.M.; Soukoulis, C.M.; Economou, E.N.; Soukoulis, C.M.

    1998-01-01

    The idea of the linear combination of atomic orbitals method, well known from the study of electrons, is extended to the classical wave case. The Mie resonances of the isolated scatterer in the classical wave case are analogous to the atomic orbitals in the electronic case. The matrix elements of the two-dimensional tight-binding (TB) Hamiltonian are obtained by fitting to ab initio results. The transferability of the TB model is tested by reproducing accurately the band structure of different 2D lattices, with and without defects, and at two different dielectric contrasts. copyright 1998 The American Physical Society

  20. Boosting the Visible-Light Photoactivity of BiOCl/BiVO4/N-GQD Ternary Heterojunctions Based on Internal Z-Scheme Charge Transfer of N-GQDs: Simultaneous Band Gap Narrowing and Carrier Lifetime Prolonging.

    Science.gov (United States)

    Zhu, Mingyue; Liu, Qian; Chen, Wei; Yin, Yuanyuan; Ge, Lan; Li, Henan; Wang, Kun

    2017-11-08

    The efficient separation of photogenerated electron-hole pairs in photoactive materials is highly desired, allowing their transfer to specific sites for undergoing redox reaction in various applications. The construction of ternary heterojunctions is a practical strategy to enhance the migration of photogenerated electron that realizes the synergistic effect of multicomponents rather than the simple overlay of single component. Here, we demonstrate an available way to fabricate new BiOCl/BiVO 4 /nitrogen-doped graphene quantum dot (N-GQD) ternary heterojunctions that exhibit higher efficiency in charge separation than any binary heterojunction or pure material under visible-light irradiation. UV-vis diffuse reflectance spectroscopy demonstrated that the proposed BiOCl/BiVO 4 /N-GQD ternary heterojunctions possess the narrower band gap energy. More importantly, the ternary heterojunctions reveal the prolonged lifetime of photogenerated charges and enhanced the separation efficiency of photogenerated electron-hole pairs, which may be ascribed to sensitization based on an internal Z-scheme charge transfer at the interface of N-GQDs with oxygen functional groups. Furthermore, we examine the photoactive performance of proposed ternary heterojunctions in aqueous solution by using the photodegradation of bisphenol A as a model system and BiOCl/BiVO 4 /N-GQD ternary heterojunctions also display a dramatically enhanced photodegradation rate. The proposed charge separation and transfer process of BiOCl/BiVO 4 /N-GQD ternary heterojunctions for the enhanced photoactivity were deduced by electrochemical measurements, photoluminescence, and electron spin resonance. The results demonstrate that a Z-scheme charge process was formed between BiOCl/BiVO 4 binary heterojunctions and N-GQDs, leading to an efficient charge carrier separation and strong photocatalytic ability. Notably, this work may assist in a better understanding of the role of N-GQDs in kinds of heterojunctions

  1. Comparative Study of the Gross Interpretation of Phototesting and Objective Measurement with Using a Spectrophotometer for Patients with Psoriasis and Vitiligo Treated with Narrow-band UVB.

    Science.gov (United States)

    Choi, Kyu-Won; Kim, Ki-Ho; Kim, Young-Hun

    2009-05-01

    Determination of the minimal erythema dose (MED) is important for developing a phototherapy protocol and to diagnosis photosensitivity disorders. But obtaining a precise and reproducible MED is quite difficult because a phototest for erythema is based on subjective assessment. The objective of our study was to compare the gross interpretation of a phototest and the objective measurement using a spectrophotometer for determining the parameters of cutaneous narrow-band UVB (NBUVB) therapy. A total of 14 psoriasis and 10 vitiligo patients who receiving NBUVB phototherapy with skin types III and IV were selected for this study. To perform phototesting, ten sites on the skin of the back were vertically exposed to a series of 10 NBUVB doses among 14 doses between 340 and 1,400 mJ/cm(2). We interpreted the gross findings of erythema and measured the L*a*b* values with using a spectrophotometer at each phototest spot and at the control skin. Also, we evaluate the relationship between the gross presentation and the spectrophotometric analysis by delta E for the assessment of the minimal perceptible erythema (MPE) and MED. For all the subjects, the MEDs were measured in the 490~1,000 mJ/cm(2) range. The average of the colorimetric values for the control skin were L*: 64.8, a*: 7.9 and b*: 19.8. Among them, the L* value and MED value were shown to be inversely correlated, and as the L* value was decreased, the MED was increased. For the MPE, the delta E, which was the color difference of the normal skin and the phototest area, was within the range of 1.5~3.0 in 17 of the 21 patients, and 4 patients were within the range of 1.0~1.5. For the MED, among the 21 patients, the delta E of 17 patients was within the range of 3.0~6.0, and 4 patients were within the range of 6.0~12.0. A spectrophotometer enables UV erythema to be assessed objectively and quantitatively, and this can compensate for the disadvantages of subjective gross interpretation when determining the MED. Delta E is

  2. DETECTIONS OF LYMAN CONTINUUM FROM STAR-FORMING GALAXIES AT z ∼ 3 THROUGH SUBARU/SUPRIME-CAM NARROW-BAND IMAGING

    International Nuclear Information System (INIS)

    Iwata, I.; Inoue, A. K.; Matsuda, Y.; Furusawa, H.; Akiyama, M.; Hayashino, T.; Kousai, K.; Yamada, T.; Burgarella, D.; Deharveng, J.-M.

    2009-01-01

    Knowing the amount of ionizing photons from young star-forming galaxies is of particular importance to understanding the reionization process. Here we report initial results of a Subaru/Suprime-Cam deep imaging observation of the SSA22 proto-cluster region at z = 3.09, using a special narrow-band filter to optimally trace ionizing radiation from galaxies at z ∼ 3. The unique wide field-of-view of Suprime-Cam enabled us to search for ionizing photons from 198 galaxies (73 Lyman break galaxies (LBGs) and 125 Lyα emitters (LAEs)) with spectroscopically measured redshifts z ≅ 3.1. We detected ionizing radiation from 7 LBGs, as well as from 10 LAE candidates. Some of the detected galaxies show significant spatial offsets of ionizing radiation from nonionizing UV emission. For some LBGs the observed nonionizing UV to Lyman continuum flux density ratios are smaller than values expected from population synthesis models with a standard Salpeter initial mass function (IMF) with moderate dust attenuation (which is suggested from the observed UV slopes), even if we assume very transparent intergalactic medium along the sightlines of these objects. This implies an intrinsically bluer spectral energy distribution, e.g., that produced by a top-heavy IMF, for these LBGs. The observed flux density ratios of nonionizing UV to ionizing radiation of 7 detected LBGs range from 2.4 to 23.8 and the median is 6.6. The observed flux density ratios of the detected LAEs are even smaller than LBGs, if they are truly at z ≅ 3.1. We find that the median value of the flux density ratio for the detected LBGs suggests that their escape fractions are likely to be higher than 4%, if the Lyman continuum escape is isotropic. The results imply that some of the LBGs in the proto-cluster at z ∼ 3 have escape fraction significantly higher than that of galaxies (in a general field) at z ∼ 1 studied previously.

  3. Band inversion mechanism in topological insulators: A guideline for materials design

    KAUST Repository

    Zhu, Zhiyong

    2012-06-01

    Alteration of the topological order by band inversion is a key ingredient of a topologically nontrivial material. Using first-principles calculations for HgTe, PtScBi, and Bi2Se3, we argue that it is not accurate to ascribe the band inversion to the spin-orbit coupling. Instead, scalar relativistic effects and/or lattice distortions are found to be essential. Therefore, the search for topologically nontrivial materials should focus on band shifts due to these mechanisms rather than spin-orbit coupling. We propose an effective scheme to search for new topological insulators.

  4. Band inversion mechanism in topological insulators: A guideline for materials design

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2012-01-01

    Alteration of the topological order by band inversion is a key ingredient of a topologically nontrivial material. Using first-principles calculations for HgTe, PtScBi, and Bi2Se3, we argue that it is not accurate to ascribe the band inversion to the spin-orbit coupling. Instead, scalar relativistic effects and/or lattice distortions are found to be essential. Therefore, the search for topologically nontrivial materials should focus on band shifts due to these mechanisms rather than spin-orbit coupling. We propose an effective scheme to search for new topological insulators.

  5. Advanced electron microscopy of wide band-gap semiconductor materials

    International Nuclear Information System (INIS)

    Fay, M.W.

    2000-10-01

    The microstructure of GaN layers grown by metal organic vapour phase epitaxy on (0001) sapphire substrates using a novel precursor for deposition of AlN buffer layers has been investigated and compared to layers grown using low temperature GaN buffer layers and state-of-the-art material. It has been shown that the quality of layers grown using the novel precursor is comparable to the state-of-the-art material. TEM analysis has been performed of multiple quantum wells of InGaN grown within GaN epitaxial layers by metal organic vapour phase epitaxy. Elementally sensitive TEM techniques have been used to determine the spatial distribution of In and Ga within these structures. Fluctuations in In sensitive images are observed on the nm-scale. Clear evidence of segregation of In during layer growth has been seen. Models of the In segregation are in good agreement with experimental results. Elementally sensitive techniques have been used to investigate the elemental distributions in TiAl and NiAu contacts to GaN. Annealing of TiAl contacts has been seen to result in the formation of a thin interfacial Ti rich phase, and of N depletion at the surface of the GaN layer to the depth of tens of nm. Annealing NiAu contacts at 700 deg. C was seen to result in the formation of Ga-rich interfacial phases, of both crystalline and amorphous structure. ZnS and ZnCdS layers grown on (001) GaP supplied by the University of Hull have been investigated. ZnS layers were found to contain a high density of inclined stacking faults throughout the layer, originating from the interface with the substrate. Energy sensitive techniques have been used to investigate ZnCdS quantum well structures. The use of a ZnCdS superlattice structure around a ZnCdS quantum well to approximate a reduced barrier was seen to result in less thickness variations than when no barrier was used. (author)

  6. Omnidirectional narrow optical filters for circularly polarized light in a nanocomposite structurally chiral medium.

    Science.gov (United States)

    Avendaño, Carlos G; Palomares, Laura O

    2018-04-20

    We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.

  7. Band engineering and rational design of high-performance thermoelectric materials by first-principles

    Directory of Open Access Journals (Sweden)

    Lili Xi

    2016-06-01

    Full Text Available Understanding and manipulation of the band structure are important in designing high-performance thermoelectric (TE materials. Our recent work has involved the utilization of band structure in various topics of TE research, i.e., the band convergence, the conductive network, dimensionality reduction by quantum effects, and high throughput material screening. In non-cubic chalcopyrite compounds, we revealed the relations between structural factors and band degeneracy, and a simple unity-η rule was proposed for selecting high performance diamond-like TE materials. Based on the deep understanding of the electrical and thermal transport, we identified the conductive network in filled skutterudites with the “phonon glass-electron crystal” (PGEC paradigm, and extended this concept to caged-free Cu-based diamond-like compounds. By combining the band structure calculations and the Boltzmann transport theory, we conducted a high-throughput material screening in half-Heusler (HH systems, and several promising compositions with high power factors were proposed out of a large composition collection. At last, we introduced the Rashba spin-splitting effect into thermoelectrics, and its influence on the electrical transport properties was discussed. This review demonstrated the importance of the microscopic perspectives for the optimization and design of novel TE materials.

  8. Artificial Material Integrated Ultra-wideband Tapered Slot Antenna for Gain Enhancement with Band Notch Characteristics

    Directory of Open Access Journals (Sweden)

    R. Singha

    2018-04-01

    Full Text Available The gain of the ultra-wideband tapered slot antenna (TSA is enhanced by using broadband artificial material with band notch characteristics. The proposed artificial material unit cell is designed by fabricating non-resonant three S-shaped parallel metallic line on single side of the dielectric substrate which provides a longer current path compared to the parallel-line structure. The proposed S-shaped structure is printed on the top side of the tapered slot antenna in the extended substrate periodically. The effective refractive index of the artificial material is lower than antenna substrate and phase velocity in the region of artificial material is much higher than the other region. Therefore, the proposed artificial material acts like a beam focusing lens. The band notch at 5.5 GHz is achieved by creating a split ring resonator (SRR slot near the balun. The basic and artificial material loaded TSAs are fabricated and the measurement results show that the gain of the basic antenna has been increased by 1.6 dBi. At the same time, the proposed antenna achieves a VSWR below 2 from 3 to 11 GHz except at 5.5 GHz with a notch band from 5.1 to 5.8 GHz for band rejection of wireless local area network (WLAN application.

  9. Determination of band-structure parameters of Pbsub(1-x)Snsub(x)Te narrow-gap semiconductor from infrared Faraday rotation

    International Nuclear Information System (INIS)

    Sizov, F.F.; Lashkarev, G.V.; Martynchuk, E.K.

    1977-01-01

    The temeprature dependences of Faraday rotation in Pbsub(1-x)Snsub(x)Te of p type with the hole density 3x10 16 -2.2x10 18 cm -3 are studied in the range 40-370 K and in the spectral interval 4-16 μm. The analysis of interband Faraday rotation confirms a conclusion made by the authors earlier that the g factor for the c band (gsub(c)) is positive, for the v band (gsub(v))-negative and that [gsub(c)] > [gsub(v)]. The temperature dependences of carrier effective masses are investigated on the basis of the two-band model. It is demonstrated that for T < 200 K the Faraday effective mass of holes near the ceiling of the valency band varies in direct proportion to the width of the forbidden band. The temperature increase of the Faraday effective mass of current carriers, which is faster than that of the effective electron mass, is discovered, and this is related to the effect of the heavy hole band

  10. Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds

    International Nuclear Information System (INIS)

    Palacios, P.; Sanchez, K.; Conesa, J.C.; Fernandez, J.J.; Wahnon, P.

    2007-01-01

    Electronic structure calculations are carried out for CuGaS 2 partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics

  11. Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, P [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain); Sanchez, K [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain); Conesa, J C [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain); Fernandez, J J [Dpt. de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, 28080, Madrid (Spain); Wahnon, P [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2007-05-31

    Electronic structure calculations are carried out for CuGaS{sub 2} partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics.

  12. Modulational-instability gain bands in quasi-phase-matched materials

    International Nuclear Information System (INIS)

    Corney, J.F.; Bang, O.

    2002-01-01

    Full text: Quadratically nonlinear materials are of significant technological interest in optics because of their strong and fast cascaded nonlinearities, which are accessed most efficiently with quasi-phase-matching (QPM) techniques. We study the gain spectra of modulational instabilities (Ml) in quadratic materials where the linear and nonlinear properties are modulated with QPM gratings. The periods and intensity-dependence of the Ml can now be measured in the laboratory. Using an exact Floquet theory, we find that novel low- and high-frequency bands appear in the gain spectrum (gain versus transverse spatial frequency). The high-frequency gain bands are a general feature of gain spectra for QPM gratings. They form part of an extensive series of bands that correspond to Ml in the non-phase-matched, quickly varying components of the fields. The low-frequency bands correspond to Ml in the phase-matched DC components of the fields and are accurately predicted by a simple average theory. This theory includes the effect of the quickly varying components as induced cubic terms, which can be strong enough to suppress the low-frequency bands, in which case dark solitons and other broad beams may be effectively stable, since the high-frequency bands are typically small

  13. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  14. Uncertainty relations and topological-band insulator transitions in 2D gapped Dirac materials

    International Nuclear Information System (INIS)

    Romera, E; Calixto, M

    2015-01-01

    Uncertainty relations are studied for a characterization of topological-band insulator transitions in 2D gapped Dirac materials isostructural with graphene. We show that the relative or Kullback–Leibler entropy in position and momentum spaces, and the standard variance-based uncertainty relation give sharp signatures of topological phase transitions in these systems. (paper)

  15. Photocatalytic hydrogen generation enhanced by band gap narrowing and improved charge carrier mobility in AgTaO3 by compensated co-doping.

    Science.gov (United States)

    Li, Min; Zhang, Junying; Dang, Wenqiang; Cushing, Scott K; Guo, Dong; Wu, Nianqiang; Yin, Penggang

    2013-10-14

    The correlation of the electronic band structure with the photocatalytic activity of AgTaO3 has been studied by simulation and experiments. Doping wide band gap oxide semiconductors usually introduces discrete mid-gap states, which extends the light absorption but has limited benefit for photocatalytic activity. Density functional theory (DFT) calculations show that compensated co-doping in AgTaO3 can overcome this problem by increasing the light absorption and simultaneously improving the charge carrier mobility. N/H and N/F co-doping can delocalize the discrete mid-gap states created by sole N doping in AgTaO3, which increases the band curvature and the electron-to-hole effective mass ratio. In particular, N/F co-doping creates a continuum of states that extend the valence band of AgTaO3. N/F co-doping thus improves the light absorption without creating the mid-gap states, maintaining the necessary redox potentials for water splitting and preventing from charge carrier trapping. The experimental results have confirmed that the N/F-codoped AgTaO3 exhibits a red-shift of the absorption edge in comparison with the undoped AgTaO3, leading to remarkable enhancement of photocatalytic activity toward hydrogen generation from water.

  16. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Fujimori, Shin-ichi

    2016-04-20

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ~ 7 eV) or high-energy synchrotron radiations (hν >/~ 400 eV) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of CeMIn5(M = Rh, Ir, and Co) and YbRh2Si2 with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant U5f compounds such as UFeGa5, their electronic structures can be well-described by the band-structure calculation assuming that all U5f electrons are itinerant. In contrast, the band structures of localized U5f compounds such as UPd3 and UO2 are essentially explained by the localized model that treats U5f electrons as localized core states. In regards to heavy fermion U-based compounds such as the hidden-order compound URu2Si2, their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of EF show some deviations due to electron correlation effects. Furthermore, the electronic structures of URu2Si2 in the paramagnetic and hidden-order phases are

  17. Band structure of comb-like photonic crystals containing meta-materials

    Science.gov (United States)

    Weng, Yi; Wang, Zhi-Guo; Chen, Hong

    2007-09-01

    We study the transmission properties and band structure of comb-like photonic crystals (PC) with backbones constructed of meta-materials (negative-index materials) within the frame of the interface response theory. The result shows the existence of a special band gap at low frequency. This gap differs from the Bragg gaps in that it is insensitive to the geometrical scaling and disorder. In comparison with the zero-average-index gap in one-dimensional PC made of alternating positive- and negative-index materials, the gap is obviously deeper and broader, given the same system parameters. In addition, the behavior of its gap-edges is also different. One gap-edge is decided by the average permittivity whereas the other is only subject to the changing of the permeability of the backbone. Due to this asymmetry of the two gap-edges, the broadening of the gap could be realized with much freedom and facility.

  18. Terahertz optical-Hall effect for multiple valley band materials: n-type silicon

    International Nuclear Information System (INIS)

    Kuehne, P.; Hofmann, T.; Herzinger, C.M.; Schubert, M.

    2011-01-01

    The optical-Hall effect comprises generalized ellipsometry at long wavelengths on samples with free-charge carriers placed within external magnetic fields. Measurement of the anisotropic magneto-optic response allows for the determination of the free-charge carrier properties including spatial anisotropy. In this work we employ the optical-Hall effect at terahertz frequencies for analysis of free-charge carrier properties in multiple valley band materials, for which the optical free-charge carrier contributions originate from multiple Brillouin-zone conduction or valence band minima or maxima, respectively. We investigate exemplarily the room temperature optical-Hall effect in low phosphorous-doped n-type silicon where free electrons are located in six equivalent conduction-band minima near the X-point. We simultaneously determine their free-charge carrier concentration, mobility, and longitudinal and transverse effective mass parameters.

  19. Quasiparticle excitations in valence-fluctuation materials: effects of band structure and crystal fields

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1985-01-01

    Evidence is now quite strong that the elementary hybridization model is the correct way to understand the lattice-coherent Fermi liquid regime at very low temperatures. Many-body theory leads to significant renormalizations of the input parameters, and many of the band-theoretic channels for hybridization are suppressed by the combined effects of Hund's-rule coupling, crystal-field splitting, and the f-f Coulomb repulsion U. Some exploratory calculations based on this picture are described, and some inferences are drawn about the band structures of several heavy-fermion materials. These inferences can and should be tested by suitably modified band-theoretic calculations. We find evidence for a significant Baber-scattering contribution in the very-low-temperature resistivity. A new mechanism is proposed for crossover from the coherent Fermi-liquid regime to the incoherent dense-Kondo regime. 28 refs

  20. Structural analysis, electronic properties, and band gaps of a graphene nanoribbon: A new 2D materials

    Science.gov (United States)

    Dass, Devi

    2018-03-01

    Graphene nanoribbon (GNR), a new 2D carbon nanomaterial, has some unique features and special properties that offer a great potential for interconnect, nanoelectronic devices, optoelectronics, and nanophotonics. This paper reports the structural analysis, electronic properties, and band gaps of a GNR considering different chirality combinations obtained using the pz orbital tight binding model. In structural analysis, the analytical expressions for GNRs have been developed and verified using the simulation for the first time. It has been found that the total number of unit cells and carbon atoms within an overall unit cell and molecular structure of a GNR have been changed with the change in their chirality values which are similar to the values calculated using the developed analytical expressions thus validating both the simulation as well as analytical results. Further, the electronic band structures at different chirality values have been shown for the identification of metallic and semiconductor properties of a GNR. It has been concluded that all zigzag edge GNRs are metallic with very small band gaps range whereas all armchair GNRs show both the metallic and semiconductor nature with very small and high band gaps range. Again, the total number of subbands in each electronic band structure is equal to the total number of carbon atoms present in overall unit cell of the corresponding GNR. The semiconductors GNRs can be used as a channel material in field effect transistor suitable for advanced CMOS technology whereas the metallic GNRs could be used for interconnect.

  1. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, J. Thomas [Washington State Univ., Pullman, WA (United States)

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  2. Chemical synthesis of Cd-free wide band gap materials for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Sartale, S.D.; Ennaoui, A. [Hahn-Meitner-Institut, Berlin (Germany). Department of Solar Energy Research; Lokhande, C.D. [Shivaji University, Kolhapur (India). Department of Physics

    2004-07-01

    Chemical methods are nowadays very attractive, since they are relatively simple, low cost and convenient for larger area deposition of thin films. In this paper, we outline our work related to the synthesis and characterization of some wide band gap semiconducting material thin films prepared by using solution methods, namely, chemical bath deposition and successive ionic layer adsorption and reaction (SILAR). The optimum preparative parameters are given and respective structural, surface morphological, compositional, optical, and electrical properties are described. Some materials we used in solar cells as buffer layers and achieved remarkable results, which are summarized. (author)

  3. Narrow band gap and visible light-driven photocatalysis of V-doped Bi{sub 6}Mo{sub 2}O{sub 15} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian; Qin, Chuanxiang; Huang, Yanlin [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Wang, Yaorong, E-mail: yrwang@suda.edu.cn [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Qin, Lin [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2017-02-28

    Highlights: • V{sup 5+}-doped Bi{sub 6}Mo{sub 2}O{sub 15} was synthesized by the electrospinning preparation. • The band gap energy of Bi{sub 6}Mo{sub 2}O{sub 15} was greatly reduced by V-doping in the lattices. • V-doped Bi{sub 6}Mo{sub 2}O{sub 15} shows high activity in RhB degradation under visible light. • Crystal structure of Bi{sub 6}Mo{sub 2}O{sub 15} is favorable for high photocatalytic capacity. - Abstract: Pure and V{sup 5+}-doped Bi{sub 6}Mo{sub 2}O{sub 15} (3Bi{sub 2}O{sub 3}·2MoO{sub 3}) photocatalysts were synthesized through electrospinning, followed by low-temperature heat treatment. The samples developed into nanoparticles with an average size of approximately 50 nm. The crystalline phases were verified via X-ray powder diffraction measurements (XRD). The surface properties of the photocatalysts were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses. The UV–vis spectra showed that V doping in Bi{sub 6}Mo{sub 2}O{sub 15} shifted the optical absorption from the UV region to the visible-light wavelength region. The energy of the band gap of Bi{sub 6}Mo{sub 2}O{sub 15} was reduced by V doping in the lattices. The photocatalytic activities of the pure and V-doped Bi{sub 6}Mo{sub 2}O{sub 15} were tested through photodegradation of rhodamine B (RhB) dye solutions under visible light irradiation. Results showed that 20 mol% V-doped Bi{sub 6}Mo{sub 2}O{sub 15} achieved efficient photocatalytic ability. RhB could be degraded by V-doped Bi{sub 6}Mo{sub 2}O{sub 15} in 2 h. The photocatalytic activities and mechanisms were discussed according to the characteristics of the crystal structure and the results of EIS and XPS measurements.

  4. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    Science.gov (United States)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  5. Wave propagation in ordered, disordered, and nonlinear photonic band gap materials

    Energy Technology Data Exchange (ETDEWEB)

    Lidorikis, Elefterios [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    Photonic band gap materials are artificial dielectric structures that give the promise of molding and controlling the flow of optical light the same way semiconductors mold and control the electric current flow. In this dissertation the author studied two areas of photonic band gap materials. The first area is focused on the properties of one-dimensional PBG materials doped with Kerr-type nonlinear material, while, the second area is focused on the mechanisms responsible for the gap formation as well as other properties of two-dimensional PBG materials. He first studied, in Chapter 2, the general adequacy of an approximate structure model in which the nonlinearity is assumed to be concentrated in equally-spaced very thin layers, or 6-functions, while the rest of the space is linear. This model had been used before, but its range of validity and the physical reasons for its limitations were not quite clear yet. He performed an extensive examination of many aspects of the model's nonlinear response and comparison against more realistic models with finite-width nonlinear layers, and found that the d-function model is quite adequate, capturing the essential features in the transmission characteristics. The author found one exception, coming from the deficiency of processing a rigid bottom band edge, i.e. the upper edge of the gaps is always independent of the refraction index contrast. This causes the model to miss-predict that there are no soliton solutions for a positive Kerr-coefficient, something known to be untrue.

  6. Fe/Co doped molybdenum diselenide: a promising two-dimensional intermediate-band photovoltaic material

    International Nuclear Information System (INIS)

    Zhang, Jiajia; He, Haiyan; Pan, Bicai

    2015-01-01

    An intermediate-band (IB) photovoltaic material is an important candidate in developing the new-generation solar cell. In this paper, we propose that the Fe-doped or the Co-doped MoSe 2 just meets the required features in IB photovoltaic materials. Our calculations demonstrate that when the concentration of the doped element reaches 11.11%, the doped MoSe 2 shows a high absorptivity for both infrared and visible light, where the photovoltaic efficiency of the doped MoSe 2 is as high as 56%, approaching the upper limit of photovoltaic efficiency of IB materials. So, the Fe- or Co-doped MoSe 2 is a promising two-dimensional photovoltaic material. (paper)

  7. Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: implications of the interfacial charge transfer (IFCT).

    Science.gov (United States)

    Rtimi, S; Sanjines, R; Pulgarin, C; Houas, A; Lavanchy, J-C; Kiwi, J

    2013-09-15

    This study reports the design, preparation, testing and surface characterization of uniform films deposited by sputtering Ag and Ta on non-heat resistant polyester to evaluate the Escherichia coli inactivation by TaON, TaN/Ag, Ag and TaON/Ag polyester. Co-sputtering for 120 s Ta and Ag in the presence of N₂ and O₂ led to the faster E. coli inactivation by a TaON/Ag sample within ∼40 min under visible light irradiation. The deconvolution of TaON/Ag peaks obtained by X-ray photoelectron spectroscopy (XPS) allowed the assignment of the Ta₂O₅ and Ag-species. The shifts observed for the XPS peaks have been assigned to AgO to Ag₂O and Ag(0), and are a function of the applied sputtering times. The mechanism of interfacial charge transfer (IFCT) from the Ag₂O conduction band (cb) to the lower laying Ta₂O₅ (cb) is discussed suggesting a reaction mechanism. The optical absorption of the TaON and TaON/Ag samples found by diffuse reflectance spectroscopy (DRS) correlated well with the kinetics of E. coli inactivation. The TaON/Ag sample microstructure was characterized by contact angle (CA) and by atomic force microscopy (AFM). Self-cleaning of the TaON/Ag polyester after each disinfection cycle enabled repetitive E. coli inactivation. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Reducing contrast contamination in radial turbo-spin-echo acquisitions by combining a narrow-band KWIC filter with parallel imaging.

    Science.gov (United States)

    Neumann, Daniel; Breuer, Felix A; Völker, Michael; Brandt, Tobias; Griswold, Mark A; Jakob, Peter M; Blaimer, Martin

    2014-12-01

    Cartesian turbo spin-echo (TSE) and radial TSE images are usually reconstructed by assembling data containing different contrast information into a single k-space. This approach results in mixed contrast contributions in the images, which may reduce their diagnostic value. The goal of this work is to improve the image contrast from radial TSE acquisitions by reducing the contribution of signals with undesired contrast information. Radial TSE acquisitions allow the reconstruction of multiple images with different T2 contrasts using the k-space weighted image contrast (KWIC) filter. In this work, the image contrast is improved by reducing the band-width of the KWIC filter. Data for the reconstruction of a single image are selected from within a small temporal range around the desired echo time. The resulting dataset is undersampled and, therefore, an iterative parallel imaging algorithm is applied to remove aliasing artifacts. Radial TSE images of the human brain reconstructed with the proposed method show an improved contrast when compared with Cartesian TSE images or radial TSE images with conventional KWIC reconstructions. The proposed method provides multi-contrast images from radial TSE data with contrasts similar to multi spin-echo images. Contaminations from unwanted contrast weightings are strongly reduced. © 2014 Wiley Periodicals, Inc.

  9. Controllable Absorption and Dispersion Properties of an RF-driven Five-Level Atom in a Double-Band Photonic-Band-Gap Material

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue

    2011-01-01

    The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-band-gap (PBG) reservoir. In the model used, the two transitions are, respectively, coupled by the upper and lower bands in such a PBG material, thus leading to some curious phenomena. Numerical simulations are performed for the optical spectra. It is found that when one transition frequency is inside the band gap and the other is outside the gap, there emerge three peaks in the absorption spectra. However, for the case that two transition frequencies lie inside or outside the band gap, the spectra display four absorption profiles. Especially, there appear two sharp peaks in the spectra when both transition frequencies exist inside the band gap. The influences of the intensity and frequency of the RF-driven field on the absorptive and dispersive response are analyzed under different band-edge positions. It is found that a transparency window appears in the absorption spectra and is accompanied by a very steep variation of the dispersion profile by adjusting system parameters. These results show that the absorption-dispersion properties of the system depend strongly on the RF-induced quantum interference and the density of states (DOS) of the PBG reservoir. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. M-type barium hexa ferrite magnetic material for anti radar materials at s band frequency

    International Nuclear Information System (INIS)

    Priyono; Azwar Manaf

    2010-01-01

    In this paper, preparation and characteristic evaluation of microwave absorber materials of BaFe_1_2_-_2_x Mn_x Ti _xO_1_9 (x = 0,0 - 1,5) compositions are discussed. The absorber material was obtained by a co-substitution of Mn and Ti to Fe in a Barium Hexaferrite (BaO.6Fe_2O_3 ) basic compound through a mechanical alloying process. In this respect, a co-substitution of Mn and Ti ions for Fe was applied to Fe_2O_3 component at a temperature ~ 1,300 °C. The substituted alloy component was further alloyed mechanically with BaCO_3 to form M-Type hexaferrite after the solid state reaction. Identification of X-ray diffraction peaks for the mechanically alloyed materials indicates confidently that a single phase BaFe_1_2_-_x_-_yMn_x Ti_yO_1_9 material was formed. Materials characterization is covering the average grain sizes and absorption of microwaves in the frequency range 1-6 GHz. Absorption with a relatively high coefficient at frequencies ~ 2,000 MHz and ~ 3,500 MHz within the available frequency range was obtained. It is shown that the co-substitution of Mn and Ti ion able to widen the absorption frequency especially in the frequencies of about 3,500 MHz. (author)

  11. Production of events with two or three muons in the final state during the interaction on nucleons of neutrinos and anti-neutrinos of the CERN narrow band beam with a maximum energy of 200 GeV

    International Nuclear Information System (INIS)

    Maillard, Jacques.

    1979-03-01

    A study was made of the production of dimuons and trimuons in the neutrino interactions using the data of the CDHS (CERN-Dortmund-Heidelberg-Saclay Cooperation) experiment taken in the CERN narrow band beam. The analysis of the quick results (since the statistics are weak) leads to significant conclusions on these events: 1) the c quark fragmentation function is approximately flat, 2) the production of heavy leptons, if this exists, only represents a very small part of the charged currents (10 -4 approximately). 3) the pair production of charmed quarks can explain some of the dimuons of same sign, the greater part of these events coming from the semi leptonic disintegration of pions and kaons (π→μν,K → μν) produced in the hadronic jet. 4) any other process (for instance the production of b quarks) is very weak ( -3 of the charged currents) [fr

  12. Narrow-band emission with 0.5 to 3.5 Hz varying frequency in the background of the main phase of the 17 March 2013 magnetic storm

    Directory of Open Access Journals (Sweden)

    Potapov A.S.

    2016-12-01

    Full Text Available We present results of the analysis of an unusually long narrow-band emission in the Pc1 range with increasing carrier frequency. The event was observed against the background of the main phase of a strong magnetic storm caused by arrival of a high-speed solar wind stream with a shock wave in the stream head and a long interval of negative vertical component of the interplanetary magnetic field. Emission of approximately 9-hour duration had a local character, appearing only at three stations located in the range of geographical longitude λ=100–130 E and magnetic shells L=2.2–3.4. The signal carrier frequency grew in a stepped mode from 0.5 to 3.5 Hz. We propose an emission interpretation based on the standard model of the generation of ion cyclotron waves in the magnetosphere due to the resonant wave-particle interaction with ion fluxes of moderate energies. We suppose that a continuous shift of the generation region, located in the outer area of the plasmasphere, to smaller L-shell is able to explain both the phenomenon locality and the range of the frequency increase. A narrow emission frequency band is associated with the formation of nose-like structures in the energy spectrum of ion fluxes penetrating from the geomagnetic tail into the magnetosphere. We offer a possible scenario of the processes leading to the generation of the observed emission. The scenario contains specific values of the generation region position, plasma density, magnetic field, and resonant proton energies. We discuss morphological differences of the emissions considered from known types of geomagnetic pulsations, and reasons for the occurrence of this unusual event.

  13. Joint density of states of wide-band-gap materials by electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Fan, X.D.; Peng, J.L.; Bursill, L.A.

    1998-01-01

    Kramers-Kronig analysis for parallel electron energy loss spectroscopy (PEELS) data is developed as a software package. When used with a JEOL 4000EX high-resolution transmission electron microscope (HRTEM) operating at 100 keV this allows us to obtain the dielectric function of relatively wide band gap materials with an energy resolution of approx 1.4 eV. The imaginary part of the dielectric function allows the magnitude of the band gap to be determined as well as the joint-density-of-states function. Routines for obtaining three variations of the joint-density of states function, which may be used to predict the optical and dielectric response for angle-resolved or angle-integration scattering geometries are also described. Applications are presented for diamond, aluminum nitride (AlN), quartz (SiO 2 ) and sapphire (Al 2 O 3 ). The results are compared with values of the band gap and density of states results for these materials obtained with other techniques. (authors)

  14. Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: Implications of the interfacial charge transfer (IFCT)

    International Nuclear Information System (INIS)

    Rtimi, S.; Sanjines, R.; Pulgarin, C.; Houas, A.; Lavanchy, J.-C.; Kiwi, J.

    2013-01-01

    Highlights: • Design, preparation, testing and characterization of uniform sputtered films. • Interfacial charge transfer from the Ag 2 O (cb) to the lower laying Ta 2 O 5 (cb). • The optical absorption of TaON and TaON/Ag was proportional to E. coli inactivation. • Self-cleaning of the TaON/Ag polyester enables repetitive E. coli inactivation. -- Abstract: This study reports the design, preparation, testing and surface characterization of uniform films deposited by sputtering Ag and Ta on non-heat resistant polyester to evaluate the Escherichia coli inactivation by TaON, TaN/Ag, Ag and TaON/Ag polyester. Co-sputtering for 120 s Ta and Ag in the presence of N 2 and O 2 led to the faster E. coli inactivation by a TaON/Ag sample within ∼40 min under visible light irradiation. The deconvolution of TaON/Ag peaks obtained by X-ray photoelectron spectroscopy (XPS) allowed the assignment of the Ta 2 O 5 and Ag-species. The shifts observed for the XPS peaks have been assigned to AgO to Ag 2 O and Ag 0 , and are a function of the applied sputtering times. The mechanism of interfacial charge transfer (IFCT) from the Ag 2 O conduction band (cb) to the lower laying Ta 2 O 5 (cb) is discussed suggesting a reaction mechanism. The optical absorption of the TaON and TaON/Ag samples found by diffuse reflectance spectroscopy (DRS) correlated well with the kinetics of E. coli inactivation. The TaON/Ag sample microstructure was characterized by contact angle (CA) and by atomic force microscopy (AFM). Self-cleaning of the TaON/Ag polyester after each disinfection cycle enabled repetitive E. coli inactivation

  15. Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: Implications of the interfacial charge transfer (IFCT)

    Energy Technology Data Exchange (ETDEWEB)

    Rtimi, S., E-mail: sami.rtimi@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Station 6, CH-1015 Lausanne (Switzerland); UR Catalyse/Matériaux pour l‘Environnement et les Procédés (URCMEP), Faculté des Sciences de Gabès, Université de Gabès, 6072 Gabès (Tunisia); Sanjines, R. [Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-IPMC-LNNME, Bat PH, Station 3, CH1015 Lausanne (Switzerland); Pulgarin, C., E-mail: cesar.pulgarin@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Station 6, CH-1015 Lausanne (Switzerland); Houas, A. [UR Catalyse/Matériaux pour l‘Environnement et les Procédés (URCMEP), Faculté des Sciences de Gabès, Université de Gabès, 6072 Gabès (Tunisia); Lavanchy, J.-C. [Université de Lausanne, IMG, Centre d’Analyse Minérale, Bat Anthropole, CH-1015 Lausanne (Switzerland); Kiwi, J. [Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LPI, Bat Chimie, Station 6, CH1015 Lausanne (Switzerland)

    2013-09-15

    Highlights: • Design, preparation, testing and characterization of uniform sputtered films. • Interfacial charge transfer from the Ag{sub 2}O (cb) to the lower laying Ta{sub 2}O{sub 5} (cb). • The optical absorption of TaON and TaON/Ag was proportional to E. coli inactivation. • Self-cleaning of the TaON/Ag polyester enables repetitive E. coli inactivation. -- Abstract: This study reports the design, preparation, testing and surface characterization of uniform films deposited by sputtering Ag and Ta on non-heat resistant polyester to evaluate the Escherichia coli inactivation by TaON, TaN/Ag, Ag and TaON/Ag polyester. Co-sputtering for 120 s Ta and Ag in the presence of N{sub 2} and O{sub 2} led to the faster E. coli inactivation by a TaON/Ag sample within ∼40 min under visible light irradiation. The deconvolution of TaON/Ag peaks obtained by X-ray photoelectron spectroscopy (XPS) allowed the assignment of the Ta{sub 2}O{sub 5} and Ag-species. The shifts observed for the XPS peaks have been assigned to AgO to Ag{sub 2}O and Ag{sup 0}, and are a function of the applied sputtering times. The mechanism of interfacial charge transfer (IFCT) from the Ag{sub 2}O conduction band (cb) to the lower laying Ta{sub 2}O{sub 5} (cb) is discussed suggesting a reaction mechanism. The optical absorption of the TaON and TaON/Ag samples found by diffuse reflectance spectroscopy (DRS) correlated well with the kinetics of E. coli inactivation. The TaON/Ag sample microstructure was characterized by contact angle (CA) and by atomic force microscopy (AFM). Self-cleaning of the TaON/Ag polyester after each disinfection cycle enabled repetitive E. coli inactivation.

  16. Omnidirectional Photonic Band Gap Using Low Refractive Index Contrast Materials and its Application in Optical Waveguides

    KAUST Repository

    Vidal Faez, Angelo

    2012-07-01

    Researchers have argued for many years that one of the conditions for omnidirectional reflection in a one-dimensional photonic crystal is a strong refractive index contrast between the two constituent dielectric materials. Using numerical simulations and the theory of Anderson localization of light, in this work we demonstrate that an omnidirectional band gap can indeed be created utilizing low refractive index contrast materials when they are arranged in a disordered manner. Moreover, the size of the omnidirectional band gap becomes a controllable parameter, which now depends on the number of layers and not only on the refractive index contrast of the system, as it is widely accepted. This achievement constitutes a major breakthrough in the field since it allows for the development of cheaper and more efficient technologies. Of particular interest is the case of high index contrast one-dimensional photonic crystal fibers, where the propagation losses are mainly due to increased optical scattering from sidewall roughness at the interfaces of high index contrast materials. By using low index contrast materials these losses can be reduced dramatically, while maintaining the confinement capability of the waveguide. This is just one of many applications that could be proven useful for this discovery.

  17. Adaptive linear predictor FIR filter based on the Cyclone V FPGA with HPS to reduce narrow band RFI in AERA radio detection of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Zbigniew [University of Lodz, Department of Physics and Applied Informatics, 90-236 Lodz, (Poland)

    2015-07-01

    We present the new approach to a filtering of radio frequency interferences (RFI) in the Auger Engineering Radio Array (AERA) which study the electromagnetic part of the Extensive Air Showers. The radio stations can observe radio signals caused by coherent emissions due to geomagnetic radiation and charge excess processes. AERA observes frequency band from 30 to 80 MHz. This range is highly contaminated by human-made RFI. In order to improve the signal to noise ratio RFI filters are used in AERA to suppress this contamination. The first kind of filter used by AERA was the Median one, based on the Fast Fourier Transform (FFT) technique. The second one, which is currently in use, is the infinite impulse response (IIR) notch filter. The proposed new filter is a finite impulse response (FIR) filter based on a linear prediction (LP). A periodic contamination hidden in a registered signal (digitized in the ADC) can be extracted and next subtracted to make signal cleaner. The FIR filter requires a calculation of n=32, 64 or even 128 coefficients (dependent on a required speed or accuracy) by solving of n linear equations with coefficients built from the covariance Toeplitz matrix. This matrix can be solved by the Levinson recursion, which is much faster than the Gauss procedure. The filter has been already tested in the real AERA radio stations on Argentinean pampas with a very successful results. The linear equations were solved either in the virtual soft-core NIOSR processor (implemented in the FPGA chip as a net of logic elements) or in the external Voipac PXA270M ARM processor. The NIOS processor is relatively slow (50 MHz internal clock), calculations performed in an external processor consume a significant amount of time for data exchange between the FPGA and the processor. Test showed a very good efficiency of the RFI suppression for stationary (long-term) contaminations. However, we observed a short-time contaminations, which could not be suppressed either by the

  18. Exchange correlation effects on plasmons and on charge-density wave instability in narrow-band quasi-one-dimensional metals

    International Nuclear Information System (INIS)

    Nobile, A.; Tosatti, E.

    1979-05-01

    The coexistence of tight-binding and exchange-correlation effects inside each chain of a model quasi-one-dimensional metal, on both plasmon and charge density wave properties have been studied. The results, while in qualitative agreement with other treatments of the problem at long wavelengths, indicate a strong tendency for plasmons to turn into excitons at larger momenta, and to exhibit an ''excitonic'' charge-density wave instability at k approximately 2ksub(F). The nature of the plasmon branches and of the excitonic charge distortion is examined. Relevance to existing quasi-one-dimensional materials is also discussed. (author)

  19. Switching mechanism due to the spontaneous emission cancellation in photonic band gap materials doped with nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Canada N6A 3K7 (Canada)]. E-mail: msingh@uwo.ca

    2007-03-26

    We have investigated the switching mechanism due to the spontaneous emission cancellation in a photonic band gap (PBG) material doped with an ensemble of four-level nano-particles. The effect of the dipole-dipole interaction has also been studied. The linear susceptibility has been calculated in the mean field theory. Numerical simulations for the imaginary susceptibility are performed for a PBG material which is made from periodic dielectric spheres. It is predicted that the system can be switched between the absorbing state and the non-absorbing state by changing the resonance energy within the energy bands of the photonic band gap material.0.

  20. Wide band design on the scaled absorbing material filled with flaky CIPs

    Science.gov (United States)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  1. Calculating the optical properties of defects and surfaces in wide band gap materials

    Science.gov (United States)

    Deák, Peter

    2018-04-01

    The optical properties of a material critically depend on its defects, and understanding that requires substantial and accurate input from theory. This paper describes recent developments in the electronic structure theory of defects in wide band gap materials, where the standard local or semi-local approximations of density functional theory fail. The success of the HSE06 screened hybrid functional is analyzed in case of Group-IV semiconductors and TiO2, and shown that it is the consequence of error compensation between semi-local and non-local exchange, resulting in a proper derivative discontinuity (reproduction of the band gap) and a total energy which is a linear function of the fractional occupation numbers (removing most of the electron self-interaction). This allows the calculation of electronic transitions with accuracy unseen before, as demonstrated on the single-photon emitter NV(-) center in diamond and on polaronic states in TiO2. Having a reliable tool for electronic structure calculations, theory can contribute to the understanding of complicated cases of light-matter interaction. Two examples are considered here: surface termination effects on the blinking and bleaching of the light-emission of the NV(-) center in diamond, and on the efficiency of photocatalytic water-splitting by TiO2. Finally, an outlook is presented for the application of hybrid functionals in other materials, as, e.g., ZnO, Ga2O3 or CuGaS2.

  2. Tinene: a two-dimensional Dirac material with a 72 meV band gap.

    Science.gov (United States)

    Cai, Bo; Zhang, Shengli; Hu, Ziyu; Hu, Yonghong; Zou, Yousheng; Zeng, Haibo

    2015-05-21

    Dirac materials have attracted great interest for both fundamental research and electronic devices due to their unique band structures, but the usual near zero bandgap of graphene results in a poor on-off ratio in the corresponding transistors. Here, we report on tinene, monolayer gray tin, as a new two-dimensional material with both Dirac characteristics and a remarkable 72 meV bandgap based on density functional theory calculations. Compared with silicene and germanene, tinene has a similar hexagonal honeycomb monolayer structure, but it has an obviously larger buckling height (∼0.70 Å). Interestingly, such a moderate buckling structure results in phonon dispersion without appreciable imaginary modes, indicating the strong dynamic stability of tinene. Significantly, a distinct transformation is discovered from the band structure that six Dirac cones would appear at high symmetry K points in the first Brillouin zone when gray tin is thinned from the bulk to monolayer, but a bandgap as large as 72 meV is still preserved. Considering the recent successful realization of silicene and germanene with a similar structure, the predicted stable tinene with Dirac characteristics and a suitable bandgap is a possibility for the "more than Moore" materials and devices.

  3. Complex layered materials and periodic electromagnetic band-gap structures: Concepts, characterizations, and applications

    Science.gov (United States)

    Mosallaei, Hossein

    The main objective of this dissertation is to characterize and create insight into the electromagnetic performances of two classes of composite structures, namely, complex multi-layered media and periodic Electromagnetic Band-Gap (EBG) structures. The advanced and diversified computational techniques are applied to obtain their unique propagation characteristics and integrate the results into some novel applications. In the first part of this dissertation, the vector wave solution of Maxwell's equations is integrated with the Genetic Algorithm (GA) optimization method to provide a powerful technique for characterizing multi-layered materials, and obtaining their optimal designs. The developed method is successfully applied to determine the optimal composite coatings for Radar Cross Section (RCS) reduction of canonical structures. Both monostatic and bistatic scatterings are explored. A GA with hybrid planar/curved surface implementation is also introduced to efficiently obtain the optimal absorbing materials for curved structures. Furthermore, design optimization of the non-uniform Luneburg and 2-shell spherical lens antennas utilizing modal solution/GA-adaptive-cost function is presented. The lens antennas are effectively optimized for both high gain and suppressed grating lobes. The second part demonstrates the development of an advanced computational engine, which accurately computes the broadband characteristics of challenging periodic electromagnetic band-gap structures. This method utilizes the Finite Difference Time Domain (FDTD) technique with Periodic Boundary Condition/Perfectly Matched Layer (PBC/PML), which is efficiently integrated with the Prony scheme. The computational technique is successfully applied to characterize and present the unique propagation performances of different classes of periodic structures such as Frequency Selective Surfaces (FSS), Photonic Band-Gap (PBG) materials, and Left-Handed (LH) composite media. The results are

  4. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material.

    Science.gov (United States)

    Todorov, Teodor K; Singh, Saurabh; Bishop, Douglas M; Gunawan, Oki; Lee, Yun Seog; Gershon, Talia S; Brew, Kevin W; Antunez, Priscilla D; Haight, Richard

    2017-09-25

    Selenium was used in the first solid state solar cell in 1883 and gave early insights into the photoelectric effect that inspired Einstein's Nobel Prize work; however, the latest efficiency milestone of 5.0% was more than 30 years ago. The recent surge of interest towards high-band gap absorbers for tandem applications led us to reconsider this attractive 1.95 eV material. Here, we show completely redesigned selenium devices with improved back and front interfaces optimized through combinatorial studies and demonstrate record open-circuit voltage (V OC ) of 970 mV and efficiency of 6.5% under 1 Sun. In addition, Se devices are air-stable, non-toxic, and extremely simple to fabricate. The absorber layer is only 100 nm thick, and can be processed at 200 ˚C, allowing temperature compatibility with most bottom substrates or sub-cells. We analyze device limitations and find significant potential for further improvement making selenium an attractive high-band-gap absorber for multi-junction device applications.Wide band gap semiconductors are important for the development of tandem photovoltaics. By introducing buffer layers at the front and rear side of solar cells based on selenium; Todorov et al., reduce interface recombination losses to achieve photoconversion efficiencies of 6.5%.

  5. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gladysiewicz, M.; Wartak, M. S. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Kudrawiec, R. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-08-07

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.

  6. Reducing mechanical cross-coupling in phased array transducers using stop band material as backing

    Science.gov (United States)

    Henneberg, J.; Gerlach, A.; Storck, H.; Cebulla, H.; Marburg, S.

    2018-06-01

    Phased array transducers are widely used for acoustic imaging and surround sensing applications. A major design challenge is the achievement of low mechanical cross-coupling between the single transducer elements. Cross-coupling induces a loss of imaging resolution. In this work, the mechanical cross-coupling between acoustic transducers is investigated for a generic model. The model contains a common backing with two bending elements bonded on top. The dimensions of the backing are small; thus, wave reflections on the backing edges have to be considered. This is different to other researches. The operating frequency in the generic model is set to a low kHz range. Low operating frequencies are typical for surround sensing applications. The influence of the backing on cross-coupling is investigated numerically. In order to reduce mechanical cross-coupling a stop band material is designed. It is shown numerically that a reduction in mechanical cross-coupling can be achieved by using stop band material as backing. The effect is validated with experimental testing.

  7. Kaolinite: Defect defined material properties – A soft X-ray and first principles study of the band gap

    Energy Technology Data Exchange (ETDEWEB)

    Pietzsch, A., E-mail: annette.pietzsch@helmholtz-berlin.de [Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Nisar, J. [Pakistan Atomic Energy Commission (PAEC), P.O. Box 2151, Islamabad (Pakistan); Jämstorp, E. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Gråsjö, J. [Department of Pharmacy, Uppsala University, Box 580, 75123 Uppsala (Sweden); Århammar, C. [Coromant R& D, S-126 80 Stockholm (Sweden); Ahuja, R.; Rubensson, J.-E. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2015-07-15

    Highlights: • The respective electronic structure of synthetic and natural kaolinite is compared. • The size of the band gap and thus many important material properties are defined by defect states in the band gap. • The oxygen-based defect states are identified and analyzed. • The band gap of kaolinite decreases significantly due to the forming of defects. - Abstract: By combining X-ray absorption spectroscopy and first principles calculations we have determined the electronic structure of synthetic and natural kaolinite as a model system for engineered and natural clay materials. We have analyzed defect states in the band gap and find that both natural and synthetic kaolinite contain defects where oxygen replaces hydrogen in one of the Al (0 0 1)-hydroxyl groups of the kaolinite clay sheets. The band gap of both synthetic and natural kaolinite is found to decrease by about 3.2 eV as this defect is formed.

  8. Kaolinite: Defect defined material properties – A soft X-ray and first principles study of the band gap

    International Nuclear Information System (INIS)

    Pietzsch, A.; Nisar, J.; Jämstorp, E.; Gråsjö, J.; Århammar, C.; Ahuja, R.; Rubensson, J.-E.

    2015-01-01

    Highlights: • The respective electronic structure of synthetic and natural kaolinite is compared. • The size of the band gap and thus many important material properties are defined by defect states in the band gap. • The oxygen-based defect states are identified and analyzed. • The band gap of kaolinite decreases significantly due to the forming of defects. - Abstract: By combining X-ray absorption spectroscopy and first principles calculations we have determined the electronic structure of synthetic and natural kaolinite as a model system for engineered and natural clay materials. We have analyzed defect states in the band gap and find that both natural and synthetic kaolinite contain defects where oxygen replaces hydrogen in one of the Al (0 0 1)-hydroxyl groups of the kaolinite clay sheets. The band gap of both synthetic and natural kaolinite is found to decrease by about 3.2 eV as this defect is formed

  9. Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band

    Directory of Open Access Journals (Sweden)

    Avanish Pratap Singh

    2011-06-01

    Full Text Available β–Naphthalene sulphonic acid (β–NSA doped polyaniline (PANI–flyash (FA composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37–21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D–VRH model. SEM images demonstrate that β–NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ′- iɛ″ and permeability (μ*=μ′- iμ″ of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21 using theoretical calculations given in Nicholson–Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 – 12.4 GHz & Ku–Band (12.4 – 18 GHz frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.

  10. Application of the photoreflectance technique to the characterization of quantum dot intermediate band materials for solar cells

    International Nuclear Information System (INIS)

    Canovas, E.; Marti, A.; Lopez, N.; Antolin, E.; Linares, P.G.; Farmer, C.D.; Stanley, C.R.; Luque, A.

    2008-01-01

    Intermediate band materials rely on the creation of a new electronic band within the bandgap of a conventional semiconductor that is isolated from the conduction and valence band by a true zero density of states. Due to the presence of the intermediate band, a solar cell manufactured using these materials is capable of producing additional photocurrent, thanks to the absorption of photons with energy lower than the conventional bandgap. In this respect, the characterization of these materials by suitable techniques becomes a key element in the development of the new photovoltaic devices called intermediate band solar cells. The technique of photoreflectance is particularly suited to this purpose because it is contact-less and allows the characterization of the material without the need of actually manufacturing a complete device. Using room temperature photoreflectance we have analyzed intermediate band materials based on quantum dots and have been able to identify the energy levels involved. Also, from the photoreflectance data we have demonstrated the overlap of the wave-functions defined by the quantum dots

  11. Metaheuristics-Assisted Combinatorial Screening of Eu2+-Doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N Compositional Space in Search of a Narrow-Band Green Emitting Phosphor and Density Functional Theory Calculations.

    Science.gov (United States)

    Lee, Jin-Woong; Singh, Satendra Pal; Kim, Minseuk; Hong, Sung Un; Park, Woon Bae; Sohn, Kee-Sun

    2017-08-21

    A metaheuristics-based design would be of great help in relieving the enormous experimental burdens faced during the combinatorial screening of a huge, multidimensional search space, while providing the same effect as total enumeration. In order to tackle the high-throughput powder processing complications and to secure practical phosphors, metaheuristics, an elitism-reinforced nondominated sorting genetic algorithm (NSGA-II), was employed in this study. The NSGA-II iteration targeted two objective functions. The first was to search for a higher emission efficacy. The second was to search for narrow-band green color emissions. The NSGA-II iteration finally converged on BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphors in the Eu 2+ -doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N compositional search space. The BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphor, which was synthesized with no human intervention via the assistance of NSGA-II, was a clear single phase and gave an acceptable luminescence. The BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphor as well as all other phosphors that appeared during the NSGA-II iterations were examined in detail by employing powder X-ray diffraction-based Rietveld refinement, X-ray absorption near edge structure, density functional theory calculation, and time-resolved photoluminescence. The thermodynamic stability and the band structure plausibility were confirmed, and more importantly a novel approach to the energy transfer analysis was also introduced for BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphors.

  12. An open labeled, comparative clinical study on efficacy and tolerability of oral minipulse of steroid (OMP alone, OMP with PUVA and broad / narrow band UVB phototherapy in progressive vitiligo

    Directory of Open Access Journals (Sweden)

    Rath Namita

    2008-01-01

    Full Text Available Background: Several modalities of treatment have been tried in vitiligo with varied results; however, Indian data on comparative studies of two or more therapies are limited. Aims: We compared different phototherapy methods with an oral steroid as an adjunct to determine the method with the best tolerability and efficacy. Methods: Eighty-six patients with progressive vitiligo were randomly assigned to different study groups according to a continuous selection method over a period of one year. Group 1 was given OMP + PUVA, group 2 OMP + UVB (NB, group 3 OMP + UVB (BB and group 4 was given OMP alone. Each patient was followed up for six months and then released from treatment. Clinical evaluation was made at the end of three and six months. Results: In group 1 (OMP + PUVA, marked improvement was seen in 18.51% while moderate improvement was seen in 66.66% of the patients. Marked improvement was seen in 37.03% in group 2 (OMP + NB-UVB while 44.44% had moderate improvement. In group 3 (OMP + BB UVB, 8.33% showed marked improvement while moderate improvement was seen in 25% of the patients. Marked and moderate improvement was seen in 5 and 10% of group 4 (OMP patients, respectively. Conclusions: Our study compared four treatment modalities in vitiligo patients, out of which oral minipulse of steroids (OMP only had an adjunct value and was not very effective by itself. Narrow band UVB has a definite edge over broad band UVB and should be preferred when both options are available. NB-UVB and PUVA showed comparable efficacy.

  13. An optimization of the FPGA/NIOS adaptive FIR filter using linear prediction to reduce narrow band RFI for the next generation ground-based ultra-high energy cosmic-ray experiment

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Zbigniew, E-mail: zszadkow@kfd2.phys.uni.lodz.pl [University of Lodz, Department of Physics and Applied Informatics (Poland); Fraenkel, E.D. [Kernfysisch Versneller Instituut of the University of Groningen, Groningen (Netherlands); Glas, Dariusz; Legumina, Remigiusz [University of Lodz, Department of Physics and Applied Informatics (Poland)

    2013-12-21

    The electromagnetic part of an extensive air shower developing in the atmosphere provides significant information complementary to that obtained by water Cherenkov detectors which are predominantly sensitive to the muonic content of an air shower at ground. The emissions can be observed in the frequency band between 10 and 100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. The Auger Engineering Radio Array currently suppresses the RFI by multiple time-to-frequency domain conversions using an FFT procedure as well as by a set of manually chosen IIR notch filters in the time-domain. An alternative approach developed in this paper is an adaptive FIR filter based on linear prediction (LP). The coefficients for the linear predictor are dynamically refreshed and calculated in the virtual NIOS processor. The radio detector is an autonomous system installed on the Argentinean pampas and supplied from a solar panel. Powerful calculation capacity inside the FPGA is a factor. Power consumption versus the degree of effectiveness of the calculation inside the FPGA is a figure of merit to be minimized. Results show that the RFI contamination can be significantly suppressed by the LP FIR filter for 64 or less stages. -- Highlights: • We propose an adaptive method using linear prediction for periodic RFI suppression. • Requirements are the detection of short transient signals powered by solar panels. • The RFI is significantly suppressed by ∼70%, even in a very contaminated environment. • This method consumes less energy than the current method based on FFT used in AERA. • Distortion of the short transient signals is negligible.

  14. Combined effects of blue light and supplemental far-red light and effects of increasing red light with constant far-red light on growth of kidney bean [Phaseolus vulgaris] under mixtures of narrow-band light sources

    International Nuclear Information System (INIS)

    Hanyu, H.; Shoji, K.

    2000-01-01

    Increasing blue light and decreasing R: FR with supplementary far-red light affect morphogenesis, dry matter production and dry matter partitioning to leaves, stems and roots. In this study, the combined effects of the two spectral treatments were examined in kidney bean (Phaseolus vulgaris L.) grown under the mixture of four different narrow-band light sources. In addition, because the leaf and stem growth are accelerated by increasing red light (600-700 nm) in proportion to far-red light (700-800 nm) while keeping R : FR constant, this study was conducted to determine whether red light or far-red light causes the acceleration of growth. Increasing blue light (400-500 nm) and decreasing R : FR only interacted on stem extension. The results illustrated with figures suggest that blue light amplifies or attenuates the acceleration of stem extension caused by decreasing R : FR. On the other hand, increasing red light with constant far-red light had no influence on leaf expansion or stem extension while R : FR increased. Because the acceleration of leaf and stem growth is caused by increasing either far-red light or both red and far-red light in our environmental conditions, the stimulative effects on leaves and stems seem to require increases in far-red light rather than red light

  15. The add-on N-acetylcysteine is more effective than dimethicone alone to eliminate mucus during narrow-band imaging endoscopy: a double-blind, randomized controlled trial.

    Science.gov (United States)

    Chen, Ming-Jen; Wang, Horng-Yuan; Chang, Chen-Wang; Hu, Kuang-Chun; Hung, Chien-Yuan; Chen, Chih-Jen; Shih, Shou-Chuan

    2013-02-01

    Recent studies have shown that pronase can improve mucosal visibility, but this agent is not uniformly available for human use worldwide. This study aimed to assess the efficacy of N-acetylcysteine (NAC), a mucolytic agent, in improving mucus elimination as measured by decreased endoscopic water flushes during narrow-band imaging (NBI) endoscopy. A consecutive series of patients scheduled for upper gastrointestinal endoscopy at outpatient clinics were enrolled in this double-blind, randomized controlled trial. The control group drank a preparation of 100 mg dimethicone (5 ml at 20 mg/ml) plus water up to 100 ml, and the NAC group drank 300 mg NAC plus 100 mg dimethicone and water up to 100 ml. During the endoscopy, the endoscopist used as many flushes of water as deemed necessary to produce a satisfactory NBI view of the entire gastric mucosa. In all, 177 patients with a mean age of 51 years were evaluated in this study. Significantly lesser water was used for flushing during NBI endoscopy for the NAC group than the control group; 40 ml (30-70, 0-120) versus 50 ml (30-100, 0-150) (median (interquartile range, range), p = 0.0095). Considering the safety profile of NAC, decreasing the number of water flushes for optimal vision and unavailability of pronase in some areas, the authors suggest the use of add-on NAC to eliminate mucus during NBI endoscopy.

  16. A randomized clinical trial in vitamin D-deficient adults comparing replenishment with oral vitamin D3 with narrow-band UV type B light: effects on cholesterol and the transcriptional profiles of skin and blood.

    Science.gov (United States)

    Ponda, Manish P; Liang, Yupu; Kim, Jaehwan; Hutt, Richard; Dowd, Kathleen; Gilleaudeau, Patricia; Sullivan-Whalen, Mary M; Rodrick, Tori; Kim, Dong Joo; Barash, Irina; Lowes, Michelle A; Breslow, Jan L

    2017-05-01

    Background: Vitamin D deficiency, defined as a serum 25-hydroxyvitamin D [25(OH)D] concentration light. Objective: We tested the hypothesis that, in vitamin D-deficient adults, the replenishment of vitamin D with UVB exposure would lower LDL-cholesterol concentrations compared with the effect of oral vitamin D 3 supplementation. Design: We performed a randomized clinical trial in vitamin D-deficient adults and compared vitamin D replenishment between subjects who received oral vitamin D 3 ( n = 60) and those who received narrow-band UVB exposure ( n = 58) ≤6 mo. Results: There was no difference in the change from baseline LDL-cholesterol concentrations between oral vitamin D 3 and UVB groups (difference in median of oral vitamin D 3 minus that of UVB: 1.5 mg/dL; 95% CI: -5.0, 7.0 mg/dL). There were also no differences within groups or between groups for changes in total or HDL cholesterol or triglycerides. Transcriptional profiling of skin and blood, however, revealed significant upregulation of immune pathway signaling with oral vitamin D 3 but significant downregulation with UVB. Conclusions: Correcting vitamin D deficiency with either oral vitamin D 3 or UVB does not improve the lipid profile. Beyond cholesterol, these 2 modalities of raising 25(OH)D have disparate effects on gene transcription. This trial was registered at clinicaltrials.gov as NCT01688102. © 2017 American Society for Nutrition.

  17. Photonic band gap materials in butterfly scales: A possible source of 'blueprints'

    International Nuclear Information System (INIS)

    Kertesz, K.; Molnar, G.; Vertesy, Z.; Koos, A.A.; Horvath, Z.E.; Mark, G.I.; Tapaszto, L.; Balint, Zs.; Tamaska, I.; Deparis, O.; Vigneron, J.P.; Biro, L.P.

    2008-01-01

    The color generating nanoarchitectures in the cover scales of the blue (dorsal)-green (ventral) wing surfaces of the butterfly Albulina metallica were investigated by scanning electron microscopy and cross-sectional transmission electron microscopy. A layered, quasiordered structure was revealed in both the dorsal and ventral scales, with different order parameters, associated with their different colors. A successful attempt was made to reproduce the biological structure in the form of a quasiordered composite (SiO/(In and SiO)) multilayer structure using standard thin film deposition techniques. The position of the reflectance maxima of this artificial structure could be tailored by controlling the size of the In inclusions through oxidation. Our results show that photonic band gap materials of biologic origin may constitute valuable blueprints for artificial structures

  18. Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials

    International Nuclear Information System (INIS)

    Lidorikis, E.; Sigalas, M. M.; Economou, E. N.; Soukoulis, C. M.

    2000-01-01

    By using two ab initio numerical methods, we study the effects that disorder has on the spectral gaps and on wave localization in two-dimensional photonic-band-gap materials. We find that there are basically two different responses depending on the lattice realization (solid dielectric cylinders in air or vice versa), the wave polarization, and the particular form under which disorder is introduced. Two different pictures for the photonic states are employed, the ''nearly free'' photon and the ''strongly localized'' photon. These originate from the two different mechanisms responsible for the formation of the spectral gaps, i.e., multiple scattering and single scatterer resonances, and they qualitatively explain our results. (c) 2000 The American Physical Society

  19. Research on the effects of geometrical and material uncertainties on the band gap of the undulated beam

    Science.gov (United States)

    Li, Yi; Xu, Yanlong

    2017-09-01

    Considering uncertain geometrical and material parameters, the lower and upper bounds of the band gap of an undulated beam with periodically arched shape are studied by the Monte Carlo Simulation (MCS) and interval analysis based on the Taylor series. Given the random variations of the overall uncertain variables, scatter plots from the MCS are used to analyze the qualitative sensitivities of the band gap respect to these uncertainties. We find that the influence of uncertainty of the geometrical parameter on the band gap of the undulated beam is stronger than that of the material parameter. And this conclusion is also proved by the interval analysis based on the Taylor series. Our methodology can give a strategy to reduce the errors between the design and practical values of the band gaps by improving the accuracy of the specially selected uncertain design variables of the periodical structures.

  20. Density functional theory design D-D-A type small molecule with 1.03 eV narrow band gap: effect of electron donor unit for organic photovoltaic solar cell

    Science.gov (United States)

    Sıdır, İsa

    2017-10-01

    Six new low-band-gap copolymers of donor-donor-acceptor (D-D-A) architecture have been designed using density functional theory and time-dependent density functional theory methods in order to use them in organic photovoltaic cell (OPVC). Phenanthro[3,4-d:9,10-d‧]bis([1,2,3]thiadiazole)-10,12-dicarbonitrile moiety has been used as an acceptor for all compounds. We insert benzo[1,2-b:4,5-b‧]dithiophene and N,N-diphenylbenzo[1,2-b:4,5-b‧]dithiophen-2-amine units as donor to complete designing of copolymers. In order to tuning the optical and electronic properties, we have modified the donor unit by substituted with amine, methoxyamine, N-methylenethiophen-2-amine, methoxy, alkoxy moieties. The band gap (Eg), HOMO and LUMO values and plots, open circuit voltage (VOC) as well as optical properties have been analysed for designed copolymers. The optimised copolymers exhibit low-band-gap lying in the range of 1.03-2.24 eV. DPTD-6 copolymer presents the optimal properties to be used as an active layer due to its low Eg (1.03 eV) and a moderate VOC (0.56 eV). Thus, OPVC based on this copolymer in bulk-heterojunction composites with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor has been modelled. Eg and VOC values of composite material DPTD-6:PCBM are found as 1.32 and 0.65 eV, respectively. A model band diagram has been established for OPVC, simulating the energy transfer between active layers.

  1. Electron and hole states in quantum dot quantum wells within a spherical eight-band model

    NARCIS (Netherlands)

    Pokatilov, E.P.; Fonoberov, V.A.; Fomin, V.; Devreese, J.T.

    2001-01-01

    In order to study heterostructures composed both of materials with strongly different parameters and of materials with narrow band gaps, we have developed an approach [E. P. Pokatilov [etal], Phys. Rev. B 64, 245328 (2001), (preceding paper)], which combines the spherical eight-band effective-mass

  2. A network meta-analysis of therapeutic outcomes after new image technology-assisted transurethral resection for non-muscle invasive bladder cancer: 5-aminolaevulinic acid fluorescence vs hexylaminolevulinate fluorescence vs narrow band imaging

    International Nuclear Information System (INIS)

    Lee, Joo Yong; Cho, Kang Su; Kang, Dong Hyuk; Jung, Hae Do; Kwon, Jong Kyou; Oh, Cheol Kyu; Ham, Won Sik; Choi, Young Deuk

    2015-01-01

    This study included a network meta-analysis of evidence from randomized controlled trials (RCTs) to assess the therapeutic outcome of transurethral resection (TUR) in patients with non-muscle-invasive bladder cancer assisted by photodynamic diagnosis (PDD) employing 5-aminolaevulinic acid (5-ALA) or hexylaminolevulinate (HAL) or by narrow band imaging (NBI). Relevant RCTs were identified from electronic databases. The proceedings of relevant congresses were also searched. Fifteen articles based on RCTs were included in the analysis, and the comparisons were made by qualitative and quantitative syntheses using pairwise and network meta-analyses. Seven of 15 RCTs were at moderate risk of bias for all quality criteria and two studies were classified as having a high risk of bias. The recurrence rate of cancers resected with 5-ALA-based PDD was lower than of those resected using HAL-based PDD (odds ratio (OR) = 0.48, 95 % confidence interval (CI) [0.26–0.95]) but was not significantly different than those resected with NBI (OR = 0.53, 95 % CI [0.26–1.09]). The recurrence rate of cancers resected using HAL-based PDD versus NBI did not significantly differ (OR = 1.11, 95 % CI [0.55–2.1]). All cancers resected using 5-ALA-based PDD, HAL-based PDD, or NBI recurred at a lower rate than those resected using white light cystoscopy (WLC). No difference in progression rate was observed between cancers resected by all methods investigated. The recurrence rate of some bladder cancers can be decreased by the implementation of either PDD- and NBI-assisted TUR; in real settings, clinicians should consider replacing WLC as the standard imaging technology to guide TUR

  3. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    Science.gov (United States)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence

  4. Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials.

    Science.gov (United States)

    Akimov, A V; Tanaka, Y; Pevtsov, A B; Kaplan, S F; Golubev, V G; Tamura, S; Yakovlev, D R; Bayer, M

    2008-07-18

    The elastic coupling between the a-SiO2 spheres composing opal films brings forth three-dimensional periodic structures which besides a photonic stop band are predicted to also exhibit complete phononic band gaps. The influence of elastic crystal vibrations on the photonic band structure has been studied by injection of coherent hypersonic wave packets generated in a metal transducer by subpicosecond laser pulses. These studies show that light with energies close to the photonic band gap can be efficiently modulated by hypersonic waves.

  5. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M. [Advanced Concepts Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30318 (United States)

    2016-05-15

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S{sub 21}) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S{sub 21} measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10{sup −3} for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  6. Tunable band gap emission and surface passivation of germanium nanocrystals synthesized in the gas phase

    NARCIS (Netherlands)

    Wheeler, LM; Levij, L.M.; Kortshagen, U.R.

    2013-01-01

    The narrow bulk band gap and large exciton Bohr radius of germanium (Ge) make it an attractive material for optoelectronics utilizing band-gap-tunable photoluminescence (PL). However, realization of PL due to quantum confinement remains scarcely reported. Instead, PL is often observed from surface

  7. Modeling of radiant heat transfers in non-grey gases using the discrete ordinate method in association with a narrow bands statistical model; Modelisation des transferts radiatifs dans des gaz non gris par la methode des ordonnees discretes associee a un modele statistique a bandes etroites

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, A.B. de; Delmas, A; Sacadura, J F [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1997-12-31

    A formulation based on the use of the discrete ordinate method applied to the integral form of the radiant heat transfer equation is proposed for non-grey gases. The correlations between transmittances are neglected and no explicit wall reflexion is considered. The configuration analyzed consists in a flat layer of non-isothermal steam-nitrogen mixture. Cavity walls are grey with diffuse reflexion and emission. A narrow band statistical model is used to represent the radiative properties of the gas. The distribution of the radiative source term inside the cavity is calculated along two temperature profiles in a uniform steam concentration. Results obtained using this simplified approach are in good agreement with those found in the literature for the same temperature and concentration distributions. This preliminary study seems to indicate that the algorithm based on the integration of radiant heat transfer along the luminance path is less sensitive to de-correlation effects than formulations based on the differential form the the radiant heat transfer. Thus, a more systematic study of the influence of the neglecting of correlations on the integral approach is analyzed in this work. (J.S.) 16 refs.

  8. Modeling of radiant heat transfers in non-grey gases using the discrete ordinate method in association with a narrow bands statistical model; Modelisation des transferts radiatifs dans des gaz non gris par la methode des ordonnees discretes associee a un modele statistique a bandes etroites

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, A.B. de; Delmas, A.; Sacadura, J.F. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1996-12-31

    A formulation based on the use of the discrete ordinate method applied to the integral form of the radiant heat transfer equation is proposed for non-grey gases. The correlations between transmittances are neglected and no explicit wall reflexion is considered. The configuration analyzed consists in a flat layer of non-isothermal steam-nitrogen mixture. Cavity walls are grey with diffuse reflexion and emission. A narrow band statistical model is used to represent the radiative properties of the gas. The distribution of the radiative source term inside the cavity is calculated along two temperature profiles in a uniform steam concentration. Results obtained using this simplified approach are in good agreement with those found in the literature for the same temperature and concentration distributions. This preliminary study seems to indicate that the algorithm based on the integration of radiant heat transfer along the luminance path is less sensitive to de-correlation effects than formulations based on the differential form the the radiant heat transfer. Thus, a more systematic study of the influence of the neglecting of correlations on the integral approach is analyzed in this work. (J.S.) 16 refs.

  9. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    Science.gov (United States)

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  10. Effect of Spindle Parameters of Woodworking Band Saw on the AE Value of Crack Band Saw Blade in Compound Material Processing (1)

    Science.gov (United States)

    Gao, Jin-gui; Jiang, Zhao-fang; Luo, Lai-peng

    2017-04-01

    Taking the MJ3210A motion band saw as the research object, the AE value of the band saw blade vibration was obtained by analyzing the VIBSYS vibration signal acquisition and analysis software system in Beijing, and the change of the AE value of the band saw and the crack was found out. The experimental results show that in the MJ3210A sports car sawing machine, the band saw blade with width of 130 mm is used, and the AE value of the cracked band saw blade is well in the high band saw blade AE value. Under the best working condition of the band saw, the band saw blade AE If the value exceeds 104.7 dB (A) above, it means that the band saw blade has at least one crack length greater than 1.38 mm for the crack defect and the need to replace the band saw blade in time. Different species with saw blade of the AE value is different, white pine wood minimum, the largest oak wood; according to a variety of wood processing AE instrument value to determine the band saw blade crack to the situation; so as to fully rational use of band saw blade, The failure and the degree of development to find a new method.

  11. Band-gap creation by icosahedral symmetry in nearly-free-electron materials

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1993-01-01

    A series of numerical electronic density-of-states calculations is performed for rational approximants to a model one-electron potential based on icosahedrally arranged plane-wave components. It is found that high-order approximants can have band gaps even if the low-order approximants do not; furthermore, the magnitude of the gap increases with the order of the approximant. The results are interpreted via a two- and three-wave analysis of the energy eigenvalues at the pseudo-Jones-zone faces and edges. It is also found that the mechanism of band-gap reduction in the rational approximants is the presence of a small density of gap states. An analytic calculation shows that these gap states result from a splitting of threefold and pseudothreefold states at the valence-band edge when the icosahedral symmetry is broken. The splitting is proportional to the error with which the ratio between the approximant indices approximates τ, the golden mean. Finally, an application to the AlCuLi system is presented

  12. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Taeho [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A., E-mail: kanelson@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Kandyla, Maria [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 116-35 (Greece)

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  13. Device Physics of Narrow Gap Semiconductors

    CERN Document Server

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  14. Narrow dibaryon resonances

    International Nuclear Information System (INIS)

    Kajdalov, A.B.

    1986-01-01

    Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered

  15. Development of Coatings for Radar Absorbing Materials at X-band

    Science.gov (United States)

    Kumar, Abhishek; Singh, Samarjit

    2018-03-01

    The present review gives a brief account on some of the technical features of radar absorbing materials (RAMs). The paper has been presented with a concentrated approach towards the material aspects for achieving enhanced radar absorption characteristics for its application as a promising candidate in stealth technology and electromagnetic interference (EMI) minimization problems. The effect of metal particles doping/dispersion in the ferrites and dielectrics has been discussed for obtaining tunable radar absorbing characteristics. A short theoretical overview on the development of absorber materials, implementation of genetic algorithm (GA) in multi-layering and frequency selective surfaces (FSSs) based multi-layer has also been presented for the development of radar absorbing coatings for achieving better absorption augmented with broadband features in order to counter the radar detection systems.

  16. Transparency and spontaneous emission in a densely doped photonic band gap material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)

    2006-12-28

    The susceptibility has been calculated for a photonic crystal in the presence of spontaneous cancellation and dipole-dipole interaction. The crystal is densely doped with an ensemble of four-level nano-particles in Y-type configuration. Probe and a pump laser fields are applied to manipulate the absorption coefficient of the system. The expression of the susceptibility has been calculated in the linear response regime of the probe field but nonlinear terms are included for the pump field. It is found that in the presence of spontaneous emission cancellation there is an increase in the height of the two absorption peaks however the phenomenon of electromagnetically induced transparency (EIT) is not affected. On the other hand, there is a change in the height and location of the two peaks in the presence of dipole-dipole interactions. For certain values the particle density of the system can be switched from the EIT state to the non-EIT state. It is also found that when the resonance energies for two spontaneous emission channels lie close to the band edge, the EIT phenomenon disappears.

  17. Functionally Graded Thermoelectric Material though One Step Band Gap and Dopant Engineering

    DEFF Research Database (Denmark)

    Jensen, Ellen Marie; Borup, Kasper Andersen; Cederkrantz, Daniel

    , and dopant concentration. Parameters relevant to the thermoelectric properties have been determined along the pulling direction. All of these properties exhibit the wanted gradient. It has thereby been shown that engineering of the electrical contributions to the thermoelectric properties of a material...

  18. Surface correlation effects in two-band strongly correlated slabs.

    Science.gov (United States)

    Esfahani, D Nasr; Covaci, L; Peeters, F M

    2014-02-19

    Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.

  19. Surface Material Characterization from Non-resolved Multi-band Optical Observations

    Science.gov (United States)

    2012-09-01

    distribution estimation” ( RDE ), seeks to determine the bi-directional reflectance distribution functions (BRDFs) of the satellite’s components. Report...when applied to unknown or aging satellites. The second, RDE method was developed specifically to address these limitations. It does not require any...material BRDF information as input. Instead, the RDE method attempts to retrieve BRDF parameters for each satellite sub-component directly from the

  20. Tunable microwave absorbing nano-material for X-band applications

    International Nuclear Information System (INIS)

    Sadiq, Imran; Naseem, Shahzad; Ashiq, Muhammad Naeem; Khan, M.A.; Niaz, Shanawer; Rana, M.U.

    2016-01-01

    The effect of rare earth elements substitution in Sr_1_._9_6RE_0_._0_4Co_2Fe_2_7_._8_0Mn_0_._2O_4_6 (RE=Ce, Gd, Nd, La and Sm) X-type hexagonal ferrites prepared by using sol gel autocombustion method was studied. The XRD and FTIR analysis show the single phase of the prepared material. The lattice constants a (Å) and c (Å) varies with the additives. The particle size measured by Scherer formula for all the samples varies in the range of 54–100 nm and confirmed by the TEM analysis. The average grain size measured by SEM analysis lies in the range of 0.672–1.01 µm for all the samples. The Gd-substituted ferrite has higher value of coercivity (526.06 G) among all the samples which could be a good material for longitudinal recording media. The results also indicate that the Gd-substituted sample has maximum reflection loss of −25.2 dB at 11.878 GHz, can exhibit the best microwave absorption properties among all the substituted samples. Furthermore, the minimum value of reflection loss shifts towards the lower and higher frequencies with the substitution of rare earth elements which confirms that the microwave absorption properties can be tuned with the substitution of rare earth elements in pure ferrites. The peak value of attenuation constant at higher frequency agrees well the reflection loss data. - Highlights: • A series of X-type hexagonal ferrites were prepared by sol–gel method. • The XRD analysis showed that the X-type hexagonal structure. • The c/a ratio of these samples falls in the range of X-type hexagonal ferrites. • FTIR spectra confirms single hexagonal phase. • The magnetic properties vary with the substitution of rare earth elements. • The Gd-doped sample exhibits maximum absorption properties and coercivity.

  1. Jihadism, Narrow and Wide

    DEFF Research Database (Denmark)

    Sedgwick, Mark

    2015-01-01

    The term “jihadism” is popular, but difficult. It has narrow senses, which are generally valuable, and wide senses, which may be misleading. This article looks at the derivation and use of “jihadism” and of related terms, at definitions provided by a number of leading scholars, and at media usage....... It distinguishes two main groups of scholarly definitions, some careful and narrow, and some appearing to match loose media usage. However, it shows that even these scholarly definitions actually make important distinctions between jihadism and associated political and theological ideology. The article closes...

  2. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12.

    Science.gov (United States)

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-04-21

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices.

  3. Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device.

    Science.gov (United States)

    Saha, Sanjit; Jana, Milan; Khanra, Partha; Samanta, Pranab; Koo, Hyeyoung; Murmu, Naresh Chandra; Kuila, Tapas

    2015-07-08

    Nanostructured hexagonal boron nitride (h-BN)/reduced graphene oxide (RGO) composite is prepared by insertion of h-BN into the graphene oxide through hydrothermal reaction. Formation of the super lattice is confirmed by the existence of two separate UV-visible absorption edges corresponding to two different band gaps. The composite materials show enhanced electrical conductivity as compared to the bulk h-BN. A high specific capacitance of ∼824 F g(-1) is achieved at a current density of 4 A g(-1) for the composite in three-electrode electrochemical measurement. The potential window of the composite electrode lies in the range from -0.1 to 0.5 V in 6 M aqueous KOH electrolyte. The operating voltage is increased to 1.4 V in asymmetric supercapacitor (ASC) device where the thermally reduced graphene oxide is used as the negative electrode and the h-BN/RGO composite as the positive electrode. The ASC exhibits a specific capacitance of 145.7 F g(-1) at a current density of 6 A g(-1) and high energy density of 39.6 W h kg(-1) corresponding to a large power density of ∼4200 W kg(-1). Therefore, a facile hydrothermal route is demonstrated for the first time to utilize h-BN-based composite materials as energy storage electrode materials for supercapacitor applications.

  4. Electronic properties of moire superlattice bands in layered two dimensional materials

    Science.gov (United States)

    Jung, Jeil

    2014-03-01

    When atomically thin two-dimensional materials are layered they often form incommensurate non-crystalline structures that exhibit long period moiré patterns when examined by scanning probes. In this talk, I will present a theoretical method which can be used to derive an effective Hamiltonian for these twisted van der Waals heterostructures using input from ab initio calculations performed on short-period crystalline structures. I will argue that the effective Hamiltonian can quantitatively describe the electronic properties of these layered systems for arbitrary twist angle and lattice constants. Applying this method to the important cases of graphene on graphene and graphene on hexagonal-boron nitride, I will present a series of experimentally observable quantities that can be extracted from their electronic structure, including their density of states and local density of states as a function of twist angle, and compare with available experiments. Work done in collaboration with Allan MacDonald, Shaffique Adam, Arnaud Raoux, Zhenhua Qiao, and Ashley DaSilva; and supported by the Singapore National Research Foundation Fellowship NRF-NRFF2012-01.

  5. Modeling the Broad-Band Emission from the Gamma-Ray Emitting Narrow-Line Seyfert-1 Galaxies 1H 0323+342 and B2 0954+25A

    International Nuclear Information System (INIS)

    Arrieta-Lobo, Maialen; Boisson, Catherine; Zech, Andreas

    2017-01-01

    Prior to the Fermi-LAT era, only two classes of Active Galactic Nuclei (AGN) were thought to harbor relativistic jets that radiate up to gamma-ray energies: blazars and radio galaxies. The detection of variable gamma-ray emission from Narrow Line Seyfert 1 (NLSy1) galaxies has put them on the spotlight as a new class of gamma-ray emitting AGN. In this respect, gamma-ray emitting NLSy1s seem to be situated between blazars (dominated by non-thermal emission) and Seyferts (accretion disc dominated). In this work, we model the Spectral Energy Distribution (SED) of two gamma-loud NLSy1s, 1H 0323+342 and B2 0954+25A, during quiescent and flaring episodes via a multi-component radiative model that features a relativistic jet and external photon fields from the torus, disc, corona and Broad Line Region (BLR). We find that the interpretation of the high-energy emission of jetted NLSy1s requires taking into account Inverse Compton emission from particles in the relativistic jet that interact with external photon fields. Minimal changes are applied to the model parameters to transition from average to flaring states. In this scenario, the observed variability is explained mainly by means of changes in the jet density and Doppler factor.

  6. Modeling the Broad-Band Emission from the Gamma-Ray Emitting Narrow-Line Seyfert-1 Galaxies 1H 0323+342 and B2 0954+25A

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta-Lobo, Maialen; Boisson, Catherine; Zech, Andreas, E-mail: maialen.arrieta@obspm.fr [Laboratoire Univers et Theories, Observatoire de Paris, CNRS, Université Paris-Diderot, PSL Research University, Meudon (France)

    2017-12-08

    Prior to the Fermi-LAT era, only two classes of Active Galactic Nuclei (AGN) were thought to harbor relativistic jets that radiate up to gamma-ray energies: blazars and radio galaxies. The detection of variable gamma-ray emission from Narrow Line Seyfert 1 (NLSy1) galaxies has put them on the spotlight as a new class of gamma-ray emitting AGN. In this respect, gamma-ray emitting NLSy1s seem to be situated between blazars (dominated by non-thermal emission) and Seyferts (accretion disc dominated). In this work, we model the Spectral Energy Distribution (SED) of two gamma-loud NLSy1s, 1H 0323+342 and B2 0954+25A, during quiescent and flaring episodes via a multi-component radiative model that features a relativistic jet and external photon fields from the torus, disc, corona and Broad Line Region (BLR). We find that the interpretation of the high-energy emission of jetted NLSy1s requires taking into account Inverse Compton emission from particles in the relativistic jet that interact with external photon fields. Minimal changes are applied to the model parameters to transition from average to flaring states. In this scenario, the observed variability is explained mainly by means of changes in the jet density and Doppler factor.

  7. Correlates of Narrow Bracketing

    DEFF Research Database (Denmark)

    Koch, Alexander; Nafziger, Julia

    We examine whether different phenomena of narrow bracketing can be traced back to some common characteristic and whether and how different phenomena are related. We find that making dominated lottery choices or ignoring the endowment when making risky choices are related phenomena and are both as...

  8. Band structure analysis on olivine LiMPO4 and delithiated MPO4 (M = Fe, Mn) cathode materials

    International Nuclear Information System (INIS)

    Yi, Ting-Feng; Fang, Zi-Kui; Xie, Ying; Zhu, Yan-Rong; Dai, Changsong

    2014-01-01

    Highlights: • The conductivity of Li x MPO 4 were discussed relying on first principles technique. • Relationship between structure properties and microscopic bonding was addressed. • A mechanism responsible for the structural instability of MnPO 4 was proposed. - Abstract: Olivine compounds, i.e. Li x MPO 4 (M = Fe, Mn), are now regarded as the most competitive positive-electrode materials for future applications of large-scale rechargeable lithium batteries. There are significant interests in their electronic structures, because the microscopic information is very important for elucidating the structural stability, electrochemical performance, and electronic conductivity issues of batteries for high-rate applications. The structure stabilities of LiMPO 4 and MPO 4 (M = Fe, Mn) cathode materials are analyzed according to first principles calculations. The result shows that LiMPO 4 (M = Fe, Mn) materials exhibit good structure stability, which is mainly contributed to the extremely strong P-O covalent bonds. Furthermore, the introduction of P ions is also helpful for the chemical potential decrease of the materials. The band structure analysis reveals that the electronic conductance of LiFePO 4 , LiMnPO 4 , and FePO 4 is poor, while MnPO 4 possesses half metallic property. According to the electron distribution, it can be confirmed that Mn-O(II) bonds are weakened after Li + extractions, which is different from the variation trend of Fe-O(II) bonds. The decrease of Mn-O(II) bond strength is thus favorable for the phase transformation observed in experiments

  9. Materiality of misstatements from the perspective of the users of the financial statements - Narrowing the expectation gap between users and auditors

    OpenAIRE

    Rooij, Doris

    2009-01-01

    textabstractMisstatements or omissions in the financial statements are considered material if they could influence the economic decisions of users based on the financial statements. This research presents an empirical research, which provides evidence that a relevant expectation gap regarding materiality of misstatements exists between users of the financial statements and auditors. This gap can mainly be explained by lack of communication. According to the respondents, the expectation gap ca...

  10. Improvement of the Water Resistance of a Narrow-Band Red-Emitting SrLiAl3 N4 :Eu(2+) Phosphor Synthesized under High Isostatic Pressure through Coating with an Organosilica Layer.

    Science.gov (United States)

    Tsai, Yi-Ting; Nguyen, Hoang-Duy; Lazarowska, Agata; Mahlik, Sebastian; Grinberg, Marek; Liu, Ru-Shi

    2016-08-08

    A SrLiAl3 N4 :Eu(2+) (SLA) red phosphor prepared through a high-pressure solid-state reaction was coated with an organosilica layer with a thickness of 400-600 nm to improve its water resistance. The observed 4f(6) 5d→4f(7) transition bands are thought to result from the existence of Eu(2+) at two different Sr(2+) sites. Luminescence spectra at 10 K revealed two zero-phonon lines at 15377 (for Eu(Sr1)) and 15780 cm(-1) (for Eu(Sr2)). The phosphor exhibited stable red emission under high pressure up to 312 kbar. The configurational coordinate diagram gave a theoretical explanation for the Eu(2+/3+) result. The coated samples showed excellent moisture resistance while retaining an external quantum efficiency (EQE) of 70 % of their initial EQE after aging for 5 days under harsh conditions. White-light-emitting diodes of the SLA red phosphor and a commercial Y3 Al5 O12 :Ce(3+) yellow phosphor on a blue InGaN chip showed high color rendition (CRI=89, R9=69) and a low correlated color temperature of 2406 K. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Correction: Domingues Franceschini, M.H.; et al. Intercomparison of Unmanned Aerial Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop Trait Monitoring in Organic Potato Production. Sensors 2017, 17, 1428

    Directory of Open Access Journals (Sweden)

    Marston Héracles Domingues Franceschini

    2017-10-01

    Full Text Available The authors would like to correct Figure 13 and Table A2, as well as the text related to the data presented in both of them, as indicated below, considering that an error in the calculations involving Equation (2, described in the Section 2.8 of the Materials and Methods Section, resulted in the communication of incorrect values [...

  12. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Pedersen, Steffen Hindborg

    2017-01-01

    Widespread application of thermoelectric devices for waste heat recovery requires low-cost high-performance materials. The currently available n-type thermoelectric materials are limited either by their low efficiencies or by being based on expensive, scarce or toxic elements. Here we report a low-cost...... because of the multi-valley band behaviour dominated by a unique near-edge conduction band with a sixfold valley degeneracy. This makes Te-doped Mg3Sb1.5Bi0.5 a promising candidate for the low- and intermediate-temperature thermoelectric applications....

  13. Optoelectronic Characterization by Advanced Ab-Initio Methods of Novel Photovoltaic Intermediate Band Materials = Caracterización optoelectrónica por métodos ab-initio avanzados de nuevos materiales fotovoltaicos de banda intermedia

    OpenAIRE

    Aguilera Bonet, Irene

    2011-01-01

    Intermediate-band materials represent nowadays one of the most promising proposals in the quest for more efficient, lower-cost solar cells. In this thesis we present a deep study of transition-metal substituted semiconductors based on their optoelectronic properties. These materials were proposed as high efficiency photovoltaic absorbers for intermediate-band solar cells for showing a partiallyfilled band placed inside the band gap of the parent semiconductor which enables the absorption of p...

  14. Mg2BIV: Narrow Bandgap Thermoelectric Semiconductors

    Science.gov (United States)

    Kim, Il-Ho

    2018-05-01

    Thermoelectric materials can convert thermal energy directly into electric energy and vice versa. The electricity generation from waste heat via thermoelectric devices can be considered as a new energy source. For instance, automotive exhaust gas and all industrial processes generate an enormous amount of waste heat that can be converted to electricity by using thermoelectric devices. Magnesium compound Mg2BIV (BIV = Si, Ge or Sn) has a favorable combination of physical and chemical properties and can be a good base for the development of new efficient thermoelectrics. Because they possess similar properties to those of group BIV elemental semiconductors, they have been recognized as good candidates for thermoelectric applications. Mg2Si, Mg2Ge and Mg2Sn with an antifluorite structure are narrow bandgap semiconductors with indirect band gaps of 0.77 eV, 0.74 eV, and 0.35 eV, respectively. Mg2BIV has been recognized as a promising material for thermoelectric energy conversion at temperatures ranging from 500 K to 800 K. Compared to other thermoelectric materials operating in the similar temperature range, such as PbTe and filled skutterudites, the important aspects of Mg2BIV are non-toxic and earth-abundant elements. Based on classical thermoelectric theory, the material factor β ( m* / m e)3/2μκ L -1 can be utilized as the criterion for thermoelectric material selection, where m* is the density-of-states effective mass, me is the mass of an electron, μ is the carrier mobility, and κL is the lattice thermal conductivity. The β for magnesium silicides is 14, which is very high compared to 0.8 for iron silicides, 1.4 for manganese silicides, and 2.6 for silicon-germanium alloys. In this paper, basic phenomena of thermoelectricity and transport parameters for thermoelectric materials were briefly introduced, and thermoelectric properties of Mg2BIV synthesized by using a solid-state reaction were reviewed. In addition, various Mg2BIV compounds were discussed

  15. Materiality of misstatements from the perspective of the users of the financial statements - Narrowing the expectation gap between users and auditors

    NARCIS (Netherlands)

    D. de Rooij (Doris)

    2009-01-01

    textabstractMisstatements or omissions in the financial statements are considered material if they could influence the economic decisions of users based on the financial statements. This research presents an empirical research, which provides evidence that a relevant expectation gap regarding

  16. Novel Narrow Bandgap Photovoltaic Materials in Polymer Solar Cells%新型窄带隙聚合物太阳能电池光伏材料

    Institute of Scientific and Technical Information of China (English)

    辛铁军; 张秋禹; 陈少杰; 李伟; 刘梦娇; 周伦伟

    2012-01-01

    聚合物太阳能电池中给体材料的能级水平、带隙、光吸收系数、溶解性、成膜性及载流子迁移率是决定器件性能的关键因素.阐述了聚合物太阳能电池中给体材料的最新研究进展,着重介绍了含有苯并双噻吩的窄带隙D-A类型的共聚物,并对一些给体材料的能级水平优化结果做了简单的总结.最后指出了未来聚合物太阳能电池给体材料今后的发展方向.%The performance of devices is depend on the energy levels,bandgap, light absorption coeffcient, solubility, film forming ability and carrier mobility of the donor materials in polymer solar cells. The recent progress of the donor materials in polymer solar cells is reviewed, and the containing benzo bisthien of D-A copolymers is introduced. The energy levels optimization results of the donor materials are summarized. Furthermore, the future prospects of the domor materials in polymer solar cells are pointed out.

  17. A change in the electro-physical properties of narrow-band CdHgTe solid solutions acted upon by a volume discharge induced by an avalanche electron beam in the air at atmospheric pressure

    Science.gov (United States)

    Voitsekhovskii, A. V.; Grigor'ev, D. V.; Korotaev, A. G.; Kokhanenko, A. P.; Tarasenko, V. F.; Shulepov, M. A.

    2012-03-01

    The effect of a nanosecond volume discharge forming in an inhomogeneous electrical field at atmospheric pressure on the CdHgTe (MCT) epitaxial films of the p-type conduction with the hole concentration 2·1016 cm3 and mobility 500 cm2·V-1·s-1 is studied. The measurement of the electrophysical parameters of the MCT specimens upon irradiation shows that a layer exhibiting the n-type conduction is formed in the near-surface region of the epitaxial films. After 600 pulses and more, the thickness and the parameters of the layer are such that the measured field dependence of the Hall coefficient corresponds to the material of the n-type conduction. Analysis of the preliminary results reveals that the foregoing nanosecond volume discharge in the air at atmospheric pressure is promising for modification of electro-physical MCT properties.

  18. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  19. Narrow beam neutron dosimetry.

    Science.gov (United States)

    Ferenci, M Sutton

    2004-01-01

    Organ and effective doses have been estimated for male and female anthropomorphic mathematical models exposed to monoenergetic narrow beams of neutrons with energies from 10(-11) to 1000 MeV. Calculations were performed for anterior-posterior, posterior-anterior, left-lateral and right-lateral irradiation geometries. The beam diameter used in the calculations was 7.62 cm and the phantoms were irradiated at a height of 1 m above the ground. This geometry was chosen to simulate an accidental scenario (a worker walking through the beam) at Flight Path 30 Left (FP30L) of the Weapons Neutron Research (WNR) Facility at Los Alamos National Laboratory. The calculations were carried out using the Monte Carlo transport code MCNPX 2.5c.

  20. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application

    Science.gov (United States)

    Loeblein, Manuela; Bruno, Annalisa; Loh, G. C.; Bolker, Asaf; Saguy, Cecile; Antila, Liisa; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-10-01

    Dye-sensitized solar cells (DSSCs) offer an optimal trade-off between conversion-efficiency and low-cost fabrication. However, since all its electrodes need to fulfill stringent work-function requirements, its materials have remained unchanged since DSSC's first report early-90s. Here we describe a new material, oxidized-three-dimensional-graphene (o-3D-C), with a band gap of 0.2 eV and suitable electronic band-structure as alternative metal-free material for DSSCs-anodes. o-3D-C/dye-complex has a strong chemical bonding via carboxylic-group chemisorption with full saturation after 12 sec at capacity of ∼450 mg/g (600x faster and 7x higher than optimized metal surfaces). Furthermore, fluorescence quenching of life-time by 28-35% was measured demonstrating charge-transfer from dye to o-3D-C.

  1. Size-induced axial band structure and directional flow of a ternary-size granular material in a 3-D horizontal rotating drum

    Science.gov (United States)

    Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei

    2018-05-01

    Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.

  2. Acquisition and visualization techniques for narrow spectral color imaging.

    Science.gov (United States)

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  3. Switchable narrow band reflectors produced in a single curing step

    NARCIS (Netherlands)

    2006-01-01

    A method to produce a multiphase polymer-based film by polymg. monomer in the presence of a non-reactive liq. crystal and a dichroic photoinitiator whereby the polymn. is initiated by the use of linearly polarized light, the initial mixt. being cholesteric before polymn. is described. A multiphase

  4. Microscopic Fermi liquid approach to disordered narrow band systems

    International Nuclear Information System (INIS)

    Kolley, E.; Kolley, W.

    1977-01-01

    A Fermi liquid approach to tightly bound electrons in disordered systems is proposed to evaluate two-particle correlation functions L at T=0 deg K. Starting with a random Hubbard model and using a local ladder approximation in the particle-particle channel the irreducible particle-hole vertex is derived, being the kernel of the Bethe-Salpeter equation for L. CPA vertex corrections to the electrical conductivity and, for the ordered case, the correlation-enhanced paramagnetic susceptibility are calculated

  5. Subwavelength-Sized Narrow-Band Anechoic Waveguide Terminations

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Ærenlund, Emil; Bozhevolnyi, Sergey I.

    2016-01-01

    We propose and demonstrate the use of a pair of detuned acoustic resonators to efficiently absorb narrowband sound waves in a terminated waveguide. The suggested configuration is relatively simple and advantageous for usage at low frequencies, since the dimensions of the resonators are very small...

  6. Optimum filters for narrow-band frequency modulation.

    Science.gov (United States)

    Shelton, R. D.

    1972-01-01

    The results of a computer search for the optimum type of bandpass filter for low-index angle-modulated signals are reported. The bandpass filters are discussed in terms of their low-pass prototypes. Only filter functions with constant numerators are considered. The pole locations for the optimum filters of several cases are shown in a table. The results are fairly independent of modulation index and bandwidth.

  7. Clinical relevance of narrow-band imaging in flexible cystoscopy

    DEFF Research Database (Denmark)

    Drejer, Ditte; Béji, Sami; Munk Nielsen, Anna

    2017-01-01

    urological departments. Patients had either hematuria (n = 483) or known recurrent non-muscle-invasive bladder cancer (NMIBC) (n = 472). High-definition (HD) cystoscopy was performed in white light (WL) and a preliminary clinical decision was made. Then, a second cystoscopy was performed in NBI...... in NBI compared to WL (NBI: 100.0% vs WL: 83.2%, p decision making as a supplement to WL because it yields a significantly higher...... and a conclusive clinical decision was made. A difference between the two decisions that had a clinical impact on the patient was considered clinically relevant. RESULTS: Pathology was found in 216 WL cystoscopies, and additional pathology in 15 NBI cystoscopies (6.9%). Based on NBI, pathology was suspected in 23...

  8. Synthesis and photoluminescence study of narrow-band UVB ...

    Indian Academy of Sciences (India)

    [7] Guo C, Ding X, Seo H J, Ren Z and Bai J 2011 J. Alloys. Compd. 509 4871. [8] Zhang X, Lang H and Seo H 2011 J. Fluoresc. 21 1111. [9] Zhang Z W 2013 Ceram. Int. 39 1723. [10] Yu H 2012 J. Lumin. 132 2553. [11] Wang Q 2012 J. Lumin. 132 434. [12] Palan C, Bajaj N and Omanwar S 2016 Mater. Res. Bull. 76 216.

  9. Formation of Electron Strings in Narrow Band Polar Semiconductors

    Science.gov (United States)

    Kusmartsev, F. V.

    2000-01-01

    We show that linear electron strings may arise in polar semiconductors. A single string consists of M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the particles are free although they interact with each other via Coulomb forces. The strings arise as a result of an electronic phase separation associated with an instability of small adiabatic polarons. We have found the length of the string which depends on dielectric constants of semiconductors. The appearance of these electron strings may have an impact on the effect of stripe formation observed in a variety of high- Tc experiments.

  10. Quantum Dot Detector Enhancement for Narrow Band Multispectral Applications

    Science.gov (United States)

    2013-12-01

    22 Figure 22: (a) 4 Silver Nanospheres in Ring Formation; (b) Quality Factor for a 4 and 6 Nanosphere Ring Centered on...centered on. Here, the radius of the ring is varied from 60 to 400 nm. Figure 22:(a) 4 Silver Nanospheres in Ring Formation; (b) Quality Factor...QE )Iα at the resonant wavelength. From Figure 22 highest Q≈ 0.8 for the nanorings , but for there to be an increase in the I , Q must be greater

  11. Narrow, duplicated internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)

    2003-05-01

    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  12. Development and studies of Cd_1_−_xMg_xTe thin films with varying band gaps to understand the Mg incorporation and the related material properties

    International Nuclear Information System (INIS)

    Palomera, Roger C.; Martínez, Omar S.; Pantoja-Enriquez, J.; Mathews, N.R.; Reyes-Banda, Martín G.; Krishnan, B.; Mathew, X.

    2017-01-01

    Highlights: • Cd_1_−_xMg_xTe films with band gap in the range 1.47–2.41 eV is obtained. • Cd substitution by Mg was confirmed with SIMS and XPS analysis. • Cd_1_−_xMg_xTe films maintained CdTe structural features but with higher band gap. • Mg incorporation in CdTe inhibited grain growth. - Abstract: In this paper we report a systematic work involving the development of Cd_1_−_xMg_xTe thin films by co-evaporation of CdTe and Mg. The evaporation rate of both materials were adjusted to obtain ternary films of varying stoichiometry and hence the band gap. We have deposited films with band gap ranging from 1.47 to 2.41 eV. The films were characterized for structural, morphological, optical, opto-electronic, and spectroscopic properties. The film stoichiometry was studied across the thickness using SIMS data. SEM images showed that the grain size has a dependence on Mg content in the film, which inhibits the grain growth. The structural parameters showed a systematic dependence on Mg content in the film, however, there was no noticeable change in the XRD reflections with respect that of pure CdTe for lower concentrations of Mg. XPS analysis shed light on the incorporation of Mg further supporting the band gap variations observed with the UV–Vis spectroscopic studies. The photoresponse of the film was affected by Mg incorporation. Prototype devices of the type Cd_1_−_XMg_xTe/CdS were fabricated and the results are discussed.

  13. Multilayer Photonic Crystal for Spectral Narrowing of Emission

    Directory of Open Access Journals (Sweden)

    Zhanfang LIU

    2017-08-01

    Full Text Available Multilayer colloidal crystal has been prepared by the layer-by-layer deposition of silica microspheres on a glass slide. Each layer is a slab consisting of a fcc close-packed colloidal arrays. By properly choosing the sizes of spheres, the whole spectral feature of multilayer colloidal crystal can be tuned. Here, we engineered a multilayer superlattice structure with an effective passband between two stop bands. This gives a strong narrowing effect on emission spectrum. With the stop bands at the shortwave and longwave edges of emission spectrum, the passband in the central wavelength region can be regarded as a strong decrease of suppression effect and enhancement of a narrow wavelength region of emission. The spectral narrowing modification effect of suitably engineered colloidal crystals shows up their importance in potential application as optical filters and lasing devices.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16320

  14. MRI of surgically created pulmonary artery narrowing in the dog

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, R.J.; Rocchini, A.P.; Bove, E.L.; Chenevert, T.L.; Gubin, B. (Michigan Univ., Ann Arbor (USA). Dept. of Radiology)

    1989-11-01

    Narrowing of the pulmonary arteries was created surgically in twelve dogs. In six of the dogs the narrowing was central (main pulmonary artery), and in the remaining six the narrowing was located peripherally at the hilar level of the right pulmonary artery beyond the pericardial reflection. MRI and angiography were performed in all dogs. MRI clearly delineated the site of the pulmonary band and the caliber of the pulmonary artery at the site of the band in all dogs (N=6). MRI was not able to visualize any of the stenosis of the right pulmonary arteries at the hila, beyond the pericardial reflection. In addition, optimal imaging planes to depict each segment of the central pulmonary arteries were determined. The capability to image in oblique planes is essential in evaluating the morphology of the central pulmonary arteries. (orig.).

  15. MRI of surgically created pulmonary artery narrowing in the dog

    International Nuclear Information System (INIS)

    Hernandez, R.J.; Rocchini, A.P.; Bove, E.L.; Chenevert, T.L.; Gubin, B.

    1989-01-01

    Narrowing of the pulmonary arteries was created surgically in twelve dogs. In six of the dogs the narrowing was central (main pulmonary artery), and in the remaining six the narrowing was located peripherally at the hilar level of the right pulmonary artery beyond the pericardial reflection. MRI and angiography were performed in all dogs. MRI clearly delineated the site of the pulmonary band and the caliber of the pulmonary artery at the site of the band in all dogs (N=6). MRI was not able to visualize any of the stenosis of the right pulmonary arteries at the hila, beyond the pericardial reflection. In addition, optimal imaging planes to depict each segment of the central pulmonary arteries were determined. The capability to image in oblique planes is essential in evaluating the morphology of the central pulmonary arteries. (orig.)

  16. Theoretical Determination of Optimal Material Parameters for ZnCdTe/ZnCdSe Quantum Dot Intermediate Band Solar Cells

    Science.gov (United States)

    Imperato, C. M.; Ranepura, G. A.; Deych, L. I.; Kuskovsky, I. L.

    2018-03-01

    Intermediate band solar cells (IBSCs) are designed to enhance the photovoltaic efficiency significantly over that of a single-junction solar cell as determined by the Shockley-Queisser limit. In this work we present calculations to determine parameters of type-II Zn1-xCdxTe/Zn1-yCdySe quantum dots (QDs) grown on the InP substrate suitable for IBSCs. The calculations are done via the self-consistent variational method, accounting for the disk form of the QDs, presence of the strained ZnSe interfacial layer, and under conditions of a strain-free device structure. We show that to achieve the required parameters relatively thick QDs are required. Barriers must contain Cd concentration in the range of 35-44%, while Cd concentration in QD can vary widely from 0% to 70%, depending on their thickness to achieve the intermediate band energies in the range of 0.50-0.73 eV. It is also shown that the results are weakly dependent on the barrier thickness.

  17. Flooding correlations in narrow channel

    International Nuclear Information System (INIS)

    Kim, S. H.; Baek, W. P.; Chang, S. H.

    1999-01-01

    Heat transfer in narrow gap is considered as important phenomena in severe accidents in nuclear power plants. Also in heat removal of electric chip. Critical heat flux(CHF) in narrow gap limits the maximum heat transfer rate in narrow channel. In case of closed bottom channel, flooding limited CHF occurrence is observed. Flooding correlations will be helpful to predict the CHF in closed bottom channel. In present study, flooding data for narrow channel geometry were collected and the work to recognize the effect of the span, w and gap size, s were performed. And new flooding correlations were suggested for high-aspect-ratio geometry. Also, flooding correlation was applied to flooding limited CHF data

  18. Narrow n anti n resonances

    International Nuclear Information System (INIS)

    Bogdanova, L.N.; Dalkarov, O.D.; Kerbikov, B.O.; Shapiro, I.S.

    1975-01-01

    The present status of the problem of quasinuclear states in systems of nucleons and antinucleons is reviewed. The theoretical predictions are compared with experimental data on narrow meson resonances near N anti N threshold which appeared in 1971-74

  19. The proposals on cooperation to foreign centers of science on thermophysical properties of reactor materials in a broad band of pressure and temperatures realized at normal transient and emergency operation activity of nuclear power plants

    International Nuclear Information System (INIS)

    Fortov, V.E.

    1996-01-01

    The proposals on cooperation in the area of thermophysical properties of reactor materials in a broad band of pressure and temperature realized at normal transient and emergency operation activity of nuclear power plants are discussed. 1 fig

  20. Puente Verrazano-Narrows

    Directory of Open Access Journals (Sweden)

    Ammann, -

    1964-05-01

    Full Text Available This outstanding suspension bridge underwent a long process of preparation, and it has finally served to solve a most urgent and intense problem of communication between Brooking and Staten Island. This bridge represents an exceptional engineering achievement firstly because of the 1,298 m span between its two towers, and the two side spans of 370 m; secondly due to the vast amounts of materials involved in its construction. The suspended deck will have two directions of traffic, each consisting of six lanes, the two directions separated by a central division. The anchorage and foundations reach down to a depth of 50 m. The towers supporting the main suspension cables are 210 m high above the mean sea level. Their prefabricated external metal shell contain inside a complex system of thousands of metal cells. The deck hangs from four main suspension cables, each 90 cm in diameter. Hanger cables, each 55 cm in diameter, support the deck. The cable spinning over the main towers was a difficult and highly complicated operation. Details of this are given in the accompanying diagrams. Simultaneous with the construction of the bridge, the main access roads to it have been improved and altered, in order to chanalise the heavy traffic more effectively towards it. The whole project, including the construction of the bridge and alterations to the approaches, has amounted to a total cost of the order of 400 million dollars. The safety of the personnel working on this project has been very carefully studied. Ellaborate arrangements are being rigidly enforced for the protection of human lives. It is hoped that this huge project will be completed within the present year.Esta destacada obra, suspendida, realizada por la Triborough Bridge and Tunnel Authority, cuenta con una larga gestación que por fin culminó en una realidad y, con ella, a dar solución a una angustiosa situación que el tráfico rodado venía creando progresivamente con sus innumerables

  1. Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells

    KAUST Repository

    Qin, Peng

    2014-07-15

    Novel low band gap oligothiophenes incorporating S,N-heteropentacene central units were developed and used as hole-transport materials (HTMs) in solid-state perovskite-based solar cells. In addition to appropriate electronic energy levels, these materials show high photo-absorptivity in the low energy region, and thus can contribute to the light harvesting of the solar spectrum. Solution-processed CH3NH3PbI3-based devices using these HTMs achieved power conversion efficiencies of 9.5-10.5% in comparison with 7.6% obtained by reference devices without HTMs. Photoinduced absorption spectroscopy gave further insight into the charge transfer behavior between photoexcited perovskites and the HTMs. This journal is © the Partner Organisations 2014.

  2. Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells

    KAUST Repository

    Qin, Peng; Kast, Hannelore; Nazeeruddin, Mohammad K.; Zakeeruddin, Shaik M.; Mishra, Amaresh; Bä uerle, Peter; Grä tzel, Michael

    2014-01-01

    Novel low band gap oligothiophenes incorporating S,N-heteropentacene central units were developed and used as hole-transport materials (HTMs) in solid-state perovskite-based solar cells. In addition to appropriate electronic energy levels, these materials show high photo-absorptivity in the low energy region, and thus can contribute to the light harvesting of the solar spectrum. Solution-processed CH3NH3PbI3-based devices using these HTMs achieved power conversion efficiencies of 9.5-10.5% in comparison with 7.6% obtained by reference devices without HTMs. Photoinduced absorption spectroscopy gave further insight into the charge transfer behavior between photoexcited perovskites and the HTMs. This journal is © the Partner Organisations 2014.

  3. Direct evidence for a systematic evolution of optical band gap and local disorder in Ag, in doped Sb{sub 2}Te phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Krishna Dayal; Sahu, Smriti [Discipline of Electrical Engineering, Indian Institute of Technology Indore (India); Manivannan, Anbarasu [Discipline of Electrical Engineering, Indian Institute of Technology Indore (India); Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Indore (India); Deshpande, Uday Prabhakarrao [UGC-DAE Consortium for Scientific Research, Indore (India)

    2017-12-15

    Rapid and reversible switching properties of Ag, In doped Sb{sub 2}Te (AIST) phase change material is widely used in re-writable optical data storage applications. We report here a systematic evolution of optical band gap (E{sub g}), local disorder (Tauc parameter, β), and Urbach energy (E{sub U}) of AIST material during amorphous to crystalline transition using in situ UV-Vis-NIR spectroscopy. Unlike GeTe-Sb{sub 2}Te{sub 3} (GST) family, AIST material is found to show unique characteristics as evidenced by the presence of direct forbidden transitions. Crystallization is accompanied by a systematic reduction in E{sub g} from 0.50 eV (as-deposited amorphous at 300 K) to 0.18 eV (crystalline at 300 K). Moreover, decrease in E{sub U} (from 272 to 212 meV) and β is also observed during increasing the temperature in the amorphous phase, revealing direct observation of enhancement of the medium-range order and distortion in short range order, respectively. These findings of optical transition would be helpful for distinguishing the unique behavior of AIST material from GST family. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Titanium vs cobalt chromium: what is the best rod material to enhance adolescent idiopathic scoliosis correction with sublaminar bands?

    Science.gov (United States)

    Angelliaume, Audrey; Ferrero, E; Mazda, K; Le Hanneur, M; Accabled, F; de Gauzy, J Sales; Ilharreborde, B

    2017-06-01

    Cobalt chromium (CoCr) rods have recently gained popularity in adolescent idiopathic scoliosis (AIS) surgical treatment, replacing titanium (Ti) rods, with promising frontal correction rates in all-screw constructs. Posteromedial translation has been shown to emphasize thoracic sagittal correction, but the influence of rod material in this correction technique has never been investigated. The aim of this study was to compare the postoperative correction between Ti and CoCr rods for the treatment of thoracic AIS using posteromedial translation technique. 70 patients operated for thoracic (Lenke 1 or 2) AIS, in 2 institutions, between 2010 and 2013, were included. All patients underwent posterior fusion with hybrid constructs using posteromedial translation technique. The only difference between groups in the surgical procedure was the rod material (Ti or CoCr rods). Radiological measurements were compared preoperatively, postoperatively and at last follow-up (minimum 2 years). Preoperatively, groups were similar in terms of coronal and sagittal parameters. Postoperatively, no significant difference was observed between Ti and CoCr regarding frontal corrections, even when the preoperative flexibility of the curves was taken into account (p = 0.13). CoCr rods allowed greater restoration of T4T12 thoracic kyphosis, which remained stable over time (p = 0.01). Most common postoperative complication was proximal junctional kyphosis (n = 4). However, no significant difference was found between groups regarding postoperative complications rate. CoCr and Ti rods both provide significant and stable frontal correction in AIS treated with posteromedial translation technique using hybrid constructs. However, CoCr might be considered to emphasize sagittal correction in hypokyphotic patients.

  5. The role of rare earths in narrow energy gap semiconductors

    International Nuclear Information System (INIS)

    Partin, D.L.; Heremans, J.; Morelli, D.T.; Thrush, C.M.

    1991-01-01

    Narrow energy band gap semiconductors are potentially useful for various devices, including infrared detectors and diode lasers. Rare earth elements have been introduced into lead chalcogenide semiconductors using the molecular beam epitaxy growth process. Europium and ytterbium increase the energy band gap, and nearly lattice-matched heterojunctions have been grown. In some cases, valence changes in the rare earth element cause doping of the alloy. In this paper some initial investigations of the addition of europium to indium antimonide are reported, including the variation of lattice parameter and optical transmission with composition and a negative magnetoresistance effect

  6. Feasibility Study on S-Band Microwave Radiation and 3D-Thermal Infrared Imaging Sensor-Aided Recognition of Polymer Materials from End-of-Life Vehicles

    Directory of Open Access Journals (Sweden)

    Jiu Huang

    2018-04-01

    Full Text Available With the increase the worldwide consumption of vehicles, end-of-life vehicles (ELVs have kept rapidly increasing in the last two decades. Metallic parts and materials of ELVs can be easily reused and recycled, but the automobile shredder residues (ASRs, of which elastomer and plastic materials make up the vast majority, are difficult to recycle. ASRs are classified as hazardous materials in the main industrial countries, and are required to be materially recycled up to 85–95% by mass until 2020. However, there is neither sufficient theoretical nor practical experience for sorting ASR polymers. In this research, we provide a novel method by using S-Band microwave irradiation together with 3D scanning as well as infrared thermal imaging sensors for the recognition and sorting of typical plastics and elastomers from the ASR mixture. In this study, an industrial magnetron array with 2.45 GHz irradiation was utilized as the microwave source. Seven kinds of ELV polymer (PVC, ABS, PP, EPDM, NBR, CR, and SBR crushed scrap residues were tested. After specific power microwave irradiation for a certain time, the tested polymer materials were heated up to different extents corresponding to their respective sensitivities to microwave irradiation. Due to the variations in polymer chemical structure and additive agents, polymers have different sensitivities to microwave radiation, which leads to differences in temperature rises. The differences of temperature increase were obtained by a thermal infrared sensor, and the position and geometrical features of the tested scraps were acquired by a 3D imaging sensor. With this information, the scrap material could be recognized and then sorted. The results showed that this method was effective when the tested polymer materials were heated up to more than 30 °C. For full recognition of the tested polymer scraps, the minimum temperature variations of 5 °C and 10.5 °C for plastics and elastomers were needed

  7. Development of FeCoB/Graphene Oxide based microwave absorbing materials for X-Band region

    International Nuclear Information System (INIS)

    Das, Sukanta; Chandra Nayak, Ganesh; Sahu, S.K.; Oraon, Ramesh

    2015-01-01

    This work explored the microwave absorption capability of Graphene Oxide and Graphene Oxide coated with FeCoB for stealth technology. Epoxy based microwave absorbing materials were prepared with 30% loading of Graphene Oxide, FeCoB alloy and Graphene Oxide coated with FeCoB. Graphene Oxide and FeCoB were synthesized by Hummer's and Co-precipitation methods, respectively. The filler particles were characterized by FESEM, XRD and Vibrating Sample Magnetometer techniques. Permittivity, permeability and reflection loss values of the composite absorbers were measured with vector network analyzer which showed a reflection loss value of −7.86 dB, at 10.72 GHz, for single layered Graphene Oxide/Epoxy based microwave absorbers which can be correlated to the absorption of about 83.97% of the incident microwave energy. Reflection loss value of FeCoB/Epoxy based microwave absorber showed −13.30 dB at 11.67 GHz, which corresponded to maximum absorption of 93.8%. However, reflection loss values of Graphene Oxide coated with FeCoB/Epoxy based single-layer absorber increased to −22.24 dB at 12.4 GHz which corresponds to an absorption of 99% of the incident microwave energy. - Highlights: • FeCoB coated Graphene Oxide (GO) was synthesized by co-precipitation method. • GO, FeCoB and GO@FeCoB based microwave absorbers were developed with Epoxy matrix. • GO and FeCoB/Epoxy absorbers showed −7.86 & −13.30 dB reflection loss, respectively. • Maximum Reflection loss of −22.24 dB was achieved with GO@FeCoB/Epoxy absorber

  8. Spontaneous emission spectrum from a V-type three-level atom in a double-band photonic crystal

    International Nuclear Information System (INIS)

    Zhang Han Zhuang; Tang Sing Hai; Dong Po; He Jun

    2002-01-01

    The spontaneous emission spectrum from a V-type three-level atom embedded in a double-band photonic band gap (PBG) material has been investigated for the first time. Most interestingly it is shown that there is not only a black dark line, but also a narrow spontaneous line near the edges of the double photonic band. The positions of the dark line and narrow spontaneous line are near the transition from an empty upper level to a lower level. The lines stem from destructive and constructive quantum interferences, which induce population transfer between the two upper levels, in the PBG reservoirs. The effects of system parameters on the interference have been discussed in detail

  9. QSOs with narrow emission lines

    International Nuclear Information System (INIS)

    Baldwin, J.A.; Mcmahon, R.; Hazard, C.; Williams, R.E.

    1988-01-01

    Observations of two new high-redshift, narrow-lined QSOs (NLQSOs) are presented and discussed together with observations of similar objects reported in the literature. Gravitational lensing is ruled out as a possible means of amplifying the luminosity for one of these objects. It is found that the NLQSOs have broad bases on their emission lines as well as the prominent narrow cores which define this class. Thus, these are not pole-on QSOs. The FWHM of the emission lines fits onto the smoothly falling tail of the lower end of the line-width distribution for complete QSO samples. The equivalent widths of the combined broad and narrow components of the lines are normal for QSOs of the luminosity range under study. However, the NLQSOs do show ionization differences from broader-lined QSOs; most significant, the semiforbidden C III/C IV intensity ratio is unusually low. The N/C abundance ratio in these objects is found to be normal; the Al/C abundance ratio may be quite high. 38 references

  10. Band structure analysis on olivine LiMPO{sub 4} and delithiated MPO{sub 4} (M = Fe, Mn) cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ting-Feng, E-mail: tfyihit@163.com [School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002 (China); Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Fang, Zi-Kui [School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002 (China); Xie, Ying, E-mail: xieying@hlju.edu.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Zhu, Yan-Rong [School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002 (China); Dai, Changsong [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2014-12-25

    Highlights: • The conductivity of Li{sub x}MPO{sub 4} were discussed relying on first principles technique. • Relationship between structure properties and microscopic bonding was addressed. • A mechanism responsible for the structural instability of MnPO{sub 4} was proposed. - Abstract: Olivine compounds, i.e. Li{sub x}MPO{sub 4} (M = Fe, Mn), are now regarded as the most competitive positive-electrode materials for future applications of large-scale rechargeable lithium batteries. There are significant interests in their electronic structures, because the microscopic information is very important for elucidating the structural stability, electrochemical performance, and electronic conductivity issues of batteries for high-rate applications. The structure stabilities of LiMPO{sub 4} and MPO{sub 4} (M = Fe, Mn) cathode materials are analyzed according to first principles calculations. The result shows that LiMPO{sub 4} (M = Fe, Mn) materials exhibit good structure stability, which is mainly contributed to the extremely strong P-O covalent bonds. Furthermore, the introduction of P ions is also helpful for the chemical potential decrease of the materials. The band structure analysis reveals that the electronic conductance of LiFePO{sub 4}, LiMnPO{sub 4}, and FePO{sub 4} is poor, while MnPO{sub 4} possesses half metallic property. According to the electron distribution, it can be confirmed that Mn-O(II) bonds are weakened after Li{sup +} extractions, which is different from the variation trend of Fe-O(II) bonds. The decrease of Mn-O(II) bond strength is thus favorable for the phase transformation observed in experiments.

  11. Attenuation by a Human Body and Trees as well as Material Penetration Loss in 26 and 39 GHz Millimeter Wave Bands

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2017-01-01

    Full Text Available This paper investigates the attenuation by a human body and trees as well as material penetration loss at 26 and 39 GHz by measurements and theoretical modeling work. The measurements were carried out at a large restaurant and a university campus by using a time domain channel sounder. Meanwhile, the knife-edge (KE model and one-cylinder and two-cylinder models based on uniform theory of diffraction (UTD are applied to model the shape of a human body and predict its attenuation in theory. The ITU (International Telecommunication Union and its modified models are used to predict the attenuation by trees. The results show that the upper bound of the KE model is better to predict the attenuation by a human body compared with UTD one-cylinder and two-cylinder models at both 26 and 39 GHz. ITU model overestimates the attenuation by willow trees, and a modified attenuation model by trees is proposed based on our measurements at 26 GHz. Penetration loss for materials such as wood and glass with different types and thicknesses is measured as well. The measurement and modeling results in this paper are significant and necessary for simulation and planning of fifth-generation (5G mm-wave radio systems in ITU recommended frequency bands at 26 and 39 GHz.

  12. Band gap engineering of BC2N for nanoelectronic applications

    Science.gov (United States)

    Lim, Wei Hong; Hamzah, Afiq; Ahmadi, Mohammad Taghi; Ismail, Razali

    2017-12-01

    The BC2N as an example of boron-carbon-nitride (BCN), has the analogous structure as the graphene and boron nitride. It is predicted to have controllable electronic properties. Therefore, the analytical study on the engineer-able band gap of the BC2N is carried out based on the schematic structure of BC2N. The Nearest Neighbour Tight Binding (NNTB) model is employed with the dispersion relation and the density of state (DOS) as the main band gap analysing parameter. The results show that the hopping integrals having the significant effect on the band gap, band structure and DOS of BC2N nanowire (BC2NNW) need to be taken into consideration. The presented model indicates consistent trends with the published computational results around the Dirac points with the extracted band gap of 0.12 eV. Also, it is distinguished that wide energy gap of boron nitride (BN) is successfully narrowed by this carbon doped material which assures the application of BC2N on the nanoelectronics and optoelectronics in the near future.

  13. A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.

    Science.gov (United States)

    Linderälv, Christopher; Lindman, Anders; Erhart, Paul

    2018-01-04

    Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.

  14. Wide band gap materials and devices for NO{sub x}, H{sub 2} and O{sub 2} gas sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Majdeddin

    2008-01-22

    In this thesis, field effect gas sensors (Schottky diodes, MOS capacitors, and MOSFET transistors) based on wide band gap semiconductors like silicon carbide (SiC) and gallium nitride (GaN), as well as resistive gas sensors based on indium oxide (In{sub 2}O{sub 3}), have been developed for the detection of reducing gases (H{sub 2}, D{sub 2}) and oxidising gases (NO{sub x}, O{sub 2}). The development of the sensors has been performed at the Institute for Micro- and Nanoelectronic, Technical University Ilmenau in cooperation with (GE) General Electric Global Research (USA) and Umwelt-Sensor- Technik GmbH (Geschwenda). Chapter 1: serves as an introduction into the scientific fields related to this work. The theoretical fundamentals of solid-state gas sensors are provided and the relevant properties of wide band gap materials (SiC and GaN) are summarized. In chapter 2: The performance of Pt/GaN Schottky diodes with different thickness of the catalytic metal were investigated as hydrogen gas detectors. The area as well as the thickness of the Pt were varied between 250 {proportional_to} 250 {mu}m{sup 2} and 1000 {proportional_to} 1000 {mu}m{sup 2}, 8 and 40 nm, respectively. The response to hydrogen gas was investigated in dependence on the active area, the Pt thickness and the operating temperature for 1 vol.% hydrogen in synthetic air. We observed a significant increase of the sensitivity and a decrease of the response and recovery times by increasing the temperature of operation to about 350{sup o}C and by decreasing the Pt thickness down to 8 nm. Electron microscopy of the microstructure showed that the thinner platinum had a higher grain boundary density. The increase in sensitivity with decreasing Pt thickness points to the dissociation of molecular hydrogen on the surface, the diffusion of atomic hydrogen along the platinum grain boundaries and the adsorption of hydrogen at the Pt/GaN interface as a possible mechanism of sensing hydrogen by Schottky diodes. The

  15. Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal

    Science.gov (United States)

    Yue, Chenxi; Tan, Wei; Liu, Jianjun

    2018-05-01

    In this paper, the photonic band gap (PBG) properties of one-dimensional (1D) Thue-Morse photonic quasicrystal (PQC) S4 structure are theoretically investigated by using transfer matrix method in Bragg condition. The effects of the center wavelength, relative permittivity and incident angle on PBG properties are elaborately analyzed. Numerical results reveal that, in the case of normal incidence, the symmetry and periodicity properties of the photonic band structure are presented. As the center wavelength increases, the PBG center frequency and PBG width decrease while the photonic band structure is always symmetrical about the central frequency and the photonic band structure repeats periodically in the expanding observation frequency range. With the decrease of relative permittivity contrast, the PBG width and the relative PBG width gradually decreases until PBG disappears while the symmetry of the photonic band structure always exists. In the case of oblique incidence, as the incident angle increases, multiple narrow PBGs gradually merge into a wide PBG for the TE mode while for the TM mode, the number of PBG continuously decreases and eventually disappears, i.e., multiple narrow PBGs become a wide passband for the TM mode. The research results will provide a reference for the choice of the material, the incident angle for the PBG properties and its applications of 1D Thue-Morse PQC.

  16. Ultra-narrow bandpass filters for long range optical telecommunications at 1064nm and 1550nm, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-narrow bandpass filters with high off-band rejection are needed to maximize signal to noise for free space communications. Omega Optical is developing NIR...

  17. Efficient many-body calculations for two-dimensional materials using exact limits for the screened potential: Band gaps of MoS2, h-BN, and phosphorene

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Schmidt, Per Simmendefeldt; Winther, Kirsten Trøstrup

    2016-01-01

    Calculating the quasiparticle (QP) band structure of two-dimensional (2D) materials within the GW self-energy approximation has proven to be a rather demanding computational task. The main reason is the strong q dependence of the 2D dielectric function around q = 0 that calls for a much denser...

  18. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu 5Ta11O30 materials

    KAUST Repository

    Harb, Moussab

    2014-01-01

    We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu 5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta 11O30. It is confirmed that the Cu(i)-based multi-metal oxides possess a strong contribution of filled Cu(i) states in the valence band and of empty d0 metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications. © the Partner Organisations 2014.

  19. SINGLE-BAND, TRIPLE-BAND, OR MULTIPLE-BAND HUBBARD MODELS

    NARCIS (Netherlands)

    ESKES, H; SAWATZKY, GA

    1991-01-01

    The relevance of different models, such as the one-band t-J model and the three-band Emery model, as a realistic description of the electronic structure of high-T(c) materials is discussed. Starting from a multiband approach using cluster calculations and an impurity approach, the following

  20. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    International Nuclear Information System (INIS)

    Aly, Arafa H; Mehaney, Ahmed

    2016-01-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification. (paper)

  1. A new exotic state in an old material: a tale of SmB{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Dzero, M. [Kent State University, Department of Physics (United States); Galitski, V., E-mail: galitski@physics.umd.edu [University of Maryland, Condensed Matter Theory Center and Department of Physics (United States)

    2013-09-15

    We review current theoretical and experimental efforts to identify a novel class of intermetallic 4f and 5f orbital materials in which strong interactions between itinerant and predominately localized degrees of freedom give rise to a bulk insulating state at low temperatures, while the surface remains metallic. This effect arises due to inversion of even-parity conduction bands and odd-parity very narrow f-electron bands. The number of band inversions is mainly determined by the crystal symmetry of a material and the corresponding degeneracy of the hybridized f-electron bands. For an odd number of band inversions, the metallic surface states are chiral and therefore remain robust against disorder and time-reversal invariant perturbations. We discuss a number of unresolved theoretical issues specific to topological Kondo insulators and outline experimental challenges in probing the chiral surface states in these materials.

  2. Narrow gap electronegative capacitive discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)

    2013-10-15

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  3. Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors

    International Nuclear Information System (INIS)

    Shih, Chun-Hsing; Dang Chien, Nguyen

    2014-01-01

    Low-bandgap semiconductors, such as InAs and InSb, are widely considered to be ideal for use in tunnel field-effect transistors to ensure sufficient on-current boosting at low voltages. This work elucidates the physical and mathematical considerations of applying conventional band-to-band tunneling models in low-bandgap semiconductors, and presents a new analytical alternative for practical use. The high-bandgap tunneling generates most at maximum field region with shortest tunnel path, whereas the low-bandgap generations occur dispersedly because of narrow tunnel barrier. The local electrical field associated with tunneling-electron numbers dominates in low-bandgap materials. This work proposes decoupled electric-field terms in the pre-exponential factor and exponential function of generation-rate expressions. Without fitting, the analytical results and approximated forms exhibit great agreements with the sophisticated forms both in high- and low-bandgap semiconductors. Neither nonlocal nor local field is appropriate to be used in numerical simulations for predicting the tunneling generations in a variety of low- and high-bandgap semiconductors

  4. Exposure measuring techniques for wide band mobile radio-communications

    International Nuclear Information System (INIS)

    Trinchero, S.; Benedetto, A.; Anglesio, L.; D'Amore, G.; Trinchero, D.

    2004-01-01

    The paper illustrates the limits and performances of different experimental monitoring techniques, which are applied to digitally modulated radiofrequency electromagnetic fields used for mobile telecommunications. Different experimental set-ups have been developed, verified and applied for the analysis and characterisation of wide band probes and narrow band measuring procedures. (authors)

  5. Design and analysis of doped left-handed materials

    International Nuclear Information System (INIS)

    Zhang Hongxin; Bao Yongfang; Chen Tianming; Lü Yinghua; Wang Haixia

    2008-01-01

    We devise three sorts of doped left-handed materials (DLHMs) by introducing inductors and capacitors into the traditional left-handed material (LHM) as heterogeneous elements. Some new properties are presented through finite-difference time-domain (FDTD) simulations. On the one hand, the resonance in the traditional LHM is weakened and the original pass band is narrowed by introducing inductors. On the other hand, the original pass band of the LHM can be shifted and a new pass band can be generated by introducing capacitors. When capacitors and inductors are introduced simultaneously, the resonance of traditional LHM is somewhat weakened and the number of original pass bands as well as its bandwidth can be changed

  6. Spectrally narrowed emissions in 2,5-bis(4-biphenylyl)thiophene crystals pumped by fs laser pulse

    International Nuclear Information System (INIS)

    Kobayashi, S.; Sasaki, F.; Yanagi, H.; Hotta, S.; Ichikawa, M.; Taniguchi, Y.

    2005-01-01

    Spectrally narrowed emission (SNE) in 2,5-bis(4-biphenylyl)thiophene (BP1T) crystals is investigated using fs laser pulse. Two different types of narrowing are observed at different vibronic emission bands with increasing pump intensities. Based on their pump intensity dependence and illumination area dependence, we assign the SNE at 20,200 cm -1 (β-band) to amplified spontaneous emission (ASE) and the SNE at 21,600 cm -1 (α-band) to superfluorescence rather than ASE

  7. Laser linewidth narrowing using transient spectral hole burning

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); Böttger, Thomas, E-mail: tbottger@usfca.edu [Department of Physics and Astronomy, 2130 Fulton Street, University of San Francisco, San Francisco, CA 94117 (United States)

    2014-08-01

    We demonstrate significant narrowing of laser linewidths by high optical density materials with inhomogeneously broadened absorption. As a laser propagates through the material, the nonlinear spectral hole burning process causes a progressive self-filtering of the laser spectrum, potentially reaching values less than the homogeneous linewidth. The transient spectral hole dynamically adjusts itself to the instantaneous frequency of the laser, passively suppressing laser phase noise and side modes over the entire material absorption bandwidth without the need for electronic or optical feedback to the laser. Wide bandwidth laser phase noise suppression was demonstrated using Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3} at 1.5 μm by employing time-delayed self-heterodyne detection of an external cavity diode laser to study the spectral narrowing effect. Our method is not restricted to any particular wavelength or laser system and is attractive for a range of applications where ultra-low phase noise sources are required. - Highlights: • We demonstrate significant laser linewidths narrowing by high optical density materials. • Nonlinear spectral hole burning causes progressive self-filtering of laser spectrum. • Filter dynamically adjusts itself to the instantaneous frequency of the laser. • Demonstrated at 1.5 μm in Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3}. • Linewidth filtering is not restricted to any particular wavelength or laser system.

  8. Energy correlations for mixed rotational bands

    International Nuclear Information System (INIS)

    Doessing, T.

    1985-01-01

    A schematic model for the mixing of rotational bands above the yrast line in well deformed nuclei is considered. Many-particle configurations of a rotating mean field form basis bands, and these are subsequently mixed due to a two body residual interaction. The energy interval over which a basis band is spread out increases with increasing excitation energy above the yrast line. Conversely, the B(E2) matrix element for rotational decay out of one of the mixed band states is spread over an interval which is predicted to become more narrow with increasing excitation energy. Finally, the implication of band mixing for γ-ray energy correlations is briefly discussed. (orig.)

  9. Low frequency phononic band structures in two-dimensional arc-shaped phononic crystals

    International Nuclear Information System (INIS)

    Xu, Zhenlong; Wu, Fugen; Guo, Zhongning

    2012-01-01

    The low frequency phononic band structures of two-dimensional arc-shaped phononic crystals (APCs) were studied by the transfer matrix method in cylindrical coordinates. The results showed the first phononic band gaps (PBGs) of APCs from zero Hz with low modes. Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials. These properties can be efficiently used in a structure for low frequencies that are forbidden, or in a device that permits a narrow window of frequencies. -- Highlights: ► We report a new class of quasi-periodic hetero-structures, arc-shaped phononic crystals (APCs). ► The results show the first PBGs start with zero Hz with low modes. ► Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials.

  10. Creep strength of 10 CrMo 9 10 welding material

    International Nuclear Information System (INIS)

    Maile, K.; Theofel, H.

    1993-01-01

    Samples from different welding materials of the heat-resistant steel 10 Cr Mo 10 were subjected to creep tests. The maximum duration of stressing was 36,000 hours. At a text temperature of 450 C, the creep behaviour is considerably affected by different initial strengths. At 500 and 550 C, the creep fracture points for most of the welding materials in the long term range lie scattered in a relatively narrow band. This range is at or just below the lower scatteer band limit of the basic material (corresponding to DIN 17175, mean value ± 20%. (orig.) [de

  11. Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material

    Science.gov (United States)

    Huang, Bo; Zhou, Yaxun; Cheng, Pan; Zhou, Zizhong; Li, Jun; Jin, Wei

    2016-10-01

    Tm3+/Yb3+ co-doped tellurite glasses with different silver nanoparticles (Ag NPs) concentrations were prepared using the conventional melt-quenching technique and characterized by the UV/Vis/NIR absorption spectra, 1.85 μm band fluorescence emission spectra, transmission electron microscopy (TEM) images, differential scanning calorimeter (DSC) curves and X-ray diffraction (XRD) patterns to investigate the effects of Ag NPs on the 1.85 μm band spectroscopic properties of Tm3+ ions, thermal stability and structural nature of glass hosts. Under the excitation of 980 nm laser diode (LD), the 1.85 μm band fluorescence emission of Tm3+ ions enhances significantly in the presence of Ag NPs with average diameter of ∼8 nm and local surface Plasmon resonance (LSPR) band of ∼590 nm, which is mainly attributed to the increased local electric field induced by Ag NPs at the proximity of doped rare-earth ions on the basis of energy transfer from Yb3+ to Tm3+ ions. An improvement by about 110% of fluorescence intensity is observed in the Tm3+/Yb3+ co-doped tellurite glass containing 0.5 mol% amount of AgNO3 while the prepared glass samples possess good thermal stability and amorphous structural nature. Meanwhile, the Judd-Ofelt intensity parameters Ωt (t = 2,4,6), spontaneous radiative transition probabilities, fluorescence branching ratios and radiative lifetimes of relevant excited levels of Tm3+ ions were determined based on the Judd-Ofelt theory to reveal the enhanced effects of Ag NPs on the 1.85 μm band spectroscopic properties, and the energy transfer micro-parameters and phonon contribution ratios were calculated based on the non-resonant energy transfer theory to elucidate the energy transfer mechanism between Yb3+ and Tm3+ ions. The present results indicate that the prepared Tm3+/Yb3+ co-doped tellurite glass with an appropriate amount of Ag NPs is a promising lasing media applied for 1.85 μm band solid-state lasers and amplifiers.

  12. Analysis of ultra-narrow ferromagnetic domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Catherine; Paul, David

    2012-01-10

    New materials with high magnetic anisotropy will have domains separated by ultra-narrow ferromagnetic walls with widths on the order of a few unit cells, approaching the limit where the elastic continuum approximation often used in micromagnetic simulations is accurate. The limits of this approximation are explored, and the static and dynamic interactions with intrinsic crystalline defects and external driving elds are modeled. The results developed here will be important when considering the stability of ultra-high-density storage media.

  13. Panchromatic cooperative hyperspectral adaptive wide band deletion repair method

    Science.gov (United States)

    Jiang, Bitao; Shi, Chunyu

    2018-02-01

    In the hyperspectral data, the phenomenon of stripe deletion often occurs, which seriously affects the efficiency and accuracy of data analysis and application. Narrow band deletion can be directly repaired by interpolation, and this method is not ideal for wide band deletion repair. In this paper, an adaptive spectral wide band missing restoration method based on panchromatic information is proposed, and the effectiveness of the algorithm is verified by experiments.

  14. Narrow in-gap states in doped Al2O3

    KAUST Repository

    Casas-Cabanas, Montse

    2011-10-01

    Based on XRD data testifying that the M ions occupy substitutional sites, transmittance measurement are discussed in comparison to electronic structure calculations for M-doped Al2O3 with M = V, Mn, and Cr. The M 3d states are found approximatively 2 eV above the top of the host valence band. The fundamental band gap of Al2O3 is further reduced in the V and Mn cases due to a splitting of the narrow band at the Fermi energy. Nevertheless the measured transmittance in the visible range remains high in all three cases. © 2011 Elsevier B.V. All rights reserved.

  15. Narrow in-gap states in doped Al2O3

    KAUST Repository

    Casas-Cabanas, Montse; Fré sard, Marion; Lü ders, Ulrike; Fré sard, Raymond; Schuster, Cosima B.; Schwingenschlö gl, Udo

    2011-01-01

    Based on XRD data testifying that the M ions occupy substitutional sites, transmittance measurement are discussed in comparison to electronic structure calculations for M-doped Al2O3 with M = V, Mn, and Cr. The M 3d states are found approximatively 2 eV above the top of the host valence band. The fundamental band gap of Al2O3 is further reduced in the V and Mn cases due to a splitting of the narrow band at the Fermi energy. Nevertheless the measured transmittance in the visible range remains high in all three cases. © 2011 Elsevier B.V. All rights reserved.

  16. Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell

    International Nuclear Information System (INIS)

    Antolin, E.; Marti, A.; Stanley, C.R.; Farmer, C.D.; Canovas, E.; Lopez, N.; Linares, P.G.; Luque, A.

    2008-01-01

    Conceived to exceed the conversion efficiency of conventional photovoltaic devices, the intermediate band solar cell bases its operation on exploiting, besides the usual band-to-band optical transitions, the absorption of two sub-bandgap photons. For the present, the only technology used to implement an intermediate band in real devices has been the growth of an InAs/GaAs quantum dot superlattice. In practice, the obtained material shows two limitations: the narrow energy gap between conduction and intermediate band and the appearance of growth defects due to the lattice stress. The consequences are the presence of non-radiative recombination mechanisms and the thermal escape of electrons from the intermediate to the conduction band, hindering the splitting of the quasi-Fermi levels associated with the intermediate and conduction bands and the observation of photocurrent associated with the two-photon absorption. By reducing the temperature at which the devices are characterised we have suppressed the parasitic thermal mechanisms and have succeeded in measuring the photocurrent caused by the absorption of two below bandgap photons. In this work, the characterization of this photocurrent at low temperature is presented and discussed

  17. Wide Band Gap Semiconductors Symposium Held in Boston, Massachusetts on 2-6 December 1991. Materials Research Society Symposium Proceedings. Volume 242

    Science.gov (United States)

    1992-01-01

    AND PROPERTIES OF WIDE BAND-GAP Il-VI STRAINED- LAYER SUPERLATTICE 227 Hailong Wang. Jie Cui. Aidong Shen. Liang Xu, Yunliang Chen. and Yuhua Shen IN...WANG JIE CUI AIDONG SHEN LIANG XU YUNLIANG CHEN AND YUHUA SHEN Shanghai Institute of Optics and Fine Mechanics, Academia Sinica P.O.Box 800-216 Shanghai...He Zujou, Cao Huazhe, Su Wuda, Chen Zhongcai, Zhon Feng and Wang Erguang, Thin Solid Films, 139,261(1986). 22) Xin Li and T.L.Tansley, J.AppI.Phys

  18. The role of engineered materials in superconducting tunnel junction X-ray detectors - Suppression of quasiparticle recombination losses via a phononic band gap

    Science.gov (United States)

    Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.

    1992-01-01

    An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.

  19. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U

    International Nuclear Information System (INIS)

    Zhang, Yubo; Zhang, Jiawei; Wang, Youwei; Gao, Weiwei; Abtew, Tesfaye A.; Zhang, Peihong; Zhang, Wenqing

    2013-01-01

    Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of the mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within ±0.2 eV

  20. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  1. Low band gap polymers for organic photovoltaics

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2007-01-01

    Low band gap polymer materials and their application in organic photovoltaics (OPV) are reviewed. We detail the synthetic approaches to low band gap polymer materials starting from the early methodologies employing quinoid homopolymer structures to the current state of the art that relies...

  2. Narrow plasmon resonances enabled by quasi-freestanding bilayer epitaxial graphene

    Science.gov (United States)

    Daniels, Kevin M.; Jadidi, M. Mehdi; Sushkov, Andrei B.; Nath, Anindya; Boyd, Anthony K.; Sridhara, Karthik; Drew, H. Dennis; Murphy, Thomas E.; Myers-Ward, Rachael L.; Gaskill, D. Kurt

    2017-06-01

    Exploiting the underdeveloped terahertz range (~1012-1013 Hz) of the electromagnetic spectrum could advance many scientific fields (e.g. medical imaging for the identification of tumors and other biological tissues, non-destructive evaluation of hidden objects or ultra-broadband communication). Despite the benefits of operating in this regime, generation, detection and manipulation have proven difficult, as few materials have functional interactions with THz radiation. In contrast, graphene supports resonances in the THz regime through structural confinement of surface plasmons, which can lead to enhanced absorption. In prior work, the achievable plasmon resonances in such structures have been limited by multiple electron scattering mechanisms (i.e. large carrier scattering rates) which greatly broaden the resonance (>100 cm-1 3 THz). We report the narrowest room temperature Drude response to-date, 30 cm-1 (0.87 THz), obtained using quasi-free standing bilayer epitaxial graphene (QFS BLG) synthesized on (0 0 0 1)6H-SiC. This narrow response is due to a 4-fold increase in carrier mobility and improved thickness and electronic uniformity of QFS BLG. Moreover, QFS BLG samples patterned into microribbons targeting 1.8-5.7 THz plasmon resonances also exhibit low scattering rates (37-53 cm-1). Due to the improved THz properties of QFS BLG, the effects of e-beam processing on carrier scattering rates was determined and we found that fabrication conditions can be tuned to minimize the impact on optoelectronic properties. In addition, electrostatic gating of patterned QFS BLG shows narrow band THz amplitude modulation. Taken together, these properties of QFS BLG should facilitate future development of THz optoelectronic devices for monochromatic applications.

  3. Congenital Constriction Band Syndrome

    OpenAIRE

    Rajesh Gupta, Fareed Malik, Rishabh Gupta, M.A.Basit, Dara Singh

    2008-01-01

    Congenital constriction bands are anomalous bands that encircle a digit or an extremity. Congenitalconstriction band syndrome is rare condition and is mostly associated with other musculoskeletaldisorders.We report such a rare experience.

  4. Ultrafast Charge and Triplet State Formation in Diketopyrrolopyrrole Low Band Gap Polymer/Fullerene Blends: Influence of Nanoscale Morphology of Organic Photovoltaic Materials on Charge Recombination to the Triplet State

    Directory of Open Access Journals (Sweden)

    René M. Williams

    2017-01-01

    Full Text Available Femtosecond transient absorption spectroscopy of thin films of two types of morphologies of diketopyrrolopyrrole low band gap polymer/fullerene-adduct blends is presented and indicates triplet state formation by charge recombination, an important loss channel in organic photovoltaic materials. At low laser fluence (approaching solar intensity charge formation characterized by a 1350 nm band (in ~250 fs dominates in the two PDPP-PCBM blends with different nanoscale morphologies and these charges recombine to form a local polymer-based triplet state on the sub-ns timescale (in ~300 and ~900 ps indicated by an 1100 nm absorption band. The rate of triplet state formation is influenced by the morphology. The slower rate of charge recombination to the triplet state (in ~900 ps belongs to a morphology that results in a higher power conversion efficiency in the corresponding device. Nanoscale morphology not only influences interfacial area and conduction of holes and electrons but also influences the mechanism of intersystem crossing (ISC. We present a model that correlates morphology to the exchange integral and fast and slow mechanisms for ISC (SOCT-ISC and H-HFI-ISC. For the pristine polymer, a flat and unstructured singlet-singlet absorption spectrum (between 900 and 1400 nm and a very minor triplet state formation (5% are observed at low laser fluence.

  5. Plasma Reflection in Multigrain Layers of Narrow-Bandgap Semiconductors

    Science.gov (United States)

    Zhukov, N. D.; Shishkin, M. I.; Rokakh, A. G.

    2018-04-01

    Qualitatively similar spectral characteristics of plasma-resonance reflection in the region of 15-25 μm were obtained for layers of electrodeposited submicron particles of InSb, InAs, and GaAs and plates of these semiconductors ground with M1-grade diamond powder. The most narrow-bandgap semiconductor InSb (intrinsic absorption edge ˜7 μm) is characterized by an absorption band at 2.1-2.3 μm, which is interpreted in terms of the model of optical excitation of electrons coupled by the Coulomb interaction. The spectra of a multigrain layer of chemically deposited PbS nanoparticles (50-70 nm) exhibited absorption maxima at 7, 10, and 17 μm, which can be explained by electron transitions obeying the energy-quantization rules for quantum dots.

  6. Highly Tunable Narrow Bandpass MEMS Filter

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-07-07

    We demonstrate a proof-of-concept highly tunable narrow bandpass filter based on electrothermally and electrostatically actuated microelectromechanical-system (MEMS) resonators. The device consists of two mechanically uncoupled clamped-clamped arch resonators, designed such that their resonance frequencies are independently tuned to obtain the desired narrow passband. Through the electrothermal and electrostatic actuation, the stiffness of the structures is highly tunable. We experimentally demonstrate significant percentage tuning (~125%) of the filter center frequency by varying the applied electrothermal voltages to the resonating structures, while maintaining a narrow passband of 550 ± 50 Hz, a stopband rejection of >17 dB, and a passband ripple ≤ 2.5 dB. An analytical model based on the Euler-Bernoulli beam theory is used to confirm the behavior of the filter, and the origin of the high tunability using electrothermal actuation is discussed.

  7. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua; Sha, Yi-Gao

    1995-01-01

    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  8. Impact ionisation rate calculations in wide band gap semiconductors

    International Nuclear Information System (INIS)

    Harrison, D.

    1998-09-01

    Calculations of band-to-band impact ionisation rates performed in the semi-classical Fermi's Golden Rule approximation are presented here for the semiconductors GaAs, In 0.53 Ga 0.47 As and Si 0.5 Ge 0.5 at 300K. The crystal band structure is calculated using the empirical pseudopotential method. To increase the speed with which band structure data at arbitrary k-vectors can be obtained, an interpolation scheme has been developed. Energies are quadratically interpolated on adapted meshes designed to ensure accuracy is uniform throughout the Brillouin zone, and pseudowavefunctions are quadratically interpolated on a regular mesh. Matrix elements are calculated from the pseudowavefunctions, and include the terms commonly neglected in calculations for narrow band gap materials and an isotropic approximation to the full wavevector and frequency dependent dielectric function. The numerical integration of the rate over all distinct energy and wavevector conserving transitions is performed using two different algorithms. Results from each are compared and found to be in good agreement, indicating that the algorithms are reliable. The rates for electrons and holes in each material are calculated as functions of the k-vector of the impacting carriers, and found to be highly anisotropic. Average rates for impacting carriers at a given energy are calculated and fitted to Keldysh-type expressions with higher than quadratic dependence of the rate on energy above threshold being obtained in all cases. The average rates calculated here are compared to results obtained by other workers, with reasonable agreement being obtained for GaAs, and poorer agreement obtained for InGaAs and SiGe. Possible reasons for the disagreement are investigated. The impact ionisation thresholds are examined and k-space and energy distributions of generated carriers are determined. The role of threshold anisotropy, variation in the matrix elements and the shape of the bands in determining

  9. Natural Convective Heat Transfer from Narrow Plates

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    Natural Convective Heat Transfer from Narrow Plates deals with a heat transfer situation that is of significant practical importance but which is not adequately dealt with in any existing textbooks or in any widely available review papers. The aim of the book is to introduce the reader to recent studies of natural convection from narrow plates including the effects of plate edge conditions, plate inclination, thermal conditions at the plate surface and interaction of the flows over adjacent plates. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed.

  10. A naturally narrow positive-parity Θ+

    International Nuclear Information System (INIS)

    Carlson, Carl E.; Carone, Christopher D.; Kwee, Herry J.; Nazaryan, Vahagn

    2004-01-01

    We present a consistent color-flavor-spin-orbital wave function for a positive-parity Θ + that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive-parity Θ + lighter than its negative-parity counterpart. We consider decays of the Θ + and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths

  11. Narrow Escape of Interacting Diffusing Particles

    Science.gov (United States)

    Agranov, Tal; Meerson, Baruch

    2018-03-01

    The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian particle from a bounded domain through a small hole on the domain's boundary. Here we develop a formalism which allows us to evaluate the nonescape probability of a gas of diffusing particles that may interact with each other. In some cases the nonescape probability allows us to evaluate the MET of the first particle. The formalism is based on the fluctuating hydrodynamics and the recently developed macroscopic fluctuation theory. We also uncover an unexpected connection between the narrow escape of interacting particles and thermal runaway in chemical reactors.

  12. Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor

    KAUST Repository

    Lan, Yann Wen

    2016-09-05

    The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.

  13. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  14. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Band gap effects of hexagonal boron nitride using oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  16. Band gap effects of hexagonal boron nitride using oxygen plasma

    International Nuclear Information System (INIS)

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-01-01

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing

  17. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grating and etalon in combination, grazing angle of incidence, entangled cavity ...

  18. Definition of Quality Criteria of the Technological Process of Narrow Web UV-Printing

    Directory of Open Access Journals (Sweden)

    Volodymyr Shybanov

    2013-11-01

    Full Text Available The application of Narrow Web UV-flexographic printing has several advantages compared with offset printing. In particular, they are the lack of the operation of water-ink balance setting in the technological process, the ability to print on a wide range of materials and so on. Though the imprint quality is clearly based on standards in offset printing, there are no clearly indicated requirements for Narrow Web UV flexographic printing. The absence of such requirements on quality parameters of the technological process of Narrow Web UV-Printing predetermined conducting its analysis with the help of expert surveys.

  19. Definition of Quality Criteria of the Technological Process of Narrow Web UV-Printing

    OpenAIRE

    Volodymyr Shybanov; Vsevolod Senkivsky; Vyacheslav Repeta; Natalia Gurgal

    2013-01-01

    The application of Narrow Web UV-flexographic printing has several advantages compared with offset printing. In particular, they are the lack of the operation of water-ink balance setting in the technological process, the ability to print on a wide range of materials and so on. Though the imprint quality is clearly based on standards in offset printing, there are no clearly indicated requirements for Narrow Web UV flexographic printing. The absence of such requirements on quality parameters o...

  20. Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence

    Directory of Open Access Journals (Sweden)

    G. Baskaran

    2006-01-01

    Full Text Available In a recent X-ray absorption study in boron doped diamond, Nakamura et al. have seen a well isolated narrow boron impurity band in non-superconducting samples and an additional narrow band at the chemical potential in a superconducting sample. We interpret the beautiful spectra as evidence for upper Hubbard band of a Mott insulating impurity band and an additional metallic 'mid-gap band' of a conducting 'self-doped' Mott insulator. This supports the basic framework of a recent theory of the present author of strongly correlated impurity band superconductivity (impurity band resonating valence bond, IBRVB theory in a template of a wide-gap insulator, with no direct involvement of valence band states.

  1. Vibration-tolerant narrow-linewidth semiconductor disk laser using novel frequency-stabilisation schemes

    Science.gov (United States)

    Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.

    2018-02-01

    This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.

  2. A study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prelas, M.A.

    1996-01-24

    This report describes progress made to develop a high bandgap photovoltaic materials for direct conversion to electricity of excimer radiation produced by fission energy pumped laser. This report summarizes the major achievements in sections. The first section covers n-type diamond. The second section covers forced diffusion. The third section covers radiation effects. The fourth section covers progress in Schottky barrier and heterojunction photovoltaic cells. The fifth section covers cell and reactor development.

  3. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    Science.gov (United States)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  4. Evolution of deformation velocity in narrowing for Zircaloy 2

    Energy Technology Data Exchange (ETDEWEB)

    Cetlin, P R [Minas Gerais Univ., Belo Horizonte (Brazil). Dept. de Engenharia Metalurgica; Okuda, M Y [Goias Univ., Goiania (Brazil). Inst. de Matematica e Fisica

    1980-09-01

    Some studies on the deformation instability in strain shows that the differences in this instability may lead to localized narrowing or elongated narrowing, for Zircaloy-2. The variation of velocity deformation with the narrowing evolution is expected to be different for these two cases. The mentioned variation is discussed, a great difference in behavior having been observed for the case of localized narrowing.

  5. Optical properties of ZnTe epilayers with submonolayer planar narrow gap inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Agekian, V. F.; Filosofov, N. G., E-mail: n.filosofov@spbu.ru; Serov, A. Yu. [St. Petersburg State University, Universitetskaya nab. 7 – 9, 199034 Si. Petersburg (Russian Federation); Shtrom, I. V. [St. Petersburg State University, Universitetskaya nab. 7 – 9, 199034 Si. Petersburg (Russian Federation); Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); St. Petersburg Academic University — Nanotechnology Research and Education Centre, Russian Academy of Sciences, Khlopina 8/3, 194021 St. Petersburg (Russian Federation); Karczewski, G. [Institute of Physics Polish Academy of Science, Ał. Lotnikov 32/46, 02-668 Warsaw (Poland)

    2016-06-17

    The exciton luminescence of ZnTe matrices with the embedded CdTe submonolayer inclusions is investigated. It is shown that the exciton localized by CdTe narrow gap component dominates in the emission spectrum. These localized excitons are coupled mainly with the phonons belonging to the cadmium enriched layers. The real distribution of cadmium in the direction of the heterostructure growth is determined from the energy position of the localized exciton emission bands.

  6. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...

  7. STUDI BANDING PELAPISAN MATERIAL SKD11 DENGAN METODE PHYSICAL VAPOUR DEPOSITION DAN THERMAL DIFUSION PADA KOMPONEN INSERT DIES MESIN STAMPING PRESS

    Directory of Open Access Journals (Sweden)

    Robertus Suryo Bisono

    2017-02-01

    Full Text Available Telah dilakukan pelapisan menggunakan Titanium Alumunium Nitrid (TIAlN dengan metode PVD Coating (Physical Vapour Diposition dan TD (Thermal Difusion  untuk perlakuan permukaan baja perkakas SKD11 sebagai material Insert Die komponen mesin Stamping Press setelah perlakuan hardening. Perlakuan permukaan dimaksudkan untuk meningkatkan kualitas permukaan khususnya kekerasan dan perubahan struktur mikro yang terjadi. Untuk mengetahui tingkat keberhasilan dari perlakuan permukaan tersebut dilakukan dengan memvariasi waktu proses, masing masing 2 sample diproses pada 4 jam, 5 jam dan 6 jam dengan temperatur  proses masing-masing  400ᴼ C. Kemudian satu dari tiap variable sample tersebut di panaskan pada suhu 1000ᴼ C selama 1 jam, pendinginan dilalukan dengan udara bebas tanpa proses quenching Untuk mengetahui hasilnya dilakukan uji kekerasan mikro Vickers, pengamatan struktur mikro Scanning Eectron Microscope (SEM, dan pengujian komposisi dengan Energy Defersif Sepectroscopy (EDS untuk mengetahui tingkat penyerapan material terdifusi. Hasil menunjukan bahwa SKD11 yang dilapisi TiAlN dengan metode PVD selama 6 jam menghasilkan lapisan yang paling keras yaitu 1363 HV dengan ketebalan lapisan 5,3µm. Proses pemanasan 1000⁰C selama 1 jam pada sample mengakibatkan penurunan kekerasan sample dan lapisan permukaan sample menjadi lebih tebal hingga 50µm. Penambahan lapisan diakibatkan oleh terdifusinya atom atom yang menyusun lapisan TiAlN ke dalam substrat serta keluarnya atom atom penyusun lapisan hingga membentuk lapisan kompleks.

  8. 75 FR 11908 - Narrow Woven Ribbons With Woven Selvedge From China and Taiwan

    Science.gov (United States)

    2010-03-12

    ...)] Narrow Woven Ribbons With Woven Selvedge From China and Taiwan AGENCY: United States International Trade...(b) of the Act (19 U.S.C. 1673d(b)) to determine whether an industry in the United States is materially injured or threatened with material injury, or the establishment of an industry in the United...

  9. Analytical approximations for wide and narrow resonances

    International Nuclear Information System (INIS)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2005-01-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U 238 were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  10. Analytical approximations for wide and narrow resonances

    Energy Technology Data Exchange (ETDEWEB)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: aquilino@lmp.ufrj.br

    2005-07-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U{sup 238} were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  11. Dose evaluation of narrow-beam

    International Nuclear Information System (INIS)

    Goto, Shinichi

    1999-01-01

    Reliability of the dose from the narrow photon beam becomes more important since the single high-dose rate radiosurgery becoming popular. The dose evaluation for the optimal dose is difficult due to absence of lateral electronic equilibrium. Data necessary for treatment regimen are TMR (tissue maximum ratio), OCR (off center ratio) and S c,p (total scatter factor). The narrow-beam was 10 MV X-ray from Varian Clinac 2100C equipped with cylindrical Fischer collimator CBI system. Detection was performed by Kodak XV-2 film, a PTW natural diamond detector M60003, Scanditronics silicon detector EDD-5 or Fujitec micro-chamber FDC-9.4C. Phantoms were the water equivalent one (PTW, RW3), water one (PTW, MP3 system) and Wellhofer WP600 system. Factors above were actually measured to reveal that in the dose evaluation of narrow photon beam, TMR should be measured by micro-chamber, OCR, by film, and S c,p , by the two. The use of diamond detector was recommended for more precise measurement and evaluation of the dose. The importance of water phantom in the radiosurgery system was also shown. (K.H.)

  12. Active Multispectral Band Selection and Reflectance Measurement System

    National Research Council Canada - National Science Library

    Rennich, Bradley

    1999-01-01

    .... To aid in the selection of these bands, a novel multispectral band selection technique is presented based on the cross-correlation of the material class reflectance spectra over a wavelength range of 1 - 5 microns...

  13. Interactions of low-power photons with natural opals—PBG materials, photonic control, natural metamaterials, spontaneous laser emissions, and band-gap boundary responses

    International Nuclear Information System (INIS)

    Stem, Michelle R.

    2012-01-01

    Four views of each of the opal research specimens in white light (for in-article or cover), in the same order as the specimens depicted in Fig. 3 of the main manuscript. A.On the left: 1.5 carat oval cabochon precious fire opal. B.In the center: 2.5 carats faceted fancy shield precious fire contra luz with mild adularescence. C.On the right: 5.0 carats round cabochon precious crystal opal with blue adularescence. Highlights: ► Emission of micro-lasers from microspheroid cluster boundary zones (quantum dots). ► Lasers illuminated or fluoresced the intra-opal structures of microspheroid photonic glass clusters. ► Microspheroid boundaries are durable to low power light sources. ► Display of previously unknown low power photonic optic properties. ► The research specimens are natural metamaterials. - Abstract: One overall goal of this research was to examine types of naturally-occurring opals that exhibit photonic control to learn about previously-unknown properties of naturally occurring photonic control that may be developed for broader applications. Three different photon sources were applied consecutively to three different types of natural, flawless, gem-quality precious opals. Two photon sources were lasers (green and red) and one was simulated daylight tungsten white. As each type of precious opal was exposed to each of the photon sources, the respective refractions, reflections, and transmissions were studied. This research is the first to show that applying various pleochroic and laser photon sources to these types of opals revealed significant information regarding naturally occurring photonic control, metamaterials, spontaneous laser emissions, and microspheroid cluster (inter-PBG zone) boundary effects. Plus, minimizing ambient light and the use of low power photon sources were critical to observing the properties regarding this photonic materials research. This research yielded information applicable to the development of materials to advance

  14. Narrow-Band Processing and Fusion Approach for Explosive Hazard Detection in FLGPR

    Science.gov (United States)

    2011-01-01

    Keller, K. C. Ho, Tuan T. Ton, David C. Wong, Mehrdad Soumekh University of Missouri - Columbia Office of Sponsored Programs The Curators of the...Timothy C. Havens* a , James M. Keller a , K.C. Ho a , Tuan T. Ton b , David C. Wong b , and Mehrdad Soumekh c a Dept. of Electrical and Computer...ARO. REFERENCES [1] Cremer , F., Schavemaker, J.G., de Jong, W., and Schutte, K., "Comparison of vehicle-mounted forward-looking polarimetric

  15. Assessing the importance of frustration in a narrow-band strongly correlated electronic chain

    International Nuclear Information System (INIS)

    Lal, Siddhartha; Laad, Mukul S.

    2007-08-01

    We study a one-dimensional extended Hubbard model with longer-range Coulomb interactions at quarter-filling in the strong coupling limit. In this limit, we find the one dimensional transverse field Ising model (TFIM) to be the effective Hamiltonian governing the dynamics of the charge degrees of freedom. We find two different charge-ordered (CO) ground states as the strength of the longer range interactions is varied. At lower energies, these CO states drive two different spin-ordered ground states. A variety of response functions computed here bear a remarkable resemblance to recent experimental observations for organic TMTSF systems, and so we propose that these systems are proximate to a QCP associated with T = 0 charge order. (author)

  16. Interaction Structures for Narrow-Band Millimeter-Wave Communications TWTs.

    Science.gov (United States)

    1981-04-01

    comb would be cut from a single piece of copper, probably by a reliable but inexpensive technique such as electroerosion or "chemical milling". All...dimensional. These features would facilitate fabrication by chemical (photo-lithographic) or laser milling as well as by electroerosion with traveling...c, d) has also been implemented since this design should be more robust as well as compatible with electroerosion cutting using a traveling-wire

  17. Fully Modified Narrow-Band Least Squares Estimation of Weak Fractional Cointegration

    DEFF Research Database (Denmark)

    Nielsen, Morten Ørregaard; Frederiksen, Per

    regressors and errors at the zero frequency. We show that in the absence of this condition, the NBLS estimator is asymptotically biased, and also that the bias can be consistently estimated. Consequently, we introduce a fully modi…ed NBLS estimator which eliminates the bias, and indeed enjoys a faster rate...

  18. Tunable Narrow Band Gap Absorbers For Ultra High Efficiency Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bedair, Salah M. [North Carolina State Univ., Raleigh, NC (United States); Hauser, John R. [North Carolina State Univ., Raleigh, NC (United States); Elmasry, Nadia [North Carolina State Univ., Raleigh, NC (United States); Colter, Peter C. [North Carolina State Univ., Raleigh, NC (United States); Bradshaw, G. [North Carolina State Univ., Raleigh, NC (United States); Carlin, C. Z. [North Carolina State Univ., Raleigh, NC (United States); Samberg, J. [North Carolina State Univ., Raleigh, NC (United States); Edmonson, Kenneth [Spectrolab, Inc., Sylmar, CA (United States)

    2012-07-31

    We report on a joint research program between NCSU and Spectrolab to develop an upright multijunction solar cell structure with a potential efficiency exceeding the current record of 41.6% reported by Spectrolab. The record efficiency Ge/GaAs/InGaP triple junction cell structure is handicapped by the fact that the current generated by the Ge cell is much higher than that of both the middle and top cells. We carried out a modification of the record cell structure that will keep the lattice matched condition and allow better matching of the current generated by each cell. We used the concept of strain balanced strained layer superlattices (SLS), inserted in the i-layer, to reduce the bandgap of the middle cell without violating the desirable lattice matched condition. For the middle GaAs cell, we have demonstrated an n-GaAs/i-(InGaAs/GaAsP)/p-GaAs structure, where the InxGa1-xAs/GaAs1-yPy SLS is grown lattice matched to GaAs and with reduced bandgap from 1.43 eV to 1.2 eV, depending upon the values of x and y.

  19. Modeling auditory processing of amplitude modulation I. Detection and masking with narrow-band carriers

    NARCIS (Netherlands)

    Dau, T.; Kollmeier, B.; Kohlrausch, A.G.

    1997-01-01

    This paper presents a quantitative model for describing data from modulation-detection and modulation-masking experiments, which extends the model of the "effective" signal processing of the auditory system described in Dau et al. [J. Acoust. Soc. Am. 99, 3615–3622 (1996)]. The new element in the

  20. Narrow band imaging is a new technique in visualization of recurrent respiratory papillomatosis

    NARCIS (Netherlands)

    Tjon Pian Gi, Robin E A; Halmos, Gyorgy B; van Hemel, Bettien M; van den Heuvel, Edwin R; van der Laan, Bernard F A M; Plaat, Boudewijn E C; Dikkers, Frederik G

    Objectives/Hypothesis: Recurrent respiratory papillomatosis (RRP) is a rare, benign, wart-like disease for which no curative treatment exists. The goal of treatment is total surgical removal of the epithelial lesions to keep the airway open and the voice sufficient. Therefore, it is essential to

  1. Hemispherical-field-of-view, nonimaging narrow-band spectral filter

    Science.gov (United States)

    Miles, R. B.; Webb, S. G.; Griffith, E. L.

    1981-01-01

    Two compound parabolic concentrators are used to create a 180-deg-field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  2. Erbium-doped twin-core fibre narrow-band filter for fibre lasers

    Czech Academy of Sciences Publication Activity Database

    Peterka, Pavel; Kaňka, Jiří

    2001-01-01

    Roč. 33, 4/5 (2001), s. 571-581 ISSN 0306-8919. [Optical Waveguide Theory and Numerical Modelling /8./. Prague, 26.05.2000-27.05.2000] R&D Projects: GA ČR GA102/99/M057; GA ČR GA102/99/0393; GA AV ČR IAC2067902 Grant - others:EU COST(XE) OC 265.10 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibre lasers * optical fibre filters * optical fibre couplers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.706, year: 2001 http://www.ufe.cz/~peterka/opera/OQE_Peterka01_fulltext.pdf

  3. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE NARROW-BAND SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Korngut, P. M.; Bock, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Renbarger, T.; Keating, B. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Arai, T.; Matsumoto, T.; Matsuura, S. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J.; Hristov, V.; Lanz, A.; Levenson, L. R.; Mason, P. [Department of Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Brown, S. W.; Lykke, K. R.; Smith, A. W. [Sensor Science Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Shultz, B., E-mail: pkorngut@caltech.edu [Materion Barr Precision Optics and Thin Film Coatings, Westford, MA 01886 (United States); and others

    2013-08-15

    We have developed a near-infrared spectrometer designed to measure the absolute intensity of the solar 854.2 nm Ca II Fraunhofer line, scattered by interplanetary dust, in the zodiacal light (ZL) spectrum. Based on the known equivalent line width in the solar spectrum, this measurement can derive the zodiacal brightness, testing models of the ZL based on morphology that are used to determine the extragalactic background light in absolute photometry measurements. The spectrometer is based on a simple high-resolution tipped filter placed in front of a compact camera with wide-field refractive optics to provide the large optical throughput and high sensitivity required for rocket-borne observations. We discuss the instrument requirements for an accurate measurement of the absolute ZL brightness, the measured laboratory characterization, and the instrument performance in flight.

  4. Stochastic algorithm for channel optimized vector quantization: application to robust narrow-band speech coding

    International Nuclear Information System (INIS)

    Bouzid, M.; Benkherouf, H.; Benzadi, K.

    2011-01-01

    In this paper, we propose a stochastic joint source-channel scheme developed for efficient and robust encoding of spectral speech LSF parameters. The encoding system, named LSF-SSCOVQ-RC, is an LSF encoding scheme based on a reduced complexity stochastic split vector quantizer optimized for noisy channel. For transmissions over noisy channel, we will show first that our LSF-SSCOVQ-RC encoder outperforms the conventional LSF encoder designed by the split vector quantizer. After that, we applied the LSF-SSCOVQ-RC encoder (with weighted distance) for the robust encoding of LSF parameters of the 2.4 Kbits/s MELP speech coder operating over a noisy/noiseless channel. The simulation results will show that the proposed LSF encoder, incorporated in the MELP, ensure better performances than the original MELP MSVQ of 25 bits/frame; especially when the transmission channel is highly disturbed. Indeed, we will show that the LSF-SSCOVQ-RC yields significant improvement to the LSFs encoding performances by ensuring reliable transmissions over noisy channel.

  5. Narrow band flame emission from dieseline and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Wu, Zengyang; Jing, Wei; Zhang, Weibo; Roberts, William L.; Fang, Tiegang

    2016-01-01

    emissions were studied. Ambient oxygen concentration was varied from 12% to 21% and three ambient temperatures were selected: 800 K, 1000 K and 1200 K. An intensified CCD camera coupled with bandpass filters was employed to capture the quasi-steady state

  6. Characterization of VHF radar observations associated with equatorial Spread F by narrow-band optical measurements

    Directory of Open Access Journals (Sweden)

    R. Sekar

    2004-09-01

    Full Text Available The VHF radars have been extensively used to investigate the structures and dynamics of equatorial Spread F (ESF irregularities. However, unambiguous identification of the nature of the structures in terms of plasma depletion or enhancement requires another technique, as the return echo measured by VHF radar is proportional to the square of the electron density fluctuations. In order to address this issue, co-ordinated radar backscatter and thermospheric airglow intensity measurements were carried out during March 2003 from the MST radar site at Gadanki. Temporal variations of 630.0-nm and 777.4-nm emission intensities reveal small-scale ("micro" and large-scale ("macro" variations during the period of observation. The micro variations are absent on non-ESF nights while the macro variations are present on both ESF and non-ESF nights. In addition to the well-known anti-correlation between the base height of the F-region and the nocturnal variation of thermospheric airglow intensities, the variation of the base height of the F-layer, on occasion, is found to manifest as a bottomside wave-like structure, as seen by VHF radar on an ESF night. The micro variations in the airglow intensities are associated with large-scale irregular plasma structures and found to be in correspondence with the "plume" structures obtained by VHF radar. In addition to the commonly observed depletions with upward movement, the observation unequivocally reveals the presence of plasma enhancements which move downwards. The observation of enhancement in 777.4-nm airglow intensity, which is characterized as plasma enhancement, provides an experimental verification of the earlier prediction based on numerical modeling studies.

  7. The theory of electrocarrying in systems with narrow energetic bands in magnetic fields

    International Nuclear Information System (INIS)

    Nakonechnij, O.G.; Repets'kij, S.P.; Stashchuk, B.V.

    2009-01-01

    The method for calculation of conductivity of disorder systems with strong electron correlations is developed. The method is based on the theory of multiple scattering. The cluster expansion is derived for two-particle Green's function of a disorder system with the account electron-electron interaction. As a zero one-site approximation of that expansion it is chosen the coherent potential approximation. The received expressions allow investigating the phenomenon of spin transport in strong correlated systems.

  8. Band gap narrowing and photocatalytic studies of Nd 3+ ion-doped ...

    Indian Academy of Sciences (India)

    The XRD patterns of all the samples are identified as tetrag- onal rutile-type SnO2 .... radiation in 2θ ranging from 20◦ to 80◦ at a scanning rate of 0.02◦/s. The morphology ..... Mazutti M A 2012 Water Air Soil Pollut. 223 5773. [16] Adnan R ...

  9. Characterization of 3 to 5 Micron Thermal Imagers and Analysis of Narrow Band Images

    National Research Council Canada - National Science Library

    Quek, Yew S

    2004-01-01

    ...) and the Minimum Resolvable Temperature (MRT). An available thermal imager, the Cincinnati Electronics IRRIS-256LN, and a newly purchased thermal imager, the Indigo Systems Merlin InSb Laboratory Camera, were investigated and compared...

  10. Band gap narrowing and photocatalytic studies of Nd 3+ ion-doped

    Indian Academy of Sciences (India)

    Pure and Nd3+-doped tin oxide (SnO2) nanoparticles have been prepared by the sol–gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM, energydispersive spectroscopy and UV–visible spectroscopy. The XRD patterns of all the samples are identified as ...

  11. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG.

    Science.gov (United States)

    Dolasinski, Brian; Powers, Peter E; Haus, Joseph W; Cooney, Adam

    2015-02-09

    We report a widely tunable narrowband terahertz (THz) source via difference frequency generation (DFG). A narrowband THz source uses the output of dual seeded periodically poled lithium niobate (PPLN) optical parametric generators (OPG) combined in the nonlinear crystal 4-dimthylamino-N-methyl-4-stilbazolium-tosylate (DAST). We demonstrate a seamlessly tunable THZ output that tunes from 1.5 THz to 27 THz with a minimum bandwidth of 3.1 GHz. The effects of dispersive phase matching, two-photon absorption, and polarization were examined and compared to a power emission model that consisted of the current accepted parameters of DAST.

  12. Two Herbig-Haro objects discovered by narrow-band CCD imagery

    International Nuclear Information System (INIS)

    Ogura, Katsuo

    1990-01-01

    Two new Herbig-Haro objects, HH 132 and HH 133, have been discovered by CCD imagery behind interference filters on and just off the forbidden S II lines in the red. They are located in Puppis R2 and in Vela R2. Possible locations of their exciting sources are discussed. 12 refs

  13. Pool Boiling CHF in Inclined Narrow Annuli

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2010-01-01

    Pool boiling heat transfer has been studied extensively since it is frequently encountered in various heat transfer equipment. Recently, it has been widely investigated in nuclear power plants for application to the advanced light water reactors designs. Through the review on the published results it can be concluded that knowledge on the combined effects of the surface orientation and a confined space on pool boiling heat transfer is of great practical importance and also of great academic interest. Fujita et al. investigated pool boiling heat transfer, from boiling inception to the critical heat flux (CHF, q' CHF ), in a confined narrow space between heated and unheated parallel rectangular plates. They identified that both the confined space and the surface orientation changed heat transfer much. Kim and Suh changed the surface orientation angles of a downward heating rectangular channel having a narrow gap from the downward-facing position (180 .deg.) to the vertical position (90 .deg.). They observed that the CHF generally decreased as the inclination angle (θ ) increased. Yao and Chang studied pool boiling heat transfer in a confined heat transfer for vertical narrow annuli with closed bottoms. They observed that when the gap size ( s ) of the annulus was decreased the effect of space confinement to boiling heat transfer increased. The CHF was occurred at much lower value for the confined space comparing to the unconfined pool boiling. Pool boiling heat transfer in narrow horizontal annular crevices was studied by Hung and Yao. They concluded that the CHF decreased with decreasing gap size of the annuli and described the importance of the thin film evaporation to explain the lower CHF of narrow crevices. The effect of the inclination angle on the CHF on countercurrent boiling in an inclined uniformly heated tube with closed bottoms was also studied by Liu et al. They concluded that the CHF reduced with the inclination angle decrease. A study was carried out

  14. Coded excitation and sub-band processing for blood velocity estmation in medical ultrasound

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Jensen, Jørgen Arendt

    2007-01-01

    This paper investigates the use of broadband coded excitation and subband processing for blood velocity estimation in medical ultrasound. In conventional blood velocity estimation a long (narrow-band) pulse is emitted and the blood velocity is estimated using an auto-correlation based approach....... However, the axial resolution of the narrow-band pulse is too poor for brightness-mode (B-mode) imaging. Therefore, a separate transmission sequence is used for updating the B-mode image, which lowers the overall frame-rate of the system. By using broad-band excitation signals, the backscattered received...... signal can be divided into a number of narrow frequency bands. The blood velocity can be estimated in each of the bands and the velocity estimates can be averaged to form an improved estimate. Furthermore, since the excitation signal is broadband, no secondary B-mode sequence is required, and the frame...

  15. Effect of conduction band nonparabolicity on the optical properties in ...

    Indian Academy of Sciences (India)

    the bulk conduction band edge, the correction due to nonparabolicity can be important. [9,10]. In a narrow QW under a strong magnetic field, the optical absorption coefficients calculated with the nonparabolicity correction shows remarkable deviation from results obtained using parabolic energy approximation [11].

  16. Cervical spinal canal narrowing in idiopathic syringomyelia

    International Nuclear Information System (INIS)

    Struck, Aaron F.; Carr, Carrie M.; Shah, Vinil; Hesselink, John R.; Haughton, Victor M.

    2016-01-01

    The cervical spine in Chiari I patient with syringomyelia has significantly different anteroposterior diameters than it does in Chiari I patients without syringomyelia. We tested the hypothesis that patients with idiopathic syringomyelia (IS) also have abnormal cervical spinal canal diameters. The finding in both groups may relate to the pathogenesis of syringomyelia. Local institutional review boards approved this retrospective study. Patients with IS were compared to age-matched controls with normal sagittal spine MR. All subjects had T1-weighted spin-echo (500/20) and T2-weighted fast spin-echo (2000/90) sagittal cervical spine images at 1.5 T. Readers blinded to demographic data and study hypothesis measured anteroposterior diameters at each cervical level. The spinal canal diameters were compared with a Mann-Whitney U test. The overall difference was assessed with a Friedman test. Seventeen subjects were read by two reviewers to assess inter-rater reliability. Fifty IS patients with 50 age-matched controls were studied. IS subjects had one or more syrinxes varying from 1 to 19 spinal segments. Spinal canal diameters narrowed from C1 to C3 and then enlarged from C5 to C7 in both groups. Diameters from C2 to C4 were narrower in the IS group (p < 0.005) than in controls. The ratio of the C3 to the C7 diameters was also smaller (p = 0.004) in IS than controls. Collectively, the spinal canal diameters in the IS were significantly different from controls (Friedman test p < 0.0001). Patients with IS have abnormally narrow upper and mid cervical spinal canal diameters and greater positive tapering between C3 and C7. (orig.)

  17. Cervical spinal canal narrowing in idiopathic syringomyelia

    Energy Technology Data Exchange (ETDEWEB)

    Struck, Aaron F. [Massachusetts General Hospital, Department of Neurology, Boston, MA (United States); Carr, Carrie M. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Shah, Vinil [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Hesselink, John R. [University of California San Diego, Department of Radiology, San Diego, CA (United States); Haughton, Victor M. [University of Wisconsin, Department of Radiology, Madison, WI (United States)

    2016-08-15

    The cervical spine in Chiari I patient with syringomyelia has significantly different anteroposterior diameters than it does in Chiari I patients without syringomyelia. We tested the hypothesis that patients with idiopathic syringomyelia (IS) also have abnormal cervical spinal canal diameters. The finding in both groups may relate to the pathogenesis of syringomyelia. Local institutional review boards approved this retrospective study. Patients with IS were compared to age-matched controls with normal sagittal spine MR. All subjects had T1-weighted spin-echo (500/20) and T2-weighted fast spin-echo (2000/90) sagittal cervical spine images at 1.5 T. Readers blinded to demographic data and study hypothesis measured anteroposterior diameters at each cervical level. The spinal canal diameters were compared with a Mann-Whitney U test. The overall difference was assessed with a Friedman test. Seventeen subjects were read by two reviewers to assess inter-rater reliability. Fifty IS patients with 50 age-matched controls were studied. IS subjects had one or more syrinxes varying from 1 to 19 spinal segments. Spinal canal diameters narrowed from C1 to C3 and then enlarged from C5 to C7 in both groups. Diameters from C2 to C4 were narrower in the IS group (p < 0.005) than in controls. The ratio of the C3 to the C7 diameters was also smaller (p = 0.004) in IS than controls. Collectively, the spinal canal diameters in the IS were significantly different from controls (Friedman test p < 0.0001). Patients with IS have abnormally narrow upper and mid cervical spinal canal diameters and greater positive tapering between C3 and C7. (orig.)

  18. Impedance self-matching ultra-narrow linewidth fiber resonator by use of a tunable π-phase-shifted FBG.

    Science.gov (United States)

    Jing, Mingyong; Yu, Bo; Hu, Jianyong; Hou, Huifang; Zhang, Guofeng; Xiao, Liantuan; Jia, Suotang

    2017-05-15

    In this paper, we present a novel ultra-narrow linewidth fiber resonator formed by a tunable polarization maintaining (PM) π-phase-shifted fiber Bragg grating and a PM uniform fiber Bragg grating with a certain length of PM single mode fiber patch cable between them. Theoretical prediction shows that this resonator has ultra-narrow linewidth resonant peaks and is easy to realize impedance matching. We experimentally obtain 3 MHz narrow linewidth impedance matched resonant peak in a 7.3 m ultra-long passive fiber cavity. The impedance self-matching characteristic of this resonator also makes itself particularly suitable for use in ultra-sensitive sensors, ultra-narrow band rejection optical filters and fiber lasers applications.

  19. Volume dips; spot price ranges narrow

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is the September 1994 uranium market summary. Volume in the spot concentrates market fell below 1 million lbs U3O8. In total, twelve deals took place compared to 28 deals in August. Of the twelve deals, three took place in the spot concentrates market, two took place in the medium and long-term market, three in the conversion market, and four in the enrichment market. Restricted prices weakened, but unrestricted prices firmed slightly. The enrichment price range narrowed a bit

  20. Critical unpairing currents in narrow niobium films

    International Nuclear Information System (INIS)

    Gershenzon, M.E.; Gubankov, V.N.

    1979-01-01

    Investigated are the dependences of critical currents of narrow ( with the width of W=0.5-15 μm) superconducting niobium films on temperature and a magnetic field. The proposed method of film production with the width of the 1μm order and with small edge inhomogeneities ((<=500 A) permitted to realize the Ginsburg-Landau unpairing currents in the wide range of temperatures. The correct comparison with the theory showed that the unpairing currents are observed if W(< or approximately) 2delta, where delta is the effective depth of the penetration of the perpendicular magnetic field

  1. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  2. Narrow-Bicliques: Cryptanalysis of Full IDEA

    DEFF Research Database (Denmark)

    Khovratovich, D.; Leurent, G.; Rechberger, C.

    2012-01-01

    We apply and extend the recently introduced biclique framework to IDEA and for the first time describe an approach to noticeably speed-up key-recovery for the full 8.5 round IDEA.We also show that the biclique approach to block cipher cryptanalysis not only obtains results on more rounds, but also...... extended with ways to allow for a significantly reduced data complexity with everything else being equal. For this we use available degrees of freedom as known from hash cryptanalysis to narrow the relevant differential trails. Our cryptanalysis is of high computational complexity, and does not threaten...

  3. Broadened band C-telecom and intense upconversion emission of Er{sup 3+}/Yb{sup 3+} co-doped CaYAlO{sub 4} luminescent material obtained by an easy route

    Energy Technology Data Exchange (ETDEWEB)

    Perrella, R.V.; Schiavon, M.A. [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del Rei, MG (Brazil); Pecoraro, E.; Ribeiro, S.J.L. [UNESP, Institute of Chemistry, P.O. Box 355, 14800-970 Araraquara, SP (Brazil); Ferrari, J.L., E-mail: ferrari@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del Rei, MG (Brazil)

    2016-10-15

    This work reports on photoluminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped CaYAlO{sub 4} in powder form, synthesized by an easy route using citric acid as ligand to form complex precursor. The 1.2 mol% of Yb{sup 3+} was fixed, while the amount of Er{sup 3+} changed in 0.5, 1.5 and 3 mol% in order to evaluate the photoluminescence properties as a function of the Er{sup 3+} concentration. The structural and thermal properties of the viscous solutions and powder materials obtained after the heat-treatment at 1000, 1100 and 1200 °C for 4 h were evaluated by XRD, FTIR and TG/DTA analysis. The results showed the formation of pure CaYAlO{sub 4} tetragonal crystalline phase after heat-treatment at 1100 °C and 1200 °C. Intense emission in the visible region under excitation at 980 nm was attributed to upconversion process, from Er{sup 3+} intra-configurational f–f transitions. The emissions were assigned to the transitions {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} (green region), and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} (red region) energy levels. The ratio between emission band integrated areas assigned to the red and green emissions increased as a function of Er{sup 3+} concentration. Under excitation at 980 nm with 100 mW of power pump, the materials also showed intense and broadening emission with maximum at 1520 nm with FWHM of 84.74 nm for the sample CaYAlO{sub 4}:1.5% Er{sup 3+}/1.2% Yb{sup 3+} heat-treated at 1000 °C for 4 h. The photoluminescence properties showed that these materials are promising for use in C-telecom band as optical amplifier biological marker or/and solid-state laser devices under excitation at 980 nm.

  4. Narrow field electromagnetic sensor system and method

    International Nuclear Information System (INIS)

    McEwan, T.E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs

  5. A methodology to enlarge narrow stability windows

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Ewerton M.P.; Pastor, Jorge A.S.C.; Fontoura, Sergio A.B. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo

    2004-07-01

    The stability window in a wellbore design is defined by the difference between fracture pressure and collapse pressure. Deep water environments typically present narrow stability windows, because rocks have low strength due to under-compaction process. Often also, horizontal wells are drilled to obtain a better development of reservoirs placed in thin layers of sandstone. In this scenario, several challenges are faced when drilling in deep water. The traditional approach for predicting instabilities is to determine collapses and fractures at borehole wall. However, the initiation of rupture does not indicate that the borehole fails to perform its function as a wellbore. Thus, a methodology in which the stability window may be enlarged is desirable. This paper presents one practical analytical methodology that consists in allowing wellbore pressures smaller than the conventional collapse pressure, i.e., based upon failure on the borehole wall. This means that a collapse region (shear failure) will be developed around the borehole wall. This collapse region is pre-defined and to estimate its size is used a failure criterion. The aforementioned methodology is implemented in a user-friendly software, which can perform analyses of stress, pore pressure, formation failure, mud weight and mud salinity design for drilling in shale formations. Simulations of a wellbore drilling in a narrow stability window environment are performed to demonstrate the improvements of using the methodology. (author)

  6. Narrow resonances and short-range interactions

    International Nuclear Information System (INIS)

    Gelman, Boris A.

    2009-01-01

    Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q 0 | 0 --a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q 0 and a Breit-Wigner term of order Q 2 (δε) -1 which becomes dominant for δε 3 . Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.

  7. Fast IMRT with narrow high energy scanned photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, Bjoern; Straaring t, Sara Janek; Holmberg, Rickard; Naefstadius, Peder; Brahme, Anders [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm, Sweden and Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)

    2011-08-15

    Purpose: Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Methods: Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with geant4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. Results: The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm{sup 2} field, the authors used a spot matrix of 100 equal intensity

  8. Band anticrossing effects in highly mismatched semiconductor alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junqiao [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The first five chapters of this thesis focus on studies of band anticrossing (BAC) effects in highly electronegativity- mismatched semiconductor alloys. The concept of bandgap bowing has been used to describe the deviation of the alloy bandgap from a linear interpolation. Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero (for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin film deposition techniques have allowed the growth of semiconductor alloys composed of significantly different constituents with ever- improving crystalline quality (e.g., GaAs1-xNx and GaP1-xNx with x ~< 0.05). These alloys exhibit many novel and interesting properties including, in particular, a giant bandgap bowing (bowing parameters > 14 eV). A band anticrossing model has been developed to explain these properties. The model shows that the predominant bowing mechanism in these systems is driven by the anticrossing interaction between the localized level associated with the minority component and the band states of the host. In this thesis I discuss my studies of the BAC effects in these highly mismatched semiconductors. It will be shown that the results of the physically intuitive BAC model can be derived from the Hamiltonian of the many-impurity Anderson model. The band restructuring caused by the BAC interaction is responsible for a series of experimental observations such as a large bandgap reduction, an enhancement of the electron effective mass, and a decrease in the pressure coefficient of the fundamental gap energy. Results of further experimental investigations of the optical properties of quantum wells based on these materials will be also presented. It will be shown that the BAC interaction occurs not only between localized states and conduction band states at the Brillouin zone center, but also exists over all of k-space. Finally, taking ZnSTe and ZnSeTe as examples, I show that BAC also

  9. W-Band Sheet Beam Klystron Design

    International Nuclear Information System (INIS)

    Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.; Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.

    2011-01-01

    Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons (1). Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

  10. Optimal wavelength band clustering for multispectral iris recognition.

    Science.gov (United States)

    Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi

    2012-07-01

    This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.

  11. Model for diffusion of a narrow beam of charged particles

    International Nuclear Information System (INIS)

    Eisenhauer, C.

    1980-01-01

    A simple analytic expression is presented to describe the three-dimensioned spatial distribution of flux or energy deposition by a narrow beam of charged particles. In this expression distances are expressed in terms of a scaling parameter that is proportional to the mean square scattering angle in a single collision. Finite ranges are expressed in terms of the continuous-slowing-down range. Track-length distributions for one-velocity particles and energy deposition for electrons are discussed. Comparisons with rigorous Monte Carlo calculations show that departures from the analytic expression can be expressed as a slowly varying function of order unity. This function can be used as a basis for interpolation over a wide range of source energies and materials

  12. Wide Band to ''Double Band'' upgrade

    International Nuclear Information System (INIS)

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs

  13. Analysis of narrow effects in pp annihilations

    CERN Document Server

    Defoix, C

    1972-01-01

    The author describes briefly some methods of analysis that final states involving a number of like particles require. A first method consists of separating two competing channels to minimize the reflections due to the undesirable one. Later techniques of analysis lead to the isolation of the only channel of interest and circumvention of the problems of background and reflections due to irrelevant final states. Generally, all these processes are based on the presence of a narrow and identified resonance, for example the eta /sup 0/ or omega /sup 0/ ( to pi /sup +/ pi /sup -/ pi /sup 0/). To be efficient, it is necessary that the observed width of such a basic resonance not be increased too much by experimental errors. (6 refs).

  14. Search for narrow four-baryon states

    International Nuclear Information System (INIS)

    Badelek, B.

    1981-01-01

    Highly excited (4.10 2 ) four-baryon resonances have been searched for in the missing-mass spectrum of the reaction π - + 4 He → π - + X at 5 GeV/c in the region of small four-momentum transfer (0.005 2 ), where one of the decay products of the X is either proton or deuteron or triton. No resonance signal is seen in the mass spectrum of X. Within our limited acceptance, the cross section for the production of a narrow (GAMMA approx. 20 MeV/c 2 ) four-baryon state with mass 4.9 GeV/c 2 is estimated to be smaller than approx. 100 nb. (orig.)

  15. Active Brownian motion in a narrow channel

    Science.gov (United States)

    Ao, X.; Ghosh, P. K.; Li, Y.; Schmid, G.; Hänggi, P.; Marchesoni, F.

    2014-12-01

    We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.

  16. II-VI Narrow-Bandgap Semiconductors for Optoelectronics

    Science.gov (United States)

    Baker, Ian

    The field of narrow-gap II-VI materials is dominated by the compound semiconductor mercury cadmium telluride, (Hg1-x Cd x Te or MCT), which supports a large industry in infrared detectors, cameras and infrared systems. It is probably true to say that HgCdTe is the third most studied semiconductor after silicon and gallium arsenide. Hg1-x Cd x Te is the material most widely used in high-performance infrared detectors at present. By changing the composition x the spectral response of the detector can be made to cover the range from 1 μm to beyond 17 μm. The advantages of this system arise from a number of features, notably: close lattice matching, high optical absorption coefficient, low carrier generation rate, high electron mobility and readily available doping techniques. These advantages mean that very sensitive infrared detectors can be produced at relatively high operating temperatures. Hg1-x Cd x Te multilayers can be readily grown in vapor-phase epitaxial processes. This provides the device engineer with complex doping and composition profiles that can be used to further enhance the electro-optic performance, leading to low-cost, large-area detectors in the future. The main purpose of this chapter is to describe the applications, device physics and technology of II-VI narrow-bandgap devices, focusing on HgCdTe but also including Hg1-x Mn x Te and Hg1-x Zn x Te. It concludes with a review of the research and development programs into third-generation infrared detector technology (so-called GEN III detectors) being performed in centers around the world.

  17. The effect of narrow provider networks on health care use.

    Science.gov (United States)

    Atwood, Alicia; Lo Sasso, Anthony T

    2016-12-01

    Network design is an often overlooked aspect of health insurance contracts. Recent policy factors have resulted in narrower provider networks. We provide plausibly causal evidence on the effect of narrow network plans offered by a large national health insurance carrier in a major metropolitan market. Our econometric design exploits the fact that some firms offer a narrow network plan to their employees and some do not. Our results show that narrow network health plans lead to reductions in health care utilization and spending. We find evidence that narrow networks save money by selecting lower cost providers into the network. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Opto-electronics of PbS quantum dot and narrow bandgap polymer blends

    NARCIS (Netherlands)

    Kahmann, Simon; Mura, Andrea; Protesescu, Loredana; Kovalenko, Maksym V.; Brabec, Christoph J.; Loi, Maria A.

    2015-01-01

    Here we report on the interaction between the narrow bandgap polymer [2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta-[2,1-b;3,4-b]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and lead sulphide (PbS) colloidal quantum dots (CQDs) upon photoexcitation. We show that the presence of both materials

  19. Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared

    DEFF Research Database (Denmark)

    Stolberg-Rohr, Thomine Kirstine; Hawkins, Gary J.

    2015-01-01

    The ability of narrow bandpass filters to discriminatewavelengths between closely-separated gas absorption lines is crucial inmany areas of infrared spectroscopy. As improvements to the sensitivity ofinfrared detectors enables operation in uncontrolled high-temperature environments, this imposes ...... presents the results of an investigation into the interdependence between multilayer bandpass designand optical materials together with a review on invariance at elevated temperatures....

  20. Amniotic constriction bands

    Science.gov (United States)

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Amniotic band sequence URL of this page: //medlineplus.gov/ency/ ... birth. The baby should be delivered in a medical center that has specialists experienced in caring for babies ... or partial loss of function of a body part. Congenital bands affecting large parts of the body cause the ...

  1. Phononic band gap structures as optimal designs

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in...

  2. Searching for an Improved Spectral Match to TES and IRIS Sinus Meridiani Spectra: Coatings and Cemented Materials

    Science.gov (United States)

    Kirkland, L. E.; Herr, K. C.; Adams, P. M.

    2001-05-01

    A region on Mars within Sinus Meridiani has been interpreted as a surface partially covered by coarse-grained (gray) hematite, using spectra measured by the 1996 Global Surveyor Thermal Emission Spectrometer (TES) [Lane et al., 1999; Christensen et al., 2000]. The band strengths recorded by TES of this region are consistent with either coarse-grained hematite, or cemented poorly crystalline or cemented fine-grained hematite. The band strengths are inconsistent with unconsolidated, poorly crystalline or fine-grained hematite, including nanophase hematite dust [Christensen et al., 2000]. Currently the gray hematite interpretation is based on bands centered near 22 and 33 microns. TES also records a band centered near 18 microns that was used in early hematite interpretations [Lane et al., 1999]. However, it was noted [Kirkland et al., 1999a] that the 18 micron band is too narrow in both TES and the 1971 Mariner Mars IRIS spectra to be a good match to typical spectra of well-crystalline hematite [e.g. Salisbury et al., 1991]. The 18 micron band is near the very strong 15 micron atmospheric CO2 band, but if anything the nearby CO2 band should cause the 18 micron band to appear wider, not narrower. In addition, the higher spectral resolution of IRIS allows improved separation of the bands [Kirkland et al., 1999b]. More recent publications no longer show the TES 18 micron band [e.g. Lane et al., 2000; Christensen et al., 2000], which temporarily resolved the issue. However, we feel it is important to understand why TES and IRIS spectra exhibit an 18 micron band that is too narrow to match typical spectra of coarse-grained hematite. Smooth-surfaced cemented (e.g. ferricrete) or coated materials (e.g. desert varnish) have spectral contrast that is consistent with the observed IRIS and TES band contrast. On Mars, one possible source for cemented material or coatings would be the nanophase hematite dust. Cemented materials may occur in bulk (e.g. duricrust or ferricrete), or

  3. Step width alters iliotibial band strain during running.

    Science.gov (United States)

    Meardon, Stacey A; Campbell, Samuel; Derrick, Timothy R

    2012-11-01

    This study assessed the effect of step width during running on factors related to iliotibial band (ITB) syndrome. Three-dimensional (3D) kinematics and kinetics were recorded from 15 healthy recreational runners during overground running under various step width conditions (preferred and at least +/- 5% of their leg length). Strain and strain rate were estimated from a musculoskeletal model of the lower extremity. Greater ITB strain and strain rate were found in the narrower step width condition (p running, especially in persons whose running style is characterized by a narrow step width, may be beneficial in the treatment and prevention of running-related ITB syndrome.

  4. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Enlai; Xie, Bo [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); Xu, Zhiping, E-mail: xuzp@tsinghua.edu.cn [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-01-07

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO{sub 4} tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed.

  5. Properties of Narrow line Seyfert 1 galaxies

    Science.gov (United States)

    Rakshit, Suvendu; Stalin, Chelliah Subramonian; Chand, Hum; Zhang, Xue-Guang

    2018-04-01

    Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the Hα broad emission line 10 pixel-1. A strong correlation between the Hα and Hα emission lines is found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of Hα, Hα and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the R4570 - λEdd diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R>10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 ± 0.9) than BLSy1 galaxies (2.4 ± 0.8). It is anti-correlated with the Hα width but correlated with the FeII strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.

  6. Thermoelectricity in correlated narrow-gap semiconductors

    Science.gov (United States)

    Tomczak, Jan M.

    2018-05-01

    We review many-body effects, their microscopic origin, as well as their impact on thermoelectricity in correlated narrow-gap semiconductors. Members of this class—such as FeSi and FeSb2—display an unusual temperature dependence in various observables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie–Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators—such as Ce3Bi4Pt3 for which we present new results—and propose a general classification of paramagnetic insulators. From the latter, FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we explore new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.

  7. Thermal tuning On narrow linewidth fiber laser

    Science.gov (United States)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  8. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    Science.gov (United States)

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  9. Band parameters of phosphorene

    International Nuclear Information System (INIS)

    Lew Yan Voon, L C; Wang, J; Zhang, Y; Willatzen, M

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene. (paper)

  10. Infrared diffuse interstellar bands

    Science.gov (United States)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  11. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...... are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene....

  12. Radiometric Cross-Calibration of GF-4 in Multispectral Bands

    Directory of Open Access Journals (Sweden)

    Aixia Yang

    2017-03-01

    Full Text Available The GaoFen-4 (GF-4, launched at the end of December 2015, is China’s first high-resolution geostationary optical satellite. A panchromatic and multispectral sensor (PMS is onboard the GF-4 satellite. Unfortunately, the GF-4 has no onboard calibration assembly, so on-orbit radiometric calibration is required. Like the charge-coupled device (CCD onboard HuanJing-1 (HJ or the wide field of view sensor (WFV onboard GaoFen-1 (GF-1, GF-4 also has a wide field of view, which provides challenges for cross-calibration with narrow field of view sensors, like the Landsat series. A new technique has been developed and used to calibrate HJ-1/CCD and GF-1/WFV, which is verified viable. The technique has three key steps: (1 calculate the surface using the bi-directional reflectance distribution function (BRDF characterization of a site, taking advantage of its uniform surface material and natural topographic variation using Landsat Enhanced Thematic Mapper Plus (ETM+/Operational Land Imager (OLI imagery and digital elevation model (DEM products; (2 calculate the radiance at the top-of-the atmosphere (TOA with the simulated surface reflectance using the atmosphere radiant transfer model; and (3 fit the calibration coefficients with the TOA radiance and corresponding Digital Number (DN values of the image. This study attempts to demonstrate the technique is also feasible to calibrate GF-4 multispectral bands. After fitting the calibration coefficients using the technique, extensive validation is conducted by cross-validation using the image pairs of GF-4/PMS and Landsat-8/OLI with similar transit times and close view zenith. The validation result indicates a higher accuracy and frequency than that given by the China Centre for Resources Satellite Data and Application (CRESDA using vicarious calibration. The study shows that the new technique is also quite feasible for GF-4 multispectral bands as a routine long-term procedure.

  13. CSF oligoclonal banding - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100145.htm CSF oligoclonal banding - series—Normal anatomy To use the ... 5 out of 5 Overview The cerebrospinal fluid (CSF) serves to supply nutrients to the central nervous ...

  14. Decay of superdeformed bands

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-01-01

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs

  15. Laparoscopic gastric banding

    Science.gov (United States)

    ... eat by making you feel full after eating small amounts of food. After surgery, your doctor can adjust the band ... You will feel full after eating just a small amount of food. The food in the small upper pouch will ...

  16. Band alignment of type I at (100ZnTe/PbSe interface

    Directory of Open Access Journals (Sweden)

    Igor Konovalov

    2016-06-01

    Full Text Available A junction of lattice-matched cubic semiconductors ZnTe and PbSe results in a band alignment of type I so that the narrow band gap of PbSe is completely within the wider band gap of ZnTe. The valence band offset of 0.27 eV was found, representing a minor barrier during injection of holes from PbSe into ZnTe. Simple linear extrapolation of the valence band edge results in a smaller calculated band offset, but a more elaborate square root approximation was used instead, which accounts for parabolic bands. PbSe was electrodeposited at room temperature with and without Cd2+ ions in the electrolyte. Although Cd adsorbs at the surface, the presence of Cd in the electrolyte does not influence the band offset.

  17. The band gap variation of a two dimensional binary locally resonant structure in thermal environment

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-01-01

    Full Text Available In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap. A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.

  18. Clinical outcome of narrow diameter implants inserted into allografts

    Directory of Open Access Journals (Sweden)

    Maurizio Franco

    2009-08-01

    Full Text Available OBJECTIVE: Narrow diameter implants (NDI (i.e. diameter <3.75 mm are a potential solution for specific clinical situations, such as reduced interradicular bone, thin alveolar crest and replacement of teeth with small cervical diameter. NDI have been available in clinical practice since the 1990s, but only few studies have analyzed their clinical outcome and no study have investigated NDI inserted in fresh-frozen bone (FFB grafts. Thus, a retrospective study on a series of NDI placed in homologue FFB was designed to evaluate their clinical outcome. MATERIAL AND METHODS: In the period between December 2003 and December 2006, 36 patients (22 females and 14 males, mean age 53 years with FFB grafts were selected and 94 different NDI were inserted. The mean follow-up was 25 months. To evaluate the effect of several host-, surgery-, and implant-related factors, marginal bone loss (MBL was considered an indicator of success rate (SCR. The Kaplan Meier algorithm and Cox regression were used. RESULTS: Only 5 out of 94 implants were lost (i.e. survival rate - SVR 95.7% and no differences were detected among the studied variables. On the contrary, the Cox regression showed that the graft site (i.e. maxilla reduced MBL. CONCLUSIONS: NDI inserted in FFB have a high SVR and SCR similar to those reported in previous studies on regular and NDI inserted in non-grafted jaws. Homologue FFB is a valuable material in the insertion of NDI.

  19. Narrow Networks on the Individual Marketplace in 2017.

    Science.gov (United States)

    Polski, Daniel; Weiner, Janet; Zhang, Yuehan

    2017-09-01

    This Issue Brief describes the breadth of physician networks on the ACA marketplaces in 2017. We find that the overall rate of narrow networks is 21%, which is a decline since 2014 (31%) and 2016 (25%). Narrow networks are concentrated in plans sold on state-based marketplaces, at 42%, compared to 10% of plans on federally-facilitated marketplaces. Issuers that have traditionally offered Medicaid coverage have the highest prevalence of narrow network plans at 36%, with regional/local plans and provider-based plans close behind at 27% and 30%. We also find large differences in narrow networks by state and by plan type.

  20. Thermoelectric band engineering: The role of carrier scattering

    Science.gov (United States)

    Witkoske, Evan; Wang, Xufeng; Lundstrom, Mark; Askarpour, Vahid; Maassen, Jesse

    2017-11-01

    Complex electronic band structures, with multiple valleys or bands at the same or similar energies, can be beneficial for thermoelectric performance, but the advantages can be offset by inter-valley and inter-band scattering. In this paper, we demonstrate how first-principles band structures coupled with recently developed techniques for rigorous simulation of electron-phonon scattering provide the capabilities to realistically assess the benefits and trade-offs associated with these materials. We illustrate the approach using n-type silicon as a model material and show that intervalley scattering is strong. This example shows that the convergence of valleys and bands can improve thermoelectric performance, but the magnitude of the improvement depends sensitively on the relative strengths of intra- and inter-valley electron scattering. Because anisotropy of the band structure also plays an important role, a measure of the benefit of band anisotropy in the presence of strong intervalley scattering is presented.

  1. Strong coupling between a permalloy ferromagnetic contact and helical edge channel in a narrow HgTe quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Kononov, A.; Egorov, S. V. [Russian Academy Sciences, Institute of Solid State Physics (Russian Federation); Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A. [Institute of Semiconductor Physics (Russian Federation); Deviatov, E. V., E-mail: dev@issp.ac.ru [Russian Academy Sciences, Institute of Solid State Physics (Russian Federation)

    2016-11-15

    We experimentally investigate spin-polarized electron transport between a permalloy ferromagnet and the edge of a two-dimensional electron system with band inversion, realized in a narrow, 8 nm wide, HgTe quantum well. In zero magnetic field, we observe strong asymmetry of the edge potential distribution with respect to the ferromagnetic ground lead. This result indicates that the helical edge channel, specific for the structures with band inversion even at the conductive bulk, is strongly coupled to the ferromagnetic side contact, possibly due to the effects of proximity magnetization. This allows selective and spin-sensitive contacting of helical edge states.

  2. A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression.

    Science.gov (United States)

    Hadarig, Ramona Cosmina; de Cos Gomez, Maria Elena; Las-Heras, Fernando

    2013-12-03

    The design of a novel band-pass filter with narrow-band features based on an electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and characterized in terms of transmission and reflection coefficient. The selective passband and suppression of the second harmonic make the filter suitable to be used in a C band frequency range for radar systems and satellite/terrestrial applications. To avoid substantial interference for this kind of applications, passive components with narrow band features and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, less than 10% is sufficient.

  3. Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3

    Science.gov (United States)

    Barkhouse, D. Aaron R.; Haight, Richard; Sakai, Noriyuki; Hiroi, Homare; Sugimoto, Hiroki; Mitzi, David B.

    2012-05-01

    The heterojunctions formed between Cu2ZnSn(SxSe1-x)4 (CZTSSe) and three Cd-free n-type buffers, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission and photovoltage spectroscopy. The electronic properties including the Fermi level location at the interface, band bending in the CZTSSe substrate, and valence and conduction band offsets were determined and correlated with device properties. We also describe a method for determining the band bending in the buffer layer and demonstrate this for the In2S3/CZTSSe system. The chemical bath deposited In2S3 buffer is found to have near optimal conduction band offset (0.15 eV), enabling the demonstration of Cd-free In2S3/CZTSSe solar cells with 7.6% power conversion efficiency.

  4. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei

    2016-01-01

    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  5. Q2 anti Q2 states with relatively narrow widths

    International Nuclear Information System (INIS)

    Ono, Seiji.

    1978-09-01

    Using the mass formulas which correctly predict the mass of mesons and baryons the mass of diquark states is computed. From this mass spectrum the existance of the observed narrow baryonia and wide baryonia can be naturally understood. Other relatively narrow Q 2 anti Q 2 states are predicted to exist. (orig.) [de

  6. Bayesian Face Recognition and Perceptual Narrowing in Face-Space

    Science.gov (United States)

    Balas, Benjamin

    2012-01-01

    During the first year of life, infants' face recognition abilities are subject to "perceptual narrowing", the end result of which is that observers lose the ability to distinguish previously discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been reported for faces of different species and different races, in…

  7. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  8. Colors and Photometry of Bright Materials on Vesta as Seen by the Dawn Framing Camera

    Science.gov (United States)

    Schroeder, S. E.; Li, J.-Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.; hide

    2012-01-01

    The Dawn spacecraft has been in orbit around the asteroid Vesta since July, 2011. The on-board Framing Camera has acquired thousands of high-resolution images of the regolith-covered surface through one clear and seven narrow-band filters in the visible and near-IR wavelength range. It has observed bright and dark materials that have a range of reflectance that is unusually wide for an asteroid. Material brighter than average is predominantly found on crater walls, and in ejecta surrounding caters in the southern hemisphere. Most likely, the brightest material identified on the Vesta surface so far is located on the inside of a crater at 64.27deg S, 1.54deg . The apparent brightness of a regolith is influenced by factors such as particle size, mineralogical composition, and viewing geometry. As such, the presence of bright material can indicate differences in lithology and/or degree of space weathering. We retrieve the spectral and photometric properties of various bright terrains from false-color images acquired in the High Altitude Mapping Orbit (HAMO). We find that most bright material has a deeper 1-m pyroxene band than average. However, the aforementioned brightest material appears to have a 1-m band that is actually less deep, a result that awaits confirmation by the on-board VIR spectrometer. This site may harbor a class of material unique for Vesta. We discuss the implications of our spectral findings for the origin of bright materials.

  9. Opposed-Flow Flame Spread over Thin Solid Fuels in a Narrow Channel under Different Gravity

    Science.gov (United States)

    Zhang, Xia; Yu, Yong; Wan, Shixin; Wei, Minggang; Hu, Wen-Rui

    Flame spread over solid surface is critical in combustion science due to its importance in fire safety in both ground and manned spacecraft. Eliminating potential fuels from materials is the basic method to protect spacecraft from fire. The criterion of material screening is its flamma-bility [1]. Since gas flow speed has strong effect on flame spread, the combustion behaviors of materials in normal and microgravity will be different due to their different natural convec-tion. To evaluate the flammability of materials used in the manned spacecraft, tests should be performed under microgravity. Nevertheless, the cost is high, so apparatus to simulate mi-crogravity combustion under normal gravity was developed. The narrow channel is such an apparatus in which the buoyant flow is restricted effectively [2, 3]. The experimental results of the horizontal narrow channel are consistent qualitatively with those of Mir Space Station. Quantitatively, there still are obvious differences. However, the effect of the channel size on flame spread has only attracted little attention, in which concurrent-flow flame spread over thin solid in microgravity is numerically studied[4], while the similarity of flame spread in different gravity is still an open question. In addition, the flame spread experiments under microgravity are generally carried out in large wind tunnels without considering the effects of the tunnel size [5]. Actually, the materials are always used in finite space. Therefore, the flammability given by experiments using large wind tunnels will not correctly predict the flammability of materials in the real environment. In the present paper, the effect of the channel size on opposed-flow flame spread over thin solid fuels in both normal and microgravity was investigated and compared. In the horizontal narrow channel, the flame spread rate increased before decreased as forced flow speed increased. In low speed gas flows, flame spread appeared the same trend as that in

  10. Theoretical optoelectronic analysis of intermediate-band photovoltaic material based on ZnY1−xOx (Y = S, Se, Te) semiconductors by first-principles calculations

    International Nuclear Information System (INIS)

    Wu Kong-Ping; Zhou Meng-Ran; Huang You-Rui; Gu Shu-Lin; Ye Jian-Dong; Zhu Shun-Ming; Zhang Rong; Zheng You-Dou; Tang Kun

    2013-01-01

    The structural, energetic, and electronic properties of lattice highly mismatched ZnY 1−x O x (Y = S, Se, Te) ternary alloys with dilute O concentrations are calculated from first principles within the density functional theory. We demonstrate the formation of an isolated intermediate electronic band structure through diluted O-substitute in zinc-blende ZnY (Y = S, Se, Te) at octahedral sites in a semiconductor by the calculations of density of states (DOS), leading to a significant absorption below the band gap of the parent semiconductor and an enhancement of the optical absorption in the whole energy range of the solar spectrum. It is found that the intermediate band states should be described as a result of the coupling between impurity O 2p states with the conduction band states. Moreover, the intermediate bands (IBs) in ZnTeO show high stabilization with the change of O concentration resulting from the largest electronegativity difference between O and Te compared with in the other ZnSO and ZnSeO. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Superconducting correlations in the one- and two-band Hubbard models

    International Nuclear Information System (INIS)

    Jain, K.P.; Ramakumar, R.; Chancey, C.C.

    1989-01-01

    An approximate expression is derived for the generalized energy gap function Δ kμ for a system of interacting electrons in a narrow s-band. This function has the virtue that it interpolates between the weak interaction limit (BCS) and the intermediate coupling regime. Starting from the Cooper pairing state, the authors investigate the build-up of pairing correlations and study the properties of the generalized gap in these two regimes as a function of the band filling. The coupled equations for the gap and the band filling define the self-consistency conditions. A recent extension of this analysis to the two-band model is also discussed

  12. Spectral narrowing of a 980 nm tapered diode laser bar

    Science.gov (United States)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Ga"lle; Petersen, Paul Michael; Thestrup, Birgitte

    2011-03-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation, the wavelength spread of the laser could be limited to 0.04 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tuneable in a range of 16 nm.

  13. Emission bands of phosphorus and calculation of band structure of rare earth phosphides

    International Nuclear Information System (INIS)

    Al'perovich, G.I.; Gusatinskij, A.N.; Geguzin, I.I.; Blokhin, M.A.; Torbov, V.I.; Chukalin, V.I.; AN SSSR, Moscow. Inst. Novykh Khimicheskikh Problem)

    1977-01-01

    The method of x-ray emission spectroscopy has been used to investigate the electronic structure of monophosphides of rare-earth metals (REM). The fluorescence K bands of phosphorus have been obtained in LaP, PrP, SmP, GdP, TbP, DyP, HoP, ErP, TmP, YbP, and LuP and also the Lsub(2,3) bands of phosphorus in ErP, TmP, YbP, and LuP. Using the Green function technique involving the muffin-tin potential, the energy spectrum for ErP has been calculated in the single-electron approximation. The hystogram of electronic state distribution N(E) is compared with the experimental K and Lsub(2,3) bands of phosphorus in ErP. The agreement between the main details of N(E) and that of x-ray spectra allows to state that the model used provides a good description of the electron density distribution in crystals of REM monophosphides. In accordance with the character of the N(E) distribution the compounds under study are classified as semimetals or semiconductors with a very narrow forbidden band

  14. Left mainstem bronchial narrowing: a vascular compression syndrome? Evaluation by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hungate, R.G.; Newman, B.; Meza, M.P.

    1998-01-01

    Background and objective. Vascular compression of the left mainstem bronchus (LMSB) between the descending aorta (DA) and pulmonary artery (PA) has been suggested as a cause for LMSB narrowing in children. These anatomic relationships have not been compared with those in children with a normal LMSB. Materials and methods. We undertook a retrospective review of the medical and radiologic records of 10 symptomatic young children (1-19 months, 5 boys, 5 girls) with MR demonstration of LMSB narrowing and compared them to 40 young children without great vessel or bronchial abnormality on MR (1 week-19 months, 28 boys, 12 girls). Chest MR evaluation included assessment of airway and great vessel anatomy with specific attention to the course of the LMSB and its relationship to the adjacent DA and PA. The position of the DA in relation to the spine was carefully evaluated. Results. Five children had focal and five had diffuse LMSB narrowing. DA position at the level of the crossing LMSB: in 40 % of symptomatic children the DA was located in front of the adjacent vertebral body; in 40 %, 1 / 2 - 3 / 4 and in 20 % 1 / 4 - 1 / 2 of the circumference of the DA was located anterior to the spine. In the control group, the DA was prespinal in 10 %, with a trend toward a more paraspinal location of the DA. The trend toward a difference in position of the DA between symptomatic and control patients was statistically significant (P < 0.05). DA position was not related to age (up to 19 months). At the level where the LMSB crossed the DA, a segment of the PA was located anterior to the LMSB, more often the right PA (RPA) or pulmonary bifurcation in symptomatic children and the left PA (LPA) in controls. No correlation was apparent between length of LMSB narrowing and DA or PA position. Chest radiographic abnormalities, when present, were subtle. Excellent MR/bronchoscopic correlation of LMSB narrowing was found in nine of the ten symptomatic children. One child underwent posterior

  15. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  16. Industrial Strategy and the Regions : the shortcomings of a narrow sectoral focus

    OpenAIRE

    Fothergill, Stephen; Gore, Tony; Wells, Peter

    2017-01-01

    Key points\\ud  - The new money that the UK government has allocated to support its industrial strategy is targeted at R&D in an exceptionally narrow range of sectors – healthcare & medicine, robotics & artificial intelligence, batteries, self-driving vehicles, materials for the future and satellites & space technology.\\ud  - Even on a generous definition of the industries that might benefit from the new Industrial Strategy Challenge Fund, these sectors account for little more than 1 per cen...

  17. Present status of intermediate band solar cell research

    International Nuclear Information System (INIS)

    Cuadra, L.; Marti, A.; Luque, A.

    2004-01-01

    The intermediate band solar cell is a theoretical concept with the potential for exceeding the performance of conventional single-gap solar cells. This novel photovoltaic converter bases its superior theoretical efficiency over single-gap solar cells by enhancing its photogenerated current, via the two-step absorption of sub-band gap photons, without reducing its output voltage. This is achieved through a material with an electrically isolated and partially filled intermediate band located within a higher forbidden gap. This material is commonly named intermediate band material. This paper centres on summarising the present status of intermediate band solar cell research. A number of attempts, which aim to implement the intermediate band concept, are being followed: the direct engineering of the intermediate band material, its implementation by means of quantum dots and the highly porous material approach. Among other sub-band gap absorbing proposals, there is a renewed interest on the impurity photovoltaic effect, the quantum well solar cells and the particularly promising proposal for the use of up- and down-converters

  18. Formation of Degenerate Band Gaps in Layered Systems

    Directory of Open Access Journals (Sweden)

    Alexey P. Vinogradov

    2012-06-01

    Full Text Available In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed.

  19. Are narrow mesons, baryons and dibaryons evidence for multiquark states?

    International Nuclear Information System (INIS)

    Tatischeff, B.; Yonnet, J.

    2000-01-01

    Several narrow structures have been progressively observed since the last fifteen years, in di-baryonic invariant mass spectra or in missing mass spectra. More recently, narrow structures were observed in baryonic and now in mesonic mass spectra. Since these small peaks appear at fixed masses, independently of the experiment, they are associated with real states. There is no room to explain these states within classical nuclear physics taking into account baryonic and mesonic degrees of freedom. An interpretation is proposed, which associate these narrow structures with two coloured quark clusters. (authors)

  20. The narrow-gap TIG welding concerns the electric power plants manufacturers

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Polysoude, France, played host to an expert forum on narrow gap welding from 5-7 November 2008. The successful event welcomed around one hundred experts.The power plant construction sector is currently booming worldwide. For plant construction this means using more pressure-resistant, thick-walled pipes made from high temperature steels. The key quality features of this new steel grade are the values for high creep rupture strength that also apply without restriction as the benchmark for every weld seam on these pipes. In particular, the forum on narrow gap welding addressed this area of automated welding technology. During the forum, Mr Hans-Peter Mariner (Polysoude's CEO), has offered an in-depth insight into the latest developments in narrow gap welding. This presentation highlighted that with wall thicknesses of over 60 mm, welding time is shortened by a factor of five to ten in comparison to conventional TIG processes with a traditional V seam. The welding characteristics of the parent material are the decisive factor in the application of the narrow gap process. Technical advances in equipment technology such as automatic centring, HF-free ignition, seam preparation and optimised gas protection further increase the application limits. The geometry and gap width of the weld groove are based on the mechanical properties of the materials being joined, with the shrinkage characteristics of the seam being particularly important. Another key part of the programme was a presentation on the three different narrow gap-welding techniques. The first involves a single pass weld per layer and torch or work-piece revolution. The second is dual pass welding next to one another, when the seam preparation or positioning exceed the required narrow tolerances of a few tenths of a millimetre for one stringer bead per layer. TIG narrow gap welding with a shuttle-motion electrode is ideal with very large wall thicknesses of 150-200 mm. This is particularly the case if the